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Abstract

As the way we interact with maps keeps changing, so do the maps change alongside. And it
can be easily pointed out how these changes come alongside a large number of advantages
for the average map user, such as quick access to data or the ability to view more or less of
the Earth’s surface with just a mouse scroll, as well as for specialists such as cartographers
or spatial data analysts, as it is now easier then ever to manipulate complex data. That being
said, the challenges have also shifted, from the expertise of the map maker to the software
solutions which now do all the work.

One of the many challenges imposed by the aforementioned is represented by the way the
map generalization process is achieved. This graduation project serves as a continuation to
the countless amount of research which has already been performed in this field, with a focus
on the niche world on Vario-Scale Maps, and in particular how borders are handled in this
generalization process.

There is already a large number of different solutions available, some of them being consid-
ered as standard and used by some of the biggest players in the world of geo-information.
However, it seems that no single one solution is a ‘silver bullet‘, as they all have their advan-
tages and disadvantages, as well as cases where one generalization workflow is clearly more
suited then others.

Considering the actual status quo of the industry, this thesis will take a look at some of these
already available solutions on the market, both individually as well as together, and will
try to answer the following research question: To what extent can multiple line-generalization
algorithms be (simultaneously) introduced in the Vario-Scale structure such that they preserve the
topology and enable an optimal line density (while trying to preserve the characteristics of the initial
shape as well).

To reach an answer, it is necessary to start first from the lowest level, with understanding how
line generalization function in different situations, then slowly building up the structure by
introducing these new concepts in the broader workflow, to see what impact it has on it as a
whole.
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1. Introduction

1.1. Background Information and Problem Definition

Throughout history, maps have evolved alongside all other technological advancements,
from the Imago Mundi (Figure 1.1, left) from around the 6th Century BC, created in stone,
which showed the city of Babylon with the river Euphrates in the middle of it [Lewy and
Lewy, 1942], all the way to the highly interactive and easily adaptive maps which we can
nowadays access at our fingertips. Over the last couple of centuries, our world has been
continuously going through a technology-assisted globalization process, which has led to a
society more interconnected and inter-depended then ever, thus making cartography (and
map building) and remote sensing alongside of it, an ever more important tool for billions
of people across the world. ( ”Without maps we would be ’spatially blind’ ” [Gartner, 2014])
(Figure 1.1, right)

Figure 1.1.: Imago Mundi (left) [Williams, 2019] and its thousand year evolution, VR-maps
(right) [Thomas, 2020]

When transitioning towards the digital age, paper-based maps have started to slowly be re-
placed by digital maps [Grand View Research, 2020], which also means that the way we
interacted with maps had now changed drastically. One significant change from this devel-
opment is the ability of map-users to now switch in-between multiple scale levels, thus allowing
them to see more or less of the Earth’s surface at one time.

However, at its origin, the map data, which has been collected by on-field surveyors, was suit-
able for a particular scale (usually, one would call this as the highest level of detail). From this
point, it was traditionally the role of a cartographer to apply a map generalization process, at
its own discretion [Punt and Conley, 2014], where we define generalization as ”the process
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1. Introduction

that simplifies the representation of geographical data to produce a map at a certain scale
with a defined and readable legend (by applying a number of different processes). During
the operation, the information is globally simplified but stays readable and understandable.”
[Ruas, 2008] (further discussion on generalization to be found in the Theoretical background
and related work Chapter) This task has shifted as well, from humans towards computers,
which in term allowed a much more efficient process (for example, instead of a cartographer
or a team of specialists working together towards converting from one scale to another, it is
now possible to task a computer with this challenge.

The solution for storing the data, in all of its generalized forms, per different scale levels,
which was adopted by most of the current market-leaders in web-based mapping solutions,
is called ”MULTI-SCALING”, and it refers to the process of storing information related to the
map at discrete numbers of predefined scale levels (i.e. in a multi-scale database) - where the
concept of scale can be understood, from the perspective of computing, as a measure of the
distance on the field inside a certain pixel. Google maps is a notable example of a well-known
provider using this technology. They store the data in a pyramidal format (Figure 1.2), where
each level represents a certain scale value (in the case of Google, there are 19 levels), and
where each higher level is composed out of an amalgamation of the pixels in the previous
level [Google Developers, 2021].

Figure 1.2.: A graphic representation of an image dataset in Earth Engine [Google Developers,
2021]

However, there are a number of issues which can arise when generating, storing and repre-
senting data in a ”multi-scale” fashion: from one side, it may be argued that a certain amount
of information could be lost this way, as it leaves a large gap of scales uncovered. At the
same time, when storing data in discrete steps, the risk of data redundancy can arise, as the
differences between one scale and the next one may not be so significant. On the other hand,
there is also the issue of how map data is generalized: when shifting the task from a human
to a computer, it comes as no surprise that sometimes elements on a map may end up looking
strangely (counter-intuitively to how we would represent these features), while at the same
time keeping the data too detailed, thus making it heavy to transport and store. [Dumont
et al., 2020].

While the data storage and redundancy concerns are fixed with the implementation of Vario-
Scale maps [van Oosterom, 2005], putting the various generalization decisions in the hands
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1.2. Objectives and research questions

of a computer is far from trivial. While we end up gaining a lot of speed and efficiency when
it comes to using an automatic generalization software, there were plenty of situations where
the intuition of a cartographer would have come in handy when deciding how a particular
element should be simplified, such that it ends up looking good from the human perspec-
tive.

Borders are a prime example of a difficult challenge that has yet to be solved. Of course, it
is the desire of the user to see correctly-represented shapes on a map. At the same time, one
needs to keep in mind the medium which is used to interact, which needs to handle a right
amount of data such that the system can handle the task of displaying all of the features.
Considering these requirements, the problem ends up becoming less and less trivial. Finding
the perfect balance between preserving a good amount of data (with respect to the platform
on which the map was intended to be used on as well as the overall scale and area which is
currently being displayed), while at the same time preserving the overall characteristics of a
border when transitioning towards a lower scale level.

Trying to automate the cartographic generalization process has been a continuous endeavour,
and plenty of researchers and cartographers have tried finding the best solution. However,
while a complete and final resolution of this problem may not be achievable, due to the many
parameters, questions marks and the overall uncertainty surrounding both the map itself as
well as its user, trying to find the best middle-ground, or a ”best case scenario” solution, may
still be an achievable undertaking.

Considering this brief introduction into the world of modern-day maps, alongside the insight
into some the problems that these sort of mapping software solutions still encounter, it is time
to start diving deeper towards the root cause and the issue itself. The following section goes
over a subset of questions (out of a wider range of topics and issues all under the umbrella of
the current subject matter), which will constitute the main research focus of this graduation
thesis.

1.2. Objectives and research questions

After introducing the topic at hand, it is time to further restrict the subject matter by intro-
ducing more precise topics to analyse further in the graduation thesis. The spotlight will be
put on the issue of borders, discussed in the previous section, and their generalization in par-
ticular, as it is one of the most important parts when it comes to having a good-looking map.
To better encompass the main concepts to be discussed and investigated in this thesis, the
following research question is introduced:

To what extent can multiple line-generalization algorithms be (simultaneously) introduced in the
Vario-Scale structure such that they preserve the topology and enable an optimal line density ( while
trying to preserve the characteristics of the initial shape as well).

While this question does manage to bring the topic down to a narrower subject, it still has
some degree of complexity. In order to better understand the research, and to go further
in-depth into the problem, it would be a good idea to split the question into some more
sub-questions. These will be divided into two categories, referring to theoretical aspects of
line generalization as well as understanding how such algorithms can be implemented in an
efficient way:

• Line generalization theoretical

3



1. Introduction

– Which line generalization algorithms are better suited for which particular situa-
tions?

– What is the most suitable way of combining said algorithms such that it upholds
the technical requirements?

• Algorithm and Data structure design-related issues

– What are the conditions and the development requirements necessary for main-
taining topological correctness at any scale?

– What is the optimal way of performing operations such that the line/vertices den-
sity remains constant, also when taking into account the scale change and its most
favorable ratio between the number of objects and the size of the map which is
being displayed at that particular scale?

– How can the scale transition be performed in a smooth manner when integrating
it into the broader Vario-Scale system? At the same time, what is the best way,
from the point of view of time and size complexity (from the perspective of Big
O notation concepts [Kuredjian, 2017], when looking conceptually at the efficiency
of the various algorithms), to perform line generalization in particular and Vario-
Scale operations in general?

1.3. Outline of the thesis

This graduation thesis begins with a presentation of the theoretical background in Chapter 2,
which will serve as a starting point for the rest of the thesis. Afterwards, the main Method-
ology steps are introduced in Chapter 3, which give us the blueprint on which the rest of the
thesis is built upon (and it may also be considered as a step by step guide on how to reach a
solution). Next, a discussion on the main development concepts are described in Chapter 4,
alongside other software and dataset constraints and requirements. Upon doing all of this de-
velopemtn work, the following Chapter 5 presents the results, from both a visual as well as a
numerical perspective, of the research which has been performed throughout this graduation
process. Lastly, the paper ends with trying to answer the questions which were posed at the
start of the entire process, in Chapter 6, which also tries to go over exactly how impactful the
work done on this research has been on the overall scientific understanding of this topic.

4



2. Theoretical background and related
work

This chapter serves as a theoretical starting point of this thesis, and aims to introduce the
main building blocks behind the research. It begins with giving the big picture of the concepts
behind the map generalization process, followed by a more in-depth discussion into the sub-
category of border generalization. After these concepts have been introduced, we can take
a deeper-dive into the inner-workings of the Vario-Scale systems, including what it is, what
structures it uses and how the underlying data should be modelled and structured. Lastly, a
number of different spatially-aware data structures are described.

2.1. Map Generalization

Müller and Wang [1992] defines Cartographic Generalization as the process of abstracting,
in a meaningful way, the diversity and complexity of the real world such that the resulting
cartographic representation is useful and usable with respect to the given scale and overall
purpose of the map. There are a number of distinct basic processes which can be applied in
the generalization workflow (Figure 2.1), out of which only the (line) simplification and the
amalgamation are used in the Vario-scale map generation (as well as a split operation, not
depicted in the guide by Shea and McMaster [1989], which splits a face into pieces and then it
assigns those pieces to the neighbours, further explained in Section 2.3.1 [van Oosterom and
Meijers, 2014]). Although there is a lot of theory related to cartographic generalization, for the
purposes of this thesis, it would be good enough to just discuss about the line generalization
process.

2.2. Line Generalization

Line Generalization is the process of simplifying the shape of polylines (representing the
borders of object on a map), such that the overall result has a shape more suited for the scale
at which the operation is performed. There are two main procedures of going about this
simplification, namely:

• line simplification, which removes, according to a certain set of rules, a varying number
of points from a targeted line.

• In Shea and McMaster [1989] line smoothing is defined as ”act on a line by relocating
or shifting coordinate pairs in an attempt to plane away small perturbations and cap-
ture only the most significant trends of the line”. Thus, this operation only changes
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2. Theoretical background and related work

Figure 2.1.: Different types of generalization solutions[Shea and McMaster, 1989]

the position of certain nodes in the polyline, in incremental steps, until the two seg-
ments which converged on that node become co-linear, thus creating a smooth border
animation when going in-between different zoom levels1.

Notable examples of line smoothing algorithms include McMaster’s Distance Weighting Al-
gorithm [McMaster and Shea, 1992] or Chaikin’s Smoothing Algorithm Chaikin [1974]. How-
ever, while this operation may be a very useful in certain situations, it ends up creating ex-
tra complexity by changing the structure of the map without actually simplifying it. Thus,
smoothing is not explored any further in this research, but it is mentioned later in the discus-
sion of Conclusions and Future Work.

