
1

Crosswalk detection for the outdoor navigation of

people with visual impairment

MSc GIMA Master’s Thesis

Odyssefs Karatzaferis 8571465

March, 2022

Supervisor: Azarakhsh Rafiee

Responsible professor: Peter van

Oosterom

2

Acknowledgments

Firstly, I would like to acknowledge and sincerely thank my supervisor Dr. Azarakhsh Rafiee who

greatly contributed in making this thesis possible. Her ongoing support, guidance and advice

throughout all the stages of this project have been vital and helped me overcome numerous obstacles

I faced along the way.

I would also like to thank my fellow GIMA students, many of whom have given me essential feedback

during this research process and ongoing inspiration throughout my Master’s studies.

Last but not least, I would like to give heartfelt thanks to my family and friends, whose unwavering

support and love sustained me through this challenging process.

3

Abstract

Visually impaired people often struggle to safely navigate outdoors, especially in areas with which

they are not familiar. Technological advances and increasing awareness for this issue have resulted in

the development of several different systems that aim to address the problem at hand. However,

further research initiatives would help achieve the desired goal of many visually impaired individuals,

that of completely safe and independent outdoor navigation.

The aim of this study is to utilise freely available aerial imagery and spatial data in order to identify

the location of pedestrian zebra crosswalk in given area. To this end, the YOLOv5 state of the art deep

learning object detector is used. The stages of this study included reviewing relevant past work and

literature, collecting and pre-processing imagery datasets, training and deploying the detection model

and finally evaluating the results. It was found that the chosen model was able to successfully detect

zebra crosswalks in aerial imagery. While certain steps have been identified that can help increase the

proposed efficiency, the crosswalk localization achieved by the designed system would make it an

important supplementary feature for a navigation system for the blind.

4

Contents
Acknowledgments ... 2

Abstract ... 3

1 Introduction .. 5

1.1 Research problem description .. 5

1.2 Relevant work ... 6

2 Theoretical background .. 8

2.1 Crosswalk types and characteristics ... 8

2.2 Artificial Intelligence - Machine Learning ... 9

2.3 Deep learning .. 9

2.4 Convolutional Neural Networks .. 10

3 Research objectives .. 11

3.1 Research Questions .. 11

3.2 Research Scope ... 11

3.3 Study Area ... 12

4 Methodology ... 13

4.1 Input imagery dataset ... 13

4.2 Software .. 13

4.3 Workflow steps ... 13

4.4 Collecting training imagery dataset .. 14

4.5 Collecting Delft imagery .. 18

4.6 Choosing an appropriate algorithm .. 19

4.7 Image quality control, grouping and labeling ... 22

4.8 Implementing and training the model .. 24

4.9 Evaluating initial results .. 28

4.10 Data augmentation – Model fine-tuning .. 31

4.11 Crosswalk detection in Delft ... 34

4.12 Testing model with different spatial resolution imagery ... 38

5 Discussion and conclusion .. 40

6 Time planning .. 44

7 References .. 45

5

1 Introduction

1.1 Research problem description

Guiding oneself through the urban environment and across busy streets and intersections might seem

like a trivial task for the majority of the population. For blind people or people with limited visual

capabilities, however, it can prove a far more challenging venture. According to the World Health

Organization (WHO, 2021), millions of people around the world suffer from different types of visual

impairment and thus might require assistance when navigating outdoors. In order to tackle the

mobility problems arising for visually impaired people, it is important to look into alternative and

innovative navigational tools and capabilities. Identifying a safe location to cross a street is an

exceptionally strenuous task for visually impaired people. Crosswalks are ideally the safest way for a

visually impaired or blind individual to cross a road, as they are the dedicated locations for pedestrian

crossing and, although the percentage of drivers yielding priority to pedestrians may vary (Schroeder,

2008) they are still the preferred crossing location. Nevertheless, and knowing that blind people are

more prone to getting injured outdoors (Manduchi, 2010), crossing a road still poses a significant

threat to visually impaired individuals. It is thus crucial that all needed measures are taken and all

capabilities at hand utilised in order to safeguard this citizen group and reduce the number of future

accidents to a minimum. Developments in machine learning, remote sensing and object detection

frameworks have allowed for various new ways in which crosswalks can be detected, allowing for the

development of helpful tools and application for visually impaired individuals.

FIGURE 1: A SELF-ILLUMINATED PEDESTRIAN CROSSING, NETHERLANDS. (SOURCE: TRENDHUNTER.COM)

6

1.2 Relevant work

Several researchers and product developers have focused on creating ways for visually impaired

persons to safely and independently navigate in the urban environment. The first few studies that are

presented, while not strictly connected to machine learning and object detection, help paint the

picture of the direction that researchers take to cater for visually impaired citizens’ navigational needs.

As part of their technological report, Giudice and Legge (2008) aim to highlight some of the available

navigational technologies that could support a blind individual’s independent travel. After going over

the various factors that can negatively influence blind navigation as well as improvements that have

recently been made towards the right direction in recent years, they provide an overview of the most

widely used electronic travel aids. These include sonar-based devices, optical (camera or laser-based)

technologies, infrared audible signage, GPS devices as well as indoor navigational systems. Meliones

and Filios (2016) developed a mobile application that combines the functionalities of a

microcontroller, an external GPS tracker, a keypad and a sonar distance meter to achieve great

positioning accuracy and warn blind pedestrians about obstacles along their walking route. Added

functionalities like traffic light colour inspection and local weather information reports greatly

enhance safety and independency. Velázquez et. al. (2018) developed a novel on-shoe tactile display

system that, in combination with more traditional navigation tools (GPS, white cane etc.) was found

to greatly increase the confidence of a blind pedestrian when navigating, albeit mentioning that

shortcomings in GPS accuracy proved to be an important aspect of the system that still needed to be

addressed. Another group of researchers, Kammoun et. al. (2012a), also took advantage of tactile

technologies, developing wristbands with vibration actuators that provide haptic feedback to visually

impaired individuals in order to help them maintain a straight walking path between two waypoints.

Evangeline (2014) follows a different approach, developing an infrared sensor based system to detect

possible obstructions, aiming to implement it alongside already existing GPS-based navigators so as to

slightly correct the position of the blind person at any given time during their route. Finally, Nawer et.

al. (2015) propose an ultrasonic-based blind guidance system, where the continuous transmission of

ultrasonic waves and their subsequent reflection back to the sensor allow for the detection of

obstacles. The blind pedestrian is then alerted via a voice message and can adjust their path

accordingly.

The next group of relevant research initiatives focus more intently on computer vision, often

incorporating machine learning and object detection functionalities. It thus provides a more explicit

overview of previous research closely linked to this thesis’ proposed system. Wang and Jiao (2021), as

part of a wider research on a blind guidance system that additionally deals with traffic lights and

potholes, used a combination of line extraction, image enhancement and edge detection algorithms

to recognize and pinpoint the location of zebra crossings in videos recorded at street level. Using a

Convolutional Neural Network (CNN) approach, Dow et. al. (2020) proposed a system that utilises the

motion sensors of strategically placed cameras to identify crosswalks and map pedestrian waiting

areas, and aims to improve pedestrian safety and reduce future accidents. Different types of street

imagery are used as the base for identifying crosswalks. Berriel et. al (2017) develop their system using

a large quantity of Google satellite images spanning across different countries, aiming to account for

different crosswalk types around the globe. Combining satellite and street view images, Ahmetovic et.

al. (2015) enhance pre-existing crosswalk databases (i.e. OpenStreetMaps) via identifying crosswalk

locations in available imagery. Tümen& Ergen (2020) used imagery from cameras mounted on cars

within a CNN system to distinguish between different “road types” (intersections, crosswalks, normal

road paths etc.). The proposed system by Kammoun et. al. (2012b) is developed around a set of head-

7

mounted stereoscopic camera, along with GPS, sensors, microphone, headphones and a computer

carried in a backpack. Images collected by the cameras are processed in real-time by an object

localization algorithm, and, using geo-located landmarks, it proceeds to correct the visually impaired

pedestrian’s position and refine the usage of the GPS. Initial real-world tests indicated that the system

would be viable to be used in daily situations. Lastly, Bhargava et. al. (2011) propose the usage of a

camera module integrated into sunglasses that will collect imagery of the path ahead of a blind person.

These will be sent real-time (via a smartphone) to an image processing server with object recognition

capabilities. As a result, objects relevant to navigation (other pedestrians, zebra crossings, traffic lights

etc.) will be detected and their relevant position will enhance the functionality and accuracy of a GPS

navigator in the aforementioned smartphone. This is expected to greatly improve navigability. The

trend to use different types of imagery in combination with a machine learning oriented workflows is

quite prevalent and is steadily becoming one the most popular means of utilising all available data to

ensure a blind pedestrians safety and independency.

FIGURE 2: OBJECT DETECTION, CAMERA GLASSES, PRESSURE SENSORS AND INDOOR NAVIGATION SYSTEMS. SOME OF

THE FEW TECHNOLOGIES UTILISED TO AID VISUALLY IMPAIRED PEOPLE NAVIGATE INDEPENDENTLY (IMAGE SOURCES1 2
3 4)

1 https://www.amazon.com/Bluetooth-Sunglasses-Glasses-Wearable-Traveling/dp/B08GG8FCJC
2 https://www.mdpi.com/1424-8220/20/15/4144/htm
3 https://www.tekscan.com/products-solutions/sensors
4 https://www.avsystem.com/blog/indoor-navigation-and-indoor-positioning/

8

2 Theoretical background
Before diving into the objectives and scope of this proposed research, this section will help outline

some basic background theory regarding the concepts that will be later mentioned.

2.1 Crosswalk types and characteristics
Pedestrian crosswalks are designated locations in parts of a road where pedestrians are given a right

of way to cross and are thus safer for passage. Crosswalks are often marked so as to be clearly and

visibly distinguished from the rest of the road, most commonly patterned with striped lines, while they

can also be accompanied by appropriate signals. Marked crosswalks are typically situated at signalized

intersections, around school zones and at un-signalized intersections (Mead et. al., 2014). Several

studies have concluded that marked crosswalks are safer for pedestrians, mainly by increasing the

driver yielding rates when compared to unmarked crosswalks (Monsere et. al., 2016).

Several different types of marked crosswalks can be identified, depending on the pattern painted

when they are being installed. The most common crosswalk marking patterns can be seen in Figure 3,

but numerous variations exist around the globe.

FIGURE 3: CROSSWALK MARKING PATTERNS. (SOURCE: IMGUR.COM)

It is thus made evident, that the study area matters when trying to identify crosswalk locations. The

specification and characteristics of the crosswalk markings in said area need to be known. Only then

can the appropriate parameters be implemented so as to reach a satisfactory result. When trying to

develop a crosswalk detection model, using crosswalk imagery from the desired area can thus be

optimal.

