

1

MSc Geomatics Master’s Thesis

Dynamic Objects Detection and
Removal in Mobile Laser Scanning Data
Zhenyu Liu

2022

2

Dynamic Objects Detection and Removal in
Mobile Laser Scanning Data

By

Zhenyu Liu

in partial fulfilment of the requirements for the degree of

Master of Science

in Geomatics

at the Delft University of Technology,
to be defended publicly on Monday, June 27, 2022 at 8:45 AM.

Supervisor: Prof. dr. ir. P.J.M. van Oosterom, TU Delft

Dr. Jesús Balado Frías, TU Delft
 External Mentors: Dr. ir. Bart Beers, CycloMedia
 MSc. Arjen Swart, CycloMedia

Thesis committee: Drs. D.J. Dubbeling, TU Delft
MSc. Mieke Kuschnerus, TU Delft

This thesis is not confidential and will be made public on June 28, 2022.

An electronic version of this thesis is available at http://repository.tudelft.nl/.

http://repository.tudelft.nl/

3

4

Contents

Abstract ... 5
Acknowledgements ... 6
Acronyms .. 7
1. Introduction .. 9

1.1 Background and Motivation ... 9

1.2 Research Questions ...12

1.3 Research Scope ...12

1.4 Thesis Structure..13

2. Related Work ..15
2.1 Single-frame Data Methods ..15

2.2 Multi-frame Data Methods ...20

2.3 Conclusion of Related Works ..24

3. Theoretical Background ..25
3.1 Octomap ...25

3.2 Point-based Neighborhood Query ...28

4. Methodology ...33
4.1 Free Point Extraction ..34

4.2 ROI Delimitation..37

4.3 Noise Removal ...40

4.4 Vegetation Removal ...44

4.5 Dynamic Objects Extraction ..47

5. Implementation ...49
5.1 Dataset ...49

5.2 Parameters ...52

5.3 Tools ...53

6. Results and Discussion ..55
6.1 Implementation Results ..55

6.2 Performance Analysis ...59

6.2.1 Accuracy Assessment ..59

6.2.2 Influence Factors ..61

6.2.3 Running Time and Memory Consumption ...67

7. Conclusions and Future Work ...73
7.1 Research Conclusions ..73

7.2 Research Contributions ..76

7.3 Future Work ..77

Bibliography ...80

5

Abstract

Many MLS point cloud application scenarios, such as navigation and localization algorithms, require

only static environments, but the original MLS data usually inevitably includes many dynamic objects

such as moving vehicles, bicycles, and pedestrians. Therefore, these dynamic objects need to be

removed before using MLS point clouds. This thesis designs an efficient and memory-friendly

Octomap-based dynamic object detection and removal method for MLS data. Firstly, the original MLS

data is split into multiple data frames based on the timestamp of each capture point. Each data frame

is inserted into a separate Octomap along with its neighboring data frames. The free points in all

Octomaps are extracted by setting an occupancy probability threshold. Second, the region of interest

(ROI) related to the dynamic object is delineated by the MLS sensor mounting height and the local

large vehicle height limit. Only the free points located within the ROI are retained. Then the free-point

rate and the multi-return rate are calculated for each free point using a fixed radius spatial search to

denoise and detect vegetation points. Finally, the KNN spatial search is used to remove vegetation

points and extract dynamic objects from the free points. The proposed method is tested in four case

sites in Delft, the Netherlands and its producer’s and user’s weighted average dynamic object

detection and extraction accuracies are 88.004% and 82.624%, respectively. The weighted average

overall accuracy is 99.833%. Compared with the original Octomap, the proposed method is 35.472%

more efficient on average and can be further accelerated by parallel computing, with a maximum

memory consumption of only 42.437% of the original Octomap. The implementation results and

accuracy assessment demonstrate that the proposed method can be effectively applied to dynamic

object detection and extraction tasks in MLS data sets in a compute-friendly and memory-friendly way.

6

Acknowledgements

As my master's project is nearing completion, I first want to express my highest gratitude to my

supervisors, Peter and Jesus, for introducing me to the field of point clouds and inspiring my strong

interest in research. Their academic guidance had a profound impact on me and encouraged me to

continue pursuing my academic dreams after my master's program.

I am very grateful to Arjen and Bart from CycloMedia for giving me a lot of data and technical support.

Their comments and ideas helped me to finalize my dissertation topic as dynamic object processing in

MLS data. I am thankful to Mieke, the co-reader of this thesis, for her academic advice. I also thank to

thank Dirk for hosting each phase meeting during my graduation program.

Finally, I would like to thank my parents. Although you are far away on the other side of the world,

your support and encouragement have pushed me to bravely overcome one academic and life

challenge after another during these two tough years.

7

Acronyms

2D: Two-dimensional

3D: Three-dimensional

AABB tree: Axis Aligned Bounding Box tree

ALS: Airborne Laser Scanning

ASM: Active Shape Model

BLS: Backpack Laser Scanning

CPU: Central Processing Unit

CUDA: Compute Unified Device Architecture

DBMS: Database Management Systems

FCN: Fully Convolutional Neural Network

FOV: Field of View

GNSS: Global Navigation Satellite System

GPU: Graphics Processing Unit

HD-map: High-Definition Map

HMLS: Handled Mobile Laser Scanning

IMU: Inertial Measurement Unit

KNN: K-nearest Neighbors

LiDAR: Light Detection and Ranging

LRF: Laser Range Finder element

MLS: Mobile Laser Scanning

PCL: Point Cloud Library

RANSAC: Random Sample Consensus

ROI: Region of Interest

SHOT: Signature of Histograms of Orientations

SLAM: Simultaneous Localization and Mapping

SVM: Support Vector Machines

TEN: Tetrahedral Network

TIN: Triangular Irregular Networks

TLS: Terrestrial Laser Scanning

8

9

1. Introduction

This chapter first overviews the background information of the dynamic object problem in

Mobile Laser Scanning (MLS) data and explains the importance of solving this problem for

MLS point cloud data applications (Section 1.1), then defines the research scope in Section

1.2, and finally introduces the structure of this thesis in Section 1.3.

1.1 Background and Motivation

LiDAR technology provides a revolutionary and efficient way to capture 3D spatial data with

high geometric accuracy and rich detail in the real world (Che et al., 2019). According to

different carrying platforms of Light Detection and Ranging (LiDAR) sensors, there are three

types of mainstream acquisition methods of point cloud data, including MLS, Airborne Laser

Scanning (ALS), and Terrestrial Laser Scanning (TLS). MLS systems are usually mounted on

land-based mobile platforms such as vehicles. ALS systems are often deployed on aircraft.

TLS sensors are usually mounted on static tripods to scan the surrounding area (Hyyppä et

al., 2013).

Compared with other acquisition methods, MLS has its unique advantages: It can capture the

data with better visibility, accuracy, and resolution than ALS and has higher collection

efficiency than static TLS (Williams et al., 2013). These advantages make MLS fit the

demand for point clouds data in urban scenes, especially in linear road environments (Soilán

et al., 2019). So in recent years, MLS has been widely used in many urban applications such

as urban land cover analysis, urban environment monitoring, digital 3D urban modeling, and

self-driving vehicles (Di Stefano et al., 2021; Y. Wang et al., 2019). MLS data is usually

integrated with other sensor data to get richer information for their projects in many research

and commercial applications. For example, one common sensor combination is LiDAR,

Global Navigation Satellite System (GNSS), Inertial Measurement Unit (IMU), and the RGB

camera (see Figure 1), which generates accurate data timestamps and sensor movement

trajectories while collecting MLS data sets. The spatiotemporal information brought by these

additional sensors often assists MLS data for higher quality and more efficient environmental

reconstruction (Čerňava et al., 2019; Rodríguez-Cuenca et al., 2015; Williams et al., 2013).

However, some problems with the original MLS data set often causing limitations in several

application scenarios. One of the most common problems is dynamic objects. According to

the motion state of objects during scanning, the environment objects in MLS data can be

10

divided into static objects and dynamic objects. Common static objects include roads,

buildings, trees, and parked vehicles in urban environments. Pedestrians and moving

vehicles are the main dynamic objects (see Figure 1). Most application scenarios of MLS

data, like object extraction, change detection, and generating HD-maps to support navigation

and location services, require only static environment objects (Balado et al., 2019; L. Ma et

al., 2018). However, due to the data acquisition method of MLS, it is impossible to completely

avoid dynamic objects in the original point cloud data, especially in areas with large human

and vehicle flows in cities. On the other hand, the moving route and speed of the MLS sensor

are restricted by traffic laws, road networks, and other factors (Balado et al., 2020).

Therefore, the MLS sensor and its nearby dynamic objects (mainly moving vehicles) are

highly likely to be in the same or opposite moving directions at similar speeds. A more

serious problem arises in the captured point cloud data if dynamic objects are moving in the

same direction as the MLS sensor. These dynamic objects accompanying the MLS sensor

are continuously scanned, which makes them very seriously stretched in the collected point

cloud data (see Figure 2). In some studies, this phenomenon is named the ghost trail effect

(Pagad et al., 2020; Pomerleau et al., 2014). So, the problem of dynamic objects in MLS data

is more severe and complex than in other types of point cloud data.

Figure 1: A dynamic motorbike, dynamic cars, and static cars in MLS data

Thus, distinguishing and removing dynamic objects from static objects is important in MLS

data preprocessing in many application tasks, such as localization and navigation. The

performance of dynamic object detection and removal methods can directly affect the quality

11

of subsequent MLS applications. If dynamic objects cannot be removed accurately, many

point cloud application algorithms may not work properly. For example, residual dynamic

objects reduce the location accuracy of point-based HD-map (Endo et al., 2021; Wen et al.,

2021). However, MLS sensors’ speed and moving direction are constantly changing, making

their relative motion with the surrounding objects more complex. Many detection methods

based on ALS and TLS data cannot be directly applied to MLS data. So it is more

challenging to accurately detect dynamic objects in MLS data than in TLS and ALS data.

Figure 2: The stretched dynamic object in MLS data

To address the problems and challenges caused by dynamic objects in MLS data, the

research aims to design a dynamic object detection and removal method based on MLS

data, which can be accelerated with parallel computing. The proposed method first generates

an Octomap to extract all free points from the MLS data sets. Free points in this thesis refer

to all points located in the Octomap space whose occupancy probability is less than a given

probability threshold and usually has a higher probability of being part of a dynamic object

(See Section 3.1 and Section 4.1 for a more detailed definition of free points and how it

differs from dynamic points). Then the trajectory of the MLS sensor is used to delimitate the

Region of Interest (ROI) from all extracted free points. The measurement noise is filtered

from the free points located in the ROI. Alter that the number of returned LiDAR rays is used

to remove the vegetation from the remaining free points. Finally, dynamic objects are

extracted and removed by using spatial search with filtered free points.

12

1.2 Research Questions

The main research question of this thesis is as follows:

“How to detect and remove the dynamic objects from the MLS data?”

From the perspective of data, this problem can be expressed as to how to return a point

cloud without dynamic objects after giving an MLS data and its corresponding sensor

movement trajectory?

After defining the main question of this research, some sub-questions are derived from it:

• How to detect and remove dynamic objects and avoid residue?

• How to avoid detecting and removing static environment objects?

• What factors affect the detection results?

• How to use MLS sensor trajectory to assist detection and removal operations?

• What types of objects often lead to misdetection?

• How to improve the computational efficiency for large-scale data?

1.3 Research Scope

This section is intended to clarify the research scope to help the research focus better on the

core research issues defined in Section 1.2.

Firstly, the point cloud collection method of this research is MLS. Some studies interpret MLS

as all LiDAR systems mounted on land-based mobile platforms (including humans), so the

backpack-MLS (BLS) and handled-MLS (HMLS) are also considered a type of MLS in their

studies (Hauser et al., 2016). Although there are many similarities between BLS and vehicle-

based MLS, there are still many significant differences between these two systems in sensor

height and movement speed, which make the point density and visibility of the collected data

different. This research mainly focuses on object detection in an outdoor environment, such

as roads. The vehicle-based MLS is the main way of data collection in a large range (such as

city-scale), so MLS in this study refers specifically to vehicle-based MLS.

Second, this research focuses on dynamic objects. In the real world, dynamic objects exist

from underwater to high in the sky. Some birds in flight are indeed inadvertently scanned

13

during actual data collection. However, this research only focuses on ground moving objects,

such as cyclists, vehicles, etc. This is also an important prerequisite for reducing the

detection region in Section 4.2. In addition, vehicles that are temporarily stopped during the

whole scanning process due to traffic signals or other reasons are not considered dynamic

objects. Valid dynamic objects in this study refer to objects that are moving during the whole

or part of the scanning period, including vehicles that suddenly start or stop during the

scanning process.

Third, the point cloud processing operation concerned in this research is detecting and

removing dynamic objects. Although point cloud processing operations such as ground

extraction and vegetation extraction are also used in the intermediate steps of the proposed

method. However, due to the relatively limited research time, the performance of these

methods is not included in the core research questions mentioned in Section 1.2. However, it

must be acknowledged that the performance of these operations have an impact on the final

result. Therefore, this thesis will analyze which wrongly detected and removed objects are

caused by bad ground extraction and vegetation extraction results based on the

implementation results in Chapter 5 and Chapter 6. These two operations can also be

replaced with other better-performance ground and vegetation extraction methods. This does

not affect the overall workflow of the proposed method.

1.4 Thesis Structure

The rest of this thesis is organized as follows:

• Chapter 2 reviews previous related research about dynamic object detection and

change detection in point cloud data, including single-frame data methods and multi-

frame data methods.

• Chapter 3 shows the theoretical background of Octomap and neighborhood query,

which are the key concepts involved in this research methodology.

• Chapter 4 presents the proposed methodology of dynamic object detection and

removal. It describes the five main sub-steps of the methodology, including extracting

the free points, reducing the detection area, removing outliers, removing vegetation,

and extracting dynamic objects in detail.

• Chapter 5 indicates the implementation details and discusses the running time and

the memory consumption of the acceleration method used in implementation.

14

• Chapter 6 presents the final implementation results and is devoted to evaluating the

final results and discussing the performance of the proposed methods.

• Finally, Chapter 7 gives conclusions and future works of this research.

15

2. Related Work

This chapter summarizes the recent research on dynamic object detection and change

detection in LiDAR data. The detection and removal of point cloud dynamic objects are of

great significance in many scenes, such as autonomous driving (Mekala et al., 2021), 3D

point cloud mapping (Arora et al., 2021), and environmental monitoring (Okyay et al., 2019;

Teo & Shih, 2013), so many relevant studies have been done in academia. The current

methods can be divided into single-frame data and multi-frame data methods according to

whether multiple scans (or continuous scans in MLS) are required, which are respectively

introduced in Section 2.1 and Section 2.2. Finally, Section 2.3 summarizes the relevant

research on this issue.

2.1 Single-frame Data Methods

The single-frame lidar data refers to the scan data obtained by the sensor in an instant or a

very short period. ALS and TLS scan results are usually single-frame data. For MLS, the data

obtained by a single rotation of the sensor (360°) is also considered single-frame data.

Figure 3: The dynamic object detection based on the background subtraction (T. Zhang & Jin, 2022)

One of the simplest single-frame data methods is to use a prior map for change detection.

The dynamic object detection is formulated as a background subtraction problem if the prior

map is prepared in advance. All objects that do not exist in the prior map are considered

dynamic objects (Kiran et al., 2019). Figure 3 indicates the main idea of a dynamic object

detection method based on background subtraction: Given a static background, the LiDAR

16

sensor should be able to see the background points closest to it in any direction, so lines of

sight are created between them (Figure 3. A). If these lines of sight are obscured by an

object from the real-time scan data, this object is dynamic (Figure 3. B). The representation

forms of prior point cloud maps are diversified. In addition to the original point cloud data, it

can also be based on the semantic point cloud map (W.-C. Ma et al., 2019), probability

occupancy grid (Anderson-Sprecher et al., 2011), or feature map extracted from the original

point cloud (Yin et al., 2020).

Figure 4: Relative distances and corresponding histograms of different background objects (Xia et al.,
2022).

17

However, it is not easy to construct a prior map in practice. The first issue is that the

generation and updating of the prior map also need to remove dynamic objects. So prior map

construction and dynamic object detection are chicken-and-egg problems due to their

interwoven nature in this method (Kim & Kim, 2020). Another problem is that not all

environment objects are completely static. It is difficult to accurately represent dynamic

background objects such as tree crowns and grasslands in the prior map because they are

not rigid. Figure 4 illustrates the time series of the relative radial distances between the

LiDAR sensor and different kinds of background objects and their corresponding histograms

to further indicate this problem. It indicates the difference in the radial distance distributions

between the dynamic background objects and static background objects. The distance of

dynamic background objects such as the tree crowns (Figure 4. (a) and (b)) and grasslands

(Figure 4. (c) and (d)), fluctuate sharply. The distance of static background objects like empty

concrete road surface (Figure 4. (e) and (f)) slightly fluctuate unless there are vehicles on this

road (Figure 4. (g) and (h)).

Figure 5: The ASM alignment of vehicles, mean of samples in blue dashed line (Xiao et al., 2016).

