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A B S T R A C T

Point clouds contain high detail and high accuracy geometry representation of the scanned Earth surface parts.
To manage the huge amount of data, the point clouds are traditionally organized on location and map-scale;
e.g. in an octree structure, where top-levels of the tree contain few points suitable for small scale overviews and
lower levels of the tree contain more points suitable for large scale detailed views. The drawback of this solution
is that it is based on discrete levels, causing visual artifacts in the form of data density shocks when creating
the commonly used perspective views. This paper presents a method based on an optimized distribution of
points over continuous levels, avoiding the visualization shocks. The traditional distribution ratio’s of data
amounts over discrete levels of raster or vector data is considered the reference. How to convert this to point
clouds with continuous levels (still benefiting from the proven advantages of the data distribution in discrete
levels for efficient access at a wide range of scales)? In our solution, for each point a cLoD (continuous Level
of Detail) value is computed and added as dimension to the point. A SFC (Space Filling Curve)-based nD data
clustering technique can be used to organize the points, so that they can be efficiently queried. It should
be noted that also other multi-dimensional indexing and clustering techniques could be applied to realize
continuous levels based on the cLoD value. Besides the mathematical foundation of the approach also several
implementations are described, varying from a 3D web-browser based solution to an augmented reality point
cloud app in a mobile phone. The cLoD enables interactive real-time visualization using perspective views
without data density shocks, while supporting continuous zoom-in/out and progressive data streaming between
server and client. The described cLoD based approach is generic and supports different types of point clouds:
from airborne, terrestrial, mobile and indoor laser scanning, but also from dense matching optical imagery or
multi-beam echo soundings.
1. Introduction

Big geo-data requires good spatio-temporal data organization, in-
cluding levels of detail that allow to zoom in from high-level overviews
(complete countries/continents) to the smallest detail (as the curb
stones of a sidewalk) and everything in between. Currently, only a
limited number of discrete detail levels can be provided. In spatial
information sciences, a major challenge is to bridge the gap between
the big data generated in the form of point clouds by various sen-
sors and processing techniques (lidar, dense matching optical imagery,
multi-beam echo sounding, PS-InSAR) and the applications based on
traditional gridded or object representations and functionality. The
world’s largest data sets, despite their high potential value, are heavily
under exploited due to the problematic data management, access, and
limited software tools that are available to directly employ them.
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Fig. 1(a) shows that the current state of the art is to organize large point
clouds in discrete levels of data pyramids (Arikan et al., 2014; Oosterom
et al., 2016). However, discrete levels have well known restrictions,
with the abrupt transition between various levels being very disturbing
(cf. Fig. 1(b)). The human eye is sensitive to the effect of multi-level
organization as can be noticed in Fig. 2, but the same applies to
‘suboptimal’ analysis based on discrete multi-level organization.

In our nD-PointCloud model the cLoD becomes a true continuous di-
mension and it is used in the data organization for visualization as well
as for spatial analyses. We propose to generate random cLoD values ac-
cording to an optimized distribution function for continuous levels, add
this as dimension, and use high-resolution nD space-filling curves that
have shown to be beneficial in organizing multi-dimensional spaces and
for task decomposition in parallel computing (Nivarti et al., 2015; Xia
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Fig. 1. Discrete levels (scale/importance) data organization in blocks.
Fig. 2. Potree webviewer with AHN-2 data showing discrete levels (blocks as artifact).

and Liang, 2016; Guan et al., 2018), but which have not been applied
yet to these volumes and higher dimensions (>3D). The hypothesis
is that the nD-PointCloud based implementation will outperform the
grid-approach in accuracy and computation/retrieval speed.

Our research methodology is ‘design science research’ (Hevner and
Chatterjee, 2010): gaining knowledge through designing and building
tangible artifacts. In earlier research it was proven that high-resolution
nD-SFCs (Space Filling Curves) in combination with parallel processing
by employing and adapting solutions driven by High Performance/
High Throughput Computing (HPC/HTC) environments (Guan and Wu,
2010; Gentzsch et al., 2011; Memon et al., 2014) have the potential to
cluster points close in reality (Fig. 2).

Oosterom et al. (2015) and Liu et al. (2020a) developed an Index-
Organized Table (IOT) approach to address nD window queries on
massive point clouds. Considering characteristics of spatial data and
applications, the approach utilizes a SFC to encode each nD point into
a one-dimensional key. Then, a B+-tree organized table is built to store
and index these keys. When querying, the approach transforms the nD
query window into a set of one-dimensional SFC ranges for selection
(Fig. 3(a)). In this transformation, an nD histogram is used given non-
uniform data distribution. The approach on the one hand achieves high
efficiency to index all related dimensions in the query, while on the
other hand avoids the time-consuming block unpacking and filtering
process of block-based approaches. Benchmarking results (Liu et al.,
2020a,b) confirm the superiority of this approach over conventional
block-based approaches, especially when the distribution of nD points
is skewed.

Any query geometry can be approximated and represented by a set
of SFC ranges (Fig. 3(b)). So, we can extend the IOT approach for more
query geometries beyond orthogonal windows. This can be expected to
achieve better results than a Minimum Bounding Box (MBB) strategy
which loosely approximates the search region by its MBB and locates
all points inside. The MBB works well if the volume of the query region
is a large proportion of the volume of the bounding box, but falls down
if the query region runs at awkward angles to the axes. It also becomes
more problematic with larger numbers of dimensions.
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This paper describes our approach to realize vario-scale point
clouds. These are point clouds without data density shocks in case of
perspective views and when gradually zooming in or out. The rest of
the paper is organized as follows: Section 2 reviews previous studies
and current best practices concerning nD point clouds management and
querying. Section 3 is answering the question: What is an optimized
continuous distribution of point clouds over continuous levels. Then,
based on the answer to the continuous distribution question, Section 4
derives the distribution function and the cumulative distribution func-
tion for 1D to nD point clouds. Section 5 explains how to use the cLoD
value in order to approximate a certain point cloud density in the
output, which may be non-uniform; e.g. in the case of a perspective
view. Based on this, Section 6 presents several implementations using
the cLoD enriched point clouds, including a perspective view query
frequently used in practice. Section 7 concludes the paper and lists
options for future work.