9

2.2 Artificial Intelligence - Machine Learning

Artificial Intelligence (AI), a field aiming to simulate intelligent processes of humans by machines, has

been the ground from which Machine Learning (ML) has evolved. Amongst others, AI includes

techniques like case-based reasoning, rule-based systems, simple artificial neural networks, fuzzy

models, multi-agent-systems and cellular automata (Chen et. al, 2018). In an attempt to efficiently

mimic human perception, problem solving abilities and logical reasoning, AI techniques have shown

great efficiency in solving complex problems and as a result have come to act as highly efficient

alternatives to more traditional modelling techniques.

As its name suggests, ML aims to make machines able to “learn”, with the goal of eventually being

able to solve complex and time-consuming problems (Rätsch, 2004). Thriving to construct computer

systems that improve through repetition and experience, ML has taken dramatic leaps forward in the

past couple of decades (Jordan & Mitchell, 2015), being utilised today in numerous applications and

being the subject of intensive research.

The vast majority of ML algorithms can be divided into three main categories: supervised learning,

unsupervised learning and reinforcement learning. The main distinction between the first two is that

supervised learning uses labelled datasets, while unsupervised algorithms utilises unlabelled ones. In

unsupervised learning, the user does not provide the system with the desired/correct end result, with

the program having to judge whether the learning process is proceeding correctly through other

means (Wuthnow et. al., 2009). In reinforcement learning, the system is not fed with input datasets,

but rather is provided with a starting state and a desired goal, which the developed model aims to

achieve via trial and error while following a set of predetermined allowed actions and rules.

Some implementations of ML models use artificial neural networks (ANN). ANNs are computational

systems that consist of interconnected nodes that aim to mimic the neurons’ formation in a biological

brain. They are commonly utilised as part of data analysis workflows in order to predict, classify and

cluster datasets, as they bring forth the unique ability to assimilate complex information patterns and

generalize the learned outputs (Hakimpoor et. al., 2011). Each ANN consists of neurons, which act as

its processing elements. Each neuron consists of input layers, receiving information from outside the

ANN, output layers, sending resulting values outside the ANN, as well as several intermediate hidden

layers, responsible for the internal calculations within the ANN (Sharma, 2013).

2.3 Deep learning

Deep learning is a subarea of ML, with the distinction that deep learning algorithms are strictly and

always structured in layers that eventually form an ANN. In contrast to traditional MN models that

implement ANN (also known as “shallow” machine learning), neurons used in deep learning networks

are more advanced and complex than a simple ANN. While a single hidden layer was typically enough

for the more simplistic functions of shallow machine learning models, deep neural networks

commonly consist of more than one hidden layers. These layers also usually employ advanced

operations (e.g., convolution, cross-correlation etc.) and are organised is a nested architecture

(Janiesch et. al., 2021). The advanced, more complex architecture of deep learning networks allows

them to more efficiently deal with larger datasets and perform on par or even outperform humans in

fields like computer vision, image analysis, spatial pattern analysis and voice recognition.

10

2.4 Convolutional Neural Networks

Convolutional Neural Networks (CNN), a class of ANN implemented in deep learning, consist of

neurons that collectively work to train the network from the input datasets with the aim of producing

an optimal output. The main difference between the two types of networks is that most of a CNN’s

hidden layers that form its basis are convolutional layers. These layers apply a convolution operation

on the input datasets before outputting the transformed inputs to the next layer (Figure 4). Through

this usage of convolutional kernels, CNNs succeed in dramatically decreasing the number of weights

needed to manage the input information, something that traditional ANN fail to do (Chen, 2021). This

fact makes CNN exceptionally useful when dealing with image classification tasks.

FIGURE 4: VISUAL REPRESENTATION OF A CONVOLUTIONAL LAYER. PLACING THE KERNEL OVER THE INPUT MATRIX AND APPLYING

THE CORRESPONDING FILTER ON THE APPROPRIATE PART OF THE INPUT RESULTS IN THE WEIGHTED OUTPUT VALUES. (FIGURE SOURCE:

HTTPS://ANALYTICSINDIAMAG.COM/WHAT-IS-A-CONVOLUTIONAL-LAYER/)

The neurons within a CNN are organised in three dimensions and allow the reduction of the

parameters needed to successfully run a model. CNNs architecture usually includes image-specific

features and functions, further strengthening their suitability for recognising patterns in image inputs

(O'Shea & Nash, 2015). A typical CNN (Figure 5), apart from the convolution layers often includes

pooling layers (responsible for improving the network’s efficiency by reducing redundant parameters),

rectified linear unit (ReLu) correction layers (replacing negative input values with zeros) and fully

connected layers (usually placed at the rear end of the network, compiling all data calculated by

previous layers into a final output) (Yamashita et. al., 2018).

FIGURE 5: EXAMPLE OF CNN ARCHITECTURE (KURITA, 2017)

11

3 Research objectives

The main goal of this research is the formulation of a workflow that allows the detection of zebra

crosswalks from aerial imagery. To this end, python functionalities and existing libraries and image

recognition algorithms will be utilised. Supervised deep learning and convolutional neural networks

will be the foundations of the proposed workflow, the theoretical framework of which has been

previously explained in the previous section. The designed system and useful findings could in the

future be utilised by a guidance application for visually impaired persons. Identified crosswalk

locations could be fed in real-time into an appropriate audio aided navigation interface that could

highly enhance a visually impaired individual’s mobility.

3.1 Research Questions

Main question:

How effectively can pedestrian crosswalks be detected in high spatial resolution imagery using

convolutional neural networks?

Sub questions:

 Which of the existing CNN deep learning algorithms are suitable for identifying crosswalks?

 What methods can be used to evaluate the model's efficiency, in terms of accuracy and

performance speed, and the impact of its parameters and components on the results?

 How does using input imagery of different spatial resolutions affect the created workflow’s

efficiency?

3.2 Research Scope

This research will aim to design a system to locate pedestrian zebra crosswalks in the study area. As a

result, the proposed workflow will need to possibly be adjusted if one wants to locate crosswalks in a

different area, due to both the difference in crosswalk types as well as the difference in input aerial

imagery datasets. Furthermore, the designed system will use already existing libraries and CNN

algorithms, which will be accordingly adjusted, but not designed from scratch. Furthermore, while

crosswalk locations are an important factor for visually impaired pedestrians’ safety, other factors

need to be taken into account if one is to ensure that accidents are kept to a minimum (i.e. detectable

textured ground warning surfaces, motor vehicle speed limits regulations, pedestrian refuge islands

etc.).

12

3.3 Study Area

The area where this research will take place and where crosswalk locations will be identified is the

Delft Municipality in the Netherlands (Figure 6). The choice of study area was made based on:

 Aerial Imagery availability

 The proposed research will be conducted in collaboration with TU Delft

FIGURE 6: DELFT MUNICIPALITY AND ITS POSITION IN THE NETHERLANDS

As part of this thesis, amongst the several different crosswalk paint patterns, only zebras will be

detected. According to Overheid.nl (a website providing official Netherlands’ laws and regulations)

“The white marking stripes of crosswalks are 0.5 meters wide, as is the intervening distance between

the white markings. The width of the zebra crossing is at least 4 meters so that the zebra crossing is

clearly visible to road users”. These characteristics need to be taken in account when collecting the

training dataset, so as to make sure that crosswalks are captured in their entirety.

13

4 Methodology

4.1 Input imagery dataset
The aerial imagery used as input will be taken from the PDOK5 aerial photo dataset which provides

aerial photos of a spatial resolution of 25 cm. As stated in PDOK’s website:

PDOK is a central distribution platform used for deploying geographical datasets (geo datasets) and

making them available as web services and geographical information files. These geo datasets are

supplied by government and public administrations. They are therefore guaranteed to be up-to-date,

reliable and for free.

4.2 Software
The proposed system and workflow will be realized using a pre-trained convolutional neural network

based model, YOLOv5, which is freely available in its entirety. Most parts of the preprocessing coding

will be done locally inside the Jupyter 6 computational notebook using the Python programming

language. Training of the models will be done on the Colab7 virtual environment, utilising a Tesla T4

32GB GPU, provided as part of the commercial Colab Pro subscription plan. Various additional Python

libraries and tools will be used in both environments. Some pre- and post-processing as well as

visualization will be done in ESRI’s ArcGIS Pro8.

Next up is an outline of the general methodological steps, followed by a short explanation of what

constitutes each step.

4.3 Workflow steps

The main steps towards building the proposed system will include:

 Collecting training imagery dataset

 Collecting Delft imagery

 Choosing an appropriate algorithm

 Image quality control, grouping and labelling

 Implementing and training model

 Evaluating initial results

 Data augmentation - Model fine-tuning

 Crosswalk detection in Delft

 Testing model with different spatial resolution imagery

5 https://www.pdok.nl/
6 https://jupyter.org/
7 https://colab.research.google.com/
8 https://www.esri.com/en-us/arcgis/products/arcgis-pro/overview

14

4.4 Collecting training imagery dataset

As previously mentioned, PDOK will be the source of all imagery used in the development of the

proposed system. Specifically, the 2021 Luchtfoto (Aerial Imagery) of a 25cm spatial resolution will be

used both for training the crosswalk detection model as well as the imagery dataset used to ultimately

identify the location of pedestrian crosswalks in the study area of Delft.

As a registry with the location of Dutch pedestrian crossings is not currently available, this needs to be

compiled. This will be done using OpenStreetMap, a Web Map Service protocol as well as Python

functionalities. It is thus useful to explain these tools and concepts beforehand.

OpenStreetMap

OpenStreetMap (OSM)9 is a free editable map of the whole world, initially launched in 2004 and built

and constantly updated by volunteers. Contributors mostly utilise aerial imagery, GPS devices, and

field maps to collect geo-data and verify that OSM is being kept accurate and up to date. The

underlying geo-located datasets that combine to build the maps are considered the primary output of

the project, and are generally freely available. While roads and streets were the initial focus of OSM,

it has since expanded vastly and now includes numerous types of map features like amenities,

buildings, historical, natural and leisure points of interest, land use types, specific road features and

signage and many others. Available features are organised and represented using OSM’s three basic

data structures, i.e. nodes (single points with coordinates), ways (linear elements comprising multiple

nodes) and relations (ordered lists used to define logical or geographic relationships between these

different objects). The popularity of OSM and its contributions to worldwide research initiatives has

been on the rise since its creation. In recent years, several scientific disciplines (e.g. geography, GIS

science, spatial planning, cartography, computer science, and ecology) have come to realise the

significant potential of OSM. OSM offers researchers a unique dataset that is global in scale and a body

of knowledge maintained by its numerous volunteering contributors (Jokar et. al., 2015). As of

February 2022, OSM has approximately 8.3 million registered users and 1.75 million different

contributors.

