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Abstract

Nowadays, the evolution of localisation and navigation technologies is vast, aiding towards fa-
cilitating users’ guidance in various environments. Outdoor positioning can be easily achieved,
with the widely used Global Navigation Satellite Systems (GNSS), which comprise a universal
standard for positioning and are included in every person’s mobile device. However, due to
the presence of high buildings in dense urban environments and bad reception in indoor envi-
ronments, the performance of GNSS is significantly degraded. Therefore, alternative ways of
positioning and localisation respectively, need to be explored. In indoor environments, unlike
outdoors, there is no universal standard, as the different indoor localisation techniques, that are
currently implemented have their own bottlenecks. The most widely used Wi-Fi fingerprinting,
requires a constantly up-to-date radio map of the signals from the Wi-Fi access points, whose
creation is also a heavy and time-consuming technique. Additionally, other techniques require
an installation of costly sensors or either equipment.

Therefore, this thesis investigates the possibility of the ceilings in public or semi-public build-
ings, being used for indoor localisation, by using features that are included in a simple mobile
device. The research additionally involves location tracking of different users, in order to dis-
cover different movement patterns in an indoor facility. Indoor localisation is achieved based
on the comparison of user and reference data, that can be both point clouds and images, using
the Light detection and ranging (LiDAR) of an iPad 12 pro and camera sensors of an Android
device. The point cloud-based localisation is implemented based on different combinations of
global and local registration techniques, while the image-based approach involves different fea-
ture detection, description and matching techniques. Using a web-application to visualise the
indoor localisation results, an indoor model and a network graph of the Faculty of Architecture
and the Built Environment, location tracking of different users is implemented and visualised
in a heat-map. Additionally, a dashboard is created that can be used by a facility manager to
translate the user paths to valuable information and reveal different movement patterns in an
indoor facility.

The followed methodology showed promising results, concerning the reliability of ceilings for
real-time indoor localisation, based on LiDAR and camera sensors, that are incorporated in
up-to-date mobile devices. The robustness of Colored Iterative Closest Point (ICP) algorithm
for indoor localisation based on point clouds was revealed, both in terms of time efficiency and
quality, while the combination of Speeded-Up Robust Features (SURF) feature detector and
Scale Invariant Feature Transform (SIFT) descriptor provides the optimal indoor localisation
results with image data. The proposed pipeline revealed encouraging results for use in
emergency situations, based on static data acquisition of a user, while it is also suitable for
dynamic applications, in case a sensor is mounted on an automated device for indoor mapping
operations.

Keywords: Indoor localisation, Location tracking, LiDAR, iPad 12 pro, Point cloud registration,
Feature matching, Ceilings
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Executive Summary

Introduction

Nowadays, the evolution of localisation and navigation
technologies is vast, aiding towards facilitating users’
guidance in various environments. Outdoor positioning
can be easily achieved, with the widely used GNSS, which
are included in every person’s mobile device. However,
due to the presence of high buildings in dense urban envi-
ronments and bad reception in indoor environments, the
performance of GNSS is significantly degraded. There-
fore, alternative ways of positioning and localisation re-
spectively, need to be explored.

In indoor environments, there is lower landmark den-
sity and an absence of outstanding elements that can fre-
quently result to easier loss of orientation, compared to
outdoors [Michon and Denis, 2001]. As Wadden and
Scheff mentioned, people spend around 80 % of their time
indoors, thus localisation comprises an important prob-
lem, in public buildings, such as airports or train stations,
that usually consist of chaotic spaces, leading to a higher
chance that an individual will become disoriented. There-
fore, the necessity of a dynamic indoor localisation system
is apparent, so that a person can navigate in an indoor fa-
cility, especially if that person is exploring it for the first
time. In that scenario, a location provider tool with ade-
quate precision could be a significant aid. This tool could
be applied in various indoor spaces, such as museums and
art galleries [Gupta et al., 2016].

Indoor localisation could also be applied in emergency sit-
uations in complex indoor spaces. Persons in need could
access the name of their current location, based on an in-
door localisation application and transmit this informa-
tion to the first-aid responders. The latter need guidance,
related to the location of the person in need, as well as
a way to reach that location [Yang and Worboys, 2011].
Additionally, other applications of indoor localisation in-
clude the use of mobile autonomous units, in an effort to
establish an indoor intelligent environment. Mobile ser-
vice robots can be exploited for assisted living, setting up
a smart living environment for elderly people and perform
transportation and human interaction tasks.

Currently, various sensors, such as Wi-Fi fingerprinting
and Bluetooth, are widely used for precise localisation in
indoor environments. These technologies work by per-
forming triangulation and trilateration of different users
and become the basis of different indoor localisation ap-
plications. Other applications use optic sensors to achieve
object recognition (Google Lens). Recently some new
applications have emerged, that use Augmented Reality
(AR) combined with the Simultaneous localisation and
mapping (SLAM) algorithm, which works by scanning an

indoor environment in order to find a person’s location in
this space [Oostwegel, 2020].

Compared to outdoor environments where GNSS com-
prises a universal standard for positioning, the same can-
not be claimed for indoor environments [Lymberopou-
los et al., 2015]. The most widely used technology, Wi-
Fi fingerprinting, is based on the comparison of Received
signal strength (RSS) values with a reference radio map
that translates signal values to positions [Pérez-Navarro
et al., 2019]. Creating this radiomap is a heavy and time-
consuming task. Many fingerprints are required and a sin-
gle change in the Wi-Fi infrastructure, requires the map
to be created again. Consequently, an up-to-date radio-
map of the signals in an indoor facility is mandatory for
this technique to function. Moreover, the availability of
Wi-Fi signals in indoor environments might be irregular,
which could be an outcome of poor Wireless local area
network (WLAN) planning in the facility. Similarly, al-
ternatives that are based on wireless technologies, such as
Bluetooth, that requires the installation of costly Bluetooth
hotspots, are affected by the aforementioned problems.

Other indoor localisation solutions combine SLAM and
AR technologies by taking into account different sensors,
such as RGB and depth cameras. Simple AR applications
can be ran in a basic smartphone, however additional de-
vices are usually required, to offer a solution with a deeper
understanding of the indoor environment.

The problems that emerge in the existing techniques and
the lack of a universal solution [Pérez-Navarro et al., 2019],
provide a space for innovation by utilising other tech-
niques, that take into advantage camera and LiDAR sen-
sors. While cameras sensors exist in every mobile device,
the use of LiDAR sensors is exponentially increased, as
they were also recently included in the latest releases of
Apple’s iPhone and iPad devices, showing that they will
be a major part of the mobile devices that will follow in
the upcoming years. Therefore, the challenge of achiev-
ing indoor localisation in different environments, is to find
a technique that does not depend on costly and hard to
access indoor sensor networks, but to use features that
are accessible to everyone in their mobile device [Willems,
2017].

This research will explore the possibility of the ceilings in
public or semi-public buildings, being used for indoor lo-
calisation purposes, by providing an accessible solution
that makes use of features that are available in a simple
mobile device. The focus includes indoor localisation, as
well as near real-time location tracking of different users
for the purpose of discovering different movement pat-
terns in an indoor facility.
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Methodology and
implementation

The main steps of the pipeline will be first briefly ex-
plained. First, the ceiling data acquisition, was achieved
based on three different techniques. Single images of the
tested rooms were acquired with camera sensors from
different mobile devices, as well as overlapping images
of the same sites, to achieve 3D reconstruction of these
scenes. Additionally, point clouds were acquired from
LiDAR sensors of an iPad, that include this sensor. For
both the point clouds and the images, indoor localisa-
tion was achieved by comparing user data and reference
data, that were uploaded in a database. Regarding sin-
gle images, their features were matched based on differ-
ent matching techniques. Multiple overlapping images of
a ceiling were first reconstructed in three dimensions, both
from user and database side. As a result, point cloud regis-
tration techniques were used to compare the two types of
point clouds. Furthermore, directly acquired point clouds,
were first pre-processed and then co-registered to achieve
indoor localisation. Indoor localisation results derived
from point cloud comparison were stored in a database
and were visualised in a web application. The indoor
model of the tested facility and its network graph were
combined with the localisation results to provide infor-
mation on users’ current and previous locations. This
way, the used paths were revealed and consequently the
movement patterns in an indoor facility. The visualisa-
tion of this location tracking operation has the form of a
heat-map, including user paths during different times of
a day. Additionally, a dashboard included statistics about
the path usage was created. This pipeline was applied to
some rooms of the Faculty of Architecture and the Built
Environment of TU Delft, that are shown in the next fig-
ure.

Figure 1.: Selected rooms from the Faculty of Architecture
and the Built environment

Regarding point cloud acquisition, two types of of point
clouds were acquired, from LiDAR sensors. There are
point clouds that act as reference and were stored in a
database, as well as point clouds that are acquired by a
user. The latter will be compared to these reference point
clouds, so that indoor localisation is achieved, based on
the best match. The acquisition involves the use of two

applications, SiteScape and Pix4D Catch and the LiDAR
sensor of an iPad 12 pro. The point cloud acquisition was
implemented in two ways: while a person is walking into
a room ,giving a dynamic perspective to the acquisition
and also while staying still, so that it is investigated if the
final product of the thesis can be used during emergency
situations, in cases where an individual might be unable
to move.

Single images of the tested rooms were acquired from
camera sensors of a Xiaomi Redmi Note 9s Android
phone. As in the case of point clouds, some images were
used as reference to represent the room’s ceiling in two di-
mensions. Images of a ceiling acquired by a user were then
compared to the reference images of the rooms in order to
reveal the user’s location based on the optimal match. Fur-
thermore, overlapping images of ceilings were acquired
with the same sensors and a minimum overlap, for the re-
construction of the 3D scene. Additionally, concerning the
overlapping images, different combinations of feature de-
tectors, descriptors and feature matching techniques were
tested, in an effort to discover their optimal combination,
for indoor localisation based on images of the ceilings.

Pre-processing of the point clouds included voxel down-
sampling in order to reduce processing time by manipulat-
ing a point cloud of smaller size [Miknis et al., 2016]. How-
ever, this operation has to be implemented carefully and
until a certain threshold, because further down-sampling
might result to important loss of information. Further-
more, when acquiring ceiling data, it is possible that the
point cloud includes adjacent wall parts, that need to be
excluded from the upcoming operations. These parts can
be considered as outliers [Han et al., 2017] for the purposes
of this research. To achieve their removal, a smaller part
of the acquired point cloud was used, in order to discard
the wall parts that might exist in the corners of the point
clouds. Additionally, some outliers were located and re-
moved based on the number of their neighbours, to fur-
ther improve the point cloud’s quality and reduce pro-
cessing time. Last but not least, plane segmentation based
on the Random sample consensus (RANSAC) algorithm
was performed, in order to differentiate the flat surface of
the ceiling with its protruding objects, such as lamps and
other installations, which comprise the characteristic de-
tails of each room’s ceiling.

After acquiring and pre-processing reference and user
point clouds, the next step was to create an algorithm that
would aid towards comparing them. The main idea be-
hind this is, that each point cloud taken by a user, would
be compared with all the point clouds in the database and
the best match will reveal the room where the user is lo-
cated. This procedure works as follows for both types of
point clouds. The comparison first included a global reg-
istration, so that the user and the reference point clouds
obtain an initial alignment and afterwards a local registra-
tion algorithm to refine the point cloud registration.

First, the normal vectors of all the points were computed.
Furthermore, points with a unique and descriptive neigh-
bourhood were detected. The detection and description
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Figure 2.: Pre-processing steps

of these unique points for each point cloud was imple-
mented based on Fast Point Feature Histogram (FPFH)
feature calculation. Two different global registration tech-
niques were implemented and compared.

The first technique includes the aforementioned steps and
then RANSAC, in order to select some random points
from the reference point cloud and then find the corre-
sponding points in the user point cloud, using a nearest
neighbor query in the 33-dimensional FPFH feature space
[Li et al., 2021]. Aside from the distance of the correspond-
ing points in the compared point clouds, the similarity be-
tween two edges between the compared point clouds and
the vertex normal affinity of the correspondences are also
checked. In case the points satisfy the selected thresholds,
the transformation of the user point clouds towards the
reference point clouds is implemented.

The second technique was implemented, based on the
fast global registration proposed by Zhou et al. This
method follows the steps of the global registration de-
scribed above, however it does not use RANSAC to choose
point correspondences between the two point clouds, but
finds the nearest neighbour of every point in the user point
cloud among the reference point cloud, based on distance
analysis in feature space.

Based on the results of the global registration, an attempt
of improving the quality and time efficiency of the algo-
rithm includes different variations of the ICP algorithm.
The further minimisation of the point cloud differences
was performed by keeping one point cloud fixed, while
the other is transformed towards it. Specifically, each
point of the user point cloud was matched to the closest
point of each reference point cloud. Then, rotation and
translation were estimated and this process is iterated un-
til the results converge [Li et al., 2021]. The user point
cloud was compared to all the reference point clouds,
based on the fitness and the Root Mean Squared Error
(RMSE) value, which will result in the indoor localisation.
Different variations of ICP were implemented and com-
pared and more specifically Generalised, Point-to-Point,
Point-to-Plane and Colored ICP. These steps were im-
plemented both to directly acquired point clouds, as well
as point clouds that were reconstructed from overlapping
images of a ceiling.

For each of the selected rooms, one image of a ceiling was
acquired and acted as reference. For testing purposes, dif-
ferent user images were additionally acquired from dif-
ferent viewpoints and were compared with the reference
images. This comparison included the use of different fea-
ture descriptors and detectors, such as Oriented FAST and
Rotated BRIEF (ORB), SIFT, and also two different feature
matching techniques, brute-force and Fast Library for Ap-
proximate Nearest Neighbors (FLANN). The number of
matches between the user and the reference images was
used to reveal the location of the user.

An important step towards 3D reconstruction is the fea-
ture matching between the overlapping images. There-
fore, some subsets of images were selected, in order to
evaluate different combination of feature detectors, de-
scriptors and matching techniques from acquired images
of ceilings. These images were acquired based on different
overlaps, in an attempt to examine how the percentage of
coverage affects the time complexity of the 3D reconstruc-
tion and the quality of the results. The quality of the re-
sults was examined based on the number of matches be-
tween the overlapping images, as well as a ground truth
which was manually set for several images, so that the re-
sults are protected against false matches. Graphical repre-
sentations that show the true to false matches were created
to enhance the results. Following these steps, the overlap-
ping images sets were used for 3D reconstructions of the
ceilings.

The setup of the whole system was organised in an online
database, part of the ArcGIS Online Server. This database
includes the indoor model of the case study and a network
graph, that connects all the rooms of the tested area to
each other. Except for the geometry of the rooms in the
indoor model, each of them includes one pre-processed
point cloud and an image that acts as reference for the
point cloud registration and feature matching operations
respectively. Moreover, this indoor model serves as an em-
bedded map in web-application that was created, allow-
ing the users to have a visual insight of their location.

The indoor localisation results were visualised in a web
application that has the form of a minimum viable prod-
uct. The app works by requesting the reference point
clouds from the database, so that they can be compared
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based on the discussed algorithms to the user data in near-
real time. Users are able to post their data in the appli-
cation and after a few seconds the room they are located
in is revealed. Additionally, the app includes the indoor
model of the case study, so that aside from the name of the
room, the app also highlights the polygon that represents
the room in the indoor model of the indoor facility and
zooms in it.

Figure 3.: Web-app interface

Each time the web application is used, the users’ current
and previous locations are stored in the ArcGIS Online
Server, under an encrypted id. When users move between
different rooms, it means that they used a certain path
to achieve that. Based on the network graph of the in-
door space that reveals all the connections between adja-
cent rooms, the current and previous locations of the users
were translated to a line in the network graph, represent-
ing a specific route. The availability of this information is
near-real time as the results appear in the online server af-
ter a few seconds. Based on the unique id of each user, a
heat map that is based on the network graph was used to
visualise the used routes.

Additionally, this information was used to reveal differ-
ent movement patterns, during different times of a day.
The visualisation is accomplished in the form of a heat-
map, where based on the usage of each path, different col-
ors and width were applied to the corresponding line of
the network graph. Consequently, this information can
reveal how much a path is used during a daily, weekly
or even monthly time span. Acquiring this knowledge is
valuable, especially during the COVID-19 era, because it
can be exploited by a building manager, who can achieve
the optimal distribution of people in an indoor facility
[Spinoza Andreo et al., 2021].

Figure 4.: ArcGIS Dashboard

Results

The first results emerge from point clouds acquired with
the SiteScape app, with a 10 cm distance between each
point.

(a) Colored ICP
(fitness=0.974,
RMSE=0.08)

(b) Point-to-Point ICP
(fitness=0.645, RMSE=0.2)

The results for room 08.02.00.560 are promising, as in most
cases all the point cloud registration methods match the
tested room to its reference equivalent. However in Fig-
ure 5b where fast global registration was combined with
the Generalised ICP, room 08.02.00.430 resulted in higher
fitness than the correct room 08.02.00.560. However, the
correct room had the lower RMSE value. The most accu-
rate results are achieved when Colored ICP was involved,
producing accurate results when it was combined with
global registration algorithms, as Figure 5a and indicates.
It has to be noted, that the number of fitness is not im-
portant by itself, but it has to be higher compared to the
reference point clouds of the remaining rooms.

Point clouds RANSAC Global Registration
Point-to-Point Point-to-Plane Colored ICP Generalised ICP

Dynamic 4/5 4/5 5/5 4/5
Static 4/5 4/5 5/5 4/5

Point clouds Fast Global Registration
Point-to-Point Point-to-Plane Colored ICP Generalised ICP

Dynamic 5/5 5/5 5/5 5/5
Static 3/5 4/5 5/5 3/5

Table 1.: Number of correct matches per point cloud regis-
tration algorithm

Table 1 shows the number of correct matches for each com-
bination of global and local registration algorithms that
were applied. The testing includes ten point clouds per
method and specifically five for the ceilings that a user
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acquired while walking, and five more while the user re-
mained static. In total, both RANSAC and fast global reg-
istration algorithms have similar results, when combined
with different local refinement algorithms. RANSAC is
a non-deterministic algorithm, however the high num-
ber of iterations that was selected, increases the proba-
bility that the result is reasonable. On the contrary, the
fast registration algorithm, which does not have the same
non-deterministic nature, performs slightly faster and pro-
duces results with a similar consistency, compared to
RANSAC, each time it is executed.

The results are better, when users are walking inside a
room during data acquisition, in contrast to when they re-
main static. This is a reasonable outcome, as while a user
is walking, the entire ceiling of a room can be captured.
On the contrary, while users remain static, they can only
capture a specific part of a room’s ceiling, in case the room
is considerably large, since the range of the LiDAR sensor
is approximately five meters. Therefore, in cases where
users are unable to move, there are higher chances that the
localisation is correct when they capture a part of a ceiling
that has characteristic details.

The wrong point cloud matches for some registra-
tion techniques, appear between rooms 08.02.00.430 and
08.02.00.470. This confusion arises from the fact that these
rooms have almost identical size in squared meters and
similar characteristic details in their ceilings, as they are
both lecture rooms. Additionally, the second wrong set
is mostly between rooms 08.02.00.808 and 08.02.00.807.
This happens, due to the fact that they are both corridors
and room 08.02.00.808 is significantly smaller than room
08.02.00.807. Thus, it is possible that this room is wrongly
matched as a part of 807. Some rooms, such as 08.02.00.807
which is a long corridor, has a significantly different shape
than the common rectangular rooms, hence the possibility
that the localisation is wrong is significantly reduced.

Concerning, wall parts that were acquired along with ceil-
ings, small areas did not affect the results, as some minor
wall parts remained in the tested point clouds even after
the pre-processing operations. However, in cases where a
significant part of a wall is captured, the plane segmenta-
tion could be implemented in a wrong way, as the main
plane that is computed, might be the wall instead of the
ceiling’s upper flat part.

Additionally, point clouds were also acquired with the
Pix4D Catch app, with a distance of 30 cm between each
point.

(a) Colored ICP
(fitness=0.963,
RMSE=0.09)

(b) Generalised ICP
(fitness=0.951,
RMSE=0.15)

Similarly to the previous test case, the results concerning
the room 08.02.00.560 are promising, as the combination of
global and local registration methods produces the correct
result in most cases. The combination of Colored ICP and
RANSAC provides the higher fitness value, however test-
ing for room 08.02.00.560 provided similarly good results
in every combination.

Point clouds RANSAC Global Registration
Point-to-Point Point-to-Plane Colored ICP Generalised ICP

User 5/5 4/5 5/5 4/5
Point clouds Fast Global Registration

Point-to-Point Point-to-Plane Colored ICP Generalised ICP
User 4/5 3/5 4/5 3/5

Table 2.: Number of correct matches per point cloud regis-
tration algorithm

Table 2 shows that the quality of the indoor localisation
is slightly worse compared to the results produced by
SiteScape. The result is reasonable, due to the lower den-
sity of point clouds that was chosen for the acquisition.
However, regarding the Colored ICP its results are at a
similar level as before, showing the importance of adding
color information that the other algorithms do not in-
clude.