2. Related work

This section first presents commonly applied solutions for point
cloud data organization in Section 2.1. Then the Space Filling Curve
(SFC) based approach for efficiently storing and retrieving nD point
clouds is shortly summarized (Section 2.2). Finally, in Section 2.3
some initial post-processing approaches to get rid of discrete levels are
reviewed.

2.1. Point cloud data organization

Countries and cities have programs for scanning their surfaces
to create 3D models for a range of applications. For example, the
Netherlands has the ‘Actueel Hoogtebestand Nederland’ (AHN) where
every five years its surface is scanned (with 640 billion points in
AHN-2, and similar numbers in the successors AHN-3, also completed,
and AHN-4 to be completed before the end of 2022). Already today
35 trillion points (35.000.000.000.000 particles) data sets are used
in astronomy (Crankshaw et al., 2013) and a similar sized data set
has been announced in geo-information (Netherlands’ road infrastruc-
ture, street furniture and buildings generated by CycloMedia; https:
//www.cyclomedia.com). Far larger data sets are expected, due to
increased sampling resolution of the sensors, the larger areas covered
and the repeated acquisition of same area for updating and monitoring
changes. Given the huge volume of spatio-temporal data, traditionally
a spatial index structure, such as kd-tree, R-tree, octree/quad-tree,
low-resolution SFC cell’s (Oosterom, 1999; Samet, 2006) is added in
the database to enable efficient access to the data. However, also
these indices require a lot of storage space, especially when indexing
individual points. Therefore in earlier work, blocks/groups of points
(of certain bucket size) are used to reduce the size of the index (Wijga-
Hoefsloot, 2012; Ravada et al., 2014; Cura et al., 2016; Butler et al.,
2020). Still, these indices may be rather large and the fineness of access
is reduced.

https://www.cyclomedia.com
https://www.cyclomedia.com
https://www.cyclomedia.com
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Fig. 3. Recursively partitioning the extent of data according to SFC regions to match different query geometries, for selecting data in IOT.
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The current state of the art is organizing point clouds in discrete
LoD, or data pyramids as explained in the introduction and as illus-
trated in Fig. 1. This organization allows fast spatial searching including
LoD selection: The further away from the viewer the fewer points are
selected, i.e. the higher level blocks/points (Fig. 1 right). These repre-
sentations offer a discrete set of levels, i.e. multiple map-scales (Jones
et al., 1996; Kilpelainen, 1997; Friis-Christensen and Jensen, 2003).
Discrete levels have well known restrictions; e.g. in perspective views
(more detail nearby, less detail further away), the abrupt transition
between various levels is often disturbing to the human eye, in spatio-
temporal analysis/computation just the predefined discrete levels are
available and ‘optimally detailed’ representation may not be available.
There is a continuous point cloud approach proposed by Microsoft
(2014), but this has severe drawbacks as it is not based on using cLoD as
an organizing dimension and the solution is less general (it focuses on
visualization of 3D point clouds). The rising popularity of WebGL and
the availability of cloud computing/ storage resources (Kodde, 2010)
are changing the way in which point cloud data are consumed. Plasio
and Potree (Schütz and Wimmer, 2015) are two examples of open
source web point cloud viewers. In our earlier Netherlands eScience
Center project ‘Massive Point Clouds for eSciences’ (Oosterom et al.,
2015; Martinez-Rubi et al., 2015), the Potree-converter was extended
to be able to visualize massive point clouds by speeding up the creation
of massive multi-resolution octree based on a divide and conquer
approach that splits the task into smaller pieces that can be paral-
lel processed. However, none of the current solutions supports true
vario-scale, smooth perspective (or other mixed scale) views.

2.2. SFC based point cloud organization

Using mathematical theories, materialized and validated through
prototypes, we realized deep integration of space, time, and scale
(cLoD) dimension, supporting huge volumes of data. This deep integra-
tion was earlier applied with fewer dimensions: Spatial and temporal
dimensions in Hägerstrand’s space–time cube (1970), or spatial and
cLoD dimensions in the space-scale cube by Meijers and van Oosterom
(2011). This section presents the overall architecture of the approach
based on Liu et al. (2020a). In mathematics, a Space Filling Curve
(SFC) is a continuous bijection from the hypercube in nD space to a
1D line segment, cf. Jaffer (2014). Therefore, SFCs have the ability to
cluster points which are captured close in reality, close on the curve.
The nD hypercube is of the order 𝑚 if it has a uniform side length 2𝑚.

nalogously, the curve 𝐶 also has an order 𝑚 and its length equals
o the total number of 𝑛2𝑚 cells. Space-filling curves are used in task
ecomposition in parallel computing (Nivarti et al., 2015; Xia and
iang, 2016). The nD SFC key can be applied in combination with
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pherical coordinate reference systems, which is getting close to spatial t
epresentations based on discrete global grid structures (Sahr et al.,
003; Sirdeshmukh et al., 2019).

The improved SFC-based organization for point clouds was in-
roduced by Oosterom et al. (2015), used for two spatial dimen-
ions (Martinez-Rubi et al., 2015), and initially explored for space–
ime organization (Psomadaki et al., 2016), and space-scale organiza-
ion (Guan et al., 2018). In realization, instead of using a (heap) table
ith a B-tree index, an Index Organized Table (IOT) is used, which
voids storing a large, separate index, thus not requiring to perform a
oin during query execution (between index and data). During the SFC
alculation, it is possible to define the curve for the full resolution of
he point cloud domain. This allows us to avoid storing the x, y and
ther organizing dimension values, since those can be decoded from
he SFC key.

In terms of data management, we identify two types of dimensions:
rganizing dimensions are used to cluster and index the data such
s spatio-temporal dimensions; the other property dimensions are not
requently used in the SQL WHERE clause are affiliated, such as color
nd intensity, and are usually irrelevant for data indexing. These two
ypes of dimensions are not fixed, and may be varied depending on
pplications. In general, a cube refers to a 3D box with equal edge
ength. This geometric concept extended into nD space becomes the
ypercube.