Web Map Service (WMS)

The Open Geospatial Consortium (OGC)10, founded in 1994, is an international consensus organisation,

consisting of numerous commercial, governmental, non-profit and research bodies. The consortium

works to create royalty free, publicly available, open geospatial standards. OGC standards for reliably

exchanging geospatial data form a consistent foundation for developing and refining GIS software and

applications (Michaelis & Ames, 2017). The most widely adopted and popular of these is the Web Map

Service (WMS)11. Its most basic and always present request types are GetCapabilities (returning the

parameters as well as the available layers of a WMS) and GetMap (returning an actual map image by

specifying bounding box coordinates, map image size and format as well as the coordinate reference

system). PDOK utilises WMS, amongst other OGC protocols, to share its datasets to the public,

allowing for an easy, accurate and fast acquisition of imagery of any specific location.

9 https://www.openstreetmap.org/
10 https://www.ogc.org
11 https://www.ogc.org/standards/wms

15

Using the OpenStreetMap open source geographic database, the location of painted pedestrian zebra

crossings is determined. Data off OpenStreetMap is commonly acquired using Overpass turbo 12

(Figure 7), a web based data mining tool connected to the OpenStreetMap database. Using either an

XML query or one written in the custom Overpass query language, the user can extract specific map

features based on spatially explicit criteria. Image 3 shows the results of such a query for pedestrian

crossings in the Netherlands, within the Overpass web interface. The features’ coordinates can be

exported to multiple formats, like GeoJSON, GPX or KML.

FIGURE 7: OVERPASS TURBO EXAMPLE QUERY RESULTS

12 http://overpass-turbo.eu/

16

As the acquisition of the crosswalk coordinates is done as part of the overall model workflow, it is

deemed more optimal to do it in Python, thus creating a more streamlined workflow. This is easily

done using the overpy13 library, once the OpenStreetMaps tags for the desired features (here zebra

crossings) as well as the spatial extent of the query are known (Figure 8).

FIGURE 8: USING OVERPY TO COLLECT CROSSWALK COORDINATES

Using basic Python functionalities and mathematic operators, the collected coordinates are used to

derive a square bounding area around each pedestrian crossing (Figure 9). The computations are done

on the basis that the Earth can be approximated as a sphere, with its radius calculated using the

WGS84 ellipsoid at the centre latitude of each image.

Using each crosswalk’s latitude as taken from OSM, the approximate radius of the Earth can be

computed at the aforementioned latitude. The formulas used are based on the work of Jan Philip

Matuschek14.

FIGURE 9: CALCULATING IMAGE COORDINATES

Given a set of coordinates (latitude and longitude) and the calculated Earth radius, a bounding box

around the known points can be calculated. The halfside is used to specify the bounding box’s size (i.e.

the area captured in each photo). A halfside of 25 meters is chosen, meaning each image will depict a

50x50 meters area around each crosswalk point.

13 https://python-overpy.readthedocs.io/en/latest/
14 http://janmatuschek.de/LatitudeLongitudeBoundingCoordinates

17

Initially, a smaller halfside was used (10 meters).The resulting training datasets consisted of images

that were “zoomed in” around each crosswalk. In order to increase the presence of background

information and thus reduce possible false negatives when training the model, a larger halfside was

ultimately chosen. This would eventually result in increased labelling times (as many images would

end up including more than one zebra crosswalk that needed to be labelled) but the overall

performance of the model is expected to improve (Figure 10).

 FIGURE 10: INCREASING AREA COVERED IN EACH IMAGE SO AS TO INCREASE BACKGROUND INFORMATION

Once the corner coordinates of each image are known, they can be retrieved from the appropriate

PDOK web map service (WMS). The WMS was chosen over the web map tile service (WMTS), which is

also available and could have yielded faster download speeds. This is due to the fact that when

requesting a WMS, one can specify the spatial extent of the image using coordinates of a bounding

box, a functionality which is not available for a WMTS.

The sample URL used to query each image is:

https://service.pdok.nl/hwh/luchtfotorgb/wms/v1_0?request=GetMap&service=WMS&version=1.3.0&layers=Actueel_orth

o25&styles=default&crs=EPSG%3A4326&bbox=51.98182,4.35198,52.01110,4.38674&&width=2048&height=2048&format

=image%2Fpng

The URL includes information regarding the WMS and specific layer called, the coordinate system, the

bounding box that identifies the spatial extent of the requested image, as well as the width, height

and format of the resulting image.

Using the previously saved sets of bounding box coordinates and Python string methods, appropriate

URLs to call each image are created and stored. Using these, all needed images are downloaded. In

total, 928 images were downloaded, with each image’s dimensions being 640*640 pixels. The WMS

are downloaded in a compressed (JPG) format resulting in loss of quality compared to the source

resolution.

18

4.5 Collecting Delft imagery

In this part of the workflow, images that cover the entirety of Delft’s road network will be downloaded

off OSM, as crosswalks can only be found on roads. In order to do this a few things need to be taken

into account:

 As previously explained, images used for training covered a 2500 square meter area. It is

generally recommended that the training dataset and detection dataset should consist of

same-sized imagery. In order to maintain the same zoom level between the images of the two

datasets, so as to be consistent with the size and depiction of zebra crosswalks, each image of

the detection dataset should also cover a 2500 square meter area.

 The entirety of the Delft road network should be covered, with the exception of highways and

pedestrian-only paths, where crosswalks are not present.

 The bounding box coordinates for each image should be calculated. In order to be as accurate

as possible, the local projected coordinate system (Amersfoort / RD New, EPSG:28992) will be

used.

Using ArcGIS Pro, a grid comprised of 50*50 meter cells is generated over Delft’s boundary. Then,

using a road networks layer taken from OSM, the grid cells that intersect with Delft roads (excluding

highways and pedestrian paths) are selected (Figure 11).

FIGURE 11: DETERMINING THE LOCATION OF REQUIRED DELFT IMAGES

After successfully selecting the desired cells, their corner coordinates are calculated. These are then

used to request the corresponding images off PDOK’s WMS, in a similar fashion that the training

images were requested and downloaded. A total of 5186 images were downloaded and will be used

to pinpoint the location of zebra crossings in Delft.

19

4.6 Choosing an appropriate algorithm

The core of the proposed system will be the CNN algorithm that will be used to identify crosswalks.

Several different deep learning based object recognition methods have been widely used to make

predictions and classify objects in aerial imagery. This is largely attributed to the fact that recent

developments have allowed deep learning to move, in a relatively short amount of time, from

classifying digits to recognizing objects in complex natural images, using edges, corners and patterns

to represent abstract concepts (Bengio et. al. 2013).

Two general categories of deep learning object detection architectures can be identified: two-stage

and one-stage object detectors. The main difference between the two is that the two-stage detectors

will first generate a regional proposal, while one-step detectors skip this stage. Two-stage detectors

will thus split the task at hand into two parts: they first generate regions of interest and object

candidates and then they recognize the proposals and finalize classifications (Du et. al. 2020). One-

stage detectors carry out classification and regression operations in a single shot utilising dense and

regular sampling, while at the same time taking into account object locations, scales and aspect ratio

(Sultana et. al., 2020). As a result, and while this might be a slight generalization, two-stage detectors

boast a higher accuracy but significantly higher processing time, while one-stage detectors sacrifice

some degrees of accuracy for faster computation.

The system that this thesis aims to develop, i.e. the detection of zebra pedestrian crosswalks, would

ideally be able to perform efficiently in real-time. The reasoning behind this is that the user would be

able to detect crosswalks in an area they intend to navigate through before visiting it and in a relatively

short time. This is due to the fact that the urban environment is rapidly changing (for example, new

crosswalks might be painted), open source aerial imagery is constantly being updated and constantly

increasing computational capabilities allow for on-the-fly detection using cloud resources and

portable devices. Additionally, the proposed system could also be expanded to include real-time

detection using street-view imagery captured on the spot by the visually impaired individual. As a

result of the above, a one-stage detector is deemed optimal. It is important to note, however, that

this decision is not bound to greatly jeopardize the system’s accuracy. After evaluating the

performance and accuracy of different one-stage and two-stage detectors when trying to detect

vehicles and pedestrians , Carranza-García et. al. (2021) concluded that one-stage detectors are the

go-to option for real-time applications, being able to majorly outperform two-stage detectors in terms

of speed while exhibiting minimal losses in accuracy in most detected classes. Using one-stage

detectors Xu et. al. (2021) managed to develop a real-time forest fire detection system that performed

on par in terms of accuracy with two-stage detectors, when comparing using the same evaluation

metrics. Finally, working with zebra crosswalks, and after reviewing the performance and accuracy of

several different one- and two-step detectors, Tokmurzina (2020) utilised one-step detectors and

succeeded in efficiently detecting crosswalks but also evaluating the condition of the crosswalks’

paint.

The main tool to be utilised for the development of the proposed system is the You Only Look Once

(YOLO) CNN family of object detection architectures and models. Initially developed in 2015 by Joseph

Redmon et. al., it was the first algorithm of its kind that was able to perform all the necessary steps

for the object detection using a single neural network. Additionally, YOLO algorithms make a

significantly less number of background errors, as they see the entire picture during training and

testing, being better able to see the larger context of each input image (Redmon et. al., 2016). YOLO-

based models have been widely used to detect objects from aerial imagery with highly accurate and

20

time-efficient results (Radovic et. al., 2017. Li, 2022. Nepal & Eslamiat, 2022). YOLO based models have

been utilised to detect crosswalks in past projects (Dow et. al. 2020, Rubio et. al. 2020, Ryu et. al.

2021, Trinh et. al. 2022), further showcasing the algorithms popularity in relevant research initiatives.

The version to be used is YOLOv5 and is based upon and expanding on all previous YOLO versions.

Continuous improvements have made it achieve top performances on two official object detection

datasets: Pascal VOC (visual object classes) and Microsoft COCO (Xu et. al., 2021). It is the first YOLO

version to be written in Python instead of C, making the installation of a developed system that uses

Yolov5 easier, as Python is predominantly used to efficiency program internet of things and smart

devices (Thuan, 2021). YOLOv5 is developed on the PyTorch15 framework. The model is freely available

in its Github16 repository and is constantly updated.

As is true for most modern one-stage object detectors, YOLOv5 consists of three components: (a) a

backbone responsible for “seeing” the input imagery and extracting features (b) a neck responsible

for feature aggregation and (c) a head for the final object classification and bounding box generation

(Guo et. al.,2020).

