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abstract The merging of multiple partial maps of indoor environments cre-
ated by teams of human or robot agents into a single global map is a key prob-
lem that, when solved, can improve mapping speed and quality. Existing map
merging approaches generally depend on external signals which are not avail-
able indoors or only use the geometric properties of an environment. Inspired
by the human understanding of environments in relationship to their context we
propose a map merging system that extracts and uses topometric maps, a map
representation containing both the geometric and topological characteristics of
an environments, to solve the map merging problem in indoor spaces. In this
research we demonstrate an intuitive approach to extracting topometric maps of
3D, multi-floor, indoor environments and use both the topological and geomet-
ric characteristics contained in the topometric maps to perform context-aware
map matching and fusion.
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Glossary

global descriptor An n-dimensional vector representing the properties of a
whole point cloud which can be used to compare the similarity of point
clouds.. 8

global map A single, complete map constructed by merging multiple partial
maps.. 4

local descriptor An n-dimensional vector representing the properties of a sin-
gle point in a point cloud that can be used to find corresponding points
between point clouds.. 8

map A symbolic representation of an environment which contains information
about its characteristics.. 1, 4

map extraction The problem of converting one map representation to an-
other. For the purposes of this research this mostly refers to the extraction
of topometric maps from voxel grids.. 5

map fusion The problem of combining multiple partial maps into a single
global map based on their overlapping areas.. 4

map matching The problem of identifying overlapping areas between partial
maps.. 4

map merging The problem of identifying overlapping areas between partial
maps and using these to combine the partial maps into a global map.. 4

partial map A collection of maps without a common coordinate frame that
each represent a part of the environment.. 4

point cloud An unordered collection of points representing the geometry of an
object or environment in 3D euclidean space (Volodine, 2007).. 5

registration The problem of finding a transformation that optimally aligns
two point clouds.. 42

topological map Topological maps are a graph representation of an environ-
ment’s structure, where vertices represent locally distinctive places, often
rooms, and edges represent traversable paths between them (Thrun, 1998;
Kuipers & Byun, 1988). Topological maps are inspired by the fact that
humans are capable of spatial learning despite limited sensory and pro-
cessing capability and only having partial knowledge of the environment.
This is based on observations that cognitive maps, the mental maps used
by humans to navigate within an environment, consist of multiple layers
with a topological description of the environment being a fundamental
component (Kuipers & Byun, 1988).. 21
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topometric map A hybrid map representation combining both the topological
and metric characteristics of the environment. This map representation
allows the end-user to use either topological or metric information depend-
ing on the needs of the situation, e.g. the topological layer can be used for
large-scale navigation and abstract reasoning while the metric layer can
be used for landmark detection or obstacle avoidance.. 5

voxel grid Also known as an occupancy grid, a voxel grid is a ”multi-dimensional
(typically 2D or 3D) tesselation of space into cells, where each cell stores
a probabilistic estimate of its state.” (Elfes, 1990). In practice this prob-
abilistic estimate is often a binary value that represents whether a cell is
occupied or not.. 16
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1 Introduction

3D maps of indoor environments are used for a wide range of applications,
ranging from domestic to industrial, and may be used to provide comprehension
of the environment to humans through cartography or for automated scene
understanding that enables complex robot behaviour (Chen & Clarke, 2020;
C. Wang et al., 2019; Hermann et al., 2016). In many cases it is advantageous
for multiple mapping agents to collaboratively create a map, such as during
rescue operations where the location of the subject(s) is unknown (Queralta
et al., 2020). By working together larger areas can be mapped in a shorter
amount of time (Lajoie et al., 2022). Furthermore, each agent may perceive
the environment differently, resulting in a more complete whole (Schuster et al.,
2020).

Figure 1: The map merging problem. How do you combine partial maps if
relative positions and orientations are unknown?

The problem of creating a single global map from multiple partial maps is
called map merging. Map merging is challenging because the relative positions
and orientations (and sometimes scale) of agents within the environment are
unknown. In indoor environments where external positioning signals like GNSS
are highly attenuated map merging can only rely on the properties of the par-
tial maps themselves. Figure 1 illustrates the map merging problem, showing
two agents with unknown relative positions and orientations within the same
environment. Map merging can be subdivided into two subproblems. The first
is map matching, the identification of overlapping areas between partial maps.
The second is map fusion, the alignment and combination of the partial maps
based on the overlapping areas.

Figure 2: Extraction of topometric maps from raw data.

Map matching is essentially a problem of place recognition, or identifying

4



the same place in different maps despite differences in appearance. Human
place recognition uses a combination of the visible properties of that place and
the structure, or topology, of its environment (Kuipers, 1978). To illustrate,
when asked to describe a room, someone may answer that it has an L-shape
but also that the room has two neighbouring rooms. In this thesis we propose
an approach that uses both the geometric and the topological properties of
indoor environments to solve the map matching problem. For this purpose
we also propose an approach for extracting topometric maps, which represent
both the environment’s geometry and its room-level topological structure, from
purely geometric point cloud maps. We further propose an approach to fuse the
geometry and topology of the partial topometric maps into a global topometric
map based on the identified matches. Figures 2, 3 and 4 respectively illustrate
the problems of map extraction, matching and fusion.

Figure 3: Map matching using both geometric and topological properties.

We hypothesize that the topological structure of rooms within the environ-
ment are consistently identifiable between partial maps. We further hypothesize
that using the metric characteristics of the environment in conjunction with its
topological characteristics will improve identification of overlapping areas over a
purely geometric approach. Finally, we hypothesize that the identified matches
can be used to fuse both the geometry and topology of the partial topometric
maps into a global topometric map.

Figure 4: Fusion of partial topometric maps into a global topometric map.

The most important contributions of our work are:

1. Map extraction of 3D topometric maps from point clouds.

2. Map matching using both the geometry and topology of topometric maps.

3. Map fusion of topometric maps.
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2 Research Questions

2.1 Main question

How can we apply topometric representations of indoor environments to solve
the map merging problem?

2.2 Subquestions

1. In what way can partial topometric maps be extracted from partial point
cloud maps?

2. What approach is best suited for identifying matches between partial topo-
metric maps?

3. How can the identified matches be used to fuse two or more partial topo-
metric maps into a global topometric map?

2.3 Scope

During this thesis the following will be created.

1. A program that is capable of topometric map extraction from point clouds
and topometric map merging.

2. An analysis of the program’s performance on publically available standard
datasets.

3. Reports containing documentation and background research.

To better delineate the scope of the thesis we provide several aspects that
will not be researched or discussed.

1. Map merging using known relative poses between agents or meeting strate-
gies. Agent behaviour is assumed to be independent and agents are not
able to sense eachother.

2. Map merging using observations unrelated to the environment’s geometric
or topological characteristics. E.g. the environment’s colour or actively
transmitted beacon signals.

3. Map merging assisted by a priori knowledge of the environment. E.g.
building information models or floor plans.

4. Map merging using the pose graphs of agents. Agent poses are assumed
to be unknown.

5. Achieving near real-time performance.
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3 Related work

Previous research on mapping and map merging has considered various map
representations (Tomatis et al., 2003; Huang & Beevers, 2005; Bonanni et al.,
2017; Gholami Shahbandi & Magnusson, 2019). According to Andersone (2019)
and Yu et al. (2020) these representations can be subdivided into three types:
metric-, feature-, and topological maps. Hybrid maps that are combinations
of two or more map types also exist, such as topometric maps, which are a
combination of metric and topological maps (Yu et al., 2020). Map types that
are not one of the three main types or a hybrid are rarely used but do exist (Yu
et al., 2020). In this section we will discuss the work that has been done on
extracting and merging metric and topometric maps. Figure 5 shows a diagram
of the fields of research that are relevant for this thesis.

Geomatics

Computer science

Computer vision

3D computer vision

Collaborative 3D
mapping

3D
mapping

Figure 5: Euler diagram showing the overlapping fields of research that are
relevant for this thesis.

3.1 Metric Maps

In this section we give an overview of the existing research into metric map
extraction and map merging.

3.1.1 Metric map extraction

Metric maps are a map representation that represent the geometry of an en-
vironment. Two common metric map types that are relevant for our research
are point clouds and voxel grids. Point clouds are usually the direct output
of 3D mapping sensors and algorithms so it is not necessary to extract them
from another map representation (Rusu & Cousins, 2011). Volodine (2007)
gives an overview of point clouds and how to process them. Elfes (1990) gives
a description of voxel grids and how to extract them from point cloud maps.
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3.1.2 Metric map merging

Metric map matching is the problem of recognizing overlapping areas between
partial maps based purely on their geometry. Metric map matching is a mature
area of research that has applications for 3D mapping and place recognition.
Some approaches use local descriptors that describe the properties of each point
in the point cloud to identify corresponding points between point clouds. De-
scriptors may include corners, lines, planes or other points of interest, e.g. SIFT,
SURF, FPFH or Harris points (Andersone, 2019; Rusu et al., 2009). Some de-
scriptors are better suited for different kinds of input data. For example, the
descriptor approach by Li & Olson (2010) is scale-independent and the approach
of Yang et al. (2016) is able to deal with differences in resolution. Recent re-
search into using deep learning for local descriptor extraction has also shown
great potential, examples include PointNet and DGCNN (Qi et al., 2017; Phan
et al., 2018).

Figure 6: Illustration of FPFH local descriptor (Rusu et al., 2009).

Another approach to metric map matching uses global descriptors that de-
scribe the properties of segments of the point cloud, overlapping segments can
then be identified based on the similarity of their global descriptor (Dubé et al.,
2017). A large number of global descriptors have been proposed which describe
the point cloud based on various properties, such as its volume, planarity or
roughness (Han et al., 2018). Another approach to global descriptor extraction
aggregrates the local descriptor of each point into a global descriptor, exam-
ples include DBoW and VLAD (Shan et al., 2021; Arandjelovic & Zisserman,
2013). Global descriptors can also be based on the spectral characteristics of
graphs derived from the point cloud, including approaches such as ShapeDNA
and heat kernel signatures (Reuter et al., 2006; Bronstein & Kokkinos, 2010).
An advantage of these approaches is that they do not require manual selection of
relevant descriptors. Finally, recent research has shown that deep learning can
be used to extract global descriptors, with approaches such as PointNetVLAD,
LPDNet and MinkLoc3D (Uy & Lee, 2018; Z. Liu et al., 2019; Komorowski,
2021). Although these approaches claim to have better resilience against dif-
ferences between partial maps than other approaches they often require large
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amounts of training data and may not be able to deal with environments that are
not similar to the training data. Note that the above deep learning approaches
often use a trainable variation of the local descriptor aggregration described
above (Arandjelovic et al., 2016).