Fig. 4 presents the workflow of the IOT approach. It first encodes
ach nD-point to a full resolution Morton key, interleaving the bits of
ll organizing dimensions. Property dimensions are attached to the key.
hen, the approach adopts the B+-tree to manage the point data. The
uerying module applies two filters, where the first filter computes the
anges for selecting keys while the second filter decodes the keys and
onducts point-wise filtering to derive the final exact answer.

.3. Resolving discrete levels by post-processing

The earlier attempts at continuous point clouds were based on post-
rocessing the (discrete) level point clouds. van der Maaden (2019)
ses a discrete level organized point cloud as starting point. Based on
he viewing position, viewing direction, and opening angle the required
oint cloud data blocks are selected at the various levels as explained
n the Introduction; see Fig. 1. Next, a post-processing step attempts
o give the impression of continuity by removing from the denser
ata block, some points that are close the edge of the sparser data
lock. This is done because in a perspective view these parts of the
isualization contain too many points, and the boundary with the more
parse block can be very clear to observe and distracting. The change
n data distribution between adjacent blocks is sketched in Fig. 5.

The decision to keep or remove a point is based on an empty sphere
ondition attached to every point. This starts by assigning a radius to

he points based on distance to camera/ viewing position: gradually
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Fig. 4. The loading and querying procedure of the IOT approach.
Source: Image from Liu et al. (2021).
Fig. 5. Smoothing point cloud data distribution by post-processing.
Source: Image from van der Maaden (2019)

Fig. 6. Points with empty sphere are selected for the view.
Source: Image from van der Maaden (2019)

ranging from small radius nearby to a large radius far away. The points
from the selected data blocks are assigned to the current view when
their sphere is empty, i.e. contain no other points in the current view;
see Fig. 6. The resulting images only looked smooth if the number of
removed points was quite high, typically about 70%–90% of points
had to be removed to give a smooth impression. Another drawback
of the method is that it is not stable when panning or zooming in
a certain direction - a few times points may be switched on and off
repeatedly. This is unwanted behavior: when zooming or panning,
points should appear or disappear cleanly. The problem of unstable
behavior of continuous point clouds was solved by Schütz et al. (2019)
in the context Virtual Reality. However, they do not consider big data
organized at the server side (in data blocks at different levels). All
data is local in the main memory of the GPU, in their case an indoor
point cloud data set of 86.000.000 points. In their Virtual Reality
client they apply a different post-processing technique by first adding
a uniform random value (between 0 and 1) to every point. Then based
on viewing position and viewing direction, every 5 to 6 frames they
select 5.000.000 points at 90 frames per second (fps, for both left eye
and right eye, which means a total of 180 fps).

In the selection they use the added random value to select a suffi-
cient ratio of the points for the needed target density, which depends
on distance and how much the location is in the center of the view;
see Fig. 7. Because for every point the random number stays the same
during an interactive VR session, their solution is stable, and has no
issues with flickering points (switching points on/off in an annoying
manner). Their solution is not intended/ used for big data organization
at server side, where both spatial and LoD dimension are used together
to optimize the multi-dimension data clustering/ indexing for fast
retrieval.
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3. Continuous levels

This section first presents our initial ideas to dispense with discrete
levels by pre-processing and explains why this is to be preferred over
post-processing approaches (Section 3.1). Next, in Section 3.2 we re-
capture from the well-know discrete level what are good distributions
over the various levels, in order to learn from this for continuous
levels. By refining the original discrete integer levels, we get a more
fine grained distribution, while keeping the general good characteristic
of the original distribution (Section 3.3). By infinitely refined discrete
levels we arrive at a continuous level distribution which still has the
good general characteristic of the original distribution (Section 3.4).
Finally, Section 3.5 discusses how many levels are needed for a specific
data set.

3.1. Resolving discrete levels by pre-processing

Inspired by the promising post-processing results in the above de-
scribed attempts to arrive at continuous point clouds, we designed a
solution based on pre-processing of the large point clouds in order
to resolve the issues of: not being stable and sending too much data;
or needing to have all points at the client side. Our nD-PointCloud
solution is also inspired by research on vario-scale vector maps for 2D
area partitions (Oosterom and Meijers, 2014; Meijers et al., 2020). The
lesson obtained from the vario-scale vector maps research was: add one
continuous dimension to the geometry to represent scale (LoD). So, in
case of the 2D continuous LoD vector map, the result is represented
by 3D geometries. Assuming, we scan assign proper cLoD values for
the points then we can apply the following overall strategy for point
clouds (fitting in the scheme of Fig. 4):

1. Compute the cLoD value;
2. Add this as organizing dimension, either x, y, cLoD (z and others

attributes) or x, y, z, cLoD (and others as attributes) using a 3D
or 4D SFC key;

3. Cluster/index the 3D or 4D point/SFC key;
4. Define perspective view selection by a view frustum with one

more dimension by using cLoD to the spatial extent (depending
on viewer distance and/or displacement from the center of the
view); see Fig. 8.

3.2. Learning from discrete levels

How should cLoD values be computed? Should we just use (uniform)
random values, like Schütz et al. (2019), or should the level values
have more meaning? From raster maps or tiled vector maps being
served over the web, it is possible to learn that between two discrete
levels there is always a fixed ratio in scale (LoD/data density): that
is, a factor 2 for every dimension. For example, the next lower (more
detailed) level in the pixel data pyramid contains 2 times more data
per dimension, which is 4 times, as pixel data has two dimensions
(and for 3D voxels the data ratio between subsequent levels would
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Fig. 7. Left: discrete LoD, Middle: continuous point cloud view in VR, Right: continuous LoD.
Source: Image from Schütz et al. (2019).
Fig. 8. Integrated space-cLoD (or scale) selection via the upper blue tetrahedron
(view_frust) from the vario-scale x, y, cLoD point cloud data cube. The darker blue
bottom plane of this tetrahedron is not normal geometry, but a combination of
spatial and cLoD dimensions. Please note that on the vertical axis represents the cLoD
dimension (and the z dimension is not shown). (For interpretation of the references to
color in this figure legend, the reader is referred to the web version of this article.)