The YOLOv5 model can be summarized as follows (Xu et. al., 2021) (Figure 12):

 Backbone: CSPDarknet

 Neck: PANet

 Head: YOLO layer

FIGURE 12: YOLOV5 ARCHITECTURE (XU ET. AL., 2021)

15 https://pytorch.org/
16 https://github.com/ultralytics/yolov5

21

The Yolov5 model used is pre-trained on the COCO17 dataset, an object recognition imagery dataset

containing 328 thousand images of 91 different object types. The images depict complex everyday

scenes containing common objects in their natural context (Lin et. al., 2014). This allows using pre-

trained weights when training a model to detect a new set of objects. Utilising knowledge acquired

from previous learning cycles is called transfer learning. It is a machine learning practice employed

when there is a limited supply of available training data, either due to them being expensive, rare or

altogether inaccessible (Weiss et. al., 2016). As part of this thesis’ developed system, the model will

be trained both from scratch but also using the pre-trained weights, aiming to evaluate the

effectiveness of transfer learning and to arrive at the optimal results.

17 https://cocodataset.org/

22

4.7 Image quality control, grouping and labeling

The previously collected images cover most of the Netherlands, ensuring that the training dataset

includes as many crosswalk images as possible. Different zebra crosswalk samples need to be included

in the training sample (with varying sizes, intensity, orientation, different levels of

illumination/shadows, imagery with only part of a crosswalk showing etc.) so that the model is well

trained and it can then properly identify all crosswalks in the study area. Imagery of crosswalks

partially blocked by large objects (i.e. traffic lights, trees, overpasses etc.) should also be included in

this training dataset.

Some of the downloaded images do not contain any crosswalks (Figure 13). This is either due to the

fact that the crosswalk in an image is completely obstructed by a large object, the lighting is especially

poor rendering the crosswalk imperceptible, or they are instances were crosswalk locations have been

erroneously added to the OSM database. These images will also be included in the training datasets,

as non-labeled background imagery.

FIGURE 13: IMAGES WITHOUT VISIBLE CROSSWALKS, USED AS BACKGROUND TRAINING IMAGERY

Of the 928 initially downloaded images, 76 do not contain crosswalks and will thus be used to help

train the model on background objects and prevent possible false positives. The rest of the images,

those in which one or more crosswalks can be successfully identified are randomly split between the

training, validation and test datasets at a roughly 70%/20%/10% split (Table 1). This is a commonly

used split, with various researchers using it when training an object detection model (How et. al.,

2021).

Training dataset 642 images (+76 background
images)

Used to train the YOLOv5 models
to detect zebra crosswalks

Validation dataset 160 images A subset of the training dataset
used to get an early estimate of
the skill of the model while fine
tuning

Test dataset 50 images Used to assess the performance
of a fully specified model

TABLE 1: SPLIT OF DATA INTO TRAINING AND VALIDATION DATASETS

The training dataset contains all the images that will be used to train the model, i.e. help calculate the

optimal weights and biases within the model’s neural network. The validation dataset is used to get

an unbiased first evaluation of the model’s efficiency. It can be used multiple times in combination

23

with the training dataset, so as to fine tune a model’s hyperparameters and re-train the model using

the previously calculated best weights and biases. The test dataset is a small part of the collected

imagery, used only once the model has been fine-tuned and re-trained, consisting of images that have

never been previously fed to the model. It thus provides the most reliable method to evaluate the fit

of the final model, without using images that have already been used in training or validation. Finally,

in cases where the validation dataset is quite large and there is a degree of uncertainty on the quality

of its annotations, it can act as a smaller, more meticulously curated imagery sample to more

accurately acquire the evaluation metrics. Preferably, the test dataset contains a wide variety of

depictions (in different sizes, orientations, contrast etc.) of the objects to be detected, so as to account

for all the possible variants.

The training, validation and test images that contain visible crosswalks are then annotated, creating a

bounding box around the crosswalk or crosswalks present in each image. This is done manually using

a standalone python based graphical image annotation tool, i.e. LabelImg18. Annotations for each

image are saved in a separate txt file, using a YOLO specific format. The following example (Figure 14)

represents the annotations for an image that contains four crosswalks (each corresponds to a different

row in the annotation file). For each image, the first number refers to the object class (here 0 for zebra

crosswalks) and the following four numbers are the x and y coordinates of the centre of each

annotation box as well as the height and width of each box (ranging from zero to one). The YOLO

format labels are always oriented with their sides parallel to the image’s dataset (i.e. they cannot be

rotated). As a result, they will not follow the outline of the crosswalks exactly.

 0 0.652344 0.419531 0.139063 0.160938

 0 0.233594 0.230469 0.173437 0.135937

 0 0.087500 0.650781 0.134375 0.154688

 0 0.521875 0.886719 0.156250 0.117188

When labelling the crosswalks it is important to be consistent. All visible crosswalks in each image

should be labelled. Additionally, each label must as closely encompass its corresponding crosswalk

and spaces between the bounding box and the crosswalk should be avoided as much as possible.

18 https://github.com/tzutalin/labelImg

FIGURE 14: EXAMPLE OF ANNOTATED IMAGE AND LABEL FORMAT

24

Images not containing crosswalks (background) do not need to be labelled and will be used as is when

training.

4.8 Implementing and training the model

Various models of the YOLOv5 family are available, with varying performance ratings and

computational demands. As of February 2022 there are five distinct YOLOv5 models. These are

YOLOv5n, YOLOv5s, YOLOv5m, YOLOv5l and YOLOv5x, named after nano, small, medium, large and

extra-large respectively. The models’ distinction lies on the fact that larger models are made up of

more parameters (i.e. weights and biases), have achieved a higher accuracy when trained on the same

dataset (COCO) but also exhibit longer inference (classification and localization) time per image. Table

2 sums up the differences between the five YOLOv5 models. At the time of training the models, the

nano model had not been yet available so it was not used, despite being included in the following

table as a reference.

Model size mAPval mAPval Speed Speed Speed parameters FLOPs

(pixels) 0.5:0.95 0.5 CPU b1 V100 b1 V100 b32 (M) @640 (B)

 (ms) (ms) (ms)

YOLOv5n 640 28 45.7 45 6.3 0.6 1.9 4.5

YOLOv5s 640 37.4 56.8 98 6.4 0.9 7.2 16.5

YOLOv5m 640 45.4 64.1 224 8.2 1.7 21.2 49

YOLOv5l 640 49 67.3 430 10.1 2.7 46.5 109.1

YOLOv5x 640 50.7 68.9 766 12.1 4.8 86.7 205.7

TABLE 2: COMPARING YOLOV5 MODELS (HTTPS://GITHUB.COM/ULTRALYTICS/YOLOV5)

 Size: Refers to the size of the images used for training and inference

 mAPval (0.5:0.95): Refers to the mean average precision (mAP), calculated when validating,

over different IoU (Intersection over Union) thresholds. Mean average precision is calculated

taking into account true positive, false negative and false positive predictions. These types of

predictions will be further explained later on. IoU is an evaluation metric that compares the

ground-truth bounding box (i.e. a hand-labeled bounding box) to the detected box of an object

and returns a score. The IoU is calculated by dividing the intersection area of the ground-truth

and detected bounding box with their union area, with its values ranging from 0 to 1 (Figure

15). The higher the score, the more accurate the model is in its detections. Setting a threshold

(i.e. an IoU value above which the detected object will be accepted) allows the model to

produce various different mAP values.

25

FIGURE 15: INTERSECTION OVER UNION

 mAPval (0.5): Refers to the calculated mAP when the IoU threshold is set at 0.5. This means

that when the ground-truth and detected bounding boxes overlap more than 50%, the

detection is accepted as valid. This mAP is calculated using the validation dataset.

 Speed values: These refer to inference times per image when using two different GPUs and a

CPU.

 Parameters: This refers to the number (in millions) of the sum of learnable elements for all

the filters in all the layers of each model.

 FLOPS: This refers to the Floating Point Operations per Second. The more FLOPS a model has,

the more complex it is, and thus more computationally demanding, but also most likely

accurate.

The model is downloaded and implemented, establishing the architecture of the network’s layer. This

is where the layers of the CNN are defined and properly stacked against each other within the model.

The described workflow is completed in Google Colab. After cloning the Github19 repository and

installing all the required libraries, the model is trained using the training dataset (718 images).

Two important parameters that need to be defined are the number of epochs and the batch size for

the training. It is firstly important to explain what gradient descent is. Gradient descent refers to the

iterative optimization algorithm that machine learning models use to arrive at optimal results.

Optimization in this case can be regarded as a searching process, through which the model learns

(Ruder, 2016). Gradient refers to the fact that the algorithm tries to calculate a slope of error, while

descent refers to the progression down this slope in search of a minimum level of error. As the

algorithm is iterative, the whole process happens over multiple distinct steps, with each step trying to

improve the previously calculated model parameters.

By epoch, we refer to the number of times the previously mentioned algorithm will go through the

entire training dataset. The number of epochs chosen is usually large, with the aim that the algorithm

runs until the error is minimized as much as possible. Choosing too few epochs can lead to poor

performance both on the training images, as well on other datasets (underfitting) (Brownlee, 2018).

However, choosing an overly large number of epochs can lead to unwanted results as well, meaning

19 https://github.com/ultralytics/yolov5

26

the model, while performing well on the training imagery dataset, it will perform poorly on other

images (overfitting)(Figure 16).

FIGURE 16: OVERFITTING, UNDERFITTING AND OPTIMUM TRAINING (SOURCE: TOWARDSDATASCIENCE.COM, SAGAR SHARMA)

Passing the entire imagery dataset through the iterative algorithm would not be computationally

efficient, or even possible. So the dataset is divided into smaller parts, or batches. By batch size, we

refer to the number of images in each such batch. Using the largest possible batch size is often

recommended, mostly in order to achieve faster training speed and to optimally utilise available

hardware resources. GPU cores are usually configured in layouts that favor powers of 2, and so the

batch size should also be a power of 2 to take full advantage of GPU processing (Radiuk, 2018).

Taking the above into consideration, the number of epochs was set at 300. This was determined after

several initial trial training sessions, starting with 50 epochs and gradually increasing their number.

Across different models, less than 200 epochs most often resulted in underfitting, indicated by the

model completing all epochs but still trying to optimise fitting. The YOLOv5 models by default will stop

training if several epochs have passed without any improvements, so even if 300 epochs would

sometimes result in overfitting, the model will stop running before all epochs are completed to

prevent that. A batch size of 16 was chosen, the largest possible allowed by the available computing

resources. A sample of a 16 image batch mosaic is seen below (Figure 17).