Concerning global registration techniques, RANSAC
shows better results compared to fast, with 18/20 cor-
rect room matches, while fast at the same time results
into 14/20 correct indoor localisation results. As it
was also mentioned in Section 5.1.1, RANSAC is a non-
deterministic algorithm, however the high number of it-
erations that were set in the implementation, increases
the probability that the results are more reasonable. The
small size of the original point clouds, significantly in-
creases the time efficiency of the algorithm, with a minor
time difference between the different methods. The worst
results are presented for Point-to-Plane and Generalised
ICP when they are combined with global registration al-
gorithms, with 7/10 correct indoor localisation results.

The wrong localisation results concern room 08.02.00.430,
which is in some cases wrongly mismatched to
08.02.00.470. Their identical size and details, as they
are both lecture rooms with similar characteristic details
is the reason behind this wrong match. Additionally,
while combining fast global registration with Point-to-
Plane and Generalised ICP algorithms, an other wrong
result was observed between rooms 08.02.00.808 and
08.02.00.807. Specifically, room 08.02.00.808 was wrongly
localised as 08.02.00.807. This misinterpretation arises
due to their difference in size, as the latter is significantly
bigger, therefore, it is possible that room 08.02.00.808 is
incorrectly considered as a part of 08.02.00.807.

In this part the same testing will be applied for point
clouds that were reconstructed from overlapping image
sets that were acquired with Pix4d Catch.

In this case, the parts of the ceilings that are behind instal-
lations could not be acquired, hence not modelled, as the
acquisition involves images. However, that does not com-
prise a problem in most cases. An important observation
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(a) Colored ICP
(fitness=0.778,
RMSE=0.22)

(b) Point-to-Plane ICP
(fitness=0.521,
RMSE=0.23)

is that the point cloud reconstruction from image sets, may
result into point clouds that have a different scale com-
pared to the point clouds that were directly acquired. This
is an outcome of the 3D reconstruction process, as only
the intrinsic of the cameras are known and the position of
the 3D points is computed based on the projections from
the 2D space, so the true scale of the scene cannot be ac-
curately recovered. Therefore, the 3D reconstruction of a
ceiling is unique up to a scaling factor. For this reason,
point clouds that were reconstructed from images have
to be used as reference, for the matching results to be ac-
curate. Concerning the results of room 08.02.00.560, the
best results in terms of fitness can be once more noticed,
where Colored ICP was involved, however Point-to-Point
and Generalised ICP combinations also provided high fit-
ness values. A bad matching is observed while combin-
ing RANSAC to Point-to-Point ICP with 52% fitness value
(Figure B.47a), however this number was higher than the
ones of the respective rooms, resulting into a correct local-
isation.

Point clouds RANSAC Global Registration
Point-to-Point Point-to-Plane Colored ICP Generalised ICP

User 4/5 3/5 5/5 4/5
Point clouds Fast Global Registration

Point-to-Point Point-to-Plane Colored ICP Generalised ICP
User 4/5 3/5 5/5 5/5

Table 3.: Number of correct matches per point cloud regis-
tration algorithm

Both global registration algorithms have similar quality of
results and specifically the combination of RANSAC with
local refinement algorithms, gives 16/20 correct localisa-
tion results, while fast with the same combinations issues
indoor localisation correctly, 17/20 times. Concerning lo-
cal registration algorithms, Colored ICP appears to have
the maximum success rate with 10/10 correct localisation
results, while the worst results involve Point-to-Plane ICP
with 6/10 correct results. Once more, the addition of color
information to the existing geometry can significantly im-
prove the point cloud registration results, ensuring a high
success indoor localisation rate.

In contrast to the previous datasets, the wrong matches
do not include the same rooms as before, however the
results in overall are similar.There are different combina-
tions of rooms that were mismatched. This is a result of the
scaling factors, during the reconstruction operation that
model the third dimension with a scale ambiguity. Thus,
rooms that appear to have a different size in reality, might
be modelled similarly in terms of size, a fact that could

result into wrong localisation, when the protruding com-
ponents of the ceilings are not enough to differentiate the
rooms between each other.

(a) Scatter plot with centers
of reference and user
point clouds after point
cloud matching in room
08.02.00.808

(b) Scatter plot with centers
of reference and user
point clouds after point
cloud matching in room
08.02.00.807

Figure 5.15a and Figure 5.15b show the centers of the re-
spective reference point cloud with blue color, as well as
the centers of different user point clouds after the imple-
mentation of the point cloud registration algorithms and
specifically RANSAC based global registration and Col-
ored ICP local refinement. The results concerning room
08.02.00.808 reveal good accuracy, as most of the centers
of the user point clouds are a few centimeters away from
the center of the reference point cloud, while at the same
time the precision is adequate, as most of the centers of the
user point clouds are close to each other. On the contrary,
the same results for room 08.02.00.807 are worse concern-
ing accuracy and also precision, since the centers of the
user point clouds are further away from the center of the
reference point cloud and at the same time far from each
other. This has to do with the size and length of the room
08.02.00.807, that is a corridor with similar and lengthy
protruding installations on the ceilings, therefore it is pos-
sible that the user point clouds are matched to the refer-
ence point cloud on a different part of those installations
further away from the center of the point cloud. However,
in both cases there is good accuracy and precision regard-
ing the height dimension, which shows that the flat part
of the ceilings of the user and reference point clouds is in
most cases correctly matched.

5 MP Camera
ORB-ORB SIFT-SIFT

Brute-Force 4/5 5/5
FLANN 4/5 5/5

8 MP Camera
Brute-Force 4/5 5/5

FLANN 4/5 5/5

Table 4.: Number of correct matches per feature detection,
description and matching techniques

The results are based on images that were taken from
two different cameras with 5 and 8 MP resolution re-
spectively. Both cameras perform similarly resulting into
18/20 correct room matches. Additionally, the two feature
matching techniques have similar efficiency when they
are combined with the two different detectors and de-
scriptors, while brute-force performs slightly faster than
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FLANN. However, the latter can be more efficient than
brute-force, when large datasets are involved. FLANN re-
sults into a higher number of matches between the user
image and the reference image of the correct room in most
cases. The same can be mentioned about SIFT, which re-
sults into more matches between the images compared to
ORB, however the indoor localisation is calculated with
worse time efficiency. In terms of quality, the suitability
of SIFT, lies in the fact that it is scale and rotation in-
variant, whereas ORB is only rotation invariant and ro-
bust to noise. As a result, in case SIFT is used, the height
and angle of the device do not affect the result. The
time efficiency of SIFT, could be improved, by implement-
ing the SURF detector and descriptor. The ratio test that
was applied in each experiment was strict, in order to
avoid false correspondences, due to the common installa-
tions between the different rooms. The most clear results
were noticed concerning a test image of room 08.02.00.470,
where approximately 400 matches were observed between
the user and reference image, a number which is signif-
icantly higher compared to the other reference images.
This is an outcome of the similarity of the user and ref-
erence images, as they were acquired from a similar an-
gle and cover approximately the same part of the ceiling.
In other cases where the viewpoints of the user and refer-
ence images were different, the indoor localisation results
were correct, as the user image had the most matches with
its corresponding reference image, however the number of
matches was significantly lower, between 50 and 100.

The wrong localisation results, were related to room
08.02.00.807, that cannot be entirely captured from a sin-
gle image, due to its length. Therefore, in terms of size, it
appears to be similar to different rooms of the case study.
However, this result can be partially solved, in case the
data acquisition is performed, by holding the sensor al-
most perpendicular to the ceiling, so that a bigger part of
the ceiling is captured.

In this testing, there are no differences between the two
different cameras regarding the quality of the results.
However, certain illumination changes that create blurry
areas, may significantly affect the intensity of each pixel of
the tested images. In this situation, a high resolution cam-
era could better capture the reality and avoid these blurry
parts in the images. However, a drawback of using cam-
eras with high resolution, is that they tend to produce big-
ger image files, that are not suitable for real-time applica-
tions, due to the necessity of a time efficient solution.

Some wrong matches are highly affected by the ceiling
lights that are on, during most part of the day in the Fac-
ulty of Architecture and the Built environment. These
lights tend to create blurry areas around them, tampering
with the real intensity values of the pixels. Additionally,
the intensity values of these areas might appear similar
to the windows, resulting into wrong matches between
the windows and the lights, when two images are com-
pared. Hence, during the acquisition, windows should be
avoided as much as possible, due to their reflective abil-
ity.

Overall, indoor localisation based on the comparison of

the features of an image seems really promising, however
additional testing regarding lighting conditions and view-
points, has to be implemented to produce safe conclusions
about this method. Testing in a larger database is also a
challenge, as well as the implementation of the SURF de-
tector and descriptor, to check the suitability of this indoor
localisation method based on images, for real-time appli-
cations.

(a) Feature extraction with
SURF detector
and SIFT descriptor

(b) Feature matching with
SURF detector
and SIFT descriptor

(a) Feature extraction with
SIFT detector
and SURF descriptor

(b) Feature matching with
SIFT detector
and SURF descriptor

Additionally, some subsets of overlapping images were
chosen in order to test additional combinations of feature
detectors, descriptors and feature matching techniques.
The testing that was performed in an open-source soft-
ware called Photomatch, showed that the combination
of SURF as a detector and descriptor detects the maxi-
mum number of key-points (5000) with both brute force
and FLANN matching techniques. The opposite is ob-
served for the combination of SIFT and Binary Robust
Independent Elementary Features (BRIEF) are combined
with almost 3500 thousand key-points. The latter happens
due to the simplicity of the BRIEF descriptor which tar-
gets in fast description from simple intensity difference
tests. Regarding the percentage of key-points that are
used for matching, SURF detector with SIFT descriptor
and FLANN matching take into advantage approximately
13% of the detected points, while the combination of SIFT
detector, SURF descriptor and FLANN uses less than 1%
of the detected key-points for feature matching. This is a
result of the size of the vectors of SIFT and SURF descrip-
tors, which have a size of 128 and 64 elements, showing
that SIFT entails more details concerning the description
of the sub-region of the tested key-points. In most cases,
FLANN uses a higher percentage of key-points for match-
ing, compared to brute-force except when the SIFT detec-
tor and SURF descriptor are combined, however the dif-
ference is minor.

The location tracking results are based on the different in-
door locations of different users in different times of a day.

xiii



Figure 11.: Receiver Operating Characteristic (ROC)
curves between 2 images with Brute-force matching

Therefore, the quality of the followed paths is a direct out-
come of the indoor localisation quality. The results are
available in the ArcGIS online Server and can be seen in
near real-time in a map, that is updated every 30 seconds.
To test the accuracy of the location tracking algorithm, a
ground truth was set, based on the path that the user orig-
inally followed and was compared to the path, as it is visu-
alised in the final product. This is shown in Figure 5.23.

Figure 12.: Ground truth and visualised paths between
rooms 08.02.00.430, 08.02.00.807 and 08.02.00.470

Figure 5.23 shows the path of a user that moved between
rooms 08.02.00.430, 08.02.00.807 and 08.02.00.470. The in-
door localisation was performed correctly for these three
rooms, therefore the ground truth is similar to the path as
it is visualised in ArcGIS Pro. Some differences exist due
to the indoor network that is used to visualise the paths, as
the center of each room is the representative node and the

fact that the rooms are connected to each other with lines,
therefore small deviations when the user is not moving
completely straight cannot be detected.

Conclusion and discussion

This research aimed to investigate the reliability of ceilings
as an alternative way of achieving indoor localisation and
in extent location tracking of users, based on LiDAR and
camera sensors, which are incorporated in up-to-date mo-
bile devices, in an effort to substitute the varied used local-
isation methods that mostly involve Wi-Fi fingerprinting
and Bluetooth sensors. In that manner, indoor localisation
becomes possible for a variety of users, without the need
of additional equipment. The only requirement of this
pipeline, is the existence of point clouds of ceilings that
will act as reference for every room of the indoor facility.
The indoor localisation from the different testing that was
implemented showed promising results, both in terms of
quality as well as time efficiency, as the scope of the the-
sis was to be able to perform real-time localisation of large
indoor environments, focusing on ceilings with character-
istic details. Based on the results, a point cloud acquisi-
tion of a few seconds is enough to indicate the room that
users are in, especially when the whole ceiling can be cap-
tured. In case a ceiling is partly acquired, the indoor local-
isation result depends on the uniqueness of the captured
part. Additionally, the point cloud acquisition of ceilings
led to promising localisation results while implemented
dynamically, during continuous acquisition between dif-
ferent rooms. The range of the current LiDAR sensors is
approximately 5 meters, therefore point clouds of ceilings
in buildings with high ceilings cannot be captured, except
the mobile device is mounted on an extensible monopod
or tripod. However, this unavailability in acquisition, can
be also translated into information that a person is in a
room with a high ceiling.

Data acquisition has to be implemented properly while a
person is moving with a steady pace and without sudden
movements regarding the measuring angle and height. A
monopod or a tripod could be used to solve the small
range of the LiDAR sensor. Concerning images, since
large rooms cannot be easily captured with a single im-
age, the sensor could be placed almost perpendicularly
to the ceiling to capture a larger part of it. Additionally,
small wall parts do not affect the localisation results, while
larger parts should be avoided. Concerning point clouds,
the Colored variation of the ICP provided the most op-
timal results both in terms of time complexity and qual-
ity. Concerning the image-based indoor localisation tech-
niques, ORB takes approximately 10% of the time that
SIFT takes, thus it is more suitable for real time applica-
tions, however SIFT resulted into more accurate results.
The larger variety of feature detectors and descriptors that
were included in Photomatch, showed that the combina-
tion of SURF feature detector with the SIFT descriptor pro-
vides the most optimal results while overlapping images
of ceilings are used for feature matching. LiDAR sensors
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are currently included only in the recent releases by Ap-
ple and some Android devices with a Time of Flight (ToF)
camera and ARCore. This new development indicates that
more mobile devices will include LiDAR sensors in the fu-
ture. Pix4D Catch and SiteScape perform with an accuracy
of +/-1 inch, showing that the LiDAR sensors in Apple’s
devices can be also used for construction projects. Promis-
ing results were also shown regarding emergency situa-
tions, such as fires in indoor environments where users
should be able to find the name of the room they are lo-
cated in, as well as a way to communicate that information
with first-aid responders. This information is also impor-
tant to first-aid responders, which are usually unaware of
the number and names of the rooms in an indoor facil-
ity. However, some improvements especially concerning
time efficiency have to be implemented for the final prod-
uct to be used for emergency situations. Concerning loca-
tion tracking, the result quality is based on the succession
of the indoor localisation results. The accuracy of location
tracking is in room-level as the center of each room was
chosen as a representing point.

The implemented pipeline, that includes both indoor lo-
calisation from point clouds and images of the ceilings,
could be applied in buildings with large rooms, such as
airports, and train stations where people can easily lose
their orientation. Therefore, localisation can be used as
an affirmation that users are on the correct route towards
their final destination. The dynamic acquisition by an au-
tomated device could help towards the optimal mapping
of indoor facilities based on point cloud acquisition. Re-
garding location tracking, it comprises an extension of in-
door localisation, as it is implemented based on two or
more localisation results. Information of most used paths
is vital in an indoor facility, as its manager, can use daily,
weekly or monthly statistics and optimise the distribu-
tion of people in an indoor space, based on the noticeable
movement patterns, while also respecting user-privacy.
The importance of this information is even higher dur-
ing the COVID-19 era. Last but not least, point clouds of
ceilings can be used as reference to Computer-aided De-
sign (CAD) and Building Information Model (BIM) mod-
els, in order to help the modelling of the existing utilities
and their components in an indoor facility.

Future research could involve the use of machine learn-
ing algorithms, which could automatically detect the large
wall planes that negatively affect the indoor localisation
results based on ceilings. Additionally, feature match-
ing based on monocular depth estimation could be tested,
as an alternative way of image-based indoor localisation.
The protruding installations of the ceilings, could be used
in combination with an AR platform in order to recognise
the different utilities in an effort to develop a landmark-
based localisation approach. Furthermore, additional re-
search could include the establishment of navigational in-
structions for humans and also robots, as well as naviga-
tion for specific user groups, such as people with partial or
severe blindness, by incorporating the braille language in
a real time application, or navigational applications that
focus on people with movement disorders, who need to
follow specific paths as they navigate to their desired des-

tination.
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1. Introduction

Nowadays, the evolution of localisation and navigation technologies is vast, aiding towards fa-
cilitating users’ guidance in various environments. Outdoor positioning can be easily achieved,
with the widely used GNSS, which are included in every person’s mobile device. However,
due to the presence of high buildings in dense urban environments and bad reception in indoor
environments, the performance of GNSS is significantly degraded. Therefore, alternative ways
of positioning and localisation respectively, need to be explored.

Even during the early centuries, when the recent technological discoveries were not available,
localisation and navigation were important fields, that could not be adequately tackled, even
by the most renowned scientists of that era. The calculation of a relative position within a
coordinate reference system, based on star observations was an initial attempt to comprehend
a person’s location in space, as sailors needed to navigate towards their final destination. The
maps of those eras were giving a sense of location, as identifiable objects were linked to relative
positions of the users [Sobel, 1998]. In both of the aforementioned examples, landmarks are
introduced in an attempt to accomplish localisation.

Landmarks play a significant role in both outdoor and indoor space. Salient objects, such
as high-rise buildings facilitate guidance in outdoor environments. In these environments,
landmarks can be both local and distant depending on the visibility, in contrast to the indoor
space where corners and walls tend to block the user’s vision. Indoor spaces contain regular
geometries, such as room boundaries, as opposed to the outdoor space [Yang and Worboys,
2011]. These points have to be taken into consideration, indicating that different strategies
have to be followed, as a means to accomplish indoor and outdoor landmark-based localisation.

Regarding indoor environments, the lower density of landmarks and the absence of outstand-
ing elements frequently result to easier loss of orientation, compared to outdoors [Michon
and Denis, 2001]. As Wadden and Scheff mentioned, people spend around 80 % of their time
indoors, or even higher according to other researchers, therefore localisation comprises an
important problem, in public buildings, such as airports or train stations, that usually consist
of chaotic spaces, leading to a higher chance that an individual will become disoriented.
Therefore, the necessity of a dynamic indoor localisation system is apparent, so that a person
can navigate in an indoor facility, especially if that person is exploring it for the first time. In
that scenario, a location provider tool with adequate precision could be a significant aid. This
tool could be applied in various indoor spaces, such as museums and art galleries [Gupta et al.,
2016]. In that context, artificial landmarks (signs) as well as natural landmarks (plants) can
help users retrieve their location. In addition, landmarks can also be used as an affirmation that
individuals are on the correct route towards their final destination [Hile and Borriello, 2008].
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Indoor localisation could also be applied to deal with emergency situations, such as fires in
complex indoor spaces. Persons in need could access the name of their current location, based
on an indoor localisation application and transmit this information to the first-aid responders.
The latter need guidance, related to the location of the person in need, as well as a way to reach
that location [Yang and Worboys, 2011]. Additionally, other applications of indoor localisation
include the use of mobile autonomous units, in an effort to establish an indoor intelligent
environment. Mobile service robots can be exploited for assisted living, setting up a smart
living environment for elderly people and perform transportation and human interaction tasks.
These types of robots use artificial landmarks in the form of a grid of passive Radio frequency
identification (RFID) in the floor [Koch et al., 2007]. Robotic systems could also be used in
working environments, by deriving a topological map based on the room geometries [Schmidt
et al., 2006].

Currently, various sensors, such as Wi-Fi fingerprinting and Bluetooth, are widely used for
precise localisation in indoor environments. These technologies, as well as Arduino [Mitilineos
et al., 2010] and Raspberry Pi, work by performing triangulation or trilateration of different
users and become the basis of different indoor localisation applications. Other applications
use optic sensors to achieve object recognition (Google Lens). Recently some new applications
have emerged, that use AR combined with the SLAM algorithm, which works by scanning an
indoor environment in order to find a person’s location in this space [Oostwegel, 2020]. It has
to be mentioned that these applications work on a local level compared to outdoors, meaning
that indoor localisation provides contextual information on a person’s location in a sub-room
or room level, while the exact coordinates cannot be derived.

1.1. Problem Statement

Compared to outdoor environments where GNSS comprises a universal standard for posi-
tioning, the same cannot be claimed for indoor environments [Lymberopoulos et al., 2015].
This occurs because each of the different indoor localisation techniques that are currently
implemented, has its own bottlenecks.