While line smoothing solution can provide visually pleasing map for the end-user, it does not
involve the removal of features, and thus does not make the map any simpler. As using these
particular algorithms does not completely fall within the scope of this thesis, we will only be
looking at the ”line simplification” category, in the rest of this section.

1https://geogra.uah.es/patxi/gisweb/LGmodule/LGSmoothing.htm
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2.2. Line Generalization

2.2.1. Douglass-Peucker

While this solution is not used directly in the thesis, it does deserve a mention, as it is used in
the BLG-tree in the original version of tGAP, and it is also the first such solution, dating from
1973 [DOUGLAS and PEUCKER, 1973]. At the same time, it is still being used in various
pieces of software, including Esri’s own ”Simplify Line” toolset2, where it is considered suit-
able for retaining critical points, and even in applications such as GPS and Waypoint tracking,
or AI [Mohneesh, 2021]. For these reasons, it can be considered as a very valid reference point
when using it to compare against other similar line generalization algorithms.

Figure 2.2.: DP Simplification [Crespo et al., 2008]

The Douglass-Peucker line simplification is an iterative algorithm, which uses a predefined
tolerance value to check against all the component points in a particular edge. It starts by
connecting the start and end point, then adding to the furthest away point from the base-
line to the list of saved points (second step in Figure 2.2). This process occurs in an iterative
manner until either all points are outside the threshold (Step 3 in Figure 2.2), while all nodes
which are inside of the threshold will end up being removed.

2.2.2. Reumann-Witkam and Visvalingam–Whyatt

Both the Reumann-Witkam as well as the Visvalingam and Whyatt [1992] algorithms come
as alternatives to Douglass-Peucker, as it has a number of edge-cases where its result is less
then ideal.

2https://desktop.arcgis.com/en/arcmap/10.3/tools/cartography-toolbox/simplify-line.htm
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2. Theoretical background and related work

The Reumann-Witkam algorithm, similarly to the Douglas-Peucker alternative, uses a toler-
ance value to determine which points should remain in the simplified version. That being
said, the way the tolerance is used is differently3. Instead of firstly taking the start and end
points of the original geometry, the iteration is performed by taking every two consecutive
points. Then, any other vertices which lie within the tolerance value are removed (as it hap-
pens in Figure 2.3). This is being repeated until we reach the second-to-last and last vertices
respectively.

Figure 2.3.: The Reumann-Witkam Simplification - visual explanation [Source - psimpl web-
site]

On the other hand, Visvalingam and Whyatt approach the solution in another way: instead
of using a tolerance, they take all triangles in the polyline (formed by every three consecutive
vertices). Then, the triangle with the smallest area is selected for removal, which results in
it being flattened (basically, for the solution, the base of the triangle is connected - as it can
be seen in Figure 2.4). This process is being repeated iteratively until only the first and last
nodes (from the initial structure) remain.

3https://psimpl.sourceforge.net/reumann-witkam.html
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2.2. Line Generalization

Figure 2.4.: VW Simplification [Source Amigo et al. [2021]

2.2.3. Samsonov-Yakumova

The Samsonov-Yakimova ”Shape-adaptive geometric simplification of heterogeneous line
datasets” paper introduces a complex algorithm which deals with complex geographic data.
Unlike the previously mentioned line generalization solutions, the two researchers focused
on incorporating a number of different algorithms, depending on the type of border which
exist in a particular dataset. Looking at the classification in Figure 2.5, the authors consider
that common administrative divisions, which generally follow either parallel or median di-
rections, as being perceived in an orthogonal and schematic pattern. Oppositely, divisions
created by natural geographic elements, such as rivers or mountains, will follow a non-
schematic (smooth) classification, without any inherent regularity, and will require in term
a different kind of simplification.

For this thesis, only the algorithm which is to be applied to highly-schematic and regular
borders will be of relevance. For this reason, a number of steps (such as pre-processing, or
classification) will be skipped in this explanation. And, even though the solution presented
is used to discuss highly-artificial administrative borders, the algorithm itself is very useful
for man-made structures as well, such as buildings.

In a nutshell, the paper discusses the need of preserving the angularity of these schematic-
orthogonal lines, in such a way that their squared characteristic (i.e. 90 degrees angles) is kept
even after the simplification. In the original version of the solution, a target scale is being set
(by the user), where any segment shorter than the length-tolerance will be removed

In order to determine which of the simplification should be used, Samsonov and Yakimova
[2017] derived a configuration, where the borders were classified in either a Z-like, U-like,
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2. Theoretical background and related work

Figure 2.5.: Classification of border types [Samsonov and Yakimova, 2017]

endpoint or short configuration (Figure 2.6). The simplification itself is based on ”substitu-
tion procedure in which the deleted line segment and its neighbours are replaced by a new
configuration”, where 3 types of substitutions are included in the algorithm itself, namely the
median, shortcut and diagonal (Figure 2.6, top-right).

The median simplification is performed by removing the ”problematic” segment, ei, along-
side its direct neighbours, afterwards being replaced by a perpendicular line from its second-
degree neighbours (ei − 2 and ei + 2 respectively). As this process end up equalizing the
overall proportions between two neighbouring faces (and making the pattern, in the vision
of the authors, more perpendicular), it is considered more suitable for small-scale generaliza-
tion, thus making it the default option for both the U-like and the Z-like configuration.

Shortcut substitution, on the other hand, works by creating a connection between the ei − 1
and ei + 2, or alternatively, ei − 2 and ei + 1. The paper suggests applying both algorithms,
and selecting the one which does not introduce any topological errors.

Lastly, the Diagonal substitution is applied in cases where the edge consists of three interior
nodes (or an edge which has exactly four segments), and it implies simply connecting the
first and the last interior point. At some point in the generalization process (when the scale
becomes extremely low), all segments will end up applying this substitution method.

10



2.3. Vario-Scale Maps

Figure 2.6.: ”Edge substitution strategies for various configurations of orthogonal line seg-
ments. Endpoints are symbolized by hollow dots, the old configuration is a dotted line,
the contracted edge is marked by an X and the new configuration is depicted in colour.”
[Samsonov and Yakimova, 2017]

2.3. Vario-Scale Maps

2.3.1. tGAP

The topological Generalised Area Partition (shortened henceforth as tGAP), introduced in the
paper by van Oosterom [2005], is a data structure suitable for storing the sequence of oper-
ations which are being performed in the Vario-Scale generalization process, without any ge-
ometrical redundancies. It comes as an alternative to the data structures used in Multi-Scale
mapping architectures, which have the drawback of storing duplicate data across multiple
scale levels (in the situation of geographic map objects which undergo little to no transforma-
tion in-between two (or multiple) scales, it would be required to keep the same record in the
datastores associated to the respective scale level), while at the same time only allowing for a
limited number of available Level of Detail.

The tGAP comes as an improvement to the original GAP-tree [van Oosterom, 1995], and its
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2. Theoretical background and related work

creation is based on two main functions: an Importance equation (Eq. 2.1), which gives an
importance value to all faces based on their area and the weighted value of their respective
classification. The second function (Eq. 2.2) computes a comparability parameter between
two adjacent polygons based on the length of their shared border an a pre-defined value
which represents how compatible two different classes are.

Importance(a) = Area(a) ∗WeightClass(a) (2.1)

Collapse(a, b) = Length(a, b) ∗ CompatibleClass(a, b), (2.2)

Figure 2.7.: The 4 map fragments and corresponding tGAP structure [Source: van Oosterom
and Meijers [2014]]

Using these two equations, it is then possible to determine a list of n elements containing
the least important areas, alongside their most compatible neighbours, thus determining the
area which will be assimilated into which adjacent polygon. This is also called the merge
operation, and is depicted in Figure 2.7, at step ‘c‘. This process would happen until there is
only one single object left.

After giving an introduction into the equations which formed the merge operation in the ini-
tial GAP tree structure, van Oosterom [2005] goes over a number of improvements which
occurred from that point. One new (software) addition worth mentioning would the intro-
duction of the split operation in Ai and van Oosterom [2002], based on the idea that, instead
of finding determining which of the neighbours is most compatible with a certain area which
has to be removed, we could split the area amongst all of its neighbours.

However, it is pointed out in the paper that these subsequent versions of the GAP tree still
did not contain any topological information. Thus, a topological structure is attached to the
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2.3. Vario-Scale Maps

GAP tree, meaning that ”the edges and the faces table [in the output of the tGAP generation]
both have attributes that specify the importance ranges in which a given instance is valid”.

Figure 2.8.: The step by step process (from the perspective of the objects on the map) of the
tGAP Generation Workflow [Source: van Oosterom [2005]]

A line simplification operation, alongside the merge and split functions, was being handled
by a BLG-tree. This uses the Douglas-Peucker algorithm (Section 2.2.1) to simplify the edges
and to record these performed operations in a tree structure while also preserving informa-
tion related to the change which has occurred. An example on how these operations are
performed is presented in Figure 2.9

The focus of this graduation research will be exclusively on the tGAP generation algorithm.
The second part of the Vario-Scale workflow, which deals more with visualization, is called
the Space-Scale Cube (further also abbreviated as SSC). As it is not researched in this paper,
being aware if its existence is more than enough at this point. However, it would be worth
mentioning that, the topic presented in the next sub-chapter, while only discussed in the
frame of the tGAP generation, has effects on the SSC as well (Example in Figure 2.9)

2.3.2. Topological structure

Considering a particular planar partition as the starting point (depicting a certain finite area of
the earth, with more or less abstractions pre-applied to it), we can refer to and define a num-
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Figure 2.9.: An example of a Space Scale Cube, when using a) the classic version of tGAP and
b) the smooth version [Source: van Oosterom and Meijers [2014]]

ber of different cartographic generalization operations which can be applied on the planar
partition, in a sequential order, until there are no more actions which can be done (meaning
that the planar partition will contain only one, fully-simplified polygonal object/face).

When working with a vario-scale system, we take, as input data, a topologically-correct pla-
nar partition, which will represent the starting point for the generation of the vario-scale map.
This is also considered as the highest level of detail. A planar partition is defined as ”a sub-
division of a polygonal subset of the plane into non-overlapping polygons” (which are also
referred to as faces) [Ohori et al., 2012]. These faces are in term composed out of a number of
polylines, which also constitute the borders between any two polygons.

Before going into a deeper discussion regarding this topic, it should be noted that the afore-
mentioned planar partition should contain information related to what kind of real-world
classification do the polygonal faces adhere to. This enriches the dataset, thus transform-
ing it from a simple representation of some geometrical objects (points, lines, polygons) on
the 2D plane into a spatially (and topographic) collection of data. For example, a forestry
GIS specialist may receive a dataset from land-surveyors containing a plain planar partition
composed by purely-geometrical instances (which may or may not be referenced in a certain
Coordinate Reference System). However, categorizing each polygon as a certain species of
tree would significantly improve the usefulness of the data.

This classification can be then further refined by assigning a certain weight to each of the
classes based on how important that respective land-use classification is in a particular in-
stance (for a certain application) or based on the preference of either the user or the producer
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2.3. Vario-Scale Maps

of the Vario-Scale map (For example, a governmental agency which deals with infrastruc-
ture projects will of course give a higher priority to road/train/canal network rather than
forested areas, which will mean the overall generalization process (and in particular the tGAP
generation) will favor infrastructure-like polygons to their other counterparts in different de-
cisions).

An in-depth discussion into this topic is presented in the paper by [Ohori et al., 2012], in-
cluding a presentation of the steps taken in preparing the dataset, such that it adheres to all
topological constraints that are required for the process to work. In the scope of this gradua-
tion paper, it would be good to briefly mention (some of) the more important criteria, which
would ensure the topological correctness of any data structure (in the shape of a planar par-
tition, when working in a tGAP-bound system):

• Completeness - The entirety of the area defined by the planar partition should be covered
completely by non-void objects. What this means is that, considering we have a vector
map depicting a particular area, there should not exist any blank spots, or locations
with no faces present. The only non-void face, also known as the outside face, is only
allowed to exits in the exteriors of the boundary of the planar partition.

