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Disclaimer 
 

This research is written by me, Yannick Bouten, as both a student at Utrecht University and 

intern at JIVC/KIXS, part of the Defence Materiel Organisation of the Dutch Ministry of 

Defence. The Ministry of Defence formulated the initial needs for research into this topic, which 

were further developed by me in collaboration with my supervising team and with the support 

of the University. 

This research is deemed unclassified (“ongerubriceerd”) by the Beveiligingsautoriteit JIVC and 

therefore approved for publication in this form. No data or software has been used from the 

Ministry that would otherwise infringe upon the unclassified nature of this research or its 

scientific transparency. The research is entirely unrelated from current use of deep learning 

methodologies by the Ministry of Defence so any similarities are entirely coincidental.  

Questions about the research can be directed to me personally and feel free to do so. 

Questions about the classification can be directed to the Beveiligingsautoriteit JIVC. 
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Abstract 
 

The aim of this research was to execute a proof of concept on the added value of deep learning 

methodologies as part of remote sensing analysis. This was done in collaboration with the 

Dutch Ministry of Defence to improve the knowledge on this within the geo-domain. Deep 

learning constituted two different applications as part of this research; super resolution, which 

is to increase the spatial resolution beyond it is original limit (Yue et al., 2022) and feature 

extraction. The latter is also interesting as applying a geo-analysis task on super resolution 

data can prove to be a suitable methodology to evaluate the result and also attributes to the 

increase scientific interest in deep learning within the field of remote sensing (Yang & Newsam, 

2013). 

For super resolution models with varying amounts of input data have been tested and the 

metrical evaluation showed no significant issues although the models could be further 

optimised. Augmenting data to increase the usability of a dataset proved promising in 

performance but not conclusive in its added value to modelling super resolution. Visually the 

super resolution models showed more detail in comparison to a Sentinel 2 image of the same 

area but their differences in metrics did not result in apparent visual differences between 

models. 

Feature extraction showed that all super resolution models outperformed a Sentinel 2 based 

extraction model in metrics. In comparison to the ground truth road network the model proved 

difficult and below expectation.  

The conclusion is therefore that super resolution and deep learning based analysis 

methodologies can be of added value for remote sensing analysis and usable in an accessible 

and application-oriented manner. On an absolute scale however both the evaluation metrics 

and evaluation analysis in the form of road extraction showed that it could definitely benefit 

from further optimization to improve both performance and generalizability of the models.  

The discussion touched upon several aspects of the research that could attribute to this, 

including other types of satellite data, open-source modelling software and alternative analysis 

tasks using super resolution data. 
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1. Introduction 
 

Remote sensing as a discipline has been around for a long time, but has really matured 

in the post-World War 2 era by the development of satellite technology and the broader 

discipline of what is called Imagery Intelligence (Fernandez-Beltran, Latorre-Carmona & Pla, 

2017). Satellite imagery nowadays provides a qualitatively good, reliable and frequently 

updated source of intelligence and information on areas where ground-based or lower-altitude 

data collection is not always possible or geopolitically desirable. For example geographically 

remote areas or areas where natural disasters occurred but also geopolitical and military 

events. A fitting recent example is the built-up of military forces by Russia at the Ukrainian 

border and the armed conflict that evolved from it. Social media as a new form to gather 

intelligence became really apparent but geographical information (in the form of satellite 

imagery) did not lose importance, if it only were for geo-referencing images or videos from 

social media. Satellites therefore quite literally can serve as “eyes in the skies”.  

However, these eyes have their limitations. Where aerial photography can provide imagery 

with a resolution of sometimes just a few centimetres, this is relatively rare for satellite sensors. 

Satellites like Spot 6 and Superview operate in the (very-)high resolution segment of satellite 

remote sensing, being able to deliver a respectively 1,5- and 0,5-metre spatial resolution for 

the panchromatic band and respectively 2- and 6-metre resolution for the multispectral bands. 

These are commercially operated meaning that data can be either expensive or restricted in 

use. Military satellites can likely provide imagery at similar or even better resolution levels but 

have even more restrictions regarding use. There are however also public satellites that 

provide imagery in an open-access format (Gargiulo, Mazza, Gaetano, Ruello & Scarpa, 2019) 

like NASA’s Landsat programme or ESA’s Sentinel mission. These satellites deliver 

multispectral imagery up to respectively 30- and 10-metre resolution and the Landsat satellites 

provide 15-metre resolution for the panchromatic band (which Sentinel 2 is not equipped with). 

For a type of research that is heavily dependent on the use of the satellite imagery like 

detection, extraction, classification and monitoring change for an object of study like 

vegetation, urban environment or infrastructure one should consider if the spatial resolution is 

sufficient enough for the proposed research. Analysing small scale objects can be difficult on 

lower resolution data and the difference in resolution between open-source and commercial 

satellites can provide a reason to try and close this gap.  

In the military the use of satellites and remote sensing technology is almost just as old as the 

technology itself as it can prove to be advantageous to have knowledge about an area of 

interest or operation, especially when a possible opponent does not have this or to a lesser 

extent. Important to consider when using satellite data as a source of intelligence is their two 

main technical constraints; the temporal and spatial resolution. Geospatial intelligence derived 

from satellite data can only be updated as often as the area is revised by the satellite, which is 

often at a constant interval but depending on the satellite can range from a revision time of just 

one day up to almost two weeks. Real-time data and intelligence gathering is therefore difficult 

which would shift the focus more to the need for intelligence about more solid objects like 

infrastructure and the built environment. As also pointed out earlier the spatial resolution of 

data influences what types of analysis you can do with it (and the proposed research influences 

the required resolution) so that is also important to consider as data gathering can be 

challenging depending on the needed spatial resolution. It can be assumed that the military 

and intelligence branches of many countries have very high-resolution sensors at their disposal 

but for geopolitical and security reasons those sources are not openly available for other 

research or their existence itself might not even be publicly disclosed. Research outside the 

actual intelligence domain is therefore more dependent on publicly available or purchasable 
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data or its own adaptability to overcome issues in regard to the resolution with technical 

solutions or innovative methodologies to accommodate the research needs.  

An important and emerging trend is the use of SR (Super Resolution). Super resolution is the 

term for an algorithmic based approach to increase image resolution beyond the original 

boundaries of the sensor and original images, which results in higher resolution data that 

especially in the field of remote sensing is able to facilitate new developments and 

opportunities for using images (Bioucas-Dias et al., 2013; Li, Yang, Dong, Wang & Huang, 

2020; Li et al., 2020). Super resolution is seated on the principle of being able to gradually 

“learn” over time by putting in large amounts of data and analysing it through a layered neural 

network. This is just one of the many fields and applications of deep learning and has become 

a recent trend in remote sensing in relation to super resolution but also for the purpose of 

analysis (detection, extraction, classification and regression) (Krizheysky, Sutskever & Hinton, 

2012) because of its high-end performance compared to traditional methodologies. As a subset 

of deep learning  it uses algorithms (the most well-known are CNNs (Convolutional Neural 

Networks)) and can be seen as a deepening to current and more manual analysis 

methodologies (Tian & Ma, 2011).  

Figure 1.1: Sentinel 2 (left image) versus super resolution (right image)  

  

Source: https://mdl4eo.irstea.fr/2019/03/29/enhancement-of-sentinel-2-images-at-1-5m/  

Shown in figure 1.1 is a hands-on example of super resolution that has been performed on an 

area in southern France, with on the left the original and on the right the super resolution image 

as a result of a training model that used Spot 6 data. This illustrates that super resolution has 

been performed successfully in the geo-domain and it shows results in a practical manner 

without just looking at performance parameters. However, it could be an extra dimension to 

super resolution research to not only perform it, evaluate the parameters and show the output 

(of which the latter was already qualitatively well done in this example) but also to try and use 

super resolution data in an actual remote sensing analysis task. This could be a feature 

extraction or a detection assignment but the added value of it would be to show hands-on what 

super resolution could offer to a specific research objective and how it compares to data of a 

different resolution level. The latter would also illustrate the actual need of doing super 

resolution or if already existing data sources are sufficient for a task at hand.  

The next chapter will discuss the goals and research questions, expanding and 

operationalising the introduction on remote sensing analysis and deep learning into a research 

design. The chapter will also discuss the research limitations and elaborate on what this 

research is not about. 

https://mdl4eo.irstea.fr/2019/03/29/enhancement-of-sentinel-2-images-at-1-5m/
https://mdl4eo.irstea.fr/2019/03/29/enhancement-of-sentinel-2-images-at-1-5m/
https://mdl4eo.irstea.fr/2019/03/29/enhancement-of-sentinel-2-images-at-1-5m/
https://mdl4eo.irstea.fr/2019/03/29/enhancement-of-sentinel-2-images-at-1-5m/
https://mdl4eo.irstea.fr/2019/03/29/enhancement-of-sentinel-2-images-at-1-5m/
https://mdl4eo.irstea.fr/2019/03/29/enhancement-of-sentinel-2-images-at-1-5m/
https://mdl4eo.irstea.fr/2019/03/29/enhancement-of-sentinel-2-images-at-1-5m/
https://mdl4eo.irstea.fr/2019/03/29/enhancement-of-sentinel-2-images-at-1-5m/
https://mdl4eo.irstea.fr/2019/03/29/enhancement-of-sentinel-2-images-at-1-5m/
https://mdl4eo.irstea.fr/2019/03/29/enhancement-of-sentinel-2-images-at-1-5m/
https://mdl4eo.irstea.fr/2019/03/29/enhancement-of-sentinel-2-images-at-1-5m/
https://mdl4eo.irstea.fr/2019/03/29/enhancement-of-sentinel-2-images-at-1-5m/
https://mdl4eo.irstea.fr/2019/03/29/enhancement-of-sentinel-2-images-at-1-5m/
https://mdl4eo.irstea.fr/2019/03/29/enhancement-of-sentinel-2-images-at-1-5m/
https://mdl4eo.irstea.fr/2019/03/29/enhancement-of-sentinel-2-images-at-1-5m/
https://mdl4eo.irstea.fr/2019/03/29/enhancement-of-sentinel-2-images-at-1-5m/
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2. Research goals 

2.1 Research questions 
 

Together with the Ministry of Defence, this Master thesis will serve as a proof of concept 

on the possibilities of using and applying super resolution, and also in a broader aspect about 

the use of deep learning as a methodology to enable super resolution in the first place and 

also to evaluate its performance. The research and knowledge enrichment this thesis will 

provide on this subject can be beneficiary to the different branches and departments of the 

armed forces that are involved in the geo-domain but it is also meant to go beyond interior 

purpose and to enable use by others. The Ministry of Defence can use its means and 

knowledge to contribute to the overall body of knowledge within the geo community and diving 

further into deep learning also attributes to a better understanding of its potential in geo-

information science.    

An important distinction to make is that deep learning as a methodology serves a dual purpose 

as part of this research. First and foremost, it is about applying a deep learning model that is 

able to improve the resolution of input data to a higher standard which is defined as super 

resolution. A second purpose is the use of a deep learning model as a way to do feature 

extraction. This distinction is important to make because in analysing an image the pixels in 

the image need to be firstly grouped based on spectral and spatial similarities (segmented) 

before the next step can be taken, which is grouping those segments into distinctive classes 

(classification) (Esri, n.d.). The added value of this analysis in relation to the research is to 

make a quantitative comparison between unmodified and super resolution data. Super 

resolution is an operation and eventually a result on itself and deep learning extraction is a 

methodology to evaluate the quality of this operation and the resulting data.    

The main research question therefore focusses on the super resolution aspect of this research 

and also immediately touches upon the case for which this proof of concept will be tested. The 

sub questions dive deeper into the specifics of super resolution and how it is already being 

used and while also pay attention to deep learning in relation to feature extraction. As it is a 

practical proof of concept the sub-questions will also be strongly focussed on discussing the 

empirical results as this can be important knowledge and hands-on experience for future use 

of super resolution, for both the military and others.  

The main research question is therefore as follows: 

To what extent can super resolution be of significant added value to feature extraction on 

Sentinel 2 data?    

To make answering this question more manageable and also improving the research 

structure, this question is broken-down in several sub-questions:  

-What is super resolution and how is it being used in geographical information systems as a 

deep learning application?  

-What are the needs and requirements for satellite imagery to be suitable for use in a super 

resolution model?  

-To which degree does a super resolution model enhance the resolution of Sentinel 2 data?   

-How can a deep learning model be applied to analyse Sentinel 2 data?  

-What are the qualitative and statistical differences in a feature extraction analysis by using 

super resolution data?  
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2.2 Research limitations  
  

This research is in the first and foremost place about assessing the added value a super 

resolution model could provide in comparison to unmodified (lower resolution) satellite data 

and how this influences the results of an actual analysis.   

The deep learning analysis aspect of this research is definitely also an interesting and currently 

prominent development in the field of geo-information is subservient to the super resolution 

component of the research. Deep learning analysis as a development within the field of GIS 

(Geographical Information Systems) could be an entire subject for a thesis by itself but in this 

context, it is situated as a methodological component then the overall theme of the research. 

Applying a deep learning extraction model as a methodology is just one of the many already 

existing approaches for remote sensing analysis that are being used. It is a suitable choice for 

analysis in this research as it is a relatively shallow and accessible network architecture and 

super resolution itself is seated on the principles of deep learning and therefore the analysis 

builds on the same foundational model characteristics. This justifies its use as an evaluation 

methodology of the super resolution model but is in this research a mean and not the end.  

The research itself can be characterised as explorative because practical research into super 

resolution is not that extensive. The goal is to show what can be done within the possibilities 

of super resolution and how that reflects in a subsequent deep learning analysis model, 

whether or not it is desirable or favourable for an organisation to adopt such a workflow is up 

to their own choice.   

As a partner in this research the Ministry of Defence is interested in explorative research in 

this field as it is not widely applied in the line of work of the department. Especially in a military 

context the parameters like the area of interest, the conditions of the time when data is 

collected and also the requirements for analysis can be different comparison to this research. 

Gaining insight into the theme of super resolution and providing the Ministry with a practical 

application of the methodology mainly serves the purpose of knowledge enrichment on this 

topic. The goal is not to advise or decide if and how it could be incorporated in their own 

research and analysis workflows. The usage of super resolution and deep learning analysis go 

beyond the military domain of remote sensing and therefore it has been chosen not to 

incorporate the military aspect into the research design and focus the analysis on a subject 

that also has a non-military use. This approach also benefits transparency and usage by other 

researchers as it is not directly restricted by confidentiality agreements of any kind.   

