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Abstract

Over the years, the pace at which data is generated keeps on increasing. As a
consequence, the data itself no longer holds the highest value, but rather the
information and context the data captures are. This principle also holds in the
3D environment modelling scene, as accurately depicting an environment holds
more value than the number of models there are of it.

One of the major problems in 3D environments, especially when the environ-
ment represents a building, is the presence of glass. A lot of the data captured
to model these 3D environments is captured using LiDAR laser scanning. This
is where glass becomes a problem as glass is almost completely transparent to
laser beams at the typical wavelengths used when using LiDAR laser scanning.
As a consequence, glass can lead to problems with navigational routes as it is
invisible in the environment but still blocks the path. It can also create false
spaces in the captured environment as it can also partially act as a mirror re-
flecting the laser beam and showing these reflections in space as if they were
captured in a straight line.

Alternative manners for capturing and identifying glass in environments cap-
tured with laser have been created over the years, but they often need a ded-
icated set-up, expensive equipment or a lot of data. These solutions are not
always feasible for users of point cloud data.

Therefore, in this thesis a focus is put on how can a low entry solution be
created for this problem, which leads to the main research question: How can
the location of glass be deduced using only information acquired from
3D point clouds and a reference position?

To answer this question, this thesis focuses on the deduction of the locations
of glass windows in the provided input. To find these a projection from 3D data
to 2D is performed. In 2D image space, contours are then detected that match
the criteria of window frames. These contours are then used to segregate parts
of the 3D point cloud that should contain the window detected in the projection.
After clustering these parts and the best matching cluster is deduced to be a
window.

In this thesis, it is shown that using the proposed methodology it is possible
to deduce the location of glass in a LiDAR point cloud using only an additional
reference position, but there are some flaws with the simplified input of the
method.
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Chapter 1

Introduction

Data keeps being generated at a faster and faster pace, due to all kinds of tech-
nological advances. With it, however, the constantly growing body of data itself
is not the property with the highest value anymore. Rather, the information
and context the data captures are what people are most interested in (Wang
et al., 2015).

This principle also holds within the 3D environment modelling scene, as hav-
ing an accurate representation of what the data represents is often more valuable
than having a large number of points with features describing them. The en-
vironments modelled today can vary a lot from large buildings or complexes
like hospitals, shopping centres and airports to outdoor environments that are
harder to model with satellite data like tunnels and caves. These models can
then be used in navigation tools in larger areas where other navigation tools
such as GNSS would fail (Staats et al., 2017), planning evacuation routes or
managing assets. However, such models are not always kept up-to-date dimin-
ishing the potential of their uses the more time progresses (Nikoohemat et al.,
2019).

One of the most promising ways to generate these 3D environment models is
from LiDAR point clouds (Zou and Sester, 2021) generated by laser scanning. In
recent years there have been numerous improvements in the field of Mobile Laser
Scanning (MLS), which make it possible to dynamically scan large complexes
in just a few hours by traversing the environments themselves with a carryable
scanner (Lehtola et al., 2017). With some more time Terrestrial Laser Scanning
(TLS) can also be used by making several static scans at different locations and
joining these together using, for instance, the methodology presented in (Zou
and Sester, 2021). These solutions produce point clouds and images as output
in a time-efficient manner, which capture the current status of the building
(Nikoohemat et al., 2019), making it easier to keep the vital 3D environments
up to date.

These 3D environment models are, however, more than likely incomplete.
LiDAR point clouds are a great medium to convey 3D spatial information, which
can be time-efficient using the Mobile Laser Scanning approach or accurate
using a more traditional although slower Terrestrial Laser Scanning approach.
They are, however, still held back by the physical properties of their capturing
medium, namely laser, and its interaction with glass which is the focus of this
thesis.
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1.1 Problem statement
The capturing medium of laser brings along some potential problems when
creating point clouds that accurately model 3D environments. Glass is one
of the root causes of these problems as it is a very unique material in nature,
having the property that light can go through it while it can also reflect it and
absorb it ((Yang and Wang, 2011) and (Koch et al., 2016)). This interaction
with light and thus laser has as a consequence that it generates inaccurate data
by creating artefacts due to reflecting the laser beam. It also creates noise as it
reduces the laser beam’s intensity and creates varying point densities with faulty
points intermingled with true points. Furthermore, it inaccurately introduces
areas in the space that might not exist or would not be found in the scan should
glass not have been present, which can also provide the illusion of navigable
space where there was actually a blockade of glass. Such faulty perception of
the scene can lead to problems when using the scene when planning navigational
routes through the scene and could potentially lead to dangers if these routes
are used for evacuating people.

The above-mentioned downsides are only a few of the possible ways that
glass can interfere with LiDAR scans, so limited perception of glass can be
a real hazard in accurately representing a 3D environment (Yang and Wang,
2011), but at the very least knowing that glass is present in certain locations
will already help with such a representation.

Some of the other famous causes of problems with representation using 3D
environments are inaccurate data, missing areas in the point cloud, low density
of points and sensor noise (Zou and Sester, 2021). Some of these causes are
well-known downsides of TLS and MLS like varying point densities and missing
areas due to occlusion (Weinmann et al., 2013), where inaccurate data and
sensor noise are part of measuring with sensors themselves. Although these
problems are present and will be covered partially when relevant in the thesis,
they are not the focus of the thesis and as such are mostly out-of-scope.

1.2 Research question
To solve the problem of deducing the location of glass in LiDAR point clouds
this thesis aims to answer the following research question:

How can the location of glass be deduced using only information
acquired from 3D point clouds and a reference position?

To answer this question and achieve the proper results the following research
questions will also have to be answered:

• What properties are required from the scanning medium to be able to deduce
glass?

• How reliable is the deduction of the location of glass from 3D point cloud
data within the chosen research scope?

• How can the deduction of glass be improved using the characteristics of
regular windows?
(A regular window in this thesis is defined as a rectangular window that
is placed perpendicular to the floor.)
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• What are the advantages and disadvantages of trying to deduce glass in a
1D, 2D and 3D view of the scene?

• To what extent can points behind glass be used to improve the deduction
of glass candidates?

1.3 Research goal and scope
A lot of the research performed on glass detection and deduction when using
point clouds is done in the field of robotics (see Chapter 2). To tackle these
problems often extra information or steps are required as is explained in the
work of (Ye et al., 2015). Here solutions ranging from taping windows to ignore
the glass in the scene to using different sensors, like sonar, to enhance the data
are presented. These methods are also not always suited for the 3D scene as
when using SLAM algorithms, glass windows can be detected by robots but
only in 2D as the SLAM is used to navigate the robot and not to model a 3D
environment ((Yang and Wang, 2011) and (Koch et al., 2016)). Next to this,
there is also a dependency on creating a model on the fly whereas there are
many existing datasets that would increase in value should the presence of glass
be shown in them.

What this thesis strives to deliver is a solution that applies to a minimalist
approach of point cloud analysis. The proposed methodology will work on the
input of a single 3D point cloud that by definition stores the XYZ coordinates
of points (Waldhauser et al., 2014) and a reference position of the scanner at the
moment of capturing the data. This means that an initial deduction of glass can
be performed on any 3D point cloud, enhancing its semantic value by adding
the presence of a previously unknown material.

The deduction of glass in itself is quite a broad topic, as it comes in all
kinds of shapes and forms, and there is a lot of assumptions that can be made
around it, e.g. where to look for it in space and under which angle the glass is
captured with relation to the ground (for more information on the challenges
with glass see §3.1). As the goal of this thesis is to perform glass deduction
using a minimalist approach where only a basic point cloud and a location in it
are used, the scope of glass deduction of this thesis is limited to the deduction
of the location of regular windows as defined in the subquestions.

1.4 Reading Guide
This thesis discusses the following topics in separate chapters. Chapter 2 shows
related work that has been performed by others about different ways in which
glass can be deduced. Chapter 3 then covers the theoretical background needed
to fully understand the thesis. Chapter 4 shows the proposed methodology by
first giving an overview of the total method and afterwards explaining each step
more in-depth. Chapter 5 then shows the results acquired in this thesis where
the methodology is applied to a use case. Chapter 6 then provides a conclusion
with the answers to the research questions and a discussion. Finally, Chapter 7
discusses the future potential of the work in this thesis.
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Chapter 2

Related work

As previously indicated, the presence of glass has been a prevalent problem when
capturing any kind of environment using LiDAR data. The fact is, however, that
in indoor environments glass is very prevalent. It comes in the form of windows,
doors, separation walls and so on, and fulfils tasks like sound isolation and
letting more light into the environment. Therefore a lot of work has already
been performed to accurately capture the indoor environment in such a way to
minimalize the influence of glass or explicitly work around it, with the end goal
of getting the best overview of the scene. In this thesis the focus lies on generic
LiDAR point clouds having only X, Y and Z coordinates to make it applicable to
as much data as possible. In this section, a broader overview of related work into
glass deduction is shown from previous research where all kinds of techniques
have been performed to better deduce the presence of glass, work around glass
or enhance LiDAR point clouds as a whole.

First, an overview is given for techniques that can deduce the presence of
glass but do not necessarily use the more conventional LiDAR approaches, to
show that different data can be used to deal with the presence of glass. Then
work on mirror/specular reflection detectors is shown, which uses LiDAR and
logic to deduce the location and type of the material. This is followed by work
on enhancing point clouds themselves to get an even better representation of
the scene. Finally, a conclusion on the related work is presented.

2.1 Different techniques for deducing the
location of glass

A lot of different techniques for deducing the location of glass have been pre-
sented over the years. In the related work section of Ye et al. (2015), a great
initial overview is given of such works. They split the topic of reconstruct-
ing transparent and refractive objects, like glass, into 4 major categories being
Physical manipulation, Active illumination, Passive methods and Sensor fusion.
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1. Physical manipulation: The phenomenon of physical manipulation is
possibly one of the more straightforward approaches that can be taken
when trying to identify glass. It involves changing the properties of the
target surface in the real world to improve their detectability, which in the
case of glass could involve putting paint on the surface, applying window
foil, placing a thin cardboard layer or using a spray to coat the surface
which would be detectable with the scanner. While this approach may
be valid it does have its downsides as physical manipulation is not always
possible or desired, costs time and resources, and also cuts off data that
was originally in view by completely blocking the signal at the glass sur-
face. This last downside can be circumvented by making two scans, which
can then be overlapped and points that are found in the scan with physi-
cal manipulation but are not in the scan without can then be labelled as
glass, but this once again costs a lot of time and work.

Figure 2.1: Example of physical manipulation. Black window foil is used to cover the glass
which makes it able to be detected by the laser beams. 1

2. Active illumination: These methods involve illuminating the glass sur-
face with special illumination methods, such as structured light or coded
illumination. By analyzing the distortions in the patterns these methods
output, the location of the distortion source (i.e. glass) can be retrieved.
The main downside active illumination approaches have is that they are of-
ten very dedicated in setup. This means that a dedicated setup is needed
to get the results for specific properties, which hinder the scalability of
these approaches and requires prior knowledge of the scene that would be
captured. Even if these conditions can all be met, it can still be the case
that scanning larger buildings will prove to be rather difficult as active
illumination methods tend to have a high processing load.

1Acquired from https://www.amazon.nl/Rhodesy-Raamfolie-zelfklevend-anti-uv-hitte-slaapkamer/
dp/B07RHYW1SN/ref=asc_df_B07RHYW1SN/ (11-01-2021)
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Figure 2.2: Example of Active Illumination. Structured light with a striped pattern is
projected onto the glass. By registering the distortions of the pattern the location of the
distortion source, in this case the drinking glass, can be deduced. 2

3. Passive methods: Passive methods can directly generate 3D reconstruc-
tions from captured imagery or other data, without needing an active in-
teraction with the scene. For example, mirror shapes can be reconstructed
by observing the distortions of known patterns inside the scene, provided
that the mirrors can refract light significantly or transparent materials can
be detected by comparing different types of images from a depth camera.
An upside of such methods is that no extra actions have to be taken to
get a result, making them cost-efficient. A downside, however, is that
prior knowledge of the scene is needed to calculate the results and that
the scene needs to be suited for this kind of approach. This is because
these methods are dependent on the condition of the scene and available
scanners, sometimes making them less flexible for different environments.

Figure 2.3: Example of a Passive Method. In the figure, an RGB image created with a
Kinect is shown on the left and a depth image is shown on the right. As can be seen, the more
transparent materials like glass are quite hard to distinguish in the RGB image, whereas they
are a lot more noticeable in the depth image. Using these differences in the data the presence
of glass can be deduced. Acquired from Lysenkov et al. (2013).

2Acquired from https://www.stemmer-imaging.com/media/uploads/sis/ST/
STEMMER-IMAGING-EN-Inspecting-transparent-objects.pdf (11-01-2021)

17

https://www.stemmer-imaging.com/media/uploads/sis/ST/STEMMER-IMAGING-EN-Inspecting-transparent-objects.pdf
https://www.stemmer-imaging.com/media/uploads/sis/ST/STEMMER-IMAGING-EN-Inspecting-transparent-objects.pdf


4. Sensor fusion: The last of the categories is sensor fusion which quite
literally means combining multiple sensors, to generate a better result.
Lots of different sensors have been combined with LiDAR data over the
last few years to enhance it. For example in their work Ye et al. (2015)
look into the addition of an ultrasonic sensor to a Microsoft Kinect camera
to give the depth camera an additional reference to compare with (e.g.
sonar) which is capable of seeing glass. Other researchers have performed
similar approaches of combining LiDAR data with Sonar data to navigate
robots indoors in an office building with glass walls (Wei et al., 2018). By
adding sonar information to enhance the original LiDAR data, transparent
objects can be identified in the scene to counteract one of the weaknesses
of just using LiDAR data. A downside of this approach is, however, the
cost of an additional sensor and the need to make software that is capable
of joining the datasets and deciding which is the right one.

Figure 2.4: Example of Sensor Fusion. Here a fusion of a Microsoft Kinect camera and an
ultrasonic sensor is shown. The fusion is performed to enhance the color and depth data of the
Kinect with the Sonar information of the ultrasonic sensor. Acquired from Ye et al. (2015).

Aside from trying to reconstruct transparent and refractive objects one can
also try to deduce glass by looking at the data that is missing from the scene
instead. Over the years methodological approaches for deducing the presence
of glass windows have been exploiting the property of glass appearing as a hole
in 3D point clouds to deduce the location of glass. In the work of Kaniouras
et al. (2019) a method is presented for detecting holes in point cloud surfaces.
Once these holes were found, pattern and shape analysis is applied. Should
a repeating pattern for similar shapes be found, then this would indicate that
these are windows, turning a lack of information into a deduction.