• Correctness - No two geometries should intersect with one-another, and no line segments
may have overlaps/self-intersections. Considering that one edge has exactly one left
and one right neighbour, either of these situations would in term create the case where
there are conflicting faces being considered for the same-side neighbour.

• One node multiple edges validation - Lastly, and as an addition to the previous point, in-
tersections in a planar partition are only allowed in geometric structure called ‘Nodes‘,
which are defined as 1D locations, where more than two strictly distinct edges may
end-up in (a definition which clearly excludes both self- and outside-intersections, as
they would imply the same edge getting out of the Node more than just once). Any
Nodes with exactly two edges going out of them (either the same edge, or a different
one) should be dissolved, and one single edge should be put in its place, to keep this
requirement.

Skipping over any of these requirements will most likely result in an the workflow malfunc-
tioning from its usual behaviour, due to the face that the different generalization processes
will end up giving an erroneous result. This includes the various line generalization algo-
rithms which are used throughout this paper. Thus, once it can be confirmed that the dataset
is correct, we can move on by looking at the aforementioned line generalization solutions,
and to understand the theory behind their inner-workings.

2.3.3. Spatial storing solutions

As we are working with very complex data, which can have potentially Gigabytes or even
Terabytes of data points, having a way to efficiently store and access it is crucial. For this
reason, having a good data structure can truly make the the difference between an efficient
and a slow solution.

Quadtrees are, as the name suggests, a tree-based data structure, which work by recursively
sub-dividing a geographic space, filled with elements, in a particular manner, such that the
final resulting tree will allow easy access of the component elements which are close to one an-
other, thus enabling very efficient Nearest neighbour operations, or even various geo-distance
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Figure 2.10.: An example of a PR Quadtree [van Oosterom, 2009]

Figure 2.11.: Example of R-tree [Guttman, 1984]

range queries [Oyediran, 2017]. The term of ”quadtree” is a general one, and it incorporates
a number of different variants.

Point-region-quadtrees (PR-quadtrees) is one such category, where the space is divided into
four different (but equal) quadrants, in accordance to the four geographical locations: SW
(south-west), NW (north-west), SE (south-east), and NE (north-east) [van Oosterom, 2009].
At the end of the division, each bucket should contain at most one point (Figure 2.10).

As its name suggests, it is a very useful data structure when it comes to storing and access-
ing spatially-distributed points (defined as (X,Y) coordinates on a plane). However, when it
comes to more complex types of data, such as simple or complex edges, an alternative such
as R-trees may prove to be a better solution.

R-trees were created by Guttman [1984] with the scope of handling geometrical data as effi-
ciently as possible. It works well not only with points, but with lines, rectangles and other
polygonal structures as well. The R-tree works by bounding any object which exists in a data
set within a Minimum Bounding Box, which will be leafs of the tree. Further-up, these Boxes
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2.3. Vario-Scale Maps

are further grouped into bigger and bigger regions (which will end up being the nodes of the
tree) [Papadopoulos et al., 2009]. Exactly how these groupings occur can be adapted through
the algorithm itself, and a structure will end up looking similar to Figure 2.11

The usefulness of these data structures, when working with a Vario-Scale system in particular,
lies in the ease of data access, especially when it comes to the generalization process. Due to
the large number of simplifications which are being performed during this process, having
an easy way to check any neighbouring features in the region where we are working can truly
make the difference (for example, in the case of intersections)
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After establishing a solid theoretical background in the previous chapter, it is time to take an
in-depth look at the methodology applied in investigating the research questions which were
proposed. Only the conceptual ideas are presented in this part, the actual implementation of
the solution is discussed in the following chapter.

The general workflow is shown in Figure 3.1, and it gives an overview of the four main
stages in the development of the Methodology. These stages may also be read and interpreted
as steps taken in order to come to a definitive solution. The first step discusses the main
design choices behind the implementation of the Samsonov-Yakimova Line Simplification
algorithm, taken from the perspective of isolated geometries. In the next layer, we take the
resulting solution and plug it into the tGAP Generation workflow. Once it is confirmed that
the new workflow functions correctly, the next step in the methodology is to combine the
previously-developed orthogonal line simplification with the already-existing solutions (such
as Reumann-Witkam or Visvalingam–Whyatt). In the last step of the whole process, after the
integration of multiple solutions has been successfully completed, a discussion on further
improving the synchronisation between the processes can be had. Finally, the output of the
entire methodology should be an improved version of the original solution for the tGAP
Generation process, where more than just one line generalization process can function in
harmony both amongst themselves as well as with the other generalization operations which
are used. From a system development perspective, the aforementioned steps may also be
considered as parts in a Workflow Diagram1.

Before going further into the Methodology itself, for the purposes of later on answering the
sub-questions defined in the Introduction chapter, it is good to define exactly what it means
for an algorithm to adhere to ”technical requirements”. We can consider ”technical require-
ments” as a set of rules defined for classifying the workflow as ’having ran successfully’. In
particular, these rules are: the solution runs without any errors; the solution should generate
a correct result; and lastly the solution should consider the right algorithm for the right case.
Considering this definition, and the rationale behind the process, it is time to take a further
in-depth look at the steps performed to research the premise of this thesis.

3.1. Implementation of the Samsonov-Yakimova orthogonal
Line Simplification algorithm in isolation

Considering the issues presented in the previous section, and before going further in-depth
into how to choose the optimal line simplification solution under varying circumstances,
at least another algorithm had to be implemented. Due to Reumann-Witkams’ (or even
Visvalingam–Whyatt’s) algorithm less-than-desirable way of handling highly-geometric (or
man-made) polygons, finding an alternative for this situation seemed like the logical next

1https://www.lucidchart.com/pages/tutorial/workflow-diagram
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Figure 3.1.: The Methodology diagram

step forward in the research process. The algorithm presented in the paper by Samsonov
and Yakimova [2017] for lines which they define as Sharp regular schematic/orthogonal (dis-
cussed in Section 2.2.3, classified in Figure 2.5) was chosen to perform this task.

While the original solution worked well for the dataset used by the authors, due to the com-
plexity behind the way our data is structured, it had to be adapted such that it would work
in harmony with the other operations present in the tGAP generation workflow. This means
that there have been a number of tweaks done on the initial version of the algorithm, so
that all situations and edge cases which may exist when working with real-world data are
covered.

First of all, there was a requirement to adapt how data elements are used in the simplification
operation - while Reumann-Witkam algorithm takes points as arguments, we use segments.
Further information on this is given in the Aspects related to Implementation Chapter, but
for now it is worth mentioning that the segment will constitute our smallest unit, on which
modifications are applied. This means that, if for RW we were discussing about removing
point from the polyline, we are now considering the removal of segments (Figure 3.2).

Another important difference, that has an effect on the the algorithm’s way of reaching a final
result, is the fact that the Samsonov-Yakimova line simplification, due to the way that it was
defined, ends up introducing new Point geometries into the mix. This is not something that
occurs in the case of RW or VW, as these two solutions only connect already existing nodes
(exactly how this occurs differs for the two algorithms, but the process itself is more or less
the same).

By conceptualizing the different scenarios presented in the paper by Samsonov and Yakimova
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3.1. Implementation of the Samsonov-Yakimova orthogonal Line Simplification algorithm in isolation

Figure 3.2.: How different basic unit of operations are considered in different situations (RW
on the right, SY on the left), where the removal operation is being performed at a point and
segment level respectively

[2017] (the U-like, Z-like, Endpoint and Short configurations and the Median, Diagonal and
Shortcut substitutions) under the different situations which can occur when working with
this sort of data (further insight on the data itself is given in Section 4.2 of the following
chapter), a number of different versions can be devised, in which a certain type of operation
is applied:

Considering a certain line containing n number of segments, which has a pre-defined order
from first (start) to the last (end) division, and where n ≥ 4, we describe a segment i as
”undesirable” if it complies with a certain criterion, which then results in being chosen for
elimination - in the case of this particular methodology, this criterion is the length of the seg-
ment, where the shortest one is selected for simplification. After this particular segment has
been selected, we then define:
– Direct/First-degree neighbours, as those segments which are directly to the left and right
of our ”undesirable” i
– Second-degree neighbours are the segments directly to the left/right of the first-degree
neighbours.
– An ”anchor” point is the extremity of a certain segment (either its Start or its End) - which is
considered to be relevant in the context or a particular operation – A ”border” or ”terminal-
position” segment is either the first or the last segment in a non-circular polyline. Their im-
mediate neighbours are called ”neighbouring-the-border” or ”almost-terminal” segments

We define a line to be ”closed” or ”circular” if its starting-point is the same (spatially speak-
ing) as its end-point. A segment chosen on this sort of polyline will always have all direct and
second-degree neighbours, while this is not always a guarantee for non-circular polylines.

Given these general definitions, we may now go ahead and fit different situations under
similar cases, in Figure 3.3 (further explanation on the drawing symbols given below). Each
of this case can fall under a different Simplification variant.

• Case A: This is the situation where the segment to be removed has all of its left and
right first/second degree neighbours. This is the case under which all circular polylines
fall. In this case, we can apply either the Median Simplification (Which is shown in the
Figure) or the Shortcut Simplification

• Case B: The undesirable is one segment away from being the final one in the line (mean-
ing its either the second or the second-to-last). This is the situation which is not cov-
ered by the authors of the algorithm. Due to the fact that one of its second degrees
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neighbours doesn’t exist, the Median Simplification cannot be correctly applied, so the
decision has been made to apply the Shortcut Simplification in this scenario

• Case C: this is the ”endpoint” configuration presented in the paper. In this case, the
segment to be removed is either the first or the last one in the polygon, and thus has no
neighbours on one of the sides. Shortcut Simplification will be applied

• Case D: Equivalent with the ”short” configuration, occurs only when the number of
segments in the polyline is 4, and the one eliminated is in the interior (i.e. NOT the first
or last one). The Diagonal Simplification is applied in this situation

Figure 3.3.: The different scenarios which may occur during the orthogonal line simplification

In Figure 3.3 the segment which has been selected to be discarded is marked by a red cross,
while the segments which are removed alongside the main one are noted by a purple cross.
Segments which have been extended are purple, while newly-created ones are shown in red
lines. On the same figure, the procedure which is applied to a certain segment is displayed
(using an arrow), alongside its relevant/anchor point. Overall, there are 3 main operations
which can be applied on a certain segment (Figure 3.4):
–Complete removal: this is where the segment (alongside both of its endpoints) are taken out
of the polyline.
– Modification: In this procedure, we modify the location of the anchor point along the general
direction of the segment (thus extending or contracting the segment length), until it intersects
with a ternary line equation (purple). The other end will remain in place
–Keep reference points only: here, the anchor point is the one that remains in place (fixed), and
from it a new segment (with a different line equation!) is created, by tracing the perpendicu-
lar from the anchor point to the ternary line (with purple)

In the situation of the latter two operations, there are two different directions (namely left and
right) in which they can be performed. The decision on which of the two options to utilize
will be based on the location of the particular segment to be removed in the context of the
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Figure 3.4.: Main actions which can be applied on a certain segment

edge which has been selected for simplification. While the mathematical formulas which will
be applied will remain the same, the variables will change depending on the situation.

3.1.1. Median Implementation

In a Median-specific configuration (Figure 3.5), we have the following elements and the re-
spective operations which should be applied:
– the undesirable segment, which will be replaced by its perpendicular through the middle
– the direct neighbours which will be removed
– the second degree neighbours which need to be modified (with either the start or the end
as anchor points) by intersecting with the aforementioned perpendicular

Determining the equation of of segments, based on their extremity nodes

The initial step is to determine the equations of the lines (in the slope-intercept version) which
pass through the undesirable segment and through the second-degree neighbours.