As also stated in paragraph 2.1 this research serves as a proof of concept about what the 

added value of using deep learning solutions such as super resolution and feature extraction 

could be as part of geospatial intelligence and remote sensing analysis. It is supposed to 

provide a practical insight and use-case about these technologies and the software that is 

being used without per se stating what is the ultimate best functioning solution for either the 

Ministry or other possible users. However the user experience in this specific case will be part 

of the discussion about this research. 
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3. Theoretical and conceptual framework 

3.1 Deep learning in remote sensing analysis 
 

Deep learning has been deemed as one of the major trends in big data and technology 

overall (MIT Technology Review, 2013), with its main characteristic being the use of neural 

networks in a network architecture of at least three layers (Zhu et al., 2017). Deep learning 

reduces the dependency on user input and knowledge as it is able to learn based solely on the 

input data. Much applied CNNs have shown to be suitable for analysing and extracting objects 

from images and segmenting semantics and RNNs (Recurrent Neural Networks) show a 

suitability for sequential data tasks as recognizing movements. This indicates the variety of 

tasks deep learning can be used for and the variance in different network architectures that 

are suitable for a certain task but also shows promise for application in the remote sensing 

field, although the characteristics of remote sensing and satellite imagery result in their own 

difficulties that need to be addressed.  

(Zhu et al., 2017) address some geo-related specifications when it comes to using deep 

learning in RS (Remote Sensing):  

-RS data can be collected by many different sensors which each have their own specifications 

and therefore data fusion might be relevant.  

-RS data is geo-located, meaning that each object or pixel in the data is somewhere set in 

space and enables data fusion with other geographical data and also allows for linking images, 

location and routing services and even reality (by augmentation) to a geographical place in 

space.  

-RS data use geodetic measurements, which are set and clearly defined parameters that can 

be achieved with a certain confidence. Knowledge about a sensor’s quality and parameters 

are however important.  

-Time and temporal resolution are essential as the surface captured by different sensors can 

change over time and nowadays satellites can provide new data in a short timeframe.   

-Also, RS is faced with the challenges of big data, as single sensors can have a collection of 

large quantities of data. However, handling the data is rather streamlined due to sufficient 

annotations and metadata that accompanies the actual data.  

-Often RS aims at gathering information on the physical geographical or biological quantities 

on earth then per se objects. But dependent on the actual purpose for a research expert 

knowledge might still be needed to interpret results.  

The interest for deep learning within the field of RS can also be seen in statistics, as the 

quantity of papers written on this topic increased fast over time, especially since 2014. This is 

far from generic as shown by the sub-field on how to interpret high resolution imagery which 

again has further specifications like scene classification, object detection and image retrieval 

(Yang & Newsam, 2013).  

Scene classification is an important concept in the analysis of satellite imagery as it includes 

several specific tasks in RS, with detecting objects and changes as some of the most important 

ones and as it is in the name also classifying them (Bhagavathy & Manjunath, 2006; Chen, 

Zhao, Li & Yin, 2006). The possibility of using high resolution imagery however forms a major 

challenge in this as it makes small scale objects better detectable in the analysis but can 

therefore be different to assign a specific scene to them as they are rather similar (Zhu et al., 
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2017). Because of this the methodology for this type of analysis is two-folded; first extracting 

features and subsequently classifying those using different deep learning models. Three 

important categories of deep learning models exist:  

-Pre-trained models, for example a CNN that relies on the original image data resulted in 

qualitatively good classification results. This by building the feature representation directly from 

the features out if the intermediate layers (Ayala, Sesma, Aranda & Galar, 2021; Castelluccio, 

Poggi, Sansone & Verdoliva, 2015; Hu, Xia, Hu & Zhang, 2015; Marmanis, Datcu, Esch & 

Stilla, 2016; Penatti, Nogueira & Dos Santos, 2015).  

-Pre-trained models that are made fitting for specified conditions. This can be beneficial on 

small scale labelled sets of data (Castelluccio et al., 2015; Nogueira et al., 2017) and result in 

a better fit for a specific area but can be difficult to accomplish due to a relatively small scale 

of publicly available datasets (Xia, Yang, Delon, Gousseau & Sun, 2010; Yang & Newsam, 

2010; Zou, Ni, Zhang & Wang, 2015).   

-Models that need to be trained completely. A network is then trained with only the already 

existing dataset of satellite imagery but will likely be far less accurate in comparison to the 

already trained model categories. It can however be favourable to do so due to the complexity 

of the pre-trained models in especially the amount of needed parameters to be learned and 

would result in a better local fit for images but will need a new training for each new dataset 

(Luus, Salmon, Van den Bergh & Maharaj, 2015; Volpi & Tuia, 2017; Zou et al., 2015).  

3.2 Super resolution 
 

In the scientific literature the relevance of super resolution focusses on its benefits; it is 

a vivid field of research (Huang, He, Wu & Gou, 2021), it enables research methodologies that 

rely on high spatial resolution images which are originally difficult and costly to come by (Wang 

et al., 2019), apart from spatial also the temporal resolution of a certain data source can be 

important to monitor environmental changes (Pouliot, Latifovic, Pasher & Duffe, 2018) and also 

enhancing the data and therefore the research possibilities fits in the broader trend of open 

data (Galar, Sesma, Ayala, Albizua & Aranda, 2020).   

Overall the goal of super resolution, independent from the specific technical operations 

undertaken to do so, is to achieve a spatial resolution that is in the end higher than the 

resolution offered by the original image. A classical method to achieve this is to perform an 

interpolation (either bi-cubic or bi-linear) which defines new pixel values based on a calculation 

of the adjacent pixels (Yue et al., 2022). It is however not ideal as it can lead to loss of finer 

spatial characteristics in the original image.  

Achieving super resolution imagery is to some extent possible with the already present sensors 

and data of a singular satellite platform. Apart from RGB (Red, Green, Blue) and Infrared bands 

many satellites also have a panchromatic band, which is distinctive from multispectral bands 

as it captures light in a broader wavelength range which results in an image that shows 

brightness instead of colour, resulting in a higher spatial resolution then would be able to 

achieve in multispectral bands (Müller et al., 2020). Measured in resolution ratio the ratio in 

ground sampling distance of individual sensors is 1:2 (for the Landsat satellite) or even 1:4 (for 

Spot) between the individual multispectral and the panchromatic band (Ehlersa, Klonusa, 

Åstrandb & Rossoa, 2010). This difference in resolution opens up the possibility for data fusion, 

which in this case is called panchromatic sharpening, that fuses a lower resolution multispectral 

with the higher resolution panchromatic band to increase its resolution while preserving the 

multispectral image characteristics (Ehlersa et al., 2010).   
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Although resolution is a prevalent challenge in remote sensing it is not solely a geo-information 

related issue as it is also embedded in the broader field of computer vision; a discipline which 

also pursues the achievement of higher image resolution but traditionally focusses on the use 

of algorithms (Müller et al., 2020). CNNs, due to their similarity with already applied sparse-

coding methods in in super resolution, provided a simple model architecture with three 

convolutional layers that provided end-to-end mapping from Low to high resolution images as 

what is known as Super Resolution CNNs (SRCNNs) (Goodfellow et al., 2015). SRCNNs can 

process three different colour channels (and are therefore suitable for RGB data) and pre-

process data via bi-cubic interpolation and can be evaluated in performance with multiple 

widely used metrics, therefore both relying on already established methodologies but also 

being able to outperform most of them in the process (Müller, Ekhtiari, Almeida & Rieke, 2020).   

Liebel & Körner (2016) emphasize the usability of SRCNNs, without making alterations to the 

architecture of the model and applying it directly on the three different spectral bands. It 

outperformed bi-cubic methods and showed it is applicability in remote sensing science, while 

it also pointed out possible improvements (Müller et al., 2020). Processing time was considered 

lengthy and in what is known as fast SRCNN the qualitative performance was similar to 

traditional SRCNNs while processing time decreased by a fortyfold. Also the input data was 

altered in multi-channel SRCNNs which enabled more than the original single input images, 

which addressed a common problem in super resolved imagery which was a lack in image 

frequency.  

CNNs are considered a relatively shallow type of network architecture, meaning there are also 

deeper forms of network design available and researched. VDSR (Very Deep Super 

Resolution) and AE (Auto-Encoder) networks are considered to be more deep forms of network 

architecture compared to the traditional CNNs as described above and rely on the principal 

that the architecture allows to surpass layers (Müller et al., 2020). Although their deeper 

network structure they are able to reach better results compared to other CNNs and do show 

better values for PSNR (Peak-Signal to Noise Ratio) and SSIM (Structural Similarity Index) 

while it comes at the downside of a more extensive and complex network structure.  

CNNs can also be distinguished based on their specific architectural design, where LeNet can 

be considered as one of the first architectures which was developed to detect visual patterns 

in images and initially performed well on handwritten digits (LeCun, Bottou, Bengio & Haffner, 

1998). A more recent and for Remote Sensing purposes interesting CNN-architecture is the 

ResNet (Residual Network), developed by He, Zhang, Ren & Sun for the specific purpose of 

classifying images with an as low as possible error rate (2016). Data is augmented and down 

sampled (Simonyan & Zisserman, 2015) when handled by the convolutional layers but residual 

networks exploit the fact that in deeper layered networks the dimensions of data (in this case 

images) can be the same for the input and eventual output to allow the network to skip over 

layers. Counter-intuitive the deeper network structure does not lead to an increase in 

complexity because of this principle and also counters traditional saturation and eventual 

degradation of model accuracy and inflation of training error (He & Sun, 2015). ResNets 

address this optimization difficulty and were able to outperform less deep network architectures 

in classifying, detection and localization tasks on the ImageNet reference test dataset (He et 

al., 2016). 

A final group of network architectures are the SRGANs (Super Resolution Generative 

Adversarial Networks), which are seated on the principle of trying to learn the structure of the 

input in order to recognize the consistency and patterns that are present in the input data. The 
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model then tries to generate sample cases as if they originated from the actual source data 

while actually, they were made by the model based on its knowledge of the input data. A 

SRGAN is divided into two separate models where one is used to generate samples and the 

second one tries to classify whether they are real or not, meaning that the generative aspect 

of the model can be classified as good performing if it is able to let the classifier believe that a 

generated sample is real. In super resolution the added value of SRGANs mainly lies in its 

ability to cope with a relatively low quantity and quality of data (Romero, Marcello & Vilaplana, 

2020) while also containing a competitive element in its functioning which results in a high 

image fidelity (Müller et al., 2020). Its downside lies in that it is still outperformed by VDSR and 

AE types of architectures in PSNR and has a relatively quantity output and perceptual 

attractiveness compared to other methods as the output is more photorealistic as such (Ledig 

et al., 2017). 

3.3 Conceptual model 
 

Figure 3.1: Conceptual model  

 

Made by: Yannick Bouten  

The two preceding theoretical paragraphs in combination with the practical insights of 

the introduction accumulated into the conceptual model as shown in figure 3.1. The 

fundamental concept for performing remote sensing analysis in this research is the application 

of deep learning. The colour purple depicts versatility in a military context and is therefore also 

used here for deep learning, as it serves two different modelling tasks within this research. For 
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super resolution there are the three concepts of training, architecture and spatial resolution 

which based on the literature can be deemed as the most important components to consider 

in the methodological continuation of this research. Training is an important aspect as using a 

pre-trained model especially on a small scale dataset as it can benefit both model performance 

and processing time (Castelluccio et al., 2015; Nogueira et al., 2017). In the extent of the 

training component lies the specific architectural design where one that is suitable and 

preferably favourable for image analysis (He et al., 2016) can achieve the best result for the 

geo-information domain and also benefit performance and usability. Spatial resolution and to 

be specific the difference in resolution the model will try to overcome determines the 

requirements for data to train and test the models with but also whether or not it is feasible or 

that other data solutions might be more purposeful (Ehlersa et al., 2010). The feature extraction 

model is there to accommodate a performance evaluation of the super resolution model’s 

output and as also explained in the introduction the extraction task can be sub-divided where 

pixels in an image are first segmented and then classified.   

These are the main theoretical concepts that this research will be founded on. The upcoming 

methodology chapter will dive into the actual practical research design and the different 

aspects that are important to enable the actual modelling operations. It can be seen as a 

practical breakdown of the theoretical components of the conceptual model as depicted in 

figure 3.1.    
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4. Methodology  
4.1 Features and label data  
  

Before discussing the research area and the different needs regarding satellite data for 

this research, it is useful to first consider the feature that is chosen as subject for the feature 

extraction model. Although it is a methodology to evaluate the performance of the more 

important super resolution model it is still relevant to discuss as it partly forms the cause of this 

research and elaborates on why it is relevant to extract this type of feature from satellite 

imagery.  

The feature chosen to classify is road infrastructure. From a military perspective infrastructure 

(and therefore roads) are important logistical corridors to enable and support all kinds of 

warfare. Infrastructure is a relevant factor in what is known as the operating environment and 

also the civil assessment which are both analysed in the preparation phase of a possible 

military action (Ministerie van Defensives, 2019). It is a crucial feature in a deployment area to 

have and gain intelligence about, both for your own but also to predict how your opponent will 

make use of the area’s infrastructure (Ministerie van Defensie, n.d.). Therefore, having a 

working extraction model beforehand that can segment and classify an area’s road 

infrastructure is more efficient and less time consuming while also providing information on it 

early or even before actual deployment. Besides a military purpose analysis can also be useful 

for remote areas in the world where doing this on site is not always possible. This could prove 

to be crucial information in for example the case of a natural disaster in an area in order to 

coordinate emergency assistance (which can depend on physical infrastructure).  

The source for label data about road infrastructure to use in the extraction model of this 

research is OSM (OpenStreetMap), an open-source geographic data service with almost 

worldwide coverage. It is community based and for the Netherlands the overall quality and 

completeness of the database is very high. As it is open-source the classification scheme used 

for objects that are registered as part of the service is also transparent and therefore usable 

by others.  

Table 4.1: OSM road classification  

Road Type Description  

Motorway A major highway with at least 2+ divided 

lanes (Autosnelweg [in the Netherlands])  

Trunk  Second most important type that are not 

highways (Autoweg)  

Primary  Third most important type of road that 
connects cities (Provincial road that is not an 
Autoweg)  

Secondary  Type of road that connects settlements (local 

roads)  

Tertiary  Level of roads that connect settlements and 

villages (small scale local roads) 

Link* Slip roads/ramps interconnecting all the road 
types above 

*Link roads are a different road label for all these road types in OSM but are in this classification merged 

together 

Source: OpenStreetMap wiki  
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Table 4.1 provides an overview of the classification of road infrastructure as used by OSM 

which can also be used as part of the feature extraction model via label data. The benefit of 

using OSM is that there is already segmented and classified data for road infrastructure 

available for the whole research area which is available for download in Shapefile and other 

common geodata formats. 

Geofabrik is a German foundation of OSM contributors that provides access to OSM data via 

their own download server in different data formats and in a structured manner with a worldwide 

coverage. However smaller data packages for specific countries and also provinces can be 

acquired. Data is also updated frequently (at the moment of writing the latest version is from 

08-11-2022) and accompanied by metadata to maximize transparency and usage.  