Metric map fusion is a mature area of research and various approaches have
been proposed. The problem of metric map fusion comes down to finding a
transformation between partial maps that brings the geometry of their over-
lapping areas into alignment, this is called registration. Most approaches to
registration include a variation of the iterative closest point (ICP) algorithm.
This algorithm finds the transformation between two point clouds by iteratively
applying rigid transformations that minimize the distance between the points
in one point clouds and their closest points in the other (Rusinkiewicz & Levoy,
2001). Since its first introduction a number of variations on the ICP algorithm
have been proposed that improve its accuracy and performance. An example
of this is the normal iterative closest point algorithm, which improves data-
association by taking into account the normal vector of a point’s neighbourhood
and the gravity-aligned ICP algorithm, which constrains the transformation to
use with maps that have a consistent up direction (Serafin & Grisetti, 2015;
Kubelka et al., 2022).

The ICP algorithm and its variations are not guarantueed to find a glob-
ally optimal transformation and they are sensitive to the initial transformation
between point clouds. To mitigate this Yang et al. (2016) proposes a two step
algorithm that first performs a rough, global registration followed by a precise,
local registration (see figure 7). The function of the global registration step is
to find a good initialization that will allow the local registration step to find the
global optimum. Various approaches to global registration have been proposed,
with most depending on the detection of correspondences between point clouds
using one of the descriptor approaches described above. A global transformation
can then be estimated using RANSAC (Koguciuk, 2017).

Figure 7: Illustration of two-step approach to registration (Yang et al., 2016).

More recently, deep learning approaches for point cloud registration have
been proposed, such as PointNetLK and DCP (Aoki et al., 2019; Y. Wang &
Solomon, 2019). However, these methods require training and their results can
not be constrained without retraining the model.
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3.2 Topometric Maps

In this section we discuss the existing research into the extraction and merging
of topometric maps.

3.2.1 Topometric map extraction

Various approaches for extracting topological maps from raw sensor data or
metric maps have been proposed. Bormann et al. (2016) and Pintore et al.
(2020) both give a review of different methods for extracting structured maps
of indoor spaces in which different room segmentation methods are discussed
and compared.

Kuipers & Byun (1991) first proposes identifying distinctive places, nodes
of the topological map, directly from sensor data by finding local maxima of
a distinctiveness measure within a neighbourhood. Its edges are identified by
having the robot try to move between the identified nodes, if this is possible an
edge is created. Note that this approach is dependent on the mapping agent’s
exploration strategy.

Thrun (1998) extracts a 2D topological map from a 2D metric map by iden-
tifying narrow passages. They then partition the metric map into areas divided
by passages which are respectively the vertices and the edges of the graph. This
approach is not able to deal with 3D environments with multiple storeys and it
assumes that rooms are always separated by narrow passages.

Mura et al. (2014) proposes an approach to room segmentation that divides
the ground plane of the environment into polygons which are then iteratively
clustered to form rooms. Mura et al. (2016) avoids this clustering step by
directly clustering scanner positions using a graph clustering approach. This
approach is then further improved by Ambrus et al. (2017) by generating syn-
thetic scanning positions along the medial axis of the map. Figure 8 illustrates
the concept behind visibility clustering-based room segmentation.

Ochmann et al. (2014) describe extracting hierarchical topometric maps di-
rectly from point clouds. The hierachy is divided into four encapsulating layers,
building - storey - room - object. Entities within the graph are represented
as vertices, with edges representing the topological and spatial relationships
between entities. Each vertex is linked to a local metric map of the entity’s
geometry.

Gorte et al. (2019) provide a novel approach for extracting the walkable floor
space from a voxel grid across multiple storeys (see figure 9). They do so by
first applying a 3D convolution filter using a stick-shaped kernel to extract the
parts of the floor without obstructions. They then apply an upwards dilation
to connect steps of stairways into a connected volume. Because the topology of
the environment depends on the traversability between spaces the extraction of
navigable floor space is essential for the extraction of topological maps.

Bot et al. (2019) propose a graph matching approach to the map merging
problem. They use spectral graph matching on dual graphs of a mesh represen-
tation of the environment to localize an agent within a pre-existing BIM map
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Figure 8: Illustration of visibility clustering-based room segmentation (Pintore
et al., 2020).

Figure 9: Illustration of walkable floor space extraction(Gorte et al., 2019).

(see figure 10). Although their approach is not specifically proposed for map
merging without prior maps their work should be well-suited for this purpose
too. Additionally, the graphs used in this approach do not represent the connec-
tivity of places within the environment, Nevertheless, their approach could also
be applied to topometric maps. Finally, the graph clustering approach proposed
in this research could also be applied to room segmentation.

He et al. (2021) describes an approach for extracting a hierarchical topological-
metric map with three layers: storey - region - volume, from a voxel grid map.
To extract the map they use a novel approach to room segmentation using ray-
casting. A downside of their methodology is that it depends on the presence of
ceilings in the metric map, which are often not captured in practice when using
handheld scanners.

Ma et al. (2020) and Tang et al. (2022) both propose a deep learning ap-
proach to semantic segmentation of indoor spaces. Despite the fact that the
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Figure 10: Dual graph of a mesh representation of the environment coloured
according to its spectrum ((Bot et al., 2019)).

primary goal of these methods is not room segmentation but instance segmen-
tation (splitting the map into walls, floor, furniture, etc.) their findings can
also be applied to room segmentation. In contrast to previous approaches these
approaches require training a model on a labelled dataset.

3.2.2 Topometric map merging

In comparison to topometric map extraction relatively little work has been done
on the subject of topometric map merging. Dudek et al. (1998) first proposes
an approach to topological map merging which depends on a robot meeting
strategy to merge partial maps created by each robot. When new distinctive
places are recognized at the frontier of the global map the other robots will
travel towards it and synchronize their maps. As with other early approaches
to map extraction and map merging this approach depends on a coordinated
exploration strategy.

The work of Huang & Beevers (2005) is a significant milestone in topolog-
ical map merging, demonstrating that topological maps can be merged using
both map structure and map geometry. They first identify vertex matches by
comparing the similarity of their attributes, such as their degree, and the spa-
tial relationships of incident edges. Vertex matches are then expanded using a
region growing approach, where every added edge and vertex is compared for
similarity and rejected if too dissimilar (see figure 11). The results are multiple
hypotheses for overlapping areas between partial maps. They then estimate a
rigid transformation between the partial maps for each hypothesis. Afterwards,
hypotheses that result in similar transformations are grouped into hypothesis
clusters. They then select the most appropriate hypothesis cluster by using
a heuristic that includes the number of vertices in the cluster, the error be-
tween matched vertices after transformation and the number of hypotheses in
the cluster.

Bonanni et al. (2017) provides a unique approach to topometric map merging

12



Figure 11: Illustration of hypothesis growing approach from (Huang & Beevers,
2005).

using the pose graph of mapping agents as the topological component and the
point cloud captured at each node as the metric component. Matches between
nodes are identified by computing the similarity of their associated point cloud.
In comparison to most other map merging approaches they fuse the maps using
a non-rigid transformation, meaning the partial maps are deformed to improve
their alignment.

Garcia-Fidalgo & Ortiz (2017) proposes a hierarchical approach for place
recognition in topological maps in which images of the environment are grouped
by similarity and described by both a local descriptor of their properties and
a global descriptor of their grouping’s properties. This approach reduces the
search space when recognizing places. Note that this approach does not use a
3D metric component but an image-based one.

Rincon & Carpin (2019) proposes an approach to topological map merging
that is based on both the similarity of nodes and their context within the graph
based on a model of human object recognition. This approach depends on the
previous alignment of partial maps.

Rozemberczki et al. (2021) propose an approach to feature embedding in
graphs that combines each node’s associated attribute with the distribution of
the attributes of its neighbourhood over multiple scales. While they do not use
this for 3D mapping their approach can be applied to topometric maps.

13



4 Methodology

In this section we will describe our methodology for solving the map merg-
ing problem. We divide our methodology into three major components: map
extraction, map matching and map fusion, which correspond with the three
research subquestions. This section follows this division, with an added subsec-
tion describing the different map representations that we use. Figure 12 shows
the steps of our methodology. Refer to the specific subsections for each step for
a further description of the algorithms and notation. We will now give a short
summary of each of the steps of our methodology.

Map extraction For each input partial map, a point cloud, we create a voxel
grid with a given cell size. Within these voxel grids we detect which voxels could
feasibly be used to navigate (walk) through the environment. Using this infor-
mation we segment the voxel grids into submaps which closely match a human
interpretation of how an indoor environment can be divided into rooms. We
do so by finding areas with many common viewpoints. By combining the room
submaps with the navigable voxels we can extract the environment’s topological
graph. We then create a topometric map for each input point cloud by merging
the topological graph with the segmented voxel grid into a single map.

Map matching In the second part of our methodology, map matching, we
identify matches between the rooms of the partial topometric maps with the
purpose of detecting overlapping areas. We do this by first generating a global
descriptor for each room that captures its geometric features and those of its
context, the rooms that lie within a number of steps in the topological graph.
We then find a matching by growing multiple matching hypotheses along the
topological graphs in a constrained manner and selecting the one that contains
the largest number of matches.

Map fusion In the final part of our methodology, map fusion, we find the
transformation that aligns the partial maps’ geometry and use it to create a
single, global topometric map. We do so by finding the optimal transformation
between each pair of matched rooms. We then cluster the transformations based
on similarity and select the cluster whose mean transformation best aligns the
partial maps as the most likely correct transformation. After using the mean
transformation to align the geometry of the partial maps into a global voxel grid
map we extract a topometric map from it to create the global topometric map.
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Figure 12: Diagram showing overview of methodology.
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4.1 Map Representations

In this section we will give a description of the different kinds of map repre-
sentation that are used in this research, their mathematical notation, and the
operations that we perform on them.

4.1.1 Point Cloud

An unordered collection of points representing the geometry of an object or
environment in 3D euclidean space (Volodine, 2007).

P = {pi}mi=1, pi ∈ R3 (1)

Where P denotes the point cloud and n the number of points that it contains.

4.1.2 Voxel Grid

A voxel is the 3D equivalent of a pixel. A voxel represents a single cell in
a bounded 3D volume divided into a regular voxel grid. A voxel represents
information about its volume, such as whether it is occupied, what color it is, or
any other property. Unless otherwise specified, voxels in this research represent
whether a given volume is occupied by any kind of obstruction, such as an object
or the environment. A voxel can be represented by a three-dimensional vector
containing its coordinates along the x, y and z axes of the voxel grid, as shown
in equation 2.

v = (x, y, z)T ∈ N3 (2)

We define a voxel grid as a set of voxels with an associated size el, as shown
in equation 3. Unoccupied voxels are not present in the set, making it a sparse
representation. Figure 13 shows an example voxel grid and its components.