A somewhat similar approach was performed by Tuttas and Stilla (2011)
but instead of inspecting holes in facades, they assumed the repeating structure
of windows in these facades and looked at the points behind the facade instead.
These points captured indoor surfaces behind the transparent windows creating
a pattern of data behind holes, which allowed for deducing the location of other
windows by filling in the missing steps in the pattern. This made their approach
more robust to windows with closed curtains and sparse input data, with the
trade-off of being more dependent on the structure of the buildings itself, as a
pattern is needed for the approach to work.
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The final technique discussed in this section uses the property of glass to
transmit energy or heat. As glass transmits heat into or out of buildings, a
fluctuation in temperature in the building facades can often be seen around
windows. This property of windows and other openings in facades was used by
Jarząbek-Rychard et al. (2020) to deduce the presence of windows as the spots
where the most heat left the building. Using a supervised machine learning
approach these spots in the thermal images were found and afterwards classified
accordingly, showing that thermal information can also be used for the deduction
of glass windows.

2.2 Mirror / Specular Reflection Detectors
In the previous section work on deducing glass has been presented that does not
use conventional LiDAR as its way of collecting points, but research has been
performed that shows the possibility of deducing specular reflective materials
like mirrors and glass before using LiDAR.

In the work of Yang and Wang (2011), a practical application of the previ-
ously mentioned sensor fusion has been performed, between LiDAR and Sonar.
The goal of their work was to find mirrors and glass in the scene to allow for
proper robot navigation in an environment, as these can lead to false assump-
tions made by the robot. They found that simple sensor fusion is not enough to
avoid these false assumptions as artefacts of reflections were left in the scene and
labelled as proper navigable space. To circumvent this they assumed all gaps
found in the data to be reflective surfaces, like glass panes or mirrors, thereby
removing the need for sensor fusion with Sonar. They then tested points cap-
tured behind these gaps by checking if a reflection is present in the mirrored
space by applying mirror symmetry to the gaps in the scene. If the probability
of a reflection is high enough the gap is identified as a mirror and if not the
gap is identified as glass, showing the possibility of glass deduction using only
LiDAR and logic.

In the work of Koch et al. (2016) this feat was achieved using a slightly dif-
ferent approach. In their work, they used a Hokuyo 30LX-EW multi-echo laser
scanner, which is a special type of LiDAR scanner that produces multiple echoes
per point. This makes it possible to compare results for the captured point to
see if any differences are found in-between echoes, as differences indicate surface
reflection properties. This means that for a non-reflective surface the differences
are negligible but for reflective surfaces like glass, mirrors and metallic surfaces,
there is a notable difference in returns when the reflective surface is captured
at a perpendicular enough angle with the laser beam. Using this property and
following their methodology, it is then possible to deduce mirrors, glass and
other specular objects in the scene.
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2.3 Enhancing LiDAR point clouds
Now that it has been shown that glass deduction is possible there is still another
limiting factor for this field of work, namely the dependence on input data. Point
clouds are known for having imperfections in them especially after only a single
scan. These imperfections can be caused by all sorts of influences like noise in
data, moving artefacts during scanning, occlusion and other poor conditions.
To circumvent these downsides Zou and Sester (2021) have created a method to
refine point clouds by adding new captures of the scene and taking the strong
suits of each separate scan. This is done by creating a hierarchical model of the
building to save detected features, like windows, doors, balconies and occlusions,
so the point cloud is represented in semantic groups. In doing so the semantics of
the scene can be incrementally improved by merging in new perspectives, scans
in different conditions and scans with fewer or different occlusions to fill in each
other’s gaps. It can also be used to stitch together datasets, provided there is
enough overlap, enlarging the total represented work. Using these techniques,
processing data of varying quality and captured from different positions can be
used to better complete the overview of the whole scene. This could also make
Terrestrial Laser Scanning capable of capturing a complete scene by making
scans in multiple positions in the room, so occlusions can be filled in with other
data.

2.4 Conclusion of related work
This chapter started by giving broader insight into what kind of techniques are
available for deducing the location of glass while showing some of their upsides
and downsides. The most notable reoccurring downside of these methods is that
they often cost a lot more time and money to perform, which is not accessible
for everyone, hence this leaves more to be desired. Then methods that use only
LiDAR have been presented to show that there is potential in deducing the
location of glass with only a LiDAR point cloud as data. These experiments
have been done using the SLAM methodology, to create a 2D map a robot
could use to navigate the terrain. For 3D models however this leaves more to be
desired as 3D spaces are often more complex. What can be seen from the related
work is that a lot of different approaches have been tested, often bringing more
materials or sensors that need to be managed with it. This is why this thesis
introduces a method of scaling up the deduction of windows to 3D using similar
concepts to deduce the location of glass as shown in the work before. For this
thesis TLS was used to capture the scene, hence the introduction of work on
how to stitch point clouds together while enhancing them in the process. The
method can also be classified as a passive method as no active additional actions
need to be performed in the scanning process as a point cloud and a reference
position for the scanner are all the input required.
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Chapter 3

Theoretical background

In this chapter concepts used in the Methodology (see Chapter 4) are explained.
These concepts are things used in the Methodology that need to be understood
to fully grasp the Methodology itself. Some of the concepts might be considered
general knowledge for someone in the Geo-ICT scene but for a full overview
of the work performed in this thesis they are included here. The concepts
covered in this chapter are The properties of glass, 3D to 2D projection, Edge
detection, CLAHE, Morphological operations, Contour detection, the Douglas-
Peucker algorithm, Clustering, SVD.

3.1 Properties of glass

This thesis is focused on deducing the location of glass in LiDAR point clouds.
To do this the fundamentals of the interaction between glass and laser need to
be known. Laser scanning is done with light at particular wavelengths to get
the best results, taking into account all kinds of factors and physical limitations,
such as reflectivity, absorption by surroundings and, most importantly, prevent-
ing the possibility of harm to human eyes. The human eye is capable of seeing
all so-called "Visible light" which means light of wavelengths ranging from 380
to 780 nanometers (nm) (Schott AG, 2020).

To ensure that the Scanning process is not annoying or even harmful for
humans, most LiDAR scanners tend to scan with a wavelength that is in the
Near-Infrared (NIR) region of the colour spectrum with wavelengths between
800 nm and 2500 nm. Often the smaller wavelengths in this range are taken as
the larger the wavelength the more energy the light has, which can still cause
damage to human eyes over time. Specifically, light with a wavelength above
1400 nm can be absorbed by the cornea and lens of the eye after which it is
converted to heat which can cause damage to the eyes (las), so even though
some wavelengths higher than 1400 nm are still allowed to be used via the FDA
eye-safety standard IEC 60825 (for instance some scanners from Velodyne are
capable of measuring using 1550 nm wavelengths (VELODYNE LIDAR, 2018))
it is safer and thus more common to use lower wavelengths.

This choice, although very understandable, is the source of not being able
to detect certain materials when using LiDAR, as these materials are difficult
to identify using light at these wavelengths. Glass is one of these materials and
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has a fairly unique property in that it is transparent for all visible light and a
large part of the infrared spectrum. How the type of glass exactly behaves does
depend on the type of glass and its condition (for example damaged glass has a
rougher surface making it more likely to reflect a bit of the laser beam).

To illustrate how glass and LiDAR interact with each other in general, fig-
ure 3.1 presents the internal transmittance of the glass type SCHOTT N-BK7,
where a transmittance of 100% can be seen for both visible light and most of the
NIR spectrum. Higher and lower wavelengths have lower transmittance making
them better suited to capture the glass. They do however violate previously
mentioned safety constraints, so are not preferred in practice as LiDAR scans
are not guaranteed to be performed in areas without people.

Figure 3.1: The internal transmittence of light in a 10mm thick SCHOTT N-BK7 glass
plate. The blue line indicates the transmittance to waves with the wavelength on the x-axis
and the dotted lines show the extent of the visible light spectrum. Acquired from (Schott AG,
2020)

Somewhat contrarily to what was stated above an internal transmittance of
100% does not necessarily mean that the material is incapable of being registered
by the laser beam. Depending on the condition of the glass, angle with which
the laser beam hits the glass, illumination of other kinds and so on, parts of
the laser beam can be reflected directly, be reflected under an angle or even be
absorbed by the glass ((Yang and Wang, 2011) and (Koch et al., 2016)). For
most commonly used wavelengths in LiDAR scanners multiple options occur,
where most of the light is transmitted through the glass, a small portion is
reflected and an even smaller portion is absorbed.

In figure 3.2 drawn representation is given of a return that is directly reflected
from the glass surface. This return has a significantly lower intensity than the
original laser due to the absorbance and the transmittance of the laser beam.
This return can only happen when the laser beam is fired at an angle close to
being perpendicular to the glass surface as otherwise, the return would not find
its way back to the sensor in the scanner.
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Figure 3.2: The laser beam partially gets reflected directly back to the scanner from the
glass pane resulting in a point on the glass pane itself.

Returns can also come from a reflection that comes from another object than
the glass which is shown in figure 3.3. The laser beam in this case bounces from
the glass pane with a specular reflection to the disco ball, which would reflect
it directly back to the scanner or reflect it via the mirror to the scanner, losing
intensity with each reflection. When the laser beam has returned to the scanner
it however only measures how long the laser was on its way, assuming it moved
in a straight line. This, in the end, results in a false second disco ball forming
behind the glass. The point registered in the result will also not be positioned
at the red circle on the right in figure 3.3 but the blue circle on the left.

Figure 3.3: The laser beam (in red) partially gets reflected by the glass and hits a disco ball.
This reflects the laser beam to the scanner via the window or directly back. The scanner,
however, measures only the time the laser spent before returning, assuming that the blue path
is taken when reflecting on the glass falsely creating a second disco ball behind the glass.
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The next option for acquiring returns is when the laser beam is simply
transmitted by the glass and this is also the one with the least amount of
intensity is lost as most of the laser goes through glass without any issues. The
result as shown in figure 3.4 is a point as expected on the object behind the
glass pane almost as if the glass was not even there.

Figure 3.4: The laser beam goes through the glass with almost no interference and registers
a point location on the chair behind it without problems.

Finally, the phenomenon of absorbance of the laser beam by glass is less
trivially displayed as there is no return to indicate this behaviour making it
much harder to inspect in the data.

Most of the information presented in this section has been theoretical, so
to show that these phenomena happen in actual captured data, figure 3.5 and
figure 3.6 show some parts of the scene used in Chapter 5 where points have
been found directly on glass and reflection artefacts are created.
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Figure 3.5: Example from the test scene used in Chapter 5 where points are captured directly
on glass, here being the blue and grey points in the right window.

Figure 3.6: Example from the test scene used in Chapter 5 where points are shown that
are direct reflections of the actual scene, which in this case are easily identifiable due to the
reduced color information creating mostly white points.
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3.2 3D to 2D projection
One of the steps taken in the Methodology performed in the thesis involves
converting 3D Point Cloud space into 2D image space. To do this a projection
is used similar to the Mercator projection. The Mercator projection is one of the
most well-known projections in the world, often used in for instance world maps
and Atlases (Vis, 2018). It is a Cylindrical projection, meaning that the Earth
(or in the thesis’ case the point cloud) is projected onto a cylinder, which is then
cut open and rolled out to get a rectangular overview of the object of interest
(Vis, 2018). The benefit of this projection is that angles between projected
objects stay similar. This is because the lines denoting the projection of the
objects are scaled similarly both horizontally and vertically. The downside,
however, is that the areas of the projected objects further from the middle of
the cylinder get inflated, creating a large difference in the size of objects in the
projection, when compared to their real-world size.

A visual example for the Mercator projection is shown in figure 3.13, where
the size distortion effects can be seen at the top and bottom of the projection,
where Greenland became larger than the continent of Africa.

Figure 3.7: Visual example of how a Mercator projection works. The Earth on the left is
projected upon the projection cylinder, after which the cylinder is cut open and flattened to
produce the map on the right. The angular information is preserved, while the size information
gets inflated more the further the object in Earth is from the Equator 1.

1Acquired from https://gisgeography.com/cylindrical-projection/
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3.3 Edge detection

Edge detection is in short a mathematical method that aims at identifying edges
or curves in a digital image at which the image values have discontinuities.
Classical methods of edge detection convolved images with operators, which are
sensitive to large gradients in images. Some of the most common operators used
are given in the list below (Maini and Aggarwal, 2009) and a visual aid for these
operators is provided in figure 3.8:

• Sobel’s operators which are designed to give the best response with edges
running vertically or horizontally

• Prewitt’s operators which are similar to Sobel’s operators but give less
weight to values touching the reference pixel in a plus pattern

• Robert’s cross operators which are designed to give the best response with
edges running diagonally at a 45◦angle

• Laplacian of Gaussian operators which highlights regions of rapid intensity
change and looks all around the current pixel instead of focussing on a
specific edge direction

Figure 3.8: This figure gives an overview of the most common operators according to Maini
and Aggarwal (2009). An X versus a Y after the operator name indicates that changes in
a different direction are captured using filters. For the Sobel and the Prewitt operators, X
equals vertical changes and Y equals horizontal changes. For the Robert operators, X and Y
focus on a different diagonal.

All of these operators have their strengths and can work great on their own
should they match the image criteria, but in 1986 Canny managed to enhance
the many operators at the time with his own Edge Detection Algorithm (Canny,
1986). The Canny edge detection algorithm involves first smoothing the image
using Gaussian smoothing to reduce the influence of noise. This is followed
by applying the Sobel X operator and Y operator to create a combined edge
strength that checks all around the current pixel. Afterwards, the primary
direction of the edge is traced. Finally, non-maximum suppression and hysteresis
are used to improve the results. A comparison of some of these edge detectors

27



can be seen in figure 3.9, where it can be seen that Canny edge detection gives
the result with sharp edges without succumbing to the influence of noise.

Figure 3.9: Comparison of Edge Detection techniques on a noisy image. (a) shows the
original image, (b) the joint result of a vertical and horizontal Sobel operator, (c) the joint
results of a positive and negative diagonal Robert’s cross operator, (d) the result of the Canny
Edge Detector. Acquired from Maini and Aggarwal (2009).

3.4 CLAHE
CLAHE is an acronym for Contrast Limited Adaptive Histogram Equalization.
It is a technique well-known for its local contrast enhancement in images (El Ab-
badi and Al Saadi, 2013), which is a good step to do before trying to detect
shapes in images, especially when the image has a large difference between the
maximal and minimal values. This can be seen in the projects of Yadav et al.
(2014) and El Abbadi and Al Saadi (2013), where it has been used to enhance
the contrast of foggy video imagery (see figure 3.11) and to aid in the auto-
matic detection of shapes in an image. CLAHE itself is an enhanced version
of Adaptive Histogram Equalization, which itself is an enhanced version of His-
togram Equalization. The method, therefore, takes the steps its predecessors
take and adds one on top of it. The concept of Histogram equalization is shown
in figure 3.10, meaning that it takes the range that a histogram is using with
its values and stretches this to use the maximum range that is available, giving
more values that can be used to distinguish between values in the image. This
stretching can, however, result in images that become too bright or too dark as
the used values are forced to stretch to fit the whole available range of values.