Important to note is that the choice for road infrastructure puts the analytical focus of this 

research on features and not on objects. This also steers the scope towards how to use super 

resolution as a data source to map a network of features (as roads are interconnected) rather 

than discrete objects in the geographical space of a satellite image. That also means that an 

extraction model should not be assessed based solely on its numerical output but how it 

compares to the ground truth data and the network as a whole. Also important to consider is 

that the roads corresponding to the labels as shown in table 4.1 are restricted to motorised 

traffic only, resulting in an analysis that form a military perspective would focus on the logistical 

aspect as that is dependent on motorised transport nowadays and roads also need to be 

suitable for this purpose. That means it leaves out the small scale infrastructure which could 

also be relevant from a military aspect (as it could be used for enemy movement) but for a 

proof of concept and logistical aspect would make the analysis unnecessarily extensive.  

4.2 Research area for model training 
  

It is important to designate the area in which this research will take place for a multitude 

of reasons. First it narrows down the data need as many satellites in principle provide 

worldwide coverage but that would put a great burden on the space needed to store data and 

also dramatically increase modelling time. For a proof of concept the amount of data needed 

and the time modelling takes should not be too extensive as the focus is on the experimental 

aspect of the methodology that is being tested. Secondly the spatial characteristics of the area 

(heavily urbanised/countryside) indicate what kind of features can be expected and also to 

what extent the results and analysis can be representable for similar regions. Adding to this 

are the geographical location and the local climate as these can influence the conditions under 

which data is collected and illustrate possible representation for other areas.  

The Netherlands as an area is geographically well documented and data is relatively easy to 

access, which makes it optimal for a proof of concept. The North of the Netherlands has been 

chosen as the main research area as can be seen in figure 4.1. This area has several 

advantages in regard to data needs, as there is a large amount of high resolution images 

available. Also these images are relatively cloud-free and therefore also well illuminated, 

partially due to the proximity to sea. From a model training perspective this area is favourable 

in comparison to for example the highly urbanised Randstad area as it is a more rural area and 

training a model in this will be more representable and usable for other areas of interest instead 

of when it is trained on a largely dominant urban centre. The area borders the sea which 

reduces although not completely prevents the presence of cloud cover during data capture as 

a cause of stronger winds which is in this case advantageous. The North of the Netherlands is 

a sole statistical area (NUTS1-region, used for regional statistics) which constitutes out of the 
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three provinces of Friesland, Groningen and Drenthe, which makes discussing and quantifying 

the area size more transparent.  

The area is characterised by a relatively low population density, with the provincial capitals 

being the only three municipalities with more than 100.000 inhabitants. This also translates to 

a relatively less extensive high-capacity road infrastructure and of which the most important 

inter-city roads are shown as red lines in figure 4.1.  

Figure 4.1: Map of the Research Area  

 

Made by: Yannick Bouten     



19 
 

4.3 Satellite data  
  

For this research two different types of satellite data will be of importance; the medium- 

resolution data on which a super resolution model will be applied and tested and the high-

resolution training data which will be used to train the model. High resolution data is used to 

train a super resolution model how to predict data on a higher resolution level. Subsequently 

a trained model will be applied to medium-resolution data to try and predict super resolution. It 

should be kept in mind that this is originally medium-resolution data but which will result in an 

image predicted at the high resolution at which the model has been trained. 

This super resolution data will then be used to train a feature extraction model to recognise 

roads in the super resolution data based on the feature label data as described in paragraph 

4.1. A similar extraction model (with the same label data) will be trained directly on medium-

resolution data to be able to compare analysis results between what can be considered as 

original unmodified data and predicted super resolution data. 

The research area, as defined in paragraph 4.2, is the area from which data will be used to 

train both types of models. Testing will be done on a different area in the Netherlands where 

cloud free remote sensing data is available from a similar moment in time as the data which 

was used for training. This to prevent different weather conditions at the moment of data 

collection but also to try and eliminate model bias and to illustrate how the model performs on 

new data. However some overlap might be possible as images are relatively large in 

geographical size and the Netherlands is a relatively geographical small country. To give an 

idea of possible model bias the models will also be tested on an area with a completely different 

physical environment. A trained model will inherently be biased because of the type of 

environment it is trained on but this will serve the purpose of providing insight about to what 

extent that will interfere with the model generalizability. 

Table 4.2 compares multiple important operating and technical aspects of seven widely used 

remote sensing satellites. For this purpose, it is necessary to know for which period data is 

available, what the spatial resolution of the data is, at what local time images are made and 

what the inclination is of the satellite’s orbit and therefore the angle under which images are 

made and lastly also who operates a sensor. The earliest launched satellite of the ones shown 

in table 1 is the GeoEye-1 satellite, although still in operation by Maxar technologies it also 

launched new satellites later in time. Also not unique is the operation of multiple satellites in 

the same orbit, phased 180 (with two) or 90 (with four) degrees from each other to significantly 

reduce the temporal resolution and therefore the revision time. In regard to the spatial 

resolution Sentinel and Landsat operate on a medium resolution where Worldview, Spot, 

Pleiades, GeoEye-1 and Superview can be considered as high-resolution sensors. For 

segmenting and classifying road infrastructure one should consider that a too high resolution 

would not per se be necessary as the features of study do not require such resolutions to be 

classified. High resolution data for relatively lower resolution features would only unnecessarily 

put a burden on data storage and processing time. In orbital inclination the satellites can be 

considered as almost identical with only small differences but an important deviation can be 

seen in local overpass time. Worldview captures local images at around 13:30 in the afternoon 

while Spot does the same at 10:00 and the other three high resolution satellites at 10:30. This 

difference in time is crucial as using images captured at other times of day will cause a different 

shade because of the positioning of the sun and also the weather conditions at the times can 

be different from each other.   
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Table 4.2: Remote sensing satellites  

Sensor Name:  Sentine

l 2 (A 

and B)  

Landsat 

8  

Worldview 

3*  

Spot 6-

7  

Pleiades  

1 (A and  

B)  

GeoEye-1  Superview  

Launch date:  June 
2015 
(A), 
March  
2017 

(B)  

Feb. 

2013  

Aug.  

2014  

Sept.  

2012 

(6),  

June  

2014 (7)  

Dec. 
2011 
(A), Dec.  
2012 (B)  

Sep. 2008  Jan.  

2018  

Resol

ution:  

MSI.  10m   30m   1,24m    6m   2m   1,84m  2m  

PANC 

H.  

/  15m   0,30m   1,5m   0,50 m  0,50m  0,50m  

Local  

Overpass 

Time:  

10:30    10:00   13:30   10:00   10:30  10:30  10:30  

Orbital 

inclination:  

98,62  

Degree

s  

98,2 

Degrees  

97,97  

Degrees  

98,2 

Degrees  

98,2 

Degrees  

98  

Degrees  

97,49  

Degrees  

Data 
Quantization: 

12 Bits, 

stored 

as 16 

Bits  

16 Bits  11 Bits  

(14 Bits  

SWIR)  

12 Bits  12 Bits  11 Bits  11 Bits  

Operator:  ESA  NASA/US 

GS  

Maxar 

Technologies 

(USA)  

Airbus  

Defence  

(Spot 
6), 
Azercos
mos  
(Spot 7)  

CNES  

(France)  

Maxar 

Technologies 

(USA)  

Beijing  

Space  

View  

* The Worldview-4 was also launched but was lost due to mechanical problems  

Source: Satellite Imaging Corporation, ESA & USGS  

Satellites like GeoEye-1 which are launched a very long time ago would mean that the 

database to select a period from would be relatively extensive. A more recently launched 

satellite like Superview would mean the timeframe to get data from is rather limited. Sentinel 2 

and the Spot mission offer a good combination for this research as their respective local 

overpass time are similar to each other. This ensures that the conditions under which data is 

collected will be similar and also that the images are revisited at a comparable interval, again 

benefiting parallel capturing conditions but also an adequate renewal of current data. Pleiades 

would in this aspect be even more suitable but the very high resolution of this satellite would 

be somewhat too high for the purpose of segmenting and classifying roads and mainly put a 

large pressure on storage capacity. 

Spot is a commercially owned and operated satellite service which means data is not per se 

openly and free of charge accessible. However, the Netherlands Space Office (NSO) provides 

a collection of Spot 6/7 images of different parts of the Netherlands, taken in several months 

over the years and in multiple formats (8bits, 12 bits and unmodified). These are easily 

transferrable to a local drive via their ftp-client, making retrieving this data fairly accessible. 
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Data is available for the years 2014-2016 with images being of all regions around the 

Netherlands. Sentinel 2 data is openly accessible via a multitude of services like the Sentinel 

Access Hub and Google Earth Engine, with data available over a longer period of time and 

free of charge. As Spot data is only available via the NSO from the period 2014-2016 Sentinel 

2 data used for the super resolution model and subsequent extraction model should be of the 

same time period. As the Spot data is provided as a database without accurate metadata 

images need to be downloaded before their quality and usability can be assessed but for 

Sentinel 2 portals like the Sentinel Access Hub allow to preview and also filter data based on 

for example cloud cover so the quality can be determined beforehand. 

4.4 Hardware and software   

4.4.1 Data storage  
 

A technical requirement that needs to be thought about is the need for storage space. 

This comes from the need for many different and also high-resolution satellite imagery and 

also super resolution and feature extraction data which requires storage as well. The Ministry 

of Defence provides an external SSD disk with 2 terabytes of storage capacity which should 

be enough to allocate all the data needed for this proof of concept. 

4.4.2 Hardware  
 

The hardware requirements of this research will mainly concern the scale of the 

proposed analysis and therefore the processing power and accompanied by that also 

processing time. Although there is time to conduct the empirical part of this research it is 

expected that applying a super resolution and deep learning extraction model on multiple 

images of parts of the Netherlands will take up a lot of processing time to be accomplished. 

For reference the average satellite image as found on the Netherlands Space Office serve can 

be up to twenty gigabytes of data already for Spot 6 images which means that for training the 

model already a lot of data needs to be processed before the actual input data is even 

considered, which although lower in resolution will take up a lot of storage space and therefore 

processing time as well.   

The Ministry of Defence provided a heavy duty graphical laptop for this purpose, which is given 

on loan for the duration of this research. As processing power and especially processing time 

can be an important factor for training and running models the technical specifications of the 

laptop are noted in table 2.2 

Table 4.3: Specifications graphical laptop 

Brand: Hewlett-Packard 

Type: ZBook Fury G8 

Disk space: 500 GB 

CPU 11th Gen Intel Core i7-11850H 

GPU: NVIDIA RTX A5000 

RAM memory: 64 GB 

Release date June 2021 

Source: Hewlett-Packard 

  



22 
 

4.4.3 Software  

 

How to perform the technical operation of super resolution and subsequent analysis 

tasks is not per se an issue of what is the best software package (as there are many available) 

to do that but what serves the research goal and the own user needs. 

Table 4.4: Examples of super resolution modules* 

Name Geo pre-trained Coding needed Licensing 

ArcGIS.learn API Yes No ESRI 

SR4RS Yes Yes Open-Source 

Super Resolution API No Yes DeepAI 

Open CV No Yes Open-Source 
*These are a few examples but in no way represent an all-encompassing overview of what is available 

in software solutions 

Source: Own research 

The examples as shown in table 4.4 represent a simplified comparison on some of the relevant 

attributes to consider for this research. SR4RS was used to perform super resolution as shown 

in the example of figure 1.1 in the introduction of this research and proves that it is suitable for 

geo analysis. Super Resolution API and Open CV are just some of the non geo pre-trained 

solutions available and especially Open CV is often applied as it is open-source just like 

SR4RS. For this research the use of ArcGIS.learn API is purposeful but that definitely not 

makes it the best choice in any case. In this case The Ministry of Defence also makes use of 

ArcGIS and as the purpose of this research is to provide a proof of concept and also improve 

the knowledge on this topic within the geo domain a complementarity in used software would 

be a desirable goal. The availability of information and tutorials on the possibilities of using 

super resolution and deep learning within the ArcGIS environment makes it a favourable 

solution but also it makes using it by other researchers who want to do something similar 

insightful and accessible. As ArcGIS Pro is a user interface that accesses specific scripts to 

perform operations it eliminates coding (almost completely) by the user.  It should however still 

be noted that Esri is a commercial provider and having a license for their software is therefore 

a crucial requirement.  

Since end 2021 the ArcGIS Deep Learning methodologies are integrated in ArcGIS Pro, which 

makes it possible to perform all the required operations within one and the same environment 

instead of needing to import/export data between separate environments. Important to state in 

regard to literature is that ArcGIS Pro enables deep learning using ResNet, which is pre-trained 

on over 1 million images of the ImageNet dataset and outperformed many other model 

architectures for image analysis (Hu et al., 2016). 

4.5 Empirical design  
  

The previous paragraphs of this chapter elaborated on methodological aspects of the 

required data, the area from which training data is extracted, the source from which data can 

be acquired and also the resources needed to perform the proposed deep learning analysis. 

Combining all these aspects attribute to the foundation of this research and what is needed to 

go from initial input data to the actual results that will provide insight into the model performance 

and will eventually contribute to answering the research question.   

Figure 4.2 provides a schematic overview of the steps needed to transform the initial input data 

needed to train the deep learning models towards the test data for which the models are 
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applied and provide the research results using Esri’s ArcGIS Pro. The sequence starting at the 

Spot 6 training image and ending in the super resolution image comprises the super resolution 

modelling section while the rest of the schema is about the steps needed to perform road 

extraction analysis. Operations represent actual geo-processing tools as how they are named 

in ArcGIS Pro. Special attention should be paid to the super resolution training image. A trained 

super resolution model is in this case applied on the research area to create image data that 

is used to train the super resolution road extraction model. Although seemingly similar to the 

super resolution image that is the result of the super resolution model it is from a different area 

(training instead of test area) and serves a different purpose in the analysis.  

Appendix A contains a guide with the in-detail technical description of how to prepare data for 

training the models and the parameters that are relevant as part of both the model training and 

model application. Although these are all left on default settings as part of the proof of concept 

they are added for reference purposes. These contain a level of detail not attributing directly 

to the research questions and therefore not elaborated on in this research integrally but were 

added as appendices for scientific transparency. Wherever relevant as part of the results 

chapters the information on technicalities will be discussed. 

Figure 4.2: Data processing workflow 

 

Made by: Yannick Bouten  
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4.6 Place of research  
  

Different institutions are involved in organising and supervising this research. 

In the first and formal place this research forms the thesis of the master Geographical 

Information Management and Applications. The scientific knowledge on the thesis process and 

this specific topic is at the University and the guidance as part of this research is also a task of 

the University.   

Because the Dutch Ministry of Defence is interested in the possibilities super resolution could 

provide for their tasks and branches that are involved in the geo-domain, they have a stake in 

this research as well although their formal role is limited. Their role in the research is more 

practical and hands-on in the sense that they try to facilitate and make this research possible 

by providing resources. They provide office space to work at, they provide hardware to enable 

the actual empirical phase of this research and also their practical knowledge and contacts on 

this topic and within the geo community can be beneficiary to this research. Being employed 

as an intern at the Ministry as well as being a student at Utrecht University enables to make 

use of all those resources for the duration of the research. 