V = {vi}ni=1 (3)

To generate a voxel grid we divide a 3D axis-aligned volume bounding box
defined by minimum and maximum bounds bmin,bmax ∈ R3 into a grid of
cubic cells with distance e ∈ R+ between their centers. A voxel represents a
subvolume of the bounding box bounded by a single cell. A voxel coordinate
only consists of integer values that represent the position of the voxel in the
grid along each axis. Voxel u = (0, 0, 0)T represents the first cell along each of
the voxel grid’s axes and the minimum of the volume’s bounds, voxel (0, 1, 1)T

represents the first cell along the x- and the second along the y- and z-axes, etc.
We also restrict voxel coordinates to only be positive as negative coordinates
would fall outside of the bounds of the volume. For the same reason a voxel’s
coordinates can not be larger than that of the voxel representing the volume’s
maximum bounds w = (bmax − bmin) ⌋ e, where ⌋ denotes floor division.

vmin = bmin + ve (4)
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vmax = vmin + e (5)

The minimum and maximum bounds of this subvolume are given by equation
4 and 5. The voxel’s centroid is given by equation 6. Given a point p within
the bounds of V , the corresponding voxel is given by equation 7 .

vc = (vmin + 0.5vmax) (6)

vp = (p− bmin) ⌋ el (7)

Figure 13: A voxel grid and its components.

Sparse Voxel Octree Several operations on voxel grids benefit from using
a spatial index, including radius searching and level of detail generation. We
use a data structure called a sparse voxel octree (SVO) to achieve this. A
normal octree recursively subdivides a volume into 8 cells, called octants. This
operation results in a tree data structure, with nodes representing octants at a
certain level of subsidivision. The root node of the tree structure represents the
entire volume while the leaf nodes represent batches of 1 or more data points.
In the case of a sparse voxel octree the leaf nodes represent individual voxels,
with only the octants containing an occupied voxel represented in the tree.

0 1 4 5

2 3 6 7

8 9 12 13

10 11 14 15
2 3

10

0

Occupied octant

Figure 14: 2D example of morton codes.

To generate the SVO we first create a Morton order for the voxel grid, this is
illustrated in figure 14. A Morton order maps the three-dimensional coordinates
of the voxels to one dimension while preserving locality. It does by interleaving
the binary representation of the voxel’s coordinates into a single binary string
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which is interpreted as a positive integer, a Morton code. The ascending sorted
vector of Morton codes gives us the Morton order. We divide the Morton order
into buckets with size 8, such that each bucket contains at most 8 Morton codes,
with a maximum difference of 8. Each non-empty bucket represents a parent
node of at most 8 child nodes in the octree. By recursively performing this step
until only one bucket remains, the root node, we can construct an SVO. The
SVO corresponding to the Morton code in figure 14 is shown in figure 15. The
algorithms to construct a sparse voxel octree from a morton order are shown
below, as we are working with 3-dimensional data d = 3.

0

0 2 3

0 2 3 8 9 12 14

Figure 15: Example of a sparse voxel octree generated from the above Morton
codes.

We denote the function that returns all n voxels within range r of a voxel
as follows.

radius : N3, R 7→ Zn×3 (8)

The voxels within a sphere around a point can be found by recursively inter-
secting the sphere with the octants of the SVO. If the sphere does not intersect
with an octant then none of its leaf nodes do and the corresponding voxels
are not within the sphere. If an octant does intersect with the sphere then its
children are tested for intersection. The algorithm returns all leaf nodes that
intersect with the sphere.

Levels of detail can be generated by using the occupied octants at the levels
above leaf nodes as a simplified voxel grid. This can enable certain operations
that are not computationally feasible at the original level of detail.

Voxel convolution Voxel convolution involves moving a sliding window, or
kernel, over each voxel in the grid to retrieve its neighbourhood and then com-
puting a new value for the voxel based on the weighted sum of its neighbours.
We can define a kernel K as a voxel grid with an associated weight for each
voxel and an origin voxel oK.
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Algorithm 1 MergeMorton

Input Morton order m ∈ Nn

Input Dimensionality d ∈ N
Output Higher level Morton order n ∈ Np, n/(2d) ≥ p

n = []
b = max(m)/2d

i = 1
while i ≤ b do

p = (m | m ∈m, m ∈ [2di, 2d(i+ 1)])
if |p| > 0 then

n← [n, i]
end if
i++

end while
return n

Algorithm 2 Sparse voxel octree construction

Input Morton order m0 ∈ Nn

Input Dimensionality d ∈ N
Output Sparse voxel octree G = (N,E)

G = (N,E), N = {(m0, 0) | m0 ∈m0}, E = {}
δ = 0
while |mδ| > 1 do

mδ+1 = MergeMorton(mδ, d)
for each mδ+1 ∈mδ+1 do

N ← N ∪ (mδ+1, δ + 1)
for each i ∈ [mδ+12

d, (mδ+1 + 1)2d] do
if (i, δ) ∈ N then

E ← E ∪ ((i, δ), (mδ+1, δ + 1))
end if

end for
end for
δ ++

end while
return G
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weight : N3 7→ R (9)

oK ∈ N3 (10)

To apply a kernel to a voxel we first translate the kernel so that its origin
lies on the voxel.

Kt = {vK + (v − oK) | vK ∈ K} (11)

We then get the property which we wish to convolve of each neighbour,
multiply it by the neighbour’s weight and sum it.

Kproperty(v) =
∑
{weight(v)Vproperty(v) | v ∈ Kt ∩ V} (12)

We denote the convolution of a property of every voxel in V with K as follows.

Vproperty, K = V ∗ Kproperty = {Kproperty(v) | v ∈ V} (13)

Neighbourhood graph The neighbourhood graph of a voxel grid represents
the connectivity between voxels as undirected, unweighted graph. The nodes
of the neighbourhood graph correspond to individual voxels and the edges to
whether two voxels can be considered neighbours. Whether two voxels are
neighbours is defined by a kernel which has only 1 or 0-valued weights. If, when
applying the kernel to a voxel, another voxel within that kernel is occupied and
the kernel’s weight for that position is 1 then the two voxels are neighbours. The
neighbourhood graph allows us to perform graph operations, such as identifying
connected components, on voxel grids. Figure 16 shows two commonly used
kernels for constructing neighbourhood graphs, the Von Neumann and Moore
neighbourhoods, also respectively known as the 6-neighbourhood and the 26-
neighbourhood.

Von Neumann Moore

Figure 16: Two common connectivity kernels. Note that the center voxel’s
weight is 0, as a voxel does not neighbour with itself.
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4.1.3 Topological map

Topological maps are graph representations of an environment’s structure, where
nodes represent locally distinctive places and edges represent traversable paths
between them (see figure 17) (Thrun, 1998; Kuipers & Byun, 1988). Topological
maps are based on observations that cognitive maps, the mental maps used
by humans to navigate within an environment, consist of multiple layers with
a topological description of the environment being a fundamental component
(Kuipers & Byun, 1988; Kuipers, 1978).

We denote a topological map as shown in equations 14, 15 and 16. The topo-
logical map consists of a graph G, where nodes N represent distinctive places ni

and edges E represent the presence of a navigable path between neighbouring
pairs of places (nj , nk) that does not pass through any other places. Whether
a path is navigable depends on who or what is navigating. For the purpose of
this thesis a navigable path is a path that can be reasonably used by humans
to walk from one room to another. Following this definition, only a part of the
environment can be used as a navigable path. This includes the parts of the
floor, stairs or ramps that are at sufficient distance from a wall, the ceiling or
other obstructions.

G = (N,E) (14)

N = {ni}ki=1 (15)

E = {(nj , nk)i}mi=1, nj ∈ N, nk ∈ N, nj ̸= nk} (16)

Figure 17 shows an example topological map of a house with five rooms and
their connectivity.

Bathroom Hallway

Living roomKitchen

Bedroom

Figure 17: Example of a topological map.

21



4.1.4 Topometric map

A hybrid map representation combining both the topological and geometric
characteristics of the environment. This map representation allows the end-
user to use either topological or metric information depending on the needs of
the situation, e.g. the topological layer can be used for large-scale navigation
and abstract reasoning while the metric layer can be used for place recognition
and obstacle avoidance. In the context of this thesis a topometric map refers
to a graph representation of an indoor environment where the nodes represent
rooms and their associated geometry as a voxel grid and the edges represent the
navigability relationship between them. It is thus a hybrid representation of the
environment that combines the properties of the voxel grid and the topological
map which we described above. We denote a topometric map T as shown in
equation 17, where V represents the complete geometry of the environment and
G the topological graph.

T = (V, G), V = {vi}ni=1 (17)

The topological graph, which we denote as shown in equation 18, consists
of a set of nodes N and a set of edges E. Each node n ∈ N represents a room
and contains a subset of V that describes the geometry of that room. The
nodes’ subsets of V are not allowed to overlap, which means they represent a
segmentation of V.

G = (N, E), N = {ni}ki=1, n ⊂ V (18)

Figure 18 shows an example of a topometric map of an indoor environment.

Figure 18: Example of a topometric map.
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4.2 Map Extraction

The first step of our approach is topometric map extraction. The purpose of
this step is to transform a partial voxel grid map of an indoor environment,
denoted by V, into a topometric map, denoted by T . In this section we propose
an algorithm to achieve this goal. In an overview, it works as follows.

4.2.1 Overview

We first extract a navigation graph Gnavigation, the neighbourhood graph of all
voxels which a hypothetical human agent could use to move through the envi-
ronment, from V. Using Gnavigation we compute points where the hypothetical
agent would have an optimal view of the environment. We then find the visible
voxels for each of these points. By clustering the resultant visibilities based
on similarity we segment V into submaps that align closely with how humans
may divide indoor environments into rooms. As such, we refer to the submaps
of V when segmented using visibility clustering as ’rooms’. We then construct
the topological graph of the environment by finding which rooms have adjacent
voxels in Gnavigation. Finally, we fuse the topological graph with the segmented
map to construct the topometric map T .

Figures 19 and 20 show an overview of our map extraction algorithm, its
input, and intermediate outputs. In the rest of this subsection we will discuss
the algorithm in detail.

4.2.2 Navigation graph

We first extract a navigation graph Gnavigation. The navigation graph is a
connected graph which tells us how a theoretical agent in the environment could
move through the environment from one point to another. In practice, assuming
a human agent, this means the areas of the floor, ramps and stairs that are at a
sufficient distance from a wall, the ceiling or any other obstruction. We compute
Gnavigation using a three step algorithm which we describe below.

Convolution The first step of navigation graph extraction uses voxel convo-
lution with a stick-shaped kernel Kstick (shown in figure 21) to find all voxels
that are unobstructed and may thus be used to navigate the environment. This
approach is based on Gorte et al. (2019). Each voxel in the kernel has a weight
of 1, except the origin voxel which has weight 0. Convolving the voxel grid’s
occupancy property with the stick kernel gives us each voxel’s obstruction prop-
erty, which has a value of 0 when no other voxels are present in the stick kernel.
This indicates that these voxels have enough space around and above them to
be used for navigation. We then filter out all obstructed voxels leaving only the
voxels that could be used for navigation.