Table 1
Zoom levels in the Dutch well-known scale set, based on Geonovum (2012).

Zoom level Resolution (m/pixel) Scale denominator

0 3440,640 12.288.000
1 1720,320 6.144.000
2 860,160 3.072.000
3 430,080 1.536.000
4 215,040 768.000
5 107,520 384.000
6 53,760 192.000
7 26,880 96.000
8 13,440 48.000
9 6,720 24.000
10 3,360 12.000
11 1,680 6.000
12 0,840 3.000
13 0,420 1.500
14 0,210 750

be 8). Table 1 shows the definition of the 15 Dutch zoom levels in
the data pyramid and their relationships to appropriate map scales.
This Dutch ‘profile’ for tiling can be used by Web Map Tile Services
(WMTS), with the Spatial Reference Id EPSG:28992 (Amersfoort/RD
New), and the tiles are 256 ⋅ 256 pixels; see (Geonovum, 2012). For
global tile sets more levels are used, both for raster and vector tiling
schemes; e.g. the well-known scale set GlobalCRS84Pixel has 18 levels;
see (Masó et al., 2010). For point clouds there are similar approaches
using quadtree/octree with discrete levels; e.g. the 3D webviewer for
the Dutch AHN-2 dataset needs 12 levels (Oosterom et al., 2016). It is
important to realize that the discrete levels have a relationship to the
scales for which they are suitable.
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3.3. Refined discrete levels

The cLoD value should not be just a random number, but should
support the level thinking that has been developed in raster and vector
mapping over the past decades. So, how can we obtain a similar
distribution for cLoD values compared to the existing discrete schemes?
This is a hard question bothering the authors for several years. What if
we do not try to solve this question directly, but first solve the question:
How can we refine the existing discrete (integer) level distributions?
This question was raised and answered during the keynote presentation
at the ISPRS Geospatial Week 2019 (Oosterom, 2019). Fig. 9 first re-
captures show the traditional distribution of data over discrete integer
levels.

The ratio of the target number of points 𝑁𝑙 per level 𝑙 is given by
𝑁𝑙 = 2𝑙 for integer values of 𝑙 from 0 (most important, few points)
to maximum level 𝐿 (least important, most points). Note that this is
for the 1D case (𝑛 = 1) the optimized distribution over the levels. The
multi-dimensional case is quite similar 𝑁𝑙 = 2𝑛⋅𝑙 with 𝑛 the number
of dimensions. In the following, we first continue with 1D data and
later on the formulas for the nD case will be given. As there are no
refinements to the discrete integer levels, this is called refinement 𝑟 = 0.
The probability that a point belongs to level 𝑙 is defined by dividing the
number of blocks at this level by the total number of blocks in all levels:
Tot0 =

∑𝐿
𝑙=0 2

𝑙 (for 𝑟 = 0); see the mathematics in the next section
(Eq. (2)).

Next step is to refine the discrete integer levels into discrete half
levels, so doubling the number of levels in this first refinement 𝑟 = 1.
The formulas for computing the number of blocks per (half) level,
and the distribution over the levels stay the same, see Fig. 10. In the
formulas only the total number of blocks at refinement 𝑟 = 1 summed
over all levels is different and given in the next section (Eq. (8)). It
is important to note that when summing the probabilities of two half
levels that originated from the same integral level, this results in exactly
the same probability as we had for this integer level. Of course, this
procedure can be repeated and after 2 refinements we end up with 16
quarter levels; see Fig. 11. Again, the formulas stay the same (only
now with 𝑟 = 2) and summing 4 quarter levels that used to form
one level, results in exactly the same probability as we had for this
integer level. When in Figs. 10 and 11 the probabilities are summed
for all refined levels belonging to one integer level, the we get back the
original probability. For example, Fig. 9 it states that the integer level 0
has 6.7% probability, which is equal to the sum of probabilities of the
first 2 levels after one refinement; see Fig. 10, which is in turn equal to
the sum of the probabilities of the 4 first levels after two refinements;
see Fig. 11.

3.4. Infinitely refined discrete levels

We can continue to refine the levels beyond two times as explained
above. When 𝑟 → ∞ then the actual result is a continuous distribution
function 𝑓 (𝑙) over the levels 𝑙 from 0 to 𝐿 + 1 (next section, Eq. (12)).
In addition we define also the cumulative version of the distribution
function, which is called 𝐹 (𝑙) over the same level 𝑙 domain.

The input point cloud data gets one more dimension by adding the
cLoD value to every input point. For this, the inverse of the cumulative
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Fig. 9. Distribution over 4 discrete integer levels (𝑙 = 0, 1, 2, 3) in case of 1D data.

Fig. 10. Distribution over 8 discrete half levels (𝑙 = 0, 0.5, 1, 1.5, 2, 2.5, 3, 3.5) in case of
1D data after one refinement 𝑟 = 1.

Fig. 11. Distribution over 16 discrete quarter levels (𝑙 = 0, 0.25, .., 3.75) in case of 1D
data after two refinements 𝑟 = 2.

distribution function is used on the output of a random generator 𝑈
producing uniform distributed values between 0 and 1 (or 𝑙 = 𝐹−1(𝑈 )
more details in the next section Eq. (17)). The resulting point cloud
data set has one cLoD dimension more, and this distribution of this
cLoD dimension is according to the optimized continuous distribution
function 𝑓 (𝑙). The value of the level dimension can be used to organize
the data next to xy(z), but can also be used to select the points for a
specific LoD (scale) or for a perspective view (with varying LoD/scale
in a single image).