Figure 3.10: Visual example of Histogram Equalization2. It shows how a more narrowly
used range of the Histogram on the left is stretched to use the whole available data range.

2Acquired from https://sites.google.com/site/5kk70gpu/assignment-s/
color-conversion.
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Adaptive Histogram Equalization takes this problem and solves it by dividing
the image into smaller tiles giving a more local context and applying Histogram
Equalization on all tiles separately. The downside of this approach is that it
tends to overamplify the contrast in near-constant regions, which means that it
tries to create significant contrast where there was none.

CLAHE fixes this issue by limiting this contrast amplification to reduce the
noise that it creates. Both CLAHE and Adaptive Histogram Equalization when
they would be implemented in their purest forms would be prone to introduce
clear borders between the different borders, but this problem is taken care of
by most implementations through the use of bilinear interpolation at the edges
to make these transitions smoother. The full effect of CLAHE is shown in
figure 3.11, where on the left for instance the vegetation is very dark with little
detail present, whereas the enhanced version on the right shows bright green
vegetation, presenting a lot more detail using the same data as input.

Figure 3.11: This figure shows the effect of CLAHE. The left image is the raw input, whereas
the right image is the image acquired after using the methodology proposed in (Yadav et al.,
2014).

3.5 Morphological Operators
Morphological operators are operators that can take a binary image and a struc-
turing element (like a 3x3 square kernel as shown in figure 3.12) as input and
combine them using a union set operator (Bhatia and Chahar, 2011). These op-
erators can be used to reconstruct damaged regions in images (Raid et al., 2014)
or contrarily to destroy weakly connected regions in images. In image analysis,
these processes are valuable tools to connect and enhance results acquired from
processes like edge detection (see §3.3).

Figure 3.12: A standard 3x3 square kernel which is used in figure 3.13 as the kernel for
acquiring the results of the morphological operators.
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The two most fundamental morphological operators are Dilation and Ero-
sion. With dilation, every 0 that touches a 1 via the structuring element in-
tersection is turned into a 1. The opposite happens with erosion, where every
1 that touches a 0 via the structuring element intersection is turned into a 0.
This means that dilation grows regions in the image and can fill holes in them,
whereas erosion shrinks regions and can break a single region into multiple re-
gions (Bhatia and Chahar, 2011).

Opening and closing are two additional operators that combine erosion and
dilation. Opening first erodes the regions splitting potential objects open and
afterwards dilates the result to fill in possible holes created during the process.
Closing first dilates the regions joining potential objects and afterwards erodes
the result to get rid of the excess gained at the outer parts of the region. A
visual representation of the operators is shown in figure 3.13.

Figure 3.13: b to e show the results of the four basic Morphological operators applied to
the example binary image (a). Acquired from (Bhatia and Chahar, 2011)

3.6 Contour detection

Contour detection is the process of detecting the outline of a shape. It can
roughly be divided into 4 categories being: pixel-based, edge-based, region-based
and deep-network-based (Gong et al., 2018). For this research, an edge-based
approach has been used and as such, this is the approach that will be explained
in this subsection.

Edge-based contour detection is mostly focused on taking the edges provided
by an edge detector, to determine whether they surround a specific object in the
image. Finding these contours is however not a trivial task as often the edges
do not capture a closed object. A closed contour can be created by eliminating
irrelevant data and sorting the other edges into groups using probabilistic models
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as guidelines to join the separate parts into one coherent shape. In figure 3.14,
this process is visualized. It starts by applying edge detection on the input
image as is explained in §3.3. It then finds the outlines of the melon and the
pear in the image by first removing the clutter in the data and then grouping the
stronger outlines to accurately capture the shapes of the objects in the image.

Figure 3.14: Visual example for the contour detection pipeline. From left to right the input
is shown, then the result of edge detection and finally the resulting contour groups for the
melon and pear are found after removing irrelevant data and grouping the edges. Acquired
from (Gong et al., 2018)

3.7 Douglas-Peucker Algorithm

In 1973, David Douglas and Thomas Peucker published their algorithm for sim-
plifying line shapes as they found that as a general rule all digitizing methods
used far more data than necessary when recording lines (Douglas and Peucker,
1973). This was the origin for the Douglas-Peucker Algorithm that is still being
used today although with some efficiency improvements that have been made
over the years, like dynamic thresholding to better suit the specific applications
level of detail (Al-Asadi and Baiee, 2014).

What the Douglas-Peucker Algorithm tries to achieve is to simplify the orig-
inal line by selecting some points along the line called critical (or anchor) points
which represent a generalized line that is close enough to the original. To select
these critical points a threshold value, T > 0 is defined beforehand. Then a seg-
ment between the first point A and last point Z is traced to start the algorithm
with (see figure 3.15). The distances dindex to the line segment AZ are then
calculated for all other points. The point with the largest distance to AZ, B in
this example, is added as a critical point replacing AZ with two line segments
AB and BZ. However, this only happens should dB be larger than T, if this
was not the case the program would have finished instead of splitting up. After
the segments AB and BZ have been created the previous steps are repeated
using them as the reference and this continues until all critical points have been
added and redundant points are left out of the generalized line. In figure 3.15
this resulted in leaving two points out of the generalized line.
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Figure 3.15: A visual explanation of how the Douglas-Peucker algorithm works to generalize
the original line by keeping only the most critical points A, C, B and Z to represent it. Acquired
from (Crespo et al., 2014)

3.8 Clustering

Clustering is the method of grouping data into separate groups, used in many ap-
plications such as pattern recognition and image processing (Wang et al., 2015).
There are a lot of different techniques for clustering data that can be subcatego-
rized into categories that work on the same general principle. In this subsection,
the main focus will be on the DBSCAN (Density-Based Spatial Clustering of
Application with Noise) clustering technique as this is the technique used in the
Methodology. The K-Means clustering technique will also be explained to show
the contrast and uses of DBSCAN vs K-Means.

DBSCAN is a density-based clustering method based on the concept of den-
sity reachability (Wang et al., 2015). This entails that the method loops over
the points and sees if any points are within a given radius of it. If such points
exist, then these are added to the cluster and referenced. This allows the cluster
to continuously grow into any shape as long as there are points that are close
enough. Clusters that can not grow to contain more points than a minimum
threshold are considered outliers. This means that the DBSCAN algorithm has
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two user parameters that need to be tweaked. One is the radius around points
which implies which points are included in the cluster. The other is the mini-
mum number of points a cluster needs to have to not be considered an outlier.

K-Means clustering on the other hand is a partition-based clustering method.
It works by having the user initialize k starting points in the cluster, meaning
that there will always be k clusters that are found at the end of the clustering.
Each of these k starting points will form a cluster with all points in the area
that are closer to it than to another starting point. This means that all data,
including outliers, will be assigned to a cluster. Once all points have been
assigned the means of each cluster will be computed and these will be the new
starting points for a re-clustering of the set. This continues until none of the
means makes a significant shift anymore.

K-Means is a form of clustering that always labels the whole dataset and
can guarantee a split into k clusters even if the data is tightly knit together, but
as can be seen in figure 3.16 it does not always split the dataset into logically
separated objects. Furthermore, K-Means clustering is very dependent on the
first placement of the starting points making it possible to have different results
when applying the same process to the same set multiple times. DBSCAN is a
lot more suited for logically separating objects. It can ensure that even if the
number of objects in the scene is not known beforehand that the result can give
a logical split between most objects. In a full scene with lots of objects close
together, it can be the case that merges between some objects will occur that
are not intended. To minimalize this the radius for points to be included in a
cluster should not be too large but this comes with a downside of creating more
outliers, so this has to be properly chosen per scene.

Figure 3.16: A visual comparison between the functionality of the DBSCAN and the K-
Means clustering algorithms on multiple point neighbourhoods 3.

3Acquired from https://github.com/NSHipster/DBSCAN.
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3.9 Principal Component Analysis
Principal Component Analysis (PCA) is one of the most important concepts in
linear algebra for revealing simplified structures in data (Shlens, 2014). PCA
achieves this by fitting vectors on an orthonormal basis to the regions with
the most variance in data, assuming that the data follows a linearity constraint.
What this essentially means is that it searches a line in the data along which the
variance is the greatest, which is the first principal component (see figure 3.17
for visual feedback). Then a vector orthogonal to it is fitted to the most variance
in that restricted direction for the next principal component and this is repeated
until a principal component is selected for each dimension of the data. After
all principal components have been found, they can be turned into unit vectors,
which denote the eigenvectors of the data and eigenvalues can be extracted from
them as well.

Figure 3.17: Visual example of PCA on 2D data. PCA 1 is located along the spread of data
with the largest variance, with PCA 2 being placed orthogonally to it 4.

From this data, a lot of features can be calculated to further describe the
properties of the dataset. In this thesis the data used is 3D so 3 principal
components are expected in the data which are essentially the eigenvalues of
the data cluster used as input. For the rest of this section these values are
referred to as λ1, λ2 and λ3 where it holds that λ1 ≥ λ2 ≥ λ3 ∈ R and they
have corresponding eigenvectors e1, e2 and e3 ∈ R3. Using these components the
following properties can be calculated which will be used in the methodology:

4Acquired from
https://programmathically.com/principal-components-analysis-explained-for-dummies/.
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• Linearity: The linearity feature shows how much the cluster can be mod-
eled by a 3D line ((Waldhauser et al., 2014), (Thomas et al., 2018), (Wein-
mann et al., 2013)). The feature is defined by equation (3.1).

(λ1 − λ2)

λ1
(3.1)

• Planarity: The planarity feature describes the smoothness of the cluster
surface ((Waldhauser et al., 2014), (Thomas et al., 2018), (Weinmann
et al., 2013)) and is defined by equation (3.2). It gives some insight in
how rectangular the cluster is, as a full score of 1 can only be achieved if
λ2 = λ1 and λ3 = 0.

(λ2 − λ3)

λ1
(3.2)

• Sphericity: The sphericity feature is a simplified form for describing how
spherical or scattered the cluster is as it compares λ3 with λ1 as is shown
in equation (3.3) ((Thomas et al., 2018), (Weinmann et al., 2013)). The
higher the outcome the closer these eigenvalues are and the more spherical
or scattered the cluster is.

λ3

λ1
(3.3)

• Verticality: The verticality feature describes how vertical the cluster is
compared to the z-axis (ez) of the scene, where the z-axis is assumed to
be the axis depicting height in the scene (Thomas et al., 2018). Following
equation (3.4), verticality is calculated by taking the angle between the
normal of the cluster (e3) and the z-axis (ez) in radians which lies in the
range [0, π]. Then this is subtracted from π

2 to shift the range of values,
made absolute as positive vs negative is obsolete in this comparison and
normalized by dividing with π

2 to generate results between 0 and 1. A
verticality of 1 would mean here that the cluster would be flat on the
ground, whereas a verticality of 0 would mean that the cluster would be
perpendicular to the ground.

norm(abs(
π

2
− angle(e3, ez))) (3.4)

• Change of curvature: The change of curvature feature describes how
much the smallest eigenvector influences the rest of the cluster. This
can be seen in its definition shown in equation (3.5) ((Weinmann et al.,
2013), (Thomas et al., 2018)). Change of curvature is very suited to
distinguishing between planar structures such as facades, the floor and
windows and non-planar structures like furniture and plants (Weinmann
et al., 2013).

λ3

(λ1 + λ2 + λ3)
(3.5)
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Chapter 4

Methodology

In this chapter, the methodology used in the thesis will be introduced. First, a
short overview of the proposed method is given. Then, the different steps which
are introduced in the overview are elaborated upon. Finally, an overview will
be given of possible ways in which the challenge of detecting glass in 3D point
clouds could have been solved and why the used methodology was chosen.

4.1 Method overview

Following the main research question, the proposed methodology (see figure 4.1
for a visual overview) aims to deduce the location of glass in 3D point clouds,
using as little information as possible. This methodology is structured in four
layers signifying a split in the general tasks that are covered in the method.

Layer 1 is the input that is required for the method to work. This input is a
3D point cloud and a reference position in the 3D point cloud, like the scanner
position.

Layer 2 is about the conversion of the 3D data to 2D data. The first step
in this process is to calculate the distance of all points in the point cloud to the
reference position. These distances are used in the next step, which converts
the point cloud from 3D space to 2D space, using an approach similar to the
Mercator projection technique explained in §3.2. The intermediate result of
the conversion is the creation of a 3D histogram that contains all points that
have approximately the same direction from the reference position in the same
bin. These bins are then converted into a single value based on a criterion to
reduce the dimension from 3D to 2D. In this thesis, the variance of the distance
between all points in the bin and the reference position is taken as this criterion.
Due to this conversion, a 2D image with values indicating the spread of points
in a similar direction from the reference position is created, where the shapes
of the 3D objects are preserved as best as possible in the 2D projection. The
benefit of the conversion from 3D space to 2D space is that a vast array of
image processing techniques can be applied to the data afterwards as shown in
the following steps.

Layer 3 is about finding areas in 2D where glass windows are expected to be
in the 3D data. These areas are named window candidates in this thesis. To
find these candidates, first CLAHE (§3.4) is applied to the image to make local
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changes more prevalent, as the values in the spread of points are limited by
their local context due to having a static reference position. Then Canny edge
detection (§3.3) is applied to the image to highlight the areas that have a sig-
nificant change in variance when compared to their local neighbourhood. These
changes in variance indicate the edges of windows, which means that the result
of the edge detection gives the first indication for window candidates. These
candidates are then extracted using contour detection (§3.6), which connects
the edges into a contour, after which the contours are simplified and validated
to see if it matches the general window shape.

Layer 4 is about using the candidates found to select areas in the 3D point
cloud where window deduction is performed. For each of the found window
candidates, it is now known in which area of the 2D image the window is present.
This area is then reverted to 3D space to allow for the deduction of the window
in part of the point cloud. The 3D points are then clustered using density-based
clustering (§3.8) after which for each point cluster properties will be calculated
and scored to see which of the clusters represents the glass window in 3D space.

Figure 4.1: A visual overview of the steps performed in this thesis
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4.2 Elaboration of steps

In this section, all of the steps of the Methodology are elaborated upon. Rea-
soning as to why certain choices have been made will be provided. Furthermore,
visual aides and examples will be given to give more insight into the process
itself.

4.2.1 Providing input data

As stated before, the methodology needs two parts of input data to fulfil its
goal.

The first part of this input is LiDAR point cloud data. LiDAR point cloud
data in this thesis follows the definition given in Waldhauser et al. (2014), mean-
ing any set of 3D points that contains at the very least the x, y and z positional
components.