In general, considering that a segment is formed by two end-points: P1(x1, y1) and P2(x2, y2),
the equation of the (infinite) line which passes through those two points is determined as:

Slope: m = (
y2 − y1

x2 − x1
) (3.1)
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Figure 3.5.: Usual Configuration of a Median Simplification

By plugging in the slope into the general line equation(y = m ∗ x + b) and replacing x, y with
P1 or P2, we can then determine the y-intercept as:

Y-intercept: b = y1−m ∗ x1 = y2−m ∗ x1 (3.2)

Final Line equation: ⇒ y = m ∗ x + b (3.3)

A bit of an issue may be noticed in these formulas, namely the fact that, in the case of vertical
lines, the slope would end up being infinity. For the scope of this graduation paper, the
solution to this problem is given in the form of a coding fix, which is explained later on in the
Defining operations and simplifying Section of the next chapter.

Computation of the perpendicular bisector of a segment

Once we have determined the ’actors’ and their specific characteristics (such as line equa-
tions and anchor points) in the previous subsection, it is then time to start the replacement
process. The first step is to determine the perpendicular bisector (i.e. the line which passes
perpendicularly through the middle) of the undesirable segment. Considering that the slopes
of two perpendicular lines are the negative reciprocals of each-other2 we can then determine
the value of the new slope as:

Slope: mperpendicular = (
−1

moriginal
) (3.4)

2https://study.com/academy/lesson/perpendicular-slope-definition-examples.html
#: :text=The%20slopes%20of%20two%20perpendicular,%2B%203%20is%201%2F2.
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Once we have the mid-point coordinates (where Pmid = (
xstart+xend

2 ,
ystart+yend

2 )), we can
then plug the slope and the point into the line equation, similarly to Equation 3.2, in order to
determine the y-intercept. Thus, the final equation for our perpendicular bisector would be:

Perpendicular Bisector equation: ⇒ yperp = mperp ∗ x + bperp (3.5)

Finding the intersection between two line-equations

Now that we have this perpendicular equation alongside the equations for the second degree
neighbours, it is time to determine the intersection point between each neighbour and the
perpendicular line. For this, we basically have to mathematically determine the intersection
point between two line equations (Figure 3.6). For this, the following formulas are applied:

Figure 3.6.: General structure of the intersection between two line equations

Considering that our lines are defined as:

l1 : y = m1 ∗ x + b1

l2 : y = m2 ∗ x + b2

We know that, at the point of intersection, the y coordinate is equal, which means that the
two equations can be equaled as:

m1 ∗ x + b1 = m2 ∗ x + b2

Which can then be rearranged in order to extract the value of the x coordinate:

m1 ∗ x−m2 ∗ x = b2 − b1 ⇒ x =
b2 − b1

m1 −m2

And now x can be replaced into either l1 or l2 in order to determine the y-coordinate.

y = m1 ∗ (
b2 − b1

m1 −m2
) + b1
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Thus giving us the intersection Point:

P = (
b2 − b1

m1 −m2
, m1 ∗ (

b2 − b1

m1 −m2
) + b1) (3.6)

We apply Equation 3.6 once between the left second-degree neighbour (which has as anchor
Point - End) and the perpendicular line - resulting in intersection Point P1, and a second time
between the right neighbour and the same perpendicular line, with result P2. Now, the final
step in the process is to modify the structure of the segments by modifying their anchor points
with their respective intersections, and creating a new segment from P1 (start) to P2 (end).
The undesirable segment will be removed fully, alongside both of its direct neighbours.

3.1.2. Diagonal Implementation

This operation always occurs in the B and C cases from the different possible simplification
scenarios (Figure 3.3). In this situation, we have one segment (always either the first or the
last) from which we would like to only keep the anchor point, and a segment which should
be modified, whose linear equation will constitute the base on which the perpendicular from
the anchor point will be traced.

Figure 3.7.: The two situations which may occur in Case B and C, where the ”Keep Reference
Only” segment (drawn in red with a red cross on it) is removed and a new line is created
(with purple) between the anchor point and another segment

Thus, considering that our segment has a slope-intercept form (Equation 3.3), and our anchor
point has coordinates (xA, yA), the following step is determining the intersection point on the
perpendicular from the anchor (Figure 3.8)

Knowing the slope of the perpendicular line is −1
m (from Equation 3.4), and having one of

the points through which this line passes (i.e. the Anchor point), we can then substitute the
values in order to determine the y-intercept (same as in Equation 3.2). The intersection point
P can be then found by applying the formulas presented in Finding the intersection between
two line-equations between our ’modifiable’ line and the just-computed perpendicular linear
equation.

Once this has been computed, finalizing the simplification process entails modifying the
”Keep Reference” Segment by changing the coordinates opposite of the anchor point (mean
that, if our anchor is the start coordinate, we will replace the end location with P), remove
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Figure 3.8.: Intersection point on the perpendicular from a point to a line

the undesirable segments and the first degree neighbour in the direction of the segment to be
extended, and finally change the anchor point in the ’extend’ segment.

3.1.3. Shortcut Implementation

Shortcut simplification occurs exclusively when the number of segments composing a poly-
line is equal to 4 and the undesirable segment is in the interior (i.e. not a border segment - In
this situation, it goes to case C). By far the simplest of the simplification alternatives, it simply
requires the removal of the two interior segments (with red crosses on Figure 3.9) from the
polyline and connecting the first and last segment directly (from the end-point of the first
segment to the starting point of the last segment - with purple on the Figure).

3.1.4. Topological inconsistencies with the median simplification and
alternatives

The first issue worth mentioning is the Median Simplification itself. The authors do mention
that, although the Median algorithm is generally preferred as it equalizes the propositions
between the neighbours, it might lead to topological errors (from a local perspective, meaning
self-intersections). Consider the situation in Figure 3.10 (left), where the purple segment is
the undesirable one. Due to the strange configuration of this polyline, there the segment to be
removed and its neighbour to the right have an incidence angle close to 180°, meaning that
the two segments are almost co-linear. As a consequence of this, the line passing through the
second degree neighbour to the right (with the Anchor as Start) looks to be almost parallel
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Figure 3.9.: Shortcut Simplification Configuration

with the orthogonal to the undesirable. They do meet-up at some point, however that is so
far away that the rest of the segments remaining in the polyline look almost squashed (Figure
3.10 (right)). And while this is not a situation which directly results in a self-intersection, it is
certainly quite undesirable.

Figure 3.10.: Edge case where the Median Simplification results in a very strange outlier

For this reason, the Shortcut simplification can also be used as an alternative. In order to
implement this in our workflow, the following changes are being performed (Figure 3.11):
– decide upon which of the two segments with an ”extend” operation will keep its operation,
while the other will remain unmodified (drawn in Orange)
– The anchor point of the latter segment will serve as a basis for determining the intersection
as presented in the sub-chapter ”Computation of the perpendicular bisector of a segment”

This means that the result of the simplification will be different, depending on the decision
performed. At a first glance, it seemed that making the aforementioned changed would have
a direct influence on which of the neighbouring faces would gain new territory and while
the other would end up losing some of its (as it is the case when we’re working with a Z-like
configuration, in Figure 3.12. However, this does not seem to be the case for the segment used
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Figure 3.11.: The two alternatives to the Median Simplification

earlier in the explanation (Figure 3.11), where the left face loses some of its ares regardless of
which segment extension operation is being kept. For this reason, making this decision is no
longer a sufficient requirement for determining how the left/right face will change, so extra
analysis is required.

While the area which is adjusted (seen hashed with purple in Fig. 3.12) can be determined by
the end-nodes of the undesirable segment, the removed Anchor location from the modifiable
segment, as well as the newly-determined intersection point (forming a rectangle), this does
not give information to which of the two neighbouring faces this modified areas goes to. The
alternative solution to this problem would be:
– select one of the two faces
– compute its area, and use that as a baseline value
– compute the area after performing the simplification in the two different scenarios, and
express that values as a difference ∆area1and∆area2 between the baseline value and itself
– depending on whether that chosen segment is considered for enlargement or not, decide
between the biggest or smallest ∆.

However, if a certain face is set to be enlarged, this does not automatically mean that this will
be possible. For example, if we consider the Right case in Figure ??, and say that the face
on the left belongs to a class which we might wish to keep visible for longer on the map (for
example, a building). In this particular situation however, adding more area to our original
face is not possible. The only decision that can be made is a ”least of two evils” kind, and
going with the bottom version would result in a small decrease of size. This is of course not
ideal, but a separate condition could be introduced such that, if both ∆s are negative, then a
different operation could perhaps be applied, depending on how important it is for certain
classes to always expand or not.
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Figure 3.12.: Simplified lines as seen in the bigger context of neighbouring faces. Left: Z-like
configuration; Right: the configuration in Figure 3.11

3.2. Integration with the broader tGAP-system and
topological aspects

The next step in the methodology, after making sure that the Orthogonal line simplification
fully works in isolation, is to integrate it in the broader workflow of the tGAP generation. The
result of this phase would be that the Samsonov and Yakimova [2017] Algorithm can replace
the previously-used Reumann-Witkam Simplification as the solution used for simplifying
polylines after the other split and merge operations. However, this is only an intermediate
step, and it is not our desire to completely replace RW with the new SY, but to integrate both
of them: further information regarding the particularities of choosing between two or more
algorithms is discussed in the next section. Regardless of this, it should be noted that this
discussion is valid on both the tgap with SY, as well as tGAP working with both SY and
RW.

3.2.1. Correctly detecting intersections with external elements

While there are a number of issues and points which should be kept into consideration when
introducing a new edge-simplification algorithm into the tgap-generation workflow, the main
thing we wish to avoid are the topological inconsistencies. When we take a line, in isolation,
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and modify it such that it becomes simpler, when introducing it back into the planar partition,
the main issue that exists would be that our changed geometry overlaps or intersects other
neighbouring elements. For this reason, further checks are required.

When working with the RW Simplification, the solution would have been as follows: when
choosing a particular triangle (with the smallest area) to collapse, it would have been a suf-
ficient condition to simply check for any points which may lie inside the collapsible triangle.
The points could be taken from the QuadTree Structure, and what is left is simply a check to
see if there are any points from the QuadTree inside the area of the triangle (Figure 3.13 - Left,
where our modification is determined by the dashed-red line, which flattens the triangle, and
where the neighbouring element is drawn in purple). However, this is no longer a sufficient
condition when it comes to SY simplification.

Figure 3.13.: Checking for intersections in the Planar Partition by looking for the points in
QuadTree in the situation of RW (Left - Guaranteed to succeed) and SY (Right - Can fail
sometimes)

Considering the situation in Figure 3.13 - Right, we can see that the newly-created area (deter-
mined by the dashed-red line) ends up crossing the neighbouring element (drawn in purple)
in two different points. However, there are NO edges inside the changed area. Due to this
issue, we need to come up with another solution.

Another solution which can be considered would be the following: when simplifying a cer-
tain edge, check the resulting geometry against all of the constituent edges which form the
left and right faces (with the obvious exception of itself). This way, we can guarantee that
any other neighbouring edge does not intersect with our own. This is the solution which is
implemented in the methodology.