Vunobstructed = {v | v ∈ V, Kstick ∗ v = 0} (19)
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Figure 19: Diagram showing map extraction processes and intermediate data
(part 1).
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Figure 20: Diagram showing map extraction processes and intermediate data
(part 2).
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Figure 21: Illustration of stick kernel with top and side views.

Upwards dilation The next step of the algorithm is to dilate the unob-
structed voxels upwards by a distance ddilate. This connects the voxels separated
by a small height differences into a connected volume, which is necessary for
the navigation graph to be able to connect stairs. The value of ddilate depends
on the expected differences in height between the steps of stairs in the environ-
ment. Typically we use a value of 0.2m. The result is a new voxel grid Vdilated.
Note that the dilation step may create new occupied voxels that are not in the
original voxel grid which means that Vdilated is not necessarily a subset of V.

Connected components The final step of the algorithm is to split Vdilated
into one or more connected components. A connected component Vi of a voxel
grid is a subset of V where there exists a path between every voxel in Vi. We
denote the set of all connected components as C = {Vi}ni=1. To find the con-
nected components we first find the neighbourhood graph of Vdilated using the
Von Neumann neighbourhood kernel K6, which is shown in equation 20.

GK6 = (N, E), N = Vdilated (20)

We then find the connected components of the neighbourhood graph using
the below algorithm. After doing so we find the connected component with
the largest amount of voxels and use it as the navigation graph Gnavigation.
We denote the intersection of the voxels in the navigation graph with V as
Vnavigation.
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Algorithm 3 Region growing connected components

Input Dilated voxel grid Vdilated
Input Von Neumann Connectivity kernel K6

Output Connected components C

GK6
= (N, E), N = Vdilated ▷ Convert voxel grid to neighbourhood graph

Nunvisited = N
C = {}
while |Nunvisited| ≠ 0 do

Select random node n from Nunvisited

Remove DFS(n) from Nunvisited ▷ Depth-first search to find connected
nodes

Add DFS(n) to C
end while

4.2.3 Room segmentation

The next step of our approach is to segment the complete voxel grid map V into
non-overlapping rooms. We do so by using a visibility clustering approach. We
will now describe the algorithm that we use to achieve this.

Maximum visibility estimation To segment the map into rooms using vis-
ibility clustering it is first necessary to identify the viewpoints that will be used
to compute the visibilities. Ideally, we want viewpoints that maximize the view
of the environment. This is related to the skeletonization problem, which aims
to find a version of a shape that is equidistant to its boundaries, and for which
approaches such as the medial axis transform and the grassfire transform exist
(Bonnassie et al., 2003; L. Liu et al., 2011). The reasoning behind this is that
the points that maximize the view of the environment should be equally spaced
and as far away from the walls and obstructions as possible. As we only need
the nodes of the skeleton we can use an approach which is less complex and
more computationally efficient. This approach works by finding the points that
are at a maximum distance from the boundary of the navigation graph within
their local neighbourhood (Mille et al., 2019). It works as follows. For each
voxel in the navigation graph we compute the horizontal distance to the nearest
boundary voxel. A boundary voxel is a voxel for which not every voxel in its
Von Neumann neighbourhood is occupied. To compute this value we iteratively
convolve the voxel grid with a circle-shaped kernel on the X-Z plane, where the
radius of the circle is expanded by 1 voxel with each iteration, starting with a
radius of 1. When the number of voxel neighbours within the kernel is less than
the number of voxels in the kernel a boundary voxel has been reached. The
number of radius expansions that were performed tells us the distance to the
boundary of a particular voxel. We denote the horizontal distance of a voxel
to its boundary as dist : N3 7→ N. Computing the horizontal distance for every
voxel in V gives us the horizontal distance field (H), as shown in equation 21.
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H = {dist(v) | v ∈ V} (21)

Hmax = {v | dist(v) ≥ max{dist(vr | vr ∈ radius(v, r))}} (22)

We denote the horizontal distance of a given voxel v as dv. We implement
this using the following algorithm.

Algorithm 4 Horizontal distance field

Input Navigation voxel grid Vnavigation
Output Horizontal distance field H = {dist(v) | v ∈ Vnavigation}

H = (hi)
|Vnavigation|
i=1

j = 0
for each v ∈ Vnavigation do

r = 1
Create Kcircle with radius r
while K ∗ v = |Kcircle|) do

r ++
Expand Kcircle with new radius r

end while
hj ← r ▷ Add voxel’s radius to horizontal distance field
j ++

end for

We then find the maxima of the horizontal distance field within a given radius
r ∈ R+. The local maxima of the horizontal distance field are all voxels that have
a larger or equal horizontal distance than all voxels within r, such that equation
22 follows. Increasing the value of r reduces the number of local maxima and
vice versa. All voxels in Hmax lie within the geometry of the environment,
which means the view of the environment is blocked by the surrounding voxels.
To solve this, we take the centroids of the voxels in Hmax and translate them
upwards to a reasonable scanning height h for a human agent, we use 1.8m. We
denote these positions as:

P = {vc + (0, h, 0) | v ∈ HDFmax} (23)

Figure 22 shows an illustration of the horizontal distance field computation
and the identification of its local maxima. Figure 23 shows a real example of
the horizontal distance field extracted from a small two-storey environment in
grayscale and the associated P in red.

Visibility computation The next step in the room segmentation algorithm
is to compute the visibility from each position in P . We denote the set of voxels
that are visible from a given position as:

visibility : R3, Zn×3 7→ Nm×3, n ≥ m (24)
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Figure 22: Illustration of horizontal distance field computation and extraction
of local maxima.

A target voxel is visible from a position if a ray cast from the position
towards the centroid of the voxel does not intersect with any other voxel. To
compute this we use the fast voxel traversal (FVT) algorithm to rasterize the
ray onto the voxel grid in 3D (see algorithm 3) (Amanatides & Woo, 1987). We
then check if any of the voxels that the ray enters, except the target voxel, is
occupied. If none are, the target voxel is visible from the point. Figure 24 shows
a 2D representation of how the FVT algorithm works. Figure 25 shows a 2D
representation of a visibility computation.

We perform this raycasting operation from every position in P towards every
voxel within a radius rv of that position. Only taking into account voxels within
a radius speeds up the visibility computation, and is justifiable based on the fact
that real-world 3D scanners have limited range. We denote the set of visibilities
from each point in P as:

Q = {visibility(o) | o ∈ P} (25)

’
Where a single visibility consists of all of the voxels for which a ray cast

towards its origin from a point in P does not hit any other voxels along its way,
as shown in equation 26.

visibility(o) = {t | t ∈ radius(o, rv), FV T (V,o, t) = t} (26)

Visibility clustering After computing the set of visibilities from the esti-
mated optimal views we apply clustering to group the visibilities by similarity.
Remember that each visibility is a subset of the voxel grid map. To compute
the similarity of two sets we use the Jaccard index, which is given by equation
27.

J(A,B) =
|A ∩B|
|A ∪B|

(27)
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Algorithm 5 FVT (Fast Voxel Traversal)

Input Voxel grid V
Input Ray origin o ∈ R3,o ∈ [Vmin,Vmax]
Input Ray target t ∈ R3

Output hit ∈ N3 ▷ First encountered collision

pcurrent = o
vo = (o− Vmin)//Ve
vcurrent = vo

d = (t− o)
heading = d⊙ abs(d)−1 ▷ Determine if ray points in positive or negative
direction for every axis
while (vcurrent /∈ V ∨ vcurrent = vo) ∧ pcurrent ∈ [Vmin,Vmax] do

c = centroid(vcurrent)
dplanes = c+ heading ∗ Ve/2
dmin =∞
axis = 1
for each d ∈ dplanes do

t = d−n·pcurrent

n·(t−pcurrent)

i = pcurrent + t(t− o)
if dmin ≥ t then

pcurrent = i
vcurrent, axis+ = headingaxis

end if
axis = axis+ 1

end for
hit = vcurrent

end while
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Figure 23: Resulting horizontal distance field of partial map, with resultant
optimal view points shown in red.

Computing the Jaccard index for every combination of visibilities gives us
a visibility overlap matrix S ∈ 0, 1n×n. An example visibility overlap matrix is
shown in figure 26. We can also consider S as an undirected weighted graph
GS , where every node represents a viewpoint and the edges the degree of over-
lap between what’s visible from the two viewpoints, as illustrated in figure 27.
This means we can treat visibility clustering as a weighted graph clustering
problem. To solve this problem we used the Markov Cluster (MCL) algorithm
(van Dongen, 2000). The main parameter of the MCL algorithm is inflation.
By varying this parameter between an approximate range of [1.2, 2.5] we get
different clustering results. We find the optimal value for inflation within this
range by maximizing the clustering’s modularity. This value indicates the dif-
ference between the fraction of edges within a given cluster and the expected
number of edges for that cluster if edges are randomly distributed. We denote
the clustering of Q that results from the MCL algorithm as:

CQ = {ci}|Q|
i=1, ci ∈ N (28)

Where the ith element of CQ is the cluster that the ith element of Q belongs
to, such that for a given value of c the elements in Q for which the corresponding
c in CQ have the same value belong to the same cluster. As each visibility is a
subset of the map, each cluster of visibilities is also a subset of the map. We
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Figure 24: 2D representation of voxel raycasting.

Figure 25: 2D representation of visibility computation.

denote the union of the visibilities belonging to each cluster as Vc.

Label propagation It is possible for visibility clusters in Vc to have overlap-
ping voxels. This means that each voxel in the partial map may have multiple
associated visibility clusters. However, the goal is to assign a single cluster to
each voxel in the map to create a non-overlapping segmentation. To solve this
we assign to each voxel the cluster which contains the most visibilities that
include that voxel. The result is a mapping from voxels to visibility clusters,
which we will from now on refer to as rooms, as shown in equations 29 and 30.

room : N3 7→ N (29)

room(v) = c, c ∈ CQ, v ∈ V (30)
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Figure 26: Similarity matrix extracted from set of visibilities. Each value rep-
resents the Jaccard index of two visibilities.

This often results in noisy results, with small, disconnected islands of rooms
surrounded by other rooms. Intuitively, this does not correspond to a reason-
able room segmentation. To solve this we apply a label propagation algorithm,
meaning that for every labelled voxel we find the labelled voxels within a neigh-
bourhood as defined by a convolution kernel. We then assign to the voxel the
most common label of its neighbourhood if that label is more common than the
current label. We iteratively apply this step until the assigned labels stop chang-
ing. Depending on the size of the convolution kernel the results are smoothed
and small islands are absorbed by the surrounding rooms. Algorithm 4 shows
our approach to label propagation.
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Figure 27: Graph representation of the similarity matrix, edges under a thresh-
old similarity are removed. Nodes represent visibilities.