To accommodate this data and to be able to verify it in space there is also
in need for a reference position. The reference position in this methodology will
act as a central point for the spatial conversion from 3D space to 2D space. This
position can be either the position of the scanner itself for instance when using
TLS or any position that is desired by the one performing research. In the case,
an arbitrary position is picked it should have an unobstructed line to all points
in the point cloud for the intended result.

The reason why these inputs are chosen to be this generic is to make sure
that this methodology can be used in almost any situation where there is a single
3D point cloud that has been delivered. More value can, in turn, be added to
these pre-existing point clouds without the need of having to redo the whole
scanning process or generating other data than was already present.

4.2.2 Calculating the distance for all points towards the
reference position

After the point cloud and the reference position have been loaded, the first
step is to calculate the distance of all points in the point cloud towards the
provided reference position. The calculation of this distance can be done using
the euclidean distance formula as the distance between scanner and point is
always under the assumption to have nothing in between them, so a direct
distance calculation like the euclidean distance is suitable for this application.
The formula used for the calculation is shown in equation (4.1) with n being
equal to 3 for the three dimensions x, y and z.

d (p, q) =

√√√√n=3∑
i=1

(qi − pi)
2 (4.1)

This is done for two specific reasons, the first being that the distances and
respective positions from the reference position to the points are needed for
the projection of 3D space onto 2D space. The second reason is that this data
will be stored in the projected 2D space and will become the main criteria for
identification in the resulting 2D image. This projection to 2D space aims to use
the variance property of the distances in a similar line of sight to find the edges
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of holes in facades, which will be used as candidates for the window estimation
later on. This phenomenon is shown in figure 4.2 where on the left a line of sight
only hits a facade which therefore creates a single group of points as the LiDAR
signal is fully blocked by the facade. This single group of points is comprised
of points that are all close to each other and will therefore have a very similar
distance to the reference position resulting in a small variance. The line of sight
on the right on the other hand captures multiple groups of points as due to the
hole the line of sight can see both the edges of the hole as some of the points
behind it. These multiple groups of points are further away from each other,
therefore, increasing the variance towards the reference position, validating that
a greater variance is an indicator for the detection of holes.

Figure 4.2: On the left, the result of a line of sight can be seen from the reference position,
which is the position of the scanner in this case, towards a facade, which has only a single
group of points. On the right, the result of a line of sight can be seen of the edge of a hole
in the facade and as can be seen here, there are multiple groups of points indicating a higher
variance in the distances of points towards the reference position for this line of sight.

4.2.3 Convert from 3D point cloud to 3D Histogram
Once the euclidean distances for all 3D points have been calculated, the con-
version from 3D to 2D can begin. The conversion is done using the Mercator
projection technique explained in §3.2. This projection takes a point on the
Earth’s surface and using its distance and angle from the Earth’s centre projects
it onto a 2D map preserving angular information in the process (Vis, 2018).

As the goal of our Methodology is to find the shape of window objects in the
data to deduce their position, the distortion of size is mostly irrelevant. This is
because the rectangular shapes of the objects are mostly preserved due to the
preserved angular information. The largest distortions, where this distortion
would not be trivially solved, occur on the roof and floor of the indoor space
where the data is captured, where it is assumed that no windows are present.

This projection is recreated in the methodology by using the 3D points as
points on the Earth’s surface and using the scanner location as the Earth’s
centre. The resulting formulas for this conversion are shown in equation (4.2)
and equation (4.3) and are visually supported by figure 4.3, which calculate a
latitude angle ϕ and longitude angle λ for each point p that act as an index
reference for the 3D histogram.

Latitude(ϕ) = degrees(sin−1(
pz

d(p, scannerorigin)
)) (4.2)

Longitude(λ) = degrees(tan−1(
py
px

)) (4.3)
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Figure 4.3: Visual example to support equation (4.2) and equation (4.3). In the figure the
relation between the XY Z position and the ϕλh position of point p is shown. For the purpose
of the methodology the height is neglected as only the general direction of p to the origin is
needed 1

This 3D histogram has a latitude and longitude which act as identifiers so it
is known to which bin, which is acting as the third dimension, the current point
needs to be added. This process ensures that all points with the same rounded
latitude and longitude will be stored in the same bin, meaning all points with
the same directional angles, ergo a similar line from the reference point are
stored together. In figure 4.4, this step is visualized.

Figure 4.4: Conversion from LiDAR Point cloud on the left to the 3D histogram on the
right. As can be seen there has been a fairly stable collection of points with some holes and
peaks along the way in the histogram. Notable is that lower latitude readings (-90 to about
-50) are substantially lower than the rest of the cloud, which is because of the used scanner
which could capture less to no points below a certain angle due to the scanner itself physically
blocking the signal.

1Acquired from https://geodesy.noaa.gov/TOOLS/XYZ/xyz.shtml
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4.2.4 Convert from 3D Histogram to 2D Image

The 3D histogram now still needs to be converted to a 2D image before image
analysis techniques can be applied to it. To do this for each bin the variance
σ2 of the distance from the points inside of the bin to the scanner location is
computed, using equation (4.4) where n = the total number of points in the bin
and µ = the mean distance of the points in the bin to the scanner origin.

σ2 =

n∑
i=1

(d(pi, scannerorigin)− µ)2

n
(4.4)

This value is then stored as the pixel value of the resulting image of size max
latitude by max longitude. This conversion is shown in figure 4.5.

Figure 4.5: Conversion from the 3D histogram on the left to the 2D image on the right.
On the left, a logarithmic colormap is used to display the differences in the Variance more
gradually. Also note that the decreased data in the 3D Histogram (explained in figure 4.4) is
visible as white pixels at the bottom in the 2D image.

4.2.5 CLAHE

Now that a 2D image has been achieved it is possible to start deducing the
window candidates from the data. There is only one problem with the image
as of now which is that the context of variance difference is taken for the whole
image instead of just the local area of the pixels. This results in that smaller but
still clearly defined differences between pixels will not be detected as well as the
extremes of the image take precedent in the analysis. To limit the amount of
influence these extremes have on the result CLAHE (see §3.4) is applied to the
image before further analysis is done. This process makes it so that differences
in variance are not viewed in the context of the whole image but in a limited
local context highlighting local extremes.

The difference that the application of this algorithm makes to the whole
scene visualization can be seen in figure 4.6. CLAHE enhances the differences
from the initial image on the left and gives a result with much more detail into
the notable variance peaks shown in yellow.
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Figure 4.6: On the left the initial image is shown, with some notable reactions mostly on
both sides, but a lot of the edges that are expected to be seen are left out. After applying
CLAHE the image on the right is found, showing a lot more edges which could be window
candidates.

4.2.6 Canny edge detection
To use the image of variances to deduce the location of windows Canny edge
detection (see §3.3) is then applied to the image. Canny edge detection is chosen
in this methodology as it looks from both a top-down and a left-right perspective
at the changes in the pixels making all sides of the windows appear in the result.
After the discontinuities have been found in the image they are linked together
to form an edge or curve that because of the data it is based upon indicates a
jump in space. These edges are however often close to each other but not fully
connected yet, therefore closing (see §3.5) is also applied to the result to connect
closely detected edges and make them more robust by filling in the small gaps
in them.

In figure 4.7 these edges are visualized and the first indications of where the
window candidates can be found already become more visible. It is however also
clear that not only the window candidates have been detected in this process,
but also a lot of other jumps in variance, so extra steps need to be taken to
eliminate these from the result set.

Figure 4.7: Intermediate result of Canny edge detection with closing applied afterwards.
The colour in the image shows the strength of the edge.
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4.2.7 Contour extraction

The first of these extra steps is contour extraction, to join the different loose
edges into connected objects. First, the contours need to be detected from
the separate edges, so these are joined together based on a combination of
their intensity, location, the direction they follow and possibly a probabilistic
model. To enhance this process, images can be simplified beforehand by putting
their colour scheme to grayscale to have a clearer distinction in intensity and
parts that are not important can be filtered out to make the contours be better
focused on the features that are wanted. For this reason, edge detection has
been applied, as this results in a grayscale image, where higher values indicate
stronger edges and the unimportant readings have been removed mostly from
the space of interest. The result of these detected contours for the scene is
shown in figure 4.8, but it is clear that a lot is selected and the difference with
the edge detection is not yet apparent. What these contours are most useful for
is that they are grouped and are the building blocks for all kinds of inspections,
which will be done in the next step.

Figure 4.8: Visual example of contour extraction. The contours found based on the binary
result of Canny edge detection are quite close to the edges itself as expected, but the contours
deemed to small to be useful are filtered out.

4.2.8 Rectangle validation

A window candidate is defined as a close to rectangular object in the slightly
warped 2D space that was the result of projection in §4.2.3. Once the contours
have been extracted the window candidates can be deduced from them. To
do this, the shape of the contour is generalized by using the Douglas-Peucker
algorithm (see §3.7) to get rid of points in the contour that do not contribute
as much to the general shape of the contour. Lines of points with a slight curve
can therefore be captured as a straight line with only two endpoints. After this
process the more complex contours are simplified into being made up of just
a fraction of the points they had before this, which makes window candidates
simpler to detect as per definition the window candidates are rectangular, and
when simplified have only four strong points. Once the simplified contours have
been filtered out there is another criteria for the rectangles, which is that all of
their corners have an angle of 90 degrees. This is however not the case for the
generated scene as it has been slightly warped due to the view the scanner had
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of the scene even if the projection used is one where the angles are preserved
as best as can be. By using an error margin around the 90 degrees angle, the
general shape of a close to perfect rectangle can still be approximated quite well
as all corners need to uphold the criteria. In figure 4.9 this is shown more clearly,
with the shape on the left fulfilling the requirements for a window candidate,
but the shape on the right does not stay within the error margin around 90
degrees so is therefore rejected.

Figure 4.9: The shape on the left shows a close to perfect rectangle which will be detected
by the algorithm as its errors in the corners stay within the error margin for each corner. The
shape on the right fulfils the 4 points requirement but does not stay within the error margin
for its corners and is therefore not labelled as a window candidate

Using these two criteria, contours that have 4 strong points are tested by
first calculating their corner angles using the Cosine law (equation (4.5)), where
a and b are adjacent the lengths of the adjacent sides of the triangle to ∠α and
c is the opposite side. After the corners are calculated, they will all be tested
to see if they stay within the error margin.

∠α = degrees(cos−1(
a2 + b2 − c2

2 ∗ a ∗ b
)) (4.5)

The result of this selection can be seen in figure 4.10 where the window
candidates are shown in green and the rejected contours with 4 strong points
are shown in yellow.

Figure 4.10: Visual feedback for detected window candidates in the scene. The green regions
are those that are accepted as candidate windows for the next steps whereas the yellow regions
fulfil one but not all of the listed criteria.
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4.2.9 Acquire regions of interest based on candidate win-
dows

Once the window candidates have been found, the analysis in 2D space has
concluded. For each of the window candidates, a bounding rectangle is created
which denotes the pixels in the image that the window candidate is inside of.
These pixels are then used to cut out a part of the 3D data where the window
is inside of, which essentially is picking the corresponding bins from the 3D
histogram which correspond to the pixels in the 2D image. The result in 3D is
a pyramid-shaped region of interest from the total scene containing all points
in that direction as well as the points that make up the window. In figure 4.11
this concept is depicted, with the tip of the pyramid being the location of the
scanner and the lines in red demonstrating the area that has been cut out of
the total scene.

Figure 4.11: Part of the 3D scene that has been cut out using the window candidates as a
base. The red lines show the area that has been cut out in total to indicate the magnitude
of this operation. The tip of the pyramid-like shape the lines make is where the scanner was
located and the width of the pyramid is dependent on the size of the window candidate.
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4.2.10 Cluster regions of interest
The region of interest that has been cut out contains the points that make up
the window in 3D context but also a lot of other points. Therefore the correct
points that depict the windows need to be found in this space. As it is known
as a consequence of the cut in 3D space performed in the previous step, the
area of points is cut off at the sides. This means that the total space is made
up of groups of points in space surrounded by empty space, making it easy to
split these groups from each other. This is done using Density-Based spatial
clustering (see §3.8) to cluster the selected points into groups that are separate
in space from each other. The result of this operation can be seen in figure 4.12,
where each colour is a separate cluster to be examined.

Figure 4.12: Visual example of the result of density based clustering.
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4.2.11 Deduce window in regions of interest based on ge-
ometric properties

Now that the clusters have been created, they can be tested to see which of
them is the window. These tests are done by calculating a set of 3D features
of the clusters using the clusters as the selected neighbourhood as described
in Weinmann et al. (2013) and validating these with the expected criteria for a
window. But to generate these features first the 3 eigenvalues of the clusters need
to be derived using PCA (see §3.9). These eigenvalues are hereafter referred to as
λ1, λ2 and λ3 where it holds that λ1 ≥ λ2 ≥ λ3 ∈ R and they have corresponding
eigenvectors e1, e2 and e3 ∈ R3. This concept is shown in figure 4.13.

For this methodology, the features discussed in §3.9 were calculated on a
scale from 0 to 1, so that each could easily be compared to another.

Figure 4.13: The cluster of a candidate
window, that is expected looks somewhat
like this. A centre point in the middle
of the cluster, which should be approx-
imately the middle of the window, from
which a dominant e1 vector to either the
top or the side of the window originates
which is the longest spread of the window.
A less dominant but certainly significant
e2 vector perpendicular to e1. Finally,
there is a less significant normal vector to
the window plane depicted by e3.

• Linearity: As (the outline of) windows themselves are rectangular in-
stead of linear it is expected that λ1 is quite large when compared to λ2

as shown in figure 4.13. For Linearity a somewhat lower value is desired as
can be seen in figure 4.13 where e1 is about twice as large as e2 indicating
that for these kinds of rectangular windows 0.5 is a good estimate but
optimization of the parameter may be required when used in a different
scene.

• Planarity: In the case of Planarity, a higher value is desired as e3 is
preferably as little as possible. A perfect value of 1 can only be achieved
by having a square window which might not be the desired shape so some
optimization for the scene may once again be required but in general, a
higher score in planarity indicates a higher likeliness to be a window.
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• Sphericity: A high Sphericity indicates very close eigenvalues, which as
can be seen in figure 4.13 it is desired that e1 is large and e3 is small. This
means that in general higher Sphericity indicates lower likeliness to be a
window.

• Verticality: In most cases, one can expect windows to be perpendicular
to the ground. This means that a lower verticality indicates a higher
likeliness for being a window, but in the architectural scene this is not a
certainty as windows can be placed in all kinds of angles, so modify or
remove this criterion should this not apply to the scene.

• Change of Curvature: Finally, there is the change of curvature, which
is very suited to distinguishing between planar structures and non-planar
structures. As a high change of curvature implies a non-planar structure,
this indicates a lower likeliness that the cluster is a window.