This can be seen in Figure 3.14 how this operation is being performed. Basically, the algorithm
ends up detecting two locations where our simplification intersects one of its neighbouring
edges (depicted in the figure with purple crosses), which in term rings the alarm bell that an
alternative should be found (or the operation should be performed after other changes have
been done. There are, however, a number of issues with this alternative as well, the first one
being the fact that it (can) involve a very large number of checks. For example, when we
consider the situation where our edge to be simplified lies on the boundary with the world-
face (i.e. the exterior of our planar partition): do we end up checking ALL of the elements
which constitute it, thus ending up having to do an incredibly large amount of intersections,
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Figure 3.14.: Example of how the intersection with first degree neighbours is being performed,
where the geometry to be simplified is shown in purple, and neighbouring edges with
black.

or do we consider it as an exception, and don’t check it at all? In my research, I found that
the best middle-ground when dealing with an element at the edge of the planar partition
is to just check those edges which also border have the world-face, while at the same time
ending in a common Node. This, however, still does not fully guarantee success , while at
the same time still keeping the complexity quite high. As this module is the one which has
been implemented, further details on its complexity are given in the Results and analysis
Chapter.

On the other hand, there is another issue which can occur when applying this method, albeit
quite rare, and occurring solely (under the tests performed throughout this thesis) when ap-
plying only the SY simplification for all elements, regardless of their type, is that the change
which we apply, under SY simplification, to a particular edge can be so ”drastic” (in situa-
tions similar to Figure 3.10 - even though the resulting shape is simple when it comes to the
number of constituent nodes that it has, it is certainly not simple when it comes to its overall
geometry), that it may end up going over the first degree neighbours (the faces to the left
and right), directly onto the territory of the second degree neighbour (such as the left neigh-
bouring face of an edge which is part of our left neighbouring face). This might be solve by
checking both the second (as well as the third?) degree neighbours, but at this point in time,
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we are introducing a lot of complexity in our solution, which is far from desirable.

The best solution for solving this issue would be to simply implement a geographic structure,
such as an R-tree which would store the position of all our edges, and which could easily be
used when it comes to checking the neighbours. Further information on this is given in the
Conclusions and Future Work Chapter.

3.2.2. Improving the selection of the edges to be simplified

Deciding which edges should be simplified, based on a particular criteria and at a particular
step, is another important feature of the tGAP generation algorithm. This module uses a
number of different principles to classify the edges and determine whether or not they are
still suitable for visualization, while keeping in mind the medium through which we will
visualise the result: a computer screen.

In the original version of the algorithm, the solution works as follows: for all the edges which
exist in our planar partition (which are formed by at least two segments), we take all groups
of 3 consequent nodes. For each grouping, we compute the height based on the area formed
by all three points, divided by the half of the base (as determined by the distance between the
first and last nodes in our sequence). The smallest value is saved from each edge, and that
value will also represent the priority value when inserting that particular edge in a Priority
Queue. Afterwards, all the edges, alongside their priority, are checked, at each step of the
process, against a simplification threshold, which is based on the resolution of the screen, in
accordance to the scale at which the process is at.

This method makes a lot of sense, due to the fact that, when considering a particular edge on
a screen, when zoomed out, it is quite difficult to distinguish very short triangles (with a very
small height from the base to the top), those looking almost as if they were continuous. At the
same time, due to the nature of how the Reumann-Witkam simplification works (Chapter 2),
those very short triangles will also be the ones which are removed. This, however, poses
a significant issue when introducing another algorithm such as Samsonov-Yakimova into
equation: the process through with which we select a suitable edge to be simplified may
not be equivalent with the shortest segment that we decide to remove from that edge. Thus,
a simplified edge may end up being sent back with the exact same selection value as before,
as the part with the shortest triangle may not have been simplified.

A solution to this comes in the form of adapting the priority value algorithm. In the case of
Samsonov-Yakimova, a good solution can be the selection of the value of the shortest segment
in a particular edge, and comparing this against the resolution (which is still a value based on
the scale, as it was in the previous variant of the algorithm). It does make sense from the point
of view of the user, as, when looking at a map with a lot of zoom, very short segments may
not even be well displayed in a pixel, so removing them first should indeed be a priority.

3.3. Integrating multiple algorithms in the tGAP generation

The final step in the process in adapting the algorithm in such a way that, when having more
than just one simplification solution implemented, it can decide which is the most suitable
option from the bunch.The first solution, and also the one which is implemented in this grad-
uation thesis, is a ”semantic-based selection of line simplification alternatives”: it uses the
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Border between Cls 1 Cls 2 ... Cls n

Cls 1* Cls 1 cA f(1 cA, 2 cA) ... f(1 cA, n cA)
Cls 2* f(2 cA, 1 cA) Cls 2 cA ... f(2 cA, n cA)

... ... ... ... ...
Cls n* f(n cA, 1 cA) f(n cA, 2 cA) ... Cls n cA

Table 3.1.: Compatibility matrix of multiple classes

feature classes of a particular dataset (for example: what topographic type a particular face
is) to decide which is the most suitable line simplification which could be implemented. It
should be noted that, in order to use this variant, it is a prerequisite for a particular dataset
to be enriched with such information - i.e. the dataset should be attached to a proper topo-
graphic map Kent [2009]. Using an unclassified dataset will not work with this method.

Considering we have a number of n distinct classification categories (for example roads,
rivers, agricultural lands, etc.), the first thing to do is to assign a specific simplification algo-
rithm for each of the aforementioned feature classes, in accordance to which solution is more
suitable for which particular case (where multiple classes can have the same algorithm). In
the particular example of our methodology, we consider buildings to be simplified using the
Samsonov-Yakimova method, and all other cases to be dealt with using the Reumann-Witkam
solution.

Afterwards, there are a number of variants which could be implemented: the first, and sim-
plest, would be to create a priority list, where all the available feature classes are ranked in
accordance to their importance (priority queue = [classa, classb, ...., classn]). Using this, when
having an edge which neighbours two distinct faces, the more important one will dictate
which algorithm will be selected in the simplification of that particular edge. The problem,
however, with this solution, is that it may be a bit too simple and too straight-forward. One
simple improvement of it can be using a randomizer with a particular predefined chance (for
example, 75%-25% in advantage for the more important class), but this might result in a result
which is not desired. This being said, the fact that this solution is not complex is not an issue
in itself. The issue arises from the fact that the algorithm becomes very rigid, and due to this
can end up choosing the wrong simplification, and can thus result in an inaccurate map, from
the perspective of the user.

Another, more complex variant of the solution, is in the form of a compatibility matrix, which
is based on a (manual or automatic) criterion. Consider the Table 3.1, where the right face
of an edge is represented by the rows, while the left face by the columns. Cls number cA
(or shortend as number cA in functions) represents the ”chosen Algorithm” for that specific
class.

While in theory a good way of deciding which is the best way to go about a simplification, the
function itself is not as simple to determine. One can request a particular user to fill this table
manually (for example, deciding in each case which one takes precedence), in accordance to
their needs.
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After introducing the general concepts behind how the methodology works, in this chapter
it is time to take a look at the particularities behind the implementation of the methodology.
Firstly, the software solutions which are used in the graduation project are introduced, fol-
lowed by a brief description of the datasets which will be ingested by the final workflow.
Afterwards, a more in-depth discussion into the particularities of the Samsonov-Yakimova
Implementation is had, followed by a chapter on the process of integrating everything into
the tGAP Workflow. In the final section of this chapter a brief introduction into the analysis
software is presented, which will be then used as a basis for the next chapter.

4.1. General Software details

The main chunk of the work done throughout this graduation thesis has been performed
as an extension to the already-existing tGAP generation software1, using Pyhton2 as the pre-
ferred programming language, as it can offer a number of versatile tools for geographic-based
software development. The final version of the code, created for testing and validating the
concepts presented in the previous chapter, exists as a fork of the main tGAP software, and
it is hosted on my personal GitHub account3. At the same time, the analysis solution, which
is to be implemented separately from the main tGAP Generation algorithm (and which will
be used to get the graphs in the Results and analysis Chapter) is also hosted on my GitHub
account, but in another repository4.

One important Python package worth mentioning, which is extensively used throughout the
development process of this solution, is Shapely5, which is used for analysis and manipula-
tion of various geographic data (such as planar features). Shapely has been developed using
the GEOS6 library.

All of the data used in the project has been stored in a PostgreSQL Relational Database Man-
agement System7, in a Database which has been enriched with the PostGIS extension, due to
its spatial characteristics, including the compliance with the Open Geospatial Consortium’s
”Simple Feature”8.

Lastly, the QGIS Software package9 has been used for visualisation of the resulting solution
and its visual analysis. As reference for the discussion to be had throughout this chapter, the

1https://github.com/bmmeijers/tgap-ng
2https://www.python.org/
3https://github.com/erbasualex/tgap-ng
4https://github.com/erbasualex/tgap-analysis
5https://shapely.readthedocs.io/en/stable/manual.html
6https://libgeos.org/
7https://www.postgresql.org/
8https://postgis.net/features/
9https://qgis.org/en/site/
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functioning principle of the tGAP generation software is depicted, as an activity diagram, in
Figure B.2 in Annex.

4.2. Datasets

The overall structure of this type of data is represented, inside a geo-spatial database, as
two separate collections of elements: the first one depicts all the individual regions or areas
(henceforth referred to as ’faces’) while the second collection keeps record of all the borders
between the said faces (also known as ’edges’). In order for the algorithm to function as
intended, the dataset used needs to adhere to a couple of principles. Otherwise, it would not
be possible to apply the generalization process. The most relevant requirements that any data
should follow such that it can be successfully plugged into the algorithm are as follows:

• All edges should be simple (i.e. no self-intersections present), and no two edges may
intersect each-other

• No two faces shall overlap, and there should not be any gaps in the datasets (i.e. regions
which are not recorded as a face)

• All faces need to be enriched with a classification category, giving it a more semantic
characteristic (meaning we no longer work with just purely-geometrical objects, but
instead with cadaster-relevant places in a particular area)

For this graduation process, a subset of the TopNL dataset has been used, covering an area of
approximately 60 square kilometers, in the south of the Limburg Province, in the Netherlands
(Figure 4.1). This dataset is part of the Topographic Base Registration service (‘Basisregistratie
Topografie‘ in Dutch, or BRT) which is collected, administered and provided for public usage
free of charge by the Dutch Kadastral Agency10.

Out of all the publicly-available collections of geographic data provided by the Dutch state
agency, the Top10NL11 has the highest level of detail, and it is designed to function at a scale
from 1:5,000, up to and including 1:25,000. At the same time, it is classified with a number of
useful semantic attributes, such as roads, railways, building, agriculture and so on, making it
perfect for the scope of the algorithm which is introduced in this paper.

The dataset, which encompasses an area of approximately 75 square kilometers, is then fur-
ther more divided into smaller datasets, as seen in Figure 4.2. The sub-division is performed
with a factor of three, such that each subset (with the exception of Small Test, which was used
exclusively for making sure the software can run during the development process) has three
times less the number of faces as its bigger counterpart.

Further detailing how the dataset is being stored in the database, the following particularities
are relevant to point out:
– The edge table has ‘ogc fid‘ as the Primary Key, which represents the entry of a geometry in
the database, and another ‘edge id‘ which is used for differentiating the various edges in the
planar partition. The geometry is defined as a LineString, in the Dutch Coordinate Reference
System12, and that has a spatial index on it13. It is defined by a start and end node, and a

10https://www.kadaster.nl/-/brt-catalogus-productspecificaties
11https://www.kadaster.nl/zakelijk/producten/geo-informatie/topnl
12https://epsg.io/28992
13http://postgis.net/workshops/postgis-intro/indexing.html
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Figure 4.1.: The area used as dataset, displayed on the national (left), regional (center) and
local (right)-level

left/right face - all saved as ids.
– The face table has a similar Primary Key, but two different kinds of ‘geometry‘, a bounding
box (saved as a Polygon) and a center node (stored as a Point), both of which also having a
spatial index on it.

Lastly, some initial statistical information regarding the datasets can be found in Table B.1, in
the Appendices. Here, it is easy to see the factor of 3 when it comes to increasing the size of
each dataset (when it comes to the number of buildings). Another thing worth pointing out
is the fact that, regardless of the datasets, initially, there are always more points then edges at
a factor of about 5-6%.