The Ministry’s involvement is not via an operational branch but is accommodated via the 

Defence Materiel Organisation, an executive organisation that operates in services of the 

regular branches of the armed forces. As part of the Defence Materiel Organisation the Joint- 

IV (Informatie-Voorziening)-Commando (JIVC) is the Ministry’s main IT-branch. Residing 

under the IT-branch is KIXS (Kennis, Innovatie, Experimenten en Simulaties), a department 

focused on practical and scientific experiments involving different technology applications, 

again in service of other branches and services within the Ministry and the armed forces. KIXS 

is the department for doing research that can be of interest and benefit of other and more 

operational branches of the Ministry and is the department where this research will be done as 

well. 

This chapter discussed the methodological design for both super resolution and feature 

extraction, by elaborating on the features of interest, the area where the models will be trained 

on, the source of satellite imagery and how other resources like hardware and software are 

organised. These aspect all come back in the empirical design on how the actual modelling 

will be done and how data and the different methodological operations relate to each other in 

the overall workflow. The paragraph above also briefly discussed the context of where this 

research will be done and which actors are involved and what their responsibilities are.  

The next two chapters will discuss the results of the actual training and application of the deep 

learning models, both super resolution and road extraction. The split in two chapters was done 

to maintain structure as super resolution data will be used to train the super resolution road 

extraction model so this makes sense from a chronological perspective and also the split is 

useful as metrics to evaluate the models can be similar to each other. In both chapters first the 

results of the training and evaluation metrics will be presented and the second paragraph will 

be a visual evaluation by applying the models on a test area.  
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5. Results super resolution 
 

Training a super resolution model (or any deep learning model for that matter) is a 

research in itself as it is an experiment into how the combination of model type, the training 

data and training parameters lead to the most optimal model result.  

Before going into the results and quality assessment of when super resolution is applied on a 

test area of interest it is first important to evaluate the metrics in regard to how a super 

resolution model is trained. The final metrics of each trained model are summarised in a 

metrics report together with samples from the validation dataset, as shown by an example in 

appendix B. The raw data on all the evaluation metrics at each epoch can be found in appendix 

C. 

ArcGIS Pro displays multiple metrics in regard to the training process; LR (Learning Rate), 

training and validation loss, pixel colour value, PSNR (Peak-Signal-to-Noise Ratio) and SSIM 

(Structural Similarity Index). The super resolution models were trained with different amounts 

of input data to assess model quality with these metrics and to determine if there was a need 

for more input data to boost the quality. This led to models being trained with 1000, 2000, 3000, 

5250, 10500* and 21000** images. As described before labels for the images were created by 

down sampling the original images by a factor four to create images at 10 metre resolution. 

Important note is that for the amount of images up to 5250 the images are completely unique. 

5250 is the maximum amount of input image samples that can be created from the research 

area with a chip size of 512 by 512 pixels. This is relatively large but is chosen to ensure that 

for the analysis the Sentinel 2 model can have the same image size (although the difference 

in resolution) as then a chip size of 128 by 128 pixels can be used but the geometrical size is 

still the same. 10500* images can be created by applying an image augmentation on the 

maximum amount of 5250 by rotating each image 180 degrees, therefore doubling the amount 

of input images that can be extracted from the research area. The same is done for 21000** 

images by applying a rotation of 90 degrees.  

5.1 Metrics super resolution 

5.1.1 Learning rate 
 

Table 5.1: Learning rate 

Model images Minimum LR Maximum LR 

1000 2.29e-05 2.29e-04 

2000 2.29e-05 2.29e-04 

3000 9.12e-06 9.12e-05 

5250 1.32e-05 1.32e-04 

10500* 1.20e-04 1.20e-03 

21000** 6.31e-06 6.31e-05 
*: This model contains 5250 completely unique input images but the images have been rotated 180 

degrees to double the amount of input images 

**: This model contains 5250 completely unique input images but the images have been rotated 90 

degrees to quadruple the amount of input images 

The learning rate as a metric displays the rate at which changes are made to the model 

at each iteration in order to eventually optimize the model towards a stable estimation of the 

model parameters leading to a minimal outcome in loss values. The learning rate is between 
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0 and 1 and the actual determination of the parameter given to the model can be described as 

an equilibrium between relatively large/small adaptations, shorter and longer processing time 

and the (in)stability of the model while learning from the training data. A sliced learning rate is 

used by the model to model the first layers with the minimum rate and the last ones with the 

maximum rate, where the layers in between will have a rate within that value range.  

In table 5.1 the learning rate is displayed for each individual model. The learning rate was 

plotted by the training function and extracted the most optimal rate (learning rate in relation to 

model loss) and used that as the input variable. This indicates a stable training progress but 

also would result in a relatively extensive processing time to complete training. For 10500* 

images the learning rate is relatively higher compared to the other instances but overall the 

learning rate is comparable for the different amounts of input images used for each model. In 

each model the learning rate is increased by a tenfold after the first section is completed to 

make larger improvements to the model. 

5.1.2 Loss and pixel value 

 

Figure 5.1: Loss functions 

 

*: This model contains 5250 completely unique input images but the images have been rotated 180 

degrees to double the amount of input images 

**: This model contains 5250 completely unique input images but the images have been rotated 90 

degrees to quadruple the amount of input images 

Loss as a metric depicts how precise the model is in its prediction for a single test case. 

In an optimal scenario the model should be able (because it learns over time) to reduce the 

loss by iterating through the dataset. For an individual model the loss function would be 

inversed linear and tries to approach zero, which if it occurs results in a perfect prediction by 

the model. Figure 5.1 displays the average loss value for each model after its final iteration, 

where the distinction is also made between training, validation and pixel loss. Although some 

fluctuations are visible with varying amounts of input images the loss stabilizes for all three 

types. Training loss and validation loss show similar values in the figure indicating that the 

model fits rather well on the training samples and is able to perform in a similar fashion on the 

validation dataset, assuming a good fit. However it should be noted that the loss for both 
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metrics on an absolute scale is still rather high and seems to stabilize on a level further from 

zero than what would be desirable. Overfitting might even be the case as the training loss is 

diverging from the validation loss at 21000** training samples in comparison to the instances 

with less input images although it cannot be concluded yet that it might be significant.  

In the original Sentinel 2 image colours are displayed in a standard 8-bits RGB format. Average 

pixel value is a combination of red, green and blue with a value between 0 and 255 (as that is 

the maximum integer value for 8 bits). In the super resolution image these individual values 

and therefore the displayed average value are normalised on a 0 to 1 scale. As can be seen 

in figure 5.1 the pixel value is on average around 0,2. The original Sentinel 2 image had 

individual average RGB band values of 52, 69 and 78 and combining these band values into 

one value results in an average grey colour for the image. Normalising this value for Sentinel 

2 results in a normalised value of 0,26. Evaluating the pixel values for the super resolution 

models with the average normalised value for Sentinel 2 means that the super resolution 

models predict a lower normalised value, meaning that the image is darker on average but the 

difference in value is not a large offset in comparison to the original. 

Figure 5.1 shows that the model with 10500* amount of input images results in the lowest 

training and validation loss and also the difference between them is the lowest of the models 

trained, resulting in the best possible fit and also pixel loss is the lowest for this model. 

Therefore it would lead to the best results when evaluating based on these three metrics. 

An important observation that should be made that although training loss is for a majority of 

the test models higher than the validation loss (indicating a slightly possible overfitting), in 

general both losses decreased when the amount of input images increased. A consideration 

to be made is that after the model with 5250 input images the amount is still increased but not 

necessarily the amount of completely unique images, as the amount is increased by image 

rotation and therefore some similarity between images will still exist. Evaluating the initial 

decrease as a result of image augmentation (although further augmentation might cause an 

increase in loss) one could reason that if the amount of completely unique images is further 

increased after 5250 the loss will decrease as well. 

Figures 5.2 up to 5.4 further elaborate on the loss functions as shown in figure 5.1 by displaying 

values for the training loss, validation loss and pixel value at each iteration stage for the 

models. The loss is calculated as the MSE (Mean-Square Error Loss) by the following function; 

MSE = 1/n∑(y-ŷ)² 

Where y = actual pixel value 

And ŷ = predicted pixel value 

In a well-functioning model the loss should be reducing at each iteration step until a stable 

value is reached. As the MSE formula is quadratic this stability is not set to last and at some 

point continuing iterating through the dataset will lead to increase loss indicating overfitting of 

the dataset. The absolute differences in value for the losses between the models is relatively 

small but what is interesting to notice is that more input data does not necessarily reduce loss 

in this case. The training loss in figure 5.2 shows the same trend for all models but the initial 

training loss and also the progression for 10500* images is better than for the model with 

21000** images. The same can be noticed for the validation loss in 5.3 where again the 

differences are small on an absolute scale and the loss curve is similar to the curve for the 

training loss indicating a good model performance. When the curves for both the training and 

validation loss stabilize the validation loss is below the training loss for each model indicating 

the model does not perform well on the training set but also on the validation data. Figure 5.4 
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plotting the pixel value curves show the same trends in improvement as can be seen for the 

training- and validation loss again indicating a desirable fit for the model on in this case the 

pixel level as differences in pixel values are reduce as good as possible. These plotted curves 

illustrate that performing image augmentation can be favourable for reducing training and 

validation loss. Pixel value also decreases over time but on an absolute scale the decrease is 

in a different order of magnitude. As also explained earlier in this paragraph the absolute 

difference in comparison to sentinel 2 imagery is limited. Pointed out earlier in the initial results 

on the models and reoccurring here is that the training loss is here higher than the validation 

loss, indicating a possible fitting problem. Underfitting is not per se the case as the loss 

decreased significantly during modelling but overfitting is also not what is directly depicted by 

figure 5.2 and 5.3, where although the training loss is higher than the validation loss the gap 

between them is stable and does not seem to increase over time.  

Figure 5.2: Training Loss 
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Figure 5.3: Validation Loss 

 

Figure 5.4: Pixel value 

 

*: This model contains 5250 completely unique input images but the images have been rotated 180 

degrees to double the amount of input images 

**: This model contains 5250 completely unique input images but the images have been rotated 90 

degrees to quadruple the amount of input images 
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5.1.3 PSNR and SSIM 

 

PSNR and SSIM measure the overall quality between two images. While PSNR is an 

absolute measure that is displayed in dBs (decibels) the SSIM is a value between 0 and 1. 

Both are computed for the validation segment of the dataset. 

PSNR in computer vision represents the ratio between the signal power and the corrupting 

noise, illustrating the efficiency of the processing task applied on the validation data. The 

maximum PSNR is defined by PSNR=20*log(max pixel value), which for 8 bit imagery is 255 

resulting in a max PSNR of PSNR=20*log(255) = 48dB. The PSNR values displayed in figure 

5.5 for each model indicate a relatively low PSNR which means that the noise power is 

relatively strong compared to the signal power. Increasing the amount of input images results 

in an increase in PSNR and therefore a better processing quality but the increase is limited in 

relation to the maximum possible value for PSNR, which although being an ideal scenario in 

which the signal power is as strong as possible compared to the noise leaves room for 

improvement in processing quality. Important to note is that for the maximum amount of input 

training images for the research area (21000** images) results in a small decrease in PSNR 

in comparison to the previous data step which would indicate that noise becomes more 

prevalent at this point when the amount of input images would be increased. 

Figure 5.5: PSNR 

 

*: This model contains 5250 completely unique input images but the images have been rotated 180 

degrees to double the amount of input images 

**: This model contains 5250 completely unique input images but the images have been rotated 90 

degrees to quadruple the amount of input images 

SSIM is normalized between 0 and 1 (the actual value range is -1 to +1) and displays the ratio 

to which two images are completely similar (1) or completely not similar to each other (0). The 

calculation for SSIM can be broken down in three sub-parameters; luminance, contrast and 

structure. Although not individually reproducible as values in the metrics report they are 

relevant to take into consideration as they can be assessed visually, which will be the focus of 

the next subparagraph. SSIM values for the different models as shown in figure 5.6 shows a 

low and relatively stable SSIM for several models with a small increase towards the model with 

10500*, but a decrease when the amount of input images is further increased to 21000**.   
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Figure 5.6: SSIM 

 

*: This model contains 5250 completely unique input images but the images have been rotated 180 

degrees to double the amount of input images 

**: This model contains 5250 completely unique input images but the images have been rotated 90 

degrees to quadruple the amount of input images 

5.1.4 Performance matrix 
 

The previous paragraphs discussed several metrics on evaluating super resolution but 

for reference purposes table 5.2 will provide a complete overview of the metrics for each model. 

This to assess which one performs best and to provide insight about the numerical values for 

each different model’s metrics as these cannot be precisely dissected from the plotted curves 

for each model. 

Table 5.2: Performance metrics matrix 

Model Training Validation Pixel PSNR SSIM 

5250 1,32 1,09 0,20 6,93 0,13 

10500* 1,09 1,04 0,19 7,12 0,15 

21000** 1,15 1,08 0,20 7,01 0,14 

 

The table again illustrates that the super resolution model with 10500* images results 

in the best performance based on these evaluation metrics. Training, validation and 

pixel value are reduced to the best extent by this model and the PSNR and SSIM are 

higher compared to the others indicating less noise interference and a better similarity 

in images based on contrast, luminance and structure. It also shows that augmenting 

images has a positive effect in performance as the result in evaluation metrics 

increased compared to the scenario without augmentation (5250 images). Relativizing 

is important as further augmentation (21000** images) might be on the other hand 

counter-productive towards model performance as the matrix shows a small increase 

in loss and reduction in PSNR and SSIM compared to 10500* images. 
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5.2 Visual evaluation super resolution 
 

The metrics as discussed in the previous paragraph provide computational tools to 

evaluate the training, validation and test phases. Images are the result of the modelling based 

on these metrics but also serve a powerful purpose as visual examples that to some extent 

illustrate the influence of these metrics on the result.  

All model trainings reserve maximum 10% of data for validation, and a small batch of it is 

attached to the training report to display input images (the labels), target images (the original 

images) and the prediction/validation images. A small selection is shown in figure 5.7 for the 

models trained with 5250, 10500* and 21000** images. The tile size for the target and 

prediction images is 512x512 pixels which would result in a metrical size of 1,6384 square 

kilometres. As the focus of the research is eventually on detecting road infrastructure the batch 

in figure 5.7 all show some form of infrastructure to already give insight into how a super 

resolution model handles this type of environment.  

Figure 5.7: Input/Prediction/Target images for 5250, 10500* and 21000** images 
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What the batch shows is that their shapes can be preserved rather well by the model. Visually 

they are still recognizable as such and the same goes for other types of environment like 

neighbourhoods, agricultural land, vegetation and so on. What should be noted and was also 

pointed out by the metrics is the noise in the images. Achieving the level of detail and 

cleanliness of the target images might be a best case scenario but one can see that the 

prediction imagery falls somewhat short of that. This was also determined by the validation 

loss and the PSNR and SSIM but is visually supported by these images. Putting the focus on 

road infrastructure illustrates that outstanding pixel values within these segments like white 

lines and objects like roundabouts are somewhat difficult for the model to try and predict them 

as accurately as possible. 