4.2.4 Topometric map extraction

The above steps segment the map into multiple non-overlapping rooms using
visibility clustering. In the next step we extract the topometric representation
T = (G,V), which consists of a topological graph G = (N,E) and a voxel grid
map V. Each node in G represents a room and also has an associated voxel grid
which is a subset of V and represents the geometry of that room as a voxel set.
Edges in G represent navigability between rooms, meaning that there is a path
between them on the navigable volume that does not pass through any other
rooms. This means that for two rooms to have a navigable relationship they
need to have adjacent voxels that are both in the navigable volume. To construct
the topometric map we thus add a node for every room in the segmented map
with its associated voxels, we then add edges between every pair of nodes that
satisfy the above navigability requirement.
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Algorithm 6 Label propagation

Input Voxel grid V
Input Initial labeling label(0) : N3 7→ N
Input Kernel K
Output Propagated labeling after t steps label(t) : N3 7→ N

t = 0
while label(t) ̸= label(t+1) do ▷ Keep iterating until labels stop changing

for each v ∈ V do
L = {label(t)(vnb) | vnb ∈ neighbours(v,K)}4
lmax = argmaxl |{l | l ∈ L}| ▷ Most common label in neighbourhood
lcurrent = label(t)(v) ▷ Label of current voxel
if |{l | l ∈ L ∧ l = lmax}| > |{l | l ∈ L ∧ l = lcurrent| then

label(t+1)(v) = lmax

else
label(t+1)(v) = label(t)(v)

end if
end for
t = t+ 1 ▷ Use propagated labeling as input for next iteration

end while

4.3 Map Matching

4.3.1 Overview

The process of identifying overlapping areas between partial maps is called map
matching. In the case of topometric map matching this refers to identifying
which nodes represent the same rooms between two partial maps. We denote
our two partial topometric maps as:

Ta = (Ga, Va), Ga = (Na, Ea) (31)

Tb = (Gb, Vb), Gb = (Nb, Eb) (32)

The goal of map matching is to find a one-to-one mapping between the rooms
of both partial maps which corresponds to the real world and is robust to dif-
ferences in coordinate system, resolution and quality between partial maps. To
identify matches between rooms we need to be able to compute their similarity.
To do so, we first transform each room into a descriptor, an n-dimensional vector,
which represents both the geometry of the room. The descriptor of two nodes
with similar geometry should be close to eachother in feature space, meaning
the distance between their vectors should be small. Conversely, the descriptors
of two dissimilar rooms should be far away from eachother in feature space.
We then use the topological properties of the topometric maps to improve map
matching in two ways. The first is contextual embedding. This means that we
combine the descriptor of each room with the descriptor of its neighbourhood
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in the topological graph. This improves matching because multiple rooms may
have similar geometry but not necessarily similar neighbourhoods. The second
is hypothesis growing, which means that we grow multiple matching hypotheses
along the topological graph in a constrained manner and only use the hypoth-
esis that contains the most matches. Figure 28 shows an overview of the steps
described above. In the rest of this section we will describe the aforementioned
steps in depth.
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Figure 28: Diagram showing map matching methodology.
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4.3.2 Geometric descriptor

Geometric feature embedding transforms a geometric object, in our case a voxel
grid, into an m-dimensional vector, a descriptor, such that objects with sim-
ilar geometry have similar descriptors (their Euclidean distance is small) and
vice versa. We implement geometric feature embedding using two different ap-
proaches, which we discuss below. The concept of geometric feature embedding
is illustrated in figure 29.

Figure 29: Diagram showing geometric feature embedding.

Spectral Features Our first approach to geometric feature embedding uses
ShapeDNA (Reuter et al., 2006). This approach uses the first n sorted, non-zero
eigenvalues of the graph Laplacian, in our case of the neighbourhood graph of
a room’s geometry, as a geometric descriptor. To compute this we first convert
each room’s neighbourhood graph G to an adjacency matrix A and a degree
matrix D. We then find the Laplacian matrix of the neighbourhood graph by
subtracting its adjacency matrix from its degree matrix, as shown in equation
33.

L = D −A (33)

After computing the Laplacian matrix we find its eigenvalues, sort them in
ascending order and use the first 256 non-zero values as the descriptor.

Deep Learning Our second approach to geometric feature embedding uses
deep learning. Specifically, we use the LPDNet neural network architecture.
This architecture is used for place recognition, it does so by learning descrip-
tors, typically 2048 or 4096-dimensional, of point clouds that are theoretically
independent of transformation, perspective and completeness. It does so by
computing a local descriptor for every point in the point cloud and aggregrating
them into a global descriptor. The LPDNet model we use is trained on outdoor
maps which have different characteristics from indoor maps. However, the au-
thors of LPDNet claim that a model trained on outdoor data can also effectively
be used for indoor data. Figure 30 shows the network architecture of LPDNet.

4.3.3 Contextual Embedding

After computing a descriptor for each individual room we augment them by
taking into account the descriptor of the neighbourhood. For every room we
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Figure 30: Diagram showing LPDNet network architecture (Z. Liu et al., 2019).

find their neighbours and merge their geometry into one voxel grid, for which
we compute a new descriptor. We do this step multiple times for neighbours
that are at most one or multiple steps away from the room. We then append the
descriptors of the neighbourhood to the room’s descriptor. By doing so we can
distinguish between rooms with similar geometry but dissimilar neighbourhoods,
which are often present in indoor environments. The concept of contextual
embedding is illustrated in figure 31.

Figure 31: Diagram showing contextual embedding.

4.3.4 Initial Matching

The above steps are applied to both partial maps. This gives us two sets of
descriptors Ga, Gb representing the contextual embedding of the rooms of both
topometric maps. To identify the most likely overlapping rooms between the
partial maps we find the one-to-one mapping between the sets of descriptors
that maximizes the similarity (or minimizes the distances) between the chosen
pairs. This is an example of the unbalanced assignment problem, which consists
of finding a matching in a weighted bipartite graph that minimizes the sum of
its edge weights. It is unbalanced because there may be more nodes in one part
of the bipartite graph than the other, which means it is not possible to assign
every node in one part to a node in the other. This is illustrated in figure 32.

To construct the weighted bipartite graph we first find the Cartesian product
of the feature vectors.

Gab = Ga ×Gb = {(a, b) | a ∈ Ga, b ∈ Gb} (34)
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We then compute the Euclidean distance in feature space between every pair
of nodes in Gab, creating the cost matrix that represents the weighted bipartite
graph.

S ∈ R|Na|×|Nb|, Sij = ||rowi(Ga)− rowj(Gb)|| (35)

We can then find unbalanced assignment using the Jonker-Volgenant algo-
rithm (Jonker & Volgenant, 1987). We denote the resulting matching between
the nodes of both partial maps and their distance in feature space as a matrix:

M ∈ {0, 1}|Na|×|Nb|, 1T
nM ∈ {0, 1}n, 1n ∈ {1}n (36)

Figure 32: Illustration of unbalanced assignment problem.

4.3.5 Hypothesis growing

In practice it is unlikely that every match in M is correct. However, we can use
them as seeds to generate hypotheses similar to the approach described in Huang
& Beevers (2005). Starting at each initial match we get the neighbourhood of
both nodes. We then construct a new cost matrix from the Euclidean distance
between the embeddings of both neighbourhoods, again creating a weighted
bipartite graph for which we can solve the assignment problem. By doing this
we identify which neighbours of the nodes in the match are most likely to also
match. We recursively apply this step to the matching neighbours to grow our
initial matches into hypotheses. To decrease the risk of incorrectly identifying
neighbourhood matches we constrain hypothesis growing in two ways. First, the
cost of two potential matches must be below a given threshold cmax. Second,
a newly identified match may not bring the existing matching too much out of
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alignment. To check this, we perform a registration (see next section) between
the centroids of the geometry of the identified matches at every step of the
hypothesis growing. If the error increases between steps, and the increase is
too large such that △e ≥ △emax, then the matching is rejected. By adjusting
the values of cmax and △emax more or less uncertainty is allowed when growing
hypotheses. Hypothesis growing is illustrated in figure 33

*

Figure 33: Illustration of hypothesis growing.
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4.4 Map Fusion

4.4.1 Overview

The final step of the map merging process is map fusion, in general this means
the problem of combining multiple partial maps into a global map. In our case,
it specifically refers to the fusion of two partial topometric maps at the geometric
and topological level to produce a global topometric map.

To achieve geometric fusion we designate one partial map as the source and
the other as the target and find a transformation that aligns the source map
with the target map. We constrain the transformation to a rotation around
the y-axis and a translation because most 3D scans of indoor environments
are gravity-aligned, which means that it is not necessary to consider rotations
around the x- or z-axis.

To find the transformation between the partial maps we first find the trans-
formation between each pair of matched rooms. We do so by using RANSAC
to find a global alignment which we then refine using the iterative closest point
algorithm. Afterwards, we cluster the transformations and find the mean trans-
formation of each cluster. We use the mean transformation which leads to the
smallest difference between partial maps as our final rigid transformation. We
then apply this transformation to the source map and fuse the geometry of
the two maps into a global voxel grid map. Finally, we extract a new, global
topometric map from the fused geometry. Figure 34 shows an overview of our
map fusion approach. In the rest of this section we will describe our map fusion
approach in detail.

4.4.2 Registration

The goal of registration is to find a rigid transformation τ between two point
clouds that minimizes the error, as defined by an error function e, between them.
For the error function we use point-to-plane distance, as shown in equation 38.
In the context of indoor mapping data is usually aligned to gravity, with the
direction of gravity being equal to the direction of the negative y-axis. We take
this into account by constraining the transformation between partial maps to
a translation along all three axes and a rotation around the y-axis. The rigid
transformation can thus be expressed as a 4-dimensional vector, as shown in
equation 37. Reducing the degrees of freedom of the problem from 6 to 4 can
improve the alignment (Kubelka et al., 2022).

τ = argmin
τ

e(P,Q) =
[
γ
t

]
=


γ
tx
ty
tz

 (37)

e =

K∑
k=1

||((R(γ)pk + t)− qk) · nk||, pk ∈ P, qk ∈ Q (38)
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Kubelka et al. (2022) gives a method for restating gravity-constrained align-
ment between two sets of points as a system of equations, which is shown in
equations 39 and 40 (adapted to use y-axis instead of z-axis as the gravity direc-
tion). We can then solve this system of equations using least squares adjustment
to find the optimal transformation τ .

ck = (

 0 0 1
0 0 0
−1 0 0

pk) · nk (39)

K∑
k=1

[
ck
nk

] [
ck nk

]
τ =

K∑
k=1

[
ck
nk

]
(dk · nk)→ Aτ = b (40)

transform : (Rm×3, Rm×3)→ R4, transform(P, Q) = τ (41)

The above is able to align two point clouds optimally if the correspondence
between points is known exactly, meaning that the k-th point of both P and Q
correspond to the same point in the real world. This is, however, usually not
the case in real world scenarios. This means that registration requires another
two steps, global and local registration, which we will discuss below.