3.5. How many levels are needed?

Given a certain data set with 𝑁 points, how many levels would
be appropriate, i.e. what is a good value for 𝐿? This question is valid
for both discrete and continuous levels. We first analyze the discrete
integer levels, and the outcome is also valid for refined discrete levels
and continuous levels. In the 2D case about 80% of the data is at lowest
discrete level with highest level number as we start numbering from the
top with level 0 (and in the 3D case about 90% at lowest level). So, let
us say as a first approximation that all data are at lowest level. In case
of a data set like AHN-2 with about 640.000.000.000 point and if at top
level (block in data pyramid) with for example 10.000 points per block,
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then we need to store 64.000.000 blocks in total, each containing about
10.000 points. In 2D with 𝐿 = 13 we can host 413 = 67.108.864 blocks
at level 13 (the lowest of the 14 levels named level 0, level 1, . . . , level
13). This is enough for AHN-2 and also the actual depth of the AHN-2
octree (given the nature of the quadtree, as the AHN-2 data is basically
a 2.5D surface in 3D space), we created with the potree-converter in
our earlier research (Oosterom et al., 2015). In general, the expression
to define the 𝐿 for an nD point cloud with 𝑁 points and blocks with
capacity of 𝐶 points per blocks:

𝐿 =
⌈ 1
𝑛
log2(𝑁∕𝐶)

⌉

(1)

The USGS 3D Elevation Program (3DEP) at the moment has
43.252.493.596.939 points; see https://usgs.entwine.io/. The coverage
is not yet complete, so the final data set will contain more points, say
about 100.000.000.000.000 (= 1014) points. It is also a 2.5D surface
in 3D space, so 𝑛 = 2 and assuming the same capacity for the blocks
𝐶 = 10.000, then we would need 𝐿 = 17 as maximum level to store the
future complete USGS lidar point cloud data set. As the refined discrete
levels and the continuous levels have the same general distribution
characteristics as the discrete integer levels, the same number of Levels
𝐿 is sufficient. If for some reason we want to use 32 levels (maximum
level 𝐿 = 31), 𝑛 = 2 and with block capacity 𝐶 = 10.000, then more
than 1022 points can be accommodated at the lowest level.

4. The mathematics

After presenting in the previous section the idea how to arrive at
continuous levels with an optimized distribution, we will now present
the accompanying mathematics. Section 4.1 looks at the formulas for
the discrete refinement of levels, followed by formulas for the infinite
refinement (or continuous levels) in Section 4.2, both for the 1D case.
Next, Section 4.3 generalizes the formulas from the 1D case to the
nD case. Finally, Section 4.4 presents an initial assessment by creating
various distribution graphs with our formulas implemented in Matlab,
showing discrete distributions with less and more refinement and also
the corresponding continuous distribution.

4.1. Refined discrete levels

First the formula for the distribution over discrete levels are intro-
duced for the 1D case. Suppose we have a point x, and want to decide
with what probability 𝑥 is put in some layer. For a one dimensional
system with L layers, the probability of a point to be located in layer
𝑙, with 𝑙 ∈ {0, 1,… , 𝐿}, is proportional to 2𝑙 (𝑙 = 0 is the top layer, and
𝑙 = 𝐿 is the most detailed one). We can calculate the probability:

P0[𝑥 → 𝑙] = 2𝑙
∑𝐿

𝑙=0 2𝑙
= 2𝑙

Tot0
(2)

Now, we are going to refine the number of layers by splitting each one
in half. The refinement is indicated with level 𝑟, the number of times
we split the layers (𝑟 = 0 is unrefined). The refined levels become:

𝑘 ∈ {0, 2−𝑟, 2 ⋅ 2−𝑟,… , ((𝐿 + 1)2𝑟 − 1) ⋅ 2−𝑟}

where 𝑘 = 0 is the top layer, and 𝑘 = 𝐿 + 1 − 2−𝑟 is the most detailed
one. If we refine the levels 𝑟 times, the probability is given by:

P𝑟[𝑥 → 𝑘] = 2𝑘
Tot𝑟

(3)

We have found a recursive formula for Tot𝑟, from which we can express
it in terms of Tot0:

Tot𝑟 =
(𝐿+1)2𝑟−1

∑

𝑘=0
2𝑘⋅2

−𝑟 (4)

=
∑

[

2𝑘2
−𝑟

+ 2(𝑘+1)2
−𝑟
]

(5)

𝑘=𝑒𝑣𝑒𝑛

https://usgs.entwine.io/
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[
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−𝑟
]

(6)

= (1 + 21∕2
𝑟
)Tot𝑟−1 (7)

= Tot0
𝑟

∏

𝑖=1
(1 + 21∕2

𝑖
). (8)

f we substitute this, we get a probability density for refinement 𝑟:

𝑟(𝑙) = 2𝑟P𝑟[𝑥 → 𝑙] = 2𝑙
∏𝑟

𝑖=1
2

1+21∕2𝑖

2𝐿+1 − 1
(9)

.2. Infinite refinement

If we want the continuous distribution, we let 𝑟 → ∞, where:

∞(𝑙) = 𝐾2𝑙 (10)

here 𝐾 is a normalization constant:
𝐿+1

0
𝐾2𝑙𝑑𝑙 = 𝐾[2𝑙∕ ln 2]𝐿+10 = 𝐾 2𝐿+1 − 1

ln 2
= 1 (11)

This results in the following exponential function:

𝑓 (𝑙) = 2𝑙 ln 2
2𝐿+1 − 1

(12)

or 𝑙 ∈ [0, 𝐿 + 1]. This function has CDF 𝐹 (𝑙) obtained by integration
(𝑥) over 𝑥 from 𝑥 = 0 to 𝑙:

(𝑙) = ∫

𝑙

0
𝑓 (𝑥)𝑑𝑥 = 2𝑙 − 1

2𝐿+1 − 1
(13)

And a 1D cLoD level 𝑙 is randomly generated by:

= 𝐹−1(𝑈 ) = log2(𝑈 (2𝐿+1 − 1) + 1) (14)

here 𝑈 is uniformly distributed between 0 and 1.