For each cluster, a weighted average is then calculated for these features.
These weights need to be optimized to the scene itself, as in some scenes for
instance the verticality of the cluster is a great indicator for windows, but in
areas with tilted windows, this will be less reliable. Using the assumption that
in each selected area only one window is present, the cluster that scores best on
this weighted average of this data is selected to be the window.

4.3 Considered alternatives to the Methodology
One of the subquestions in this research has been:

What are the advantages and disadvantages of trying to deduce glass in a
1D, 2D and 3D view of the scene?

This question has been considered while coming up with the methodology
presented in this chapter but has yet to be covered in the thesis. This section will
cover the ideas around using other dimensions for the methodology by covering
them one by one and then giving the reason as to why the current methodology
was chosen. Afterwards, another alternative will be mentioned as a workaround
to one of the main problems with the methodology being its dependency on the
contours that need to be found.

4.3.1 Advantages and disadvantages of using different
dimensions to deduce the location of glass.

• 1D data: An initial idea for the methodology was to look at the points
in 1D to deduce glass. The points in the captured data used in this thesis
were captured in their order over time. This made it possible to see the
lines the scanner captured and deduce jumps in distance and intensity.
This approach could therefore be used to detect holes in the point cloud,
but it was hard to distinguish any meaningful geometric information out
of them. This is because such information is dependent on assumptions
on how the data is captured, how the scanner moves during the capture
and noise fluctuations without (much) spatial reference. The points be-
ing in the order of their capture is also not a guarantee, as the creation
of point clouds does not enforce this principle. Because of this, using
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such an assumption as a dependency in the methodology would lead to
a significantly smaller scope. Next to this, a 1D approach will also need
to be able to distinguish between specularly reflective objects, diffusely
reflective objects and objects captured that are reflections themselves or
captured behind glass, to be able to properly classify points in the result.

The benefit of a 1D approach would be the increase in speed such an
implementation could provide. Data stored in such a format would make
the analysis dependent on only the previous and next points, which makes
the time complexity of the application scale with only the sample size. So
should a parameter be present in the data that can properly distinguish
between glass, diffusely reflective objects and specularly reflective objects,
then such a 1D approach can bear fruit.

• 2D data: As such a parameter was not present in the data used in this
thesis, this thesis focused most of its attention on 2D and 3D analysis of
the point cloud. A 2D view of the scene has the benefit of being able to use
a vast amount of libraries available for processing image analysis. These
libraries can be used to identify rectangular shapes in the data using edge
and contour detection.

Its downsides are however also apparent as point cloud data is typically
3D. A 1D overview can be created by linearly going over the points in
this 3D data but for a 2D overview, a projection needs to be performed
which is an expensive process and loses data like the depth of points in
the conversion.

• 3D data: An analysis of 3D data does not have these problems as the
point cloud data is already present in this form. The 3D environment is
however a more complex one making it harder to identify basic shapes in
space than when using a 2D approach. Clusters of points can, however, be
identified in this space and geometric features can be computed for them
to identify the desired shapes, like for instance window frames.

A downside of this however is that clustering a large scene and calculating
geometric features for them can be a very intensive process as all points
that are free in space are hard to project to just a single layer. In envi-
ronments with a lot of noise, this can create a lot of artefacts or wrongly
clustered objects and given that the goal of this thesis is to deduce the
location of glass a lot of noise will be present.

Every view of the data has its benefits. The methodology, therefore, tried to
exploit these by converting between both 2D and 3D. 2D was used to provide
indications on where window frames would most likely be found in 3D space.
In doing so the 3D space was split up into multiple regions of interest which
are subsets of the data. The made the clustering process and the calculation of
geometric features on them a lot more manageable in the end.
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4.3.2 A workaround for the dependency detecting con-
tours

After discussing the choice on how the data is used in the methodology one
flaw of the method should still be discussed. This flaw is the dependency of
the process on finding proper contours in 2D for the initial selection. When
converting from 3D to 2D a lot of depth information is projected as if being on
the same plane. This can lead to a lot of details being present in the 2D image
making contour detection significantly harder. In this thesis, a lot of noise with
low intensity in the point cloud was kept as low intensity is a good indicator of
the presence of glass as interaction with glass reduces the intensity of the laser
beam. If the presence of such noise makes detecting contours in the point cloud
insufficient to produce a proper result, a workaround can be used to still acquire
sufficient results.

This workaround is increasing the size of the closing kernel used after the
edge detection process. When increasing this size the kernel removes a lot of
accuracy and detail from the data so this should be done with caution, but it
simplifies the data significantly making it easier to recognize window candidate
shapes and as such creates more results although less accurate ones.

51



52



Chapter 5

Implementation and results

In this chapter, the steps taken in the implementation of the methodology for
this thesis are presented. First, the software and hardware tools used during
the thesis are named and their purpose of inclusion is explained in §5.1. Then
in §5.2, the dataset which was collected for this thesis is shown and the steps for
collection are elaborated upon. This is followed by how each step is implemented
in §5.3. Finally, the results of the application of the implementation to the
indoor environment are shown for multiple scanner locations in §5.4.

5.1 Tools used

In this section first, the software tools and libraries used in the implementation
are presented and briefly explained in §5.1.1, whereas their full practical use is
elaborated upon in §5.3. Then, the hardware used to collect and analyze data
is presented in §5.1.2.

5.1.1 Software used

Python1

The implementation for this thesis has been done in the programming language
Python. The version used for this implementation is 3.6 as the PyE57 library
is dependent on this version, whereas all other used libraries also supported
this version. Python has been chosen for its ease in prototyping, its available
and easy to use image analysis libraries and the option to work in Jupyter
Notebooks, which have been used in this thesis as it makes it easy to switch
the order of code execution by running cells in different orders. Because of this,
it was possible to test with multiple variables and solutions and to see how
each step affects the next one without having to start from scratch once again.
Especially when changing the dimensions of millions of points, having a way
to ensure that such conversions are needed as little as possible has been a real
timesaver while testing the implementation.

In the implementation of this thesis, the following Python packages have
been used:

1https://www.python.org/
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• NumPy:2 NumPy is an open source project that enables numerical com-
puting with Python. As this thesis uses a lot of conversion of large arrays
of data as well as linear algebra concepts, NumPy is used extensively to
speed up this process.

• pye57:3 pye57 is a package created, so that .e57 point cloud files can
properly be loaded intp the Python language. As the .las format is better
supported with libraries such as Laspy and due to the .las format being
a more common format for now although some suppliers are changing to
.e57, the implementation of this thesis is made to work with .las files as
input. This means that the pye57 package is used as a pre-processing step
to convert data generated by the Leica RTC360 (see §5.1.2) into a .las file.

• Laspy:4 Laspy is a Python library that enables reading, modifying and
creating .las and .laz files. This functionality has been used a lot in this
thesis to load and write (intermediate) results to files for inspection and
validation of them, as well as to deliver the final result.

• matplotlib:5 Matplotlib is a library that can be used to create static,
animated and interactive visualizations in Python. It is used in this thesis
to plot the 3D histogram data as well as to plot the 2D images generated
after multiple steps. Matplotlib is chosen for this purpose due to the
flexibility available when creating the plots, like modifying axes to display
the proper ranges and choosing colormaps that scale with the data to
enhance differences found.

• OpenCV-Python:6 OpenCV is an open-source computer vision and ma-
chine learning software library. OpenCV-Python specifically is the version
that is used here which is made out of pre-compiled bindings that can be
used in Python to use the functions in the OpenCV library. In this thesis
a lot of computer vision standards are used in the image processing part
of the methodology which are mostly from the OpenCV library. The most
notable functions used are the implementations of CLAHE, Canny edge
detection, Morphology operators, contour detection and approximation of
polygons. To make OpenCV a bit more efficient, the imutils support pack-
age is also included in the implementation of this thesis. Imutils is a series
of convenience functions to make basic image processing functions like ro-
tations and translations easier to perform with OpenCV and Python. In
this thesis it is mostly used for the grab_contours function, which allows
for the extraction of points along the lines found in the OpenCV contour
detection implementation for better modification and inspection.

2https://numpy.org/
3https://github.com/davidcaron/pye57
4https://github.com/laspy/laspy
5https://matplotlib.org/
6https://opencv.org/
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• SciPy:7 SciPy is a collection of mathematical algorithms and convenience
functions built on the previously mentioned NumPy package. It contains
all kinds of useful subpackages for clustering, interpolation, spatial func-
tions and linear algebra functions for instance. In this thesis the main ben-
efit came from the SVD decomposition function provided in the scipy.linalg
package. This provides the use of a singular value decomposition algorithm
for the thesis and from this SVD it is possible to extract the PCA values,
which are used to calculate the features of clusters in the methodology.

• scikit-learn:8 scikit-learn is a open source machine learning Python li-
brary built upon the previously mentioned NumPy, SciPy and matplotlib
libraries. It contains multiple clustering, classification and regression algo-
rithms that can enhance NumPy and SciPy data with this functionality.
For this thesis the main reason for using this library was the Density-
Based Clustering algorithm it provides called DBSCAN. Using this spatial
clusters can be created from the already present NumPy data and can af-
terwards be analyzed using SciPy algorithms making this an ideal library
to use between these steps.

CloudCompare9

CloudCompare is a 3D point cloud processing software. It is capable of visual-
izing up to more than 100 million points and provides all kinds of functions to
modify point cloud data inside of the software. In this thesis CloudCompare has
been used for inspecting the scene, visualizing results and generating validation
data which has been created by cutting desired areas out of the point cloud,
namely the areas where glass is present and saving them as a validation set to
compare results against.

5.1.2 Hardware used

Leica RTC360

The Leica RTC360 3D laser scanner is a Terrestrial Laser Scanner, which can
generate scenes using a capture speed of 2 million points per second with a range
from 0.5m to 130m, with an accuracy below the centimetre within the testing
space. Colour information is added with 36 MP HDR images acquired with a 3
camera system after which the point cloud is coloured according to the captured
images. The process of capturing a scene with colour information is done in less
than 2 minutes.

The RTC360 is a lightweight solution that is easily placed in new locations
and once it is placed correctly the scan can be performed with a single button
press.

It is also possible to use a GNSS fix when capturing the data but as this
thesis focuses on the indoor environment such a fix was not necessary to get the
results as all data is tested locally within the same set. If multiple scans were to
be performed using the same scanner then all data is linked together using the

7https://scipy.org/
8https://scikit-learn.org/stable/ and (Pedregosa et al., 2011)
9https://www.danielgm.net/cc/
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internal coordinate system, as was the case in this thesis. Should multiple sets
be made in different intervals or with separate scanners then GNSS is needed
to match them or manual matching needs to be performed.

Figure 5.1: The Leica RTC360 3D laser scanner is used for Terrestrial Laser Scanning during
this thesis 10.

Computer
The dataprocessing and analysis performed during this thesis have been done
on a Laptop with the following specifications:

• System model: Dell Latitude 5580

• Operating system: Microsoft Windows 10 Enterprise

• Processor: Intel(R) Core(TM) i7-7820HQ CPU @ 2.90GHz

• Physical Memory (RAM): 32,0 GB

• System type: x64-based PC

10The image on the left is acquired from https://leica-geosystems.com/nl-be/products/
laser-scanners/scanners/leica-rtc360. The image on the right is from the day the data
was captured.
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5.2 Dataset used
Decembers last year, Leica helped with the creation of this thesis by bringing
multiple scanners to the faculty of Architecture and the Built Environment at
the TU Delft to collect data in the "Orange Hall" (see figure 5.2)

Figure 5.2: Depiction of the Orange Hall at the faculty of Architecture and the Built
Environment, which is used as the test scene during this thesis11.

This hall is a well-known location in the TU Delft which has also been the
testing location of other indoor focused theses, such as the work of Staats et al.
(2017) and Flikweert et al. (2019). As stated in §5.1.2, the datasets depicting the
Orange Hall shown in figure 5.3 are captured using a Leica RTC360 scanner.
Each scene produced has upward of 40 million points and there has been no
filtering out of points usually labelled as noise, for which the reason is that these
points are actually points of interest in this research as reflections typically have
a lower intensity which is one of the main criteria used to determine whether a
point is considered noise or not.

The main focus for getting these scans was to capture the glass wall shown
on the left in figure 5.2, as well as the windows in the back of the hall. These
regions were chosen to see if it is possible to deduce the location of the glass
windows that act as a barrier on the outside of the indoor environment. The
windows on the inside of the building are also of interest as here distances to
the scanner are shorter and lighting conditions are more similar, which changes
the process of detecting reflections.

A total of 5 scans were performed as shown in figure 5.3 with the scanner
positions, that are used as reference positions, for each scan being shown in
figure 5.3a. The reason why there are no points in the circles around the scanner
position is that the scanners in their own scan cannot capture this area due to
occlusion by the tripod itself and overlap from data found in other scans has
been removed in this image for clarity as to where the scanner was positioned
for each scene.

A general overview of the scenes is given in table 5.1.
11Acquired from https://www.braaksma-roos.nl/project/bk-city/.
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(a) Zoomed-in view of the positions of where the scanner was placed during the capturing of the
scenes shown in b through f

(b) Scene 1 (c) Scene 2 (d) Scene 3

(e) Scene 4 (f) Scene 5

Figure 5.3: Overview of all scenes used in this thesis capturing the Orange Hall

Dataset Nr of Points Location
Scene 1 41.66 million Inside Orange Hall
Scene 2 41.62 million Inside Orange Hall
Scene 3 41.02 million Next to Staircase
Scene 4 41.01 million In Hallway next to Orange Hall
Scene 5 40.88 million Next to Staircase

Table 5.1: Summary of the number of points and location of scanner position for the scenes
captured.

58



5.3 Implementation
In this section, the steps of the methodology are explained one by one and
results as well as details regarding the exact implementation during this thesis
are given.

5.3.1 Input Data
The data acquired from the RTC360 after scanning was stored in the .e57 format.
As the methodology was created to work with the ideology in mind that it could
be used on as much input as possible and .las is the simpler and more common
format for now, a convertor from pye57 was created. This was achieved using
the pye57 library and the Laspy library.

The e57 format is capable of storing multiple scans in one file. Each of these
scans is essentially a separately stored point cloud that is geo-referenced to the
rest. As the .las format is not capable of storing multiple scans the converter
from pye57 to las split the pye57 file into 5 separate scenes and saves the scanner
position to a separate text file for later use as a reference position.

In the methodology each scene is loaded and processed separately so for the
explanation of the rest of the steps, only scene 1 is covered.