Global registration The purpose of global registration is to find a rough
alignment between point clouds, which can then be further refined in the local
registration step. To do so we use a RANSAC based approach based on the
work of Koguciuk (2017). This algorithm works as follows. For every point in
the point clouds P and Q compute a feature embedding that can be used to find
similar points in the other point clouds. We use Fast Point Feature Histograms
(FPFH) features, which are commonly used for this purpose (Rusu et al., 2009).
We then randomly select 3 points from P and find the corresponding points in Q
which have the smallest distance in feature space. We then compare the triangles
formed by both sets of points. If the edge lengths of both triangles are too
dissimilar, meaning that the ratio of their lengths is outside of a predetermined
range, then the selected points are discarded and new ones are selected. If not,
we find the gravity-constrained rigid transformation between the 3 pairs. We
then evaluate how well the rigid transformation aligns the two point clouds by
finding the mean distance of every point in P to its nearest neighbour in Q.
If the mean distance is smaller than the previous smallest mean distance then
we store the transformation. We repeat this for a set amount of iterations or
until a mean distance threshold is reached. The rigid transformation with the
smallest mean distance is then used for the next step, local registration.

Local registration The purpose of local registration is to refine the alignment
found in the global registration step. We use the iterative closest point (ICP)
algorithm to achieve this. The only major modification is that we use the
gravity-aligned transformation with the point-to-plane error function described
above at each iteration.
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Figure 34: Diagram showing overview of map fusion methodology.
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Transform concatenation After finding the global and the local transfor-
mations we can find the final transformation τ by multiplying their by 4 by 4
transformation matrices. We denote the function that converts τ to a 4 by 4
transformation matrix as in equation 42. Equation 43 shows how to compute the
final transformation matrix, note that the order of multiplication is important,
as matrix multiplication is not commutative.

T : R4 → R4 times4 (42)

T (τ) = T (τlocal)T (τglobal), T : R4 → R4×4 (43)

4.4.3 Geometric fusion

We apply the above steps to the geometry of each room and its match if their
distance in feature space is below a threshold. This gives us a 4 by 4 transfor-
mation matrix for each match.

T = {T (τi)}|M|
i=1, T (τi) ∈ R4×4 (44)

We discard the matches where the registration error is too high and cluster
the remaining transformations using the DBSCAN algorithm (Schubert et al.,
2017). This gives us multiple clusters of transformations that, within a cluster,
result in a similar alignment between partial maps (see equation 45).

C = {ci}|T|
i=1, ci ∈ N (45)

For each of these clusters we find the mean transformation, apply it to the
partial map and compute the point-to-plane error between the partial maps. We
then select the cluster h with the lowest error and use its mean transformation
to align the geometry of the partial topometric maps.

4.4.4 Topological fusion

After the geometric fusion step the geometry of the topometric maps is brought
into alignment but their graphs haven’t been fused yet. Fusing the graphs
directly using the identified matches is possible but does not guarantuee a good
global topometric map. This is because the geometric fusion may have changed
the partial maps in a way that the global geometric map’s topology is greater
than the sum of the partial maps’ topology. As a result, we have to reextract
the topology from the results of the geometric fusion. To do so, we reuse the
navigation graphs of the partial maps as the navigation graph of the global map.
We also reuse the optimal viewpoints from both partial maps. This means that
only the room segmentation step needs to be redone. The result is a global
topometric map created from the fusion of two partial topometric maps.
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5 Results

We evaluated the approach described in the methodology section on several
datasets. In this section we describe these datasets and show the results we
achieved with them. The shown results are divided into three sections based on
the major components of our methodology: map extraction, map matching and
map fusion.

5.1 Datasets

In this section we describe the datasets that we used to test our algorithm. We
also describe how we prepared the ground truth datasets so as to be able to
compare our results to them and objectively measure their performance.

5.1.1 Simulated Scan

To objectively evaluate the performance of our methodology it is necessary to
compare the results to a ground truth. This ground truth must contain the
following elements: room labels and their topological relationships to evaluate
map extraction, room matches between partial maps to evaluate map matching,
and the transformations between partial maps to evaluate map fusion. When
capturing real-world data, the second and third elements are especially difficult
to determine. Furthermore, little pre-existing data is available that contains
exactly these elements. To solve this problem we simulate partial maps from
annotated global maps. The annotations are integer labels for every point rep-
resenting the ground truth room segmentation and a graph representing the
ground truth topological map.

We create the partials maps by manually defining a trajectory for each de-
sired partial map and simulating an agent moving along them that scans the
global map at a regular interval. We do this by using the FVT algorithm de-
scribed in the methodology section. This allows us to objectively evaluate our
approach for a large number of different scenarios at the cost of missing some
of the subtleties inherent in non-simulated partial maps, such as changes in the
environment and measurement error. To mitigate this, we apply pre-processing
steps to the global map. These pre-processing steps are: random removal of
points, adding noise to points and random rotation and translation of the point
cloud. The latter’s purpose is to simulate the unknown transformation be-
tween real-world partial maps. By comparing the results of our approach to
the annotations in the ground truth global map we can objectively measure
the performance of map extraction, matching and fusion. Figure 35 shows an
example global map with simulated viewpoints. Figure 36 shows two simulated
partial maps created from a single map.
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Figure 35: Global map with simulated viewpoints. Each coloured dot represents
a viewpoint, the union of all views with the same color forms a partial map.

5.1.2 Stanford 3D Indoor Scene Dataset

The Stanford 3D Indoor Scene Dataset (S3DIS) consists of a collection of 3D
scans of six different indoor environments (Area 1 through 6) and the raw mea-
surements used to create them (Armeni et al., 2016). The environments all span
a single floor. Each environment scan in its original state consists of a number
of point clouds, one for each room in the building. We merge these separate
point clouds into a single cloud but retain the room labels as point attributes
as we use these as our ground truth room labels for the map extraction step.
We manually created the topological graph of each area.

5.1.3 Collaborative SLAM Dataset

The Collaborative SLAM Dataset (CSLAMD) is a dataset meant specifically
for collaborative SLAM. It consists of three environments (house, flat and lab),
each consisting of multiple partial maps and their ground truth transformations.
Two of the environments consist of multiple storeys. The partial maps were
captured using a low-end 3D scanner and thus has a low point density. We
merge the partial maps of each environment into a single global map to create
the simulated partial maps described above. We then manually annotate each
environment with our interpretation of an appropriate room segmentation and
manually create the topological graph. Due to problems with the quality of
this dataset we only use it to demonstrate that our map extraction approach is
capable of extracting topometric maps from multi-storey environments.
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Figure 36: Simulated partial maps extracted from S3DIS area 1 dataset.

5.2 Map Extraction

In this section we show the results of our map extraction approach. To evaluate
the results of our map extraction approach we compare the extracted topometric
partial maps to the ground truth global map. For each node’s geometry in a
topometric map we find its Jaccard index with every node in the global map’s
geometry. This gives us a weighted bipartite graph, one part being the nodes in
the partial map and the other being the nodes in the global map, with the weight
representing the Jaccard index between nodes’ geometry. We assign each node
in the partial map to a single node in the global map using linear assignment,
as is described in the map matching section. This gives us the correspondence
between nodes in the partial map and nodes in the global map.

Room segmentation After finding the correspondences between the partial
maps and the ground truth global map we compute the mean Jaccard index
of the correspondences. This metric is called Mean Intersection over Union
(MIoU) and it measures the quality of our room segmentation. Figure 37 shows
the MIoU for each of the partial maps in the S3DIS dataset. Partial maps where
map extraction has completely failed are indicated by a dash pattern.

Sparse voxel octree To measure the impact that the sparse voxel octree
data structure has on ball query performance we compare its computation time
for balls of different radii versus using a hash table to check each if each voxel
in the ball is occupied. The results of this measurement are shown in figure 38.

Result maps The results of our map extraction approach for area 1 from
the S3DIS dataset are plotted as top-down views in figure 39. Each room is
coloured using a unique random colour. The topological edges between rooms
are shown as solid black lines. Figure 40 shows a topometric map extracted
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Figure 37: Comparison of map extraction results for the different areas of the
S3DIS dataset.

from a multi-storey environment from the CSLAM dataset.

5.3 Map Matching

In this section we show the results of our map matching approach. Using the par-
tial map to global map node correspondences described in the previous section
we can distinguish incorrect matches from correct matches; a match between
two partial maps is correct if both nodes in the match correspond to the same
node in the global map. This is illustrated in figure 41.

Matching precision Figure 42 shows the accuracy of our map matching
approaches divided by descriptor type, the number of steps included in the
contextual embedding and whether hypothesis growing was used.

Matching results Figure 43 shows the matches between the partial maps of
area 1 of the S3DIS dataset, the same partial maps as in the previous sections.
Each match is given a unique random colour, with a room in the first partial
map having the same colour as its match in the second. These matches were
generated using hypothesis growing and a one step contextual embedding with
ShapeDNA descriptors

5.4 Map Fusion

In this section we show the results of our map merging approach.

Transformation error We evaluate the performance of our map merging
approach by finding the distance between every point in the target map to its
closest point in the result map. The results of this are shown in figure 47.
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Figure 38: Comparison of SVO radius search performance versus voxel hashing.

Figure 39: Topometric maps extracted from S3DIS area 1 dataset.

Relationship between descriptor and registration error Figure 44 shows
the relationship between the distance in feature space between two rooms and
their point-to-plane distance error after registration. This measures the degree
to which descriptor similarity predicts how well two rooms align. Both results
use two step context embedding.

RANSAC Figure 45 shows the number of optimal transformations that were
found by RANSAC within a range of iterations.

ICP Figure 46 shows the relationship between the number of iterations of the
iterative closest point algorithm and the point-to-plane error for a large number
of matches. Individual iterative closest point runs are coloured in grey, the mean
of all runs is coloured in red.
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Figure 40: Topometric map extracted from the lab environment from the
CSLAM dataset.

Fuse results Figure 48 shows the global map created by fusing the partial
maps of area 1 of the S3DIS dataset.
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Figure 41: Illustration of map matching results comparison to ground truth.
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Figure 42: Map matching results for the two descriptor types with different
levels of contextual embedding and hypothesis growing.