27

FIGURE 17: DATA TRAINING BATCH SAMPLE

For each training session, the default values of the model’s hyperparameters (parameters that, while

not being part of the resulting model, control the learning process) have been used. These

hyperparameters allow, among others, the rotation, rescaling or mosaicking of images so as to

artificially increase the imagery dataset size. Such data augmentation techniques can also be carried

out outside the model, as part of image pre-processing.

28

4.9 Evaluating initial results
To evaluate and compare the accuracy of different models, all YOLOv5 models were trained using the

available datasets and validated using the corresponding validation images. Table 3 lists the time

required for its model to be trained. All training sessions were carried out on Google Colab using a

Tesla T4 GPU20. Models where trained both from scratch (using no initial pre-trained weights) as well

as using the pre-trained (on the COCO dataset) weights.

Model Training type Training time

YOLOv5s From scratch 2h 37m

YOLOv5s Pre-trained 2h 8m

YOLOv5m From scratch 3h 1m

YOLOv5m Pre-trained 2h 17m

YOLOv5l From scratch 3h 12m

YOLOv5l Pre-trained 2h 49m

YOLOv5x From scratch 3h 46m

YOLOv5x Pre-trained 2h 56m

TABLE 3: MODEL TRAINING TIME

Larger models, that is, models with a larger number of parameters, take a longer time to train when

using the same training parameters and the same datasets, as is expected. Additionally, it can be seen

that, when training the same model from scratch, it takes more time than it does when training starts

with the pre-trained weights.

In order to evaluate the performance of each model several metrics will be used, acquired after

training and validating the models.

The basis of these metrics lies in the comparison between the predicted objects and the ground-truth.

A positive sample is one that has been identified as containing the desired object by the ground-truth,

while negative refers to samples for whom it has been identified that they do not contain the desired

object. The confusion matrix is a good starting point to group the different types of predictions done

by a model (Figure 18). These correspond to:

 True positives: Instances when the model correctly classified a positive sample as positive

 False negatives: Instances when the model incorrectly classified a positive sample as negative

 False positives: Instances when the model incorrectly classified a negative sample as positive

 True negatives: Instances when the model correctly identified a negative sample as negative

20 https://www.nvidia.com/en-us/data-center/tesla-t4/

29

FIGURE 18: CORRECT AND INCORRECT PREDICTIONS. A) TRUE POSITIVE B) FALSE NEGATIVE C) FALSE POSITIVE D) TRUE

NEGATIVE

Using all the collected predictions, a confusion matrix can be compiled and later used to calculate

need evaluation metrics.

PREDICTED

Positive Negative

GROUND-
TRUTH

Positive True Positive False Negative

Negative False Positive True Negative

FIGURE 19: CONFUSION MATRIX

30

For validating the models, binary classification accuracy assessment metrics will be employed, ones

that are widely used when assessing deep learning models (Maxwell, et. al., 2020). The metrics that

will be used to get an initial evaluation of the model’s accuracy are:

 Precision

 Recall

 Mean average precision (mAP)

Precision represents the ratio of the positive samples that are correctly classified (true positives) to

the total number of samples classified as positive (both true and false). Recall represents the ratio

between the correctly classified positive samples and the total number of actual positive samples (sum

of true positive and false negative predictions). Mean average precision is calculated using precision,

recall, IoU and average precision (AP). After plotting a precision recall curve (precision on the vertical

and recall on the horizontal axis) the AP represents the area under the curve. mAP refers to the

average of AP values, and has different values based on IoU thresholds, as explained in the previous

section of this report. In the case of all the three metrics used, higher values are optimal.

The precision, recall and mAP values for the different trained models presented below (Table 4) are

calculated automatically after the conclusion of training and validation. As a reminder, the number of

validation images, used by the model as the ground-truth reference, is 160.

Model mAP_0.5 mAP_0.5:0.95 Precision Recall
YOLOv5s 0.940 0.616 0.892 0.932
YOLOv5s 0.941 0.589 0.914 0.885
YOLOv5m 0.947 0.614 0.916 0.903
YOLOv5m 0.939 0.602 0.908 0.885
YOLOv5l 0.933 0.608 0.906 0.910
YOLOv5l 0.937 0.608 0.892 0.906
YOLOv5x 0.932 0.604 0.901 0.903
YOLOv5x 0.945 0.604 0.905 0.926

TABLE 4: MODEL EVALUATION METRICS, BEST ACHIEVED VALUES ARE IN BOLD

It is important to know that these values, while indicative of its model’s performance, are bound to

differ from run to run, even when using the same model, training and validation datasets as well as

the exact same parameters. This is due to the fact that YOLOv5 models use a stochastic algorithm to

determine the best possible weights during training, and as a result will result in slightly different

weights and biases in every run.

Nevertheless, the metrics are indicative of the models’ fit. Viewing these initial metrics, deviation

between the different models and runs aren’t exceptionally significant. However, the YOLOv5m (pre-

trained) managed to achieve (amongst these runs) the best results in 3 out of 4 metrics, while still

reaching a recall value comparable to the other models. Additionally, the training time (refer to Table

3) for it ranks amongst the fastest ones, making it efficient in terms of completion speed. This run’s

weights will thus be used as the baseline to further improve the accuracy of the developed model.

31

4.10 Data augmentation – Model fine-tuning

In an effort to improve the trained model’s accuracy, it is wise to employ data augmentation. This

refers to all the techniques that can be used to increase the amount of available training samples. In

an effort to fine-tune the trained model, the training imagery dataset will be augmented. This is done

by rotating each image three times, by 90, 180 and 270 degrees. The training dataset is thus tripled in

size, now consisting of 2154 images.

Using the weights resulting from the previous training session of the chosen model (pre-trained

YOLOv5m model) as initial weights, the model will be further trained using the augmented training

dataset. This time, one of the model’s hyperparameters, namely the learning rate, will be changed.

The learning rate controls how easily a model is changed in response to the calculated errors when

the model’s weights are updated. Larger learning rates cause the model to be updated faster, while

smaller ones cause the model to adapt more slowly. When fine-tuning a model that is already trained

on the desired dataset, using too large of a learning rate might cause it to diverge, with negative effects

on the model’s accuracy (Smith, 2018). A common practice is therefore to reduce the learning rate

when fine-tuning a model. The learning rate initially used when first training the YOLOv5m model was

0.01. For re-training with the augmented dataset, it is reduced to 0.001. Table 5 compares the

evaluation metrics for the two training sessions.

Model Training
time

mAP_0.5 mAP_0.5:0.95 Precision Recall

YOLOv5m -
pretrained

2h 16m 0.947 0.613 0.916 0.903

YOLOv5m -
augmented

5h 10m 0.951 0.601 0.914 0.928

TABLE 5: COMPARING ORIGINALLY TRAINED MODEL WITH FINE-TUNED MODEL THAT WAS TRAINED USING

AUGMENTED IMAGERY DATASET

As expected, fine-tuning the model with the augmented training image dataset (three times more

images) took more than twice the time it took to originally train the model. The mAP for a 0.5 IoU

threshold has improved, being the highest achieved amongst all trained models. The mAP for a 0.5 to

0.95 IoU threshold has dropped, with the precision also somewhat dropping. The value of recall has

been improved.

While they do provide an initial indication on the model’s fit and accuracy, these metrics are not

entirely unbiased, as the validation dataset has been previously shown to the model (during the first

training cycle). As a result, and now that the model is finalised, the test dataset will be used, in order

to get an unbiased evaluation of the model. Firstly, using the test dataset for both models, some

comparisons can be made.

32

Generally, the model that resulted from fine-tuning using the augmented dataset exhibits an

improved ability to detect zebra crosswalks. However, it also is more prone to falsely identifying

irrelevant (mostly linear) patterns as crosswalk. As is seen in Figure 20 , the images on the right (fine-

tuned model) clearly show that this model is more capable to detect crosswalks (like ones obstructed

by trees, or ones whose paint lines are faded) but will also sometimes misidentify linear features (in

this case a rooftop’s pattern) as crosswalks.

FIGURE 20: PREDICTIONS COMPARISON BETWEEN THE ORIGINAL (LEFT IMAGES) AND THE FINE-TUNED (RIGHT

IMAGES) MODELS.

33

Using confusion matrices, both of the models’ predictions on the test dataset can be compared to the

ground truth (Tables 6, 7). True negative, in this case, corresponds to every part of every image where

no object was detected. It is not useful in this context, and is thus ignored.

TABLE 6: PREDICTION ON TEST DATASET. FINE-TUNED MODEL, TRAINED WITH AUGMENTED TRAINING DATASET

TABLE 7: PREDICTION ON TEST DATASET. ORIGINAL MODEL, TRAINED WITHOUT AUGMENTED DATASET

The previous observations regarding differences between the models is further cemented by the

above matrices. The fine-tuned model, while prone to produce more false positives, it also more

competent in classifying true positives correctly. It is thus going to be used as the final model in order

to detect zebra crosswalks in the Delft area.

PREDICTED

Positive Negative

GROUND-
TRUTH

Positive True Positive: 92 False Negative: 5

Negative False Positive: 5 True Negative: -

PREDICTED

Positive Negative

GROUND-
TRUTH

Positive True Positive: 85 False Negative: 11

Negative False Positive: 3 True Negative: -

34

4.11 Crosswalk detection in Delft

The finalised model can now be used to detect zebra crosswalks in the study area, i.e. the Delft

Municipality. Inference time for each image is roughly 425 milliseconds. For the 5186 images of the

study area collected, this amounts to a total inference time of 36 minutes.

A total of 274 objects were identified as crosswalks, resulting in 274 label bounding boxes. Using the

resulting detection labels for each image, and knowing the exact coordinates of each image’s corners,

the locations of each detected object can be calculated. These are then plotted on a map above the

imagery of the study area. As a known dataset of the number of zebra crosswalks in Delft is not

available, it is quite hard to estimate the number of crosswalks the model failed to detect (false

negatives), even after manually inspecting each prediction. A query on OSM only returns 5 zebra

crosswalk locations in Delft (Figure 21). Manually counting the crosswalks across the whole of the Delft

area is not a cost-effective approach and would be liable to human errors.

FIGURE 21: DELFT CROSSWALK LOCATIONS PRESENT IN OSM DATASET

A way to roughly estimate the number of erroneous predictions is to apply a buffer on the locations

of detected crosswalks, using street width. The OSM roads network layer, previously used, contains

such information. Using ArcGIS Pro, such a buffer is applied. Crosswalk locations that fall outside the

buffer (that is, their distance to the closest road segment is more than the road’s width) are considered

erroneous. Of the 274 predictions, 114 are discarded in that manner.

35

Comparing the accepted and discarded predictions (based on the aforementioned buffer) using their

respective mean precision confidence scores (Figures 22, 23) can further confirm that the discarded

predictions are less likely to be true positives.