Another idea based on prior knowledge is to extract potential moving objects using feature or

model matching (Cheng et al., 2014; Ding & Wang, 2021). Common features include object

dimension (length, width, and height), volumetric features (object surface area, vertical

projected area, and volume), relative position (maximum relative height and mean relative

height), and vertical point distribution histogram, etc. (Xiao et al., 2016). In addition to

defining features for dynamic objects, these target objects can also be modeled directly as

Active Shape Model (ASM) (Zeeshan Zia et al., 2013). An example of vehicle ASM is shown

in Figure 5 and the extracted results of this model are shown in Figure 6. Then, based on

18

these models and features, dynamic objects are extracted by classifiers, like Support Vector

Machines (SVM) (Y.-W. Chen & Lin, 2006) or random forest (Breiman, 2001).

Feature-based and model-based approaches also face some problems. First, in addition to

vehicles, common dynamic objects also include cyclists and pedestrians. Even just focusing

on vehicles, the differences between different types of vehicles are very large. Most of the

previous methods only focused on small vehicles and did not include large vehicles such as

large trucks or buses. Some cities also have special vehicles such as ground rail vehicles

and tricycles. To be able to cover various types of dynamic objects, some studies chose to

increase the number of features. For example, Lin et al. (2018) raised a 26-dimensional

feature and Guo et al. (2019) raised a 32-dimensional feature to extract vehicles, cyclists,

and pedestrians. Iqbal et al. (2021) used a transfer learning strategy to extract 128 features

from the original point cloud. In general, researchers tend to use as many features as

possible when they lack relevant prior knowledge, which leads to a significant increase in

computing time and memory requirements (Weinmann et al., 2015). The second problem is

that even when appropriate features or models are obtained, they are generally only applied

to static or low-speed objects. As shown in Figure 2, the ghost trail effect makes objects

which move at high speed cannot match with the model or features of static objects.

Depending on speed and trajectory (such as moving straight, changing lanes, or turning at

the corner), the same dynamic object takes on a completely different geometrical shape.

Therefore, it is difficult to define suitable features and models for dynamic objects.

Figure 6: The vehicle ASM fitting examples (Xiao et al., 2016).

Some studies attempt to extract the motion state of objects from a single-frame point cloud

data, although a single-frame data is not generally considered to contain enough motion

information. Yao et al. (2011) detected moving vehicles in ALS data using motion artifacts

19

caused by ALS sensors moving relative to the static environment. This method approximates

a static vehicle as a rectangle from a 2D perspective. For moving vehicles, this rectangle will

be stretched into a parallelogram. The shearing angle 𝜃𝑆𝐴 of this parallelogram is determined

by the angle 𝜃𝑣 between the movement direction of the vehicle and the ALS sensor. So a

motion artifacts model illustrated in Figure 7 infers the dynamic state of vehicles based on the

relative relation between the original rectangle and the stretched parallelogram. Given the

sensed length (𝑙𝑠) and original length (𝑙𝑣) or the original aspect ratio (𝐴𝑟) and the sensed

aspect ratio (𝐴𝑟𝑠) of a vehicle in the ALS data. And the velocity of the ALS sensor (𝑣𝐿) and

angle 𝜃𝑣 are also known. The velocity of the vehicle (𝑣) is calculated in Eq.1 (𝑙𝑠 and 𝑙𝑣 can be

replaced by 𝐴𝑟𝑠 and 𝐴𝑟). Then shearing angle 𝜃𝑆𝐴 used to compare the velocity of the vehicle

(𝑣) is obtained in Eq.2. So the dynamic state of the vehicle is recovered with 𝑣 and 𝜃𝑆𝐴.

𝑙𝑠 =
𝑙𝑣⋅𝑣𝐿

𝑣𝐿−𝑣⋅cos(𝜃𝑣)
=

𝑙𝑣

1−
𝑣

𝑣𝐿
⋅cos(𝜃𝑣)

 (1)

𝜃𝑆𝐴 = arctan (
𝑣⋅sin(𝐴)

𝑣𝐿−𝑣⋅cos(𝐴)
) + 90° (2)

Figure 7: Motion artifacts model (Yao et al., 2010).

Although the motion artifacts model has good results when dealing with vehicle objects in

ALS, they are not suitable for pedestrians or cyclists because these two kinds of objects do

not fit well with rectangles and parallelograms. Another problem is that because the ALS

sensor moves so fast, the scanning time of an area is very short. Therefore, it is easy to

capture the instantaneous motion state of the moving object. By contrast, MLS sensors are

limited by the speed of the data acquisition vehicle and traffic rules and spend more time

scanning the same area. As a result, it is possible to capture the moving state of a dynamic

vehicle for a long time, resulting in the captured object not moving in a fixed direction, but

(continuously) changing the direction of motion during the scan (Figure 2). So it is difficult to

20

simply generalize the captured dynamic object as a parallelogram and generate the motion

artifacts model.

Since the advent of methods such as PointNet (Charles et al., 2017) and VoxelNet (Zhou &

Tuzel, 2018) in recent years, deep learning has been widely applied to the object detection

tasks in point cloud data (Ku et al., 2018; Shi et al., 2019). Most of these methods are directly

applied to the single-frame point cloud data, and show excellent performance in pedestrian,

cyclist, and vehicle detection tasks. However, the good performance of such methods usually

requires the support of a high-quality training set. For dynamic object detection tasks,

although some researchers have made the related data set (Pfreundschuh et al., 2021), the

relevant high-quality available data sets are still not enough in general. For large open data

sets such as KITTI (Geiger et al., 2013), training samples are often very imbalanced,

especially for uncommon moving objects. This may affect the quality of the results of multi-

type object recognition tasks (Wu et al., 2021).

2.2 Multi-frame Data Methods

Multi-frame data is a collection of multiple single-frame data, such as the continuously

scanning MLS data is a typical multi-frame data. Earlier research simply interpreted multi-

frame data as a single frame with more points (Sun et al., 2020) but ignored the relative

relationship between each data frame. Subsequent studies proved that spatiotemporal

correlations among consecutive frames provide much useful information especially for

detection of dynamic objects (Huang et al., 2020; Luo et al., 2018).

A common multi-frame method is object tracking. This method thinks that multi-frame data is

a time series of single-frame data, so it starts from the first frame data and takes the data of

the current frame as the reference of the data of the next frame to find the object with

position change in the next frame. There were many model-based object tracking

approaches in early research (Petrovskaya & Thrun, 2009; Shackleton et al., 2010). They

usually apply model-based object detection on each single-frame data (see Figure 8) and

then use methods such as Kalman Filters (Zhao & Thorpe, 1998) or Signature of Histograms

of Orientations (SHOT) descriptors (Tombari et al., 2010) to match the same object in

different data frames. If the position of the detected object changes, this object is dynamic.

Such methods usually require prior knowledge of the object to be detected and are therefore

very effective when performing tracking tasks for specific targets, such as the pedestrian

detection in Figure 8.

21

Figure 8: The model-based object detection in single-frame data (Shackleton et al., 2010).

Figure 9: Objects segmented with motion cues (Dewan et al., 2016).

However, these model-based dynamic object detection and tracking methods have poor

generalization ability, so they are not suitable for cases where the types of detected objects

cannot be predicted completely. To avoid the limitations of prior models, some model-free

methods are also proposed. For example, Dewan et al. (2016) first used Random Sample

22

Consensus (RANSAC) (Fischler & Bolles, 1981) to estimate the motion model and then

segmented the point cloud directly with the motion cues. Figure 9 shows objects segmented

with motion cues. Compared to the model-based method (Figure 8), its segmentation results

contain a variety of objects.

Figure 10: The dynamic object removal in SuMa++ (X. Chen et al., 2019).

Figure 11: The main steps of the mapless and modeless online dynamic object detection method

designed by Yoon et al. (2019).

23

As recently the semantic classification has been achieved point by point in point cloud data,

some latest studies have proposed point-based dynamic detection. Therefore, dynamic

tracing does not need to take the object as the basic unit but can be further achieved at the

point level. X. Chen et al. (2019) proposed a Simultaneous Localization and Mapping (SLAM)

method, SuMa++, which first used the Fully Convolutional Neural Network (FCN) (Milioto et

al., 2019) to provide semantic class labels for each point and then detect and remove

dynamic objects with the spatial semantic inconsistency (Figure 10). But this method also

removes some of the static objects (see incomplete static vehicles on both sides of the road

in Figure 10. (b)). Yoon et al. (2019) designed a point-based online dynamic object detection

method that does not rely on prior maps or models. The main steps are shown in Figure 11.

This method first uses the error metrics, which is a common concept in point cloud alignment

operations, to first compare two point clouds and then extract the potential dynamic points

from the unaligned points (Figure 11. (a)). Then it checks the free space (the space not

permanently occupied by static points in the point cloud) by considering the spatial

relationship between the LiDAR scanning ray and the surface plane that the scanned point

lies on. The fake dynamic points are labeled as static points again. This step is a simplified

version of the occupancy voxel grid (Figure 11. (b)). After that, a box filter (Figure 12) is used

to further move outliers in the potential dynamic points (Figure 11. (c)). Finally, the remaining

points will be considered as the seed points of the region growth algorithm (Moosmann et al.,

2009) to extract the complete dynamic object (Figure 11. (d)).

Figure 12: The box filter used to remove the outliers in potential dynamic points (Yoon et al., 2019).

Compared with object-based methods, point-based methods are more susceptible to

viewpoint occlusions and data sparsity. For the method of ray tracing, another issue is that

the influence of noise on free space detection is not considered, which results in labeling

many static points as dynamic by mistake. Therefore, some studies use Octomap to identify

dynamic objects (Arora et al., 2021; Lim et al., 2021; Pagad et al., 2020; Schauer & Nüchter,

2018; Ushani et al., 2017). It extracts dynamic objects by exploiting the spatial conflict of

LiDAR rays between multi-frame data. The theoretical background of Octomap will be

introduced in Section 3.1. The advantage of Octomap over other multi-frame methods is that

24

instead of simply marking points as static or dynamic, Octomap describes the probability of

each voxel being occupied, which considers the effect of noise on ray tracing. This allows

Octomap to obtain more precise free space in the point cloud.

The main problem with Octomap is that it is not a computation-friendly and memory-friendly

method because Octomap introduces additional 3D grid so that the orientation, resolution,

and spatial domain of the grid all affect the performance. MLS will generate point cloud data

of large density and wide range. Thus MLS data results in a very large voxel grid in Octomap.

Therefore, a large amount of memory is required to perform ray tracing. At present, one of

the key points and difficulties of Octomap-related research is to reduce the memory burden

and improve the computing speed of Octomap. One idea is to introduce visibility-based

approaches (Banerjee et al., 2019; Kim & Kim, 2020). However, visibility-based approaches

are severely affected by the occlusion problem.

2.3 Conclusion of Related Works

In general, although there are many well-performed static target extraction methods for

single-frame data, the methods for dynamic objects are still not very mature, especially in

MLS data. But some single-frame methods are instructive for multi-frame methods. For

example, a single-frame method is integrated into a multi-frame method as a sub-step in

many research approaches.

In addition to obtaining more points and higher point density, multi-frame data also provides a

lot of additional information helpful for dynamic object extraction, such as the relative

spatiotemporal relation between data frames. Among the many multi-frame methods,

Octomap provides a unique point-by-point ray-tracing solution and had some good results in

previous studies. But it still needs to be improved in terms of computational efficiency and

memory consumption.

Compared to previous studies on Octomap-based dynamic object detection, the contribution

of this thesis is to propose a method to segment the original input MLS point cloud into

multiple subsets thus avoiding the generation of a huge voxel grid to achieve better efficiency

and reduced memory requirements. On the other hand, the segmented MLS point cloud can

more efficiently build Octomaps and extract free points by accelerating with parallel

computing.

25

3. Theoretical Background

This chapter introduces the theoretical background of the two important concepts, the

Octomap (Section 3.1) and the point-based neighborhood query (Section 3.2), which are

used in the methodology of this thesis.

3.1 Octomap

Octomap is a 3D occupancy voxel grid mapping approach based on a cell’s octree structure

(see Figure 13, where free cells are shadowed white and occupied cells are black), which

was originally developed to implement the maples and modeless 3D geometric environment

representation in robotics research (Hornung et al., 2013). This mapping approach is inspired

by the occupancy grid mapping proposed by Moravec and Elfes (1985). Figure 14 compares

the Octomap with other common 3D representations of LiDAR data.

Figure 13: The volumetric model (left) and its corresponding octree representation (right) (Hornung et

al., 2013).

Figure 14: 3D representations of a tree scanned with a laser range sensor (from left to right): Point

cloud, elevation map, multi-level surface map, and Octomap (Hornung et al., 2013).

26

Octomap obtains the full representation of space, which means the space is divided into

three classes: unscanned space, free space, and occupied space. The free space (navigable

space) and the occupied space (obstacles) are important for safe robot navigation. In

addition, information about unscanned space is also coded implicitly in the map because it is

also critical for some tasks such as autonomous robot exploration of an unknown

environment. For ease of understanding, Figure 15. (a) uses a 2D grid to demonstrate

Octomap's spatial division logic: First, all voxel cells in the initial Octomap are labeled as

unscanned space by default. When the MLS sensor moves to position 𝑠1, it emits the first ray

𝑠1𝑝1 and captures the target point 𝑝1 . The Lidar ray is voxelized in Octomap using

Bresenham's line algorithm (Bresenham, 1965). The voxel cell 𝑣𝑝1
 where the target point 𝑝1

is located is considered occupied, while the voxel cell 𝑣𝑠1
 where the MLS sensor 𝑠1is located

and all the voxel cells between 𝑣𝑝1
 and 𝑣𝑠1

 are free.

Figure 15: Spatial classification based on ray tracing and its possible spatial conflicts.

As shown in Figure 15. (a), when only one ray is inserted into the Octomap, all voxel cells are

explicitly classified as unscanned, occupied, or free space. However, the situation becomes

much more complicated when multiple rays are inserted. Some rays may have space

conflicts with each other. Figure 15. (b) shows an example of a space conflict: After emitting

ray 𝑠1𝑝1, the MLS sensor continues to move in the direction 𝑠1𝑠2. When the sensor reaches

position 𝑠2, it emits the second ray 𝑠2𝑝2 and captures the target point 𝑝2. Since 𝑝2 is a point

on the ray 𝑠1𝑝1, there is a contradiction between 𝑠1𝑝1 and 𝑠2𝑝2. For 𝑠1𝑝1, the voxel cell 𝑣𝑝2
 ,

which contains the target point 𝑝2 , is free. But for 𝑠2𝑝2 , 𝑣𝑝2
 is occupied. There are three

possible reasons for this inconsistency in voxel occupancy. The first is that 𝑝2 is a dynamic

point, so when the sensor emits the first ray 𝑠1𝑝1, 𝑝2 is moving towards but not yet at 𝑣𝑝2
. So,

the ray 𝑠1𝑝1 is not occluded by 𝑝2. Based on this assumption, the actual case of 𝑣𝑝2
 should

be free (Figure 15. (c)). The second possibility is that the conflict is caused by a

27

measurement error in LiDAR. 𝑝1 in Figure 15. (b) may be the noise generated during the

measurement, so its position is not correct. An assumption is made that the real position of

𝑝1 in the actual environment is shown in Figure 15. (d). Based on this assumption, we draw

an opposite conclusion: in the real world, 𝑣𝑝2
 is occupied. The last possibility is that the object

being scanned is a non-rigid static object or has a sparse structure. Typical examples are

tree crowns and grasslands. In Figure 15. (b), if 𝑝2 comes from a non-rigid object, then it is

possible for voxels 𝑣𝑝1
 and 𝑣𝑝1

 to be occupied space at the same time. In a real MLS data

set, the above three conditions may exist simultaneously. This makes it difficult to analyze

what causes spatial conflict cell by cell. Therefore, it is impossible to directly classify voxel

cells with spatial conflict without knowing the true environment.

To avoid the classification uncertainty caused by space conflicts of rays, Octomap does not

directly mark the occupation status of each voxel cell but calculated the occupation

probability. For each voxel cell, find all the rays that intersect it in space. If one ray is

reflected within the voxel cell, this voxel cell is observed to be occupied once. If one ray

traverses the voxel cell, this voxel cell is observed to be free once. The occupancy probability

is obtained by calculating the ratio of the number of times the voxel cell is occupied to the

total number of observations. This is very similar to the hit-and-miss approach proposed by

Kelly et al. (2006).

Octomap also provides a convenient way to update probabilities. From the insertion of the

second ray, the latest occupancy probability of the voxel cell is derived from the previous

probability, rather than having to traverse all the inserted rays each time to obtain statistical

information. For the voxel cell 𝑛, given 𝑡 times sensor measurements 𝑧1:𝑡 , its occupancy

probability 𝑃(𝑛|𝑧1:𝑡) is obtained in Eq.3. In this update formula (Eq.3), 𝑧𝑡 means the current

measurement. 𝑃(𝑛) is the prior probability and 𝑃(𝑛|𝑧1:𝑡−1) is the previous estimate. 𝑃(𝑛|𝑧𝑡) is

the probability of voxel n to be occupied given the measurement 𝑧𝑡.