.3. Higher dimensions

For higher dimensions, we can perform similar computations and
et:

𝑛(𝑙) =
2𝑛𝑙𝑛 ln 2

2𝑛(𝐿+1) − 1
(15)

Where n is the number of dimensions. This function has CDF:

𝐹𝑛(𝑙) =
2𝑛𝑙 − 1

2𝑛(𝐿+1) − 1
(16)

And a nD cLoD level value is generated by:

𝑙 = 1
𝑛
log2(𝑈 (2𝑛(𝐿+1) − 1) + 1) (17)

.4. Distribution graphs

The developed formulas are used in the Matlab script (see Ap-
endix) to produce the graphs in this section. It should be noted that all
istribution graphs are created for the 1D case, that is, have 𝑛 = 1. The
D counterparts look very similar, but have more steep appearance.

. Using the cLoD values

After having extended the point attributes with cLoD dimension and
alues for the individual points, then next challenge is how to use the
LoD value. Section 5.1 first explores the relation between level values
nd expected data density for the discrete levels. Next Section 5.2
nalyses the use continuous levels for producing visualizations with
niform scale. Finally, Section 5.3 shows how to use cLoD values for
ixed scale situations, specifically the perspective view.
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a

.1. Expected density at discrete levels

Let us assume that we have in total 𝑁 points in the data set and that
e have an nD domain in which every dimension has the extent 𝐸. So,

his is a data (hyper) cube, with equal size of all dimensions. Then total
xpected data density is given by 𝐷 = 𝑁∕𝐸𝑛, that is without any levels.
ith the discrete probability function (nD case) at refinement 𝑟 defined

s:

𝑟,𝑛[𝑥 → 𝑙] = 2𝑙⋅𝑛
Tot𝑟,𝑛

(18)

then the expected density at discrete level 𝑙 at refinement 𝑟 is given by:

𝐷𝑟,𝑛(𝑙) =
𝑁
𝐸𝑛 P𝑟,𝑛[𝑙] (19)

Note that there is a direct linear relation between probability of a level
P𝑟,𝑛[𝑙] and expected density 𝐷𝑟,𝑛(𝑙)!

5.2. Uniform scale, continuous levels

The continuous dimension level also corresponds to data density.
If we take a slice of the cLoD values that belongs to one discrete
integer level, that is the semi-open range [𝑙, 𝑙 + 1), then we get exactly
the same expected density as that of the discrete level 𝑙. It should be
noted that the ‘thickness’ of single value of cLoD is 0, which gives
near 0 probability of having any point with exactly that value (and
thus 0 expected density at that level). Therefore, we did take a slice
corresponding to an integer level, but we can take any range of cLoD
values. It is very convenient to take the range from the top (cLod= 0) to
a specific level (cLoD= 𝑙) as in the top there are rather limited number
of points anyhow. This corresponds well to the Cumulative Distribution
Function (CDF) for nD case 𝐹𝑛(𝑙) with 𝑙 between 0 and 𝐿 + 1, see
q. (16). The expected Cumulative Density 𝐶𝐷𝑛 at continuous level 𝑙

for nD case is:

𝐶𝐷𝑛(𝑙) =
𝑁
𝐸𝑛 𝐹𝑛(𝑙) (20)

with 𝑁 total points in data set and 𝐸𝑛 size spatial domain in the nD
case. Note that there is again a direct linear relation between continu-
ous level (CDF 𝐹𝑛(𝑙)) and the expected cumulative density 𝐶𝐷𝑛(𝑙)!

Let us have a look at a simple concrete example of a 2D world (𝑛 =
) with extent 5 × 5 m2 (𝐸 = 52), 10.000.000 points (𝑁 = 10.000.000),
= 6, and continuous levels. This means that 0 ≤ 𝑙 < 7, the maximum

otal density = 10.000.000∕25 = 400.000 points/m2 and putting in these
umbers in the generic Cumulative Density function (Eq. (20)) we get:

𝐷2(𝑙) = 3149, 60(2𝑙 − 1) (21)

hen having a target cumulative density 𝑇𝐶𝐷2 value, the cLoD value
can be obtained by rewriting Eq. (21) into the following form:

𝐶𝐷2 = 3149, 60(2𝑙 − 1) ⇒ (22)
𝑙 = 1 + (𝑇𝐶𝐷2∕3149, 60) ⇒ (23)

= log2(1 + (𝑇𝐶𝐷2∕3149, 60)) (24)

ssume we have a rendering budget 𝐵 = 100.000 points no matter what
s visualized. If we know the spatial extent of a query, how can we
ompute the cLoD level that will deliver a number of points within our
udget 𝐵? The following three queries mimic a zoom out action with
square (see Fig. 13 Left):

• 1 × 1 m2 box ⇒ 𝑇𝐶𝐷2 = 100.000 points/m2 ⇒ 𝑙 = 5, 03
• 2 × 2 m2 box ⇒ 𝑇𝐶𝐷2 = 25.000 points/m2 ⇒ 𝑙 = 3, 16
• 4 × 4 m2 box ⇒ 𝑇𝐶𝐷2 = 6.250 points/m2 ⇒ 𝑙 = 1, 58

ote that in case of 1∕2×1∕2 m2 box (not shown in Fig. 13 Left) we would
rrive at the maximum possible density 𝑇𝐶𝐷2 = 400.000 points∕𝑚2 ⇒
= 7, 00. Zooming in more will not result in higher density as we are

lready at the maximum cLoD 𝑙 of 7.
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Fig. 12. Distribution over the refined levels with dimension n = 1, max levels L = 2, refinements r = 0, 1, 2, 3, 5, and 10 (note that the blue bars depict the probability of
discrete levels, while the red curve depicts the exact, continuous probability function).
Fig. 13. Left: Uniform scale, three queries, Right: Perspective view query looking up,
both in the 5 × 5 m2 domain (note darker means higher density).