FIGURE 22: CONFIDENCE SCORE DISTRIBUTION – ACCEPTED PREDICTIONS

FIGURE 23: CONFIDENCE SCORE DISTRIBUTION – REJECTED PREDICTIONS

36

This initial filtering of the predictions provides a first estimate on the results. However, and since the

number of predictions is not exceedingly large, a manual inspection of them can provide further

insights.

Table 8 summarizes the findings of such a manual inspection. Looking at true and false positives in

each group, it is made obvious that the buffering post-processing greatly improves the models

findings. This also emphasizes the model’s tendency to produce false positives when looking at images

outside the road network. This could be improved via two approaches. Firstly, the detection dataset

could be pre-processed before feeding it to the model so as to filter out non-road areas. Secondly,

when training the model, background imagery of areas outside the road network could be used as a

means to train against such false positives. While background images have been used to that end,

most of them depicted areas on or closely neighboring the road network, mostly aiming at reducing

false positives connected to non-zebra paint patterns on the road.

Total
True

Positives
False

Positives
Total predictions 274 140 134

Predictions accepted after road
buffer

160 136 24

Predictions discarded after road
buffer

114 4 110

TABLE 8: GROUPING PREDICTIONS BASED ON ROADS BUFFER

A closer look at the false positive predictions (Figure 24) helps identify the objects that are more likely

to be misidentified as zebra crosswalks. Of the 134 total false positives, the vast majority (111) where

linear patterns on man-made structures (rows of windows on the sides of multi-storied buildings, roof

tiles, solar panels etc.), some were other road markings (13) and the rest varied. This could act as an

indication on how to curate a sample of true negatives with the intention to further improve training

when working with zebra crosswalks.

37

FIGURE 24: RECURRING FALSE POSITIVE PREDICTIONS

Lastly, it is important to note that, using the proposed workflow, there is a possibility that a certain

crosswalk is detected more than once. For example, if a crosswalk lies on the border of two of the

images used for detection, it would often be detected in both of them. If this proposed system was

about counting objects, this would cause issues. However, since the position of the crosswalks is what

matters for navigational purposes, the detection of the same crosswalks multiple times across

different images does not hinder this system’s ultimate purposes. If, however, this issue needed to be

addressed in the future (for example, if the proposed system was to be used to monitor the condition

of each crosswalk paint markings), a tracker algorithm could be implemented alongside the YOLOv5

model. This has been previously done (Wojke et. al., 2017) but its effectiveness when tracking and

sorting zebra crosswalks would have to be checked.

38

4.12 Testing model with different spatial resolution imagery

The trained model’s accuracy will lastly be tested using imagery of a different resolution than the

images used to train it. To this end, the latest raw, maximum resolution imagery of Delft, taken from

PDOK will be used. For the purpose of this comparison, an image covering an area of 1x1 km is

downloaded off PDOK at its source spatial resolution, that of 7.5 cm. The image is a TIFF21 file, has a

height and width of 12500 pixels and a size of 450 MB, significantly larger than the WMS images used

for training and initial crosswalk detection.

Inference time for this single image is 20 min. The same area can be covered by 400 WMS images (as

each of the used ones covers an area of 2500 square meters). Inference time for 400 WMS images is

roughly 3 min, an exceedingly faster time to cover the same area, when compared to using the high

resolution TIFF image.

Figure shows the comparison between the two different sets of predictions for the same area.

Predictions using the high resolution TIFF (numbering 132) are far more than the ones resulting when

using same size and resolution images for detection as were used to train the model (numbering 27).

Most of the excess predictions are obviously erroneous, appearing in areas where no roads are

present.

FIGURE 25: PREDICTIONS USING IMAGES OF A DIFFERENT RESOLUTION

21 https://www.ogc.org/standards/geotiff

39

A closer look at a part of the considered area (Figure 26), where many crosswalks are present in a

close proximity, can also provide some useful insights regarding the comparison in question. While

detection on the higher resolution image might result in more false positives, it can also be seen that

some of the crosswalks that were not identified using the coarser resolution WMS images have been

successfully pinpointed using the high resolution TIFF image. This, as well as the increased number of

false positives in the TIFF detection, could indicate that the combined effect of higher spatial

resolution and image quality can result in linear objects (crosswalks and otherwise) appearing sharper

in the image, and as a result be more easily identified (correctly or erroneously) as zebra crosswalks.

These findings suggest that a multi-resolution training as well as detection dataset could be optimal,

a direction that would however majorly increase processing times and computational demands.

FIGURE 26: TRUE POSITIVE CROSSWALK DETECTION DIFFERENCES USING DETECTION IMAGES OF DIFFERENT

RESOLUTIONS

40

5 Discussion and conclusion

This final section will aim to summarize the results and findings of the system development and

analysis. Concluding remarks will be made in accordance to the main question and sub-questions that

established the scope of this thesis. Final remarks will be made regarding the overall evaluation of the

proposed workflow and system, possible shortcomings and future improvements, as well as the

benefits that arise for visually impaired individuals but also communities in general.

 Starting with the sub-questions, the individual parts of the research will be summarized with the aim

of finally arriving to the main question and evaluating the extent to which it has been sufficiently

addressed.

 Sub-question 1: Which of the existing CNN deep learning algorithms are suitable for identifying

crosswalks?

This question has been answered mainly through literature review on deep learning algorithms used

for object detection in general, as well as looking at completed research initiatives and developed

systems that focused on object detection utilising aerial imagery. Taking into account the benefits of

developing a near real-time crosswalk detection system for navigational purposes, one-stage

detectors were deemed optimal. Using a two-stage detector could possibly result in increased

accuracy, but computational demands and detection speed would make such a system unfeasible for

a real-time application. Further investigating real-time object detection studies, the You Only Look

Once (YOLO) algorithm was found to be constantly used and compared on par with other one-step

object detectors both in terms of accuracy and in terms of speed. Additionally, it yielded satisfactory

results even compared to two-step detectors. Amongst the different YOLO versions, YOLOv5 was

chosen for the development of the zebra crosswalk detection system, being the latest version of the

YOLO family. YOLOv5 (as it is or with modifications) is being widely used and its developers are

constantly improving on it and releasing updated versions.

 Sub-question 2: What methods can be used to evaluate the model’s efficiency, in terms of

accuracy and performance speed, and what is the impact of its parameters and components

on the results?

The YOLOv5 family includes several different models, each with a different number of parameters and

complexity, naturally resulting in varying computational demands for each one. Five different YOLOv5

models were trained using the same training dataset, both from scratch as well as using weights

resulting from pre-trained version of the model with the COCO dataset. Using recall, precision and

mean average precision (mAP) as evaluation metrics, the models’ accuracy when detecting zebra

crosswalks was evaluated. All models were trained using the same hardware setup (trained using a

cloud GPU provided by Google Colab), allowing for comparisons to be made regarding training speed

and computational demands. The model that was chosen, i.e. pre-trained YOLOv5m, scored highly on

the evaluation metrics and was also one of the fastest. The effect of the increased number of

parameters and computing power of larger and more complex models did not result in countable

improvements on the model’s accuracy for the used dataset. After the chosen model was trained using

the original training dataset, the resulting weights were used as a basis to fine-tune it using an

augmented training dataset, with the aim of increasing the number of zebra crosswalks that the model

could learn from. The final model was found to show a slight improvement in its ability to detect less

visible or semi-obstructed crosswalks.

41

 Sub-question 3: How does using input imagery of different spatial resolutions affect the

created workflow’s efficiency?

This question was answered by utilising the final trained model to detect crosswalks in a sub-area of

Delft. Detection was carried out using: (a) images of the same spatial resolution as the images used

for training as well as detecting crosswalks throughout the entirety of delft and (b) a single TIFF image

of a higher spatial resolution and quality of the same area. The TIFF image was significantly larger than

the total size of the WMS-derived images, resulting in a significantly increased detection time.

Detection on the TIFF image resulted in exceptionally larger amount of predictions, most of which,

after visual inspections, were discovered to be false positives. This could be attributed to both the

better image quality of TIFF images compared to JPGs, but also to the higher spatial resolution, as

linear objects that could be confused for crosswalks appear sharper in the TIFF image. However, some

crosswalks that were not previously identified (true positives), were detected using the TIFF image.

These facts clearly illustrate the effects of using images of different spatial resolution and quality in

the detection process (while maintaining the same training imagery dataset) .

 Main question: How effectively can pedestrian crosswalks be detected in high spatial

resolution imagery using convolutional neural networks?

Overall, the proposed workflow showcased that pedestrian zebra crosswalks can be detected using a

CNN-based model and aerial imagery. Using the final model with the test imagery dataset, 92 of 97

crosswalks were correctly detected, with 5 instances of objects falsely identified as crosswalks. When

trying to detect crosswalks on the entirety of Delft, the ratio of false positives to true positives greatly

increased, due to the fact that the imagery dataset used to cover Delft included images that contained

background information that the model was not sufficiently trained to reject. Filtering predictions

using a buffer based on the Delft road network (discarding predictions that occurred in locations too

far off the roads) a large amount of erroneous predictions were easily discarded. These findings point

to a need for choosing more divergent background images to train the model against false positives,

or more meticulously curate the detection dataset so that its images depict as less of the non-road

areas as possible. Finally, using the trained model to detect crosswalks on a TIFF image of a higher

spatial resolution compared to the images used for training the model (7.5 cm compared to 25 cm),

resulted in a significant increase in the number of predictions. Further experimentation is needed to

determine the individual effects of: (a) the increase in spatial resolution and (b) the increase in image

quality when detecting crosswalks on uncompressed (TIFF) and compressed (images). Using high

resolution images as the training dataset, while time consuming and reliant on the availability of such

imagery, could also be an alternative approach on the proposed system, while also helping to

investigate the effect of training dataset resolution on the quality and quantity of the resulting

predictions.

42

After addressing the individual research questions, some final points can be discussed. In the proposed

system, YOLOv5, a widely utilised and state of the art one-stage object detector, was used to detect

pedestrian zebra crosswalks. The aim of the developed system is to improve the independent

navigational capabilities of visually impaired people. In terms of processing time, using YOLOv5

resulted in high inference speeds, making the model suitable for near real-time applications. In terms

of accuracy, the final model (trained with an augmented training dataset) performed well on a small

test sample of images, and it also managed to successfully pinpoint the location of numerous

crosswalks in the Delft study area. A weakness the model exhibited is its tendency to misidentify non-

crosswalk linear objects as crosswalks, resulting in a large number of false positive predictions. This

issue was found to be caused by the inclusion (in the detection dataset) of imagery that not only

explicitly depicted roads, but also included wider urban and sub-urban regions where objects like

windows and solar panels caused the model’s confusion. This can be solved by filtering the predicted

crosswalk locations using a road buffer (which was done as part of this research), by pre-processing

the detection dataset to filter out non-road areas or by including appropriate images as background

true negative samples to the training dataset. The trained model was also tested with imagery of

higher spatial resolution and image quality than the ones used to train it. While some additional

crosswalk locations were identified this way, predictions on the high resolution image included a

dramatically increased number of false positives. This was attributed to the sharper depiction of

background linear objects due to the higher image quality and spatial resolution, making them more

susceptible to misidentification. Training a new model with high resolution imagery with an

appropriately sized true negative sample would possibly help reduce the number of erroneous

predictions. Such an approach would however greatly increase computational demands and make the

designed system unsuitable for real-time detection.