4.2.1. Main Data Structures used in the General tGAP generation
Algorithm

The design behind the data structures which are used in the overall generalization algorithm
was conceptualized in the original version of the tGAP Generation software, and was not a
direct part of this dissertation thesis. However, briefly explaining them is necessary, as the
implementation itself is based on this stem.

Firstly, one needs to keep in mind the fact that, in a generalization process, the data undergoes
frequent modifications of the way the area and line objects are represented. For this reason,
instead of storing the area objects as simple feature geometries, we make the decision to store
the composing primitives of the areas (i.e. their boundaries), and define the faces (another
term for area) as a collection of boundaries/edges. These segments are not allowed to self-
intersect or intersect with each other, except in their end-nodes.

The edges are defined using a start and an end node, and the geometry in-between these end-
ings. In the end, the collection of these non-intersecting boundaries forms a complete planar
partition. Overall, the dimensional primitives, henceforth defined as the ”wheel topology”, is
constructed in the code as follows:

Node = namedtuple(

"Node",
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Figure 4.2.: Sub-divisions of the original dataset

"id, geometry, signed_edge_ids"

)

Edge = namedtuple(

"Edge",

"id, start_node_id, start_angle, end_node_id, end_angle, left_face_id,

right_face_id, geometry (polyline), info"

)

Face = namedtuple(

"Face",

"id, mbr_geometry (rectangle), pip_geometry (point - center of surface),

signed_edge_ids, info"

)

Where mbr geometry stands for a tightly fitting box around all the edge geometries of the
face, and pip geometry represents a point located in the interior. All the ‘signed‘ identifiers
which can be found in the structure above are used to represent direction. By taking its’ two’s
complement, we get the opposite direction of the same. These signs are used when traversing
the structure, as flipping the primitive can help to easily find the opposite direction. In the
case of node, the sign represents all the Edges which are either going in our out. For the case
of faces. the edges define its boundary, and sometimes may need to be swapped using the
two’s complement.
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4.3. Line Simplification Implementation

The Samsonov-Yakimiova line simplification algorithm has been developed as an indepen-
dent module, which can be plugged in and which can replace any already-existing simplifi-
cation component, or can be simply used in isolation with any edge which is in our desired
format. It has been developed in multiple components, such that it adheres to modularity
programming principles [Macdonald, 2020], including a unit which coordinates the simplifi-
cation and handles exceptions which may occur (taking the role of a handler), the SY-specific
data structures which saves the original structure, and (tries) to convert it, as well as a couple
of helper classes created to aid with utility functions and various constants.

The general class diagram can be found in the Annex in Figure B.8. There are four main
components in the in the system, the main one being the handler, which coordinates the
entire process. The ‘data structures‘ module contains the logic behind how the geometry is
temporarily stored, with the purpose of being manipulated, while the ‘Constants‘ module de-
fines all of the operations and properties which are used in the simplification process. Lastly,
the ‘geometry‘ module implements a number of functions which are used in the geometrical
operations applied in the generalization process, as well as a data structure designed for han-
dling the line-equation, and all of its exceptions (based on our used definition for a line).

4.3.1. Coordinating the simplification

The first piece of the puzzle coordinates the simplification process by the simplification starts
by taking an Edge object, and retrieving its start and end points. These nodes will be later
used in the intersection check. The next step in the process is to convert the geometry into
Shapely geometry, as well as converting all constituent points to Shapely Points.

In comparison to Reumann-Witkam, where we were analysing sequences of (three conse-
quent) points, we now need to look at the problem from the perspective of segment lengths:
for this reason, a Segement Collection structure is being created, which keeps a record of all
of the constituent pieces of a complex edge. Further details on this structure are presented in
the following section. For now, it is worth mentioning that our handler class creates such a
structure from the original Edge.

Using this segment collection structure, the handler now tries to create its simplified ver-
sion, while at the same time keeping track and handling any exceptions which may arise,
including issues which can be caused by the generation of the Segment Collection itself. The
simplified version of the edge, which is still in its Shapely form, can then be checked for any
self-intersection, using the ‘is simple‘ property of Line Strings [Gillies, 2022]. This last step
ensures that the result that we got is correct from an individual point of view (i.e. not taking
into account all other elements of the planar partition).

Now, it is time to take a look at the individual processes that occur in the Segment Collection
creation, and how the simplification itself is performed.

4.3.2. Used Data Structures and pre-simplification classification

As mentioned in the previous section, working with groups of three consecutive nodes is
no longer the way to go when employing the Samsonov-Yakimova simplification. For this
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reason, a data structure which takes the segment as a basic unitary element needed to be
defined.

We define a (Simple) segment as an object which is initialized by its constituent nodes, and
which has a certain length. An advanced segment is an improvement to the aforementioned
simple segment, to which a specific operation is attached. We define an operation for a seg-
ment a specific action that will be performed on that particular segment, as follows:

Keep The segment will be preserved in its entirety, and no change will be performed on it

Remove This is the segment that will be removed completely from the simplification per-
spective, due to it being the shortest one in the edge

Ignore This is the property of the segments neighbouring the shortest one, which will end up
being ignored in the final solution. Due to the way the algorithm functions, they will
end up being ignored in the final resulting simplified edge.

Extend* A segment with this property will end up being modified, but only from one of its
ends - it will result in a segment with the same line equation as before, and one of its
ends in the same location, but being larger or smaller according to the change of the
other end node

Keep with Reference Point* Similar to the Keep Operation, except we denote one of the
ends of this segment as relevant for later operations

Keep only Reference/Anchor Point* Operation introduced specifically to replace the Me-
dian simplification, will only retain one of its relevant points (the anchor), and will
replace the original segment with a new one, having a different line equation

Short Interior* Operation used only in the situation of a short edge (where the Diagonal
Simplification is being applied), where our edge contains exactly four segments

The operations demoted with an asterisk (*) have an extra property of ”reference point”: this
denotes one of the ends of the specific segment (either its start or its end) as relevant for a
specific action.

We define a ”Segment Collection” as a list of Advanced segments, which also has attached a
Transnational Manager, and which can perform the operation of simplify and simultaneously
keep track of any changes which may occur, and reverse them should the simplification fail
under any circumstances. All these operations under Segment Collection are coordinated by
the handler mentioned in the previous section.

The last relevant structure worth mentioning is the Line Equation, which converts a segment
from our original shape (defined by its end-points) into a y-intercept equation, used for com-
puting various operations.

Using the previously defined operations, the next step in the process is to classify a segment
collection in accordance to the positioning of the shortest segment (which is the one which
will be removed in the process). The main workflow of the process is explained in the Algo-
rithm 1.

We consider an interior segment as one which is neither the first one nor the last in the Seg-
ment Collection. We define these to be ”border segments”. In cases where the number of
segments in our Edge is strictly greater than four, we also define the neighbours of the border
segments (i.e. the second or the second to last segment respectively) as being ”next-to-border”
segments. We also define a circular edge as one which starts and ends in the same node.
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Figure 4.3.: Categorising Cases for an Edge with more than four segments

Although the algorithm itself seems a bit strange, its functioning principle, in a nutshell, is as
follows: first, it does some initial checks, to see if operations can be attached on that partic-
ular edge (we cannot apply the Samsonov-Yakimova algorithm on edges with less than for
segments, or on circular edges with less than 6 segments). Afterwards, it works on detecting
a few cases, the first one being the Diagonal simplification, which works only on edges with
exactly four segments. Should that not be the case, it then starts the process of analysing the
shortest segment alongside its first and second degree neighbours to its left and to its right.
A good example of how the algorithm works in these cases can be found in Figure 4.3. Case
1 shows the normal case. Problematic cases occur when the segment to be removed is po-
sitioned either at the end of the edge (Case 2 and 3), or at its start (Case 4 and 5), situation
where a number development decisions had to be taken: here, the Shortcut Simplification
will be applied, by selecting the end-Node as an anchor (such like the Endpoint case from the
theory of SY).

4.3.3. Defining operations and simplifying

After the classification has been performed (and no exceptions or issues have been returned
from it), the next step in the process is to perform the simplification itself. The main opera-
tions which have been attached to each segment will function in accordance to Figure 4.4.
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Figure 4.4.: The effect of the defined operations on a particular segment

In the original version of the algorithm, all the substitutions mentioned in the Samsonov-
Yakimova paper were implemented (Median, Diagonal and Shortcut). However, due to the
issues explained in the Section Topological inconsistencies with the median simplification
and alternatives of the Methodology, the final version of the algorithm contains a substitution
module, which, in a nutshell, detects the cases where we would have had two Extend opera-
tions (one with a Start reference point, the other with an End one). Following the replacement
principle explained in Figure 3.11, we transform the Median substitution to a Shortcut one,
based on a Left (or) Right bias parameter, as in the algorithm below. Here, the special opera-
tion ‘Keep WITH Anchor Point‘ is introduced for the first time.

The pseudocode for such a function can be found in Annex 2. As you can see there, we
introduced two new variables in discussion: the pointID and the lineID. these new elements
are basically the ones which end up replacing the old operation, where the lineID will indicate
the segment which will end up being extended, while the pointID will be equivalent to the
’Keep with Anchor’ operation.

Another point worth mentioning is how vertical and horizontal lines are handled. Due to
the version of line equation which has been chosen to be encoded in the solution, namely
the y-intercept version, poses a big problem especially when it comes to vertical lines. This
is because, in this particular situation, the slope of the line is infinity. This, of course, means
that we cannot simply use this value in our computations (as we need the inverse of the slope,
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that would mean trying to compute ‘one over infinity‘). The best solution would have been
to fully refactor the entire software such that it would use the ‘general form‘.

4.4. Details referring to the tgap integration

The first point to be discussed in this section is the way the implemented solution makes
the decision which algorithm to use. This is one of the most important scopes of the entire
projects, and getting this module right results in obtaining a map for the end-user to enjoy.

The first thing to define, as part of this module, is what classes of faces are assigned to which
particular algorithm. Ad we have a limited number of algorithms to a plentiful number
of classes, a good option for implementing this would be by using a dictionary14, with all
line simplification algorithms classified in an Enum15 (or IntEnum). Using the same Enum
classification, we can define a priority queue, where the user can give as input which types
of locations are more important to them, from the perspective of their particular application.
Lastly, after these things have been defined, when it comes time to decide which solution to
use for a particular edge, we look at the neighbour list (left and right neighbour). According
to our own priority, the category with the highest priority wins and gets to apply its preferred
algorithm.

Another point which should be mentioned at this step is how different algorithms handle
each other’s data-structures. What I mean with this point is the fact that, in some line gen-
eralization solutions, it is needed to keep track of some spatial data using a particular, aux-
iliary, data-structure (for example, Reumann-Witkam uses the QuadTree storage solution to
keep track of the vertices which exist in its surroundings). For this reason, any other general-
ization algorithm which could be used in its place would need to also update this structure.
Otherwise, it might cause functioning issues to the original algorithm. The solution for this
is to pass the variable as a keyword argument16 in all other simplifications. At the same time,
after passing this, my solution was to create a Transactional Manager, which keeps track of
possible changes in the particular data-structure (QuadTree, in our case), and should the sim-
plification with the other algorithm succeed, then the recorded operations in the transaction
are committed. Otherwise, no change is done.

A challenging part when it comes to the integration of multiple line generalization algorithm
lies in the way that the different data is structured for the different situations. As mentioned
in the General Software details Section, the Shapely package was used for implementing the
segment-based data structure. At the same time, the geometry structure used in the tGAP
generation workflow is defined by the Simple Geometry Library17.For this reason, a number
of convertion methods had to developed, so that interchanging between the two data struc-
tures can be possible. These methods are defined in the ‘Geometry‘ component of of Figure
B.8.