5.3. Mixed scale, continuous levels

The density should not be constant in a perspective view, but
depend on the distance 𝑑 to the viewer. For example, when at a distance
of 1 meter the density could compare to 1 × 1 m2 box with cLoD
𝑙 = 5, 03 and when at 4 meter the density could compare to 4 × 4 m2

box with cLoD 𝑙 = 1, 58 in our example from the previous subsection.
We use Eq. (24) with target cumulative density 𝑇𝐶𝐷2 = 𝐵∕𝑑2 (with 𝑑
for distance and 𝐵 for our budget) to obtain the cLoD 𝑙 value anywhere
in the domain. Integrating the wanted density over all distances in
the query region, the triangular shaped view frustum, will give the
expected number of points; see Fig. 13 Right.

Now let us see what happens when we change the selected area size
or change the field of view (width of viewing angle). When enlarging
the selected area size, the shape of view frustum is staying the same,
just getting bigger (Fig. 14 Top). When the budget 𝐵 remains the same
the cLoD values should get smaller to get lower density. Note that
the actual cLoD value should still be distance dependent. The same
reasoning applies when we change the field of view (width of viewing
angle (Fig. 14 Bottom)).

6. Implementations

In this section three different implementations of the continuous
levels approach will be shown. The first application is a 3D continuous
webviewer for points using the cLoD to avoid the visual distraction
of the state-of-the art webviewers having block boundaries with high
density on one side and low density on the other side. The second
application of cLoD is in the context of an Augmented Reality (AR)
application for a mobile phone. The third application is a database
query using cLoD in the SQL where-clause.
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Fig. 14. Viewer is left side vertex, looking to the right, Top: changing the selected
area size (flying out), Bottom: changing the field of view.

6.1. 3D continuous webviewer

The cLoD has been used to realize a 3D data organization by using
xy and cLoD to create point cloud data blocks at the server side (Guan,
2020). The test data is (part of) AHN-2. Based on the earlier defined
approach (see Section 3.5), the value for maximum levels 𝐿 is obtained
and the cLoD values are added to the points. The 3D blocks are created
by grouping the points in integer levels using rounding of cLoD. Next
per level 𝑙, the points are put in 2𝑙 by 2𝑙 grid cells based on their xy-
values. The resulting blocks are organized in a full 3D octree with xy
and cLoD organization. The points also have their z value (but not as
organizing dimension), which is used in the rendering. The webclient
is requesting the relevant data blocks by a combined xy-cLoD request
(based on overlap with the view frustum of a perspective view query).
The content of the received data blocks is used to create the interactive
3D visualization now deciding at individual point level if a point should
be displayed. This depends on the distance to the viewer and the
actual cLoD value of the point. When the user is zooming, panning
and rotating, additional data blocks may be needed and retrieved. In
Fig. 15-middle the selected points are displayed and the color assigned
to a point is based on cLoD (or data density) from the point of view of
a third person. There is also a kind of analysis/debug mode to show
the retrieved data blocks by depicting their edges with black lines.
The 3D point cloud webviewer is available at: http://47.112.97.110/

http://47.112.97.110/PointCloud/try.html
http://47.112.97.110/PointCloud/try.html
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Fig. 15. 3D point cloud webviewer, Top left: first person colored by cLoD = density, Top right: same for third person view, Bottom: first person view rendering color by height.
Source: Images from Guan (2020).
PointCloud/try.html with AHN data near Oirschot (tip: press z-key and
use scroll wheel for zooming, left mouse for rotating, right mouse for
panning).

6.2. Augmented Reality

Though getting more powerful, the hardware of smartphones is still
limited. When working with larger point cloud data sets it can easily
result in too many data points for the smartphones. Augmented Reality
(AR) is based on a combination of real and virtual worlds, and supports
interactive and real-time rendering. The challenge to deal with large
point cloud data sets with limited availability of memory, CPU and GPU
resources of mobile devices and reaching relatively high visual quality
and performance requirements has been solved. A prototype AR system
was developed using ARCore and the Unity game engine. The prototype
uses cLoD to select density every 𝑋 frames with 𝑋 a parameter which
can be specified, in order to reduce the number of points (not needed
for viewer when at certain distance). The source code is available
at https://github.com/LiyaoZhang0702/AR_PointCloud. Fig. 16 shows
two screenshots from the smartphone AR application with point cloud
models. The solution presented indeed reduces the number of points
by selecting based on the cLoD value and distance, which resulted
in a sufficient high frame rate for use in the AR application on a
smartphone, while still presenting good visual quality (Zhang et al.,
2020).

6.3. Database nD convex polytope query

When combining multiple dimensions, such as xyz spatial, t tempo-
ral, and cLoD into a 5D point cloud stored in the database, how can
we select the relevant points (as our geometries and their operations
are typically limited in the database to 3D; e.g. a polyhedron)? Take
for example the selection query needed for a perspective view on a
3D building during a specific moment in the construction phase. There
could even be more attributes used as organizing dimensions, and in
general we speak of nD point clouds. The nD convex polytope is a
relative simple way to express the query region by intersecting half-
spaces, each defined by a hyperplane inequation (Liu et al., 2021).
When specifying the view frustum the xyz and cLoD dimensions are
used (in the from of 𝑎𝑖𝑥+𝑏𝑖𝑦+𝑐𝑖𝑧+𝑑𝑖𝑐𝐿𝑜𝐷 < 𝑓𝑖 as in Fig. 8), and when
specifying the time interval this can be done by two simple inequations:
𝑡𝑚𝑖𝑛 < 𝑡 and 𝑡 < 𝑡𝑚𝑎𝑥. If we use the relation between distance to decide
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Fig. 16. AR smartphone app using cLoD value, Left: Adding several point cloud chairs
to the room, Right: putting part of AHN on the ground floor in the room.
Source: Images from Zhang (2020).