Figure 43: Identified matches between S3DIS area 1 partial maps using
ShapeDNA with one-step contextual embedding and hypothesis growing.
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Figure 45: Iteration in which RANSAC finds optimal global registration.
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Figure 46: Convergence of ICP algorithm over multiple iterations.
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Figure 48: Topometric map created from fusion of the two simulated partial
maps of area 1 of the S3DIS dataset.
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6 Discussion

In this section we will discuss the results of each of the steps of our methodology.

6.1 Map Extraction

In the previous section we showed the results of our map extraction approach.
In this section we will discuss these results. For the majority of tested envi-
ronments the resultant room segmentation closely matches the ground truth
room segmentation. This is especially the case in environments where rooms
have clear delineations; environments where rooms have walls between them
and are only connected by small openings. The results of our room segmen-
tation approach match less closely in environments where this is not the case.
Our approach often splits single rooms that are large in one or multiple di-
mensions, such as hallways or auditoriums, into multiple rooms. Additionally,
rooms where there are obstructions to the view from inside the room are also
split into multiple parts. The opposite also occurs, where two or more rooms
that are separate in the ground truth data are not separate in the room segmen-
tation. This mostly occurs when there are no obstructions between two adjacent
rooms. These effects do not necessarily indicate a failure of our approach. The
segmentation in the ground truth data is based on human intuition about what
separates a room from its neighbours. Although room segmentation based on
visibility clustering often closely matches this intuition it is inherently different
as it does not take into account the intended use of rooms. Where humans might
recognize that a long hallway or a large hall serves a single purpose, and should
therefore be considered as the same room, visibility clustering fails to take this
subjective interpretation of purpose into account. Nevertheless, the objective
visibility clustering approach comes remarkably close to the subjective human
understanding.

A common failure mode of our approach, which causes map extraction to
fail completely, is when the input point cloud data is of insufficient density to
construct a connected navigation graph. In this case, the voxels belonging to
the navigation graph are identified correctly but there are gaps between voxels.
This can be solved by increasing the size of the kernel used for constructing the
neighbourhood graph of the navigable voxels. However, this has the side effect
that voxels that are not actually navigable are added to the navigation graph.
The result is that low elevated surfaces with sloping sides, beds for example,
are added to the navigation graph. While this usually does not have a large
effect on map extraction in extreme cases it can also cause the ceiling to become
part of the navigation graph. This will usually cause significant errors in room
segmentation, as the view from above the ceiling towards the rest of the map is
often completely unobstructed.

Another way that room segmentation may fail is when stairs have very shal-
low treads and steep rises (respectively the horizontal and vertical part of its
steps). This causes the stick kernel approach to fail to label the stairs’ voxels as
navigable, which means it will not be included in the navigation graph. This is
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because the wide part of the stick kernel placed on one step may intersect with
the next step. If there are no other connections between two storeys then this
will cause one or multiple storeys to become disconnected from the navigation
graph, excluding it from the extracted topometric map. This problem can be
resolved by changing the dimensions of the stick kernel. However, this may in
turn cause other problems. Increasing the height of the thin part of the stick
kernel causes low elevated surfaces with sloping sides to be included in the nav-
igation graph, as described in the previous paragraph. Decreasing the radius of
the stick kernel’s wide part will include parts of the map that are not actually
navigable in the navigation graph. The problem can also be solved by increas-
ing the size of the kernel used to construct the navigable voxels’ neighbourhood
graph to force the stairs’ voxels to become connected even though some are
missing but this causes the same issues as described in the previous paragraph.

Figure 49: Diagram showing segmentation failure where a hallway and a room
meet.

Differences between the ground truth topological graph and the extracted
topological graph are often caused by differences in room segmentation. One
such case is when a hallway connected to a room is split into multiple rooms
around the opening towards the connected room. This will result in a triangular
subgraph between the two parts of the hallway and the connected room, which
in reality should just be a single edge between the hallway and the room.
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6.2 Map Matching

In this section we will discuss the results of our map matching approach.
In the results section we show a comparison between the two different de-

scriptor types. When looking at the baseline map matching precision for both
descriptors, meaning no contextual embedding and no hypothesis growing, the
ShapeDNA descriptor performs significantly better than LPDNet. However, the
accuracy is quite low for both descriptors. In the case of LPDNet this could
be caused by a difference between the training dataset and our dataset. Our
LPDNet model was trained on point clouds of outdoor environments which have
a significantly different appearance than those of indoor environments. Further-
more, each point cloud in the training data is captured from a single point while
our data is captured from multiple viewpoints.

We also measured the difference in map matching precision when using con-
textual embedding versus without. Both descriptors show an improvement in
precision when using one-step contextual embedding. LPDNet descriptors also
benefit from two-step contextual embedding but ShapeDNA descriptors do not.
In both cases two-step contextual embedding still performs better than no con-
textual embedding.

Based on our results we find that hypothesis growing has the potential to
significantly improve map matching performance. However, its performance
greatly depends on the quality of the descriptor. If the initial matching is
completely incorrect then hypothesis growing also fails. Even if some initial
matches are correct, the performance of hypothesis growing still depends on the
quality of the descriptor. An exception to this is when the initial match used to
grow a hypothesis is at the end of a linear chain of rooms (see figure 50). In this
case the growing step will succesfully match all rooms in the chain given that
the descriptor between two matches does not fall under the similarity threshold.

We also find that the transformation estimation step is able to constrain
region growing to give more reasonable results by preventing matches from being
made that would bring the existing matching out of alignment. Adjusting the
transformation difference threshold upwards allows the region growing to grow
further while increasing the risk that an incorrect match is made. In reverse,
adjusting it downwards makes region growing more restrained and decreases the
risk of incorrect matches. In the ideal case with no differences between partial
maps and their segmentation the threshold could be set to zero as any correct
match would align perfectly with the existing matches. However, incompleteness
of data and error between partial maps causes the centroids of two matching
rooms to be in different positions, introducing error into the alignment. From
this it follows that incompleteness, and to a lesser degree error, also has a
significant impact on the performance of hypothesis growing.
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Figure 50: Illustration of hypothesis growing in case of linear chain of rooms.

6.3 Map Fusion

Our results show that our approach to registration is able of finding a good
alignment between room matches. We find that there is a positive relationship
between the similarity of room descriptors and the final registration error. We
further find that many incorrect matches can be filtered out based on their
registration error. We also find that most RANSAC and ICP optima are found
within 200 and 15 iterations respectively.

Based on the results our approach for registration is able to succesfully find a
transformation between partial maps by clustering the transformations between
matches. It is able to do so across a wide range of overlaps between partial
maps. When no correct matches are identified map fusion fails, but this failure
is detectable by its relatively high registration error. Our results also show that
our approach is able to fuse the geometry of the partial maps with sufficient
accuracy to be able to re-extract a new topometric map from it.
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7 Conclusion

In our research, we tried to answer how the properties of 3D topometric maps
of indoor environments can be applied to the map merging problem. In this
section we will give our conclusion to each of our subquestions that together
will answer our main question.

Our first subquestion asked how to extract these topometric maps from point
clouds. We find that visibility clustering of synthetic scanning positions using
the MCL algorithm, combined with some post-processing steps, can be used for
room segmentation. We also find that plausible synthetic scanning positions
can be found by computing the local maxima of the environment’s navigation
graph’s horizontal distance field. We further find that this navigation graph
can be extracted for multi-storey environments by applying voxel convolution
using a stick kernel and that the room segmentation can be combined with
the navigation graph to create a topometric map. However, this approach is
currently sensitive to map quality, with failures occuring when the map of the
environment is incomplete.

Our second subquestion asked how to find matches between partial topomet-
ric maps to identify their overlapping areas. After comparing various descriptor
approaches we conclude that the spectral approach approach gives the best
results. We also find that embedding the context of a room into the room’s
descriptor improves matching performance. So does hypothesis growing in the
average case, but it may also cause map matching to fail completely. Based on
the above we further conclude that the topological aspect of topometric maps
can be used to increase map matching performance. Possible failure modes of
this approach include similar rooms which have similar contexts and differences
in segmentation between partial maps.

Our third subquestion asked how to fuse the partial topometric maps after
matches have been identified. We find that a combination of RANSAC based
global registration using FPFH features and gravity-aligned ICP local registra-
tion can succesfully identify the transformation between rooms. We also find
that DBSCAN can be used to cluster these transformations based on their sim-
ilarity and that a correct final transformation can be computed based on this
clustering.

With the above conclusions we can answer our main research question: par-
tial topometric maps can be extracted from partial point clouds by using visibil-
ity clustering and voxel convolution. Matches can be found using a combination
of spectral descriptors, contextual embedding and hypothesis growing. By using
these matches we can succesfully find the transformation between rooms, from
which the final transformation can be found by clustering them using DBSCAN.
Based on our conclusions we identify multiple avenues for future research, for
which the focus should lie on robust topometric map extraction, improved room
descriptors and non-rigid map fusion.
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8 Future Works

In this section we discuss our recommendations for future developments of the
three major components of this thesis: map extraction, map matching and map
fusion. We make these recommendations based on the achieved results and our
research during the creation of this thesis.

8.1 Map extraction

Room segmentation As mentioned before, the current room segmentation
approach differs from how humans identify rooms as it does not take into ac-
count the perceived purpose of the room. Taking both visibility and purpose
into account could lead to a segmentation that more closely matches one a hu-
man would perform, but more importantly, one that is more consistent between
partial maps and more robust to incompleteness and error. Assuming that a
computer can succesfully infer a room’s purpose based on its voxelized represen-
tation, large rooms such as hallways that are now arbitrarily divided based on
clustering could be merged into one whole. Inferring a room’s purpose is a sub-
jective task that would be very hard to solve using traditional techniques. To
achieve this, we suggest training a deep learning model that is suitable for seg-
mentation of voxel or point cloud representations on a manually labeled ground
truth dataset.

Robust topological graph extraction One of the major bottlenecks of our
approach is the extraction of the topological graph. If this step fails then map
extraction fails and map matching becomes impossible. Thus, in the future it
would be important to identify an approach to topological graph extraction that
is robust to the failure modes described in section 6.1. This would include a way
to interpolate the navigation graph to fill in any missing holes that cause it to
become disconnected. The main challenge here is differentiating between voxels
that should be present but are missing and voxels that should not be; making
the wrong choice could lead to worse results than no interpolation at all. For
example, a small gap in the floor can be either a piece of missing data or a gap
between walls. Solving this challenge could drastically improve the robustness
of our map extraction approach.