5.3.2 Calculate Euclidean Distances
The first step of the methodology to perform is to calculate the euclidean dis-
tances for all points in the point cloud to the reference position. The data
loaded using Laspy is stored as NumPy arrays containing a single property
from all points in the point cloud. By taking the X, Y and Z attributes of these
points the Euclidean distance is easily calculated using equation (4.1).

5.3.3 Convert 3D point cloud to 3D Histogram to
2D Image

The conversion from point cloud to histogram was performed as follows. First
to represent the data in the histogram an empty matrix was created to represent
the latitude and longitude spread. Normally latitude and longitude are in the
range of -90 to 90 and -180 to 180 respectively.

However, to get sufficient accuracy and detail in the scene the matrix rep-
resented this as a range of -900 to 900 and -1800 to 1800, increasing it by a
factor of 10, resulting in a 1800 by 3600 matrix. Each cell in the matrix is then
filled with an empty list. Using equation (4.2) and equation (4.3) each point is
given a latitude, longitude coordinate created from its X, Y and Z-coordinate,
which is used to put the point in the correct list. Once all points have been
processed the 3D histogram is converted to a 2D image by taking the Variance
of all points in each list as pixel value for the 1800 by 3600 image.
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5.3.4 CLAHE

For the application of CLAHE to the variance image, the createCLAHE function
of OpenCV was used. This function takes two notable parameters being the
tileGridSize and the clipLimit.

The tileGridSize turned out to be a rather forgiving setting in this function
as the input image is a rather large image of 1800X3600 pixels. The tileGridSizes
supported by the method were in the ranges up to 256x256. In figure 5.4 the
comparison between the default of 8x8 and the maximum of 256x256 is shown
and no real noticeable difference could be found. Therefore to have the local
changes be higher the default of a tileGridSize of 8x8 was chosen but larger sizes
would work just as well in this context. This meant that the image was split
up into tiles of 8x8 and CLAHE is applied in each of these tiles after which the
result is smoothed along the tile borders, by using bilinear interpolation.

Figure 5.4: Comparison between a tileGridSize of 8x8 and 256x256.

The clipLimit on the other hand had more significant changes depending on
its value. The clipLimit is the threshold for contrast limitation in the CLAHE
process. This means that it clips peaks in the histogram that go over this limit
and redistributes the values higher than the limit to the rest of the histogram
ensuring visible differences. This limit is a factor relative to its neighbourhood
meaning typical values for this clipLimit lie between 3 and 4 to ensure the
cumulative distribution function of the histogram stay relevant.

In figure 5.5, figure 5.6, figure 5.7, figure 5.8 and figure 5.9 the experimented
with values are shown. As can be seen, the contrast of the figures increases
with a higher clipLimit. CLAHE finds it advantageous not to discard part
of the histogram but to redistribute it equally among all other bins, which is
visualized in figure 5.10. The data above the limitation, shown in purple is
redistributed to the histogram pushing making lower contrast more apparent.
This can however cascade if enough data gets pushed over the limit again by
the redistribution of data, meaning it will go on until a less significant change
has occurred. In figure 5.8 and figure 5.9 cases are shown when this cascading
went over its intended purposes. In figure 5.8 a lot of the background data gets
a larger response than desired because the cascading kept on going recursively
until over 80% of the image was at the maximum. In figure 5.9 this did not
stop in time making every value essentially the same resulting in every pixel
getting the minimum colour value. As subtler contrast is desired as this can
still identify potential window candidates the highest clipLimit that does not
cascade too much is chosen, resulting in the choice of a clipLimit of 3.
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Figure 5.5: CLAHE with a ClipLim of 1.

Figure 5.6: CLAHE with a ClipLim of 2.

Figure 5.7: CLAHE with a ClipLim of 3. What can be seen here is that the contrast
in the middle of the image jump out more than in figure 5.5 and figure 5.6 because of the
redistribution of the histogram values as explained in figure 5.10.
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Figure 5.8: CLAHE with a ClipLim of 3.6. Here the effects of cascading redistribution of
the histogram are shown making the result flooded with maximum values, limiting the insight
in the local contrasts significantly.

Figure 5.9: CLAHE with a ClipLim of 4. Here the cascading redistribution of the histogram
eventually pushed all pixels to the clipLimit making the whole image have the same pixel
values.

Figure 5.10: Visual example of the redistribution of the histogram. The part of the histogram
above the clipLimit shown in purple on the left gets redistributed evenly over the histogram
enhancing lower contrasts. This can lead to a new area being raised above the line as shown
in green on the right. If this area is significant enough the process repeats until the area is
not significant enough or the whole histogram is equal12.
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5.3.5 Canny edge detection

For Canny edge detection once again the OpenCV implementation is used. For
this implementation, a minVal and a maxVal threshold for the hysteresis proce-
dure of Canny edge detection needed to be chosen. In figure 5.11 this procedure
is explained with a visual example. The minVal was decided to be 0 as no points
should automatically be excluded in this noisy environment as that can lead to
cut up edges where connections might otherwise be found. For the maxVal,
some experimentation was performed as shown in figure 5.12. It is desired that
as much noise disappears from the scene without losing window edges so, in
the end, the choice became a maxVal of 20 as this ensured that weak edges of
windows could still be retrieved whereas a maxVal of 30 led to the removal of
some windows already.

Once a result has been created from Canny edge detection on the CLAHE
output, morphological operators are used to connect some of the dangling edges.
In the implementation, a 3x3 kernel shown in figure 5.13 is used in the closing
operator. This means that this kernel is moved over all pixels in the edge
detection result, first dilating everything with the plus sign and then eroding it.
The plus shape is chosen to enforce straight-line connections a bit more which
is expected when trying to find rectangles in data, but overall results will be
similar to using a square kernel except for at the ends of the edges.

Figure 5.11: Visual example of hysteresis thresholding. Any point in the example that is
above the maxVal line, like A, is automatically considered valid and kept in the output of the
Canny edge detection. Any point below the minVal line is automatically considered invalid.
For points B and C an additional step is needed to see if they are kept. C is connected via
points to points above the maxVal line meaning that C is kept in the result as well even
though it had a weaker response. For B on the other hand there are no points in its edge that
are above the maxVal line meaning that the edge of B is discarded.

12Acquired from https://en.wikipedia.org/wiki/Adaptive_histogram_equalization
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Figure 5.12: Threshold comparison for Canny edge detection. As can be seen, the maximum
threshold has been gradually increased when moving down the images above. Increasing the
maximum threshold of the hysteresis process removes weak edges from the result as anything
above the threshold is accepted in the result. In the image with a maximum threshold of 30,
it can be seen that windows start to disappear in the red circle, meaning the threshold was
too high.
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Figure 5.13: A 3x3 kernel used in the closing operator. The plus shape is chosen to remove
some emphasis on diagonal connections as straight line connections are expected when looking
for window candidates.

5.3.6 Contour Extraction

To find the contours in the image the OpenCV implementation findContours()
is used. This function allows for multiple retrieval and contour approximation
modes. For the retrieval modes, there were essentially two different results, the
one generated by cv2.RETR_EXTERNAL and the one resulted by the other
retrieval modes. In figure 5.14 and figure 5.15 the differences between the results
are shown. As can be seen in the blue outlines the result in figure 5.15 finds
more contours than the results in figure 5.14. One might argue that this is better
as the retrieval modes aside from external find more contours, but for the pur-
pose of finding the window candidates, these background contours are actually
more harmful than useful. Therefore the less complete but more strict external
retrieval mode cv2.RETR_EXTERNAL is chosen for the implementation.

Figure 5.14: Contour detection using the external retrieval mode cv2.RETR_EXTERNAL.
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Figure 5.15: Contour detection using the external retrieval mode cv2.RETR_LIST. The
results shown in this figure are similar to the results when using the other retrieval modes
cv2.RETR_CCOMP, cv2.RETR_TREE and cv2.RETR_FLOODFILL. The areas in the blue
circles are the most notable areas where contours are detected which are not found in fig-
ure 5.14.

For the contour approximation modes, there was hardly any difference be-
tween the found results with the exception of cv2.CHAIN_APPROX_SIMPLE
being slightly more efficient as it approximates simpler shapes. At first, the
idea of picking this option above the other was to better approximate simple
line shapes and skip the more complex background noise but it turned out to
be the case that the simple contour approximation mode also detected these so
in the end any mode contour approximation mode could have been chosen here.

Once the contours have been generated they are collected using the imu-
tils.grab_contours function. This list of contours is the first indication for can-
didate windows but still needs to be validated.

5.3.7 Rectangle Validation
Each of the contours found in the previous step is tested to see if it is a rectangle
and thus suffices as a candidate window. Using the OpenCV approxPolyDP
function the polygon around the contour is approximated and simplified using
the Douglas-Peucker algorithm. If the approximated polygon is a rectangle then
it should contain just 4 points to indicate its corners. These points are then
checked to see if they lie within approximately 90 degrees with an error margin
from each other. This error margin can be quite large as all corners need to
fulfil it. In figure 5.16, figure 5.17 and figure 5.18 the valid candidate windows
are shown in green and the rejected ones are yellow, similar to the situation in
figure 4.10. The difference between the figures is the error margins they used
which is the margin that the corners of the approximated polygon can deviate
from 90 degrees. In figure 5.16 the error margin is set to 15 degrees which
results in only 3 window candidates being found whereas other correct window
candidates were still in the scene, so this selection was a bit too narrow.

In figure 5.17 the error margin is increased to 45 degrees and a lot more of
the contours were labelled as correct. Some of these however are not the desired
objects and as such are considered to be false positives
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In figure 5.18 the error margin is put in the middle with 30 degrees which
filters out some of the outliers while keeping the correct contours. When testing,
however, the turning point of getting rid of the last outliers was the same as
losing the other correct contours meaning that these were hard to separate
at this stage. This specific tipping point was between 26 and 27 degrees as
error margin but to make the method a bit more general an error margin of
30 was used for the rest of the scenes, meaning that as long as all corners of
the contour are between 60 and 120 degrees the contour is considered a valid
candidate window.

Figure 5.16: Rectangle validation with an error margin of 15 degrees. Only 3 contours are
labeled as candidate windows here which is too narrow.

Figure 5.17: Rectangle validation with an error margin of 45 degrees. A lot more contours
are labeled as correct but this did introduce false positives into the results as well.
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Figure 5.18: Rectangle validation with an error margin of 30 degrees. This is the middle
ground chosen for the implementation during this research.

5.3.8 Acquire regions of interest based on candidate
windows and cluster them

When the contours have been found regions of interest in 3D space are created
again. This is done by taking a bounding box around the found contour to prop-
erly align it with the image grid and then a small margin around the bounding
box is taken to ensure the window is in the result. Once the proper cells have
been defined these points can be retrieved from the original matrix and form
the region of interest in which the window is supposed to be found. To find
the windows first the region of interest is clustered using DBSCAN. DBSCAN
is a part of the sklearn.cluster module and can perform density-based spatial
clustering.

For the implementation of DBSCAN, an eps of 50000 is chosen which repre-
sent a distance of about half a meter in the dataset, which connects any points
that are within that range of each other. The minimum sample, also known as
the minimum number of points, required for a valid cluster is set to be 1000 as
smaller clusters than this tend to be too small to be able to represent a window
using TLS data. While testing with these numbers the ones above have been
chosen to best match the dataset representing scene 1, where an eps of 50000
was sufficiently large to ensure that close groups of points were properly clus-
tered together unlike what is shown in figure 5.19 and a minimum sample of
1000 was enough to ignore the clusters shown in red in figure 5.20 increasing
the processing speed significantly.

68



Figure 5.19: Visual example of the result of clustering using DBSCAN with an eps of 5000
and a minimum sample of 0. As can be seen, a lot of very small groups are found indicated
by their different colours. Not only should these groups be considered connected in most
cases, but they would also be separately processed in the next steps significantly increasing
the workload of the program.
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Figure 5.20: Visual example of the different clusters found using an eps of 50000 and a
minimum sample of 1000. The points displayed as red are excluded from the further analysis
process as they are to small and therefore rejected.

5.3.9 Deduce windows in regions of interest based on
geometric properties

Finally, the last step in the methodology is deducing which cluster in the region
of interest represents the window. This step is performed using the geometric
properties Linearity, Planarity, Sphericity, Change of Curvature and Verticality
whose formula’s are found in §4.2.11. But before this can be done the eigenvalues
of the clusters need to be calculated. This is done using the singular value
decomposition implementation of SciPy.linalg, after which they can be found
by squaring the values found along the diagonal matrix which is ordered to
have the largest eigenvalue to the left.

After testing it seemed that a Linearity closer to 0.5 rather than 0 seemed
to be a good indicator of a window. The Change of curvature and Sphericity
criteria on the other hand turned out to be less decisive in getting a result that
matches a window. This resulted in the weights for calculating the likelihood
of the cluster being a representation of a window to be 0.3 for Linearity and
Planarity, 0.2 for Verticality and 0.1 for Change of Curvature and Sphericity.

The points found by this methodology then depict the frames of the windows,
deducing the location of glass in the point cloud.
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5.4 Results

After performing the steps in the implementation part the following results
were generated. These results led to insights into problems that arise with
looking at 3D scenes from a 2D perspective, which became apparent applying
the steps of the methodology that had been tested on scene 1 on the other
scenes. This led to a great divide in the quality of results that were generated.
Therefore, this section will first show and discuss the results found in scene 1,
which symbolizes a case better suited to the methodology in §5.4.1. After this
flaws of the methodology are shown in §5.4.2. Finally, the application of the
workaround presented in §4.3.2 to the scenes with flaws is presented in §5.4.3.

5.4.1 General results

The results of scene 1 following the methodology led to the detection of 11
candidate windows. This is a lot less than the actual number of windows present
in the scene as can be seen in figure 5.2 on the left side. This is due to the
detection of contours at the side of the window which has been kept very strict
with what is considered a valid window outline to avoid accidentally capturing
other spaces.

The results of the deduced window locations are shown in figure 5.21 as a
general overview with all 11 sub-results shown as a whole. The clusters shown
in red in the results are indicated as being likely to be windows within their
subset of data, whereas the clusters in blue are labelled to not be likely. This
set on its own is a bit hard to place in the context of the scene so in figure 5.22
the same results are shown but now with scene 1 also being represented without
the roof, so the results are still visible.

Figure 5.21: Overview of the results from scene 1. In the results the clusters of 11 candidate
windows are shown along with their likelihood of being a window, where red means a high
likelihood and blue a low likelihood.
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Figure 5.22: Overview of the results on scene 1 within context of the scan without the roof
for additional reference.

As can be seen, the labelling of window clusters did not produce a completely
accurate result. Multiple clusters are falsely labelled as windows and some parts
of windows that are captured are not properly labelled at all.

Out of the 11 sub-results, only 6 had a proper window in them, from which 5
out of the 6 have correctly been labelled as windows. So when finding a cluster
with a window in it the results (although little in volume) are as expected.
Nonetheless, a lot of mistakes are present in the results.