Figure 5.8: Ground truth Sentinel 2 (upper) vs 10500* (lower, next page) super resolution 

image 
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Figure 5.9: Close up view of figure 5.8 on Amsterdam. Ground truth Sentinel 2 vs 10500* 

images (next page) super resolution imagery
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The previous figures 5.8 and 5.9 show the predicted super resolution imagery in 

comparison to the Sentinel 2 imagery of the same area, which serves as both the input 

data for the super resolution model and also as a ground truth reference dataset. What 

immediately shows up when comparing the imagery is the difference in contrast and 

luminance. The super resolution image shows a starker contrast between different 

features in the built up environment while the overall image has a lower luminance 

compared to the Sentinel 2 ground truth. Overall the image integrity seems to be 

preserved by the super resolution model as the distinct features like built up 

environment, road infrastructure and other features of interest (like the port area in 

figure 5.9 in the north-western part of the image) can still be recognized as such in the 

super resolution imagery. In general the super resolution model is able to predict super 

resolution correctly in a way that it preserves the general features as shown in the 

ground truth but the low luminance and high colour contrast and the metric evaluation 

which pointed out low structural similarity and high noise disturbance require a more 

in depth analysis.  
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Figure 5.10: Ground truth Sentinel 2 versus 10500* super resolution image 

 
Figure 5.11: Pixel Level samples of 5250 and 21000** super resolution imagery 

 
Evaluating the visual result at a pixel level as shown in figures 5.10 and 5.11 supports the 

earlier result from the training phase, which showed that the super resolution model is able to 

preserve the shape and structural integrity of objects in the image. The colour composition in 

the super resolution image somewhat darkened in comparison to the Sentinel 2 image. What 

is clearly visible at this level is that although the model predicts well and reduces loss it is 

influenced by the noise and low structural similarity as was also pointed out by the metric 

evaluation. The resolution is increased by a factor four but for low scale objects a correct 

prediction might be difficult due as pixels representing it can have an offsetting pixel value that 

can impede an accurate representation in the image or one that is needed to analyse these 

objects correctly. To assess the influence of this on analysis tasks the next chapter will 

evaluate the road extraction task that has been executed on these imagery to assess their 

quality and fit for use.  
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6. Results road extraction 
 

Training a road extraction model shows some similarities with training the super 

resolution model. The tools are similar, some evaluation metrics are the same but the 

parameters are different and several metrics specific to the extraction model are also 

introduced. Most important is the goal and purpose for which the model is trained and this  

Before going into the results and quality assessment of when road extraction is applied on an 

area of interest it is first important to evaluate the metrics in regard to how a road extraction 

model is trained. Also it is important to be aware of how super resolution relates to the road 

extraction as the super resolution output is used as input for road extraction. 

ArcGIS Pro displays five main metrics in regard to the training process; learning rate, training 

and validation loss, accuracy and MIoU (Mean Intersection over Union). The road extraction 

models where trained with different image input datasets. One with Sentinel 2 data (on 10 

metre resolution) and three models with super resolution data based on 5250, 10500* and 

2100** images (all with 2,5 metre resolution). The final metrics of each trained model are 

summarised in a metrics report together with samples from the validation dataset, as shown 

by an example in appendix D. The raw data on all the evaluation metrics at each epoch can 

be found in appendix E. 

Important comment to make beforehand is that all the road extraction models triggered the 

stopping criteria, meaning that continuation of training would lead to overfitting by the model. 

As that would making a qualitative comparison between models difficult due to the altering 

amount of epochs for each model a dashed line illustrates the curve for each metric as if all of 

them iterated for the duration of 20 epochs. A solid line illustrates the curve for the actual model 

that was used for testing the road extraction model and showing visual results, and a diamond 

representing the point where the stop clause was triggered and the model stopped improving. 

In regard to the metrics the stopping criteria as mentioned before is set by default to trigger 

when the validation loss did not improve for 5 epochs with a threshold value of 0,001. 

6.1 Metrics road extraction 

6.1.1 Learning rate 
 

Just as in training a super resolution model an extraction model improves when iterating 

through the dataset and makes improvements based on the learning rate. The logic 

assumption would be that as the learning rate for the super resolution model has been auto-

extracted by ArcGIS Pro this can be done for the extraction model as well. However this is not 

the case. Relying on the auto-extractor results in a relatively high learning rate (about 10 times 

higher in comparison to the super resolution model) and although the task at hand is different 

the visualization of metric curves for the training and validation loss indicate an unstable model 

where it cannot be assumed that after the last iteration a somewhat stable loss is achieved. 

The choice has therefore been made to reduce the learning rate to a set value of 0,0001, 

safeguarding a more stable modelling with small step improvements over time although this 

leads to a longer training time. The plots for the road extraction models can be found in 

appendix F to illustrate the instability the model in the case of relying on an auto-extracted 

learning rate, indicating a poor fit on the validation data and therefore giving more reason to 

try and reassess the model’s initial parameter in order to create a stable and better performing 

model.   
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6.1.2 Loss 

 

Figure 6.1: Training loss road extraction 

 

Figure 6.2: Validation loss road extraction 

*: This model contains 5250 completely unique input images but the images have been rotated 180 

degrees to double the amount of input images 

**: This model contains 5250 completely unique input images but the images have been rotated 90 

degrees to quadruple the amount of input images 

Both the training loss in figure 6.1 and the validation loss in figure 6.2 use the same 

calculation method as for super resolution. Meaning that loss should be seen as an MSE value 

indicating the mean-squared difference between predicted and actual values for in this case 

whether an area is a road or not. A difference with super resolution is that in this case the 

training of different SR models is also compared with Sentinel 2, which serves as a baseline 

for road extraction. What immediately stands out is definitely a result of the relatively higher 

learning rate compared to super resolution (although this was already altered as pointed out 

in paragraph 6.1.1) which results in the sharp decrease in loss during the first epoch. 

Comparing these loss curves with the previous auto-extracted rates as shown in appendix F 
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however shows that apart from the steep decrease the model is rather stable because of the 

low rate and only small changes are being made while iterating. This results in that after the 

initial decline in a somewhat stable loss value is already achieved, with some minor variation. 

The 20 epoch curves for the super resolution models even shows that increasing the amount 

of epochs increases loss in comparison to the point where the stop clause would otherwise be 

triggered, indicating possible overfitting. This is especially the case for the training loss in figure 

6.1 and applies to a lesser extent to the validation loss in figure 6.2, although there the case 

for stopping the modelling early can be made because more iterations do not lead to model 

improvement and therefore saves processing time. 

In general the use of super resolution based extraction models in this research leads to a 

significantly lower loss in comparison to the Sentinel 2 baseline, for both training and validation, 

where overall the difference in loss for validation is higher than for training. For validation the 

loss is more stable in value for the models while iterating and for the super resolution models 

also similar to each other while for the training data modelling is more unsteady and the 

differences between the super resolution models are more apparent.  

6.1.3 Accuracy  

 

Figure 6.3: Accuracy 

 

*: This model contains 5250 completely unique input images but the images have been rotated 180 

degrees to double the amount of input images 

**: This model contains 5250 completely unique input images but the images have been rotated 90 

degrees to quadruple the amount of input images 

Accuracy as a metric tells something about the quality of performance, but requires an 

elaboration to be understood correctly. Annotated as a simple equation accuracy is calculated 

in the following way; 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑇𝑟𝑢𝑒𝑃𝑜𝑠𝑡𝑖𝑣𝑒 + 𝑇𝑟𝑢𝑒𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒

𝑇𝑟𝑢𝑒𝑃𝑜𝑠𝑡𝑖𝑣𝑒 + 𝑇𝑟𝑢𝑒𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒 + 𝐹𝑎𝑙𝑠𝑒𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒 + 𝐹𝑎𝑙𝑠𝑒𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒
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The deep learning model only classifies if a pixel is a road or not but to prevent ambiguity all 

the subsets that comprise this formula are summarised; 

TruePositive  = A ground-truth road pixel is classified as a road 

TrueNegative = A ground-truth non-road pixel is classified as not being a road 

FalsePostive   = A ground-truth non-road pixel is classified as a road 

FalseNegative  = A ground-truth road pixel is classified as not being a road 

Figure 6.4: three road classifying scenarios (where left represents the ground-truth and mid 

and right are variant classifications) 

       

In total there are 75 pixels to be predicted. As shown in green there are 12 true positive pixels. 

54 blue pixels indicate a true negative. However 6 pixels indicated in orange indicate a false 

prediction, because the algorithm expected there to be a road in that pixel except the ground 

truth shows that there is no road. Also there are 3 pixels which should have been classified as 

a road but were not classified as such. For the three individual scenarios and the overall 

accuracy the results are; 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 1 =
5 + 20

5 + 20 + 0 + 0
= 100 %     𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 2 =

5 + 18

5 + 18 + 2 + 0
= 92 %  

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 3 =
2 + 15

2 + 15 + 5 + 3
= 68 %        𝑀𝑒𝑎𝑛 𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =

12 + 53

12 + 53 + 7 + 3
= 86,7 %  

For the baseline Sentinel 2 model the initial accuracy when commencing training is already 

78%, which can be considered satisfactory but can still be improved which the increase in 

value at each iteration also displays in figure 6.3. At epoch 20 the accuracy would have 

increase to 86% if it were not for the fact that the model triggered the early stop as if iterating 

beyond that point does not lead to significant improvements and could result in overfitting. The 

same can be said for the super resolution based models although their initial value was already 

93% and only increase to 96% when the early stop was triggered and the variance in accuracy 

was already rather limited. However based on these models and the input data using super 

resolution imagery does lead to higher accuracy although the initial accuracy was already high 

in the case of super resolution and the improvement in accuracy as a result of model training 

was relatively small. The Sentinel 2 model made larger improvements in accuracy by training 

but had an initial lower accuracy and training did not increase it beyond the initial accuracy 

super resolution models achieved. 
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6.1.4 Mean intersection over union 
 

Figure 6.5: Mean intersection over union 

 

*: This model contains 5250 completely unique input images but the images have been rotated 180 

degrees to double the amount of input images 

**: This model contains 5250 completely unique input images but the images have been rotated 90 

degrees to quadruple the amount of input images 

MIoU (Mean Intersection over Union, also known as Jaccard Index) is a metric also 

assessing a form of accuracy, to be specific the ratio indicating how closely a prediction 

matches the ground truth of the model. The equation to calculate this is similar to accuracy but 

has one major difference and should be assessed on a different scale: 

 

 

This equation leaves out the true negative aspect of assessing this accuracy like metric and 

evaluates the prediction on an object rather than global scale. To illustrate this take back the 

checkerboard example of a classification as shown in figure 6.5 with three different 

classification scenarios, which in total had an 87% accuracy. 

𝐼𝑜𝑈 1 =
5

5 + 0 + 0
= 100 %       𝐼𝑜𝑈 2 =

5

5 + 2 + 0
= 71,4 % 

  

𝐼𝑜𝑈 3 =
2

2 + 5 + 3
= 20 %         𝑀𝐼𝑜𝑈 =

12

12 + 7 + 3
= 54,5 % 

            

The MIoU of the scenarios would result in a value of 54,5 %, which is significantly lower than 

the 86,7 % shown for accuracy in the previous subsection. For scenario 1 and 2 the values 

would not be that different if the choice is between displaying the global statistic of 86,7% 

compared to these zonal IoU’s but for scenario 3 that is different as the model performed very 

bad in this zone while assessing based on the image as a whole (including true negatives) 

would not indicate. Accuracy displays how well the model was able to make a correct 

distinction between what is a road and what is not while (Mean) intersection over Union is a 
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𝑀𝑒𝑎𝑛 𝐼𝑛𝑡𝑒𝑟𝑠𝑒𝑐𝑡𝑖𝑜𝑛 𝑜𝑣𝑒𝑟 𝑈𝑛𝑖𝑜𝑛 =
𝑇𝑟𝑢𝑒𝑃𝑜𝑠𝑡𝑖𝑣𝑒

(𝑇𝑟𝑢𝑒𝑃𝑜𝑠𝑡𝑖𝑣𝑒 + 𝐹𝑎𝑙𝑠𝑒𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒 + 𝐹𝑎𝑙𝑠𝑒𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒)
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metric displaying the fit between the prediction and the TruePositive predicted road, cancelling 

out the influence of TrueNegatives. This is needed because in the example there is a strong 

class imbalance, as the amount of TrueNegatives highly outnumbers TruePositives. And as 

illustrated by the accuracy calculation the TrueNegatives are overall correctly classified 

resulting in a high accuracy although the fit of the prediction masks with the ground truth 

positive pixels is relatively lower and when dividing it into segments can be even very low on 

specific objects. 

Based on this example it should therefore be explainable that the curves shown for the MIoU 

of each model are lower in value than the accuracy. For Sentinel 2 the MIoU at the epoch the 

stop clause is triggered is 0,56 indicating there are on average almost just as many false 

positive and false negative predictions made in comparison to the actual amount of true 

positives indicating a relatively low prediction fit to the ground truth. The respective values of 

0,73, 0,66 and 0,71 for the 5250, 10500* and 21000** images models reduce it to a ratio of 

about a third of false positive and false negatives in comparison to the amount of true positives, 

indicating an improvement from the Sentinel 2 baseline. Although somewhat comparable in 

value up to epoch 2 the SR models steadily improve in IoU while the Sentinel 2 model already 

starts to reduce in improvement of IoU. In general that would mean that the super resolution 

models on average make less False positive and False negative predictions in comparison to 

Sentinel 2, indicating a better fit of the predictions made in comparison to the actual ground 

truth. The MIoU for the Sentinel 2 data could still improve when iterating after the moment the 

stop clause would be triggered but for the super resolution models the gained MIoU is relatively 

limited and again this would be at the risk of causing overfitting. 

6.1.5 Performance matrix road extraction 
 

Summarising the different metrics discussed in the previous sections of this chapter, 

one can see the values for each model in table 6.1 at the epoch were the stop clause was 

triggered. For both training and validation loss, the Sentinel 2 model is less able to predict 

values correctly, resulting in large errors which eventually result in the high mean-square error 

as shown below. All the super resolution models return a training and validation loss in the 

same order of magnitude with numerical small differences but the 5250 model performance a 

bit better in those metrics. That could be caused by the fact that it ran for one more epoch than 

the other super resolution models until the stop clause was triggered. In accuracy all the super 

resolution models perform the same and provide a large improvement in comparison to the 

Sentinel 2 model. In MIoU the model with 5250 images shows the best fit between the ground 

truth data and the prediction being made for that data as the ratio is the highest. The 21000** 

images model is comparable and 10500* images displays the lowest MIoU of the super 

resolution models, still being a large improvement in comparison to the Sentinel 2 model. 