𝑃(𝑛|𝑧1:𝑡) = [1 +
1−𝑃(𝑛|𝑧𝑡)

𝑃(𝑛|𝑧𝑡)
⋅

1−𝑃(𝑛|𝑧1:𝑡−1)

𝑃(𝑛|𝑧1:𝑡−1)
⋅

1−𝑃(𝑛)

𝑃(𝑛)
]

−1
 (3)

After determining the final occupancy probability of each voxel cell, a threshold value

𝑡ℎ𝑟𝑒𝑠𝑜𝑐𝑐𝑢𝑝𝑖𝑒𝑑 is set to label the voxel cells with a probability greater than the threshold as

occupied space, and the other scanned as free space. Unscanned cells have no probabilities

and are not explicitly added to the octree structure to reduce computation and memory

consumption. The 3D environment representation obtained in this way takes full account of

the effects of dynamic objects, non-rigid static objects or objects with a sparse structure, and

28

measured noise. It is also the theoretical basis for extracting free points in Section 4.1 of this

thesis.

3.2 Point-based Neighborhood Query

In several sub-steps of the methodology proposed in this paper, such as removing noise,

removing vegetation, and finally extracting dynamic objects, point-based local neighborhood

queries are required.

Figure 16: 4-connectivities (a) and 8-connectivities (b) of the raster data (Kampffmeyer et al., 2019).

Figure 17: 6-connectivities (a), 12-connectivities (b), 18-connectivities, and 26-connectivities of the

voxel data (Sánchez-Cruz et al., 2013).

29

For raster data, its neighborhood is usually defined by connectivity (Gonzalez & Woods,

2008). Figure 16 illustrates the two main types of connectivity for raster data: 4-connectivities

which only focus on the vertical and horizontal directions and 8-connectivities which focus on

horizontal, vertical, and diagonal directions. The neighborhood of a voxel object can also be

similarly defined by connectivity. Figure 17 illustrates several major connectivity modes of

voxel objects. However, point cloud data is discrete, so the adjacency relation between

points is implicit, which means that the neighborhood definition based on connectivity cannot

be directly applied to the point cloud. Therefore, it is necessary to specially define the

neighborhood of point cloud data. Otepka et al. (2013) proposed that for point 𝑝𝑖 from the

point cloud, all points with a distance to 𝑝𝑖 less than a certain threshold or the nearest 𝑘

points of 𝑝𝑖 are regarded as its neighborhood. There are two points to note in this definition.

First, 𝑝𝑖 does not need to be a real point element in the point cloud, in other words, it can be

a virtual point such as the geometric center of the point cloud. Second, there is no restriction

on the type of distance in the definition, so it could be 3D distance, 𝑥𝑦-plane distance, 𝑧-axis

distance, or Manhattan distance. Some researchers defined the point cloud neighborhood

based on triangulation or tetrahedralization (Gorte, 2002; Maas & Vosselman, 1999).

However, these two methods require additional processing steps, such as constructing

Triangular Irregular Networks (TIN) or Tetrahedral Networks (TEN), which cannot be directly

applied to the original point cloud.

Figure 18: An example of 2D points (left) with their corresponding KD-tree structure (right) (Bentley,

1975).

The point cloud neighborhood definition proposed by Otepka et al. (2013) corresponds to two

commonly used point-based local neighborhood query methods: fixed radius search and

KNN search. These two methods can be efficiently implemented based on KD-tree (Bentley,

1975) structure (Figure 18). But in practice, many people are unaware of the difference in

effect between these two neighborhood query methods. The wrong choice of neighborhood

query method may affect the performance of many point cloud processing tasks. Otepka et

30

al. (2021) analyzed this problem with a generic spatial search framework: When the point

distribution in the point cloud is isotropic and homogeneous, there is no obvious difference

between the two neighborhood query methods. However, in the actual point cloud data, due

to the influence of scan mechanics (Figure 19) and other factors, the point distribution is

usually anisotropic and inhomogeneous. For example, areas far from the center of the scan

usually have a lower density of captured points. The main advantage of fixed radius search is

that it provides a symmetrical neighborhood, but KNN search does not. A symmetrical

neighborhood means that all points are mutual neighbors under the neighborhood. Figure 20

illustrates examples of the symmetrical neighborhood from a fixed radius search (Figure 20.

(a)) and the non-symmetrical neighborhood from a KNN search (Figure 20. (b)). In Figure 20.

(a), the blue point and all orange points are mutual neighbors. In Figure 20. (b), the orange

point is a neighbor of the blue point, but the blue point is not a neighbor of the orange point.

For some point cloud processing tasks, such as performing region growth algorithms or

calculating local point densities, symmetric neighborhoods are explicitly specified. But points

in the symmetric neighborhood may be non-symmetrical. Although KNN search provides a

non-symmetrical neighborhood, it has better neighborhood search ability in the region with

density change, such as the boundary region far from the sensor in MLS data (Pfeifer et al.,

2021).

Figure 19: Some scan mechanics and their scan pattern on a horizontal planar surface (Otepka et al.,

2021).

Based on the above analysis, this research takes point-based space search as the main

means to query the point cloud neighborhood and selects different search strategies in

31

different sub-steps according to the task objectives, to achieve better performance of the

proposed method.

Figure 20: The symmetrical neighborhood from a fixed radius search (a) and the non-symmetrical

neighborhood from a KNN search (b).

32

33

4. Methodology

This chapter discusses the methodology of this research. Implementation details of this

method, such as typical values for all involved parameters, are given in Chapter 5. The main

task of this proposed method is to use the MLS data and its corresponding sensor trajectory

to move the dynamic objects from the original input MLS point clouds and only keep the

static objects. As shown in Figure 21, the workflow is divided into five sub-steps:

(1) Extract the free points from the input MLS point cloud using Octomap (Section 4.1).

(2) Delimtate the ROI by removing the ground surface and the high-altitude space

(Section 4.2).

(3) Remove noise with free-point rate from free points (Section 4.3).

(4) Remove the vegetation areas from free points using the number of returned LiDAR

rays (Section 4.4).

(5) Use the filtered free points as seed points to extract the dynamic objects (Section 4.5).

Figure 21: The main workflow of this method.

34

4.1 Free Point Extraction

This section describes how to extract free points from Octomap in a more efficient Octomap

manner then the original Octomap method using MLS data and its corresponding sensor

trajectory data. Free points here are defined as all points located in the Octomap space

whose occupancy probability is less than a given threshold 𝑡ℎ𝑟𝑒𝑠𝑜𝑐𝑐𝑢𝑝𝑖𝑒𝑑. As shown in Figure

22, the workflow of this step begins by splitting the entire MLS data into multiple data frames.

Each data frame and its neighbor data frames are merged into one group and inserted into

an independent Octomap. Free points are extracted from each Octomap based on an

occupancy probability threshold and then merged. Finally, the expected free points are

obtained after removing the redundant points. The rest of this section will introduce these

operations in detail.

Figure 22: The workflow of free points extraction.

Octomap is generally not considered computation-friendly and memory-friendly. This problem

is more prominent when dealing with high point density MLS data, especially when Octomap

is set to a very small voxel size. Therefore, before generating Octomap and performing ray

tracing, it is necessary to consider how to make this operation as efficient as possible. The

solution used here is to split the entire MLS data into multiple sections (data frames). This

avoids generating a very large voxel grid but instead generates multiple relatively small voxel

grids and excludes rays emitted from very far away in each small voxel grid, thus reducing

the computational effort and memory requirements. Figure 23 uses an example to further

explain this idea: Octomap is built based on ray tracing. For the target section (see Figure 23.

(b) and. the green box area in Figure 23. (a)), most of its intersected rays are emitted when

the MLS sensor is located between points 𝑝1 and 𝑝2. When the MLS sensor is located at

35

other positions, some rays also reach the target section, but in very small quantities.

Moreover, these rays have lower measurement accuracy because they are emitted by the

sensor at a distance far from the target section (Pfeifer et al., 2021). Thus, when the

Octomap is used to represent the target section shown in Figure 23. (b), the data collected

by the sensor from positions 𝑝2 to 𝑝1 provides most of the highly accurate rays associated

with this target area.

Figure 23: A section (b) from the whole MLS data (a).

Figure 24: Data frames segmentation.

The detailed flow of data frames segmentation is given in Figure 24: Given a continuous scan

of MLS data from moment 𝑡𝑠𝑡𝑎𝑟𝑡 to moment 𝑡𝑒𝑛𝑑, and a time interval 𝑡𝑖𝑡𝑣𝑙. The original MLS

36

data is split into 𝑛 data frames (𝑛 = ⌈(𝑡𝑒𝑛𝑑 − 𝑡𝑠𝑡𝑎𝑟𝑡) ∕ 𝑡𝑖𝑡𝑣𝑙⌉), each with a scan time of 𝑡𝑖𝑡𝑣𝑙 (the

scan time of the last frame may be less than 𝑡𝑖𝑡𝑣𝑙).

The next step is to specify the Octomap voxel size by setting the parameter 𝑠𝑖𝑧𝑒𝑣𝑜𝑥𝑒𝑙 and

then build Octomaps using the segmented data frames. If each data frame is inserted directly

into a separate Octomap, a problem arises: the start and end moments of each data frame

(e.g., moment 𝑡2 and moment 𝑡3 for the second data frame in Figure 24) are missing a lot of

data compared to the other scan moments because the start moment lacks preceding scan

data and the end moment lacks subsequent scan data. These missing data are split into their

neighbor data frames. Thus a relatively poor reconstruction result is obtained at the start and

end moments of each data frame, due to the relative lack of scan data. To cope with this

problem, the solution given here is to pack each data frame with its neighbor data frames and

then insert them together into an Octomap, so that the missing data at the start and end

moments of each data frame is filled with its neighbor data frames. Thus each Octomap build

is fed three consecutive frames of data (the first and last Octomap are only fed two

consecutive frames of data).

The principle and method of Octomap construction have been described in detail in Section

3.1, so this section will skip this part and discuss the free point extraction steps after

Octomap construction is completed. By setting an occupancy probability threshold

𝑡ℎ𝑟𝑒𝑠𝑜𝑐𝑐𝑢𝑝𝑖𝑒𝑑 , the scanned space in each Octomap is classified into two discrete states,

occupied and free (see Eq.4). All points from the two or three inserted consecutive frames

that lie in the free voxel space are free points. The free points from all Octomaps are

extracted and combined into one data to obtain the free points of the complete scan area.

Since neighbor data frames are added in each Octomap construction, this means that each

data frame is inserted into at least two Octomaps. Therefore, inevitably the free points from

different Octomaps are partially duplicated, which cause unnecessary computation in

subsequent steps. In addition, redundant points also cause the local density of free points to

be greater than the local density of the original MLS data at the corresponding location, thus

resulting in problems in the noise removal phase. So, redundant points need to be removed

from the combined free points in the final operation of this section. The redundant points of

each point are found by applying the fixed radius spatial search with a very small radius

(close to 0) in a KD-tree structure.

𝑠𝑝𝑎𝑐𝑒 𝑜𝑐𝑐𝑢𝑝𝑎𝑛𝑐𝑦 𝑠𝑡𝑎𝑡𝑒 = {
𝑜𝑐𝑐𝑢𝑝𝑖𝑒𝑑: 𝑖𝑓 𝑜𝑐𝑐𝑢𝑝𝑎𝑛𝑐𝑦 𝑝𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦 ≥ 𝑡ℎ𝑟𝑒𝑠𝑜𝑐𝑐𝑢𝑝𝑖𝑒𝑑

𝑓𝑟𝑒𝑒: 𝑖𝑓 𝑜𝑐𝑐𝑢𝑝𝑎𝑛𝑐𝑦 𝑝𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦 < 𝑡ℎ𝑟𝑒𝑠𝑜𝑐𝑐𝑢𝑝𝑖𝑒𝑑
 (4)

37

Finally, it is important to emphasize that the free points obtained here are only considered as

potential dynamic points and not directly as dynamic points. As analyzed in Section 3.1, free

points can be caused by non-rigid objects, objects with sparse structure, or measurement

errors (noise), in addition to dynamic objects. In a real-world LiDAR data collection

environment, these three influencing factors are often difficult to avoid. Therefore, only after

removing all free points due to non-rigid objects, objects with sparse structure, and potential

measurement noise (outliers), the remaining free points are considered as a subset of all

dynamic objects. The related processing methods will be described in the subsequent part of

this chapter.

4.2 ROI Delimitation

This section aims to use the sensor trajectory, sensor mounting height, and local vehicle

height restriction information to extract Region of Interest (ROI) that is relevant for land-

based dynamic objects to reduce the amount of calculation in subsequent steps. ROI is

defined as the space between the height of the ground surface and the maximum allowable

height of a large vehicle in this research (excluding the ground). The final output data is the

ROI containing the potential dynamic points. The workflow of ROI delimitation is illustrated in

Figure 25.

Figure 25: The workflow of ROI delimitation.

Ground removal is a common operation in dynamic object detection tasks (Choi et al., 2013;

Postica et al., 2016; L. Zhang et al., 2013). This is based on two main reasons: The first

reason is that the ground is usually dense and does not have any dynamic objects in the

MLS data. So removing the ground reduces the computational cost of the subsequent steps

without affecting the final result. Another reason is that the land-based dynamic objects are in

contact with the ground, and if the ground points are not removed it is difficult to avoid

38

extracting some of the ground points as part of dynamic objects by accident. Thus, the

integrity of the static environment might be destroyed. By removing the ground points, the

objects are not connected by the ground surface, so they are more easily segmented into

separate objects for detection and tracking tasks (Arora et al., 2021).

There have been many studies on ground extraction from MLS data, and most of them

require a series of processing steps of the point cloud data (Che et al., 2019). However, to

obtain the ground rapidly, an efficient ground extraction method based only on the sensor

mounting height without additional processing of the point cloud is proposed here. Given a

3D position of MLS sensor 𝑠𝑖 (𝑥𝑦𝑧 coordinates: 𝑥𝑠𝑖
, 𝑦𝑠𝑖

, ℎ𝑠𝑖
) from the sensor trajectory and the

mounting height of the sensor ℎ𝑠𝑚, the height of local ground surface ℎ𝑚𝑖𝑛𝑖
 is calculated by

ℎ𝑚𝑖𝑛𝑖
= ℎ𝑠𝑖

− ℎ𝑠𝑚. If the sensor captures a point 𝑝𝑖 (𝑥𝑦𝑧 coordinates: 𝑥𝑝𝑖
, 𝑦𝑝𝑖

, ℎ𝑝𝑖
) at position 𝑠𝑖

and the ground height does not change within a certain range, the ground height

corresponding to 𝑝𝑖 is also ℎ𝑚𝑖𝑛𝑖
. So, Eq.5 determines whether the captured point 𝑝𝑖 is a

ground point by comparing ℎ𝑚𝑖𝑛𝑖
 and ℎ𝑝𝑖

.

𝑔𝑟𝑜𝑢𝑛𝑑 𝑝𝑜𝑖𝑛𝑡 = {
𝑡𝑟𝑢𝑒: 𝑖𝑓 ℎ𝑚𝑖𝑛𝑖

 ≥ ℎ𝑝𝑖

𝑓𝑎𝑙𝑠𝑒: 𝑖𝑓 ℎ𝑚𝑖𝑛𝑖
< ℎ𝑝𝑖

 (5)

While most studies related to dynamic object detection have mentioned ground removal, few

studies have focused on the high-altitude space in MLS data. The high-altitude space in this

context means the space above the common land-based dynamic objects, such as large

vehicles. The high-altitude space in the MLS data does not include any land-based dynamic

objects but may include the upper part of some street-facing buildings and the crowns of

some tall trees, which cause obstacles to dynamic object detection and extraction. Therefore,

removing the high-altitude space not only reduces the computational cost of the subsequent

steps by decreasing the number of free points but also reduces the difficulty of dynamic

object detection and extraction.

One of the difficulties in removing high-altitude space is that, unlike the obvious boundary

between ground and non-ground space, the boundary between high-altitude and non-high-

altitude spaces usually relies on artificial settings. Since MLS data focuses on roads and their

surroundings, large vehicles are usually the largest dynamic objects in MLS data. The

governing bodies of a region or country usually set the height restriction for local large

vehicles in the form of regulations. Vehicles that exceed the height restriction may not be

able to safely pass-through local transportation facilities such as tunnels. Therefore, the

39

height restriction of large vehicles is a reasonable boundary between high-altitude and non-

high-altitude spaces in MLS data.

Given the height restriction of large vehicles ℎ𝑣𝑟 , the height of boundary between high-

altitude and non-high-altitude spaces at position 𝑠𝑖 (ℎ𝑚𝑎𝑥𝑖
) is calculated by ℎ𝑚𝑎𝑥𝑖

= ℎ𝑚𝑖𝑛𝑖
+

ℎ𝑣𝑟 . Thus, Eq.6 determines whether the captured point 𝑝𝑖 is a high-altitude point by

comparing ℎ𝑚𝑎𝑥𝑖
 and ℎ𝑝𝑖

.

ℎ𝑖𝑔ℎ − 𝑎𝑙𝑡𝑖𝑡𝑢𝑑𝑒 𝑝𝑜𝑖𝑛𝑡 = {
𝑓𝑎𝑙𝑠𝑒: 𝑖𝑓 ℎ𝑚𝑎𝑥𝑖

> ℎ𝑝𝑖

𝑡𝑟𝑢𝑒: 𝑖𝑓 ℎ𝑚𝑎𝑥𝑖
≤ ℎ𝑝𝑖

 (6)

Eq.5 and Eq.6 are further integrated into a single discriminant (Eq.7). Figure 26 shows this

complete spatial discriminant model with three example points (𝑝𝑖−1, 𝑝𝑖−2, and 𝑝𝑖−3). Based

on Eq.7, it is known that 𝑝𝑖−1, belongs to the ground, 𝑝𝑖−2 belongs to the high-altitude space,

and only 𝑝𝑖−3 belongs to the target space. So only 𝑝𝑖−3 is kept after extracting the ROI.