First and foremost, one of the windows that was expected to be found was
not. This case is shown in figure 5.23. For some reason the intended to be
found cluster in the lower right scored very poor on the linearity and planarity
criteria which were very high with the other similar structures in the data. This
is why this cluster was missed during the deduction. The cluster in the back
also managed to be a false positive, something that occurs more often in the
results generated by this methodology. What seems to be the case with these
false positives is that they are flat surfaces, which score similarly to windows in
linearity, planarity and verticality test. This means that the normally definite
criteria to identify windows are also identifying these clusters making it hard to
distinguish between the windows and the flat rectangle like surfaces.
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Figure 5.23: The cluster labeled as likely to be a window is in the back, whereas the intended
cluster in the lower right is not labeled as a likely candidate

The next outlier is shown in figure 5.24a. In this region of interest, no
matches have been found which is correct, but this does mean that improper
contours were detected as candidate window. In the Orange Hall, there are a lot
of metal beams very close to the windows which got detected during the contour
extraction as if they were a window candidate themselves. This is most likely
what happened in the case of figure 5.24a but no improper matches occurred
afterwards. This is however not always the case as can be seen in figure 5.24b,
where both a window in the back (which is most likely captured behind glass
itself but a window nonetheless) and a piece of the beam are labelled as likely
windows. In this case, the part of the beam that was captured followed the same
logic as the flat surfaces, in that it scored similarly to windows on linearity,
planarity and verticality because of the small part that was captured in this
view.
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(a) In this region of interest no matches have
been found.

(b) In this region of interest a beam has in-
correctly been deduced to be a window.

Figure 5.24: Interference of metal beams on window deduction.

Another area where beams turned out to be a hindrance is in the initial
clustering process. As the beams in the Orange Hall are very close to the
windows on the side, windows and beams were often clustered together. So
even though the result in figure 5.25b is expected and correct, more is found
than had to be the case. In figure 5.25a the same cluster is shown but zoomed
in and from the other side to properly show the merging between the window
and the beam. To deduct the presence of a window, this result will more than
suffice but it is not the cleanest result possible.

(a) View from the back to show the connec-
tion between the beam and the window

(b) Result is properly deduced but due to the
clustering a beam is merged to the window

Figure 5.25: Results found are sometimes merged with beams that are closeby.
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Another case where the cluster found turned out to be not the cleanest can
be seen in figure 5.26. Here the area found by the contour was simply too large.
The deduction still worked in this case as the surrounding area was flat and
vertical but it is a stretch to say that the windows have been properly found in
the end.

Figure 5.26: Window has been found but a lot of points around it have also been added
meaning the contour was to large at the start, so a good deduction has been performed on a
too broad initial selection
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5.4.2 Flaws of the methodology

As shown in the general results the methodology provided is capable of gener-
ating results for deducing the location of windows in the scene even with the
inherited limitations of the difficult scene itself, like points that are too close
together to decently be split apart and the similarities between windows and
flat isolated surfaces or steel beams. However, the flaw of dependence on find-
ing proper contours in a noisy environment mentioned in §4.3.2 appeared when
applying the methodology on scenes 2 through 5.

To show the extents of this and the separate reasons for this, the contours
found in scene 2 are shown in figure 5.27. Scene 2 is captured quite close to
Scene 1, so the two were expected to deliver similar results, but this turned out
to not be the case entirely. In the process up to the contour detection step, most
of the edges found in the analysis of scene 2 that were not connecting properly
could not be fixed even with the closing morphological operator. This resulted
in a lot of unconnected edges in the data, instead of connected rectangles.

Noise behind the windows, caused by objects behind them or reflections, is
also one of the reasons for this as this gets connected to the edges of the windows
in the scene. This makes it hard for the contour extraction algorithm to extract
the proper contours along the edges and can create earlier cuts in data or join
wrong clumps of data together. This issue was also present in scene 1 but to a
lesser extent enabling it to still generate results.

There is also the issue that scene 2 was captured closer to the windows. This
makes the window shapes closer to it appear larger, but shapes more to the side
of it appear smaller and noisier as well as making occlusion from being behind
steel beams even more of a problem. Resulting in less valid clusters and no
practical results.

Figure 5.27: Contours found in Scene 2

When examining the contours in scenes 3 to 5 (see figure 5.28, figure 5.29 and
figure 5.30 respectively) another issue became apparent, which is the problem of
where the distance variance is most prevalent. These scenes were not captured
in the Orange Hall, but rather in the hallway adjacent to it and the area next
to the staircase. As can be seen and also as expected the contour images of
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these scenes are a lot darker. This is due to there being a lot less variance in
the captured setting as there is a lot less glass and other openings present in
these scenes.

What is, however, very troublesome is that the outer lines of the windows
and other openings are also not apparent in this overview. This is because the
changes captured through the openings in these scenes have far higher vari-
ance changes than the fairly broad and gradual changes of the window frames
in these scenes. As a consequence, only the small details in the background
are captured properly and the data that is desired is lost. Differentiating be-
tween foreground and background is, however, not doable in 2D making this a
fundamental downside of this approach.

Figure 5.28: Contours found in Scene 3

Figure 5.29: Contours found in Scene 4
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Figure 5.30: Contours found in Scene 5

5.4.3 Results from enlarged closing kernels
During this thesis, a simple method to circumvent these issues has been used
to be able to generate output data for these scenes as proposed in §4.3.2. The
implementation of this workaround was enlarging the kernel used by the closing
operator after the edge detection from a 3x3 plus-shaped kernel to a 13x13
square kernel. This makes it so, a lot of detail is lost but with the amount of
noise present in the currently used data, using closing to get rid of the noise and
join together separate contour segments solves the problem of not being able
to find the correct contours by making them simpler but also more apparent
in the scene. This workaround can not be used on every scene however, as
the more data is present in the scene the more gets merged even though they
might be separate objects, so picking the proper size for the kernel used in the
methodology should not only be chosen on a use case by use case basis but even
on a scan to scan basis if the data demands it.

With the now enlarged kernel the new contours found for the scenes are
shown in figure 5.31, figure 5.32, figure 5.33 and figure 5.34. As can be seen,
the contours found are extremely simplified and a lot of detail around the edges
has been lost, but these do provide useable and also larger contours.

Figure 5.31: Contours found in Scene 2 after enlarging the closing kernel.
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Figure 5.32: Contours found in Scene 3 after enlarging the closing kernel.

Figure 5.33: Contours found in Scene 4 after enlarging the closing kernel.

Figure 5.34: Contours found in Scene 5 after enlarging the closing kernel.
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The results for scene 2 with the enlarged kernel are shown in figure 5.35
and the placement in the scene is shown in figure 5.36. The result following the
detected contours has created three sub-results each finding two windows and
a bit extra points around it. The reason why each contour finds two windows
together instead of one lies in the enlarged contour visible in figure 5.31. The
contours have grown in width making it so each of the individual contours has
joined with its neighbour.

Flaws similar to scene 1 can be identified with captured flat surfaces as well
as beam-like structures but the result for the windows is a lot better than not
getting a result at all. The remarks made in §5.4.2 regarding the downsides of
capturing closer to the windows still hold as can be seen in the results. The
areas captured are the ones closest to the scanner position, used as reference
position here, as these appear the largest on the scene. Enlarging the kernel
in these areas meant that they could properly connect but edges further away
from the scanner (see the right part of figure 5.31) have lost their details in the
dilation process and have merged into something that cannot easily be identified
anymore even by humans, showing once again that this method has its up and
downsides.

Figure 5.35: Results acquired using enlarged contours for scene 2.
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Figure 5.36: Overview of the results from scene 2 within context of the scan. Once again
the roof is removed to give a look inside the point cloud for additional reference

Scenes 3 and 5 where both captured close to each other, but once again show
differences in figure 5.32 and figure 5.34. Here scene 3 properly captures a win-
dow above the opening to the Orange Hall, whereas scene 5 identifies a contour
for the opening itself. The results they generate can be seen in figure 5.37a and
figure 5.37b, and figure 5.38 and figure 5.39 put them in their respective scene
context. As this overview of the results in their scenes is quite zoomed out a
zoomed-in reference to see the result match the window and opening they depict
is shown in figure 5.40a and figure 5.40b.

Notable is that the regions of interest found in scenes 3 and 5 are captured
on top of each other, which makes it odd as to why the contour was good enough
in one scene but not in the other. The cluster found in scene 2 correctly shows
the correct window but once again extra data is added onto the result due to
clustering. In scene 5 no cluster is labelled as a window, which is correct in this
context and happened because the contour detected was made out of separate
clusters in 3D space which did not cluster together as they were too far apart.

(a) Scene 3 (b) Scene 5

Figure 5.37: Results from Scene 3 and 5 with enlarged kernels. The points representing the
candidate window found in scene 5 are circled in red.
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Figure 5.38: Overview of the results from scene 3 within context of the scan without the
roof.

Figure 5.39: Overview of the results from scene 5 within context of the scan without the
roof.
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(a) Scene 3 (b) Scene 5

Figure 5.40: Zoomed in look at where the result in scene 3 and 5 were captured.

The methodology did, however, not capture all of the glass present in scenes
3 and 5, which can better be seen in figure 5.41. In the scenes, there were
glass windows and glass doors present right next to the openings they did find.
figure 5.38 and figure 5.39 show that some data behind these glass objects has
been registered but when looking at the contours found the responses were
lacking especially in scene 5, which is most likely due to the windows being
more obstructed.

Figure 5.41: Circled in red are glass windows and doors that are not properly found in either
of scene 3 and 5.

The final scene to cover is scene 4 which was captured in the hallway next
to the Orange Hall. The results for this scene are shown in figure 5.42 with the
context in the scene given in figure 5.43. As the regions of interest became quite
large in this result a zoomed-in view of the results can be seen in figure 5.44
and figure 5.45. In this scene, there were 5 regions of interest detected and all
5 of them found the window that matches the contour. The results found in
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this scene had similar problems to the other results such as flat areas also being
deduced to be window locations as well as beam-like structures, but what is
most interesting in these results is the number of points directly reflected on the
glass, which is especially prevalent in figure 5.45 which is even more special as
this is the window furthest away from the scanner.

Figure 5.42: Results from Scene 4 with enlarged kernels.

Figure 5.43: Overview of the results from scene 4 within context of the scan without the
roof.
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Figure 5.44: A zoomed in view on the deduced window locations in scene 4 adjacent to the
Orange Hall

Figure 5.45: A zoomed in view on the other deduced window locations in scene 4
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Chapter 6

Discussion and Conclusion

This thesis set out with the goal of deducing the location of glass windows in
3D point clouds using only some of the most basic components one could have
when analyzing point clouds, to make the method accessible and applicable to
multiple datasets. In this chapter, the conclusion of the thesis will be provided.
First, the research questions are evaluated and answered, then a discussion of
the method is given and finally, a conclusion on the thesis as a whole is provided.

6.1 Research questions
In this section first, each of the subquestions is explained after which the research
question is answered within the scope of this thesis.

6.1.1 Answers to the subquestions
• What properties are required from the scanning medium to be able to deduce

glass?

In this thesis, it is shown that for deducing the location of glass the only
properties that are necessary for an initial estimate are a standard 3D
point cloud which has the spatial properties of X, Y and Z-coordinates
by definition and possibly a reference point in space to make sense of it
all. To do so, assumptions about the objects that are sought need to be
made as using X, Y and Z-coordinates alone can not detect a material
that is not captured in the scene. The assumption is made that glass is
present when the structure of a regular window is found (see subquestion
3). Using this assumption it is, therefore, possible to deduce the location
of glass using only 3D coordinates and a reference position, although as
the results have shown it is not trivial. The reference point is needed to
make extra assumptions like knowing which parts in the point cloud are
indoor or outdoor, which in turn can be used to depict which points show
the captured scene and which are possible artefacts in space created by
for instance reflections.
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• How reliable is the deduction of the location of glass from 3D point cloud
data within the chosen research scope?
As has been shown by the results, the reliability of the deduction of the
location of glass from 3D point cloud data within the chosen research
scope is questionable at best. The contour detection is something the
methodology depends on a lot and in the complex environment that the
Orange Hall turned out to be, detecting contours that accurately capture
windows was a difficult task. Edges would not connect properly even
after performing closing or the opposite would be the case meaning that
noise would be too prevalent and interfere with the detection of the proper
outline of the contour. Once proper contours were found the accuracy of
deducing the location of window-like structures in the regions of interest
is quite high, but so is the presence of false positives in them making it
hard to give a final reliable conclusion that a cluster is for sure a window.

• How can the deduction of glass be improved using the characteristics of
regular windows?
Characteristics of regular windows in this thesis have been that they are
rectangular and are placed perpendicular to the floor. Having these char-
acteristics makes it possible to make assumptions as to what a cluster that
represents a window would look like. This makes it easier to deduce which
of the clusters found in the regions of interest acquired after
performing contour detection is the most likely to be a window. If these
assumptions can not be made it becomes a lot more difficult to deduce the
presence of glass based on spatial properties alone, as glass can be found in
indoor spaces in all kinds of shapes and forms. It is also a material that in
itself is seldom properly captured in the data, so without a structure that
indicates its presence, it might even be impossible to deduce the location
of glass using only a LiDAR point cloud.

• What are the advantages and disadvantages of trying to deduce glass in a
1D, 2D and 3D view of the scene?
An initial idea for the methodology was to look at the points in 1D to de-
duce glass. The points were in the order of their capture over time making
it possible to see the lines the scanner captured and deduce jumps in dis-
tance and intensity. This approach could therefore be used to detect holes
in the point cloud, but it was hard to distinguish any meaningful geomet-
ric information out of it as the capturing is dependent on assumptions on
how the data is captured, how the scanner moves during the capture and
noise fluctuations without (much) spatial reference to cover for them to
name a few. Also, the points being in the order of their capture is not
guaranteed with all point clouds making this approach not even applica-
ble in the first place. The benefit of the approach would be the increase
in speed such an implementation could provide, as the data is stored in
such a format so that an analysis of it is only dependent on the previous
and next points, which makes the time complexity of the application scale
with only the sample size. So should a parameter that properly identifies
glass be found in the data, then such a 1D approach can bear fruit.
As such a parameter was not present in the data used in this thesis, this
thesis did focus most of its attention on 2D and 3D analysis of the point
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cloud. The 2D view of the scene had the benefit of the vast amount
of libraries available for and research performed on 2D images. Using
this, rectangular structures like windows can be identified as shown in the
results using 2D spatial neighbourhood information instead of the more
complex 3D environment. The amount of research into and flexibility
of 2D analysis are therefore the greatest strength of this approach but
reducing a dimension of the data makes it unable to accurately deduce
the location of the windows in the original 3D data, which in the end is
the goal as enhancing the scene with the location of glass is where the
value of the methodology lies. It also removes depth in this case, which
makes it possible to have overlapping points that are captured in the same
pixel and can greatly influence the results of the methodology should the
background data have more detail than the foreground data where glass
is expected to be found, as can be seen in §5.4.2. In Terrestrial Laser
Scanning as used in this thesis overlapping points are less of an issue as
the scanner is fixed in place, so all data when referenced to the scanner
location should have no overlap, but in Mobile Laser Scanning approaches
this could lead to more problems when analyzing the scene in 2D.