The most widely used technology, Wi-Fi fingerprinting, is based on the comparison of RSS
values with a reference radio map that translates signal values to positions [Pérez-Navarro
et al., 2019]. Creating this radiomap is a heavy and time-consuming task. Many fingerprints are
required and a single change in the Wi-Fi infrastructure, requires the map to be created again.
Therefore an up-to-date radio-map of the signals in an indoor facility is mandatory for this
technique to function. Moreover, the availability of Wi-Fi signals in indoor environments might
be irregular, which could be an outcome of poor WLAN planning in the facility. An additional
aspect that needs to be taken into account is the fluctuation in the indoor population, which
as was proved by [Garcia-Villalonga and Perez-Navarro, 2015] can significantly affect the RSS
and therefore the accuracy of the results. Similarly, alternatives that are based on wireless
technologies, such as Bluetooth, that requires the installation of costly Bluetooth hotspots, are
affected by the aforementioned problems.
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Other indoor localisation solutions combine SLAM and AR technologies by taking into account
different sensors, such as RGB and depth cameras. Simple AR applications can be ran in a
basic smartphone, however additional devices are usually required, to offer a solution with a
deeper understanding of the indoor environment. Google Glass and Microsoft Hololens, which
is a head-mounted display AR device and has the ability of visualising 3D models, while it
includes its own processing unit [Kim et al., 2017], are some examples of AR devices.

A lot of research has been implemented in the field of outdoor navigation and localisation,
in contrast to indoor environments, where the developments are relatively new and mostly
involve Bluetooth sensors and Wi-Fi fingerprinting, in an effort to achieve localisation. The
problems that emerge in the existing techniques and the lack of a universal solution [Pérez-
Navarro et al., 2019], provide a space for innovation by utilising other techniques, that take into
advantage camera and LiDAR sensors. While cameras sensors exist in every mobile device,
the use of LiDAR sensors is exponentially increased, as they were also recently included in the
latest releases of Apple’s iPhone and iPad devices, showing that they will be a major part of the
mobile devices that will follow in the upcoming years. Therefore, the challenge of achieving
indoor localisation in different environments, is to find a technique that does not depend on
costly and hard to access indoor sensor networks, but to use features that are accessible to
everyone in their mobile device [Willems, 2017].

1.2. Research questions

Defining the main and secondary research questions, is a crucial part of the thesis, aiming to
address indoor localisation and ensure the concreteness of this project. Therefore, the primary
research question is formed as follows:

”To what extent can ceilings with characteristic details be used for indoor localisation purposes?”

In order to obtain a better understanding of the concept and be able to answer the main research
question robustly, some complementary research questions are formed.

1. ”Which parameters (measuring angle, height, part of the room) should the user take into account
while acquiring point clouds and images of ceilings?”

2. ”“Which is the optimal point cloud registration algorithm to achieve indoor localisation from ceil-
ing data?”

3. ”Which is the optimal image matching algorithm to achieve indoor localisation from ceiling data?”

4. ”Are LiDAR point clouds acquired by an iPhone device an accurate and accessible solution towards
indoor localisation?”

5. ”Can the proposed pipeline aid towards facilitating localisation in emergency situations?”

6. ”How accurate is location tracking and does it respect user privacy?”
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1.3. Objective and scope

This research is implemented, in order to explore the possibility of the ceilings in public or
semi-public buildings, being used for indoor localisation purposes, by providing an accessible
solution that makes use of features that are available in a simple mobile device. Indoor localisa-
tion is a fundamental step and is considered as the basis towards achieving indoor navigation.
Therefore, this research focuses on localisation, as well as near real-time location tracking of
different users’ locations for the purpose of discovering different movement patterns and not
on navigation, which will be a part of the future work recommendations of this thesis. Addi-
tionally, the case study will take place in the Faculty of Architecture and the Built Environment
at TU Delft, that consists of rooms, whose ceilings include installations, that can aid towards
revealing the unique identity of each room. As a result, the recommended pipeline will not be
applied to ceilings that do not consist of characteristic details. Data acquisition and specific in-
structions on how a user can perform it, in order to achieve optimal results will be also included.
LiDAR sensors incorporated in the latest iPhone devices and non-commercial applications will
be used to acquire and manipulate point cloud data, while camera sensors will be used to ac-
quire images of the ceilings. The thesis will delve into the use of ceilings for indoor localisation,
whereas their automatic detection will not be discussed. An additional focus of this research
will be the implementation and assessment of different image matching and point cloud reg-
istration techniques, as a means to obtain the optimal localisation results. Last but not least, a
web application is produced in order to visualise the localisation results and a dashboard that
will serve as a location tracking platform, which can include daily, weekly or monthly statistics
about the use of different paths in the Faculty of Architecture and the Built Environment. The
goal of the latter is to aid towards the discovery of different movement patterns, an information
that can help finding the optimal distribution of people in an indoor space.

1.4. Reading guide

This thesis research consists of six main chapters. Except for this introduction, Chapter 2 pro-
vides an overview and analysis of the theoretical concepts, that are required in order to un-
derstand this thesis in depth. The related scientific research that is fundamental to the current
thesis and an overview of the different algorithms that are implemented, are included in this
chapter. The overview and the analysis of the followed methodology and the specific steps
that are followed, are discussed in Chapter 3. Chapter 4 focuses on the technical specifica-
tions and details of how the proposed methodology was implemented. Chapter 5 includes the
implementation results and their extensive analysis. Furthermore, a discussion regarding the
outcome of this thesis and its conclusions are presented in Chapter 6, as well as the answers to
the aforementioned research questions. Additionally, the contribution of this thesis in the re-
search community, as well as the limitations of the current approach are presented in the same
chapter. Last but not least, potential future research based on the conclusions of the current
thesis is also proposed.
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2. Theoretical background and related work

This chapter focuses on the theoretical explanation of the concepts that are applied in this the-
sis and are required, so that the reader obtains full knowledge of the thesis. Some theoretical
aspects of this chapter might be considered general knowledge by someone in the GEO-ICT
department, however they have to be explained, so that a less related reader is introduced to
the concepts of the thesis. An overview of the implemented research and its relevance to this
thesis research will be included in this chapter.

2.1. Location and Position

To begin with, it is highly important to explain the differences between two key concepts: lo-
calisation and positioning. Position refers to the exact coordinates of a person or an object in a
reference coordinate system. The position of individuals or objects in an indoor environment
can be specified as a pin-point placement according to a global reference system of Cartesian
coordinates that is specified for a building (Figure 2.1a). Position can be also considered as rel-
ative, when it is relative to a local reference frame (Figure 2.1b) [Sithole and Zlatanova, 2016].
GNSS are widely used in outdoor environments and are included in all recent mobile devices,
enabling the user to find his current position within a certain accuracy, by using for example
Google Maps. Global Positioning System (GPS) is a term that is widely used, however it is only
a category of GNSS. While GNSS are considerably accurate in outdoor environments, their ac-
curacy might be significantly decreased in presence of high-rise structures, where there is no
line-of-sight between the satellites and the receiver, leading to signal attenuation. This phe-
nomenon also called urban canyon effect, leads to inaccurate positioning results in high-dense
urban environments. Moreover, GNSS is vulnerable to jammer devices, which started for mil-
itary purposes but their use has been extended to the public, and also spoofing devices, that
transmit fake signals, leading to false solutions from user equipment [Groves, 2013].

(a) Absolute position (b) Relative position

Figure 2.1.: Absolute position according to a global reference frame (left) and relative position
according to a local reference frame (right) [Sithole and Zlatanova, 2016]
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Concerning indoor environments, GNSS signals are typically between 15 and 40 dB weaker
compared to outdoors. A combination of different factors, such as the material of the building
and the multipath interference can lead to signal blockage [Groves, 2013], creating the need for
alternative solutions in indoor environments. The term localisation comes into life in order to
bridge the gap between outdoor and indoor environments. In contrast to position,location does
not refer to exact coordinates related to a global or local reference system, but defines a general
placement relative to the smallest defined physical space in an indoor facility, that could be
a room, stairs or a corridor (Figure 2.2). The uncertainty in the position of an individual is
determined by the extent of the room [Sithole and Zlatanova, 2016].In that manner, in an indoor
environment, localisation operations could provide contextual information about a person’s or
object’s location in space, meaning the room or section of an indoor facility. Therefore, an indoor
map of the corresponding facility is required, in order to acquire a location.

Figure 2.2.: Location according to the smallest physically defined space in a building [Sithole
and Zlatanova, 2016]

2.2. Localisation/Positioning techniques

The following techniques that are based on the categorisation of Pérez-Navarro et al. can be
used either for positioning or localisation depending on the use case. The differentiation be-
tween these two terms is explained in section Section 2.1 based on the research of Sithole and
Zlatanova.

• Proximity: Proximity methods can only provide relative location information. They take
into advantage the ability of mobile cellular networks to identify the approximate position
of a mobile device, by finding the cell site that the device is using at the time. It relies upon
a dense antenna grid, with known positions. In case the mobile device is using more than
one cells, the one with the strongest signal is considered the better solution [Liu et al.,
2007].

• Distance: These types of mechanisms are based on measuring the distance between trans-
mitters and receivers, exploiting the Received signal strength information (RSSI) to ac-
quire location in space, using triangulation and trilateration techniques [Koyuncu and
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Yang, 2010]. According to Bose and Foh, information such as the location of the emitters
is required. Except for the distance between the transmitter and receiver, signal strength
in indoor environments is also affected by the different obstacles. Concerning the trans-
mitters, they should be strategically placed in a building, with proper distance between
each other.

• Time of Arrival (ToA):These methods are based on calculating the absolute travel time of
a signal from a transmitter to a receiver. This euclidean distance is calculated by multiply-
ing the travel time of the signal to the wave speed. Required knowledge is the dielectric
constant that depends on the building material. These methods are affected by the multi-
path problem, therefore they cannot be adequately applied in indoor environments. This
problem can be addressed by using different frequency bands [Mautz, 2012] .

• Angle of Arrival (AoA): This localisation technique uses triangulation, in order to calcu-
late the angle between a wireless access point and a mobile device using the received
signal from a multiple antenna ray. The accuracy of this technique is degraded while
distance is increasing [Wong et al., 2008].

• Inertial: This method requires a sensor that is carried by a user and can provide informa-
tion about orientation and speed. A mounted Inertial Measurement Unit (IMU), usually
includes accelerometers and gyroscopes, as well as other sensors. Inertial methods are
used by taking into account the aforementioned sensors, in order to estimate a person’s
position while walking, combined with an Inertial Navigation System (INS) [Jiménez
et al., 2010].

• Fingerprinting: One of the most common indoor localisation techniques, that compares
RSS values with a reference radio map of RSS, that needs to be constantly up-to-date,
so that signal values are associated with location in space [Honkavirta et al., 2009; Kae-
marungsi and Krishnamurthy, 2004]. Wi-Fi fingerprinting is an example of one of the
most common fingerptinting methods.

The aforementioned techniques can be used with different technologies, dedicated to indoor lo-
calisation such as Ultra-Wideband (UWB), RFID and Bluetooth, or Wi-Fi. Several techniques, in-
clude the integration of different technologies in the same system [Pérez-Navarro et al., 2019].

Figure 2.3.: Accuracy of different indoor and outdoor positioning methods [Mautz, 2012]
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2.3. Additional research in indoor localisation

Various research has been implemented for indoor localisation purposes, with different tech-
niques that were presented in Section 2.2. A pure landmark based approach for indoor local-
isation was proposed by Willems, where he discussed the reliability of landmarks for indoor
localisation and how the constellation and number of landmarks affects the results. Further-
more, another complementary research has been implemented by Fratzeskou et al., as part of
the ”Synthesis Project” course, which is included in the MSc Geomatics course syllabus of TU
Delft. Specifically, an indoor localisation method is described, where users acquire data, such
as images, videos and point clouds of the ceilings to retrieve their current location. The authors
discuss a methodology where point clouds of ceilings are uploaded in a database, to represent
different rooms of the indoor space. The comparison of these reference point clouds, with the
ones acquired by users and the calculation of the best match, will reveal the room where the
user is located. The signatures of the point clouds are calculated, based on two methods: fea-
ture and histogram matching, as well as the integration of these methods. This thesis focuses
on feature matching to perform point cloud registration based on feature and not histogram
matching, while using LiDAR and camera sensors that are included in mobile devices. At the
same time, an important aspect of this thesis is the implementation of a real-time indoor locali-
sation approach and in extent location tracking of users, based on both point clouds and images.
Moreover, a dynamic approach that involves continuous point cloud acquisition, while a user
or an automated device are moving between rooms is also implemented in the current thesis.

2.4. Camera sensors and images

Currently, cameras are widely used by various individuals in order to capture the real world.
However camera sensors and the images that they produce can be used in order to solve com-
plex problems related to photogrammetry and computer vision. Photogrammetry, is a science
that has as its main outcome the production of topographic maps, based on acquired images
that are collected with different techniques, that can be both terrestrial and airborne for small
and large scale projects respectively. In parallel, camera sensors are useful in computer vision, in
order to support operations, such as object recognition and navigation in autonomous vehicles
[Hartley and Mundy, 1993].

Images incorporate 2D representations of the real-world and include geometric information,
such as points and lines, as well as photometric information that could be color or intensity.
However, some features of the real world scene may not be preserved [Kaniouras et al., 2019].
Thus, it is possible to calculate the coordinates of a 3D point, based on the camera’s parameters
and at least two images with a minimum overlap. This procedure will be thoroughly explained
in section Section 2.5.

2.4.1. Camera models

There are various camera models, however pinhole camera model comprises one of the models
that represent simple camera geometry and it is commonly used as the reference system for
geometrical relations [Zhang, 2000]. The design of this system includes placing a barrier with a
small aperture between the camera and the object. The aperture exists in order to avoid multiple
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rays from various points in the object influencing the camera film. In that way, only a few rays
pass through the aperture, enabling the possibility of one-to-one mapping between the film and
the points of the object [Hata and Savarese, 2022].

Figure 2.4.: Pinhole camera model, acquired by [Hata and Savarese, 2022]

2.4.2. Camera calibration

The first step towards 3D reconstruction of an object or a scene, is the calibration of the camera.
Features of the real-world scene can be reconstructed, by calculating the camera parameters.
The latter, are specific for each camera and create distortions in an image. Their calculation
aims to find these distortions and aid towards an accurate 3D reconstruction [Zhang, 2000].

2.4.3. Camera parameters

The main goal of camera calibration is the establishment of parameters that describe dependen-
cies between the camera’s and the real coordinate system, as well as parameters that describe
physical characteristics of instrument and transformation of the perspective [Kaniouras et al.,
2019]. The camera parameters can be divided into intrinsic and extrinsic.

Intrinsic parameters: Describe the internal parameters of a camera and more specifically the
focal length, offset and skewness. 2 parameters are needed for focal length, 2 for offset and 1 for
skewness. The intrinsic parameters require a theoretical model of the camera to be calculated.

Extrinsic parameters: Describe the position of the camera relatively to the real object that is
being captured. Specifically there are 6 extrinsic parameters to be computed, including cam-
era’s rotation and translation for every axis of a coordinate system, resulting into 6 extrinsic
parameters in total.
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Even if the camera parameters are unknown, they can be retrieved based on the images that
the camera takes. The 11 unknown parameters included in the camera matrix K, require 6
correspondences to solve this problem. Therefore, 6 equations are created and comprise a linear
system. Since there are 12 correspondences the system is overdetermined.
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For this linear system, m=0 is always a solution. Therefore, a minimisation is required in order
to constrain this problem. Specifically, singular value decomposition is used, so that the intrinsic
and extrinsic parameters are calculated.
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Solving the last equation for the intrinsic and extrinsic parameters, can result to their calcula-
tion. The exact derivation of this procedure can be found in [Forsyth and Ponce, 2011], while
the derivation of the minimisation problem in [Hartley and Zisserman, 2004].

The aforementioned camera calibration procedure takes place based on a single view. How-
ever, in order to successfully reconstruct a real-world scene, multiple images are required, so
that certain ambiguities are avoided and the loss of information is prevented. For this reason,
epipolar geometry is used when multiple cameras are present. Epipolar geometry combines the
relationship between the cameras, the 3D points and the observations, meaning the projection
of each point in each camera’s image plane.

With epipolar geometry, the fundamental matrix is calculated and includes information about
the camera matrices K and K’, as well as the extrinsic parameters, meaning the relative trans-
lation and rotation between the cameras. The importance of this matrix, lies in the fact that by
knowing a point in an image, the respective position of the same point in the other image can be
found. Therefore, it is possible to establish a relationship between these points without know-
ing the actual position of the point in 3D space, or the intrinsic and extrinsic characteristics of
the used cameras. Using triangulation, the location of a 3D point can be calculated, based on its
projections into two images.
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Figure 2.5.: Setup of epipolar geometry, acquired by [Hata and Savarese, 2022]

Figure 2.6.: Epipolar lines and corresponding points, acquired by [Hata and Savarese, 2022]

Epipolar geometry can be extended into multiple views, instead of two, with structure from
motion, where based on observations from multiple views, the camera parameters and the 3D
structure of the scene can be simultaneously determined. The aforementioned process that
is based on epipolar geometry, is extended to multiple views by using pairwise cameras. A
good method to solve the Structure from motion problem is bundle adjustment, when multiple
cameras are combined. Different methods, such as the 8-point algorithm proposed by Longuet-
Higgins where 8 pairs of corresponding points between images are known and its normalised
version, can help towards calculating the fundamental matrix, when the camera parameters are
unknown. The detection of corresponding points between 2 images is called feature match-
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ing, where based on different algorithms, key-points of different images are detected and then
matched, so that the corresponding points between 2 or more images are found. An additional
filtering follows, so that false matches are prevented. The last step is the surface reconstruction,
which is out of the scope of this thesis.

2.5. Feature extraction and matching

Currently, various techniques have been developed, related to feature matching, using different
combinations of detectors, descriptors and matching techniques. An overview of the different
techniques is included in this section.

2.5.1. Key-point detectors

Different detectors have been created, in order to find unique points in each image. One of the
most characteristic examples is SIFT, which uses differences of Gaussians, where image pyra-
mids are created by using an iterative convolution of the original image with Gaussian kernels.
In each pyramid level, a pixel is compared with 8 neighbouring cells in the current image and
with its 9 neighbors of its adjacent pyramid images. The key-points are detected where lo-
cal maxima occur in the differences between the Gaussian images [Lowe, 2004]. SURF, was
developed by Bay et al. to speed up SIFT results and uses Fast Hessian to detect key-points.
Convolution filters are used, to approximate second order Gaussian derivatives for each image
point. The key-points are detected in areas where the determinant is maximal through non-
maximal suppression. ORB, created by Rublee et al. is a corner detection algorithm that uses
Features from Accelerated Segment Test (FAST) in order to detect stable key-points in differ-
ent scales. It works by selecting the strongest corners using FAST or the Harris Corner score,
and calculates the orientation with first-order moments. FAST developed by Rosten and Drum-
mond is an algorithm suitable for real-time applications and is based on the ast! (ast!), which
distinguishes key-points by checking the intensity values of 16 neighboring pixels around the
candidate key-point in a circular pattern.

2.5.2. Key-point descriptors

Descriptors are used in order to describe the detected key-points. BRIEF is a short binary de-
scriptor that extracts intensities in the form of bit strings, which are compared along the same
lines. It uses binary tests on smooth image patches and takes advantage of pre-trained binary
tests on classification trees to obtain the signature of arbitrary key-points. However, a draw-
back is that it is not invariant to scale and rotation. Some aforementioned key-point detectors
are also used as descriptors. ORB is similar to BRIEF, however it is additionally invariant to
rotation and is robust to noise. It uses a rotation-aware version of BRIEF and a learning method
to apply binary tests, identifying features with high variance and low correlation [Rublee et al.,
2011]. Furthermore, SIFT calculates the magnitude and orientation for 16 sub-regions around
the selected key-point in a specific scale, constructing a 128 element non-binary vector. It is
invariant to certain illumination changes, due to the normalisation of the values. SURF uses
Haar wavelets and calculates responses for 16 sub-regions around the detected feature, which
are then further subdivided, resulting into a 64-element descriptor for each feature. Similarly
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to SIFT, it is also invariant to certain illumination changes, however it is significantly faster in
terms of time efficiency.

2.5.3. Feature matching

After choosing and implementing the detectors and descriptors for an image set, an algorithm
has to be chosen, so that the required features are matched. Brute-Force, is used by comparing a
feature descriptor of an image with all the features in the second set. Afterwards, their distance
is calculated and the closest feature is acquired. Geometric tests, such as the calculation of the
fundamental matrix using the 8-point algorithm can be used to validate the results [Jakubović
and Velagić, 2018]. Another feature matching technique, FLANN uses nearest neighbor search,
therefore it is more efficient than Brute-Force when large datasets and high-dimensional fea-
tures are involved Muja and Lowe [2009]. Additionally, the robustness of the matching algo-
rithms can be tested by calculating the recall (Equation 2.5) that will reveal the number of the
matches that were actually true. This calculation requires setting up a ground truth based on
common and distinct points in the compared images. A research that tests different combina-
tions of detectors, descriptors and feature matching techniques, resulting in an open source tool
was implemented by González-Aguilera et al..