An obvious expansion to this research would be training different types of algorithms using the same

imagery dataset, and comparing their ability to detect crosswalks with that of YOLOv5, both in terms

of accuracy but also computational performance. Time constraints caused by the nature of this

research (a thesis with predefined deadlines), the need to get acquainted with the theoretical

framework of the problem, as well as by limited computational resources, did not make the training

of different CNN models feasible. Future research could especially benefit from focusing on training

different one-stage detectors, aiming to maximize accuracy while minimising processing time as much

as possible.

The detection workflow is intended to act as a supplementary aid for the navigation of visually

impaired people. Used in conjunction with already existing navigational aids, the locations of

predicted crosswalks can help adjust the route of a blind person and ensure that they can cross roads

with greater safety. The short inference times required to make the model work could, if properly

integrated within an application, allow a user to detect crosswalks in a desired area prior to their visit

there. Even if the model’s accuracy were to drop in a new study area (especially in one outside the

Netherlands where zebra crosswalk patterns might be different), the relatively short time required to

fine-tune the model could make it easily scalable to other regions. This, however, is highly dependent

on the existence of freely available aerial imagery of a relatively good spatial resolution in each region.

This model is ultimately not aimed to replace much-needed already implemented navigational aids

for blind people (e.g. audio signals at traffic lights, detailed audio GPS navigation apps) but rather

enhance them.

Finally, the designed system could benefit applications outside navigation. Detecting crosswalks, or

even expanding the model’s capabilities to be able to detect various other road markings, could help

public officials track the condition of such painted patterns throughout an area’s road network. This

43

would drastically reduce maintenance costs, as it would, if proven to be accurate, render on-site visual

inspection of road markings by field workers obsolete. If this system was to be used in this manner,

however, it would have to be enhanced with the ability to deal with duplicate predictions, making sure

that each crosswalk or road marking’s location is registered once. This has been deemed obsolete as

part of this navigation-related research, but would certainly help officials monitor the condition of

road markings in a more structured and efficient way.

44

6 Time planning

The following time planning schedule covers the weeks following the submission of the ERP.

Week Start Date End Date Work load Planned meetings

 Midterm phase

42 18/10/2021 24/10/2021
Defining crosswalk specifications in study area
and collecting training sample Meeting with Azar*

43 25/10/2021 31/10/2021 Choosing CNN algorithm Meeting with Azar*

44 1/11/2021 7/11/2021 Importing and preprocessing imagery datasets Meeting with Azar*

45 8/11/2021 14/11/2021 Implementing and training CNN Meeting with Azar*

46 15/11/2021 21/11/2021 Testing CNN and collecting initial results Meeting with Azar*

47 22/11/2021 28/11/2021 Compiling findings into a midterm report Meeting with Azar*

48 29/11/2021 5/12/2021
Finalizing and submitting midterm report
(submission on 2/12/2021) Meeting with Azar*

49 6/12/2021 12/12/2021
Preparing midterm presentation (on
9/12/2021) Meeting with Azar*

 Final Thesis phase

50 13/12/2021 19/12/2021
Reflecting on midterm presentation and
incorporating feedback Meeting with Azar*

51 20/12/2021 26/12/2021 Optimizing model and re-running Meeting with Azar*

52 27/12/2021 2/1/2022 Winter
Break 1 3/1/2022 9/1/2022

2 10/1/2022 16/1/2022
Choosing and collecting secondary imagery
dataset Meeting with Azar*

3 17/1/2022 23/1/2022
Testing model with different spatial resolution
imagery dataset Meeting with Azar*

4 24/1/2022 30/1/2022 Summing up results and findings Meeting with Azar*

5 31/1/2022 6/2/2022 Evaluating model efficiency Meeting with Azar*

6 7/2/2022 13/2/2022 Enhancing theoretical framework and literature Meeting with Azar*

7 14/2/2022 20/2/2022 Compiling Final Thesis report Meeting with Azar*

8 21/2/2022 27/2/2022
Refining thesis report and arriving at
conclusions Meeting with Azar*

9 28/2/2022 6/3/2022
Finalizing and submitting final thesis report
(submission on 4/3/2022) Meeting with Azar*

10 7/3/2022 13/3/2022

Preparing for
Thesis Defence

(1/4/2022)

Numerous meetings
with Azar

depending on number of
issues to be addressed

11 14/3/2022 20/3/2022

12 21/3/2022 27/3/2022

13 28/3/2022 3/4/2022

* Weekly meetings scheduled every Thursday. More might be added if needed and meeting day might
be adjusted depending on both the student's and supervisor's schedule.

45

7 References

Ahmetovic, D., Coughlan, J. M., Manduchi, R., & Mascetti, S. (2015). Zebra crossing spotter:

Automatic population of spatial databases for increased safety of blind travelers. ASSETS 2015 -

Proceedings of the 17th International ACM SIGACCESS Conference on Computers and Accessibility,

251–258. https://doi.org/10.1145/2700648.2809847

Bengio, Y., Courville, A., & Vincent, P. (2013). Representation learning: A review and new

perspectives. IEEE Transactions on Pattern Analysis and Machine Intelligence, 35(8), 1798–1828.

https://doi.org/10.1109/TPAMI.2013.50

Berriel, R. F., Lopes, A. T., De Souza, A. F., & Oliveira-Santos, T. (2017). Deep Learning-Based

Large-Scale Automatic Satellite Crosswalk Classification. IEEE Geoscience and Remote Sensing Letters,

14(9), 1513–1517. https://doi.org/10.1109/LGRS.2017.2719863

Bhargava, B., Angin, P., & Duan, L. (2011). A Mobile-Cloud Pedestrian Crossing Guide for the

Blind. International Conference on Advances in Computing & Communication, 1–5.

Brownlee, J. (2018). What is the Difference between a Batch and an Epoch in a Neural

Network? Machine Learning Mastery, July, 3–4. https://machinelearningmastery.com/difference-

between-a-batch-and-an-epoch/

Carranza-García, M., Torres-Mateo, J., Lara-Benítez, P., & García-Gutiérrez, J. (2021). On the

performance of one-stage and two-stage object detectors in autonomous vehicles using camera

data. In Remote Sensing (Vol. 13, Issue 1, pp. 1–23). https://doi.org/10.3390/rs13010089

Chen, J. (2021). Basics of Convolutional Neural Networks

Chen, S. H., Jakeman, A. J., & Norton, J. P. (2008). Artificial Intelligence techniques: An

introduction to their use for modelling environmental systems. Mathematics and Computers in

Simulation, 78(2–3), 379–400. https://doi.org/10.1016/j.matcom.2008.01.028

Dow, C. R., Ngo, H. H., Lee, L. H., Lai, P. Y., Wang, K. C., & Bui, V. T. (2020). A crosswalk

pedestrian recognition system by using deep learning and zebra-crossing recognition techniques. In

Software - Practice and Experience (Vol. 50, Issue 5, pp. 630–644). https://doi.org/10.1002/spe.2742

Du, L., Zhang, R., & Wang, X. (2020). Overview of two-stage object detection algorithms. In

Journal of Physics: Conference Series (Vol. 1544, No. 1, p. 012033). IOP Publishing.

Evangeline, J. J. (2014). Guide Systems for the Blind Pedestrian Positioning and Artificial

Vision. 1(3), 42–44.

Garunović, N., Bogdanović, V., Simić, J. M., Kalamanda, G., & Ivanović, B. (2020). The influence

of the construction of raised pedestrian crossing on traffic conditions on urban segments. Gradjevinar,

72(8), 681–691. https://doi.org/10.14256/JCE.2705.2019

Giudice, N. A., & Legge, G. E. (2008). Blind Navigation and the Role of Technology. The

Engineering Handbook of Smart Technology for Aging, Disability, and Independence, 479–500.

https://doi.org/10.1002/9780470379424.ch25

https://doi.org/10.1109/TPAMI.2013.50
https://doi.org/10.1109/LGRS.2017.2719863
https://machinelearningmastery.com/difference-between-a-batch-and-an-epoch/
https://machinelearningmastery.com/difference-between-a-batch-and-an-epoch/
https://doi.org/10.3390/rs13010089
https://doi.org/10.1016/j.matcom.2008.01.028
https://doi.org/10.1002/spe.2742
https://doi.org/10.14256/JCE.2705.2019
https://doi.org/10.1002/9780470379424.ch25

46

Guo, Jianyuan & Han, Kai & Wang, Yunhe & Zhang, Chao & Yang, Zhaohui & Wu, Han &

Chen, Xinghao & Xu, Chang. (2020). Hit-Detector: Hierarchical Trinity Architecture Search for Object

Detection. 11402-11411. 10.1109/CVPR42600.2020.01142.

Hakimpoor, H., Arshad, K.A., Tat, H.H., Khani, N., & Rahmandoust, M. (2011). Artificial Neural

Networks' Applications in Management.

Hidaka, A., & Kurita, T. (2017). Consecutive Dimensionality Reduction by Canonical

Correlation Analysis for Visualization of Convolutional Neural Networks. Proceedings of the ISCIE

International Symposium on Stochastic Systems Theory and Its Applications, 2017(0), 160–167.

https://doi.org/10.5687/sss.2017.160

How, Y. C., Ab. Nasir, A. F., Muhammad, K. F. ., P. P. Abdul Majeed, A., Mohd Razman, M. A.,

& Zakaria, M. A. (2022). Glove Defect Detection Via YOLO V5. MEKATRONIKA, 3(2), 25–30.

https://doi.org/10.15282/mekatronika.v3i2.7342

https://wiki.openstreetmap.org/wiki/Stats

https://www.ogc.org/about

Janiesch, C., Zschech, P. & Heinrich, K. (2021). Machine learning and deep learning. Electron

Markets 31, 685–695 (2021). https://doi.org/10.1007/s12525-021-00475-2

Jokar Arsanjani, J., Zipf, A., Mooney, P., & Helbich, M. (2015). An Introduction to

OpenStreetMap in Geographic Information Science: Experiences, Research, and Applications.