Finally, when looking at the scene from a 3D view the 3D point cloud data
can be analyzed in its most complete view. There is separation possible
between different clusters in height, width and depth and spatial features
on the spread of points can be computed in all 3 dimensions as well. But
there are downsides to working purely in 3D. For one, structure analysis of
the whole scene is quite an intensive process as all points that are free in
space are hard to project to just a single layer especially in environments
with noise this can create a lot of pseudo walls that should not even be
present in the scene. Furthermore, it is possible to lose orientation when
viewing 3D spaces as a lot of information is occluded in one angle while
visible in the other making it harder to distinguish specific shapes if the
data is not viewed from the correct angle.

So every view has its benefits which the methodology tried to exploit by
converting between both 2D and 3D.

• To what extent can points behind glass be used to improve the deduction
of glass candidates?

The points behind glass can indicate a lot to make the deduction of glass
better. They can visualize objects that are present behind glass, which is
the most standard case, but this excludes that the found hole in the point
cloud is caused by mirrors or other reflective materials, as they can only
show reflections of what is found on the other side of the scene. They can
also be used to visualize reflections which when properly detected exclude
the possibility that the hole in the point cloud is simply a hole, as a
reflection shows an active process that happened at the location of glass.
Using these properties it is possible to classify holes found in the point
cloud as glass, mirror or hole in the result, similarly to an approach that
Koch et al. (2016) used in their work. After the detection of the points
behind glass and using them for potential further gain the points could
also be removed to better represent the actual indoor space captured.
Reflected points could also be filtered out in this set to remove only the
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points that should not exist in the scene saving points captured behind
glass (see Chapter 7 for more information on this potential).

6.1.2 Answer to the main research question

Now that the subquestions have been answered the main research question can
be answered.

How can the location of glass be deduced using only information
acquired from 3D point clouds and a scanner location?

The location of glass in 3D point clouds can be deduced using only an addi-
tional reference location following the proposed methodology from Chapter 4.
This entails converting the 3D point cloud into a 2D image by projecting points
in similar directions onto the same cell and taking the variance of all those
points to be the pixel value of the image. Then contours indicating the location
of potential windows are found and extracted. These contours are then used to
single out regions in the point cloud, that are clustered using a density-based
clustering algorithm. Finally, the clusters of points are tested upon a set of
geometrical criteria and the cluster most resembling a window is deduced to be
the location of a glass window in the point cloud.

The result for this can be enhanced in all kinds of ways by adding more data
or modifying parameters but the 3D spatial information provided in the point
cloud combined with a reference point to make extra assumptions is enough,
as long as assumptions can simplify the targeted structure that identifies glass.
One of these simplifications is related to the spatial shape of glass that is desired
to be found, for which rectangular windows can be an example as has been
shown in the experiments performed. Properties of viewing the scene in multiple
dimensions may also be used to help with the deduction of glass. The example
of this used in the methodology is first using 2D for finding the direction in 3D
space where windows are expected and then using these directions to simplify
the analysis of point clusters in 3D. The results did, however, also show that
false positives are a common occurrence so this should be taken into account
when deducing the location of glass in 3D point clouds in this way.

6.2 Discussion

As shown in the results (see §5.4), finding the location of glass in the scene
has partially been achieved with some of the windows being deduced properly
in the different scenes. This shows that additional insight can be added to
point clouds enhancing them with more semantic information even on the most
standard point clouds.

The method is shown to not be very accurate due to having been applied
to a complex scene with beams and threads before the windows which make
it harder to extract all correct contours and even split some of them up. The
method does show promise in identifying where walls with a lot of windows are
present as a human after seeing the results can already determine a lot from
them afterwards. The criteria used in this analysis can also be tuned to be less
strict but that can introduce false positives in the results, as was seen when
increasing the kernel used in the closing morphological operator. This made
the method able to acquire more results but did come at the price of detail as
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it registered window like structures that were larger than before because more
windows were joined to be in the same set.

Another limitation is that assumptions needed to be made to get results.
Glass itself is a material that comes in all kinds of forms and is therefore hard to
completely find based on shape alone. To deduce its location properly, without
relying on assumptions of the structure glass is contained in, other more complex
data will be required, like using a sensor fusion of LiDAR and Sonar to actively
detect it or potentially using deep learning to find more connections in the data
that indicate its presence.

This research has been performed on TLS data, while MLS data is also a
prevalent data capturing method to produce LiDAR point clouds. The reason
the focus of this thesis was on TLS is that the reference location for this manner
of capturing is easy to determine as it is simply the scanner location, but with
MLS this becomes trickier as the scanner moves causing issues with points on
two sides of walls being visible in the conversion to 2D if a substituted location
has been chosen as the reference location. MLS does however have the benefit
of almost guaranteeing that points are captured under multiple angles which
might lead to other possibilities for glass deduction itself.

6.3 Contribution to Research
This thesis provides a way to add insight into the presence of glass, one of the
most troublesome materials for LiDAR scanning, in point clouds. This method
has been devised to be used on any 3D point cloud as long as a reference
position for the scanner position is given, but is mostly focused and tested on
data acquired from Terrestrial Laser Scanning. Having only these requirements
makes the technique of glass deduction more accessible while keeping the time
invested and materials used to a minimum, making sure as little extra costs are
added as possible.

The method also shows a new way of using a conversion from 3D space to
2D space to apply image processing techniques to determine regions of interest
in 3D space for further analysis. Although initial results may have varied, it
shows the potential of inspecting 3D scenes differently, using the best of both
worlds when trying to get to a result.

The results themselves give an insight into where glass is present in the scene
giving a better understanding of the scene as a whole. This understanding of
the presence of glass in places where initially it was thought that nothing was
present allows for better use of the data in planning navigational routes or
escape routes for both humans and machines, insight into maintenance costs for
the building and properly splitting the indoor and outdoor environments. The
methodology itself also shows a lot of potential for growth in value by using
the deduced windows locations to eliminate artefacts created by them from the
scene in post-processing as well as adding missed windows at a later moment
based on the logic applied to already known results.
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Chapter 7

Future work

This thesis proposes a methodology for deducing the location of glass windows
in any 3D point cloud as long as a reference position inside of the scene, prefer-
ably the scanner position, is provided. The methodology set out what it to
do and achieved this, but the result can be improved in numerous ways, such
as improving the detection of the contours that depict the window candidates,
making the method applicable to even more datasets like MLS data or taking
into account other properties that can push the results forward by improving
the classification of the results. As a consequence, the following areas for future
research are presented.

7.1 Usage of different data to enhance the initial
point cloud

As shown in the related work section using additional data or manipulation in
the scene can get rid of a lot of the problems glass can bring to LiDAR datasets.
In this thesis, the deduction of glass windows has been performed using as little
extra information as possible to make the methodology as widely applicable
as possible but as has been shown in related research actively knowing the
location of glass can be very beneficial to improve the LiDAR results. Sensor
fusion with Sonar sensing is one of these approaches that can actively detect
glass, although the accuracy of the resulting Sonar data is lower than the LiDAR
data. Another approach of creating a dataset with actively detected glass can be
created with physical manipulation of the scene by putting something thin that
can be detected by LiDAR directly in front or behind the glass or using sprays
on glass that makes it detectable. Having an additional dataset that has the
location of glass in it, makes it easier to investigate the neighbourhoods around
the glass as will be discussed in the next section, but can also in itself bring a lot
of extra information to the scene. There has already been a lot of research into
how this can help in for instance robot navigation, but not to enhance indoor
environments in a full 3D space where its uses can also be greatly beneficial,
although its costs go up along with it.
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7.2 Further investigation of point neighbourhoods

To enhance the certainty of classification of the window candidates further re-
search could be done into the points around or behind the found window candi-
date. Points behind the window candidate can be checked to be reflections as has
been shown in the work of Yang and Wang (2011). This could help further the
classification of the window candidates by making a distinction between glass,
mirrors and other specular reflective objects. Namely points in point clouds
that look to be behind mirrors should always be reflections, so if the points do
not properly fit as a reflection the window candidate can not be a mirror, but if
everything matches as a reflection then it becomes a lot more likely that it is a
mirror instead of a glass window. If the points have no reflective match what-
soever, the assumption that the window candidate is a hole in the wall becomes
significantly more likely. Should the results perform some reflection matching
but also some missed matches then glass is the most likely option. Combining
this research with different scanner input as mentioned before, some of these
possibilities can already be filtered out, but the better the material is classified
the better the scene can be understood and consequently the uses of said data
can also increase.

7.3 Combination of multiple scans

As touched upon by §7.1, data acquired from different sources like Sonar or data
captured after manipulating the scene so glass is better detectable can be used
to enhance the initial LiDAR dataset. If these sets can be combined, a better
overview of the scene as a whole can be created. The work of Zou and Sester
(2021) has shown that an initial step for iterative enhancement of LiDAR point
clouds is possible, but this research has been performed on outdoor scenes with
a single scanner. The same methodology should, however, be feasible in the
indoor environment as well. Using the option of enhancing point clouds with
other point clouds can enhance the results from this thesis greatly. The results
from each scene are currently capable of deducing the location of some but not
all windows in the point cloud. Should new scans be performed at different
positions then the results of both scans joined together will be able to give a
better view of the scene as a whole. A practical example of this is already
provided in the results for scene 1 and scene 2, which both found different
windows in the same general area, so when these are combined the total scene
will be enhanced.

Combining multiple scans can also be used to make the methodology pro-
posed in this thesis more generally available. By being able to combine multiple
scans into one this methodology can also be applied to Mobile Laser Scanning
data. Currently, there is the risk of improper overlap of data due to not being
able to select a single centre of space in MLS data once data on multiple sides
of a wall has been collected. When the option of stitching multiple sets together
gets introduced, however, MLS data can be split up in time frames where the
scanner was in only a single room. By doing so a position in that room can be
chosen as a reference position and the methodology can be applied to this part
of the data. Once this has been performed for all rooms and the results have
been merged a total overview of the indoor environment can be achieved.
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7.4 Deep Learning
Finally, this research did not make use of any deep learning approaches, due to
the interest in trying to control all variables and logic that would be used, as
well as a lack of labelled data available for training and testing. The potential
that machine learning has for detecting spatial features and accurately making
predictions based on sometimes unknown factors to researchers is immense. For
purpose of this methodology, it could possibly be used to find more and better
window candidates in 2D space, help in determining while clusters depict the
windows in 3D space and possibly help better classify the results. This does,
however, depend on data being available to train such a network, which would
need to be able to distinguish between holes, windows and mirrors. Aside from
this, the network should also be able to work with different kinds of indoor
environments as they are very diverse making it harder to get robust results
out of deep learning approaches. But should data become available to properly
train a network to work on all kinds of indoor environments, regardless of their
interior, then this could be able to become a very promising method for deducing
the location of glass in indoor spaces.
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Appendix A

Reflection of Master Thesis

3D indoor environment models keep on evolving over the years and with their
evolution so do their uses keep increasing. These models do, however, not al-
ways give an accurate representation of what the environment is actually like by
either being outdated or by being incomplete. This thesis set out to contribute
to solving one of these problems by proposing a methodology that is capable of
deducing the location of glass windows in LiDAR point clouds. Glass is one of
the easiest methods to miss while capturing an environment using LiDAR as it
is almost fully transparent to the laser beam LiDAR typically uses to capture
the environment. By introducing the methodology proposed in this thesis one
can enhance a point cloud previously captured and by providing just a refer-
ence position in the scene, a deduction of the location of glass windows can be
done. This is important because adding extra obstacles in the environment can
help with purposes such as planning evacuation routes around these obstacles.
Knowing the presence of glass in the environment can also help with trimming
the dataset by removing points captured behind glass that indicate reflections
or objects outside of the indoor environment. As this methodology can also be
applied to already existing point clouds the costs for using it are also very low
to enhance already existing assets.

The method presented in this thesis uses concepts of data collection, con-
version, processing, analysis and visualisation, all of which fit with the Master
Geomatics. The data has been collected in the point cloud format which is cov-
ered extensively during the Master and it was captured using Terrestrial Laser
Scanning. The data itself was presented in 3D as it was a point cloud but using
techniques learned in the courses of the master this could be converted to 2D
while containing still representing the scene, after which it could be used to turn
it back to 3D as well. Data processing was also a very prevalent part of the
thesis, like converting data between dimensions, performing data enhancement,
using edge and contour detection, clustering them in groups and calculating
properties on it. These properties were then analysed and used to determine
which clusters are representing windows in the end. Finally, a lot of data analysis
and visualisation was performed in Cloud Compare an open-source library that
was introduced to me during the Master but which has helped tremendously
during this process.
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The progress of the thesis itself was rough, to say the least. I personally
decided to follow my three electives spread out over 3 quarters which in hindsight
was a huge mistake. Doing this led to a lot of issues with my priorities as the
thesis deadline seemed to be so far away, that the rest often took precedence.
Because of this, the P2 was quite rushed and as such my mentors and I were
not always on the same page as to which direction to go into. This became
especially clear when between the P2 and P3 my initial proposal turned out to
not go the way I wanted it to.

This caused me to reconsider and doubt a lot in my methodology and com-
pletely threw off my planning for the rest of the thesis. We, therefore, decided
to focus on one direction and ensure that that could be finished, but at that
time due to personal circumstances, my concentration was not with the thesis
anymore. This caused a lot of delays until at the start of September 2021 my
mentors advised me to talk to a student counsellor. With him, I started working
on a plan to finish my graduation, while my mentors gave me some space to
finish everything and this thesis was realised.

In conclusion, this thesis evolved a lot over its creation with different alleys
being explored and a lot of confusion along the way. In the end, I am satisfied
with the result, but if I could do it again most of the things would be changed.
The electives would all be done in a single quarter to allow for a full focus
on the thesis afterwards. In the initial planning phase more communication
with the mentors would have been done to ensure everyone is on the same page
regarding the intended results, before I would mindlessly start searching for
solutions to unclear problems. During the data collection step, an easier scene
would be picked to ensure the creation of a working methodology first which
could afterwards be applied to a harder scene to see its results in that setting.
I think that in doing so the process would have been a lot more pleasant and
that motivation for the thesis itself would have also improved as a clearly laid
out plan turned out to work significantly better for me.
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