Fig. 17. Result of database query using cLoD while looking straight down.
Source: Image from Liu et al. (2021).

http://47.112.97.110/PointCloud/try.html
http://47.112.97.110/PointCloud/try.html
http://47.112.97.110/PointCloud/try.html
https://github.com/LiyaoZhang0702/AR_PointCloud
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Fig. 18. Matlab code to produce the various distribution graphs over the refined discrete levels.
the needed density/cLoD values, this results in non-linear equation.
This can be used directly, or approximated by linear equations. The
approach is very generic, easy to use and has been tested up to 10D
point clouds using various types of nD convex polytopes for selection
(2D to 10D prisms and 2D to 10D splices) in an efficient manner (Liu
et al., 2021). Fig. 17 presents the result of a query on AHN data looking
straight down and with varying density depending on distance was
realized by using inequalities using cLoD in the SQL-where clause. Note
that we can observe the overlapping flight paths of the data acquisition
phase. These ‘‘shocks’’ are in the data, and are not artifacts of the
viewing software. We now see more the real data and not ‘uniformized’
data as the result of the potree-converter gives as in Oosterom et al.
(2015). Please also note that if the input data is uniformly distributed,
then true random-selection will also result in a uniform distribution at
higher cLoD levels as all regions in the domain are treated in same
manner. However, If the input data has another distribution in space,
the random sample based levels keep the nature of this distribution (as
much as possible). Allowing the data user/viewer to see the true nature
of the point cloud data set. It should finally be noted that there could
also be applications in which a more uniform distributions in higher
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levels is preferred (as produced by the potree-converter).
7. Conclusions

In this paper we described our approach to realize vario-scale
point clouds without data density shocks in the case of perspective
views and when gradually zooming in or out, as current state-of-the-
art solutions are struggling with. We answered the question: what is
an optimized continuous distribution of point clouds into continuous
levels, by (infinite) iterative refinement of discrete levels. We provided
both the continuous distribution function and the cumulative distribu-
tion function for 1D and nD point clouds. The continuous distribution
function is used together with a uniform random number generator to
add the cLoD dimension to the point cloud. Together with the spatial–
temporal dimensions xy(zt) the cLoD dimension is used to cluster and
index the point cloud data. We next explained how to use the cLoD
value in order to arrive at a certain expected point cloud density by
using the cumulative distribution function. Depending on the type of
query, the expected output density may be uniform (fixed-scale) or non-
uniform (mixed-scale, e.g. in the case of a perspective view). Finally
we presented several implementations using the cLoD enriched point

clouds.
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Fig. 19. Distribution over the refined levels with dimension n = 1, max levels L = 4, refinements r = 0, 1, 2, 3, 5, 10.
Fig. 20. Distribution over the refined levels with dimension n = 1, max levels L = 10, refinements r = 0, 1, 2, 3, 5, 10.
Point clouds such as AHN or 3DEP, are getting so large that just
organizing them by spatial–temporal dimensions may not be sufficient
to cluster and index them adequately them for users. For supporting
huge point clouds the cLoD dimension is needed in data organization,
not only for visualization purpose, but also for all kinds of other compu-
tations (analysis, simulations). Our method to add the cLoD dimension
to the point cloud results in a stable solution; i.e. points not flickering
on and off in a visualization. The presented cLoD computation is
optimized in the sense that this has the same factor 2 per dimension
properties as the well known raster and vector data pyramids on which
many interactive applications are build, supporting a range of zoom
options. Of course, there is always more research to be done:

• Instead of computing the cLoD values only via uniform random
number and the continuous distribution function, also semantics
may be used. If we have added a classification to the point clouds
we could use this to improve the cLoD values. For example, in an
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3D indoor point cloud model supporting navigation, the portals
of the doors may be made more important/emphasized.

• Similar to the previous bullet to improve cLoD values by seman-
tics, we could also try to improve the cLoD values by geometry.
For example, in case of sparse points in a 3D space (but organized
in some 1D manner) we might want to increase the cLoD value as
there are few points on thin objects (such as power cable), while
we would still like to see them from a distance. Same reasoning
could be applied to emphasize edges and make the cLoD value of
points near edges more important.

• Our new cLoD approach was just tested with a relatively small
data set, e.g. parts of AHN, the next step is to apply the cLoD
vario-scale point cloud approach to the complete AHN data set.
Next to this we want to combine different (density) point cloud
data sets (e.g. both AHN and the Icesat-2 or GEDI lidar data, two
new space-based laser altimetry missions by NASA; see (Markus
et al., 2017; Dubayah et al., 2020)) and/or multi-temporal data
sets (e.g. AHN-1, AHN-2, AHN-3, AHN-4, . . . ) in one environment.
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Fig. 21. Distribution over the refined levels with dimension n = 1, max levels L = 13, refinements r = 0, 1, 2, 3, 5, 10.
Fig. 22. Distribution over the refined levels with dimension n = 1, max levels L = 31, refinements r = 0, 1, 2, 3, 5, 10.
• We emphasized the used of cLoD for visualization, but as claimed
above cLoD should also be useful to improve computations (anal-
ysis or simulations) for various tasks: solar energy potential,
viewshed/ line-of-sight (incl. vegetation), 3D routing (e.g. for a
drone), change detection/deformations, volume analysis compu-
tations, hydrology/ flow over surface, vegetation analysis, etc. We
should prove the claims by at least showing some directions of
how this can be done and it would be even better to develop
prototypes.
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Appendix. Matlab script

Fig. 18 shows the Matlab code for the refined level computations as
used to draw the distribution graphs in the paper; see Section 4.4. There
is a key role for the discrete distribution function 𝑃𝑟𝑜𝑏(𝑟, 𝐿), which
returns the probability for the (𝐿 + 1) ⋅ 2𝑟 different levels 𝑙 when we
have at maximum 𝐿 + 1 corresponding integer levels and then have 𝑟
refinements. In the main text, Fig. 12 already shows the distribution for
𝐿 = 2. In this Appendix we also show the graphs for 𝐿 = 4, 10, 13, 31 (for
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the same refinements 𝑟 = 0, 1, 2, 3, 5, 10) in respectively the Figs. 19, 20,
21, and 22. Having 𝐿 = 13 should be sufficient for most applications
within the Netherlands, having 𝐿 = 31 is more than sufficient for global
applications (18 or 20 are most likely enough). Note that both the
Matlab script and the graphs just show the 1D case.
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