𝑠𝑝𝑎𝑐𝑒 𝑐𝑎𝑡𝑒𝑔𝑜𝑟𝑦 = {

𝑔𝑟𝑜𝑢𝑛𝑑: 𝑖𝑓 ℎ𝑚𝑖𝑛𝑖
≥ ℎ𝑝𝑖

𝑡𝑎𝑟𝑔𝑒𝑡 𝑠𝑝𝑎𝑐𝑒: ℎ𝑚𝑖𝑛𝑖
< ℎ𝑝𝑖

< ℎ𝑚𝑎𝑥𝑖

ℎ𝑖𝑔ℎ − 𝑎𝑙𝑡𝑖𝑡𝑢𝑑𝑒 𝑠𝑝𝑎𝑐𝑒: 𝑖𝑓 ℎ𝑚𝑎𝑥𝑖
≤ ℎ𝑝𝑖

 (7)

Figure 26: Spatial segmentation discriminant model.

Finally, it should be noted that the order of the ROI delimitation operation in this study is

different from many other dynamic object detection studies in the whole workflow. For most

related studies, ROI delimitation is performed before dynamic object detection to reduce the

40

detection difficulty as well as the computational cost. However, for the Octomap-based

dynamic detection method, the ROI delimitation must be done after the extraction of free

points. The reason is that although ground and high-altitude spaces do not contain dynamic

objects, they still contain LiDAR rays that are helpful for Octomap to calculate the occupancy

probability of the target space more accurately. Figure 27 shows how ground points and

high-altitude points reduce the occupancy probability of the space which contains the vehicle

in Octomap. Therefore, they must be retained during the construction of the Octomap stage.

Figure 27: Ground and high-altitude space allow for a more accurate occupancy probability of the

target space in Octomap.

4.3 Noise Removal

This section focuses on the removal of noise caused by measurement errors from the free

points based on the free-point rate. Figure 28 illustrates the workflow of noise removal.

The measurement error of MLS is one of the potential causes of free points in Octomap.

Therefore, to obtain the dynamic points from the free points, noise caused by measurement

errors must be removed first. The causes of measurement errors are diverse and divided into

instrument noise and environmental noise. The former includes detector noise, electronic

noise, and other noise caused by the instrument itself. The latter includes optical scattering,

atmospheric scattering, background light, and the different reflectivity caused by the color,

41

texture, and material of the object (Arisholm et al., 2018; Xu et al., 2015). However, direct

denoising of the free point data based on density or fixed-radius neighborhood search is

undesirable because the overall point distribution of the MLS data is anisotropic and

inhomogeneous. Such methods may indistinguishably remove all dynamic points and noise

in low-density areas, such as in the border regions away from the sensor in MLS data.

Figure 28: The workflow of noise removal.

Figure 29: The relationship between the local density of free points and the local density of original

MLS data (r=1m).

The noise removal method used in this section is based on a hypothesis that there is a

difference between the proportions of noise and dynamic points to the object in which they

42

are located. This hypothesis is further explained as noise generally accounts for only a small

fraction of the object in which it is located, while most of the points of a dynamic object are

dynamic points. This hypothesis is evidenced in Figure 29, which shows the relationship

between the local point density of 1,000 dynamic points, 1,000 noise points, and 1,000

vegetation points randomly selected from all free points in all free points and their local point

density in the original MLS point cloud. These 3,000 points have been manually classified

and labelled in advance. Since vegetation is not the focus of this subsection, only the noise

and dynamic points are analyzed here. Both noise and dynamic points show a certain linear

relationship, with the linear relationship of dynamic points being particularly obvious. The

slope of the line fitted by the dynamic points is close to 1, which is significantly larger than the

slope of the line fitted by the noise points. Since the slope values of the two fitted lines in

Figure 29 are equivalent to the average proportion of dynamic and noisy points in their

respective corresponding objects. So, this proves the hypothesis made at the beginning of

this paragraph that in an ideal state the proportion of dynamic points in dynamic objects

should be close to one hundred percent, much larger than the proportion of noise points in

their corresponding objects. Based on the difference in slope of the two fitted lines, a free-

point rate threshold 𝑡ℎ𝑟𝑒𝑠𝑓𝑝 (see red line in Figure 29, free-point rate means the ratio of the

number of free points to the number of all scanned points in a certain neighborhood) is used

to distinguish the noisy and non-noisy free points.

Figure 30: The relationship between the local density of free points and the local density of original

MLS data in low-density areas (r=1m).

Figure 30 further illustrates the situation in the low-density areas: the noise removing method

based on the threshold 𝑡ℎ𝑟𝑒𝑠𝑓𝑝 removes most of the noise in the low-density areas at the

43

cost of a small loss of dynamic points, if the value of 𝑡ℎ𝑟𝑒𝑠𝑓𝑝 is reasonable. Figure 31 shows

the free-point rates for 1000 random dynamic points and 1000 random noise. The red line in

the figure (i.e., the free-point rate threshold) splits the two curves in a good way, thus also

demonstrating the feasibility of the proposed noise removal method.

The detailed process for distinguishing between noise and non-noise using the free-point rate

threshold 𝑡ℎ𝑟𝑒𝑠𝑓𝑝 is as follows: First, extract the ROI from the original MLS point cloud data

using the method described in Chapter 4.2, and keep only the target space containing

dynamic objects. Then for each free point 𝑝𝑖 , all its neighbor points are searched in the

processed original MLS pint cloud with a radius 𝑟𝑛𝑠, and the number of its neighbor points

(𝑛𝑢𝑚𝑛𝑏𝑖
) is counted. After that, the number of free points (𝑛𝑢𝑚𝑛𝑏−𝑓𝑝𝑖

) in its neighbor points is

counted. The free-point rate of point 𝑝𝑖 (𝑟𝑎𝑡𝑒𝑓𝑝𝑖
) is obtained from 𝑟𝑎𝑡𝑒𝑓𝑝𝑖

= 𝑛𝑢𝑚𝑛𝑏−𝑓𝑝𝑖
/

𝑛𝑢𝑚𝑛𝑏𝑖
. Given the free-point rate threshold 𝑡ℎ𝑟𝑒𝑠𝑓𝑝, the point 𝑝𝑖 is classified as a noisy or

non-noisy point based on Eq.8, by comparing 𝑟𝑎𝑡𝑒𝑓𝑝𝑖
 and 𝑡ℎ𝑟𝑒𝑠𝑓𝑝.

𝑛𝑜𝑖𝑠𝑒 = {
𝑡𝑟𝑢𝑒: 𝑖𝑓 𝑟𝑎𝑡𝑒𝑓𝑝𝑖

< 𝑡ℎ𝑟𝑒𝑠𝑓𝑝

𝑓𝑎𝑙𝑠𝑒: 𝑖𝑓 𝑟𝑎𝑡𝑒𝑓𝑝𝑖
≥ 𝑡ℎ𝑟𝑒𝑠𝑓𝑝

 (8)

Figure 31: Free-point rates of noise and dynamic points (r=1m).

44

By this method, the free-point rate is calculated point by point, and then the areas with high

free-point rates are extracted from the free points. These extracted free points are

considered to have removed most of the noise caused by LiDAR measurement errors.

Finally, it should be mentioned that the 3000 free points used in this section to demonstrate

the solution are not taken from the four case sites used in Chapter 5. Therefore these 3000

points do not affect the validation of the generalization ability of the proposed noise removal

method in Chapter 5.

4.4 Vegetation Removal

The purpose of this section is to remove vegetation from free points using the number of

returned LiDAR rays. This is also the last processing step to obtain dynamic seed points from

the free points. Figure 32 points out the workflow of the vegetation removal.

Figure 32: The workflow of vegetation removal.

As analyzed in Section 3.1, non-rigid objects and sparsely structured objects also contribute

to free points, and the most common objects that fit these two characteristics in the MLS data

45

are vegetation. In addition, the very large dispersion in the distribution of vegetation points in

Figure 29 means that the denoising results based on the free point rate threshold may

inevitably include some vegetation points, because the slope values of some vegetation

points in Figure 29 may be greater than the given threshold. These vegetation points

interfere with the final dynamic point extraction, so they must be removed in advance.

There have been many related studies focusing on using LiDAR data for vegetation

extraction in urban environments (Q. Guo et al., 2021). Several previous studies have

demonstrated that the number of returned LiDAR rays and vegetation are closely related

(Balado et al., 2018; Dalponte et al., 2009; Gupta et al., 2020). The reason for multiple

returns from LIDAR is that when the sensor emits multiple rays, a captured object may not be

able to completely block all of the LiDAR rays due to its structure or material, allowing some

of the rays to pass through this object and capture other objects behind it. Thus, the sparse

structure of the vegetation can easily produce multiple returns in the LiDAR data. Specifically,

a laser pulse may half-hit a leaf or branch and cause multiple returns. But vegetation is not

the only object that generates multiple returns. For example, glass, which is widely used in

buildings and vehicles, can also generate multiple returns. This poses a challenge for

extracting vegetation directly using the number of returned LiDAR rays.

Although multiple objects can produce multiple returns, the proportion of points with multiple

returns varies across objects. For example, glass that generates multiple returns usually

represents only a small portion of the entire building or vehicle, while for vegetation, such as

tree crowns and grasses, almost all parts generate multiple returns. So, the ratio of the

number of multi-returned points to the number of points in the original MLS data (i.e., the

multi-return rate) is calculated in the same neighborhood using a method similar to the noise

removal method in Section 4.3. Then a multi-return rate threshold 𝑡ℎ𝑟𝑒𝑠𝑚𝑟 is used to extract

the vegetation seed points and used KNN search (set the number of nearest neighbors as

𝑘𝑣𝑔) to detect and remove all vegetation points in free points.

The detailed process for distinguishing between vegetation and non-vegetation point using

the multi-return rate threshold 𝑡ℎ𝑟𝑒𝑠𝑚𝑟 is as follows: First, extract all multi-returned points

from the original MLS data which has been delimitated the ROI. Then for each multi-returned

point 𝑝𝑖, all its neighbor points are searched in the processed original MLS point cloud with a

radius 𝑟𝑣𝑔, and the number of its neighbor points (𝑛𝑢𝑚𝑛𝑏𝑖
) is counted. After that, the number

of multi-returned points (𝑛𝑢𝑚𝑛𝑏−𝑚𝑟𝑖
) in its neighbor points is counted. The multi-return rate of

point 𝑝𝑖 (𝑟𝑎𝑡𝑒𝑚𝑟𝑖
) is obtained from 𝑟𝑎𝑡𝑒𝑚𝑟𝑖

= 𝑛𝑢𝑚𝑛𝑏−𝑚𝑟𝑖
/𝑛𝑢𝑚𝑛𝑏𝑖

. Given the multi-return rate

46

threshold 𝑡ℎ𝑟𝑒𝑠𝑚𝑟, the point 𝑝𝑖 is confirmed whether it is a vegetation seed point based on

Eq.9, by comparing 𝑟𝑎𝑡𝑒𝑚𝑟𝑖
 and 𝑡ℎ𝑟𝑒𝑠𝑚𝑟.

𝑣𝑒𝑔𝑒𝑡𝑎𝑡𝑖𝑜𝑛 𝑠𝑒𝑒𝑑 = {
𝑡𝑟𝑢𝑒: 𝑖𝑓 𝑟𝑎𝑡𝑒𝑚𝑟𝑖

< 𝑡ℎ𝑟𝑒𝑠𝑚𝑟

𝑓𝑎𝑙𝑠𝑒: 𝑖𝑓 𝑟𝑎𝑡𝑒𝑚𝑟𝑖
≥ 𝑡ℎ𝑟𝑒𝑠𝑚𝑟

 (9)

After getting the vegetation seed points, all vegetation points are extracted based on

Algorithm 1. The final task of this section is to remove all vegetation points from free points.

But the free points are sparser compared to the original MLS points and the denoising

operation in Section 4.3 may further affect the neighborhood relationship of some vegetation

points. Therefore, it is difficult to directly extract all vegetation points from free points using

vegetation seed points. A better choice is to firstly extract the vegetation from the original

MLS data compared to the free points. The first step can be performed before Section 4.1.

Then the second step is to find the intersection of the extracted vegetation points and the

free points and remove this intersection from the free points to obtain the non-vegetation free

points. The second step needs to be performed after Section 4.3 to avoid the interference of

noise in the free points.

Algorithm 1. Object Extraction with KNN Spatial Search

Input: Points to be extracted {𝑃𝑖𝑛𝑝𝑢𝑡}, seed points {𝑃𝑠𝑒𝑒𝑑𝑠}, number of nearest neighbors 𝑘

Output: Extracted points {𝑃𝑒𝑥𝑡𝑟𝑎𝑐𝑡𝑒𝑑}

// Define a global point list {𝑃𝑐ℎ𝑒𝑐𝑘𝐿𝑖𝑠𝑡}

𝑖 = 0

For 𝑝𝑠𝑒𝑒𝑑 in 𝑃𝑠𝑒𝑒𝑑𝑠 do

 // Define a local point list {𝑃𝑜𝑏𝑗𝑒𝑐𝑡} in the for-loop

 {𝑃𝑐ℎ𝑒𝑐𝑘𝐿𝑖𝑠𝑡} ← 𝑝𝑠𝑒𝑒𝑑

While {𝑃𝑐ℎ𝑒𝑐𝑘𝐿𝑖𝑠𝑡} is not empty do

 𝑝𝑐ℎ𝑒𝑐𝑘 ← {𝑃𝑐ℎ𝑒𝑐𝑘𝐿𝑖𝑠𝑡}. 𝑙𝑎𝑠𝑡𝑃𝑡

 {𝑃𝑐ℎ𝑒𝑐𝑘𝐿𝑖𝑠𝑡}. 𝑝𝑜𝑝𝑏𝑎𝑐𝑘()

 {𝑃𝑘𝑛𝑛} ← the 𝑘 nearest neighbors of 𝑝𝑐ℎ𝑒𝑐𝑘 in {𝑃𝑖𝑛𝑝𝑢𝑡}

 For 𝑝𝑛𝑒𝑖𝑔ℎ𝑏𝑜𝑟 in 𝑃𝑘𝑛𝑛 do

 If𝑝𝑛𝑒𝑖𝑔ℎ𝑏𝑜𝑟 . 𝑖𝑠𝑉𝑖𝑠𝑖𝑡𝑒𝑑 = 𝐹𝑎𝑙𝑠𝑒 do

 𝑝𝑛𝑒𝑖𝑔ℎ𝑏𝑜𝑟 . 𝑖𝑠𝑉𝑖𝑠𝑖𝑡𝑒𝑑 ← 𝑇𝑟𝑢𝑒

 {𝑃𝑐ℎ𝑒𝑐𝑘𝐿𝑖𝑠𝑡} ← 𝑝𝑛𝑒𝑖𝑔ℎ𝑏𝑜𝑟

 {𝑃𝑜𝑏𝑗𝑒𝑐𝑡} ← 𝑝𝑛𝑒𝑖𝑔ℎ𝑏𝑜𝑟

 End if

 End for

End while

If {𝑃𝑜𝑏𝑗𝑒𝑐𝑡} is not empty do

47

 For 𝑝𝑜𝑏𝑗 in 𝑃𝑜𝑏𝑗𝑒𝑐𝑡 do

 𝑝𝑜𝑏𝑗 . 𝑜𝑏𝑗𝑒𝑐𝑡𝐼𝑛𝑑𝑒𝑥 ← 𝑖

 {𝑃𝑒𝑥𝑡𝑟𝑎𝑐𝑡𝑒𝑑} ← 𝑝𝑜𝑏𝑗

 End for

 𝑖 ← i + 1

 End if

End for

Return {𝑃𝑒𝑥𝑡𝑟𝑎𝑐𝑡𝑒𝑑}

4.5 Dynamic Objects Extraction

This section describes the last step of the proposed method, i.e., how to extract dynamic

objects from the original MLS point cloud using filtered free points as seed points with KNN

spatial search. Figure 33 illustrates the workflow for extracting dynamic objects.

Figure 33: The workflow of dynamic objects extraction.

After the previous series of filtering processes, the remaining free points are regarded as a

subset of all dynamic objects, so they are used as the seed points for extracting all dynamic

objects from the original MLS data. The original MLS data needs to be advanced to extract

the ROI, including ground and high-altitude areas, using the method described in Section 4.2

to better implement the dynamic object extraction. The specific KNN search-based extraction

method is detailed in Algorithm 1, and the number of nearest neighbors is set to 𝑘𝑑𝑜.