Hierarchical topological representation Our current approach to map
extraction results in a topometric map with a ’flat’ graph representing the en-
vironment’s topology. In reality, indoor environments can be considered as
complex multi-level hierarchies. For example, a building can be divided into
storeys which contain rooms which contain areas. As such, the structure of an
indoor environment can also be represented by a hierarchical graph. The extra
information contained in such a graph could be applied to improve feature em-
bedding performance. For example, two rooms are more similar if their storeys
are also similar than if they are not. Various techniques have been proposed in
the literature surrounding this subject but none so far are based on visibility
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clustering. We hypothesize that by applying hierarchical clustering to visibility
it is possible to extract a hierarchical structure of the environment. Whether
this is true and what the characteristics of the resultant map are could be a
valuable topic of research. A hierarchical topological representation could allow
or require different methods for hypothesis growing and map fusion. For the
former, work in the area of hierarchical graph matching could be applied. The
latter is, to the knowledge of the author, still unresearched.

Volumetric representation Our current approach only represents the sur-
face of the geometry of the environment. This is because 3D scanners only
capture that part of the environment. In reality, indoor environments are en-
closed volumes. A possible improvement to our approach would be to describe
the environment’s geometry volumetrically, where each occupied voxel repre-
sents a volume within the building that is not obstructed. This would require a
method to extract the volume from the surface geometry. Various research into
this topic exists but they fail when parts of the ceiling or floor are missing from
the map, which is often the case. They also make assumptions such as constant
storey height and only horizontal floors, which are often not the case in reality.
Using a volumetric representation of the environment has a number of benefits.
Navigation would no longer only be possible on the floor but throughout the
entire volume. In reality most scanners use the floor to navigate but the advent
of drones that operate indoors might change this. Another avenue of research
that moving to a volumetric approach would require would concern efficiently
storing and processing the exponentially larger amount of data used in doing
so. While this subject has been considered in this research by using sparse voxel
octrees, variations on this or other data structures might be more effective. For
example, implementations of sparse voxel octrees for GPUs exist.

8.2 Map Matching

Deep learning descriptors Most current research points to deep learning as
the current state of the art for place recognition. This does not conform to the
results of our research. Future research could look into applying different model
architectures and compare their performance. Alternatively, if it is concluded
that the problem is not related to model architecture then an existing model
could be trained on manually labelled indoor data.

Advanced spectral shape descriptors ShapeDNA is a relatively early and
simple method for spectral feature embedding. More recent research has sug-
gested alternatively approaches that are purported to have better performance
for incomplete geometry. These approaches have steep hardware requirements
which were not available for this thesis. Future research should include these
approaches and look into their computational feasibility.
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Graph features Currently our descriptors are based on aggegrating the geo-
metric descriptors within a neighbourhood. A more complete descriptor could
also include the node’s graph properties, such as its degree or centrality. Future
research should look into which graph features are best used for this and whether
the topology is consistent enough between partial maps to make it useful.

Multiway matching In our approach, every node in one partial map is
matched to at most one node in the other partial map. In practice the seg-
mentation is not perfectly equal between partial maps. This leads to cases
where one node should reasonably be matched with multiple nodes. This would
greatly complicate both map matching and fusion but could lead to better re-
sults. Future research should investigate methods for multi-node map matching
and its effect on map matching performance.

8.3 Map Fusion

Non-rigid registration Our approach assumes that the partial maps are
only transformed rigidly. While this is a reasonable assumption to a dregree, it
doesn’t always hold for real-world data. Measurement error and error introduced
during data processing can lead to deformations between partial maps that
persist after rigid registration. These deformations could be corrected during
map merging by finding a non-rigid registration between the partial maps, which
deforms the source partial map in such a way that every matched room overlaps
optimally. Future research should look into methods for estimating and applying
non-rigid transformations and their effect on map fusion performance.

Global registration Our current approach uses FPFH features to match
points during RANSAC global registration. This choice was made because an
implementation was readily available and their computation is fast. Future re-
search should try different approaches for local feature embedding, such as deep
learning or spectral methods. A local feature with sufficient quality could make
the local registration step completely unnecessary because enough correspon-
dences are known between partial maps to register them directly.
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9 Reflection

In this section I will give a reflection of my process in creating this thesis and
the final results. I started working on this thesis in the summer of 2021. For the
first few months the goal of the thesis wasn’t entirely clear. I knew I wanted to
research map merging but didn’t know in which context I would do so. I also
felt that I had trouble aligning my view of what I wanted to research with those
of my supervisors. This might have been made worse by the fact that I had
three supervisors with significantly different perspectives. My own frustration
with my slow progress demotivated me, alhtough not to the point of not getting
any work done. This problem continued until shortly before my P2. Although
at that point my methodology was not nearly defined yet I knew what I wanted
to research. Unfortunately, this did not leave me with enough time to polish my
P1 report to my own satisfaction. I was especially dissatisfied with the maths
part of the report because I had very little experience with this. Nevertheless,
my P1 was well received by my supervisors, although they did express their
concerns with the amount of work that needed to be done. I noted that the
amount of work was large, but not impossible for me to complete.

Between my P2 and P3 I mostly worked on map extraction component. The
good results achieved here motivated me to make a large amount of progress
during this time. However, at this point my approach to map matching and
map fusion were still unclear to me. In hindsight, I should have defined my
entire methodology before implementing any parts. The problem with that is
that I enjoy programming much more than writing or researching, and I was
unable to resist the temptation to work on what I enjoy instead of what needed
to be done. I completed my work on the map extraction component before my
P3, which was well received.

After my P3 I needed to start working on the map matching and map fu-
sion components. In contract to my work on map extraction, progress on map
matching was very slow. Although my initial idea for my methodology wasn’t
far off from my final one, I had a lot of trouble getting a working implemen-
tation. Approaches that in my mind should work, in fact did not. As my P4
date approached I still had not finished the map matching component, let alone
the map fusion component. Coincidentally, about a month before my P4 date
I was told that I did not have the required ECTS to participate, and that I
would have to wait until next semester to do my P4. This gave me some relief,
as I now had the time to properly finish what I started. Between my initial
P4 date and my actual one I mostly worked on getting map matching and map
fusion working, which I did eventually. Unfortunately, this did not leave me
with much time to finish this report. I worked hard to get everything written
down, which I feel like I succeeded at, but there were still a lot of things that I
would have liked to add. My P4 was again well received, with most comments
being about mathematical notation, which I have fixed for my P5 document.
Overall, I am satisfied with my results but not with my process. I took on too
much work to finish in the allotted time and often left parts that I did not enjoy
to the last moment. Nevertheless, I feel I have learned from the experience the
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things that I wanted to, which for me was the ultimate goal of this project. I
am also happy with the contribution of my supervisors, who had to spend a lot
of time listening to me talk about my various ideas. Although their multitude
of perspectives at some points led to frustration on my part, I feel that in the
end it contributed positively to my process and results.

66



References

Amanatides, J., & Woo, A. (1987). A Fast Voxel Traversal Algorithm for Ray
Tracing. , 6.

Ambrus, R., Claici, S., & Wendt, A. (2017, April). Automatic
Room Segmentation From Unstructured 3-D Data of Indoor Environ-
ments. IEEE Robotics and Automation Letters, 2 (2), 749–756. Retrieved
2022-09-29, from http://ieeexplore.ieee.org/document/7814251/ doi:
10.1109/LRA.2017.2651939

Andersone. (2019, August). Heterogeneous Map Merging: State
of the Art. Robotics, 8 (3), 74. Retrieved 2021-07-16, from
https://www.mdpi.com/2218-6581/8/3/74 doi: 10.3390/robotics8030074

Aoki, Y., Goforth, H., Srivatsan, R. A., & Lucey, S. (2019). PointNetLK: Robust
& Efficient Point Cloud Registration Using PointNet. In (pp. 7163–7172).

Arandjelovic, R., Gronat, P., Torii, A., Pajdla, T., & Sivic, J. (2016). NetVLAD:
CNN Architecture for Weakly Supervised Place Recognition. In (pp. 5297–
5307).

Arandjelovic, R., & Zisserman, A. (2013). All About VLAD. In (pp. 1578–
1585).

Armeni, I., Sener, O., Zamir, A. R., Jiang, H., Brilakis, I., Fischer, M., &
Savarese, S. (2016, June). 3D Semantic Parsing of Large-Scale Indoor
Spaces. In 2016 IEEE Conference on Computer Vision and Pattern Recog-
nition (CVPR) (pp. 1534–1543). Las Vegas, NV, USA: IEEE. Retrieved
2022-09-30, from http://ieeexplore.ieee.org/document/7780539/ doi:
10.1109/CVPR.2016.170

Bonanni, T. M., Della Corte, B., & Grisetti, G. (2017, April).
3-D Map Merging on Pose Graphs. IEEE Robotics and Au-
tomation Letters, 2 (2), 1031–1038. Retrieved 2021-11-09,
from https://ieeexplore.ieee.org/document/7822998/ doi:
10.1109/LRA.2017.2655139

Bonnassie, A., Peyrin, F., & Attali, D. (2003, August). A new method
for analyzing local shape in three-dimensional images based on medial axis
transformation. IEEE Transactions on Systems, Man, and Cybernetics,
Part B (Cybernetics), 33 (4), 700–705. (Conference Name: IEEE Trans-
actions on Systems, Man, and Cybernetics, Part B (Cybernetics)) doi:
10.1109/TSMCB.2003.814298

Bormann, R., Jordan, F., Li, W., Hampp, J., & Hagele, M. (2016,
May). Room segmentation: Survey, implementation, and analysis.
In 2016 IEEE International Conference on Robotics and Automation

67



(ICRA) (pp. 1019–1026). Stockholm, Sweden: IEEE. Retrieved 2022-
02-08, from https://ieeexplore.ieee.org/document/7487234/ doi:
10.1109/ICRA.2016.7487234

Bot, F. J., Nourian, P., & Verbree, E. (2019, June). A Graph-Matching Ap-
proach To Indoor Localization Using A Mobile Device And A Reference BIM.
The International Archives of the Photogrammetry, Remote Sensing and Spa-
tial Information Sciences, XLII-2/W13 , 761–767. Retrieved 2021-06-18, from
https://www.int-arch-photogramm-remote-sens-spatial-inf-sci.net/XLII-2-W13/761/2019/

doi: 10.5194/isprs-archives-XLII-2-W13-761-2019

Bronstein, M. M., & Kokkinos, I. (2010, June). Scale-invariant heat kernel
signatures for non-rigid shape recognition. In 2010 IEEE Computer Society
Conference on Computer Vision and Pattern Recognition (pp. 1704–1711).
(ISSN: 1063-6919) doi: 10.1109/CVPR.2010.5539838

Chen, J., & Clarke, K. C. (2020, March). Indoor cartography. Cartogra-
phy and Geographic Information Science, 47 (2), 95–109. Retrieved 2022-09-
29, from https://doi.org/10.1080/15230406.2019.1619482 (Publisher:
Taylor & Francis eprint: https://doi.org/10.1080/15230406.2019.1619482)
doi: 10.1080/15230406.2019.1619482
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