Recall =
TP

TP + FN
where TP = True Positive , FN = False Negative (2.5)

2.5.4. 3D reconstruction

Various research has been implemented about scene reconstruction from image sets, that in-
clude two or more images. Mohr et al. uses reference points and multiple uncalibrated images
to perform 3D reconstruction. The research involves selecting an optimal geometric method
towards reference points selection, as well as testing in simulated and real images. Similarly,
Stathopoulou and Remondino describe and evaluate different pipelines on how to perform 3D
reconstruction from multiple images, even when the camera parameters are unknown. The de-
velopment of computer vision and deep learning, has led to the development of techniques that
require a single image to perform 3D reconstruction. The research of [Ping et al., 2021] includes
training a neural network dataset with images and focuses on their boundaries. Specifically,
the original image and the edge map are used as input, in order to make a prediction of a point
cloud. Additionally, ICP is used to compare the ground truth with the predicted point cloud
and calculate the differences between them.

2.6. LiDAR and point clouds

2.6.1. General background

LiDAR comprises a measurement method that has seen rapid advancement after the invention
of laser in 1960. It uses the ToF measuring principle for imaging, which includes depth mea-
surements by counting time delays in cases where light is emitted from a source. Specifically,
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LiDAR is an active non-contact range-finding technique, in which an optical signal is emitted
from a sensor to an object and the reflected or back-scattered signal is detected and processed,
to determine the distance between the sensor and the object. The distance is calculated based
on the time that it takes for the emitted signal to reach the object and find its way back to the
detector, multiplied by the speed of light [Royo and Ballesta-Garcia, 2019]. Using the measured
distance to an object and the sensor’s position in a global coordinate system, the 3D coordinates
of the measured location can be computed, allowing the creation of a 3D point cloud [Kaniouras
et al., 2019]. Alternatively, the sensor’s position could serve as the start of measurements in a
local coordinate system.

d =
c× ToF

2
where c = 3× 108m/s (2.6)

Figure 2.7.: Aerial and Terrestrial LiDAR sensors

During the last decades, various techniques have been developed, to address problems in differ-
ent fields, such as autonomous driving systems, remote sensing, as well as navigation and map-
ping. LiDAR can be applied using various terrestrial sensors that can be static (fixed location)
and mobile (mounted on vehicles) and airborne sensors that can be attached in a Unmanned
Aerial Vehicle (UAV) or an airplane. The ability to use LiDAR in different applications, from
construction projects to infrastructure monitoring, makes it an attractive technology to a wide
community of professionals [Wang and Menenti, 2021]. LiDAR can also be combined with other
sensors’ measurements to resolve more complex problems.

2.6.2. Point cloud registration

A significant process concerning point clouds is point cloud registration, which includes finding
a spatial transformation in order to align two point clouds. Different techniques exist that could
be divided into global and local.
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Global registration techniques

A global registration technique, is needed when the compared point clouds, do not have a
good initial alignment. In global techniques, the tested point clouds are usually first downsam-
pled, to reduce time complexity, while their normal vectors are calculated. Afterwards, points
with a unique and descriptive neighbourhood are selected, as well as a descriptor that can be
a histogram, a value or a multi-dimensional vector, in order to describe the geometry of these
key features. Currently, various descriptors have been developed, such as Point Feature His-
togram (PFH) described by Rusu, as a descriptor, that uses the estimated surface normal vectors
of all the points in the desired neighbourhood and assembles all the points’ relationships in a
histogram. FPFH proposed by [Rusu et al., 2009], is a 33-dimensional vector, that describes the
local geometric property of a point, and is used by a nearest neighbor query to find the adja-
cent points with similar geometry. It can be used in real-time or near real-time applications.
Additionally, RANSAC can be used to reject some correspondences, that can be considered as
outliers and therefore refine the registration.

Moreover, some variations of the feature matching descriptors SIFT and SURF have been cre-
ated. PointSIFT, created by Jiang et al. works by using a given an n x d matrix that describes
a point and its neighbourhood n with dimension d, and adds a new dimension to every point.
Additionally, it is invariant to scale and models different orientations. A research implemented
by Tong and Xiang discusses a methodology, where texture information is projected into two
dimensional space, matched point pairs are extracted with the SURF operator and finally, cur-
vature information is used to filter out points with low similarity. An extended analysis of the
different local and global descriptors is given by Han et al.. Zhou et al. implemented a global
registration method that shows promising results concerning time complexity and can even be
related with the efficiency of local registration algorithms.

Local registration techniques

In cases where a rough initial alignment exists, local point cloud registration algorithms can
be applied, in order to improve the results of global registration. The most common method
is ICP, that works by keeping a target point cloud stable, while the source point cloud moves
towards it, by comparing the distance between the coordinates of the matched points of each
point cloud. Different variations of ICP have been developed, such as Point to Plane ICP, by
Chen and Medioni, Point to Point ICP, by Besl and McKay, Generalised ICP produced by Segal
et al. and comprises a combination of the two aforementioned algorithms and last but not least,
Colored ICP by Park et al..

Point to Point ICP finds correspondences between the compared point clouds based on their
transformation matrix. The transformation matrix is iteratively updated in order to minimise
the differences between the point clouds.

E(T) = ∑
(p,q)∈K

|| p− Tq ||2 (2.7)

Point-to-plane ICP works in a similar way, however it uses a different function to minimise the
differences between the point clouds.
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E(T) = ∑
(p,q)∈K

((p− Tq)× np)
2, where np : normal o f a point p (2.8)

Colored ICP combines point geometry with the photometric properties of the points. Park et al.
additionally developed a multi-scale registration scheme, by iteratively registering point clouds
with different voxel radius and iteration values to improve efficiency. Colored ICP consists of
two equations, one revealing the geometry and the other the photometric aspects of the point
cloud. The final equation of E is:

E(T) = (1− δ)EC(T) + δEG(T) (2.9)

For all the aforementioned ICP techiques the quality of the registration between two point
clouds is checked based on the fitness value, which measures the overlapping area between
the compared point clouds and specifically the number of inlier correspondences towards the
total number of points of the target point cloud. Additionally the RMSE of the inlier correspon-
dences of the point clouds can be calculated and its value has to be as low as possible, compared
to the fitness value which requires to be high.

2.7. Privacy and location tracking

Privacy is a really important and up-to-date matter in the 21st century and can be directly linked
to location tracking, a topic that is a significant part of this thesis. Currently, different legislative
directives exist, such as the General Data Protection Regulation (GDPR), an important com-
ponent of EU privacy and human rights law, that aims to enhance the control and rights of
individuals over their own data. Moreover, the requirements and limits of personal data and
their transfer within and outside EU are topics that are addressed in this regulation.

Indoor positioning and localisation services are being used by many people, that are not neces-
sarily aware of that. For instance, Google Maps does not require to be open, as it works in the
background, while it also incorporates indoor capabilities for some buildings. Indoor services
may continuously track the location of an individual, therefore location tracking can be consid-
ered unethical if it takes place without the user’s consent [Konstantinidis et al., 2015]. Location
Based Services (LBS) and Inertial Positioning Systems (IPS) usually belong to the private sec-
tor, where companies may collaborate with third parties by distributing user data. Addition-
ally, LBS and IPS can be infiltrated by hackers that could attempt to steal data of individuals.
For instance, in case of automated vehicles, there is a very thin line between wanted location
awareness by a service provider and unwanted location awareness by unwelcome persons do-
ing surveillance, as well as hackers [Kaplan and Hegarty, 2017]. Therefore, the optimal goal of
privacy preserving techniques is to manipulate data in a way that private information cannot
be tracked back to specific individuals, protecting their identity.

Currently, various privacy preserving techniques are being used specifically for location ser-
vices and the main categories are the following:
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Sanitised locations: This technique involves generating a set of fake locations, therefore sani-
tised, in order to protect the real location of the user [Kido et al., 2005; Yiu et al., 2008].

Spatial cloaking: Before users submit their position, so that it can be used in a LBS, a spatial
cloaking area is calculated, by blurring the users’ exact position and protect their privacy [Chow
et al., 2006].

Space transformations: In social networks, users tend to upload location based content. There-
fore, with this method, locations are redistributed in space, using cryptographic techniques. The
keys can only be shared by users, only with their approval, protecting their data from unwanted
attacks [Yiu et al., 2009].

k-anonymity: This is the state-of-the art of privacy preserving techniques. It encapsulates mask-
ing of the private id of different users, by making them indistinguishable, at least with a proba-
bility less than 1/k [Sweeney, 2002].

Several research has been implemented regarding indoor location tracking. Zàruba et al. uses a
system for locating wireless nodes in an indoor environment, requiring only one access point.
The methodology describes the use of RSSI provided by Wi-Fi or other sensors that may exist
in a home environment. Location is computed with Bayesian filtering on data that is derived
by Monte Carlo sampling. User tracking is the outcome of combining different locations of a
user. Furthermore, in the research of Kim et al., the constant location of elderly people can be
known, based on an indoor system that uses RSSI measurements. Their location is analysed
in combination with the time of the day, as well as the amount of time they spent in a specific
location, revealing movement patterns.

2.8. Summary of related work

This chapter includes both the theoretical background and the related work that is the basis
of this thesis. Data acquisition in this thesis is based on LiDAR and camera sensors that work
based on the ToF principle. Indoor localisation will be implemented based on different point
cloud registration and feature matching techniques concerning images, with a variety of them
being explained in this chapter. Specifically, point cloud registration will involve both global
and local techniques, such as ICP and its variations. Similarly, this thesis will attempt to com-
plement to the research of Fratzeskou et al. that uses ceiling data for indoor localisation. Ad-
ditionally, this thesis will delve into the implementation and comparison of different feature
key-points, descriptors and feature matching techniques that were previously described. Loca-
tion tracking of different users, based on the indoor localisation results is implemented, while
protecting their privacy using a variation of the k-anonymity privacy technique, aiming to dis-
cover movement patterns in an indoor facility. Last but not least, a dashboard that includes
statistics based on the location tracking results is implemented, so that movement patterns of
users can be discovered.
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This chapter includes an overview of the methodology and specifically the exact steps that were
implemented for the completion of this thesis.This chapter has the aim of providing the reader
with a conceptual aspect of the developed methodology and the design of the experiments that
were implemented to validate this procedure.

3.1. Overview

Figure 3.1.: Methodology overview

Based on the methodology presented in the figure above, the main steps of the pipeline will
be briefly explained. First, the ceiling data acquisition, was achieved based on three different
techniques. Single images of the tested rooms were acquired with camera sensors from different
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mobile devices, as well as overlapping images of the same sites, to achieve 3D reconstruction
of these scenes. Additionally, point clouds were acquired from LiDAR sensors of an iPad, that
include this sensor. For both the point clouds and the images, indoor localisation was achieved
by comparing user data and reference data, that were uploaded in a database. Regarding single
images, their features were matched based on different matching techniques. Multiple over-
lapping images of a ceiling were first reconstructed in three dimensions, both from user and
database side. As a result, point cloud registration techniques were used to compare the two
types of point clouds. Furthermore, directly acquired point clouds, were first pre-processed
and then co-registered to achieve indoor localisation. Indoor localisation results derived from
point cloud comparison were stored in a database and were visualised in a web application.
The indoor model of the tested indoor facility and its network graph were combined with the
localisation results to provide information on users’ current and previous locations. This way,
the used paths were revealed and consequently the movement patterns in an indoor facility.
The visualisation of this location tracking operation has the form of a heat-map, including user
paths during different times of a day. Additionally, a dashboard included statistics about the
path usage was created.

3.2. Data acquisition

3.2.1. Point clouds

Regarding point cloud acquisition, two types of of point clouds were acquired, from LiDAR
sensors. There are point clouds that act as reference and were stored in a database, as well as
point clouds that are acquired by a user. The latter will be compared to these reference point
clouds, so that indoor localisation is achieved, based on the best match.

Figure 3.2.: LiDAR sensor of iPhone 12 pro

The acquisition involves the use of different applications and devices that will be thoroughly
discussed in the Chapter 4. Parameters, such as the measuring angle, height of the device, as
well as the part of the room that is acquired are significant in order to reveal how they affect
the indoor localisation results. The point cloud acquisition was implemented in two ways:
while a person is walking into a room ,giving a dynamic perspective to the acquisition and also
while staying still, so that it is investigated if the final product of the thesis can be used during
emergency situations, in cases where an individual might be unable to move.
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3.2.2. Images

Single images of the tested rooms were acquired from camera sensors of a mobile device. As
in the case of point clouds, some images were used as reference to represent the room’s ceiling
in two dimensions. Images of a ceiling acquired by a user were then compared to the reference
images of the rooms in order to reveal the user’s location based on the optimal match. Fur-
thermore, overlapping images of ceilings were acquired with the same sensors and a minimum
overlap, for the reconstruction of the 3D scene, based on the procedure described in Chap-
ter 2. In both cases, the testing includes image acquisition from different camera sensors and
viewpoints, in order to examine how these parameters influence the indoor localisation result.
Additionally, concerning the overlapping images, different combinations of feature detectors,
descriptors and feature matching techniques that were discussed in Chapter 2 were tested, in
an effort to discover their optimal combination, for indoor localisation based on images of the
ceilings.

Figure 3.3.: Acquisition of overlapping images

3.3. Point cloud pre-processing

The comparison between these two types of point clouds was facilitated by performing some
primary operations. Pre-processing of the point clouds included voxel down-sampling, an op-
eration where a regular voxel grid was used, to create a uniform down-sampled point cloud,
from an input point cloud. The algorithm was firstly performed by transforming points into
voxels and secondly by generating the centroid of each voxel, which is its representing point.
This operation is useful, as it aims to reduce processing time by manipulating a point cloud
of smaller size [Miknis et al., 2016]. However, this operation has to be implemented carefully
and until a certain threshold, because further down-sampling might result to important loss of
information. Furthermore, when acquiring ceiling data, it is possible that the point cloud in-
cludes adjacent wall parts, that need to be excluded from the upcoming operations. These parts

21



3. Methodology

can be considered as outliers [Han et al., 2017] for the purposes of this research. To achieve
their removal, a smaller part of the acquired point cloud was used, in an effort to discard the
wall parts that might exist in the corners of the point clouds. Additionally, some outliers were
located and removed based on the number of their neighbours, to further improve the point
cloud’s quality and reduce processing time. Last but not least, plane segmentation based on the
RANSAC algorithm was performed, in order to differentiate the flat surface of the ceiling with
its protruding objects, such as lamps and other installations, which comprise the characteristic
details of each room’s ceiling.

Algorithm 3.1: Point cloud preprocessing
Input: Point cloud pc and voxel size
Output: Original point cloud, Cleaned point cloud and FPFH features

1 pc← bounding box of x,y,z coordinates
2 bounding box xmin = max(pointsx)− 0.1 ∗ (max(x))−min(pointsx)
3 bounding box xmax = min(pointsx) + 0.1 ∗ (max(x))−min(pointsx)
4 bounding box ymin = max(pointsy)− 0.2 ∗ (max(y))−min(pointsy)
5 bounding box ymax = min(pointsy) + 0.2 ∗ (max(y))−min(pointsy)
6 bounding box zmin = max(pointsz)− 0.1 ∗ (max(z))−min(pointsz)
7 bounding box zmax = min(pointsz) + 0.1 ∗ (max(z))−min(pointsz)
8 pc→ downsample based on voxel size
9 pc→ remove outliers(nearest neighbours, max standard deviation)

10 pc→ segment plane (distance threshold, ransac points , iterations
11 for points in outlier point cloud do
12 CalculateFPFH f eatures(radius, nearest neighbours)

13 return pc, outlier cloud and FPFH

3.4. Point cloud registration

After acquiring and pre-processing reference and user point clouds, the next step was to create
an algorithm that would aid towards comparing them. The main idea behind this is, that each
point cloud taken by a user, would be compared with all the point clouds in the database and the
best match will reveal the room where the user is located. This procedure works as follows for
both types of point clouds. The comparison first included a global registration, so that the user
and the reference point clouds obtain an initial alignment and afterwards a local registration
algorithm to refine the point cloud registration.

3.4.1. Global registration

First, the normal vectors of all the points were computed. Furthermore, points with a unique
and descriptive neighbourhood were detected. The detection and description of these unique
points for each point cloud was implemented based on FPFH features that were described in
Chapter 2. Two different global registration techniques were implemented and compared.

The first technique includes the aforementioned steps and then RANSAC, in order to select
some random points from the reference point cloud and then find the corresponding points in
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the user point cloud, using a nearest neighbor query in the 33-dimensional FPFH feature space
[Li et al., 2021]. Aside from the distance of the corresponding points in the compared point
clouds, the similarity between two edges between the compared point clouds and the vertex
normal affinity of the correspondences are also checked. In case the points satisfy the selected
thresholds, the transformation of the user point clouds towards the reference point clouds is
implemented.

The second technique was implemented, based on the fast global registration proposed by Zhou
et al. This method follows the steps of the global registration described above, however it does
not use RANSAC to choose point correspondences between the two point clouds, but finds the
nearest neighbour of every point in the user point cloud among the reference point cloud, based
on distance analysis in feature space. This implementation does not require an additional local
refinement, however in this thesis it was combined with ICP local refinement methods.

3.4.2. Local refinement

Based on the results of the global registration, an attempt of improving the quality and time
efficiency of the algorithm includes different variations of the ICP algorithm. The further min-
imisation of the point cloud differences was performed by keeping one point cloud fixed, while
the other is transformed towards it. Specifically, each point of the user point cloud was matched
to the closest point of each reference point cloud. Then, rotation and translation were estimated
and this process is iterated until the results converge [Li et al., 2021]. The user point cloud was
compared to all the reference point clouds, based on the fitness and the RMSE value, which will
result in the indoor localisation. Different variations of ICP were implemented and compared
and more specifically Generalised, Point-to-Point, Point-to-Plane and Colored ICP. These steps
were implemented both to directly acquired point clouds, as well as point clouds that were
reconstructed from overlapping images of a ceiling.

Figure 3.4.: Indoor localisation based on point clouds
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3.5. Feature matching

In this section feature matching based on the comparison of single images, as well as compari-
son between overlapping images of a set is explained, in order to answer the research question
regarding the optimal combination of feature detectors, descriptors and matching techniques.

3.5.1. Feature matching between single images

For each of the selected rooms, one image of a ceiling was acquired and acted as reference. For
testing purposes, different user images were additionally acquired from different viewpoints
and were compared with the reference images. This comparison included the use of different
feature descriptors and detectors, such as ORB, SIFT, and also two different feature matching
techniques, brute-force and FLANN. The number of matches between the user and the refer-
ence images was used to reveal the location of the user.

Figure 3.5.: Indoor localisation based on feature matching

3.5.2. Feature matching between overlapping images

An important step towards 3D reconstruction is the feature matching between the overlapping
images. Some subsets of images were selected, in order to evaluate different combination of
feature detectors, descriptors and matching techniques from acquired images of ceilings. Addi-
tionally, the images were acquired based on different overlaps, in an attempt to examine how
the percentage of coverage affects the time complexity of the 3D reconstruction and the quality
of the results. The quality of the results was examined based on the number of matches between
the overlapping images, as well as a ground truth which was manually set for several images,
so that the results are protected against false matches. Graphical representations that show the
true to false matches were created to enhance the results. Following these steps, the overlapping
images sets were used for 3D reconstructions of the ceilings.

24



3.6. Storage

Figure 3.6.: Indoor localisation based on point clouds that were reconstructed from overlapping
images

3.6. Storage

The setup of the whole system was organised in an online database. This database includes the
indoor model of the case study and a network graph, that connects all the rooms of the tested
area to each other. Except for the geometry of the rooms in the indoor model, each of them
includes one pre-processed point cloud and an image that acts as reference for the point cloud
registration and feature matching operations respectively. Moreover, this indoor model serves
as an embedded map in web-application that was created, allowing the users to have a visual
insight of their location.

3.7. Web-app

The indoor localisation results were visualised in a web application that has the form of a
minimum viable product. The app works by requesting the reference point clouds from the
database, so that they can be compared based on the discussed algorithms to the user data in
near-real time. Users are able to post their data in the application and after a few seconds the
room they are located in is revealed. Additionally, the app includes the indoor model of the
case study, so that aside from the name of the room, the app also highlights the polygon that
represents the room in the indoor model of the indoor facility and zooms in it.

3.8. Location tracking

Each time the web application is used, the users’ current and previous locations are stored in the
online database under an encrypted id. When users move between different rooms, it means
that they used a certain path to achieve that. Based on the network graph of the indoor space
that reveals all the connections between adjacent rooms, the current and previous locations of
the users were translated to a line in the network graph, representing a specific route. The
availability of this information is near-real time as the results appear in the online server after
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a few seconds. Based on the unique id of each user, a heat map that is based on the network
graph was used to visualise the used routes.

Additionally, this information was used to reveal different movement patterns, during different
times of a day. The visualisation is accomplished in the form of a heat-map, where based on
the usage of each path, different colors and width were applied to the corresponding line of
the network graph. Consequently, this information can reveal how much a path is used during
a daily, weekly or even monthly time span. Acquiring this knowledge is valuable, especially
during the COVID-19 era, because it can be exploited by a building manager, who can achieve
the optimal distribution of people in an indoor facility [Spinoza Andreo et al., 2021].