Although the previous noise and vegetation filtering operations have removed most of the

vegetation and noise points from the free points, a very small amount of non-dynamic points

may inevitably remain in the remaining free points. These residual non-dynamic points may

48

lead to two kinds of fake dynamic objects: (1) returning an object that contains only a few

points, or (2) returning an object with a small proportion of seed points. The reason for the

first result may be that several non-dynamic free points in relatively proximity are identified as

a micro-object. For such extraction results, a minimum point limit 𝑛𝑢𝑚𝑚𝑖𝑛 is set for a single

dynamic object. Only the extracted object whose point number is greater than the limit

𝑛𝑢𝑚𝑚𝑖𝑛 is a valid dynamic object. The second type of fake dynamic object is mainly caused

by a small number of non-dynamic points falling near the vegetation. These non-dynamic

points act as seed points to misidentify a connected grassland or urban forest as a large

dynamic object. For this type of extracted object, the seed points are only a small fraction of

all points. So, the proportion of seed points (i.e., seed-point rate 𝑟𝑎𝑡𝑒𝑠𝑝𝑖
) is computed for

each extracted dynamic object candidate 𝑜𝑖 and then a threshold of seed point proportion

𝑡ℎ𝑟𝑒𝑠𝑠𝑝 is set to filter real dynamic objects from all extracted objects (see Figure 34).

Figure 34: The objects with the high seed-point rate (left) and low seed-point rate (right).

Finally, after removing the above two types of fake dynamic objects, the real dynamic objects

are obtained.

49

5. Implementation

This chapter is concerned with the implementation details of the method proposed in this

thesis. Firstly, Section 5.1 presents the dataset used in this study and introduces the

information about the four case sites. Then Section 5.2 lists the values of the relevant

parameters set in this implementation. Finally, Section 5.3 presents the relevant tools used in

this research.

5.1 Dataset

Figure 35: Cyclomedia's mobile data acquisition vehicle (source: Cyclomedia).

The MLS data and corresponding sensor trajectories used in this research were collected by

CycloMedia1, a Dutch environmental visualization data provider, in Delft, the Netherlands, in

July 2021. The LiDAR sensor used to acquire this dataset is Velodyne's HDL-32E2, which

has an accuracy of ±2 cm (one sigma at 25 m), a detection range of 80 m to 100 m, a 360°

1 https://www.cyclomedia.com/

2 https://velodynelidar.com/products/hdl-32e/

50

horizontal FOV, a +10° to -30° vertical FOV, and multiple returns. The sensor rotates at a

rate of 20 Hz during acquisition, i.e., 0.05 seconds to complete a 360° scan of the

surrounding environment. By integrating MLS sensors with IMU and GNSS into Cyclomedia's

mobile data acquisition platform (Figure 34), it is also possible to obtain temporal information

and match the captured MLS point cloud with the corresponding sensor trajectory. The

original MLS point clouds and sensor trajectories are all provided in LAZ format1.

The MLS data provided by Cyclomedia includes additional information such as intensity,

GNSS time, and the number of returns, in addition to 3D spatial coordinate information. The

sensor trajectory data records information about the sensor's position in 3D space during the

scanning process. The capture points in the MLS data are in one-to-one correspondence

with the sensor positions in the trajectory data by the order of storing the points, i.e., the first

capture point in the MLS data corresponds to the first sensor position in the trajectory data,

the second capture point corresponds to the second sensor position, and so on. Each MLS

capture point and its corresponding sensor trajectory point form a line segment representing

the LiDAR ray.

Figure 36: Positions of the four case sites.

1 https://laszip.org/

51

Figure 37: MLS data (left column) rendered in height, corresponding sensor trajectories (middle

column) colorized in the purple, and satellite images (right column) from Google Map of the four case

sites.

In the implementation phase, four case sites are selected for this research (see Figure 36 for

their positions). They are all located at road junctions and have bicycle lanes, so it is easier

to find different types of dynamic objects, such as vehicles and bicycles. The road network at

the road junctions is more complex and influenced by traffic signals, so dynamic objects with

different speeds and different moving directions can be observed in these areas. In

summary, the above four positions are well suited as the case sites for this research. Each

case site was scanned continuously for 10 seconds in one direction. Due to differences in the

52

environment, the number of points obtained for the same scan time is different for each case

site and ranges from 3637969 to 4684840 (see Table 1). Figure 37 shows the MLS scan data

for the four case sites and their corresponding sensor trajectory data.

Table 1: Point numbers of the four case sites.

5.2 Parameters

This section lists all the values of the parameters involved in the method proposed in this

thesis (see Table 2) and then analyzes the basis for the values of each parameter.

Table 2: Values of implementation parameters.

Firstly, for Octomap, a larger 𝑡𝑖𝑡𝑣𝑙 value means that more LiDAR rays are inserted to estimate

the occupancy probability more accurately, while a smaller 𝑠𝑖𝑧𝑒𝑣𝑜𝑥𝑒𝑙 allows the construction

of a higher resolution voxel grid in Octomap, which in turn avoids the creation of some hybrid

voxel cells (voxel cells that include both static and dynamic points). However, this also leads

to larger computation and memory requirements. To strike a balance between high accuracy

results and low computational and memory burden, 𝑡𝑖𝑡𝑣𝑙 is set to 0.75 sec (14 data frames)

and 𝑠𝑖𝑧𝑒𝑣𝑜𝑥𝑒𝑙 is set to 0.2 m.

Case Site Full Name of the Case Site Scan Time (sec) Number of Points

Position A
The junction of Voorhofdreef, Tanthofdreef,

and Kruithuisweg
10 3637969

Position B
The junction of Voorhofdreef, Menno Ter
Braaklaan, and Bosboom-Toussaintplein

10 4616356

Position C
The junction of Voorhofdreef, J.J.

Slauerhofflaan, and Frederik van Eedenlaan
10 4666430

Position D
The junction of Tanthofdreef and

Forensenweg
10 4684840

Full Name of the Parameter Parameter Value

Time interval for data frame segmentation 𝑡𝑖𝑡𝑣𝑙 0.75 sec

Octomap voxel size 𝑠𝑖𝑧𝑒𝑣𝑜𝑥𝑒𝑙 0.2 m

Occupancy probability threshold 𝑡ℎ𝑟𝑒𝑠𝑜𝑐𝑐𝑢𝑝𝑖𝑒𝑑 0.7

Sensor mounting height ℎ𝑠𝑚 2 m
Height restriction of large vehicles ℎ𝑣𝑟 4 m

Free-point rate threshold 𝑡ℎ𝑟𝑒𝑠𝑓𝑝 0.9

Neighborhood radius used to calculate the free-point rate 𝑟𝑛𝑠 1 m

Multi-return rate threshold 𝑡ℎ𝑟𝑒𝑠𝑚𝑟 0.3

Neighborhood radius used to calculate the multi-return rate 𝑟𝑣𝑔 1 m

Number of nearest neighbors used to extract all vegetation
points

𝑘𝑣𝑔 5

Number of nearest neighbors used to extract all dynamic
points

𝑘𝑑𝑜. 5

Minimum point number limit for dynamic objects 𝑛𝑢𝑚𝑚𝑖𝑛 15

Threshold of seed point proportion 𝑡ℎ𝑟𝑒𝑠𝑠𝑝 0.03

53

For the upper and lower boundaries of the target space, ℎ𝑠𝑚 (2 m) is obtained by directly

measuring the mounting height of the sensor and ℎ𝑣𝑟 (4 m) is taken based on the height limit

of large vehicles in the Netherlands, which is got from the official document of the European

Union1.

Based on some previous studies, 0.7 is considered an appropriate threshold for occupancy

probability 𝑡ℎ𝑟𝑒𝑠𝑜𝑐𝑐𝑢𝑝𝑖𝑒𝑑 when the voxel size of Octomap takes a range of values from 0.05 m

to 0.45 m (Oršulić et al., 2021; C. Wang et al., 2017). The free-point rate threshold 𝑡ℎ𝑟𝑒𝑠𝑓𝑝 is

assigned to 0.9 based on the analysis results shown in Figure 29 to Figure 31. For the

multiple-return rate 𝑡ℎ𝑟𝑒𝑠𝑚𝑟, some previous similar research (Ussyshkin & Theriault, 2011;

Xu et al., 2012) usually set the threshold between 0.2 and 0.4 for detecting vegetation, so

this parameter is set to 0.3 in this thesis.

Some influencing factors also need to be considered in setting parameters in neighboring

queries. For fixed radius search, too small a radius may result in the neighborhood being

easily affected by outliers, while too large a radius may easily lead to no strong spatial

consistency of the points in the neighborhood. To take these two factors into account at the

same time, both 𝑟𝑛𝑠 and 𝑟𝑣𝑔 are set to 1 m. For the KNN search in the vegetation removal and

dynamic object extraction steps, too small a value of 𝑘 may fail to extract the complete target

object, and too large a value of 𝑘 may identify several neighbor objects as one object and

then extract them together. To balance these two points, both 𝑘𝑣𝑔 and 𝑘𝑑𝑜 are set to 5.

In the final dynamic object extraction, two constraints are used to filter the valid dynamic

objects: (1) The minimum number of points within the object 𝑛𝑢𝑚𝑚𝑖𝑛 must be greater than

𝑘𝑑𝑜 to remove some abnormal objects that are too small. It is set to 15 in the implementation

of this research. (2) The proportion of seed points within the object 𝑡ℎ𝑟𝑒𝑠𝑠𝑝 must be greater

than 0.03 to prevent the false detection of large-area vegetation caused by a few noise

points.

5.3 Tools

This section begins with a description of the tools used to implement the proposed method

and then concludes with a summary of the collaboration pipeline between these tools.

1 https://eur-lex.europa.eu/eli/dir/1996/53/2019-08-14

54

The main workflow of the method proposed in this thesis is based on a C++ implementation.

The C++ code was run on an AMD Ryzen 9 CPU 3.30 GHz with 16 GB RAM. The

implementation of Octomap in this study relies on the Octomap Library developed by Kai M.

Wurm and Armin Hornung from the University of Freiburg1. Other point cloud operations such

as building KD-trees, spatial neighborhood queries, etc. are dependent on PCL2, which is a

large-scale open-source point cloud processing project.

The format conversion before data processing and the visualization of the final output is done

in CloudCompare3, which is an open-source point cloud viewing, processing, and editing

software. In terms of data transfer convenience, the original MLS point cloud data and sensor

trajectory data are stored in LAZ format and need to be converted to PCD format in

CloudCompare for reading by C++ libraries such as PCL. The final implementation results

are also visualized with built-in display and rendering modules of CloudCompare.

Figure 38 illustrates the collaboration pipeline between the above-mentioned tools.

Figure 38: The collaboration pipeline between all used tools in this research.

1 https://github.com/OctoMap/octomap
2 https://github.com/PointCloudLibrary/pcl
3 https://github.com/CloudCompare/CloudCompare

55

6. Results and Discussion

This chapter first shows the implementation results of four case sites (Section 6.1), then

assesses the detection accuracy of the four implementation results, after that discusses the

factors that affect the accuracy of the implementation results (Section 6.2). Finally, this

chapter analyzes the proposed method in terms of running time and memory consumption

and compares its performance with the original Octomap method.

6.1 Implementation Results

Figure 39 to Figure 42 show the dynamic object detection and extraction results for positions

A to D. All points in the high-altitude space and ground area are labeled as static points. So

only the detection and extraction results of the points in ROI are shown in these four figures.

Figure 39: The detection and extraction results of dynamic objects with corresponding sensor

trajectory in position A.

56

Figure 40: The detection and extraction results of dynamic objects with corresponding sensor

trajectory in position B.

57

Figure 41: The detection and extraction results of dynamic objects with corresponding sensor

trajectory in position C.

58

Figure 42: The detection and extraction results of dynamic objects with corresponding sensor

trajectory in position D.

59

6.2 Performance Analysis

This section first evaluates the accuracy of dynamic object detection and extraction using

confusion matrices (Subsection 6.2.1). Then, the factors that affect the accuracy of the

results are analyzed (Subsection 6.2.2). Finally, this section compares the advantages of

parallel computing over serial computing in terms of runtime (Subsection 6.2.1).

6.2.1 Accuracy Assessment

Dynamic object detection and extraction is essentially a point cloud binary classification

issue. Therefore, this subsection first manually labels the dynamic objects on the data of the

four case sites, and then builds confusion matrices for each of the four implementation

results. Finally, four indicators are introduced to evaluate the accuracy of the proposed

method: user’s accuracy, producer’s accuracy, overall accuracy, and Cohen's kappa

coefficient. The user’s accuracy here is the percentage of points in each category (dynamic

object and static object) of the implementation result that are correctly detected as dynamic

points or static points. The producer’s accuracy infers the percentage of points in each

category of the ground truth (manually labelled data) that are correctly detected as dynamic

points or static points. The overall accuracy means the sum of correctly detected dynamic or

static points as a percentage of all MLS capture points. The kappa coefficient is an

assessment of the consistency of the detection results, and its value is generally between 0

and 1, with closer to 1 indicating higher detection accuracy. Compared to the overall

accuracy, the kappa coefficient considers the imbalance between objects. Table 3 shows the

standard 2-by-2 confusion matrix with the corresponding user’s accuracy and producer’s

accuracy. Table 4 shows the equations of the overall accuracy and kappa coefficient.

Dynamic Points in

Ground Truth
Static Points in
Ground Truth

User’s Accuracy (𝑼𝑨)

Dynamic Points in
Implementation

Result
𝑋11 𝑋12

𝑋11

𝑋11 + 𝑋12

⋅ 100%

Static Points in
Implementation

Result
𝑋21 𝑋22

𝑋22

𝑋11 + 𝑋12

⋅ 100%

Producer’s Accuracy
(𝑷𝑨)

𝑋11

𝑋11 + 𝑋21

⋅ 100%
𝑋22

𝑋12 + 𝑋22

⋅ 100%

Table 3: The standard 2-by-2 confusion matrix with the corresponding user’s accuracy and producer’s

accuracy.

60

Overall Accuracy (𝑶𝑨) Kappa Coefficient (𝑲𝑪)

𝑋11 + 𝑋22

𝑋11 + 𝑋21 + 𝑋12 + 𝑋22

⋅ 100%
𝑂𝐴 −

(𝑋11 + 𝑋21) ⋅ (𝑋11 + 𝑋12) + (𝑋21 + 𝑋22) ⋅ (𝑋12 + 𝑋22)
(𝑋11 + 𝑋21 + 𝑋12 + 𝑋22)2

1 −
(𝑋11 + 𝑋21) ⋅ (𝑋11 + 𝑋12) + (𝑋21 + 𝑋22) ⋅ (𝑋12 + 𝑋22)

(𝑋11 + 𝑋21 + 𝑋12 + 𝑋22)2

Table 4: The equations of the overall accuracy and kappa coefficient.

Table 5 and Table 6 show the confusion matrices and values of the corresponding four

accuracy assessment indicators for positions A to position D obtained from the template

provided in Table 3 and Table 4. The four case sites have very high user’s accuracy and

producer’s accuracy for static object detection (>99.9%). Since dynamic and static objects in

MLS data are usually very imbalanced (i.e., the number of static points is much larger than

the number of dynamic points), the overall accuracy is more likely to be affected by the

detection accuracy of static objects. Therefore, the overall accuracy of all four case sites is

also very high (>99.5%). However, for the producer’s accuracy and user’s accuracy as well

as the kappa coefficients of the dynamic object detection focused by this thesis, a large

difference is shown in the implementation results of these four case sites. The

implementation result of position C has the highest dynamic object detection user’s accuracy

(94.429%), producer’s accuracy (93.753%), and kappa coefficient (0.936). While position B has

the lowest user’s accuracy (75.361%) for dynamic object detection, which means that many

static objects are incorrectly detected and extracted as dynamic objects. The lowest

producer’s accuracy (74.345%) and kappa coefficient (0.674) of dynamic object detection are

found at position D, which means that many dynamic objects are not successfully detected

and extracted. The low kappa coefficient of position D is mainly caused by the low

percentage of dynamic points in the ground truth. The percentage of dynamic points in

position D, which has the lowest kappa coefficient, is only 0.196% and in position B, which

has the second-lowest kappa coefficient, is 0.274%. In contrast, the two case sites with high

kappa coefficients, position A and position C, have relatively high dynamic point percentages

(1.591% and 0.766%). Therefore, a few incorrectly detected points more significantly

decrease the kappa coefficient of position D compared to the other three case sites.

Dynamic Points
in Ground Truth

Static Points in
Ground Truth

User’s Accuracy
(𝑼𝑨)

Dynamic Points in

Implementation Result
57705 15408 78.926%

Position
A

Static Points in
Implementation Result

188 3564668 99.995%

Producer’s Accuracy (𝑷𝑨) 99.675% 99.570%

61

Dynamic Points in

Implementation Result
11002 3597 75.361%

Position
B

Static Points in
Implementation Result

1665 4600092 99.964%

Producer’s Accuracy (𝑷𝑨) 86.856% 99.922%

Dynamic Points in

Implementation Result
33529 1978 94.429%

Position
C

Static Points in
Implementation Result

2234 4628689 99.952%

Producer’s Accuracy (𝑷𝑨) 93.753% 99.957%

Dynamic Points in

Implementation Result
6813 1951 77.738%

Position
D

Static Points in
Implementation Result

2351 4673725 99.950%

Producer’s Accuracy (𝑷𝑨) 74.345% 99.958%

Table 5: The confusion matrix with the corresponding user’s accuracies and producer’s accuracies of

the four case sites.

The weighted average producer’s and user’s accuracies for dynamic object detection and

extraction among these four case sites are 88.004% and 82.624%, respectively. The

weighted average overall accuracy is 99.833%. For the producer’s accuracy of dynamic

object detection, its weight is the number of dynamic points in the ground truth in each case

site. For the user’s accuracy of dynamic object detection, its weight is the number of dynamic

points in the implementation result in each case site.