Although the 5250 images model also performs the best in the dice coefficient the calculation 

seems to be off or not consistent as explained in the previous paragraph. 

Table 6.1: Performance metrics matrix road extraction 

Model Training Validation Accuracy MIoU 

Sentinel 2 1,15 1,46 0,81 0,56 

5250 0,29 0,33 0,96 0,73 

10500* 0,42 0,38 0,96 0,66 

21000** 0,47 0,35 0,96 0,70 
In all applying road extraction on super resolution instead of Sentinel 2 data can metric-wise 

lead to an improvement in results, up to a certain point as augmenting the data actually leads 

to a decrease in improvement. That being said performance is still greatly improved in 
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comparison to Sentinel 2 but using augmented data might therefore not be favourable as it 

does not lead to metrical improvements in results. 

The next paragraph will further continue with evaluating road extraction but focusses on the 

visual evaluation. Important to note is that this will also include some statistical evaluation, as 

displaying the results visual allows for geometrical operations that can also provide additional 

data that can be evaluated. 

6.2 Visual evaluation road extraction 
 

A visual interpretation of the performance of road extraction will enrich the analysis 

already conducted in paragraph 6.1 but will also illustrate the added value super resolution in 

general. It shows what can be done with super resolution data and how it compares to both 

ground truth Sentinel 2 and Spot data but also in comparison to ground truth objects that are 

being analysed, in this case road infrastructure. It is therefore also a further in-depth analysis 

of the results already presented in chapter 5 about super resolution on itself. 

Ground truth road infrastructure data is acquired open-source from OpenStreetMap. A 

distinction was made as discussed in the methodology between relevant infrastructure classes 

to include or exclude in the extraction, resulting in that only road features with labels matching 

these classes were included in the extraction task in the test area; 

Table 6.2: OSM road classes for road extraction* 

Roads Link Roads 

Motorway Motorway_link 

Trunk Trunk_link 

Primary Primary_link 

Secondary Secondary_link 

Tertiary Tertiary_link 

*This table is already included and explained in the methodology section but is repeated here for 

reference purposes 

Selecting only road features with these labels results in a visual network as shown in figure 

6.1. The multi-task road extractor model in ArcGIS Pro only allows for classifying binary values 

and therefore the road network is displayed as a single value after the selection as described 

above has been made. The extractions on the test area are shown for each different model in 

figure 6.2 in blue, with the original OSM network on the background to show the quality of the 

extraction in comparison to the ground truth. 
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Figure 6.1: Ground truth OSM road network 

 

Visually it can be seen that the road infrastructure with the chosen labels as shown in table 6.1 

mainly include infrastructure linking settlements, with an increase in density around larger 

urban areas but the actual small scale infrastructure is left out in this analysis. By making this 

selection for relevant infrastructure beforehand the amount of feature segments in this area is 

reduced from 540.000 to 64.000 meaning that the amount of features with which an extraction 

can be matched is much lower, but that the ones it can match with are reduced to a relevant 

portion of the entire OSM network.  
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Figure 6.2: Sentinel 2 (top left), 5250 images (top right), 10500* images (bottom left) and 

21000** images (bottom right) versus the ground truth (red) OSM network 

 

 

Evaluating the results of the extraction on this scale (the whole test area) shows at first that 

although the model training seemed to indicate metric-wise that the super resolution models 

outperformed the Sentinel 2 one greatly, that does not seem to be significant when testing the 

models as shown in figure 6.2. The network classified based on Sentinel 2 data in figure 6.2 

shows that it does not classify a large segment of the ground truth OSM network as being a 

road, but that where it does it is mainly concentrated around the more dense urban areas. 

Especially in the southwest part of the test area on the axis Haarlem-Amsterdam the model 

seems to perform better in comparison to the overall test area. For the 5250 images super 

resolution based extraction shown in figure 6.2 this seems to be opposite and it is actually the 

roads linking settlements and urban areas with each other that are dominant in the extraction 

result and the urban areas to a lesser extent, as also shown in the close up of the networks on 

Amsterdam in figure 6.4. What is also clearly visible is that this super resolution based model 

classifies more road segments as being a road in comparison to the Sentinel 2 model as the 
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ground truth network (which in this sequence shows the parts of the network that are missed 

by the extraction) is less apparent. 

Table 6.3: Length and percentage of extraction networks versus ground truth 

 OSM Sentinel 2 5250 
Images 

10500* 
Images 

21000** 
Images 

SR 
Merged 

Network 
Length 

10.268.866 
metre 

3.720.866 
metre 

4.482.509 
metre 

3.889.930 
metre 

3.520.527 
metre 

5.889.880 
metre 

Percentage 
of Ground 
truth 

100 % 36,23 % 43,65 % 37,88 % 34,28 % 57,36 % 

 

An interesting observation is that the other super resolution models with 10500* and 21000** 

images do not show a further increase in the amount of ground truth segments that are 

correctly classified as roads. Outstandingly is that although the metrics seemed to perform 

relatively similar based on the statistical evaluating the models might still do so when tested 

for this area, but they all classify different segments of the ground truth OSM network.  

Table 6.3 shows the total length of both the OSM ground truth network in the test area and the 

length of the classified network, which shows which portion of the network is actually classified 

by each model. This supports the visual evaluation which shows that indeed the 5250 images 

model outperforms the Sentinel 2 model, although comparing the quality of extraction in 

comparison to the overall ground truth the results might be considered modest. The percentage 

of the ground truth that is being classified by the super resolution models actually decreased 

after the 5250 images model and the 21000** images model actually performs worse than the 

Sentinel 2 model. Most interesting is that combining the super resolution model results with 

each other actually results in a net increase in the part of the ground truth network that is being 

classified indicating they do not classify exactly the same segments. Merging them 

geographically as shown in figure 6.3 also indicates the variance in segments classified.  
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Figure 6.3: Merged super resolution extraction networks 

 

 

Figure 6.4: Close up of the Sentinel 2 (left) and 5250 images (right) extraction 

networks 
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6.3 Generalizability  
 

Paragraphs 6.1 and 6.2 elaborated on the performance of an analysis model, to be 

specific a road extraction model which used super resolution satellite data to analyse 

performance in comparison to a Sentinel 2 model. The similarities in physical environment 

between the training and test area (as they are located in the same country) made for 

somewhat ideal circumstances to evaluate model performance, which is not a problem as it is 

about the initial assessment and proof of concept. 

However it is also relevant to test the models in an entirely new and possibly even unfavourable 

environment then where it was initially trained for. Figure 6.5 shows Sentinel 2 data of such 

kind of environment, containing the Afghan capital of Kabul and the area to its east. As can be 

seen it is a dominantly arid environment with some sections of vegetation near the mountain 

ranges north of Kabul which also dominate the physical environment. Also there is some cloud 

cover to the northeast and a small corner of the image is left out. 

Figure 6.5: Sentinel 2 versus 5250 images super resolution of Eastern-Afghanistan 

 

Comparing the original Sentinel 2 image with the 5250 images super resolution the initial result 

can be deemed as good, as it preserves structural integrity and shapes (even of the cloud 

cover). The illumination however is just as in the original test lower for the predicted super 

resolution image in comparison to the original Sentinel 2 image. This reduces the contrast in 

colour in the image making significant features less visually apparent. The water reservoir in 

the middle of the image area is a good example of that. 

The subsequent question is how using a super resolution image of an in this case new and 

less favourable environment influences a possible analysis task, in this case road extraction. 

Figure 6.6 shows the ground truth OSM network of this test area. 
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Figure 6.6: Ground truth OSM network of the image area 

 

Just as for the super resolution model one should consider that the model which is being used 

for executing the road extraction is trained on an entirely different area in regard to the physical 

environment. The ground truth network is also different in this area in comparison to the earlier 

test area, although it is still similar in the sense that it is high density in the urban environment 

but in the rural areas it is of very low density.  

Figure 6.7: Sentinel 2 (left) versus 5250 images super resolution extraction network 

 

Table 6.2: Length and percentage of extraction networks versus ground truth Afghanistan 

 OSM Sentinel 2 5250 Images 

Network Length 4.080.106 
metre 

4276 metre 42.908 metre 

Percentage of 
Ground truth 

100 % 0,1 % 1,1 % 

 

What immediately stands out in both figure 6.7 and table 6.2 is that the extraction models have 

a lot of trouble operating in this different type of environment. The percentages of classified 

ground truth segments are very low for both Sentinel 2 and the SR 5250 images model. 

Outstanding in that sense is the area where it performed best is a forest /vegetated area around 

in the north-western part of the area (see figure 6.5 for reference), which might be explainable 

as it is somewhat representable to the area on which the model was originally trained.  
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7. Conclusion 
 

 The goal of this research was to provide a proof of concept and a better understanding 

of the possible added value of super resolution to remote sensing analysis and the broader 

geo-information domain. This was primarily done by training a deep learning model with high 

resolution satellite data which is then applied on test images (with a lower resolution) to predict 

and create super resolution images. With super resolution imagery a deep learning model was 

trained to extract road features from images. Simultaneously this was done for unmodified 

lower resolution imagery in order to make a comparison in extraction results. Although super 

resolution images can be evaluated on themselves and the models used to create them 

provide statistical data the use of images in a deep learning extraction model provided an extra 

dimension to how the quality of super resolution could be assessed. Training data was 

extracted from the north-eastern region of the Netherlands, test data from the central/western 

region of the Netherlands and to evaluate possible environmental bias the models were also 

tested on a case in Central-Afghanistan. All images are taken in the summer and under cloud-

free conditions. 

This empirical analysis was aimed to contribute to answering the following leading research 

question; 

To what extent can super resolution be of significant added value to feature extraction on 

Sentinel 2 data?  

The conclusion (and therefore answer to the research question) is that super resolution results 

in a better performance for feature extraction in comparison to Sentinel 2 but only relatively 

within the used data and constraints as part of this research. On an absolute scale there is 

opportunity for improvement.  

The sub-questions focused on the data requirements, how to define SR and how it is already 

being used, how SR compares to original Sentinel 2 data and how these two would compare 

(in both quality and statistics) when used in an actual analysis task. 

Super resolution is the technical operation of improving the resolution of imagery to a higher 

resolution standard. Super resolution predicts imagery at a higher resolution to provide more 

detail than the original image but one should consider the technical parameters that evaluate 

the quality of a super resolution operation. Super resolution is well-applied as part of 

computer vision in general (so also on non-geographical data) but research is mainly focused 

on the initial data and not per se its use in further analysis. 

Data should be preferably cloud-free and also be well illuminated and provide colour contrast 

of the area, which can be different depending on the weather, time of year and time of sensing. 

The moment (both season and time of day) at which data to train the model and the image on 

which super resolution is applied on should be similar to reduce differences in conditions. Data 

itself should be in three bands (RGB) and in an 8 bit data format to be operable in ArcGIS Pro. 

If initial data does not meet these conditions modifications can be done to make the data 

operable. Satellite imagery can also be augmented to provide more training samples when the 

area for which high resolution data is available is limited. 

Dependent on the research requirements the factor can be different but in this research the 

super resolution model provided data predictions on a 2,5 metre resolution in comparison to 

the original 10 metre resolution. In performance metrics the super resolution model with 

augmented data outperformed the initial super resolution model but further augmentation 

indicated a qualitatively lower performance so making sure input data is unique is still of 
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importance and augmentation is not an infinite solution to low data availability. Visually 

augmentation or not made no difference and on the scale of image specific performance 

metrics super resolution proved to be underperforming on an absolute scale. 

Evaluating super resolution by applying geographical analysis, in this case road extraction, 

showed that super resolution models (regardless of augmentation) greatly outperformed an 

original Sentinel 2 based model in all performance metrics. Visually and in comparison to the 

ground truth of the extracted features all models performed poorly and extracted only a minority 

of the total amount of road features in the ground truth dataset. The initial super resolution 

model outperformed the Sentinel 2 data based model with 20% but with an extraction score of 

43,7% left more features out than it actually classified. Data augmentation on the training 

imagery actually negatively influences performance and in one case even performs worse than 

Sentinel 2. In a desert environment the initial super resolution model performed not significantly 

different than for the other test area. In the extraction task the Sentinel 2 based model 

performed negligible with only 0,1% and super resolution performed relatively better with 1,1% 

but on an absolute scale that remains a negligible result. 

The following and final content chapter of this thesis will evaluate this research and provide 

some hands-on analysis about the choices and constraints that were part of it and to also 

provide where these opportunities could be for future research.  

 

  



52 
 

8. Discussion and recommendations for future research 
 

This research discussed the possible added value super resolution could have in 

remote sensing analysis, within certain bounds defined by the research design, research 

institute and also resources in personnel, financial, material and time aspect. After the 

conclusion that were made in the previous chapter this chapter will try to take a step outside 

those boundaries to evaluate the research itself and to what extent the lessons learned could 

be useful or provide stepping stones for future research. As an intuitive and sequential 

structure this chapter will touch upon the different aspects of the research in the same way as 

it was empirically designed, meaning it will start with the initial input data and will end at the 

super resolution and feature extraction data. Along the way all the other relevant aspects will 

be further explained. 

8.1 Data 
 

To start with the initial satellite imagery. As mentioned the used high resolution satellite 

imagery of the Spot 6 satellite was accessible via the NSO, which was fairly straightforward 

and above all practical. High resolution imagery is hard to come by as it is either expensive 

(from commercial sources) are not meant to be openly accessible (military). In this case that 

did not prove to be a problem as the imagery was free and of such a resolution that it fitted the 

research goal but if for example sub-metre resolution was needed to classify small scale 

objects that would have been difficult. Just as the open source satellite imagery from NASA’s 

Landsat and ESA’s Sentinel missions can be openly accessed it proved that a space agency 

was also for free high resolution imagery a good source and is therefore recommended as it is 

a crucial part of this type of research and is also a suitable solution of financial resources are 

limited. The amount of data needed was also not a problem in this case as the NSO provided 

much more images than were actually needed to train the model but was limited to both time 

and area from which the NSO made data available via their server, where in this case the NSO 

only provided relatively complete datasets from 2014 and 2015. This was however suitable for 

this research and scope because several datasets were unfit because of weather conditions 

but the catalogue was extensive enough to use other datasets. 

Outside the scope of this research but also relevant from a data and intelligence standpoint is 

looking towards other types of remote sensing data (besides optical), although dependent on 

the area and object of interest. For example radar or infrared remote sensing data might be 

useable or favourable for certain analysis tasks. Radar because of its capabilities to penetrate 

surfaces and microwave to sense heat can provide information not captured in optical imagery 

which especially in a military context might be relevant to do so. However it applies to the 

analysis not the super resolution aspect as these types have other magnitudes of resolution 

and also for road infrastructure as this is difficult to capture in these sensor types but it is 

relevant to mention that dependent on the scope other data sources might come in more useful 

or advantageous than optical remote sensing. 