Algorithm 3.2: Location tracking
Input: Reference point cloud re fpc, User point cloud userpc and table with paths
Output: List containing visited rooms

1 if length(localisation list)==0 then
2 for re fpc in rooml ist do
3 preprocess userpc and re fpc
4 global registration(userpc, re fpc)
5 local registration(userpc, re fpc, resultglobal)→ calculate fitness value
6 return room(max fitness)

7 else if length(localisation list)≧ 0 then
8 for i in range(length(result) do
9 request path table

10 paths→ query(previous room, current room)
11 query result→ update path usage
12 preprocess userpc and re fpc
13 global registration(userpc, re fpc)
14 local registration(userpc, re fpc, resultglobal)→ calculate fitness value
15 return room(max fitness)

16

3.9. Case study

The case study of this thesis will involve the Faculty of Architecture and the Built Environment
of TU Delft. Specifically, the case study area includes a few rooms of the ground floor of this
facility, which are selected in order to test the created pipeline, including both point clouds and
images. The selected rooms are visualised with a pink color in Figure 3.7.
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Figure 3.7.: Selected rooms from the Faculty of Architecture and the Built environment
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4. Implementation and experiments

This chapter aims to explain in detail the steps of the methodology from a technical perspec-
tive. The tools that were used, as well as the datasets are firstly explained. Afterwards, details
on the implementation steps, such as parameters and how they were chosen, as well as some
intermediate results are presented in this chapter.

4.1. Tools

In this section first the software that was used for the implementation of this thesis is analysed.
In the meantime, the hardware tools, such as the specifications of the devices that were used for
data acquisition and the personal computer that was used are also mentioned.

4.1.1. Software

Python

The implementation of the methodology of this thesis was completed using the Python pro-
gramming language. Python was used solely for back-end development, meaning the imple-
mentation of the developed algorithms and not the creation of the web-application. The version
that was used is 3.8.10, due to the fact that it is one of the newest versions currently available
and also due to some incompatibilities between the different libraries, that were faced in other
versions that were attempted. At the same time, python code was executed in the Visual Studio
Code editor, which has the capability to understand different programming languages and has
an user-friendly interface.

arcgis.features: Module of the arcgis.gis library that is used to connect maps and location ser-
vices with an exterior application. In this thesis it is used in order to request network and map
layers from the ArcGIS online portal.

open3d: Open source library for 3D data processing. Its python version is used in this thesis in
order to read, analyse and visualise different point cloud data.

Flask: Lightweight python web framework, that can be used to create web-applications, by
connecting the python back-end to a front-end developed with HyperText Markup Language
(HTML) or JavaScript.
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uuid: Python library that is used to create a unique id, based on the Universal Unique Iden-
tifier (UUID) standards that is used to uniquely identify an object or an entity in the internet.
Specifically, it contains a string of either 32 or 16 hexadecimal digits. This library is used in or-
der to create a unique identifier for the users of the web-application and protect their personal
information, while location-tracking operations are executed.

matplotlib: Python library that is used to create static and interactive visualisations. This library
is used in order to visualise images, as well as their keypoints and matches for feature matching
operations.

openCV-Python: Open-source computer vision and machine learning library that focuses on
real-time applications. Its python binding is used in the current thesis in order to implement
different image matching techniques, while using feature detectors and descriptors included in
this library.

HTML and Cascading Style Sheets (CSS)

HTML is the standard markup languages for web pages, and it helps towards constructing their
main interface. Additionally, it is a standard markup language, which means that their content
cannot be altered. CSS is used in order to style an HTML document and describes how each
HTML element is visualised.

JavaScript

JavaScript is a high-level scripting language, that was introduced for client-side operations in
a web browser. Compared to HTML, it is a dynamic language, that also improves the website
appearance. In this thesis JavaScript code was embedded inside an HTML script.

ArcGIS pro

ArcGIS Pro is the latest commercial desktop Geographic Information System (GIS) application
from ESRI. The software incorporates several capabilities including exploration, visualisation
and analysis of different data, in order to create different 2D maps and 3D scenes. Using the
ArcGIS portal, the work that is implemented in a local computer can be shared online. Addi-
tionally, for this project ArcGIS Indoors is a vital extension, which can be used to translate CAD
or BIM data into floor-aware indoor maps, in order to support facility, space management as
well as other operations such as finding the fastest route to a specific location.

CloudCompare

CloudCompare is an open-source 3D point cloud and mesh processing software. It includes
several capabilities, such as point cloud processing and more advanced operations such as point
cloud registration and automatic segmentation. For this thesis, CloudCompare was used for
visualising some primary results and inspect the acquisition quality.
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4.1.2. PhotoMatch

PhotoMatch is an open-source software that delves into automatic feature matching, enabling
the implementation and evaluation of different feature detection, description and matching
techniques. Aside from these, it also includes image enhancement methods to improve the
quality of an image dataset [González-Aguilera et al., 2020]. This software was used in this
thesis, to investigate the optimal algorithm combination of detectors, descriptors and feature
matching techniques, for indoor localisation based on images of ceilings.

4.1.3. COLMAP

COLMAP is a Structure from Motion (SfM) and Multi-View Stereo (MVS) pipeline, used
through a graphical or command-line interface. Its main purpose is 3D reconstruction from
image collections, which is how it was used in this thesis [Schönberger et al., 2016; Schönberger
and Frahm, 2016].

4.1.4. Hardware

Computer

The laptop that was used for the implementation of the current thesis has the following specifi-
cations:

• Model: HP OMEN 15-en0135nd - Gaming Laptop - 15.6 Inch

• Operating system: Windows 11

• Processor: AMD Ryzen 7 4800H (8 cores)

• Clock speed: 2.9GHz (max. 4.2GHz)

• Internal memory(RAM): 16 GB

• System: 64-bit operating PC

Xiaomi Redmi Note 9s

Two cameras of this Android device were used for image acquisition, in order to test different
feature matching algorithms towards indoor localisation. Specifically, an ultra wide camera
with 8 MP resolution, f/2.2 aperture and 119 degrees field of view, and a camera with 5 MP
resolution andf/2.4 aperture were used for image acquisition.
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iPad

For point cloud and image measurements, the respective LiDAR and camera sensors of an iPad
pro 12 device were used. The device includes one wide camera with 12MP and f/1.8 aperture
and an ultra wide camera with 10 MP, f/2.4 aperture and 125 degrees field of view.

The technical specifications of the LiDAR sensor are not available online, which makes users
unaware of the real applicability of their devices and consequently the level of accuracy and
precision [Dı́az Vilariño et al., 2022]. However their maximum range is approximately 5 me-
ters. For data acquisition with the aforementioned sensors two applications where used and
compared:

• SiteScape: Application available on the Apple Store, that follows a freemium model,
meaning that many of its basic capabilities are provided for free. A user-friendly and
accessible application, that can help acquire point clouds and export them in Polygon File
Format (PLY) format. The application uses the LiDAR sensor to acquire the coordinates
of the points in space, combined with the colored RGB image from the wide-angle camera
of the iPad. Additionally, some tools in ARKit are used, such as plane detection, in order
to place the objects in the real world. Based on the documentation, measurements of this
software have an accuracy of +/-1 cm on average.

• Pix4d Catch: This application is available on the Apple store, however compared to
SiteScape, a 15-day trial is required, so that it can be freely used. It contains more capa-
bilities compared to SiteScape,as it can reveal the different locations of the device during
the acquisition. The downsampling scale of the acquired point cloud can also be chosen.
An additional aspect is the capability of automatically acquiring multiple overlapping im-
ages of the measured area, while a user is using the LiDAR sensor to acquire a point cloud.
Similarly to SiteScape, the depth information is captured by the LiDAR sensor, while the
texture and color of the points are based on the wide-angle camera of the device.

4.2. Datasets

The point cloud datasets were acquired using the iPad 12 pro devices and especially their
LiDAR sensor. Two different applications were used to exploit the LiDAR capabilities and
specifically SiteScape and Pix4D Catch. The acquisition on both these applications includes
exporting the point cloud into PLY format. Point clouds were acquired with two different time-
spans of 20 seconds while a user is moving inside a room, and 30 seconds while a user remains
still. These experiments were implemented in order to investigate the chance of using point
clouds of the ceilings for dynamic applications, such as a robotic applications that constantly
map an area, as well as static applications, where users need to figure their location in a case
of an emergency, such as a fire and might be unable of moving in a room. The point clouds
from SiteScape were created with average quality, while the ones from Pix4D Catch with a
lower quality, in order to investigate how the results are affected by quality, as well as the time
efficiency of the algorithm and its suitability for real-time applications.
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Room Original Point Cloud
(Dynamic)

Original Point Cloud
(Static)

Original Point Cloud
(Database)

08.02.00.430 558209 472426 1503456
08.02.00.470 536849 556006 1385289
08.02.00.560 548031 365033 1064175
08.02.00.807 473777 184747 844399
08.02.00.808 195576 211368 474517

Table 4.1.: Number of points per room, acquired with SiteScape

Room Original Point Cloud
(User)

Original Point Cloud
(Database)

08.02.00.430 52586 118690
08.02.00.470 73925 86135
08.02.00.560 36122 40438
08.02.00.807 168338 191406
08.02.00.808 39179 47043

Table 4.2.: Number of points per room, acquired with Pix4D Catch

Tables Table 4.1 and Table 4.2 reveal, that the size of the point clouds that were acquired from
Pix4D Catch is significantly smaller than the ones acquired by SiteScape, a factor that might
significantly affect the time efficiency of the implemented algorithms.

Image acquisition is implemented with different cameras, such as the iPad pro wide cameras
and two cameras of a Xiaomi Redmi Note 9s. The acquisition is implemented from different
perspectives, to examine how the image comparison is affected. Additionally, Pix4D Catch was
used for acquiring overlapping images of the ceilings, in an automated way, as this operation
takes place in parallel to the point cloud acquisition, using the ultra-wide camera of the iPad.

Room Number of overlapping images
(User)

Number of overlapping images
(Database)

08.02.00.430 87 161
08.02.00.470 129 140
08.02.00.560 43 47
08.02.00.807 232 242
08.02.00.808 43 47

Table 4.3.: Number of overlapping images per room

CAD drawings of the Faculty of Architecture were used. Specifically, the CAD drawings of the
ground floor of the Faculty of Architecture and the Built environment are used, as an input to
ArcGIS Pro, so that the indoor model of the selected part of the Faculty and a network graph
are created. The CAD files were provided for the project of Spinoza Andreo et al. from TU Delft
Real Estate.
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Figure 4.1.: CAD drawing of the Faculty of Architecture and the Built environment (West side -
ground floor)

4.3. Point cloud pre-processing

Point-cloud pre-processing involves different operations that were performed using python’s
library open3d. First of all, voxel-downsampling was implemented with this library, by experi-
menting through different voxel sizes varying from 0.05 to 0.3 in order to figure the optimal size
that combines quality and processing time, but at the same time does not omit important details
of the ceilings. Additionally, some adjacent wall parts were excluded by keeping a smaller slice
of the point cloud, based on algorithm 3.1. Some outliers were statistically removed with the
respective open3d module, taking into account 30 neighbours to calculate the average distance
of a given point, while the standard deviation ratio was set to 1, a threshold that is based on the
standard deviation of the average distances in the point cloud. Furthermore, plane segmenta-
tion based on RANSAC was performed in order to separate the upper flat part of a ceiling and
the rest of the points that represent the characteristic details. Using the segment plane module
of open3d, distance threshold for a point to be considered as an inlier was set to 0.4, number of
randomly sampled points to 3 and number of iterations to 1000. The latter indicates how often
a random plane is sampled and verified, affecting the processing time as the number becomes
higher. The aforementioned numbers were chosen after tweaking the parameters and check-
ing how the results were affected. It has to be noted that the distance threshold may vary per
dataset. The pre-processing results can be seen below:

Figure 4.2.: Pre-processing steps

Tables 4.4 and 4.5 show that the chain of pre-processing operation significantly reduces the
sizes of the point clouds, which is an important aspect for the time complexity of the pipeline,
especially since it involves real-time visualisation of the results. The smaller size of the point
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clouds that were acquired with Pix4d Catch, is a result of the app, which allows the user to
acquire point clouds with a downsampling factor.

Room Dynamic case Static case
Number of points

Original Point Cloud Pre-processed Point Cloud Original Point Cloud Pre-processed Point Cloud
08.02.00.430 558209 3881 472426 2860
08.02.00.470 536849 6532 556006 5646
08.02.00.560 548031 4961 365033 5172
08.02.00.807 473777 5438 184747 1866
08.02.00.808 195576 1446 211368 1241

Table 4.4.: Number of points before and after pre-processing, acquired with SiteScape

User Database
Room Original Point Cloud Pre-processed Point Cloud Original Point Cloud Pre-processed Point Cloud

08.02.00.430 118690 5038 52586 2965
08.02.00.470 86135 2157 73925 4645
08.02.00.560 40438 1057 36122 1212
08.02.00.807 191406 6147 168338 6272
08.02.00.808 39179 2324 47043 2336

Table 4.5.: Number of points before and after pre-processing, acquired with Pix4D Catch

4.4. Point cloud registration

Point cloud registration encompasses the comparison of a pre-processed user point cloud and
all the point clouds of the database, in order to find the best match, which will lead to the indoor
localisation of the user. Different techniques, were implemented and compared, so that the best
combination of a global registration and local refinement is selected. Implementation details
concerning the computation time are included in this chapter, while the quality of the results
will be discussed in Chapter 5.

4.4.1. Global registration

As it was discussed in Chapter 3, two global registration methods were implemented: RANSAC
based registration and fast global registration, implemented by Zhou et al.. The latter can be
used as a standalone registration method however in this thesis it was combined with a local
registration, for direct comparison with the RANSAC method. RANSAC based registration in-
volves tweaking of some pruning parameters, that aid towards rejecting some false correspon-
dences. Specifically, the distance between the point clouds was checked, by setting a respective
threshold (voxel size * 3), as well as the similarity of two arbitrary edges in the reference and
user point cloud. The distance of these edges in both user and reference point cloud were mea-
sured and then their similarity was checked according to Equation 4.1 and Equation 4.2. The
convergence criteria of the RANSAC algorithm were set to 100000 iterations and the confidence
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probability to 0.999. The aforementioned parameters were chosen, after trial and error, as they
led to the most optimal results, based on time complexity and quality of the results. Consid-
ering the fast global registration, only a few parameters were required. The distance threshold
was set the same as the RANSAC method for comparison purposes. Both of these methods
were created as two separate functions in python, using the library open3d.

∥edgesource ∥ > 0.9 ·
∥∥edgetarget

∥∥ (4.1)

∥∥edgetarget
∥∥ > 0.9 · ∥edgesource ∥ (4.2)

4.4.2. Local refinement

The initial alignment of the RANSAC global registration was used in order to improve the point
cloud matching and time efficiency, based on variations of the ICP algorithm. The user point
cloud was transformed towards each one of the reference point clouds, in an attempt to find
the optimal match and localise the user. Point-to-Point, Point-to-Plane and Generalised ICP
were implemented as modules of the open3d library and applied with maximum convergence
set to 30 iterations. Regarding the Color ICP registration, the implementation was based on
Park et al. and was executed iteratively three different times with voxel sizes (0.1, 0.15, 0.2) and
three iterations (15, 30, 50). For each of these combinations, the compared point clouds were
downsampled, the points’ normal vectors were estimated and finally the local refinement was
achieved, taking into account both the point cloud geometry and the colors of the point clouds,
depending on the algorithm.

Figure 4.3.: Global and local registration

Figure 4.4 shows the processing time of different combinations of global and local registration
algorithms, based on point clouds acquired with SiteScape, Pix4D catch, as well as the ones that
were reconstructed based on overlapping images. The smaller size of the Pix4D point clouds,
significantly affects the processing time and results into indoor localisation in approximately 3-6
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seconds depending on the algorithm. This time difference is small, therefore the use of different
registration combinations does not significantly affect the time efficiency. However, while the
size of the point clouds becomes higher, such as in the SiteScape dataset, the time complexity
augments exponentially, and reveals the time efficiency of Colored ICP, which produces indoor
localisation in approximately 18 seconds when combined with the two different global registra-
tion algorithms that were applied. In this case, there is significant difference in the processing
time, as other algorithms such as Generalised ICP takes approximately 60 seconds to result into
indoor localisation. This difference will be even greater, when a database with a higher number
of point clouds is used to perform indoor localisation.

Figure 4.4.: Processing time of different registration algorithms

4.5. Feature matching

This section includes the implementation details for the techniques that were described in Chap-
ter 3 and are based on image acquisition.

4.5.1. Feature matching between single images

Images that were acquired from the camera of a mobile device, were first converted to gray-
scale images. For each user and reference images, unique key-points were calculated, as well as
descriptors in order to outline the key-points behavior. Their implementation is based on ORB
and SIFT , in an attempt to achieve indoor localisation based on single images of ceilings. Fol-
lowing, the detection and description of the unique points of each point cloud, brute-force and
FLANN feature matching techniques were implemented, in order to find matches between the
user and reference images. These algorithms were implemented based on the python binding
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of the OpenCV library, while the visualisation of the key-points and the matches on matplotlib.
For comparison purposes between the different techniques, the maximum threshold for de-
tected features was set to 5000. A strict distance test was set to reject some false correspondences
between the compared images.

Figure 4.5.: Processing time of different feature matching combinations

Figure 4.5 shows the processing time while using different combinations of feature detection,
description and matching algorithms with two different cameras of 5 and 8 MP resolution re-
spectively. The resolution of the camera, affects the time efficiency of the calculation, as the
algorithm is executed faster in every combination while the 5 MP camera is used. Addition-
ally, ORB detector and descriptor is faster than acsift, showing the importance of SURF, which
could not be applied in python, because its use is patented. Brute-force is faster than FLANN,
however in bigger datasets the latter is highly efficient.

4.5.2. Feature matching between overlapping images

Before reconstructing the 3D scene from overlapping images of ceilings, a small subset of ten im-
ages was chosen, in order to investigate the optimal combination of feature detectors, descrip-
tors and matching techniques. The PhotoMatch software was used for this purpose. Specifically,
the images were first decolorised. Afterwards, feature extraction and detection was applied,
with various combinations of algorithms that are provided from this software. As in the case
of single images, the maximum threshold for detected features was set to 5000. Two different
feature matching techniques were implemented, brute-force and FLANN, which also passed a
fundamental matrix geometry test to validate the results. The detected key-points and matches
between the compared images, were visualised in the viewers provided by PhotoMatch. Ad-
ditionally, the ground truth was manually set for the selected images, in order to detect false
correspondences. ROC curves were used to visualise the true to false match ratio, based on
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the ground truth. This operation is solely experimental and aims to evaluate the different de-
scriptors, detectors and feature matching techniques, before point cloud reconstruction. The
3D reconstruction from overlapping images was completed in COLMAP, a software capable of
reconstructing sparse and dense models, using SIFT to find correspondences from overlapping
images. After the reconstruction was finalised, the user and reference point clouds were com-
pared based on the point cloud algorithms that were described above with the open3d library.

Figure 4.6.: Feature detection (left) and feature matching (right) with SIFT detectors and de-
scriptors

4.6. Storage

The indoor model of the case study, which includes the west part of the ground floor in the
Faculty of Architecture and the Built environment, was created in ArcGIS pro with indoor ca-
pabilities, using the respective CAD files as input. GIS layers were then created and each room
of the study area was visualised as a polygon including geometry and location attributes. Addi-
tionally, the pre-processed point clouds that act as reference, were attached to the corresponding
rooms. Furthermore, based on the indoor package of ArcGIS pro, the network graph, connect-
ing all the adjacent rooms to each other, was created. The indoor model and the network graph
were hosted in the ArcGIS online server, as open data so that they could be later used for the
web-app.
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(a) Indoor model of case study (b) Network graph of case study

4.7. Web-app

The creation of the web-app involves requesting the indoor map from ArcGIS online, so that it
can serve as a background map. The structure and main functionality of the app were created
with HTML. Two HTML scripts were written, the first so that users can upload their point cloud
data and a second where the users are able to see their location as a text, as well as in the indoor
model, where the respective room is highlighted and zoomed in, providing a visual insight to
the user. The first HTML page includes two buttons, one where users can browse through their
files and add their point cloud and a second one so that they can submit it. The uploaded user
point cloud is then compared to all the point clouds of the database, and after a few seconds, the
result is returned. The styling of the HTML pages is implemented with additional CSS files, that
style the buttons, map and background color. JavaScript is also involved in the HTML files, for
the correct set-up of the background indoor map. The connection between the front-end HTML
and the back-end script that was written in Python and includes point cloud pre-processing
and registration operations, was implemented using the Flask web-framework, which sets the
Uniform Resource Locator (URL) and the route of the operations. The first time someone uses
the web-app, the loaded point cloud is compared against all the point clouds of the database,
therefore it takes a few more seconds to show the indoor localisation result, compared to the
ones that follow. After the first localisation, the algorithm compares the loaded point cloud to
the point clouds of the database that are adjacent to the previous localisation. This operation
significantly reduces the time complexity of the algorithm and allows it to take into account
from one to maximum four point clouds for each localisation. This number varies depending
on the number of rooms that are connected to the examined room.
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Figure 4.8.: Web-app interface

4.8. Location tracking

The indoor localisation results of every user were stored in a list. Therefore, in case users were
located in more than one rooms, that means they used a specific path to move from one room
to another. Based on the network graph, in the ArcGIS online server, two localisation results
starting from a room and ending in another were translated into a specific line of the network
graph. Therefore, this information is sent to the ArcGIS online server and the attribute repre-
senting path usage is updated by one. Additionally, a unique identity was created for every
user based on the urlib python library, in order to protect their privacy by masking their IP
address. As a result, there is knowledge that a person followed a specific route in the indoor
facility, however it is not possible to track the real identity of this user. The near real-time visu-
alisation of the followed routes, is visualised in ArcGIS online based on the network graph. A
heat-map was created, where each user’s route is represented by a different color, to differenti-
ate this information between the different users. This information is available near real-time as
approximately 30 seconds are needed for it to be shown in the ArcGIS online server. Therefore,
information on different movement patterns during a day can be discovered. Furthermore, a
dashboard was created in ArcGIS online, so that all the path data are included in a single page.
This dashboard is useful for a facility manager, in order to obtain daily, weekly or monthly
statistics on how frequently each path is used. Therefore, the different movement patterns that
can be retrieved from these statistics, can help the manager optimise operations, such as the
optimal distribution of people in an indoor facility, during different times of a day.
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Figure 4.9.: ArcGIS Dashboard
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In this chapter the results that have occurred from the implementation of the described method-
ology are presented and analysed. Specifically, the quality of the results is discussed, in parallel
to the time efficiency of the proposed algorithms. First, indoor localisation results based on
point clouds that were directly acquired and the point clouds that were reconstructed from
overlapping images, are discussed. Secondly, indoor localisation results based on image com-
parison are highlighted and analysed. Afterwards, an analysis and comparison of the different
feature detection, description and matching techniques, that can be used for point cloud re-
construction from multiple overlapping images is an additional aspect that is discussed. Last
but not least, location tracking, which is based on multiple indoor localisation results is also
reviewed.