Position Overall Accuracy (𝑶𝑨) Kappa Coefficient (𝑲𝑪)

A 99.571% 0.878
B 99.886% 0.780
C 99.910% 0.936
D 99.908% 0.674

Weighted
Average Value

99.833% 0.814

Table 6: The overall accuracies and kappa coefficients of the four case sites.

6.2.2 Influence Factors

This subsection analyzes which factors significantly affect the detection results and to which

factors the proposed method is insensitive, based on the visualization of the implementation

results and the accuracy assessment.

62

Figure 43: The detected moving bicycles.

Figure 44: The detected braking vehicle.

In previous research on dynamic object detection, the speed of the object is an important

factor that affects the detection results. The detection of low-speed objects can be more

challenging than high-speed objects (Dewan et al., 2016). However, the speed of dynamic

objects does not significantly affect the results of the proposed method in the observed

results. Most low-speed objects such as moving bicycles (Figure 43) and vehicles that are

braking can be correctly detected (see the upper left corner of Figure 44). The size of the

dynamic objects is another factor of concern. In the four case sites of this study, most of the

small dynamic objects (e.g., bicycles in Figure 43) are identified. However, no pedestrians

are found in these four case sites, so whether this method is also applicable to detecting

pedestrians of small size and low speed will need to be further explored in the future.

63

Whether the movement direction of the dynamic object with respect to the MLS sensor

affects the detection results is also analyzed. Since all four case sites are located near road

junctions, objects moving along different directions can be observed. Figure 45 illustrates

several objects that move in directions different from the MLS sensor. The dynamic objects in

Figure 45.(a) and Figure 45.(b) are moving perpendicular to the MLS sensor trajectory while

the dynamic objects in Figure 45.(c) and Figure 45.(d) are moving in the opposite direction of

the sensor motion. These dynamic objects do not fail to be detected due to their different

moving directions. Another noticeable phenomenon is that the dynamic object does not

produce a significant lateral stretch when it moves perpendicular to the sensor trajectory. Its

shape is also not compressed when it moves in the opposite direction to the sensor. For the

four case sites, the ghost trail effect (i.e., being stretched along its own direction of motion) is

observed regardless of the direction of motion of the dynamic object.

Figure 45: Objects moving in directions different from the MLS sensor.

But some factors can significantly affect the performance of the proposed method. Two of the

most important factors are the performance of the vegetation and noise removal methods

since most static objects that are incorrectly detected as dynamic objects are vegetation (see

Figure 46). These mis-detected vegetation are mainly caused by the residual vegetation

points and noisy points in the free points. The performance of the ground filtering method

also affects the detection and extraction results. The ground extraction operation in Section

4.2 assumes that the ground is a flat surface and does not vary significantly in height within a

certain range, but some surfaces in the real world do not conform to this assumption. There

are two ground areas in position A that are not successfully removed due to their uneven

surfaces. These two ground areas are detected as dynamic objects (see Figure 47.(a)). Only

part of the points in these two ground areas are detected as dynamic points and do not leave

significant voids in the ground. Therefore, these mis-detected ground points do not break the

ground connectivity (Figure 47.(b)). However, they inevitably change some geometric

64

properties of these ground areas, such as local ground height and point density. In addition,

the mis-detected objects include a small number of remnant buildings and pole-like objects

such as streetlights, traffic lights, and traffic signs (Figure 48).

Figure 46: The mis-detected vegetation.

Figure 47: The mis-detected ground points (a) and their corresponding ground surface (b).

65

Figure 48: The mis-detected remnant building and various mis-detected pole-like objects.

The main reason why some dynamic objects in the implementation results are not

successfully detected is the distance from the dynamic object to the MLS sensor. When the

dynamic object is too far away from the MLS sensor, it generates many problems such as

low point density (see Figure 49), which can lead to incomplete detection or failed detection

of dynamic objects. Conversely, the detection accuracy is higher if the dynamic objects are

closer to the MLS sensor. The main reason for the high detection accuracy of the

implementation result in position C is that most of its dynamic objects are very close to the

MLS sensor and have similar motion trajectories to the MLS sensor. But this can be solved

by adding previous or next data frames if this object is located on the sensor's trajectory.

Figure 49: Sparse dynamic objects that are not detected completely.

66

Figure 50: The user’s accuracy (a) and the producer’s accuracy (b) of dynamic objects, and the overall

accuracy (c) of the whole results using different 𝑘𝑑𝑜 values.

Figure 51: The detection results of position A when 𝑘𝑑𝑜 is set to 2 (a) and 11 (b).

67

The last influencing factor is the choice of parameter values. In this thesis, the number of

nearest neighbors used to extract dynamic objects (𝑘𝑑𝑜) is chosen as a test case among all

parameters using captured data from position A. This value is the core parameter for the last

part of the whole method, so the impact of adjusting this parameter value can be reflected

very intuitively in the final detection results. This value is the core parameter for the last step

of the whole method, so the impact of adjusting this parameter value can be more directly

and intuitively reflected in the final detection results. In the test, the values of 𝑘𝑑𝑜 are set to 2,

5, 8, and 11, respectively. The results showed that as the value of 𝑘𝑑𝑜 increased, the user’s

accuracy decreased from 79.137% to 74.325% (Fugure 50.(a)), while the producer’s

accuracy increased from 98.580% to 99.888% (Fugure 50.(a)). Setting the 𝑘𝑑𝑜 value too

small will result in many dynamic points not being recognized correctly (see the green boxes

in Figure 51.(a)), while setting it too large will incorrectly recognize many static points as

dynamic points (see the green boxes in Figure 51.(b)). So finally the value of 𝑘𝑑𝑜 is set to 5 in

this thesis to obtain the highest overall accuracy (99.320%, see Figure 50.(c)).

6.2.3 Running Time and Memory Consumption

This subsection first analyzes the running time required for the implementation of the

proposed optimized Octomap method and the acceleration effect using parallel computing.

Then the time and memory spent in extracting free points between this method and the

original Octomap method are compared.

One of the challenges in point cloud processing is the conflict between massive amounts of

data and efficient data processing (Hu et al., 2013). Therefore, for point cloud data, a parallel

computation implements a more efficient point cloud processing than serial computation

using a single thread (Najdataei et al., 2018; Sugumaran et al., 2011).

The parallel computation in this implementation is done by asynchronous tasks created by

std::future and std::async in C++ with four threads enabled. The proposed optimized

Octomap method splits the original MLS data into several data frames based on the

timestamp. The data frames are independent of each other, so that most operations of the

proposed optimized Octomap method in this thesis are compatible with parallel computation

to improve efficiency. However, due to the limitations of C++'s built-in std::future and

std::async functions, the two operations of merging free points extracted from different

Octomaps and removing redundant points are not parallelized in this method.

68

Case

Site

Point

Number

Optimized

Octomap 1

Thread (sec)

Optimized

Octomap 2

Threads (sec)

Optimized

Octomap 3

Threads (sec)

Optimized

Octomap 4

Threads (sec)

Total

Speed-up

Position

A
3637969 1042 765.5 637 525 98.476%

Position

B
4616356 1415 1132 977.5 882 60.488%

Position

C
4666430 1331 1033 904 649 105.085%

Position

D
4684840 1342 1143 1051 870 54.253%

Table 7: Running time of the proposed optimized Octomap based on different number of threads in

four case sites.

Figure 52: Running time of the optimized Octomap based on different number of threads in four case

sites.

Figure 52 and Table 7 show the running time based on different numbers of threads for the

four case sites. All four case sites were scanned for 10 seconds. Their number of MLS points

collected range from 3637969 to 4684840 due to differences in the spatial environment. Four

threads are on average 79.545% more efficient than a single thread. The results show that

enabling multiple threads for parallel computation can improve the efficiency of the proposed

optimized Octomap method compared to single-threaded serial computation in the same

running environment.

Then the proposed optimized Octomap method is compared with the original Octomap

method to check whether it has better performance in terms of computational efficiency as

69

well as memory consumption. Since the operations in Section 4.2 to Section 4.5 are not

related to Octomap, only comparing the running time and the maximum memory

consumption of the two methods when constructing probabilistic voxel grids and extracting

the free points (i.e., the operations described in Section 4.1).

Case

Site

Point

Number

Original

Octomap

(sec)

Optimized

Octomap 1

Thread

(sec)

Optimized

Octomap 2

Threads

(sec)

Optimized

Octomap 3

Threads

(sec)

Optimized

Octomap 4

Threads

(sec)

Position

A
3637969 973.5 721.5 507.5 399 302.5

Position

B
4616356 1562.5 958.5 725.5 535.5 385.5

Position

C
4666430 1361.5 995.5 755.5 627.5 403.5

Position

D
4684840 791 738 612.5 503 410.5

Table 8: Running time of voxel grids generation and free points extraction.

Figure 53: Running time of voxel grids generation and free points extraction.

As shown in Figure 53 and Table 8, the proposed optimized Octomap method (under a single

thread) is computationally more efficient than the original Octomap method in generating

probabilistic voxel grids and in extracting free points. As more threads are enabled, the

computational efficiency advantage of the proposed optimized Octomap method becomes

more apparent. Table 9 shows that the proposed method accelerates on average 35.472%

over the original Octomap in the four case sites when single thread is enabled. With 2 to 4

70

threads enabled, the proposed optimized Octomap method accelerates 79.137%, 127.499%,

and 214.313%, respectively, over the original Octomap method.

Case Site 1 thread 2 threads 3 threads 4 threads

Position A 34.927% 91.823% 143.985% 221.818%

Position B 63.015% 115.369% 191.783% 305.318%

Position C 36.765% 80.212% 116.972% 237.423%

Position D 7.182% 29.143% 57.256% 92.692%

Average Speed-up 35.472% 79.137% 127.499% 214.313%

Table 9: The computational speed-up of the proposed optimized Octomap method compared to the

original Octomap method.

From Figure 54, Table 10, and Table 11, the maximum memory consumption of the

proposed optimized Octomap method is only on average 42.437% of that of the original

Octomap with a single thread, and the maximum memory consumption is close to that of the

original Octomap method only when 3 threads are enabled. Therefore this designed method

is more memory friendly than the original Octomap method.

Figure 54: Maximum memory consumption of voxel grids generation and free points extraction.

Case
Site

Original
Octomap

Optimized
Octomap 1
thread (MB)

Optimized
Octomap 2

threads (MB)

Optimized
Octomap 3

threads (MB)

Optimized
Octomap 4

threads (MB)

Position
A

845.605 394.277 704.848 879.809 1127.91

Position
B

1063.09 414.039 738.555 1018.26 1297.99

Position
C

971.066 415.516 742.594 1057.86 1294.83

Position
D

762.496 315.547 518.109 716.641 904.512

Table 10: Maximum memory consumption of voxel grids generation and free points extraction.

71

Case Site
Optimized

Octomap 1 thread
Optimized

Octomap 2 threads
Optimized

Octomap 3 threads
Optimized

Octomap 4 threads

Position A 46.627% 83.354% 104.045% 133.385%

Position B 38.947% 69.472% 95.783% 122.096%

Position C 42.790% 76.472% 108.938% 133.341%

Position D 41.383% 67.949% 93.986% 118.625%

Average
Values

42.437% 74.312% 100.688% 126.862%

Table 11: The maximum memory consumption of the proposed optimized Octomap method as a

percentage of the original Octomap.

72

73

7. Conclusions and Future Work

This chapter first reviews the research questions and gives the corresponding conclusions in

Section 7.1, then lists contributions of this thesis in Section 7.2, and finally analyzes some

future work in Section 7.3.

7.1 Research Conclusions

This thesis focuses on one main research question: How to detect and remove dynamic

objects from MLS data? To address this main research question, this thesis proposes a

method to detect and remove dynamic objects in MLS data using Octomap. The proposed

method first splits the original MLS data into multiple data frames based on timestamps.

Each data frame and its neighbor data frames are merged into one group and inserted into

an independent Octomap, which generates multiple smaller Octomaps to avoid generating a

very huge Octomap. The free points can be obtained from all Octomaps by setting an

occupancy probability threshold. Then, the ROI is reduced by removing the free points

located in the ground and the high-altitude space. Next, the vegetation points and noise in

the free points are removed by calculating the free-point rate and the multi-return rate.

Finally, the remaining free points are used as seed points to detect and extract dynamic

objects from the original MLS data using KNN spatial search. All operations of this proposed

method are compatible with parallel computation to improve efficiency, except for the two

operations of merging free points extracted from different Octomaps and removing redundant

points.

The method is tested with four case sites and its producer’s and user’s weighted average

dynamic object detection and extraction accuracies are 88.004% and 82.624%, respectively.

The weighted average overall accuracy is 99.833%. The implementation results and

accuracy assessment demonstrate that the proposed method can be effectively applied to

dynamic object detection and extraction tasks in MLS data sets and has advantages over the

original Octomap method in terms of computational efficiency and memory consumption

through parallel computing.

The research results of this thesis also answer the other sub-questions listed in Section 1.2:

(1) How to detect and remove dynamic objects and avoid residue?

74

The dynamic object detection in this thesis is based on Octomap's free point extraction. The

LiDAR rays are first reconstructed in Octomap, and the spatial conflicts between the rays are

counted to calculate the occupation probability of each voxel space. The points located in the

low occupancy probability space (i.e., free space) are free points. Then for removing noise

and vegetation points from free points, the free-point rate and multi-return rate are calculated

by using a fixed radius spatial search. After that dynamic object detection and extraction are

achieved by using KNN spatial search with filtered free points as seed points.

The weighted average producer’s accuracy for dynamic object detection is 88.004% in the

implementation results of the four case sites, which means that the proposed method hardly

produces incomplete dynamic object extraction. The very few incomplete dynamic object

detection and extraction occur mainly on sparse objects far from the MLS sensor.

(2) How to avoid detecting and removing static environment objects?

The free points in Octomap are used as seed points for detecting and extracting dynamic

objects in this method. However, the initial free points are inevitably mixed with some static

points. So, this method first delimits the ROI to remove the static-free points located on the

ground and at high altitudes. Then the static-free points are further removed using vegetation

and noise removal operations so that the final free points include only dynamic points as

much as possible.

The weighted average user’s accuracy for dynamic object detection is 82.624% in the

implementation results of the four case sites. This means that most of the detection results

are correct for dynamic objects, including only a small number of static points, such as

vegetation, remaining buildings, streetlights, traffic lights, and traffic signs.

(3) What factors affect the detection results?

The main cause of misdetection is the performance of the vegetation and noise removal

methods. The minor cause is the performance of the ground filtering method. Remaining

ground points, vegetation points, noise points, and pole-like objects in the free points can

cause some static objects to be incorrectly detected as dynamic objects.

75

The main reason why dynamic objects are not successfully detected is the distance of the

object from the MLS sensor. A dynamic object that is too far from the MLS sensor causes its

captured points to be too sparse and thus difficult to be detected completely.

In addition, the choice of parameter values also affects the final test results. For example, the

number of nearest neighbors used to extract dynamic objects (𝑘𝑑𝑜) is set to a very small

value can lead to some dynamic objects not being detected correctly, while too large a 𝑘𝑑𝑜

value can lead to misdetection.

Compared with the above factors, the size, speed, and movement direction of the dynamic

object are not observed to have a significant effect on the detection results in the

implementation.

(4) How to use MLS sensor trajectory to assist detection and removal

operations?

In this method, the MLS sensor trajectory has two main roles: (1) to reconstruct the LiDAR

rays in Octomap with corresponding MLS capture points, and (2) to delimit the upper and

lower boundaries of the ROI by obtaining the MLS sensor height from the trajectory.

(5) What types of objects often lead to misdetection?

The most common mis-detected objects in the implementation results are vegetation, and

other less common mis-detected objects include some small ground areas, remnant

buildings, pole-like objects such as streetlights, traffic lights, and traffic signs.

(6) How to reduce the computational time and the memory requirement for

processing large-scale data?

Computational efficiency and memory requirement have been major challenges for MLS

point cloud data processing. This problem was further exacerbated in the previous Octomap-

based dynamic object detection approaches. So, the proposed method takes three initiatives:

(1) Reduce the computation and memory requirements by generating multiple smaller

Octomaps to avoid generating a very huge Octomap. (2) Obtain a smaller ROI by removing

the ground area and the high-altitude space to reduce the computation cost in subsequent

steps. (3) Most steps of the whole processing workflow can be accelerated with parallel

computing.

76

Using parallel computing, the proposed method with 4 threads enabled achieves an average

73.496% improvement in computational efficiency over single thread. Compared to the

original Octomap method, the proposed method has an average efficiency improvement of

35.472% under a single thread. The efficiency can be further improved when more threads

are enabled. The computational efficiency of proposed method under 4 threads is improved

up to 214.313% compared to the original Octomap. In terms of memory consumption, the

average memory requirement of the proposed method is only 42.437% of the original

Octomap under a single thread, and the memory consumption only reaches a similar level of

the original Octomap method when 3 threads are enabled.

7.2 Research Contributions

Compared with previous Octomap-based dynamic object detection methods, the method

proposed in this paper has the following contributions:

First, the previous Octomap-based approaches usually require the generation of a very huge

voxel grid, and thus are only applicable to sparse point clouds or require a large amount of

computation and memory. The proposed method in this thesis segments the initial MLS point

cloud into several data frames and inserts only two or three neighbor data frames into a

single Octomap at a time, avoiding the generation of a huge Octomap by generating multiple

smaller Octomaps, thus increasing efficiency and reducing memory requirements. Compared

with the original Octomap method, the proposed method in this thesis is improved in terms of

computational efficiency as well as memory saving.