8.2 Methodology 
 

Another interesting point of discussion and a source for recommendations is the 

software used to handle, predict and analyse the satellite data as part of both the super 

resolution and road extraction deep learning tasks. As American-based Esri is the owner and 

developer of the used ArcGIS Pro software and is a commercial provider (although free-

handed in providing universities with licences) which means using their software professionally 
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as a government or company can be costly. That also automatically means that using deep 

learning based analysis like the super resolution and road extraction models as executed in 

this research are dependent on the licensing (and resources) of future research. Although it 

served in this research as a solution to enable the initial proof of concept one could argue that 

one is limited to the use of Esri’s API for enabling these types of analysis or that alternatives 

exist. As stated in the methodology there are several open-source environments available for 

deep learning like SR4RS and Open CV and the ArcGIS.learn API is inherently linked with 

already existing open-source python packages as these are commonly used and already well 

developed. Esri’s own tutorials on deep learning illustrate that (as it also can be coded in 

Jupyter Notebook and imports packages like Torch and Fastai) but only the actual package 

with the deep learning functions as used in this research are Esri-based and are the tools that 

are being accessed via ArcGIS Pro. Esri prohibits independent use of these packages outside 

the ArcGIS Online environment meaning that the API’s are inaccessible with proper licensing. 

An open-source alternative would therefore only need to replace the actual modelling which is 

now done by Esri’s API as the pre-processing tools are already openly available. But that 

requires a level of technicality and time which may not always weigh op against the financial 

cost of licensing via Esri but would have the great advantage of independence in both 

development and use of the required deep learning packages. ArcGIS Pro’s deep learning 

toolbox proved to be, possibly because it used to be separated and required scripting in Jupyter 

Notebook, susceptible to bugs and errors when trying to execute analysis and therefore 

alternative software solutions might be favourable. That would not mean no bugs or errors 

could arise but provides the possibility to debug the scrips used in comparison to try and 

navigate through the ArcGIS Pro environment front-end where it might not always be directly 

reproducible which tools and scripts are being used. 

In regard to the chosen methodological aspects of this research there are also 

recommendations that can be made. The backbone of both ArcGIS deep learning models 

(Super Resolution and Multi-Task Road Extraction) were ResNet-34 models which were 

trained on the ImageNet database for object detection. Although the establishment of both 

Resnet as a neural network architecture and ImageNet as a pillar in advancing computer vision 

points of recommendation could be the layer depth and insight on the topic of ImageNet. For 

Resnet 34 layers is relatively shallow, not being the bare minimum of 18 layers as used by 

ArcGIS Pro but also not that extensive as the possible 152 layers model. To an extent deep-

layered models provide a better performance for the task at hand but one should also consider 

its practicality in use especially when time to complete a task is not indefinite. To illustrate the 

training times in this research could increase up to 2 days for the maximum amount of input 

data used and testing it in images several hours so using a deeper-layered architecture further 

extends those timeframes. Discussing this here aims to point out the chosen architecture and 

how the amount of layers set the timeframes as experienced in this research but whether or 

not a different layered architecture would be more favourable is more research dependent. 

ImageNet is a well-established benchmark in computer vision and provides a versatile and 

properly indexed dataset which is also free to use for research. Although the complete dataset 

can be used to train a model to learn visual patterns as they exist in all kinds of images of 

objects one could argue that to make training as purposeful as possible the used subset should 

be filtered for the test images one wants to use it for. ArcGIS Pro uses a subset of about one 

million images but does not provide metadata on this and it is therefore something to consider 

when using the pre-selected ImageNet set as handled by ArcGIS or when designing an own 

research methodology. 

Important to stipulate is the fact that the analysis focussed on extracting road infrastructure, 

which are features and not objects. This is important to consider as it proved difficult to 

accurately assess the extraction quality, even apart from the fact that the user interface 
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provided by Esri made insight into the actual used python tools difficult as extracting a network 

of features makes that a model can result in only partially extracting a feature. The results 

showed that as different extraction models extracted different segments of the network 

although it was assumed that it would be similar in results. It is possible that it is due to the fact 

that this research applied only a binary classification, e.g. is a pixel belonging to a road or not. 

This was due to the classifier’s constraint of only being able to handle binary data but a more 

specific task (like only extracting highways) might make the classifier more effective and would 

also improve the level of information by providing ordinal data if multiple classifiers are applied 

for different road classes. Although in this research a segmentation in relevant classes was 

already made future research could definitely benefit from further segmenting the data as it will 

enable a higher level of information provided by the analysis. 

8.3 Generalizability and bias 
 

To conclude this discussion the results, which do not only comprehend the direct model 

output and the test that were executed but also the broader implication, usability and possible 

bias accompanied with the models and how they were used. The super resolution model was 

trained and tested within the administrative boundaries of the Netherlands, meaning that the 

structures and physical environment were typical for this area of Europe. The Netherlands is 

also data-wise a developed country from which a lot of data and information is made available 

by all kinds of institutions. That made the model inherently biased to this type of environment 

but not per se unusable outside of it as a primary test in Afghanistan which also greatly differed 

in physical environment did not show an inherent bad performance when it comes to super 

resolution. Road extraction did perform considerably worse in this alternate environment which 

does prove that there are some boundaries when it comes to generalisability of the model and 

the bias caused by the choice of training data. A recommendation could therefore be to further 

experiment with how to comprise the training data (although the research objective should still 

be leading) as a further development of this initial proof of concept to try and explore how a 

model could be more generalizable and therefore also more practical in its use for predicting 

super resolution and road infrastructure and to what extent that would influence the level of 

detail in predictions. 

This research proved the versatility, accessibility and also workability of deep learning models 

as part of geographical research and remote sensing analysis, which depending on the 

research needs and also technical knowledge can be as practical or theoretical and technical 

as possible. This study was a proof of concept in the practical sense, with a clear analysis 

objective in mind to also show the feasibility of further improving remote sensing analysis by 

the Ministry of Defence. The discussion did not prove major issues or challenges that would 

put the result and validity of this thesis in a different light but rather laid out several points for 

which a different approach by a new researcher could lead to a difference in insight on these 

points and also a different methodological design. Just as this research stood on the shoulders 

of predecessors the hope is that this research can contribute to the field of knowledge on deep 

learning and analysis in the geo- and remote-sensing domain and provide future researchers 

into this theme with some hands-on experiences and insights. 
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10. Appendices 

Appendix A: ArcGIS Pro tooling for data preparation and modelling 
Super resolution training samples 

The creation of training samples is the preparation of imagery in order to be suitable for 

conducting the training of a deep learning model. What it does is split up the overall image in 

smaller samples based on the input parameters to train the model image-by-image instead of 

immediately training it on a larger scale. The details of this pre-processing and specific tooling 

that is used to make data suitable for training is discussed step-by-step for each part of the 

workflow. 

1. Downloading data and inspecting metadata 

In this research high resolution imagery that will be used for training is acquired from the 

Netherlands Space Office (NSO), which provides free-to-use data via a server in several 

formats. For training the model data should be in an 8 bits format and preferably cloud-free. 

The NSO provides data in 8 bits, RGB type and 1,5 metre resolution format and is downloaded 

via an ftp-client. Inspection of the metadata learns that data is stored in four bands instead of 

three, which requires an extra-preprocessing step because training cannot be done in a four 

band format. Dependent on the data source pixel depths, resolution or number of bands can 

be different then shown here but it is important to be aware of the required 8 bit depth and 

three-band format in order to be able to train a super resolution model and the required pre-

processing steps. 

2. Area extent with Raster Calculator 

Creating an extent of the area for which data is available is necessary in order to create a 

physical processing extent for further analysis but also to make modifications to the data. 

Modifications include cutting out areas that are not relevant for the eventual training process 

but also areas that are for whatever reason unfit for analysis. In the case of satellite imagery 

that would be for example cloud cover. 

The “Raster Calculator” tool in ArcGIS Pro provides the ability to write an expression to create 

an area extent. The expression needed is; 

Con(“Name_Of_Dataset” >= 0,1) 

The output is a raster with the size and extent identical to the input dataset. With the “Raster 

to Polygon” tool the datatype can be changed from raster to feature class and this is needed 

because in the next step a feature class will be made which will alter this extent. 

3. Feature Mask and extraction 

In the file geodatabase (the default database which is created and linked to each individual 

project) a new empty feature class can be added. Subsequently this feature class can be 

modified in the edit section, which in this case means creation as it does not contain any 

geometry yet. For this research it is needed to draw features around areas that are not relevant 

or suitable for the purpose for which the model will be trained. The segments where cloud 

cover makes seeing the actual surface impossible could be cut out because the model will 

have difficulties with extracting information from it. Because this is a coastal area the part of 

the imagery which displays the sea and part of the islands should be left out as well. Learning 

to predict super resolution for the sea is not relevant for eventually extracting and classifying 

roads from the images. The islands do not contain any relevant or prominent road features and 
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can therefore be left out as well. A major advantage of this is that it greatly reduces the file size 

and therefore also improves processing capability.  

Drawing features for the areas that are not relevant to include or are unsuitable for analysis is 

a manual operation but for relatively cloud-free images should not be too cumbersome to do. 

When the manual drawing of features is finished it can be saved to the feature class /it should 

be updated when exiting the edit mode. 

By using the tool “Erase” the drawn features in this feature class can be used as an overlay on 

the original area extent and the drawn areas will be erased from this extent. The area extent 

now can be used as a mask on the actual imagery to leave out the areas with cloud cover or 

that are not of relevance to be used in training. 

The tool “Extract by Mask” extracts the right areas from the satellite image and leaves out the 

ones that cannot be used. What remains in this case is an image without (except for a small 

portion of coastal area) large segments of sea, the nearby islands and the areas where cloud 

cover makes visual observation of the surface too cumbersome. 

4. Resolution and composite bands 

When the extract by mask is successfully done there remain two parameters that should be 

altered in order to suit the requirements of training a deep learning model. The spatial 

resolution should be changed to 2,5 metres instead of 1,5 metres and the amount of bands 

should be altered to 3 instead of 4.  

The tool “Make Raster Layer” allows for the creation of a raster layer but more specifically also 

which bands will be exported with it. In this case band “4” needs to be left out as band 1-2-3 

represent Red-Green-Blue (RGB) and are the required and also maximum amount of bands a 

deep learning model can process at once.  

Exporting the data will cause the output layer to be presented as a rectangle polygon, but can 

again be reduced to the area of interest by performing an “Extract by Mask” operation. 

The tool “Resample” offers the opportunity to resample the imagery to a different cell size. 

Resampling to 2,5 metres offers two benefits; it again reduces file size and a more suitable cell 

size in the actual training process. In training the training data is downsampled to a lower 

resolution to create synthetic data for which the model will be trained to “predict” the same area 

but at a higher resolution (the actual super resolution). For this research the goal is to predict 

super resolution for sentinel 2 imagery, which has a 10 metre resolution. Downsampling 2,5 

metre resolution to 10 metre resolution would need a downsample factor of 4, which is an 

easier number to work with instead of a decimal number when the resolution would remain 1,5 

metre. 

Inspecting the metadata of the output raster data should confirm that both the amount of bands 

and the resolution are altered correctly. 

5. Export Training Data for Deep Learning 

Exporting Training Data is an image analyst tool that coverts raster data (optionally combined 

with a feature class, classified raster or table) to image chips that can be used to train a Deep 

Learning Model. If the previous steps were followed correctly raster data should be in an 8-bits 

format and composed out of three bands. For Super Resolution an additional feature class is 

not relevant. However adding a feature class polygon for the purpose of masking can be useful 

as it then makes sure image chips fall completely within that designated area (it prevents that 

images might be partially black). Chosen tile size is 512 with a stride equal to that, meaning 
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that tiles will not overlap with each other to maintain their uniqueness to each other. If there is 

a need for more input image chips the choice can be made to make the stride smaller than the 

tile size. This results in more images but because of the overlap their similarity might be higher 

than anticipated. In this case the choice was made to work with a rotation angle of 90 degrees 

to get more image chips from the same area but with a relatively low similarity because of that 

rotation. 

For Super Resolution the required metadata format needs to be export tiles, as then the image 

chips will not have any labels. Labels will be made when training the model which in this case 

will be the downsampled version of the same image to train super resolution. 

In the environments tab the extent can be set but if a mask feature polygon is in use setting 

the extent will do just the same as that but it can be done to make sure the processing is limited 

to the required area. Setting a parallel processing factor (between 0 and 100%) ensures 

optimal use of CPU cores for the operation. Important parameter to set is the cell size which 

should in this case be 2,5 metres as that is the resolution on which the model will be trained. 

Train a Super Resolution Model 

For this the tool “Train Deep Learning Model” from the GeoAI toolbox  is used. The folder 

containing training data can be instantly imported in this tool under “Input Training Data”. The 

Deep Learning Package (.dlpk filetype) and Esri Model Definition File (.emd filetype) this tool 

will produce can be put in a folder of choice at “Output Model” but should be empty to be able 

to store files there after training. The maximum amount of epochs can be set at “Max Epochs” 

and is by default set to 20. 

Under “Model Parameters” a specific model type can be set (which are at the moment 25 

different ones that are usable in ArcGIS Pro) and super resolution is one of those categorized 

under Image Translation. Setting the model type to super resolution will also directly set default 

model arguments and the backbone model. For the model parameters the Batch size can be 

set to define the quantity of training images that can be processed simultaneously. Dependent 

on the types of training samples and also the modelling task more or less memory is needed 

to perform the task and if the batch size is too high for the available memory the process will 

fail, for which the simple solution is reducing the batch size. But this is also dependent on the 

specifications of the operating system so there is no ideal answer to this as it will differ for each 

type of data, operation and system that is being used. The standard model arguments for super 

resolution are a downsample factor of 4 and a monitor set to valid_loss. This means that the 

images will be downsampled from 2,5 metre to 10 metre resolution (which as discussed before 

is desirable for this research) and the model will look at validation loss as a reference for a 

possible model stop, more on this later. 

In the “Advanced” tab the learning rate can be defined that the model will use, which again can 

be case-dependent. If it is not clear beforehand which rate is desirable the rate can be set to 

0 and the model will determine itself what the optimal rate is by plotting the learning rate versus 

loss and auto-extract the most optimal rate from this plot. 

For super resolution the backbone model is a standard ResNet model with 34 layers. 

Dependent on the requirements this can be scaled up or down to let the data pass through a 

more or less complex model. Changes in this and also the amount of epochs will influence the 

required processing time to complete training. If applicable the .emd files or deep learning 

packages from an already trained model can be added here to optimize it further. 
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The training-validation split can be made here, indicating which percentage of the initial training 

dataset will be saved to validate the model on. By default it is 10% but can be altered based 

on the research requirements. 