5.1. Indoor localisation from point clouds

In this section the indoor localisation results that were produced based on point cloud acquisi-
tion from two different applications, and point clouds that were reconstructed from overlapping
images, will be presented and compared.

5.1.1. Point clouds from SiteScape

The first results emerge from point clouds acquired with the SiteScape app. For the acquisition
of this dataset, the medium point density setting was selected. This means that the distance
between each point is 10 cm.

Room 08.02.00.560 is used as an example to show the point cloud registration with the different
algorithms that were used. The remaining registration results are added in Appendix B, to
avoid the disruption of the flow of this thesis.

(a) Point-to-Point ICP (fitness=0.943, RMSE=0.06) (b) Point-to-Point ICP (fitness=0.945, RMSE=0.03)
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(a) Point-to-Plane ICP (fitness=0.955, RMSE=0.03) (b) Point-to-Point ICP (fitness=0.645, RMSE=0.2)

(a) Colored ICP (fitness=0.974, RMSE=0.08) (b) Colored ICP (fitness=0.974, RMSE=0.08)

(a) Generalised ICP (fitness=0.953, RMSE=0.03) (b) Generalised ICP (fitness=0.731, RMSE=0.1)

Figure 5.4.: RANSAC global registration (left) and fast global registration (right) of room 560
from SiteScape

The results for room 08.02.00.560 are promising, as in most cases all the point cloud registration
methods match the tested room to its reference equivalent. However in Figure 5.2b and Fig-
ure 5.4b where fast global registration was combined with the Point-to-Plane and Generalised
ICP respectively, room 08.02.00.430 resulted in higher fitness than the correct room 08.02.00.560.
However, in both cases the correct rooms had the lower RMSE value. The most accurate results
are achieved when Colored ICP was involved, producing similar results when it was combined
with fast and RANSAC global registration algorithms, as Figure 5.3a and Figure 5.3b indicate.
It has to be noted, that the number of fitness is not important by itself, but it has to be higher
compared to the reference point clouds of the remaining rooms.
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Point clouds RANSAC Global Registration
Point-to-Point Point-to-Plane Colored ICP Generalised ICP

Dynamic 4/5 4/5 5/5 4/5
Static 4/5 4/5 5/5 4/5

Point clouds Fast Global Registration
Point-to-Point Point-to-Plane Colored ICP Generalised ICP

Dynamic 5/5 5/5 5/5 5/5
Static 3/5 4/5 5/5 3/5

Table 5.1.: Number of correct matches per point cloud registration algorithm

Table 5.1 shows the number of correct matches for each combination of global and local reg-
istration algorithms that were applied. The testing includes ten point clouds per method and
specifically five for the ceilings that a user acquired while walking, and five more while the
user remained static. In total, both RANSAC and fast global registration algorithms have sim-
ilar results, when combined with different local refinement algorithms. RANSAC is a non-
deterministic algorithm, however the high number of iterations that was selected, increases
the probability that the result is reasonable. On the contrary, the fast registration algorithm,
which does not have the same non-deterministic nature, performs slightly faster, as Figure 4.4
implies.

Concerning, the local registration algorithms, the quality of the results is similar in most of the
cases. The worst results are noticed when the fast global registration is combined with Point-
to-Point and Generalised ICP, where only 3/5 rooms where matched correctly. Colored ICP
produces the best results when it is combined with both global registration techniques, due to
the fact that except for the geometry it takes advantage of the color information of each point.
Additionally, concerning time complexity, as it was shown in Figure 4.4, it is significantly faster
to the other algorithms, due to its multi-scale registration behavior, where it uses downsampled
point clouds, unlike the other variations of the ICP.

Furthermore, Table 5.1 shows that the results are better, when users are walking inside a room
during data acquisition, in contrast to when they remain static. This is a reasonable outcome,
as while a user is walking, the entire ceiling of a room can be captured. On the contrary, while
users remain static, they can only capture a specific part of a room’s ceiling, in case the room is
considerably large, since the range of the LiDAR sensor is approximately five meters. Therefore,
in cases where users are unable to move, there are higher chances that the localisation is correct
when they capture a part of a ceiling that has characteristic details.

The wrong point cloud matches for some registration techniques, appear between rooms
08.02.00.430 and 08.02.00.470. This confusion arises from the fact that these rooms have al-
most identical size in squared meters and similar characteristic details in their ceilings, as
they are both lecture rooms. Moreover, a mistake in the acquisition of room 08.02.00.430 (Fig-
ure 5.17), where the user stumbled during the acquisition, shows why it is significant for the
user to move with a steady step. Additionally, the second wrong set is mostly between rooms
08.02.00.808 and 08.02.00.807. This happens, due to the fact that they are both corridors and
room 08.02.00.808 is significantly smaller than room 08.02.00.807. Thus, it is possible that this
room is wrongly matched as a part of 807. Some rooms, such as 08.02.00.807 which is a long
corridor, has a significantly different shape than the common rectangular rooms, hence the pos-
sibility that the localisation is wrong is significantly reduced.
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Figure 5.5.: Point cloud of room 08.02.00.430, where the user stumbled during the acquisition

Concerning, wall parts that were acquired along with ceilings, small areas did not affect the re-
sults, as some minor wall parts remained in the tested point clouds even after the pre-processing
operations. However, in cases where a significant part of a wall is captured, the plane segmen-
tation that was implemented in Algorithm 3.1 could be implemented in a wrong way, as the
main plane that is computed, might be the wall instead of the ceiling’s upper flat part.

5.1.2. Point clouds from Pix4D Catch

Additionally, point clouds were also acquired with the Pix4D Catch app. During the acquisition
with this application, the distance between the points of the acquired point clouds was set to 30
cm. The point clouds will be less dense compared to the ones by SiteScape, in order to examine
how the time efficiency of the algorithm and the quality of the results are affected.

(a) Point-to-Point ICP (fitness=0.954, RMSE=0.15) (b) Point-to-Point ICP (fitness=0.95, RMSE=0.15)

(a) Point-to-Plane ICP (fitness=0.958, RMSE=0.02) (b) Point-to-Point ICP (fitness=0.951, RMSE=0.17)
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5.1. Indoor localisation from point clouds

(a) Colored ICP (fitness=0.963, RMSE=0.09) (b) Colored ICP (fitness=0.941, RMSE=0.17)

(a) Generalised ICP (fitness=0.954, RMSE=0.15) (b) Generalised ICP (fitness=0.951, RMSE=0.15)

Figure 5.9.: RANSAC global registration (left) and fast global registration (right) of room 560
from Pix4D Catch

Similarly to the previous test case of Section 5.1.1, the results concerning the room 08.02.00.560
are promising, as the combination of global and local registration methods produces the cor-
rect result in most cases. Most of the point cloud registration methods have similar results to
each other. The combination of Colored ICP and RANSAC provides the higher fitness value,
however testing for room 08.02.00.560 provided similarly good results in every combination.
However, as it was previously mentioned, it is important that the fitness value of the correct
room, is higher compared to the other rooms’ value and not as a number by itself. The same is
true for the RMSE values, however in that case a lower value is translated to a better result.

Point clouds RANSAC Global Registration
Point-to-Point Point-to-Plane Colored ICP Generalised ICP

User 5/5 4/5 5/5 4/5
Point clouds Fast Global Registration

Point-to-Point Point-to-Plane Colored ICP Generalised ICP
User 4/5 3/5 4/5 3/5

Table 5.2.: Number of correct matches per point cloud registration algorithm

In Table 5.2 some overall results regarding the registration of all five rooms are presented, in
order to discuss the quality of the registration with all the possible combinations. The quality
of the indoor localisation is slightly worse compared to the results produced by SiteScape. The
result is reasonable, due to the lower density of point clouds that was chosen for the acquisition,
as some small objects on the ceiling might not captured. However, regarding the Colored ICP
its results are at a similar level as before, showing the importance of adding color information
that the other algorithms do not include.

Concerning global registration techniques, RANSAC shows better results compared to fast,
with 18/20 correct room matches, while fast at the same time results into 14/20 correct indoor
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localisation results. As it was also mentioned in Section 5.1.1, RANSAC is a non-deterministic
algorithm, however the high number of iterations that were set in the implementation, increases
the probability that the results are more reasonable.

As in the previous case, the best results in terms of quality are shown when combining a global
registration algorithm to Colored ICP. In this case, the small size of the original point clouds,
significantly increases the time efficiency of the algorithm, without significant time difference
between the different methods, as it is was shown in Figure 4.4. The worst results are pre-
sented for Point-to-Plane and Generalised ICP when they are combined with global registration
algorithms, with 7/10 correct indoor localisation results.

The wrong localisation results concern room 08.02.00.430, which is in some cases wrongly mis-
matched to 08.02.00.470. Their identical size and details, as they are both lecture rooms with
similar characteristic details is the reason behind this wrong match. Additionally, while com-
bining fast global registration with Point-to-Plane and Generalised ICP algorithms, an other
wrong result was observed between rooms 08.02.00.808 and 08.02.00.807. Specifically, room
08.02.00.808 was wrongly localised as 08.02.00.807. This misinterpretation arises due to their dif-
ference in size, as the latter is significantly bigger, therefore, it is possible that room 08.02.00.808
is incorrectly considered as a part of 08.02.00.807.

5.1.3. Point clouds from overlapping image sets

In this part the same testing will be applied for point clouds that were reconstructed from over-
lapping image sets that were acquired with Pix4d Catch.

(a) Point-to-Point ICP (fitness=0.743, RMSE=0.19) (b) Point-to-Point ICP (fitness=0.774, RMSE=0.2)

(a) Point-to-Plane ICP (fitness=0.521, RMSE=0.23) (b) Point-to-Plane ICP (fitness=0.771, RMSE=0.2)
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5.1. Indoor localisation from point clouds

(a) Colored ICP (fitness=0.778, RMSE=0.22) (b) Colored ICP (fitness=0.775, RMSE=0.21)

(a) Generalised ICP (fitness=0.732, RMSE=0.15) (b) Generalised ICP (fitness=0.717, RMSE=0.2)

Figure 5.13.: RANSAC global registration (left) and fast global registration (right) of room 560
from reconstructed images of ceilings

Room 08.02.00.560 was also chosen for testing the point clouds that were tested from overlap-
ping image sets. From Figure B.65 it can be noticed that in this case, due to the fact that the
acquisition involves images, the parts of the ceilings that are behind installations could not be
acquired, hence not modelled. However, that does not comprise a problem in most cases. An
important observation is that the point cloud reconstruction from image sets, may result into
point clouds that have a different scale compared to the point clouds that were directly ac-
quired. This is an outcome of the 3D reconstruction process, as only the intrinsic of the cameras
are known and the position of the 3D points is computed based on the projections from the 2D
space, so the true scale of the scene cannot be accurately recovered. Therefore, the 3D recon-
struction of a ceiling is unique up to a scaling factor. For this reason, point clouds that were
reconstructed from images have to be used as reference, for the matching results to be accu-
rate. Concerning the results of room 08.02.00.560, based on Figure B.65, the best results in terms
of fitness can be once more noticed, where Colored ICP was involved, however Point-to-Point
and Generalised ICP combinations also provided high fitness values. A bad matching is ob-
served while combining RANSAC to Point-to-Point ICP with 52% fitness value (Figure B.47a),
however this number was higher than the ones of the respective rooms, resulting into a correct
localisation.

Point clouds RANSAC Global Registration
Point-to-Point Point-to-Plane Colored ICP Generalised ICP

User 4/5 3/5 5/5 4/5
Point clouds Fast Global Registration

Point-to-Point Point-to-Plane Colored ICP Generalised ICP
User 4/5 3/5 5/5 5/5

Table 5.3.: Number of correct matches per point cloud registration algorithm
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Both global registration algorithms have similar quality of results and specifically the combi-
nation of RANSAC with local refinement algorithms, gives 16/20 correct localisation results,
while fast with the same combinations issues indoor localisation correctly, 17/20 times.

Concerning local registration algorithms, Colored ICP appears to have the maximum success
rate with 10/10 correct localisation results, while the worst results involve Point-to-Plane ICP
with 6/10 correct results. Once more, the addition of color information to the existing geometry
can significantly improve the point cloud registration results, ensuring a high success indoor
localisation rate. Except for the quality of the results, the time efficiency of Color ICP has to be
reminded, establishing it as concrete point cloud registration algorithm.

In contrast to the previous datasets, the wrong matches do not include the same rooms as be-
fore, however the results in overall are similar. This time, there are different combinations of
different rooms that were matched incorrectly. This is a result of the scaling factors, during the
reconstruction operation that model the third dimension with a scale ambiguity. Thus, rooms
that appear to have a different size in reality, might be modelled similarly in terms of size, a fact
that could result into wrong localisation, when the protruding components of the ceilings are
not enough to differentiate the rooms between each other. An example of the scale ambiguity
is visualised in Figure B.50 and Figure B.49b. It should be pointed out that the 3D reconstruc-
tion is a time-consuming process, even for the most specialised software. Therefore, indoor
localisation based on 3D reconstruction that takes place based on the acquisition of overlapping
images, cannot be used for real-time applications.

(a) Point cloud of room 08.02.00.560, acquired
by SiteScape

(b) Point cloud of room 08.02.00.560, reconstructed
from overlapping images

5.1.4. Performance parameters

This section presents some performance parameters that were calculated in order to test the ro-
bustness of the results. A discussion concerning the availability and yield of the current localisa-
tion approach, as well as some accuracy and precision metrics, for the results of the point-cloud
based indoor localisation approach.
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Accuracy/Precision

(a) Scatter plot with centers of reference and user
point clouds after point cloud matching in room
08.02.00.808

(b) Scatter plot with centers of reference and user
point clouds after point cloud matching in room
08.02.00.807

Figure 5.15a and Figure 5.15b show the centers of the respective reference point cloud with blue
color, as well as the centers of different user point clouds after the implementation of the point
cloud registration algorithms and specifically RANSAC based global registration and Colored
ICP local refinement. The results concerning room 08.02.00.808 reveal good accuracy, as most of
the centers of the user point clouds are a few centimeters away from the center of the reference
point cloud, while at the same time the precision is adequate, as most of the centers of the user
point clouds are close to each other. On the contrary, the same results for room 08.02.00.807 are
worse concerning accuracy and precision, since the centers of the user point clouds are further
away from the center of the reference point cloud and at the same time far from each other.
This has to do with the size and length of the room 08.02.00.807, that is a corridor with similar
and lengthy protruding installations on the ceilings, therefore it is possible that the user point
clouds are matched to the reference point cloud on a different part of those installations, further
away from the center of the point cloud. However, in both cases there is good accuracy and
precision regarding the height dimension, which shows that the flat part of the ceilings of the
user and reference point clouds is in most cases correctly matched. It has to be noted that even
in cases where the center of the user point cloud is not very close to the one of the reference
point cloud, that does not necessarily affect the indoor localisation results, as the fitness of the
compared point clouds of the same room is still higher compared to different rooms.

Availability and yield

The developed point cloud based localisation method is possible, in buildings that include a
database of reference point clouds of ceilings for each room of the indoor facility. Devices such
as the iPad 12 pro, that was used in this thesis and incorporates a LiDAR sensor are required for
the acquisition of reference point clouds, as well as for a user to capture a point cloud of a ceil-
ing and achieve indoor localisation. If an Apple device with a LiDAR sensor is not available, a
laser scanner could be used to perform the acquisition of reference point clouds. In general, the
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range of the LiDAR sensor is approximately 5 meters, therefore ceilings such as the Orange Hall
in the Faculty of Architecture and the Built Environment cannot be captured without mounting
the sensor on a monopod or a tripod. The latter does not apply to image acquisition, since cam-
era sensors can acquire images in larger distances. The created pipeline provides satisfactory
solutions for ceilings with characteristic details, such as the ones in the Faculty of Architec-
ture and the Built Environment. However, the quality of the solution, might not be the same
when applied to ceilings that are primarily flat, with fewer characteristic details, or ceilings that
include glass, whose reflection abilities might affect the indoor localisation result.

Cost

The creation of a database with reference point clouds and images for every ceiling of an indoor
facility requires some devices. Regarding point cloud acquisition, an Apple device such as an
iPhone 12 pro or an iPad 12 pro are required, as well as some non-commercial software. The cost
for these devices is approximately 1000 euros. Alternatively, a laser-scanner could be rented in
order to perform the acquisition. Concerning image acquisition, camera sensors are included in
each mobile device, so no further devices are required.

5.2. Indoor localisation from images

This subsection includes techniques that were implemented based on image acquisition. First,
indoor localisation results based on the comparison of single images is performed. The indoor
localisation result is based on the number of matches between the user and the reference images.
Additionally, different combinations of feature detection, description and matching techniques,
which are a vital step towards 3d reconstruction, are analysed.

5.2.1. Single images

Table 5.4 shows the indoor localisation results, based on ORB and SIFT feature detectors, as
well as the homonymous descriptors and two feature matching techniques, brute-force and
FLANN.

5 MP Camera
ORB-ORB SIFT-SIFT

Brute-Force 4/5 5/5
FLANN 4/5 5/5

8 MP Camera
Brute-Force 4/5 5/5

FLANN 4/5 5/5

Table 5.4.: Number of correct matches per feature detection, description and matching tech-
niques

The results are based on images that were taken from two different cameras with 5 and 8 MP res-
olution respectively. Both cameras perform similarly resulting into 18/20 correct room matches
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and they only differ in processing time as Figure 4.5 shows. Additionally, the two feature match-
ing techniques have similar efficiency when they are combined with the two different detectors
and descriptors, while brute-force performs slightly faster than FLANN. However, the latter
can be more efficient than brute-force, when large datasets are involved. FLANN results into a
higher number of matches between the user image and the reference image of the correct room
in most cases. The same can be mentioned about SIFT, which results into more matches be-
tween the images compared to ORB, however the indoor localisation is calculated with worse
time efficiency. In terms of quality, the suitability of SIFT, lies in the fact that it is scale and rota-
tion invariant, whereas ORB is only rotation invariant and robust to noise. As a result, in case
SIFT is used, the height and angle of the device do not affect the result. The time efficiency of
SIFT, could be improved, by implementing the SURF detector and descriptor, an operation that
did not take place, due to the fact that its use is patented from the OpenCV library. The ratio
test that was applied in each experiment was strict, in order to avoid false correspondences, that
were probable due to the common installations between the different rooms. The most clear re-
sults were observed concerning one test image of room 08.02.00.470, where approximately 400
matches where observed between the user and reference image, which are significantly more
than the other reference images. This is an outcome of the similarity of the user and reference
images, as they were acquired from a similar angle and cover approximately the same part of
the ceiling. In other cases where the viewpoints of the user and reference images were different,
the indoor localisation results were correct, as the user image had the most matches with its cor-
responding reference image, however the number of matches was significantly lower, between
50 and 100.

The wrong localisation results, were related to room 08.02.00.807, that cannot be entirely cap-
tured from a single image, due to its length. Therefore, in terms of size, it appears to be similar
to different rooms of the case study. However, this result can be partially solved, in case the
data acquisition is performed, by holding the sensor almost perpendicular to the ceiling, so that
a bigger part of the ceiling is captured.