Second, many previous studies defined non-ground space as the ROI for point cloud

dynamic object detection tasks. Such ROI has only one explicitly defined lower boundary.

Based on this, this thesis defines the local vehicle height restriction as the upper boundary of

the ROI, further narrowing the ROI of dynamic object detection and extraction to reduce the

computational effort in subsequent steps.

Third, the compatibility of the present method with parallel computing is demonstrated. A

foundation is laid for further improving the efficiency of this method using some advanced

parallel computing technologies in the future.

77

7.3 Future Work

Due to the limited research time, many of the new problems and ideas encountered during

the study could not be further explored. Therefore, this section lists some directions for

improvement and optimization of this thesis in the future.

Self-adaptive threshold values: The setting of the threshold values can have an impact on

the detection result. In this research, operations such as free point extraction, noise removal,

vegetation removal, and fake dynamic object filtering from Octomap require a series of

reasonable thresholds to be set in advance. Taking the denoising operation as an example, if

the threshold is set too large, many dynamic free points will be lost. If the threshold value is

set too small, many noise points will remain in the result. Both above scenarios will affect the

quality of the result. In the currently proposed method, all these thresholds are fixed.

However, in the subsequent research, the MLS point cloud can be sampled first, and then

the optimal threshold values for the current input data can be estimated self-adaptively based

on the sampled points. With the introduction of adaptive thresholds, some expected changes

in the environment can be handled automatically when the application scenario changes

without extensive modifications to the method, thus improving the robustness of the

proposed method.

Detection methods optimized for sparse dynamic objects: To solve the problem that

some of the sparse dynamic objects in the implementation results cannot be detected

completely, the future research can try to modify the parameters of the point-based spatial

neighborhood query algorithm based on the distance from the MLS capture point to the

sensor or the local point density of the object to achieve better detection results.

Extension to more application scenarios: The four case sites used in the implementation

phase of this thesis are all located in several adjacent road sections in Delft, the Netherlands.

So, there are many similarities in the overall environment among these four case sites. The

performance of the proposed method can be further tested in the future in more

environments, including highways and rural areas, to verify the generalizability of the method.

Since no pedestrians are found in the case site data used in this study, the method needs to

be subsequently validated for pedestrian detection in areas with high pedestrian traffic such

as pedestrian streets, popular tourist spots, and commercial areas. In addition, the ROI in

this thesis does not include high-altitude space, so it is also a worthwhile research to try

whether this method can also be applied to the detection of moving objects such as birds,

airplanes, and drones at high altitude.

78

Integration of better static object detection methods: Most mis-detected static objects

are vegetation, so it is necessary to introduce more advanced vegetation detection

algorithms to remove the remnant vegetation. For the ground extraction algorithm, local

height changes need to be considered to obtain a more complete ground surface, especially

when the terrain is not very flat. In addition, the well-performed pole-like object detection

algorithm needs to be integrated into the workflow to exclude static objects such as

streetlights, traffic lights, and traffic signs.

Speed detection and direction tracking: Octomap can only detect changes in the

environment, but it cannot calculate the speed of dynamic objects and track the directions of

them. But in many scenarios, such as autonomous driving, the moving direction of a dynamic

object as well as its speed is also very important information. Therefore, the subsequent

research can focus on how to obtain further motion information of dynamic objects after they

are detected, including their direction and speed.

More realistic LiDAR ray simulation: The construction of Octomap is based on ray

reconstruction. LiDAR rays are usually idealized to be a straight line in space. However, in

the real environment the LiDAR ray may form a very small cone because of scattering and

other factors. This means that the ray beam will end up hitting multiple voxel cells. Therefore,

in future research, the intersection volume of the LiDAR ray and each hit voxel cell can be

calculated first, and then the occupancy probability of this ray can be assigned to each hit

voxel cell in proportion to the intersection volume.

Replacing the voxel grid with point-based structures: Using Octomap means introducing

additional voxel grids in addition to the original MLS data, which increases the computational

effort and memory consumption. Another problem is that in Octomap the probabilities of all

points from one voxel cell are considered as the same by default. A follow-up idea for

improvement is to replace the voxel grid structure in Octomap using a point-based structure

such as an axis aligned bounding box tree (AABB tree)1. First construct a spherical or cube-

shaped neighborhood for each point first, then calculate the number of rays hitting that

neighborhood and directly calculate the probability of occupancy for each point. This

improves the voxel cell-based occupancy probability to a point-based occupancy probability.

1 https://doc.cgal.org/latest/AABB_tree/index.html

79

GPU-accelerated computation: For MLS data with a large number of points, using GPU-

based parallel accelerated computing is more efficient than CPU-based computing. The

method proposed in this thesis can be integrated with GPU technologies such as CUDA in

subsequent research to achieve more efficient parallel computing.

Integration with DBMS: The Database Management Systems (DBMS) is well suited for

managing and processing massive data like point clouds. The parallel operation of removing

duplicate points that is not achieved in this thesis, but these duplicate points can be sorted

and removed efficiently in the DBMS. The massive parallel computing technology in DBMS

can improve the processing efficiency of point cloud data. So how to integrate this research

with DBMS to further improve performance is also a topic well worth exploring in the future.

80

Bibliography

Anderson-Sprecher, P., Simmons, R., & Huber, D. (2011). Background subtraction and accessibility
analysis in evidence grids. 2011 IEEE International Conference on Robotics and Automation, 3104–
3110. https://doi.org/10.1109/ICRA.2011.5980428

Arisholm, G., Skauli, T., & Landrø, S. (2018). Combined range ambiguity resolution and noise
reduction in lidar signal processing. Optical Engineering, 57(07), 1.
https://doi.org/10.1117/1.OE.57.7.073103

Arora, M., Wiesmann, L., Chen, X., & Stachniss, C. (2021). Mapping the Static Parts of Dynamic
Scenes from 3D LiDAR Point Clouds Exploiting Ground Segmentation. 2021 European Conference on
Mobile Robots (ECMR), 1–6. https://doi.org/10.1109/ECMR50962.2021.9568799

Balado, J., Arias, P., Díaz-Vilariño, L., & González-deSantos, L. M. (2018). Automatic CORINE land
cover classification from airborne LIDAR data. Procedia Computer Science, 126, 186–194.
https://doi.org/10.1016/j.procs.2018.07.222

Balado, J., Díaz-Vilariño, L., Arias, P., & Lorenzo, H. (2019). Point clouds for direct pedestrian
pathfinding in urban environments. ISPRS Journal of Photogrammetry and Remote Sensing, 148,
184–196. https://doi.org/10.1016/j.isprsjprs.2019.01.004

Balado, J., González, E., Verbree, E., Díaz-Vilariño, L., & Lorenzo, H. (2020). AUTOMATIC
DETECTION AND CHARACTERIZATION OF GROUND OCCLUSIONS IN URBAN POINT CLOUDS
FROM MOBILE LASER SCANNING DATA. ISPRS Annals of Photogrammetry, Remote Sensing and
Spatial Information Sciences, VI-4/W1-2020, 13–20. https://doi.org/10.5194/isprs-annals-VI-4-W1-
2020-13-2020

Banerjee, N., Lisin, D., Briggs, J., Llofriu, M., & Munich, M. E. (2019). Lifelong Mapping using Adaptive
Local Maps. 2019 European Conference on Mobile Robots (ECMR), 1–8.
https://doi.org/10.1109/ECMR.2019.8870347

Bentley, J. L. (1975). Multidimensional binary search trees used for associative searching.
Communications of the ACM, 18(9), 509–517. https://doi.org/10.1145/361002.361007

Breiman, L. (2001). Random Forests. Machine Learning, 45(1), 5–32.
https://doi.org/10.1023/A:1010933404324

Bresenham, J. E. (1965). Algorithm for computer control of a digital plotter. IBM Systems Journal, 4(1),
25–30. https://doi.org/10.1147/sj.41.0025

Čerňava, J., Mokroš, M., Tuček, J., Antal, M., & Slatkovská, Z. (2019). Processing Chain for
Estimation of Tree Diameter from GNSS-IMU-Based Mobile Laser Scanning Data. Remote Sensing,
11(6), 615. https://doi.org/10.3390/rs11060615

Charles, R. Q., Su, H., Kaichun, M., & Guibas, L. J. (2017). PointNet: Deep Learning on Point Sets for
3D Classification and Segmentation. 2017 IEEE Conference on Computer Vision and Pattern
Recognition (CVPR), 77–85. https://doi.org/10.1109/CVPR.2017.16

Che, E., Jung, J., & Olsen, M. (2019). Object Recognition, Segmentation, and Classification of Mobile
Laser Scanning Point Clouds: A State of the Art Review. Sensors, 19(4), 810.
https://doi.org/10.3390/s19040810

Chen, X., Milioto, A., Palazzolo, E., Giguère, P., Behley, J., & Stachniss, C. (2019). SuMa++: Efficient
LiDAR-based Semantic SLAM. 2019 IEEE/RSJ International Conference on Intelligent Robots and
Systems (IROS), 4530–4537. https://doi.org/10.1109/IROS40897.2019.8967704

Chen, Y.-W., & Lin, C.-J. (2006). Combining SVMs with Various Feature Selection Strategies. In I.
Guyon, M. Nikravesh, S. Gunn, & L. A. Zadeh (Eds.), Feature Extraction (Vol. 207, pp. 315–324).
Springer Berlin Heidelberg. https://doi.org/10.1007/978-3-540-35488-8_13

Cheng, J., Xiang, Z., Cao, T., & Liu, J. (2014). Robust vehicle detection using 3D Lidar under complex
urban environment. 2014 IEEE International Conference on Robotics and Automation (ICRA), 691–
696. https://doi.org/10.1109/ICRA.2014.6906929

81

Choi, J., Ulbrich, S., Lichte, B., & Maurer, M. (2013). Multi-Target Tracking using a 3D-Lidar sensor for
autonomous vehicles. 16th International IEEE Conference on Intelligent Transportation Systems (ITSC
2013), 881–886. https://doi.org/10.1109/ITSC.2013.6728343

Dalponte, M., Coops, N. C., Bruzzone, L., & Gianelle, D. (2009). Analysis on the Use of Multiple
Returns LiDAR Data for the Estimation of Tree Stems Volume. IEEE Journal of Selected Topics in
Applied Earth Observations and Remote Sensing, 2(4), 310–318.
https://doi.org/10.1109/JSTARS.2009.2037523

Dewan, A., Caselitz, T., Tipaldi, G. D., & Burgard, W. (2016). Motion-based detection and tracking in
3D LiDAR scans. 2016 IEEE International Conference on Robotics and Automation (ICRA), 4508–
4513. https://doi.org/10.1109/ICRA.2016.7487649

Di Stefano, F., Chiappini, S., Gorreja, A., Balestra, M., & Pierdicca, R. (2021). Mobile 3D scan LiDAR:
A literature review. Geomatics, Natural Hazards and Risk, 12(1), 2387–2429.
https://doi.org/10.1080/19475705.2021.1964617

Ding, P., & Wang, Z. (2021). 3D LiDAR Point Cloud Loop Detection Based on Dynamic Object
Removal. 2021 IEEE International Conference on Real-Time Computing and Robotics (RCAR), 980–
985. https://doi.org/10.1109/RCAR52367.2021.9517428

Endo, Y., Javanmardi, E., & Kamijo, S. (2021). Analysis of Occlusion Effects for Map-Based Self-
Localization in Urban Areas. Sensors, 21(15), 5196. https://doi.org/10.3390/s21155196

Fischler, M. A., & Bolles, R. C. (1981). Random sample consensus: A paradigm for model fitting with
applications to image analysis and automated cartography. Communications of the ACM, 24(6), 381–
395. https://doi.org/10.1145/358669.358692

Geiger, A., Lenz, P., Stiller, C., & Urtasun, R. (2013). Vision meets robotics: The KITTI dataset. The
International Journal of Robotics Research, 32(11), 1231–1237.
https://doi.org/10.1177/0278364913491297

Gonzalez, R. C., & Woods, R. E. (2008). Digital image processing (3rd ed.). Prentice Hall.

Gorte, B. G. H. (2002). Segmentation of tin-structured surface models. Joint International Symposium
on Geospatial Theory, Processing and Applications, 1–5.
https://www.isprs.org/proceedings/xxxiv/part4/pdfpapers/351.pdf (accessed April 20, 2022)

Guo, Q., Su, Y., Hu, T., Guan, H., Jin, S., Zhang, J., Zhao, X., Xu, K., Wei, D., Kelly, M., & Coops, N.
C. (2021). Lidar Boosts 3D Ecological Observations and Modelings: A Review and Perspective. IEEE
Geoscience and Remote Sensing Magazine, 9(1), 232–257.
https://doi.org/10.1109/MGRS.2020.3032713

Guo, Z., Cai, B., Jiang, W., & Wang, J. (2019). Feature-based detection and classification of moving
objects using LiDAR sensor. IET Intelligent Transport Systems, 13(7), 1088–1096.
https://doi.org/10.1049/iet-its.2018.5291

Gupta, A., Byrne, J., Moloney, D., Watson, S., & Yin, H. (2020). Tree Annotations in LiDAR Data Using
Point Densities and Convolutional Neural Networks. IEEE Transactions on Geoscience and Remote
Sensing, 58(2), 971–981. https://doi.org/10.1109/TGRS.2019.2942201

Hauser, D., Glennie, C., & Brooks, B. (2016). Calibration and Accuracy Analysis of a Low-Cost
Mapping-Grade Mobile Laser Scanning System. Journal of Surveying Engineering, 142(4), 04016011.
https://doi.org/10.1061/(ASCE)SU.1943-5428.0000178

Hornung, A., Wurm, K. M., Bennewitz, M., Stachniss, C., & Burgard, W. (2013). OctoMap: An efficient
probabilistic 3D mapping framework based on octrees. Autonomous Robots, 34(3), 189–206.
https://doi.org/10.1007/s10514-012-9321-0

Hu, X., Li, X., & Zhang, Y. (2013). Fast Filtering of LiDAR Point Cloud in Urban Areas Based on Scan
Line Segmentation and GPU Acceleration. IEEE Geoscience and Remote Sensing Letters, 10(2),
308–312. https://doi.org/10.1109/LGRS.2012.2205130

Huang, R., Zhang, W., Kundu, A., Pantofaru, C., Ross, D. A., Funkhouser, T., & Fathi, A. (2020). An
LSTM Approach to Temporal 3D Object Detection in LiDAR Point Clouds. In A. Vedaldi, H. Bischof, T.
Brox, & J.-M. Frahm (Eds.), Computer Vision – ECCV 2020 (pp. 266–282). Springer International
Publishing. https://doi.org/10.1007/978-3-030-58523-5_16

82

Hyyppä, J., Jaakkola, A., Chen, Y., Kukko, A., Kaartinen, H., Zhu, L., Alho, P., & Hyyppä, H. (2013).
Unconventional LIDAR mapping from air, terrestrial and mobile. Proceedings of the Photogrammetric
Week, 205–214. https://ifpwww.ifp.uni-stuttgart.de/publications/phowo13/180Hyyppae.pdf (Accessed
April 20, 2022)

Iqbal, H., Campo, D., Marin-Plaza, P., Marcenaro, L., Gómez, D. M., & Regazzoni, C. (2021).
Modeling Perception in Autonomous Vehicles via 3D Convolutional Representations on LiDAR. IEEE
Transactions on Intelligent Transportation Systems, 1–12. https://doi.org/10.1109/TITS.2021.3130974

Kampffmeyer, M., Dong, N., Liang, X., Zhang, Y., & Xing, E. P. (2019). ConnNet: A Long-Range
Relation-Aware Pixel-Connectivity Network for Salient Segmentation. IEEE Transactions on Image
Processing, 28(5), 2518–2529. https://doi.org/10.1109/TIP.2018.2886997

Kelly, A., Stentz, A., Amidi, O., Bode, M., Bradley, D., Diaz-Calderon, A., Happold, M., Herman, H.,
Mandelbaum, R., Pilarski, T., Rander, P., Thayer, S., Vallidis, N., & Warner, R. (2006). Toward
Reliable Off Road Autonomous Vehicles Operating in Challenging Environments. The International
Journal of Robotics Research, 25(5–6), 449–483. https://doi.org/10.1177/0278364906065543

Kim, G., & Kim, A. (2020). Remove, then Revert: Static Point cloud Map Construction using
Multiresolution Range Images. 2020 IEEE/RSJ International Conference on Intelligent Robots and
Systems (IROS), 10758–10765. https://doi.org/10.1109/IROS45743.2020.9340856

Kiran, B. R., Roldão, L., Irastorza, B., Verastegui, R., Süss, S., Yogamani, S., Talpaert, V., Lepoutre,
A., & Trehard, G. (2019). Real-Time Dynamic Object Detection for Autonomous Driving Using Prior
3D-Maps. In L. Leal-Taixé & S. Roth (Eds.), Computer Vision – ECCV 2018 Workshops (Vol. 11133,
pp. 567–582). Springer International Publishing. https://doi.org/10.1007/978-3-030-11021-5_35