Lecture Notes in Geoinformation and Cartography, 0(9783319142791), 1–15.

https://doi.org/10.1007/978-3-319-14280-7_1

Jordan, M. I., & Mitchell, T. M. (2015). Machine learning: Trends, perspectives, and prospects.

Science, 349(6245), 255–260. https://doi.org/10.1126/science.aaa8415

Kammoun, S., Jouffrais, C., Guerreiro, T., Nicolau, H., & Jorge, J. (2012a). Guiding Blind

People with Haptic Feedback (regular paper). Frontiers in Accessibility for Pervasive Computing

(Pervasive), Newcastle, UK, 18/06/2012-22/06/2012.

Kammoun, S., Parseihian, G., Gutierrez, O., Brilhault, A., Serpa, A., Raynal, M., Oriola, B.,

MacÉ, M. J. M., Auvray, M., Denis, M., Thorpe, S. J., Truillet, P., Katz, B. F. G., & Jouffrais, C. (2012b).

Navigation and space perception assistance for the visually impaired: The NAVIG project. Irbm,

33(2), 182–189. https://doi.org/10.1016/j.irbm.2012.01.009

Li, Z. (2022). Road Aerial Object Detection Based on Improved {YOLOv}5. Journal of Physics:

Conference Series, 2171(1), 12039. https://doi.org/10.1088/1742-6596/2171/1/012039

Lin, T.-Y., Maire, M., Belongie, S., Hays, J., Perona, P., Ramanan, D., Dollár, P., & Zitnick, C. L.

(2014). Microsoft COCO: Common Objects in Context. In D. Fleet, T. Pajdla, B. Schiele, & T. Tuytelaars

(Eds.), Computer Vision -- ECCV 2014 (pp. 740–755). Springer International Publishing.

Manduchi, R. (2010). Watch Your Head, Mind Your Step: Mobility-Related Accidents

Experienced by People with Visual Impairment. 1–11. http://www.soe.ucsc.edu/research/technical-

reports/UCSC-SOE-10-24

Maxwell, A. E., Bester, M. S., Guillen, L. A., Ramezan, C. A., Carpinello, D. J., Fan, Y., Hartley,

F. M., Maynard, S. M., & Pyron, J. L. (2020). Semantic segmentation deep learning for extracting

https://doi.org/10.5687/sss.2017.160
https://wiki.openstreetmap.org/wiki/Stats
https://www.ogc.org/about
https://doi.org/10.1007/s12525-021-00475-2
https://doi.org/10.1126/science.aaa8415
https://doi.org/10.1016/j.irbm.2012.01.009
https://doi.org/10.1088/1742-6596/2171/1/012039
http://www.soe.ucsc.edu/research/technical-reports/UCSC-SOE-10-24
http://www.soe.ucsc.edu/research/technical-reports/UCSC-SOE-10-24

47

surface mine extents from historic topographic maps. In Remote Sensing (Vol. 12, Issue 24, pp. 1–

25). https://doi.org/10.3390/rs12244145

Mead, J., McGrane, A., Zegeer, C., & Thomas, L. (2014). Evaluation of Bicycle-Related Roadway

Measures : A Summary of Available Research. Federal Highway Administration,DTFH61-11-H-00024,

February, 1–126.

Meliones, A., & Filios, C. (2016). Blind helper: A pedestrian navigation system for blinds and

visually impaired. ACM International Conference Proceeding Series, 29-June-2016, 1–4.

https://doi.org/10.1145/2910674.2910721

Michaelis, C. D., & Ames, D. P. (2017). Encyclopedia of GIS. Encyclopedia of GIS, December.

https://doi.org/10.1007/978-3-319-17885-1

Monsere, C. M., Figliozzi, M., Razmpa, A., & Hazel, D. R. (2016). PDXScholar Safety

Effectiveness of Pedestrian Crossing Enhancements Follow this and additional works at :

http://pdxscholar.library.pdx.edu/cengin_fac Final Report. Transportation Research and Education

Center.

Nawer, A., Hossain, F., & Anwar, G. (2015). Ultrasonic Navigation System for the visually

impaired & blind pedestrians. American Journal of Engineering Research (AJER), 4(2), 13–18.

Nepal, U., & Eslamiat, H. (2022). Comparing YOLOv3, YOLOv4 and YOLOv5 for Autonomous

Landing Spot Detection in Faulty UAVs. In Sensors (Vol. 22, Issue 2).

https://doi.org/10.3390/s22020464

O'Shea, Keiron & Nash, Ryan. (2015). An Introduction to Convolutional Neural Networks. ArXiv

e-prints.

OSM

Radiuk, P. M. (2018). Impact of Training Set Batch Size on the Performance of Convolutional

Neural Networks for Diverse Datasets. Information Technology and Management Science, 20(1), 20–

24. https://doi.org/10.1515/itms-2017-0003

Radovic, M., Adarkwa, O., & Wang, Q. (2017). Object recognition in aerial images using

convolutional neural networks. In Journal of Imaging (Vol. 3, Issue 2).

https://doi.org/10.3390/jimaging3020021

Rätsch, G. (2004). A brief introduction into machine learning. 21st Chaos Communication
Congress, 1–6. http://www.mva.me/educational/hci/read/ML_reading.pdf

Redmon, J., Divvala, S., Girshick, R. and Farhadi, A., 2016. You only look once: Unified, real-

time object detection. In Proceedings of the IEEE conference on computer vision and pattern

recognition (pp. 779-788).

Ruder, S. (2016). An overview of gradient descent optimization algorithms. arXiv preprint

arXiv:1609.04747.

https://doi.org/10.3390/rs12244145
https://doi.org/10.1145/2910674.2910721
https://doi.org/10.3390/s22020464
https://doi.org/10.1515/itms-2017-0003
https://doi.org/10.3390/jimaging3020021
http://www.mva.me/educational/hci/read/ML_reading.pdf

48

Rúbio, T. R. P. M., Cruz, J. A., Jacob, J., Garrido, D., Cardoso, H. L., Silva, D., & Rodrigues, R.

(2020). A Semi-automatic Object Identification Technique Combining Computer Vision and Deep

Learning for the Crosswalk Detection Problem. In C. Analide, P. Novais, D. Camacho, & H. Yin (Eds.),

Intelligent Data Engineering and Automated Learning -- IDEAL 2020 (pp. 602–609). Springer

International Publishing.

Ryu, S.-E., & Chung, K.-Y. (2021). Detection Model of Occluded Object Based on YOLO Using

Hard-Example Mining and Augmentation Policy Optimization. Applied Sciences, 11(15).

https://doi.org/10.3390/app11157093

Schroeder, B. (2008). A Behavior-Based Methodology for Evaluating Pedestrian-Vehicle

Interaction at Crosswalks.

Sharma, Ayushi. (2013). Artificial Neural Networks: Applications In Management. IOSR Journal

of Business and Management. 12. 32-40. 10.9790/487X-1253240.

Smith, L. N. (2018). A disciplined approach to neural network hyper-parameters: I. Learning

rate, batch size, momentum, and weight decay.

Sultana, F., Sufian, A., & Dutta, P. (2020). A review of object detection models based on

convolutional neural network. Advances in Intelligent Systems and Computing, 1157, 1–16.

https://doi.org/10.1007/978-981-15-4288-6_1

Thuan, D. (2021). Evolution of Yolo Algorithm and Yolov5: the State-of-the-Art Object

Detection Algorithm. 61.

Tokmurzina, D. (2020). Road marking condition monitoring and classification using deep

learning for city of Helsinki. (p. 60+6) [Master’s thesis, Aalto University. School of Science].

http://urn.fi/URN:NBN:fi:aalto-202011016271

Trinh, T. D., Nguyen, T. P., Le, T. N. D., Van Nguyen, N., Debnath, N. C., & Nguyen, V. D. (2022).

Robust Crosswalk Detection Using Deep Learning Approach. In A. E. Hassanien, V. Snášel, K.-C. Chang,

A. Darwish, & T. Gaber (Eds.), Proceedings of the International Conference on Advanced Intelligent

Systems and Informatics 2021 (pp. 62–69). Springer International Publishing.

Tümen, V., & Ergen, B. (2020). Intersections and crosswalk detection using deep learning and

image processing techniques. Physica A: Statistical Mechanics and Its Applications, 543, 123510.

https://doi.org/10.1016/j.physa.2019.123510

Velázquez R, Pissaloux E, Rodrigo P, Carrasco M, Giannoccaro NI, Lay-Ekuakille A.(2018). An

Outdoor Navigation System for Blind Pedestrians Using GPS and Tactile-Foot Feedback. Applied

Sciences. 2018; 8(4):578. https://doi.org/10.3390/app8040578

Wang, H., & Jiao, K. (2021). Blind guidance system based on image recognition and

convolutional neural network. IOP Conference Series: Earth and Environmental Science, 769(4).

https://doi.org/10.1088/1755-1315/769/4/042043

Weiss, K., Khoshgoftaar, T.M. & Wang, D. (2016). A survey of transfer learning. J Big Data 3, 9

(2016). https://doi.org/10.1186/s40537-016-0043-6

Wojke, N., Bewley, A., & Paulus, D. (2017). Simple online and realtime tracking with a deep

association metric. 3645–3649. https://doi.org/10.1109/ICIP.2017.8296962

https://doi.org/10.3390/app11157093
https://doi.org/10.1007/978-981-15-4288-6_1
http://urn.fi/URN:NBN:fi:aalto-202011016271
https://doi.org/10.3390/app8040578
https://doi.org/10.1186/s40537-016-0043-6
https://doi.org/10.1109/ICIP.2017.8296962

49

World Health Organization. https://www.who.int/news-room/fact-sheets/detail/blindness-

and-visual-impairment

Wuthnow, M., Stafford, M., & Shih, J. (2009). IMS: A new model for blending applications. In

IMS: A New Model for Blending Applications.

Xu, R., Lin, H., Lu, K., Cao, L., & Liu, Y. (2021). A forest fire detection system based on ensemble

learning. Forests, 12(2), 1–17. https://doi.org/10.3390/f12020217

Yamashita, R., Nishio, M., Do, R. K. G., & Togashi, K. (2018). Convolutional neural networks:

an overview and application in radiology. In Insights into Imaging (Vol. 9, Issue 4, pp. 611–629).

https://doi.org/10.1007/s13244-018-0639-9

https://www.who.int/news-room/fact-sheets/detail/blindness-and-visual-impairment
https://www.who.int/news-room/fact-sheets/detail/blindness-and-visual-impairment
https://doi.org/10.3390/f12020217
https://doi.org/10.1007/s13244-018-0639-9