In this testing, there are no differences between the two different cameras regarding the quality
of the results. However, certain illumination changes that create blurry areas, may significantly
affect the intensity of each pixel of the tested images. In this situation, a high resolution camera
could better capture the reality and avoid these blurry parts in the images. However, a draw-
back of using cameras with high resolution, is that they tend to produce bigger image files, that
are not suitable for real-time applications, due to the necessity of a time efficient solution.

(a) Feature extraction with SIFT (b) Feature matching with SIFT and FLANN
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Some wrong matches are highly affected by the ceiling lights that are on, during most part of
the day in the Faculty of Architecture and the Built environment. These lights tend to create
blurry areas around them, tampering with the real intensity values of the pixels. Additionally,
the intensity values of these areas might appear similar to the windows, resulting into wrong
matches between the windows and the lights, when two images are compared as it can be seen
in the case of room 08.02.00.430 (Figure 5.17). Hence, during the acquisition, windows should
be avoided as much as possible, due to their reflective ability.

Overall, indoor localisation based on the comparison of the features of an image seems really
promising, however additional testing regarding lighting conditions and viewpoints, has to be
implemented to produce safe conclusions about this method. Testing in a larger database is
also a challenge, as well as the implementation of the SURF detector and descriptor, to check
the suitability of this indoor localisation method based on images, for real-time applications.

Figure 5.17.: Feature detection with SIFT for room 430

5.2.2. Overlapping images

The acquisition of overlapping images targeted not only to 3D reconstruction of the ceilings,
but also in order to check different combinations of feature detectors, descriptors and matching
techniques for images of ceilings. This testing was performed in PhotoMatch and the results are
presented in this section.

Table 5.5 focuses on the number of key-points, as well as their percentage that was used for
matching between the overlapping images of the chosen subset, in order to test the suitabil-
ity of each combination of detectors and descriptors in terms of key-point selection. For each
combination of feature detectors, descriptors and matching techniques an upper threshold of
5000 points was set. It can be noticed that the combination of SURF as a detector and descrip-
tor detects the maximum number of key-points with both feature matching algorithms. That is
also observed when the SURF detector is combined with the SIFT descriptor. On the contrary,
the lowest number of key-points is detected when SIFT and BRIEF are combined with almost
3500 thousand key-points. The latter happens due to the simplicity of the BRIEF descriptor
which targets in fast description from simple intensity difference tests. Regarding the percent-
age of key-points that are used for matching, SURF detector with SIFT descriptor and FLANN
matching take into advantage approximately 13% of the detected points, while the combina-
tion of SIFT detector, SURF descriptor and FLANN uses less than 1% of the detected key-points
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Detector Descriptor Matcher
Average Number

of
keypoints

Percentage of keypoints
used for matching (%)

SIFT SIFT Brute Force 3671 8.96
FLANN 3671 9.02

SURF SURF Brute Force 5000 10.60
FLANN 5000 9.82

ORB ORB Brute Force 4939 3.34
FLANN 4939 6.09

SIFT BRIEF Brute Force 3495 4.46
FLANN 3495 6.67

SIFT BRISK Brute Force 3585 4.32
FLANN 3585 4.88

SIFT SURF Brute Force 2896 1.04
FLANN 3671 0.68

SURF SIFT Brute Force 5000 12.06
FLANN 5000 12.72

SURF BRIEF Brute Force 4928 6.98
FLANN 4928 9.38

SURF BRISK Brute Force 4604 10.36
FLANN 4604 12.34

Table 5.5.: Number of keypoints and their percentage used for matching per combination

for feature matching. This is a result of the size of the vectors of SIFT and SURF descriptors,
which have a size of 128 and 64 elements, showing that SIFT entails more details concerning
the description of the sub-region of the tested key-points. In most cases, FLANN uses a higher
percentage of key-points for matching, compared to brute-force except when the SIFT detector
and SURF descriptor are combined, however the difference is minor.
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Figure 5.18.: ROC curves between 2 images with Brute-force matching

Figure 5.19.: ROC curves between 2 images with FLANN matching
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Figure 5.18 and Figure 5.19 show the ROC curves for an image set when brute-force matching
and FLANN are used respectively. Overall, both feature matching techniques reveal similar re-
sults with a recall of approximately 63%. This number shows how many matches were actually
true and not mistakenly matched by the algorithms. If the information of these graphs is com-
bined with Table 5.5, the finer results can be noticed when SURF detector and SIFT descriptors
are combined, with approximately 71% of true to false positive ratio. On the other hand, the
worst performance is observed when SIFT detector is combined with BRIEF and Binary Robust
Invariant Scalable Keypoints (BRISK) descriptors.

Figure 5.20.: Total number of matches and true positive matches

Figure 5.20 provides an additional visual insight towards the assessment of the different tech-
niques. Specifically, the number of total matches and the true positive matches are shown. The
best performance is observed when the SURF detector and SIFT descriptor are used with ap-
proximately 250 matches for both feature matching techniques. The most under-performing
combination is the one of SIFT detector and SURF descriptor with a very low number of
matches. The following figures show the feature extraction and matching for the best and worst
combinations respectively, where the diameter of the circles, indicates the meaningful key-point
neighborhood.
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(a) Feature extraction with SURF detector
and SIFT descriptor

(b) Feature matching with SURF detector
and SIFT descriptor

(a) Feature extraction with SIFT detector
and SURF descriptor

(b) Feature matching with SIFT detector
and SURF descriptor

5.3. Location tracking

The location tracking results are based on the different indoor locations of different users in
different times of a day. Therefore, the quality of the followed paths is a direct outcome of the
indoor localisation quality. The results are available in the ArcGIS online Server and can be seen
in near real-time in a map, that is updated every 30 seconds.

To test the accuracy of the location tracking algorithm, a ground truth was set, based on the
path that the user originally followed and was compared to the path, as it is visualised in the
final product. This is shown in Figure 5.23.
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Figure 5.23.: Ground truth and visualised paths between rooms 08.02.00.430, 08.02.00.807 and
08.02.00.470

Figure 5.23 shows the path of a user that moved between rooms 08.02.00.430, 08.02.00.807 and
08.02.00.470. The indoor localisation was performed correctly for these three rooms, therefore
the ground truth is similar to the path as it is visualised in ArcGIS Pro. Some differences exist
due to the indoor network that is used to visualise the paths, as the center of each room is the
representative node and the fact that the rooms are connected to each other with lines, therefore
small deviations when the user is not moving completely straight cannot be detected.

59





6. Conclusion and discussion

This chapter presents the conclusions of this thesis which examined an alternative way of indoor
localisation and in extent location tracking of different users, using LiDAR sensors of an iPad
pro, as well as camera sensors of mobile devices to capture point clouds and images of the
ceilings, in an effort to replace the most used methods that involve Wi-Fi fingerprinting and
Bluetooth sensors. This is achieved by answering the research questions that were introduced
in Chapter 1. Furthermore, a discussion including the contribution of this thesis to the scientific
community, as well as the limitations of the current approach are presented. The last section
includes the future work that is proposed based on new research questions that emerged from
this thesis.

6.1. Research questions

In this section, the secondary research questions of this thesis will be first discussed, followed
by the main research question:

”To what extent can ceilings with characteristic details be used for indoor localisation pur-
poses?”

6.1.1. Answer to the secondary questions

1. ”Which parameters (measuring angle, height, part of the room) should the user take into account
while acquiring point clouds and images of ceilings?”

Data acquisition concerning both point clouds from LiDAR sensors, as well as images
from different devices is an important operation that can improve the indoor localisation
results if it is implemented properly. Regarding point clouds, it is important that a user
performs the acquisition while moving with a steady pace and without sudden changes
in the measuring angle and height. The range of the LiDAR sensor is approximately 5
meters, so users should hold their device as high as possible, in case they cannot use an
extensible accessory, such as a monopod or a tripod. This way, problems such as the one
showed in Figure 5.17, where a sudden change in the position of the device resulted in
a wrong distance calculation from the LiDAR beam, can be avoided. The iPad’s MEMS
gyroscope, a microscopic version of a gyroscope, that combines mechanical parts in a
small scale with electronic circuits, provides the user with the ability to easily capture
point clouds, while rotating the device, so that a bigger surface is acquired. The same
rules also apply to image acquisition. As it was shown in Chapter 5, where single images
are used for indoor localisation based on feature matching, in case the acquisition includes
large rooms that cannot be entirely captured, placing the sensor almost perpendicularly
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to the ceiling can improve the indoor localisation results, as a larger part of a ceiling can
be captured. For both point clouds and images, if the whole room cannot be captured, it
is vital that the part of the room that is captured includes protruding installations, so that
it can be correctly matched to the reference data that include the entire ceiling. Last but
not least, walls are surfaces that might significantly affect the indoor localisation result. A
small wall partition might not affect the localisation results, however if a significant part
of a wall is captured, the wall might be selected as the main plane of the point cloud in
the pre-processing step.

2. ”Which is the optimal point cloud registration algorithm to achieve indoor localisation from ceiling
data?”

Point cloud matching was performed based on three different datasets, including point
clouds acquired by SiteScape, Pix4D Catch, and point clouds that were reconstructed
from overlapping images. The different combinations of global and local registration algo-
rithms resulted into indoor localisation with some differences for each dataset, however in
terms of quality and time efficiency, the combination of RANSAC global registration with
the Colored variation of the ICP, proved to be the optimal solution. In spite of RANSAC’s
non-deterministic nature, the high number of iterations that was chosen, transforms it
into a robust global registration choice, with a high possibility that a reasonable result
is produced. In contrast to the other implemented local refinement algorithms, Colored
ICP adds color information to the geometry as its name indicates, hence this additional
information is the reason behind the suitability of the algorithm. The multi-registration
scheme of Color ICP significantly improves the time efficiency of the algorithm, making
it a concrete choice for real time applications that use point clouds of ceilings for indoor
localisation.

3. ”Which is the optimal image matching algorithm to achieve indoor localisation from ceiling data?”

Feature matching algorithms, such as brute-force and FLANN were combined with fea-
ture detection and description algorithms to investigate their reliability towards indoor
localisation. These combinations were implemented for two different purposes, direct in-
door localisation based on single images of the ceilings, as well as an intermediate step
towards 3D reconstruction from overlapping images. For the first approach, SIFT de-
tector and the homonymous descriptor provided the optimal indoor localisation results
when combined with both brute-force and FLANN, however the time efficiency of this
combination was worse than the one by ORB. The scale and rotation invariant character
of SIFT makes it adaptable and robust to different types of distortion, illumination and
noise. In terms of time efficiency, brute-force performs slightly faster than FLANN, due
to the small size of the dataset that was used. FLANN resulted into a higher number of
matches between the user and reference images, compared to brute-force, with a higher
match difference between the correct and wrong reference images, ensuring the quality of
indoor localisation. As a result, ORB performed more efficiently than SIFT as the indoor
localisation is performed at approximately 10% of the time that SIFT takes, as shown in
Figure 4.5. Thus, ORB is more suitable for real-time applications, however the higher re-
sult quality was noticed by SIFT. This uncertainty is solved during the second approach,
that was implemented in Photomatch, a software that provided the chance to use a larger
variety of feature detection and description algorithms. The number of matches, as well
as the true to false positive ratio of Figure 5.20 showed that the combination of SURF fea-
ture detector with the SIFT descriptor provides the most optimal results. SURF could be
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considered as a faster version of SIFT, therefore it comprises a more time efficient way to
present SIFT’s quality.

4. ”Are LiDAR point clouds acquired by an iPhone device an accurate and accessible solution towards
indoor localisation?”

Apple’s iPhone/iPad 12 and 13 Pro that include LiDAR sensors led to a new era of inno-
vation and a path for less or non-technical users to use the capabilities of these sensors,
in order to capture the third dimension of a scene. Currently, different user-friendly ap-
plications, such as the ones that were used during this thesis, facilitate the point cloud
acquisition. Therefore, point clouds can be easily acquired by a holder of a newly released
Apple device, as well as a few Android devices with increased capabilities and specifically
ones that include a ToF camera and Android’s ARCore. This new development indicates
that more and more mobile devices will include LiDAR sensors in the future. The users of
applications, such as SiteScape and Pix4D Catch have the ability of choosing the resolu-
tion and density of the created point clouds, which are captured with an accuracy of +/-1
inch, showing that the LiDAR sensors in Apple’s devices can be even used for construc-
tion projects.

5. ”Can the proposed pipeline aid towards facilitating localisation in emergency situations?”

In emergency situations, such as fires in indoor environments users should be able to find
the name of the room they are located in, as well as a way to communicate that information
with first-aid responders. In that way, users could capture a point cloud for a few seconds
even in cases they are unable to move, by just rotating their device. In case a room is large
and the user cannot capture the entire room, it is important that the part of the ceiling that
is captured includes some characteristic details, so that indoor localisation is successful.
This information is also important to first-aid responders, which are usually unaware of
the number and names of the rooms in an indoor facility. The created web-app takes a
few seconds to perform localisation and return the result to the user, depending on the
size of the acquired point cloud. The point clouds with lower density, that were acquired
by Pix4D Catch, are more suitable for a real time application, as indoor localisation is per-
formed in less than 10 seconds, showing adequate results. Currently, the first localisation
is implemented based on comparison of the user and all the reference point clouds, an op-
eration that might significantly decrease the time efficiency of the algorithm, in buildings
with a high number of rooms. Concerning images, they comprise a more straightforward
way of capturing the ceiling, as that takes a click of a button, however the web-app does
not currently support feature matching based on images. Additionally, protruding instal-
lations might cover some parts behind them, that cannot be shown in images. It has to be
noted, that fumes that are produced during a fire emergency might affect the visibility of
the ceiling and therefore do not optimally capture the surface. Indoor localisation results
from point clouds concerning emergency situations are promising, however the time effi-
ciency of the app, especially regarding the first localisation of a user has to be improved,
whereas images have to be also incorporated.

6. ”How accurate is location tracking and does it respect user privacy?”

Location tracking is based on different localisation results of users during different times
of a day. As it was shown in Figure 5.23 the ground truth of the original path of the tested
users, was slightly different than the visualised path in the heat-map. Since localisation
could only be implemented in room-level, the center of each room was chosen as a repre-
senting node and the path was represented as a line connecting different nodes. The path
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between two different rooms is based on the indoor network, that is created, based on
the door openings of each room. Therefore the detailed movement of each user cannot be
exactly interpreted, however information about the path that someone has followed can
be shown. The indoor localisation algorithm is highly affected by the first localisation,
as for the next one only the adjacent rooms are checked. Therefore, a mistake in the first
room’s localisation could lead to the misinterpretation of the path that a user followed. To
reduce the possibility that the first localisation is wrong and also improve time efficiency,
the current algorithm could be combined with Wi-Fi fingerprinting, in order to reduce the
number of rooms that are checked in an indoor facility. Different random IDs were auto-
matically created for every user, in order to associate them with the path information in
the server. The random ID is a combination of the IP address of the user in a mixed order
and some other random characters. Therefore, information about the paths that the same
person followed is available, but it cannot be tracked back to the real identity of the user.

6.1.2. Answer to the main research question

Answering the secondary research questions of this thesis, enabled the easier answer of the
main research question:

”To what extent can ceilings with characteristic details be used for indoor localisation pur-
poses?”

This thesis aimed to investigate the reliability of ceilings for indoor localisation, based on LiDAR
and image sensors, which are incorporated in up-to-date mobile devices. The ceiling data was
acquired in the Faculty of Architecture and the Built Environment, in which ceilings have pro-
truding installations, such as pipes and lights, a common characteristic in various indoor fa-
cilities in the Netherlands, mostly in public spaces and some private facilities. The indoor lo-
calisation from the different testing that was implemented showed promising results, both in
terms of quality as well as time efficiency, as the scope of the thesis was to be able to perform
real-time localisation of large indoor environments, focusing on ceilings with characteristic de-
tails. However, it has to be noted that 3D reconstruction from overlapping images is a time
consuming process, therefore it cannot be implemented on the fly, for a real-time application.
Based on the results, a point cloud acquisition of a few seconds is enough to indicate the room
that users are, especially when the whole ceiling can be captured. In case a ceiling is partly ac-
quired, the indoor localisation result depends on the uniqueness of the captured part. However,
an image-based localisation method has to be incorporated in the final product and the time-
efficiency of the point cloud algorithm concerning the first localisation has to be improved, so
certain conclusions can be drawn for emergency situations. Additionally, the point cloud acqui-
sition of ceilings led to promising localisation results while implemented dynamically, during
continuous acquisition between different rooms. The range of the current LiDAR sensors is ap-
proximately 5 meters, therefore point clouds of ceilings in buildings with high ceilings cannot
be captured, except the mobile device is mounted on an extensible monopod or tripod. How-
ever, this unavailability in acquisition, can be also translated into information that a person
is in a room with a high ceiling. In parallel, the current implementation focuses on the pro-
truding features of the ceilings, by detecting the flat plane of the ceiling and omitting it during
point cloud registration. Therefore, it cannot be used for ceilings without characteristic details,
without slightly adjusting the current pipeline. However, in this case the indoor localisation
based on ceilings would be solely based on the dimensions of the ceiling, thus the result would
be less accurate. Similar problems could be observed in ceilings that mostly consist of glass,
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as its reflective character could result into problems both while using point clouds as well as
images.

6.2. Discussion

This section includes a discussion concerning the thesis, including the applications where it
could be utilised in, as well as the contribution of the thesis to the research community. Further-
more, the limitations of the existing pipeline are analysed.

6.2.1. Contribution

In this thesis, ceiling data was used as an alternative way of performing indoor localisation and
in extent location tracking of users, in an effort to investigate if the implemented pipeline, can
work efficiently and substitute the varied used localisation methods that mostly involve Wi-
Fi fingerprinting and Bluetooth sensors. The implemented pipeline, incorporates both LiDAR
sensors included in the recently released Apple mobile devices and a few Android phones, as
well as camera sensors that are available in every phone. Therefore, indoor localisation becomes
possible for a variety of users, without the need of additional equipment. The only requirement
of this pipeline, is the existence of point clouds of ceilings that will act as reference for every
room of the indoor facility. The implemented pipeline, that includes both indoor localisation
from point clouds and images of the ceilings, could be applied in buildings with large rooms,
such as airports, and train stations where people can easily lose their orientation. Therefore,
localisation can be used as an affirmation that users are on the correct route towards their final
destination. Point clouds provide a dynamic aspect to indoor localisation, especially with the
use of ceilings, which were chosen due to the fact they usually are not altered during time. The
static point cloud acquisition can help people that are unable to move during an emergency
situation, understand their current location, an information that is vital if transmitted to first-
aid responders. However, improvements are needed in the final product so it can be used for
emergencies in real-time with the optimal efficiency, due to the importance of this application.
Additionally, with the dynamic acquisition of point clouds, users can perform data acquisition
while moving between different rooms, setting the basis for location tracking and additionally
navigation. To reduce the acquisition problems stated in Section 6.1.1, the LiDAR device could
be mounted on an automated device, that is capable of moving in an indoor environment, by
specifying a proper angle and height for the sensor. This continuous acquisition by an auto-
mated device could help towards the optimal mapping of indoor facilities based on point cloud
acquisition. Regarding location tracking, it comprises an extension of the indoor localisation re-
sults, as it is implemented based on two or more localisation results. Information of most used
paths is vital in an indoor facility, as its manager, can use daily, weekly or monthly statistics
and optimise the distribution of people in an indoor space, based on the noticeable movement
patterns, while also respecting user-privacy. The importance of this information is even higher
during the COVID-19 era. Last but not least, point clouds of ceilings can be used as reference to
CAD and BIM models, in order to help the modelling of the existing utilities and their compo-
nents in an indoor facility.
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6.2.2. Limitations

The implemented pipeline showed promising results, however there are some limitations that
are analysed in this subsection and could further improve the current implementation.

• Data acquisition: The data that was tested in this thesis included both the use of an iPad, as
well as a typical Android device. Concerning point clouds, the LiDAR sensors currently
exist in the recently released Apple devices as well as a few Android users in phones
with a ToF camera and connection to the ARCore. Additionally, another bottleneck is the
range of the currently existing LiDAR sensors which is approximately 5 meters, hence
some very high ceilings cannot be acquired, without an additional extensible device. The
current implementation only manipulates PLY files, therefore other file types cannot be
used without a slight adjustment in the algorithm.

• Pre-processing: The algorithm that was developed for point cloud pre-processing, in-
cludes many parameters that were tweaked in order to achieve an optimal result. Pa-
rameters, such as the threshold that was set for plane segmentation, so that the flat part
of the ceilings is separated from the protruding installations, might have to change for
different datasets, so that an optimal result is produced. The same is valid for the case of
images, where the strict ratio test in order to reduce false matches, has to be adjusted for
different image sets. Furthermore, walls are partially but not totally excluded during the
point cloud cleanup, a fact that might affect the indoor localisation results.