Ku, J., Mozifian, M., Lee, J., Harakeh, A., & Waslander, S. L. (2018). Joint 3D Proposal Generation
and Object Detection from View Aggregation. 2018 IEEE/RSJ International Conference on Intelligent
Robots and Systems (IROS), 1–8. https://doi.org/10.1109/IROS.2018.8594049

Lim, H., Hwang, S., & Myung, H. (2021). ERASOR: Egocentric Ratio of Pseudo Occupancy-Based
Dynamic Object Removal for Static 3D Point Cloud Map Building. IEEE Robotics and Automation
Letters, 6(2), 2272–2279. https://doi.org/10.1109/LRA.2021.3061363

Lin, Z., Hashimoto, M., Takigawa, K., & Takahashi, K. (2018). Vehicle and Pedestrian Recognition
Using Multilayer Lidar based on Support Vector Machine. 2018 25th International Conference on
Mechatronics and Machine Vision in Practice (M2VIP), 1–6.
https://doi.org/10.1109/M2VIP.2018.8600877

Luo, W., Yang, B., & Urtasun, R. (2018). Fast and Furious: Real Time End-to-End 3D Detection,
Tracking and Motion Forecasting with a Single Convolutional Net. 2018 IEEE/CVF Conference on
Computer Vision and Pattern Recognition, 3569–3577. https://doi.org/10.1109/CVPR.2018.00376

Ma, L., Li, Y., Li, J., Wang, C., Wang, R., & Chapman, M. A. (2018). Mobile Laser Scanned Point-
Clouds for Road Object Detection and Extraction: A Review. Remote Sensing, 10(10), 1531.
https://doi.org/10.3390/rs10101531

Ma, W.-C., Urtasun, R., Tartavull, I., Barsan, I. A., Wang, S., Bai, M., Mattyus, G., Homayounfar, N.,
Lakshmikanth, S. K., & Pokrovsky, A. (2019). Exploiting Sparse Semantic HD Maps for Self-Driving
Vehicle Localization. 2019 IEEE/RSJ International Conference on Intelligent Robots and Systems
(IROS), 5304–5311. https://doi.org/10.1109/IROS40897.2019.8968122

Maas, H.-G., & Vosselman, G. (1999). Two algorithms for extracting building models from raw laser
altimetry data. ISPRS Journal of Photogrammetry and Remote Sensing, 54(2), 153–163.
https://doi.org/10.1016/S0924-2716(99)00004-0

Mekala, M. S., Park, W., Dhiman, G., Srivastava, G., Park, J. H., & Jung, H.-Y. (2021). Deep Learning
Inspired Object Consolidation Approaches Using LiDAR Data for Autonomous Driving: A Review.
Archives of Computational Methods in Engineering. https://doi.org/10.1007/s11831-021-09670-y

Milioto, A., Vizzo, I., Behley, J., & Stachniss, C. (2019). RangeNet ++: Fast and Accurate LiDAR
Semantic Segmentation. 2019 IEEE/RSJ International Conference on Intelligent Robots and Systems
(IROS), 4213–4220. https://doi.org/10.1109/IROS40897.2019.8967762

Moosmann, F., Pink, O., & Stiller, C. (2009). Segmentation of 3D lidar data in non-flat urban
environments using a local convexity criterion. 2009 IEEE Intelligent Vehicles Symposium, 215–220.
https://doi.org/10.1109/IVS.2009.5164280

83

Moravec, H., & Elfes, A. (1985). High resolution maps from wide angle sonar. 1985 IEEE International
Conference on Robotics and Automation Proceedings, 2, 116–121.
https://doi.org/10.1109/ROBOT.1985.1087316

Najdataei, H., Nikolakopoulos, Y., Gulisano, V., & Papatriantafilou, M. (2018). Continuous and Parallel
LiDAR Point-Cloud Clustering. 2018 IEEE 38th International Conference on Distributed Computing
Systems (ICDCS), 671–684. https://doi.org/10.1109/ICDCS.2018.00071

Okyay, U., Telling, J., Glennie, C. L., & Dietrich, W. E. (2019). Airborne lidar change detection: An
overview of Earth sciences applications. Earth-Science Reviews, 198, 102929.
https://doi.org/10.1016/j.earscirev.2019.102929

Oršulić, J., Milijas, R., Batinovic, A., Markovic, L., Ivanovic, A., & Bogdan, S. (2021). Flying with
Cartographer: Adapting the Cartographer 3D Graph SLAM Stack for UAV Navigation. 2021 Aerial
Robotic Systems Physically Interacting with the Environment (AIRPHARO), 1–7.
https://doi.org/10.1109/AIRPHARO52252.2021.9571065

Otepka, J., Ghuffar, S., Waldhauser, C., Hochreiter, R., & Pfeifer, N. (2013). Georeferenced Point
Clouds: A Survey of Features and Point Cloud Management. ISPRS International Journal of Geo-
Information, 2(4), 1038–1065. https://doi.org/10.3390/ijgi2041038

Otepka, J., Mandlburger, G., Karel, W., Wöhrer, B., Ressl, C., & Pfeifer, N. (2021). A FRAMEWORK
FOR GENERIC SPATIAL SEARCH IN 3D POINT CLOUDS. ISPRS Annals of the Photogrammetry,
Remote Sensing and Spatial Information Sciences, V-2–2021, 35–42. https://doi.org/10.5194/isprs-
annals-V-2-2021-35-2021

Pagad, S., Agarwal, D., Narayanan, S., Rangan, K., Kim, H., & Yalla, G. (2020). Robust Method for
Removing Dynamic Objects from Point Clouds. 2020 IEEE International Conference on Robotics and
Automation (ICRA), 10765–10771. https://doi.org/10.1109/ICRA40945.2020.9197168

Petrovskaya, A., & Thrun, S. (2009). Model based vehicle detection and tracking for autonomous
urban driving. Autonomous Robots, 26(2), 123–139. https://doi.org/10.1007/s10514-009-9115-1

Pfeifer, N., Falkner, J., Bayr, A., Eysn, L., & Ressl, C. (2021). Test Charts for Evaluating Imaging and
Point Cloud Quality of Mobile Mapping Systems for Urban Street Space Acquisition. Remote Sensing,
13(2), 237. https://doi.org/10.3390/rs13020237

Pfreundschuh, P., Hendrikx, H. F. C., Reijgwart, V., Dubé, R., Siegwart, R., & Cramariuc, A. (2021).
Dynamic Object Aware LiDAR SLAM based on Automatic Generation of Training Data. 2021 IEEE

International Conference on Robotics and Automation (ICRA), 11641 – 11647.

https://doi.org/10.1109/ICRA48506.2021.9560730

Pomerleau, F., Krüsi, P., Colas, F., Furgale, P., & Siegwart, R. (2014). Long-term 3D map
maintenance in dynamic environments. 2014 IEEE International Conference on Robotics and
Automation (ICRA), 3712–3719. https://doi.org/10.1109/ICRA.2014.6907397

Postica, G., Romanoni, A., & Matteucci, M. (2016). Robust moving objects detection in lidar data
exploiting visual cues. 2016 IEEE/RSJ International Conference on Intelligent Robots and Systems
(IROS), 1093–1098. https://doi.org/10.1109/IROS.2016.7759185

Rodríguez-Cuenca, B., García-Cortés, S., Ordóñez, C., & Alonso, M. C. (2015). An approach to detect
and delineate street curbs from MLS 3D point cloud data. Automation in Construction, 51, 103–112.
https://doi.org/10.1016/j.autcon.2014.12.009

Sánchez-Cruz, H., Sossa-Azuela, H., Braumann, U.-D., & Bribiesca, E. (2013). The Euler-Poincaré
Formula Through Contact Surfaces of Voxelized Objects. Journal of Applied Research and
Technology, 11(1), 65–78. https://doi.org/10.1016/S1665-6423(13)71515-3

Schauer, J., & Nüchter, A. (2018). The Peopleremover—Removing Dynamic Objects From 3-D Point
Cloud Data by Traversing a Voxel Occupancy Grid. IEEE Robotics and Automation Letters, 3(3),
1679–1686. https://doi.org/10.1109/LRA.2018.2801797

Shackleton, J., VanVoorst, B., & Hesch, J. (2010). Tracking People with a 360-Degree Lidar. 2010 7th
IEEE International Conference on Advanced Video and Signal Based Surveillance, 420–426.
https://doi.org/10.1109/AVSS.2010.52

84

Shi, S., Wang, X., & Li, H. (2019). PointRCNN: 3D Object Proposal Generation and Detection From
Point Cloud. 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), 770–
779. https://doi.org/10.1109/CVPR.2019.00086

Soilán, Sánchez-Rodríguez, Río-Barral, Perez-Collazo, Arias, & Riveiro. (2019). Review of Laser
Scanning Technologies and Their Applications for Road and Railway Infrastructure Monitoring.
Infrastructures, 4(4), 58. https://doi.org/10.3390/infrastructures4040058

Sugumaran, R., Oryspayev, D., & Gray, P. (2011). GPU-based cloud performance for LiDAR data
processing. Proceedings of the 2nd International Conference on Computing for Geospatial Research
& Applications - COM.Geo ’11, 1. https://doi.org/10.1145/1999320.1999369

Sun, P., Kretzschmar, H., Dotiwalla, X., Chouard, A., Patnaik, V., Tsui, P., Guo, J., Zhou, Y., Chai, Y.,
Caine, B., Vasudevan, V., Han, W., Ngiam, J., Zhao, H., Timofeev, A., Ettinger, S., Krivokon, M., Gao,
A., Joshi, A., … Anguelov, D. (2020). Scalability in Perception for Autonomous Driving: Waymo Open
Dataset. 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), 2443–
2451. https://doi.org/10.1109/CVPR42600.2020.00252

Teo, T.-A., & Shih, T.-Y. (2013). Lidar-based change detection and change-type determination in
urban areas. International Journal of Remote Sensing, 34(3), 968–981.
https://doi.org/10.1080/01431161.2012.714504

Tombari, F., Salti, S., & Di Stefano, L. (2010). Unique signatures of histograms for local surface
description. Proceedings of the 11th European Conference on Computer Vision Conference on
Computer Vision: Part III, 356–369. https://doi.org/10.1007/978-3-642-15558-1_26

Ushani, A. K., Wolcott, R. W., Walls, J. M., & Eustice, R. M. (2017). A learning approach for real-time
temporal scene flow estimation from LIDAR data. 2017 IEEE International Conference on Robotics
and Automation (ICRA), 5666–5673. https://doi.org/10.1109/ICRA.2017.7989666

Ussyshkin, V., & Theriault, L. (2011). Airborne Lidar: Advances in Discrete Return Technology for 3D
Vegetation Mapping. Remote Sensing, 3(3), 416–434. https://doi.org/10.3390/rs3030416

Wang, C., Meng, L., She, S., Mitchell, I. M., Li, T., Tung, F., Wan, W., Meng, Max. Q.-H., & de Silva,
C. W. (2017). Autonomous mobile robot navigation in uneven and unstructured indoor environments.
2017 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), 109–116.
https://doi.org/10.1109/IROS.2017.8202145

Wang, Y., Chen, Q., Zhu, Q., Liu, L., Li, C., & Zheng, D. (2019). A Survey of Mobile Laser Scanning
Applications and Key Techniques over Urban Areas. Remote Sensing, 11(13), 1540.
https://doi.org/10.3390/rs11131540

Weinmann, M., Jutzi, B., Hinz, S., & Mallet, C. (2015). Semantic point cloud interpretation based on
optimal neighborhoods, relevant features and efficient classifiers. ISPRS Journal of Photogrammetry
and Remote Sensing, 105, 286–304. https://doi.org/10.1016/j.isprsjprs.2015.01.016

Wen, W. W., Zhang, G., & Hsu, L.-T. (2021). GNSS NLOS Exclusion Based on Dynamic Object
Detection Using LiDAR Point Cloud. IEEE Transactions on Intelligent Transportation Systems, 22(2),
853–862. https://doi.org/10.1109/TITS.2019.2961128

Williams, K., Olsen, M. J., Roe, G. V., & Glennie, C. (2013). Synthesis of Transportation Applications
of Mobile LIDAR. Remote Sensing, 5(9), 4652–4692. https://doi.org/10.3390/rs5094652

Wu, Y., Wang, Y., Zhang, S., & Ogai, H. (2021). Deep 3D Object Detection Networks Using LiDAR
Data: A Review. IEEE Sensors Journal, 21(2), 1152–1171.
https://doi.org/10.1109/JSEN.2020.3020626

Xia, Y., Sun, Z., Tok, A., & Ritchie, S. (2022). A dense background representation method for traffic
surveillance based on roadside LiDAR. Optics and Lasers in Engineering, 152, 106982.
https://doi.org/10.1016/j.optlaseng.2022.106982

Xiao, W., Vallet, B., Schindler, K., & Paparoditis, N. (2016). Street-side vehicle detection, classification
and change detection using mobile laser scanning data. ISPRS Journal of Photogrammetry and
Remote Sensing, 114, 166–178. https://doi.org/10.1016/j.isprsjprs.2016.02.007

Xu, S., Cheng, P., Zhang, Y., & Ding, P. (2015). Error Analysis and Accuracy Assessment of Mobile
Laser Scanning System. The Open Automation and Control Systems Journal, 7(1), 485–495.
https://doi.org/10.2174/1874444301507010485

85

Xu, S., Oude Elberink, S., & Vosselman, G. (2012). ENTITIES AND FEATURES FOR
CLASSIFCATION OF AIRBORNE LASER SCANNING DATA IN URBAN AREA. ISPRS Annals of the
Photogrammetry, Remote Sensing and Spatial Information Sciences, I–4, 257–262.
https://doi.org/10.5194/isprsannals-I-4-257-2012

Yao, W., Hinz, S., & Stilla, U. (2010). Airborne analysis and assessment of urban traffic scenes from
LiDAR data—Theory and experiments. 2010 IEEE Computer Society Conference on Computer Vision
and Pattern Recognition - Workshops, 75–82. https://doi.org/10.1109/CVPRW.2010.5543901

Yao, W., Hinz, S., & Stilla, U. (2011). Extraction and motion estimation of vehicles in single-pass
airborne LiDAR data towards urban traffic analysis. ISPRS Journal of Photogrammetry and Remote
Sensing, 66(3), 260–271. https://doi.org/10.1016/j.isprsjprs.2010.10.005

Yin, H., Wang, Y., Ding, X., Tang, L., Huang, S., & Xiong, R. (2020). 3D LiDAR-Based Global
Localization Using Siamese Neural Network. IEEE Transactions on Intelligent Transportation Systems,
21(4), 1380–1392. https://doi.org/10.1109/TITS.2019.2905046

Yoon, D., Tang, T., & Barfoot, T. (2019). Mapless Online Detection of Dynamic Objects in 3D Lidar.
2019 16th Conference on Computer and Robot Vision (CRV), 113–120.
https://doi.org/10.1109/CRV.2019.00023

Zeeshan Zia, M., Stark, M., Schiele, B., & Schindler, K. (2013). Detailed 3D Representations for
Object Recognition and Modeling. IEEE Transactions on Pattern Analysis and Machine Intelligence,
35(11), 2608–2623. https://doi.org/10.1109/TPAMI.2013.87

Zhang, L., Li, Q., Li, M., Mao, Q., & Nüchter, A. (2013). Multiple Vehicle-like Target Tracking Based on
the Velodyne LiDAR*. IFAC Proceedings Volumes, 46(10), 126–131.
https://doi.org/10.3182/20130626-3-AU-2035.00058

Zhang, T., & Jin, P. J. (2022). Roadside Lidar Vehicle Detection and Tracking Using Range And
Intensity Background Subtraction. ArXiv:2201.04756 [Cs, Eess].
https://doi.org/10.48550/arXiv.2201.04756

Zhao, L., & Thorpe, C. (1998). Qualitative and quantitative car tracking from a range image sequence.
Proceedings. 1998 IEEE Computer Society Conference on Computer Vision and Pattern Recognition
(Cat. No.98CB36231), 496–501. https://doi.org/10.1109/CVPR.1998.698651

Zhou, Y., & Tuzel, O. (2018). VoxelNet: End-to-End Learning for Point Cloud Based 3D Object
Detection. 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, 4490–4499.
https://doi.org/10.1109/CVPR.2018.00472

	Abstract
	Acknowledgements
	Acronyms
	1. Introduction
	1.1 Background and Motivation
	1.2 Research Questions
	1.3 Research Scope
	1.4 Thesis Structure

	2. Related Work
	2.1 Single-frame Data Methods
	2.2 Multi-frame Data Methods
	2.3 Conclusion of Related Works

	3. Theoretical Background
	3.1 Octomap
	3.2 Point-based Neighborhood Query

	4. Methodology
	4.1 Free Point Extraction
	4.2 ROI Delimitation
	4.3 Noise Removal
	4.4 Vegetation Removal
	4.5 Dynamic Objects Extraction

	5. Implementation
	5.1 Dataset
	5.2 Parameters
	5.3 Tools

	6. Results and Discussion
	6.1 Implementation Results
	6.2 Performance Analysis
	6.2.1 Accuracy Assessment
	6.2.2 Influence Factors
	6.2.3 Running Time and Memory Consumption

	7. Conclusions and Future Work
	7.1 Research Conclusions
	7.2 Research Contributions
	7.3 Future Work

	Bibliography