As discussed in Section 3.2.1, it is not enough to simply check if any points in the quad-tree are
contained in the area which is being modified during the simplification operation. Due to this
reason, the solution worked was to, when it comes to checking to see if our resulting simplifi-
cation is correct, for the case of Samsonov-Yakimova, is to extract all of the edges which make

14https://docs.python.org/3/tutorial/datastructures.html
15https://docs.python.org/3/library/enum.html
16https://treyhunner.com/2018/04/keyword-arguments-in-python/
17https://github.com/bmmeijers/simplegeom
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up the left and right face, and to check, against each of the geometry to see if it intersects with
our simplified geometry. This approach may however contain certain short-comings, which
are discussed in the final part of this thesis, alongisde some better alternatives.
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After outlaying the framework in the Methodology Chapter and discussing the various devel-
opment components in the Aspects related to Implementation Chapter, it is now time to take
a look some results. We will start by presenting the reasoning behind why it is important to
introduce a generalization algorithm into the workflow, followed by a comparison between
how the elements look like on the resulting map, when considered individually, from the
perspective of the end-user. The last part of this chapter will go over a number of difficul-
ties which may be encountered when working simultaneously with multiple generalization
algorithms, and their influence on the efficiency of the workflow.

The datasets which were introduced in the Section 4.2 of the previous chapter will be the ones
used for both the visual, as well as the statistical analysis. For the latter, it is worth reminding
that each subsequent dataset is larger with a factor of approximately 3x than the one before it.
Thus, the results that will eventually be compared, contrasted and analysed should be seen
from the perspective of the input.

5.1. The effect of embedding a line generalization algorithm
into the tGAP generation workflow

When working on developing a particular map generalization system, the decisions taken
by the system’s architect in regards to the algorithms which are to be implemented should
be considered carefully. Before introducing a particular operation into the workflow, it is
important examine the benefits (or perhaps the disadvantages, should that be the case) that it
may bring. At the same time, as any extra procedure has an effect of the functionality of the
overall workflow, it is good to decide whether or not the changes that the operation brings to
the generalization algorithm are worth when taking into account the extra hindrance.

As the result of the generalization operation is to be distributed (and utilized) on the inter-
net, a good question to ask before introducing any line simplification algorithms into the mix
would be: ”What effect does this decision have on the size of the dataset at each of the steps
in the tGAP generation process?”. The reasoning behind this question is that, as the trans-
mission of data needs to be as efficient as possible, the ration between the number of objects
which are being displayed at a particular scale and the area of the map clip which is displayed
on the screen of the user should remain more or less constant (i.e. as the size of the area dis-
played to the user gets larger, thus showing more and more of the Earth’s surface, the total
number of elements on the map should theoretically decrease, so that the average number of
objects per square meter is the same as before). Too much data at a small scale might cause a
bottleneck, as a large amount of objects which is need to be rendered can significantly slow
the entire process down.

By looking at the over number of points at each of the steps in the process, we can see how
effective each variant of the algorithm is, while also keeping in mind the requirements related
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to transmitting the data over the internet. Looking at Figure 5.1, the difference between the
two situations is quite clear.

Figure 5.1.: Number of points per step when running a simplification algorithm - Top: with
simplification turned on, Bottom: Simplification turned off

When looking at the two cases, we can see the difference: when utilising a simplification in
our algorithm, the number of points have a consistent drop. This occurs with the exception
of the first step, where there is a huge downfall. This is a clear sign that the initial dataset
is way too detailed for our resolution, which in term requires a lot of operations so that the
datasets end up at the correct complexity. However, after that initial drop, a smooth decrease
in the number of points continued almost linearly until the last step. This structure is ideal
in our general workflow, as we end up transmitting a constant amount of data per the size of
the zoom level.

On the other hand, looking at the figure when line simplification is turned off, the situation is
quite different. The number of points ends up hovering constantly in the upper range, until
almost at the end, when there is a very sudden drop. This means that, with the exception of
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probably the last around 15%, the data which ends up being transmitted over the internet is
very large even when the map should show a very large surface area. There is even a strange
rise in the number of cases, which might be explained by a large number of ‘split operations‘,
which ends up creating even more geometries, and thus nodes.

This can end up making the experience very slow for anyone using the system. Trying to look
at what is happening a bit more in-depth, let us take a number of snapshots at some moments
of the tGAP generation, and for a particular dataset (Dataset-2, for example). The total num-
ber of steps generated by the algorithm in the case of this dataset is always approximately
around the 1600-mark. The snapshots will be taken at 1/4 out of the total number of steps, at
the middle of the process, at 3/4 out of the total steps, and finally almost at the end (for the
purposes of this test, the step 1500 was chosen).

Figure 5.2.: Snapshot of Dataset-2 at four distinct moments in the process

When counting the total number of edges at these steps, we get that, regardless of whether or
not we are using or not a line generalization, we have the exact same number of edges across
the board (with a variation of maximum ±10 edges, which I would consider as insignificantly
small). However, when summing up the number of individual vertices each of those edges
contain, and comparing these values at different snapshots, the contrast is stark (Figure 5.2).
Simply introducing a line generalization method into the mix reduces the amount of data,
which is a great advantage, when keeping in mind that all of this data should be transmitted
over the internet. The contrast is even more visible when looking at the way the map looks,
at the last snapshot (because it is less complex then previous ones), in the two different sit-
uations 5.3. From this, we can conclude that introducing a line simplification algorithm is
indeed a good idea.

Now that it is quite clear that using such a system would be beneficial, when considering the
requirements defined at the start of the section, let us now take a look at how this change
would influence the look of map objects, from the point of view of the end-user.
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Figure 5.3.: The way the entire Dataset-2 looks at the final snapshot with simplification turned
off (left) and on (right)

5.2. Comparison of results from the user perspective

Considering the following two facts: firstly, one of the main focuses of the thesis has been
on the implementation of the Samsonov-Yakimova line generalisation algorithm, which was
designed with highly angular structured (such as man-made structures or politically-drawn
borders); secondly, we may consider that Reumann-Witkam offers good results of simplifica-
tions in most other cases. When considering this, let us take a look at how these changes are
reflected on the map, from a visual point of view, just as an average user would look at the
map, with the spotlight on the geometries which could be handled by SY.

5.2.1. How highly-angular structures evolve in the generalization process

As it was mentioned quite a few times throughout this thesis, the Samsonov-Yakimova al-
gorithm was designed specifically for handling highly-schematic and regular edges. In this
category, we can include man-made structures, such as houses, warehouses and so on. Let
us take a look at some examples, to analyse the differences between how buildings would
evolve (In Figures 5.4 and 5.5). Another example for this situation can be explored in Annex
B.1.

As we can see in those two examples, the overall shape is much more improved when using
the Samsonov-Yakimova line simplification algorithm. In the case of RW, for Figure 5.4, the
simplification results in a triangular shape, while the second example is full of irregularities
and strange bends and shapes such as sudden triangular peaks. This is, of course, less than
ideal. On the other hand, the SY Simplification keeps the overall orthogonal shape of the
building, in both of the cases. An example on how a particular urban area looks like when
using both simplifications is presented in Figure ??, at a (relatively-)similar scale (as the rate
of change is slightly different, and to better evidentiate the difference, it is not exactly the
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Figure 5.4.: An example of a situation where Reumann-Witkam results in a ’pointy’ structure,
while the Samsonov-Yakimova algorithm preserves the initial structure

same scale). When comparing the two, it can be observed that SY has the tendency to make
everything much more square-ish.

Just as with any other simplification algorithm, there are cases and situations where the result
may not be up to expectations, or in accordance to a pre-defined set of rules. In the following
section, let us take a look at some examples for these sort of situations.

5.2.2. Situations where SY may be less than ideal

As mentioned when introducing the Samsonov-Yakimova algorithm, it is very useful when
it comes to simplifying highly-angular structures. That being said, simply using this simpli-
fication module all the time may lead to some less than desired results. Of course, due to the
definition of the algorithm, some types of parcel should be excluded from our tests, such as
forest area or rivers, as the can end up having a very large degree of highly irregular borders.
The only exception will be made for road segments, as it would be interesting to see how
such an algorithm reacts to other types of man-made structures from buildings.

For example, while we may consider that most of the buildings have the characteristics which
make them suitable for the SY algorithm (such as 90 degrees angles), that may not always be
the case. Take, for example, the following structure in Figure 5.7.

In this situation, we have a normal building, which consists of a very circular structure, even
though it is categorized as a building. In this situation, when applying the SY algorithm to
simplify it, the result is a very strange structure. It loses completely its initial shape, and ends
up becoming very unbalanced, with the lower side almost completely disappearing, while
the upper getting quite enlarged.

One final thing to look at is how roads would be handled when applying the SY simplifi-
cation. As these are also structures which were created by man, it would seem like a good
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Figure 5.5.: Another example of a built structure

hypothesis to investigate whether or not using this workflow would be suitable for the over-
all result, from a visual perspective. As we can see in Figure 5.8, the road ends up losing its
initial structure. In the latter stages of the simplification, the shape becomes more and more
angular, making it look similarly to a structure of buildings. This means that it ends up com-
pletely losing its initial features, which makes it almost impossible for a user to distinguish
exactly what that shape might be.

For the reasons given above, the following conclusions can be drawn: firstly, it is certainly
not a good idea to use the same type of line simplification all the time. The need to categorize
what kind of solution is best for which type of geometry seems to be a much better strategy
from this point of view, regardless of whether we are discussing about RW, VW or SY. When
looking at Samsonov-Yakimova in particular, we can also add to the previous point that, even
though a particular structure is man-made, that does not mean that it may be a good idea to
use an algorithm focused on angular structures: this is proven both in the case of roadways,
railways and such, which almost always end up looking strangely, as well as in the case of
round buildings (where they are only a minority amongst all the other objects).
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Figure 5.6.: Example of an urban scene

5.3. Consequences of introducing line generalization solutions
in the tGAP generation workflow

While the way the map looks is an important aspect for the end-user, at the same time, it is
crucial to also analyse how the algorithm itself functions from a technical point of view, and
how much the changes which have been implemented affect the functionality and efficiency
of the algorithm.

As it was discussed in the Vario-Scale Maps Section from the Theoretical Background Chapter,
the generation of the tGAP structure is only one part in the process of creating a Vario-Scale
map. When it comes to the generation of the Space-Scale Cube, we need to keep in mind
the fact that its main utilization is done online. For this reason, the process itself needs to
be efficient enough to be able to run on an average internet browser, without relying on the
processing power of the user’s computer. At the same time, the amount of data (which will
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Figure 5.7.: Round Building

be transmitted over the Internet) needs to be taken into account: transmitting a map with too
many data points over the web may result in a very bad experience for the end user.

Considering all of these aspects, let us take a look at how the changes implemented in this
algorithm affect the overall process of generating the tGAP structure. This section begins
with introducing how the different line simplification algorithms affect the functioning of the
tGAP generation workflow and is then followed by an insight analysis on the efficiency of
the algorithm. Even though the two sections are separate, the analysis itself is performed by
taking both into account. For this reason, even though each section explains in-depth their
respective topics, the explanation requires mentioning all aspects simultaneously.

5.3.1. Understanding the impact of different algorithms on the run-time

First and foremost, a very good indicator of how well the algorithm works is the time it
takes to run: it can give a lot of information, including its efficiency as well as its complexity.
After running the code multiple times, with the different simplification methods turned in-
dividually on, as well as when using the semantic-based simplification switcher, we get the
following results (displayed in Figure 5.9).

When taking a moment to analyse the graph in the aforementioned figure, it is easy to point
out how, by simply introducing the Samsonov-Yakimova algorithm into the mix, this has the
effect of encumbering the algorithm, and it ends up making it much slower. This is, of course,
less than desired.