• Indoor localisation: The current implementation of the web-app returns the location of
a user a few seconds after the point cloud is loaded. However, the first time someone
is using the app, the algorithm checks, every available reference point cloud to match it
with a user point cloud. Therefore, in large buildings with many different rooms, the time
efficiency of the algorithm would be significantly worse for the first localisation. Another
drawback is that the current pipeline is based on the installations that protrude from the
ceilings, therefore the algorithm at its current state cannot be applied to simple ceilings
without details, as the algorithm would have to be altered. In cases where a room is
big and a user cannot easily navigate around it, the algorithm works better with parts of
ceilings that have identifiable installations, so that they can be differentiated from other
rooms. Similarly, the reference images of large rooms cannot show the whole ceiling,
therefore in some cases the whole room cannot be represented from a single image.

• Web - app: The current product is rather an initial version of a web-application, therefore
it is simplistic and does not include many capabilities. Currently users are only able to
localise themselves based on point clouds, as the feature matching algorithm based on
images is not incorporated in the application.

• Location tracking: Location tracking is currently implemented based on two or more in-
door localisation results, while its visualisation is based on the indoor model and its in-
cluded door openings. Therefore, the limitations of this operation are based on the re-
spective ones concerning indoor localisation. The current implementation is based on
a network graph of a single floor of the indoor facility, therefore location tracking does
not currently work between different floors. However, that can be easily implemented by
adding more floors in the indoor model and subsequently the network graph. A drawback
is that the current dashboard, including statistics on different used paths, needs slight ad-
justments each time that it is used by a facility manager, in order to visualise the required
information.
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6.3. Recommendations and future work

This discussion also involves some recommendations for similar research that could help im-
prove the current methodology, as well some proposed future research, that emerged from the
current implementation.

6.3.1. Recommendations

A complete final product should be created in a way that both point clouds and images are
included, so that the approach addresses a higher number of users. The indoor localisation
pipeline that is based on point clouds and images of ceilings, should be tested in an entire in-
door facility, in order to understand how it behaves in large scale environments. Additionally,
a complete pipeline should be created and tested on various ceiling types, with less protruding
installations, that are used in the current thesis. Furthermore, point clouds and images should
be combined with a Wi-Fi fingerprinting approach, in order to reduce the search area during the
first localisation of a user. Large rooms should be divided accordingly into smaller parts based
on their size, so that the performance of indoor localisation based on point clouds and images
of the ceilings is tested in a sub-room level. Alternative point cloud registration algorithms
could be used, such as the 3D equivalent of SIFT, so that the point cloud and image-based lo-
calisation techniques can be directly compared. Regarding feature matching based on single
image comparison, the reference images of large rooms, could include an orthomosaic, created
from a collection of single images, so that each room is ideally represented. Feature matching
techniques should be further analysed for their robustness while affected from different illu-
mination changes. Additional testing could be implemented in Android devices with a ToF
camera and ARCore, as well as image acquisition during different times of a day, so that the
influence of lighting conditions is investigated.

6.3.2. Future work

Machine learning

Based on the current research that involves indoor localisation and location tracking, alterna-
tive machine learning algorithms that focus on plane detection can be used, in order to au-
tomatically detect the large wall planes that negatively affect the indoor localisation results
based on ceilings. Feature matching of images based on monocular depth estimation tech-
niques could be tested, as an alternative way to achieve indoor localisation based on im-
ages. Various indoor environment datasets can be found such as the DIODE dataset (https:
//arxiv.org/abs/1908.00463) to train the model and achieve localisation for different types
of ceilings as well as different surfaces.

Landmark-based indoor localisation

Additional focus could be given to the protruding installations of the ceilings that are captured
from the LiDAR sensor. The use of an AR platform, such as Google’s ARCore, that would recog-
nise the different utilities, by detecting key-points and flat surfaces, could be compared with
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some respective reference data for each room. Based on these utility inventories for each room,
a landmark-based approach could be developed for localisation and in extent navigation.

Indoor navigation

Additional research could be incorporated regarding navigation, based on the indoor localisa-
tion results, focusing on different aspects, such as the establishment of the optimal navigational
instructions in both natural and programming language, so that humans and robots can navi-
gate in indoor environments. Furthermore, navigation could be implemented based on shortest
path algorithms, so that the fastest routes are followed, but also by taking into account informa-
tion, such as the least used paths, that could help users navigate between less occupied spaces.
Aside from LiDAR and camera sensors, different sensors that are included in mobile phones,
regarding temperature or humidity can be taken into account in a navigation algorithm, to op-
timise user experience in indoor facilities. For the same purpose, sensors included in a smart
facility could also be exploited and combined with the aforementioned sensors of a mobile
phone.

User groups

A special target group could be people with partial or severe blindness. The incorporation of a
real-time application for indoor localisation and navigation, that includes instructions in braille
would be an interesting case study. Last but not least, an additional research could involve,
indoor localisation and navigation applications that focus people with movement disorders,
such as paraplegic or quadriplegic users, who have to follow specific paths as they navigate to
a specific destination.
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A.1. Marks for each of the criteria

Figure A.1.: Reproducibility criteria to be assessed.

Grade/evaluate yourself for the 5 criteria (giving 0/1/2/3 for each):

Table A.1.: Evaluation of reproducibility criteria
Criterion Score
Input data 2
Pre-processing 3
Methods 2
Computational environment 2
Results 2
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A.2. Self-reflection

The self-assesment of this thesis is based on the criteria, that are explained in Section A.1. Con-
cerning input data, point clouds and images were acquired by the author and are available as
open data in https://github.com/jdardave/MSc_Geomatics_Thesis_Dardavesis.git. Aside
from that, additional data, such as the CAD files of the floorplans of the Faculty of Architecture
and the Built Environment were specifically requested from TU Delft Real Estate, therefore are
not open to the public.

The pre-processing steps of this thesis were explained conceptually in Section 3.3 and tech-
nically in Section 4.3. The code including the implementation of these steps was written in
Python and is openly available in https://github.com/jdardave/MSc_Geomatics_Thesis_

Dardavesis.git. Therefore, these steps can be directly reproduced by different users.

For this thesis different programming languages (Python, HTML and JavaScript), as well as
open source tools were used. Additionally most of the software that were used were open-
source (CloudCompare, PhotoMatch, COLMAP), but the creation of the indoor model and
network graph of the case study were implemented in ArcGIS pro, which is commercial and
requires special license. Moreover, the current implementation of the web application works on
a local level, as it does not run through a server.

Different results, that are presented and analysed in Chapter 5 in the form of plots, tables, maps
and statistics. Only a chosen part of the results is included in Chapter 5, while the rest are
included in Appendix B. Due to the number and size of the results, such as plots of different
point registration results, they are not available online.
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B. Additional results

B.1. Point clouds from SiteScape

(a) Point-to-Point ICP (fitness=0.997, RMSE=0.06) (b) Point-to-Point ICP (fitness=0.897, RMSE=0.21)

(a) Point-to-Plane ICP (fitness=0.89, RMSE=0.11) (b) Point-to-Point ICP (fitness=0.808, RMSE=0.16)

(a) Colored ICP (fitness=0.933, RMSE=0.11) (b) Colored ICP (fitness=0.861, RMSE=0.11)

(a) Generalised ICP (fitness=0.59, RMSE=0.11) (b) Generalised ICP (fitness=0.995, RMSE=0.03)

Figure B.4.: RANSAC global registration (left) and fast global registration (right) of room 430,
from point clouds acquired by SiteScape
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(a) Point-to-Point ICP (fitness=0.997, RMSE=0.03) (b) Point-to-Point ICP (fitness=0.699, RMSE=0.14)

(a) Point-to-Plane ICP (fitness=0.996, RMSE=0.03) (b) Point-to-Point ICP (fitness=0.597, RMSE=0.21)

(a) Colored ICP (fitness=0.956, RMSE=0.07) (b) Colored ICP (fitness=0.683, RMSE=0.108)

(a) Generalised ICP (fitness=0.998, RMSE=0.02) (b) Generalised ICP (fitness=0.997, RMSE=0.02

Figure B.8.: RANSAC global registration (left) and fast global registration (right) of room 470,
from point clouds acquired by SiteScape
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B.1. Point clouds from SiteScape

(a) Point-to-Point ICP (fitness=0.88, RMSE=0.11) (b) Point-to-Point ICP (fitness=0.878, RMSE=0.104)

(a) Point-to-Plane ICP (fitness=0.612, RMSE=0.21) (b) Point-to-Point ICP (fitness=0.995, RMSE=0.03)

(a) Colored ICP (fitness=0.845, RMSE=0.07) (b) Colored ICP (fitness=0.827, RMSE=0.08)

(a) Generalised ICP (fitness=0.931, RMSE=0.11) (b) Generalised ICP (fitness=0.987, RMSE=0.08

Figure B.12.: RANSAC global registration (left) and fast global registration (right) of room 807,
from point clouds acquired by SiteScape
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(a) Point-to-Point ICP (fitness=0.983, RMSE=0.11) (b) Point-to-Point ICP (fitness=0.803, RMSE=0.19)

(a) Point-to-Plane ICP (fitness=0.932, RMSE=0.18) (b) Point-to-Point ICP (fitness=0.974, RMSE=0.17)

(a) Colored ICP (fitness=0.957, RMSE=0.07) (b) Colored ICP (fitness=0.908, RMSE=0.08)

(a) Generalised ICP (fitness=0.987, RMSE=0.04) (b) Generalised ICP (fitness=0.99, RMSE=0.03

Figure B.16.: RANSAC global registration (left) and fast global registration (right) of room 808,
from point clouds acquired by SiteScape

B.2. Point clouds from Pix4D Catch

(a) Point-to-Point ICP (fitness=0.761, RMSE=0.16) (b) Point-to-Point ICP (fitness=0.732, RMSE=0.17)

(a) Point-to-Plane ICP (fitness=0.743, RMSE=0.16) (b) Point-to-Point ICP (fitness=0.743, RMSE=0.16)
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B.2. Point clouds from Pix4D Catch

(a) Colored ICP (fitness=0.726, RMSE=0.06) (b) Colored ICP (fitness=0.727, RMSE=0.07)

(a) Generalised ICP (fitness=0.943, RMSE=0.11) (b) Generalised ICP (fitness=0.93, RMSE=0.11)

Figure B.20.: RANSAC global registration (left) and fast global registration (right) of room 430,
from point clouds acquired by Pix4D Catch

(a) Point-to-Point ICP (fitness=0.981, RMSE=0.11) (b) Point-to-Point ICP (fitness=0.976, RMSE=0.12)

(a) Point-to-Plane ICP (fitness=0.979, RMSE=0.11) (b) Point-to-Point ICP (fitness=0.693, RMSE=0.19)

(a) Colored ICP (fitness=0.944, RMSE=0.09) (b) Colored ICP (fitness=0.941, RMSE=0.09)

(a) Generalised ICP (fitness=0.998, RMSE=0.05) (b) Generalised ICP (fitness=0.902, RMSE=0.11

Figure B.24.: RANSAC global registration (left) and fast global registration (right) of room 470,
from point clouds acquired by Pix4D Catch
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(a) Point-to-Point ICP (fitness=0.663, RMSE=0.17) (b) Point-to-Point ICP (fitness=0.773, RMSE=0.12)

(a) Point-to-Plane ICP (fitness=0.994, RMSE=0.12) (b) Point-to-Point ICP (fitness=0.773, RMSE=0.21)

(a) Colored ICP (fitness=0.932, RMSE=0.08) (b) Colored ICP (fitness=0.912, RMSE=0.13)

(a) Generalised ICP (fitness=0.992, RMSE=0.05) (b) Generalised ICP (fitness=0.56, RMSE=0.24

Figure B.28.: RANSAC global registration (left) and fast global registration (right) of room 807,
from point clouds acquired by Pix4D Catch

(a) Point-to-Point ICP (fitness=0.963, RMSE=0.11) (b) Point-to-Point ICP (fitness=0.821, RMSE=0.19)
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B.2. Point clouds from Pix4D Catch

(a) Point-to-Plane ICP (fitness=0.971, RMSE=0.11) (b) Point-to-Point ICP (fitness=0.813, RMSE=0.19)

(a) Colored ICP (fitness=0.942, RMSE=0.08) (b) Colored ICP (fitness=0.527, RMSE=0.09)

(a) Generalised ICP (fitness=0.943, RMSE=0.15) (b) Generalised ICP (fitness=0.812, RMSE=0.18

Figure B.32.: RANSAC global registration (left) and fast global registration (right) of room 808,
from point clouds acquired by Pix4D Catch
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B. Additional results

B.3. Point clouds that are reconstructed from overlapping
images

(a) Point-to-Point ICP (fitness=0.642, RMSE=0.21) (b) Point-to-Point ICP (fitness=0.701, RMSE=0.22)

(a) Point-to-Plane ICP (fitness=0.672, RMSE=0.24) (b) Point-to-Point ICP (fitness=0.821, RMSE=0.18)

(a) Colored ICP (fitness=0.694, RMSE=0.19) (b) Colored ICP (fitness=0.454, RMSE=0.13)

(a) Generalised ICP (fitness=0.571, RMSE=0.22) (b) Generalised ICP (fitness=0.882, RMSE=0.18)

Figure B.36.: RANSAC global registration (left) and fast global registration (right) of room 430
from reconstructed images of ceilings

(a) Point-to-Point ICP (fitness=0.985, RMSE=0.07) (b) Point-to-Point ICP (fitness=0.991, RMSE=0.05)
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B.3. Point clouds that are reconstructed from overlapping images

(a) Point-to-Plane ICP (fitness=0.993, RMSE=0.05) (b) Point-to-Point ICP (fitness=0.991, RMSE=0.07)

(a) Colored ICP (fitness=0.994, RMSE=0.05) (b) Colored ICP (fitness=0.993, RMSE=0.07)

(a) Generalised ICP (fitness=0.993, RMSE=0.05) (b) Generalised ICP (fitness=0.991, RMSE=0.08

Figure B.40.: RANSAC global registration (left) and fast global registration (right) of room 470
from reconstructed images of ceilings

(a) Point-to-Point ICP (fitness=0.991, RMSE=0.12) (b) Point-to-Point ICP (fitness=0.662, RMSE=0.24)

(a) Point-to-Plane ICP (fitness=0.981, RMSE=0.14) (b) Point-to-Point ICP (fitness=0.982, RMSE=0.16)
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B. Additional results

(a) Colored ICP (fitness=0.934, RMSE=0.09) (b) Colored ICP (fitness=0.532, RMSE=0.12)

(a) Generalised ICP (fitness=0.991, RMSE=0.02) (b) Generalised ICP (fitness=0.993, RMSE=0.03

Figure B.44.: RANSAC global registration (left) and fast global registration (right) of room 807
from reconstructed images of ceilings

(a) Point-to-Point ICP (fitness=0.961, RMSE=0.17) (b) Point-to-Point ICP (fitness=0.972, RMSE=0.16)

(a) Point-to-Plane ICP (fitness=0.972, RMSE=0.16) (b) Point-to-Point ICP (fitness=0.951, RMSE=0.16)

(a) Colored ICP (fitness=0.793, RMSE=0.11) (b) Colored ICP (fitness=0.812, RMSE=0.12)
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B.4. Accuracy/precision metrics

(a) Generalised ICP (fitness=0.993, RMSE=0.09) (b) Generalised ICP (fitness=0.992, RMSE=0.09

Figure B.48.: RANSAC global registration (left) and fast global registration (right) of room 808
from reconstructed images of ceilings

B.4. Accuracy/precision metrics

(a) Scatter plot with centers of reference and user
point clouds after point cloud matching in room
08.02.00.430

(b) Scatter plot with centers of reference and user
point clouds after point cloud matching in room
08.02.00.470

Figure B.50.: Scatter plot with centers of reference and user point clouds after point cloud match-
ing in room 08.02.00.560
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B. Additional results

B.5. Feature detection in images

(a) Feature detection with SIFT (b) Feature detection with ORB

Figure B.51.: Feature detection in room 08.02.00.430

(a) Feature detection with SIFT (b) Feature detection with ORB

Figure B.52.: Feature detection in room 08.02.00.470
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B.5. Feature detection in images

(a) Feature detection with SIFT (b) Feature detection with ORB

Figure B.53.: Feature detection in room 08.02.00.560

(a) Feature detection with SIFT (b) Feature detection with ORB

Figure B.54.: Feature detection in room 08.02.00.807
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B. Additional results

(a) Feature detection with SIFT (b) Feature detection with ORB

Figure B.55.: Feature detection in room 08.02.00.808

B.6. Feature matching in images

(a) Feature detection with SIFT and feature
matching with brute force

(b) Feature detection with SIFT and feature
matching with FLANN
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B.6. Feature matching in images

(a) Feature detection with ORB and feature
matching with brute force

(b) Feature detection with ORB and feature
matching with FLANN

Figure B.57.: Feature matching in room 08.02.00.430

(a) Feature detection with SIFT and feature
matching with brute force

(b) Feature detection with SIFT and feature
matching with FLANN
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B. Additional results

(a) Feature detection with ORB and feature
matching with brute force

(b) Feature detection with ORB and feature
matching with FLANN

Figure B.59.: Feature matching in room 08.02.00.470

(a) Feature detection with SIFT and feature
matching with brute force

(b) Feature detection with SIFT and feature
matching with FLANN
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B.6. Feature matching in images

(a) Feature detection with ORB and feature
matching with brute force

(b) Feature detection with ORB and feature
matching with FLANN

Figure B.61.: Feature matching in room 08.02.00.560

(a) Feature detection with SIFT and feature
matching with brute force

(b) Feature detection with SIFT and feature
matching with FLANN
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B. Additional results

(a) Feature detection with ORB and feature
matching with brute force

(b) Feature detection with ORB and feature
matching with FLANN

Figure B.63.: Feature matching in room 08.02.00.807

(a) Feature detection with SIFT and feature
matching with brute force

(b) Feature detection with SIFT and feature
matching with FLANN
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B.6. Feature matching in images

(a) Feature detection with ORB and feature
matching with brute force

(b) Feature detection with ORB and feature
matching with FLANN

Figure B.65.: Feature matching in room 08.02.00.808

89





Bibliography

H. Bay, T. Tuytelaars, and L. V. Gool. Surf: Speeded up robust features. In European conference on
computer vision, pages 404–417. Springer, 2006. URL https://link.springer.com/chapter/

10.1007/11744023_32.

P. Besl and N. D. McKay. A method for registration of 3-d shapes. IEEE Transactions on Pattern
Analysis and Machine Intelligence, 14(2):239–256, 1992. doi: 10.1109/34.121791. URL https:

//ieeexplore.ieee.org/document/121791.

A. Bose and C. H. Foh. A practical path loss model for indoor wifi positioning enhancement. In
2007 6th International Conference on Information, Communications & Signal Processing, pages 1–5.
IEEE, 2007. URL https://ieeexplore.ieee.org/document/4449717?arnumber=4449717.

Y. Chen and G. G. Medioni. Object modelling by registration of multiple range images. Image
Vis. Comput., 10:145–155, 1992. URL https://www.sciencedirect.com/science/article/

abs/pii/026288569290066C.

C.-Y. Chow, M. F. Mokbel, and X. Liu. A peer-to-peer spatial cloaking algorithm
for anonymous location-based service. In Proceedings of the 14th annual ACM in-
ternational symposium on Advances in geographic information systems, pages 171–178,
2006. URL https://www.researchgate.net/publication/221589528_A_Peer-to-Peer_

Spatial_Cloaking_Algorithm_for_Anonymous_Location-based_Service.

L. Dı́az Vilariño, H. Tran, E. Frı́as, J. Balado Frias, and K. Khoshelham. 3d mapping
of indoor and outdoor environments using apple smart devices. The International
Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, XLIII-
B4-2022:303–308, 06 2022. doi: 10.5194/isprs-archives-XLIII-B4-2022-303-2022. URL
https://www.researchgate.net/publication/361066256_3D_MAPPING_OF_INDOOR_AND_

OUTDOOR_ENVIRONMENTS_USING_APPLE_SMART_DEVICES.

D. Forsyth and J. Ponce. Computer vision: A modern approach. Prentice hall, 2011.

C. Fratzeskou, C. Garg, K. Staring, M. Deng, C. Jansen, E. Verbree, and M. Mei-
jers. Indoor localisation based on point clouds of the ceiling: Syntheses project
2019. 2019. URL https://repository.tudelft.nl/islandora/object/uuid%

3A1ae057a7-8974-4b60-88b5-b00d164619c4.

S. Garcia-Villalonga and A. Perez-Navarro. Influence of human absorption of wi-fi signal in
indoor positioning with wi-fi fingerprinting. In 2015 International Conference on Indoor Posi-
tioning and Indoor Navigation (IPIN), pages 1–10, 2015. doi: 10.1109/IPIN.2015.7346778. URL
https://ieeexplore.ieee.org/document/7346778.
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fingerprinting methods. In 2009 6th workshop on positioning, navigation and communication,
pages 243–251. IEEE, 2009. URL https://ieeexplore.ieee.org/document/4907834.
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