By default the Stop when model stops improving and Freeze Model will be checked. The first 

indicates that if no significant improvements are made when modelling (for which validation 

loss will be monitored as defined earlier) the model will stop the training. This will be if there 

are no changes larger than 0,001 for the duration of 5 epochs. A different monitor value can 

be set as well at the model arguments section. If the stop criteria is met the model will stop 

training at the 5th epoch after no significant improvements were made and this can therefore 

be earlier than the maximum amount of epochs. Freeze Model indicates that the weights as 

defined for training of the backbone model will be used instead of altering those during training 

on this specific dataset as set by the user. If checked it will improve processing but if a decision 

is made to leave it unchecked processing time can increase but the results can be more 

optimized towards the specific training dataset. 

For the environments tab setting a parallel processing factor works the same as in the previous 

step of exporting data. What is different that here the choice can be made to run the model on 

either the CPU or GPU. For modelling the GPU can be desirable as it will have increase 

processing power but is also hardware dependent (memory of CPUs and GPUs can differ 

greatly) so it is up to the specific user. If set to GPU the parallel processing factor will be 

discarded. 

Classify Pixels Using Deep Learning 

After the training of the model this tool from the Image Analyst toolbox can be used to do actual 

classification and application of the trained model. 

The Input Raster is the datafile on which the operation will be applied, which for this research 

will be a 10 metre resolution Sentinel 2 file. The Output Classified Raster will then generate a 

name and storage location based on the default geodatabase that the opened ArcGIS Pro 

project uses currently. For Model Definition either the deep learning package (.dlpk) or .emd 

file generated by the training tool can be inserted. Dependent on the type of operation 

additional arguments will be listed here and can be altered based on the research requirements 

or in the case of batch size the available hardware. 

The Environments tab is similar in layout as encountered in the other tools. Important is to set 

the cell size to the required output size (in this case 2,5 metre) to get the required result. All 

the others like the coordinate system, extent, parallel processing factor and processor type are 

optional but can be defined as well. 

Super resolution vs Road Extraction 

 The guide focused on the super resolution aspect of the different tooling that can be used to 

do all the processing correctly, but should require a small addendum about road extraction. 

For road extraction most procedures will be the same. For the Export Training Data for Deep 

Learning the Input Feature Class field (which is empty for super resolution) should be used to 

add the feature class which contains the road network data. For the Train a Deep Learning 

Model the model type should also be changed to Multi-Task Road Extraction instead of Super 

Resolution. For the Classify Pixels Using Deep Learning operation different model arguments 

will be imported for python as those will not be the same as for Super Resolution. For the other 

settings and parameters as used by the deep learning applications in ArcGIS Pro they will not 
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differ between the types of models but as said often in this guide one can alter them based on 

the available hardware or based on the research requirements. 

Road extraction analysis 

To re-evaluate the quality of road extraction analysis in comparison to the ground truth road 

network, as for example the data from OpenStreetMap that was used in this research, a small 

post-processing step is needed to perform certain geographical analysis operations. 

The raster file resulting from the “Classify Pixels using Deep Learning” tool can be converted 

to a feature class using the “Raster to Polygon” tool. This converts the pixels to polygons where 

the pixels classified as roads have a value of 1 and all the other pixels have a value of 0. By 

applying a “Select by Attributes” the feature class can be filtered to only include the features 

that represent what was classified as a road.  

In this research the analysis was done to calculate the percentage of the ground truth network 

that each classification model actually classified as being a road. This was done by clipping 

the original ground truth network (the OSM road infrastructure network) using the feature class 

which resulted from converting the classification raster to features. The geometry of the clipped 

segments can be recalculated as they now display the value from the original ground truth 

network to display the total length of the classified network in comparison to the ground truth 

as was done in paragraph 6.2 of this research. 
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Appendix B: Super resolution model report 
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Appendix C: Super resolution model metrics data 
5250 Synthetic Images 40 Epochs   

LR: 0.00013 PSNR: 6.9484e+00 SSIM: 1.2879e-01 

Training: Validation: Pixel: 

2.033170700073240 1.760602235794060 0.281048864126205 

1.811545968055720 1.544457197189330 0.243235886096954 

1.684386491775510 1.422185182571410 0.232446596026420 

1.617874383926390 1.361915588378900 0.224576190114021 

1.542024731636040 1.308670759201040 0.219460293650627 

1.537880063056940 1.285739421844480 0.217523589730262 

1.497437119483940 1.246843576431270 0.216863811016082 

1.472835183143610 1.222208857536310 0.213269665837287 

1.458054065704340 1.214183449745170 0.209605574607849 

1.433493971824640 1.191991448402400 0.213661044836044 

1.422772407531730 1.184286952018730 0.208739534020423 

1.395799160003660 1.157637596130370 0.210009962320327 

1.391966700553890 1.152575612068170 0.209976166486740 

1.381188988685600 1.149610996246330 0.208949461579322 

1.369956493377680 1.144802212715140 0.209448620676994 

1.366252660751340 1.130436420440670 0.210101038217544 

1.359735369682310 1.125568985939020 0.206945896148681 

1.359045743942260 1.129621863365170 0.205912783741951 

1.345919489860530 1.114618659019470 0.207250446081161 

1.345406532287590 1.116010069847100 0.205937117338180 

1.354629874229430 1.117824316024780 0.204725772142410 

1.366237521171560 1.120125412940970 0.205686658620834 

1.346509099006650 1.113852620124810 0.207008719444274 

1.346198201179500 1.115591526031490 0.206042245030403 

1.352154016494750 1.112213373184200 0.204357549548149 

1.335335731506340 1.102210521697990 0.204558610916137 

1.344991207122800 1.106792569160460 0.204282283782958 

1.333145618438720 1.101207375526420 0.204699620604515 

1.334546327590940 1.104724049568170 0.203177571296691 

1.320653915405270 1.090755820274350 0.204670384526252 

1.342234492301940 1.105195283889770 0.203121542930603 

1.333109855651850 1.100565195083610 0.203697621822357 

1.325608372688290 1.093747854232780 0.202280834317207 

1.324204683303830 1.096756339073180 0.203086927533149 

1.326298594474790 1.095253586769100 0.203230232000350 

1.325513839721670 1.093355178833000 0.203088015317916 

1.324034690856930 1.092905998229980 0.203180164098739 

1.322400212287900 1.093108892440790 0.202965140342712 

1.322160840034480 1.092016100883480 0.203162372112274 

1.322031021118160 1.092350006103510 0.203017473220825 
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10500* Synthetic Images 40 Epochs   

LR: 0.00012 PSNR: 7.1230e+00 SSIM: 1.5463e-01 

Training: Validation: Pixel: 

1.334762930870050 1.343694329261770 0.216828867793083 

1.296176314353940 1.270813822746270 0.212193906307220 

1.243793487548820 1.212439656257620 0.213029921054840 

1.218218684196470 1.178690552711480 0.210722491145133 

1.211939096450800 1.167146444320670 0.206730172038078 

1.221743702888480 1.164338707923880 0.211432635784149 

1.181287169456480 1.142772793769830 0.208052337169647 

1.184316992759700 1.133651018142700 0.204803436994552 

1.179010391235350 1.131767988204950 0.205034136772155 

1.174649953842160 1.122003078460690 0.204689905047416 

1.158336997032160 1.109095215797420 0.206729844212532 

1.162215232849120 1.118044734001150 0.203978568315505 

1.161971449851980 1.109128117561340 0.205323293805122 

1.146059036254880 1.097421884536740 0.202902480959892 

1.142165064811700 1.092767357826230 0.204029276967048 

1.144057393074030 1.094247817993160 0.201380103826522 

1.140143156051630 1.087175965309140 0.200207948684692 

1.131739854812620 1.077967882156370 0.199572920799255 

1.138974905014030 1.088581800460810 0.197855308651924 

1.118444442749020 1.070598363876340 0.198217973113060 

1.141301870346060 1.080607891082760 0.198640123009681 

1.125033259391780 1.066473245620720 0.196512192487716 

1.126885414123530 1.068861365318290 0.198526278138160 

1.115805268287650 1.064465880393980 0.196618378162384 

1.104901552200310 1.060004353523250 0.195684373378753 

1.117203354835510 1.064801812171930 0.197050720453262 

1.118956208229060 1.066478610038750 0.196505084633827 

1.110285282135000 1.060131192207330 0.196195319294929 

1.113738894462580 1.061389803886410 0.195583105087280 

1.099035620689390 1.047207951545710 0.196160748600959 

1.101677060127250 1.049500584602350 0.196093127131462 

1.104009747505180 1.048262357711790 0.196037277579307 

1.100862503051750 1.050201654434200 0.195393636822700 

1.100501537322990 1.047721266746520 0.195061221718788 

1.096801400184630 1.045173764228820 0.195256233215332 

1.099804520606990 1.046950101852410 0.194938302040100 

1.094547867774960 1.042984247207640 0.195149093866348 

1.093515634536740 1.042530655860900 0.195292249321937 

1.095183372497550 1.043597936630240 0.194867983460426 

1.093645930290220 1.043203115463250 0.195021599531173 
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21000** Synthetic Images 40 Epochs 

LR: 0.000006 PSNR: 7.0145e+00 SSIM: 1.4050e-01 

Training: Validation: Pixel: 

1.649221897125240 1.583451390266410 0.244664341211318 

1.488003849983210 1.412504196166990 0.229087799787521 

1.448211193084710 1.356918811798090 0.219970524311065 

1.391785860061640 1.297874331474300 0.219702035188674 

1.363462924957270 1.271413922309870 0.217985108494758 

1.330869674682610 1.241864442825310 0.215699672698974 

1.292516946792600 1.214172124862670 0.218532457947731 

1.281428217887870 1.208523988723750 0.214546933770179 

1.271834492683410 1.191818237304680 0.213484779000282 

1.234594821929930 1.165501594543450 0.209986716508865 

1.232379198074340 1.164305329322810 0.208730310201644 

1.206934571266170 1.147516608238220 0.208479970693588 

1.197310209274290 1.134421706199640 0.207552284002304 

1.197564363479610 1.135317802429190 0.208318129181861 

1.194246411323540 1.130628705024710 0.205346733331680 

1.181972861289970 1.123579502105710 0.204405412077903 

1.194256305694580 1.126165986061090 0.203412353992462 

1.187659025192260 1.127141714096060 0.202882856130599 

1.175362110137930 1.119860529899590 0.203212201595306 

1.176252245903010 1.119630098342890 0.201539129018783 

1.188709020614620 1.110815286636350 0.202269867062568 

1.173126101493830 1.104804992675780 0.201040118932724 

1.169271826744070 1.103946805000300 0.201677247881889 

1.165689468383780 1.102670073509210 0.202177330851554 

1.160314679145810 1.092529654502860 0.202385991811752 

1.163564801216120 1.102436661720270 0.200283437967300 

1.158297896385190 1.092085599899290 0.199929118156433 

1.161686897277830 1.096046209335320 0.200684458017349 

1.155257225036620 1.088894367218010 0.200298443436622 

1.153947591781610 1.087780117988580 0.200645595788955 

1.159106731414790 1.090214729309080 0.200294807553291 

1.156036734580990 1.087246298789970 0.200282827019691 

1.151178956031790 1.085277557373040 0.200265720486640 

1.153108596801750 1.083400249481200 0.200228452682495 

1.153496146202080 1.082845807075500 0.200407385826110 

1.152282238006590 1.084599018096920 0.199835315346717 

1.151509761810300 1.084717512130730 0.199717909097671 

1.149540662765500 1.083735823631280 0.200126454234123 

1.150632143020620 1.084389925003050 0.199496895074844 

1.152593374252310 1.084751725196830 0.199956819415092 
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Appendix D: Road extraction model report 
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Appendix E: Road extraction model metrics data 
Sentinel 2 LR: 0.0001 MIoU: Accuracy: 

Training: Validation: Accuracy: MIoU: 

2.68884635 2.745195389 0.784067392 0.392033682 

1.22590363 1.321766973 0.784067392 0.392033682 

1.140180826 1.233328819 0.802391112 0.489113722 

1.220234156 1.248624921 0.811260879 0.50282802 

1.330352068 1.347181439 0.811513543 0.495950869 

1.397547722 1.468655825 0.816224635 0.520002495 

1.363068104 1.437577128 0.819777727 0.525418727 

1.466689706 1.447768927 0.818845391 0.556679478 

1.151776195 1.463991761 0.810102999 0.564721203 

 

5250 images LR: 0.0001 MIoU: Accuracy: 

Training: Validation: Accuracy: MIoU: 

2.812415838 2.834621668 0.937259674 0.468629828 

0.462077826 0.457108945 0.937259734 0.468629832 

0.360241383 0.351799548 0.937259734 0.468629832 

0.335254252 0.327545315 0.952899814 0.673249019 

0.260354787 0.308036327 0.955638289 0.68869152 

0.347914875 0.307193518 0.954393208 0.697860604 

0.39989391 0.295631319 0.953472137 0.683215105 

0.202102616 0.266003102 0.957422674 0.712370652 

0.178400993 0.27100718 0.953949451 0.721488879 

0.198200896 0.293307334 0.959093034 0.710718252 

0.241535932 0.310929149 0.957229137 0.704440933 

0.225892097 0.325407445 0.954218745 0.694074046 

0.222035825 0.313841134 0.958231628 0.718352456 

0.296525538 0.325761646 0.961895168 0.728016639 
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10500* images LR: 0.0001 MIoU: Accuracy: 

Training: Validation: Accuracy: MIoU: 

2.811663151 2.827604294 0.939765036 0.469882482 

0.387070149 0.427649677 0.939765036 0.469882501 

0.322607577 0.355817646 0.939765036 0.469882501 

0.323824376 0.338678032 0.942698479 0.663924338 

0.310285062 0.325599879 0.949516177 0.672768938 

0.303729177 0.329685956 0.942638218 0.674290006 

0.336024225 0.30097577 0.958446503 0.686353203 

0.353702724 0.313380539 0.955684006 0.657925461 

0.292784363 0.300514758 0.957197189 0.677996486 

0.234049439 0.305585265 0.956612051 0.684703801 

0.361341715 0.307916969 0.958376169 0.668021335 

0.344477057 0.311792374 0.95860672 0.686701736 

0.425162464 0.378018528 0.956861913 0.663650633 

 

21000** images LR: 0.0001 MIoU: Accuracy: 

Training: Validation: Accuracy: MIoU: 

2.785525322 2.754606962 0.938174009 0.469087017 

0.566177368 0.43026644 0.938174009 0.469087026 

0.502864778 0.376036823 0.938174009 0.469087026 

0.483599782 0.361158669 0.94901818 0.615922925 

0.49620986 0.343892455 0.950618625 0.622211701 

0.495473206 0.328092247 0.952977121 0.64119481 

0.473933339 0.289308459 0.953347564 0.688630748 

0.696563005 0.381380677 0.951048434 0.617179201 

0.482156277 0.311297119 0.951084256 0.672993719 

0.535131037 0.332208931 0.95684135 0.681614779 

0.500074148 0.292734921 0.957543194 0.706326388 

0.58722043 0.316978514 0.960593343 0.704604461 

0.466335058 0.347463399 0.957525074 0.698142502 
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Appendix F: Road extraction metrics with auto-extracted learning rate 
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