Trying to analyse the individual graphs from a time-complexity perspective, the two look
like polar opposite. In Figure 5.9 (Right), the run-time of the algorithm when using only the
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Figure 5.8.: Roads with SY

Figure 5.9.: The RW Runtime - standalone (Left) and the comparison between the RW and
RW+SY Runtime (Right)

Reumann-Witkam simplification (displayed in red) is barely visible anymore, and looks like
as flat line, when comparing it to the algorithm which uses both SY and RW.

When keeping in perspective the fact that the datasets are created with a factor of 3 between
them, and when looking at the runtimes of the algorithm when plugging in those datasets,
we can draw a couple of observations:

• Firstly, the time complexity of the RW algorithm is clearly Linear (Figure 5.9 Left), as
we can see that its run time grows constantly as the amount of data increases (O(n))

• On the other hand, in comparison the the RW evolution, the SY algorithm looks like it
ends up working at an almost exponential rate (O(n2)).

• By computing the average time the workflow spends on a face when considering the
increasing number of objects per the 3x factor property of the datasets, we can observe
a strange trend: while, for RW, it takes on average less time to handle one particular
face at a time, for the SY the opposite can be noticed, the amount of time increases.
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Based on these observations, it can be pointed out that something is not going right with the
running of the algorithm. For this reason, let us look further in-depth at the inner-runnings
of the Samsonov-Yakimova algorithm, so that we can better understand why all of this is
occurring, and perhaps even try to partly mitigate it.

For the purpose of this project, we can define efficiency of particular algorithm as a percent-
age of how many times it ran successfully (from a total amount of calls done by the workflow
of that particular algorithm). Going further in-depth into this definition, we consider that a
simplification algorithm has run successfully when it returns a geometry which is simpler
(containing fewer components, such as nodes and edges) than the input geometry. Consider-
ing these two definitions, the pie-charts in Figures 5.10 show the efficiency of the Samsonov-
Yakimova line simplification for highly-orthogonal geometries (The same data, presented in
a pie-chart format, can be found in Annex B)

Figure 5.10.: The operations (successfull/unsuccessful) which have been performed - original
version

As we can see in the aforementioned [pie-charts], a big chunk of the figure ends up being
attributed to SY Simplifications. Looking at the evolution from the smaller dataset to the
largest one, it can be noticed that the percentage that the RW Simplification ends up taking
gets increasingly smaller. At the same time, another worrying trend that can be noticed is the
fact that the SY Simplification succeeds only a very small percentage of the time.

Three main types of failures that start to shape-up as the following, explained alongside the
reason why they are occurring and what could be done to fix these issues:

• Failure at initial creation - This occurs when the data structure, which is needed in the
simplification, cannot be correctly created. This can be caused by a number of factors,
such as the edge containing too few segments (either less than four in the case of a non-
circular shapes, or less than six otherwise - so basically simple buildings). In a nutshell,
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this means that the edge does not meet the requirements necessary to for it to undergo
the simplification process. A possible solution to this can be to simply keeping track
of these problematic edges, and when needing to handle them again at a later point in
the workflow, we can decide to either handle them differently (by using another line
simplification algorithm, for example), or just skipping them completely;

• Issue in the resulting simplification’s structure [SY Failed from self-intersection] - This
results when the output geometry of the simplification is complex, and would thus not
conform to the structure of the planar partition (an example for this situation may be
). This basically means that the simplification process returns problematic structures.
This is, of course, less than ideal. One of the causes behind this would be building
structures which don’t follow the conventional 90 degree structure, which means that
the SY algorithm would no longer function correctly, thus resulting in these strange
outputs. One solution for this issue would be to try a workaround by temporarily using
another simplification, but this has the risk of complicating the shape, and trying to use
SY again at a later stage does not guarantee that it will also succeed. A better alternative
would be, instead of selecting which simplification to use based on the type of features
it neighbours, to do a selection based on the component angles of a particular edge.

• Problem when introducing the object into the planar partition [SY Failed from inter-
sections with other objects] - When working in a tightly-packed planar partition (i.e.
where there could be a lot of different objects very close to one-another), there is always
a good chance that the simplification process will fail, as the resulting shape may end
up intersecting other objects. This is, by far, the most challenging issue that can occur, as
the simplification process was successful, yet the change cannot be saved, as it will im-
pact the correctness of the structure. One solution for this would be to keep track of the
faces which end up intersecting our simplification. Until those faces change themselves
(or disappear completely), there is no point in retrying the simplification, but once that
occurs, we can try yet again with our simplification process.

Out of all the causes mentioned in the previous list, the first one can be solved relatively
easily, while the latter two would require significantly more complex solutions. Due to the
constraints imposed by the nature of such a thesis, namely the fact that the research has to be
performed in a limited amount of time, some possible fixes to the last two issues will be pre-
sented later in the Future work Section. The main reasoning behind why it would be easier
to solve the first problem rather than the other lies in the particular characteristics to the issue
itself: firstly, this is the only situation where the simplification itself is not being called (mean-
ing that the algorithm returns in its inception phase). Secondly, due to the minimum require-
ments that a particular geometry needs to adhere to such that it can be simplified under SY,
there are no changes that we can make, on either that particular edge or its neighbourhood,
which would change this outcome (as it is the case with the other two problematic cases,
where either slightly changing the geometry (by temporarily using another type of simplifi-
cation, for example) in the case of self-intersections or by changing or removing neighbouring
objects for the intersection with the environment failure).

When applying the changes discussed when when introducing the issue, and by replacing the
used solution with Reumann-Witkam, we get the following improvements (in Figure 5.12).
With the improved version of the algorithm, the number of failures due to Initial-creation
issues end up being only an insignificant part of the entire process. And, while the number of
RW Simplifications ends up growing, for each of the cases, with a relatively-constant value,
the percentage of SY Simplification Failures caused by intersections seems to take over the
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void left behind, with an increasingly larger factor as the size of the dataset increases (where
in the case of the Small Dataset, each other remaining running case gets a piece of the puzzle,
when it comes to the Original Dataset, the intersection with other objects ends up taking
a really large part, thus covering more than 60% of the cases which are being tried in that
situation)

Figure 5.11.: The percentage that each failure/success takes from the total amount of runs -
UPDATED

At the same time, when comparing the number of operations (Total operations, with the SY-
specific ones as highlighted) that are being performed (in Figure 5.12), it can be noticed that,
when introducing this solution, there are always less operations which need to be performed
in a runtime. This means that, even though the solution was relatively simple, the impact that
it has is quite significant. That being said, while it is an improvement, the overall runtime
still remains problematic (Figure B.7 in Annex), which means that further research has to be
performed (when introducing ideas presented in the Future work Section), as to improve this
aspect.
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Figure 5.12.: Amount of runs with the original version (blue) and the updated one (grey), for
all datasets.
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After analysing the results in the previous chapter, and now that all the pieces of puzzle have
been set down, it is time to take a moment and try to briefly go over and summarize all of
these concepts by bringing them together. A good way of going about this is by looking back
at the Introduction Chapter, and trying to go over both the main and sub-questions, while at
the same time providing an answer for each point. Let us begin with the sub-questions, as to
build a solid foundation for then answering the main research question.

6.1. Answers to Sub-Questions

Firstly, let’s take a look at the sub-questions referring to theoretical aspects of line generaliza-
tion

• Which line generalization algorithms are better suited for which particular situations?

After looking at both the Reumann-Witkam and the Samsonov-Yakimova Line Simpli-
fication algorithms from both the visual as well as the statistical perspective, it is now
possible to draw some conclusions about which one is better suited in different par-
ticular cases. Starting with the RW algorithm, it is worth mentioning that is is a very
useful solution when it comes to most cases, such as all the kinds of natural borders and
other relatively-regular features of a map. In contrast, the SY solution when it comes
to the highly-regular structures (for example, the footprints of various building quar-
ters, which end up having a lot of almost-90 degrees angles). That being said, it should
be noted that there a number of situations where using RW might be preferred, espe-
cially in cases of built structures which do not follow the angularity of the majority of
buildings. At the same time, due to the issues which were observed in the SY algo-
rithm design, using RW may also be used as an alternative, unless the algorithm itself
ends up being improved in a possible future work, such that (most) of these concerns
won’t even show up in the workflow. In conclusion, both of these solutions are a good
alternative, although SY, in its current state at least, it may end up being less than re-
liable. Regardless, when putting the environment aside, both have their strengths and
weaknesses, but when considering the aforementioned classification, each of them can
be used in their best case scenario.

• What is the most suitable way of combining said algorithms such that it upholds the technical
requirements?

Before answering this question, we need to take a step back and define what exactly
”technical requirements” mean. (presented in the Methodology Chapter), we can then
try to find answers to whether or not our solution meets the technical requirements.
Firstly, the workflow does run successfully without breaking, which means that we can
rule out the first criteria right away. After that, the result of said workflow can be quali-
fied as correct, as the resulting structure does not end up having any sort of topological
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errors. For the final rule, a bit more of a discussion needs to be had. When taking into
account the solution for choosing the proper algorithm which has been designed, and
looking at the results it spews out from a visual perspective, most of the outputs end
up retaining their overall characteristics. That being said, this does not occur all of the
time (as discussed in the Comparison of results from the user perspective Section of the
previous chapter), and for this reason we may say that, in regards to this rule, the expec-
tations are not fully met. For this reason, a better fine-tuning of the algorithm would be
required, so that the the workflow would end up upholding the technical requirements
in their entirety.

Secondly, it is time to answer the sub-questions related to algorithm and data structure de-
sign.

• What are the conditions and the development requirements necessary for maintaining topological
correctness at any scale?

The detailed answer to this question lies in the Details referring to the tgap integra-
tion Section of the Aspects related to Implementation Chapter. As it was mentioned
in the answer to the previous question, the tGAP generation algorithm does uphold
all necessary technical requirements, which means that the result of the workflow is
indeed topological correct. The way this is achieved is by following the conditions
and implementation criteria, which are, in brief: ensuring that all algorithms involved
keep track of each-other’s individual components, should that be necessary for the good
functioning of the workflow (for example, keeping track of the Point geometries in the
QuadTree, even though it is used only in RW - situation expolained further in depth ).
At the same time, the various algorithms need to be synchronised and coordinated, both
in terms of data structures (where some conversions should be applied) as well as the
decisional system which is in place (i.e. the system which decides which algorithm to
choose, based on the classification of the neighbouring faces). Lastly, it would be impor-
tant for all the used algorithms, individually, to keep track of their surroundings so that
the structure of the dataset remains conform with our rules. This point, discussed in a
lot of detain in the Integration with the broader tGAP-system and topological aspects
Section of the Methodology chapter, refers to the way that individual line simplification
solutions ensure the topological correctness of the solution. The factors that maintain
the correctness are founded also in the way that newly-created or removed points are
handled by the whole system.

• What is the optimal way of performing operations such that the line/vertices density remains
constant, also when taking into account the scale change and its most favorable ratio between
the number of objects and the size of the map which is being displayed at that particular scale?

When reviewing the graphics in Figure 5.1, it would be easy to conclude that simply
using our way of handling line generalizations is a very good alternative to keeping the
ratio between the density and size displayed of the map. That being said, it might be
argued that, in its current form, the SY Line simplification does not do a fully optimal
operation, as, per one step, it is able to only do one removal of segments. In this situ-
ation, it may be perhaps argued that, in this way, the correct scale may not always be
reached. For this reason, it is not possible to guarantee that the shape that a particular
object has at a certain scale meets all the requirements, when it comes its epsilon value.
In order to make the entire workflow fully robust, it would be necessary to follow either
the suggestions presented in the Consequences of introducing line generalization solu-
tions in the tGAP generation workflow Section from the previous chapter, which refers
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to how to improve the shortcomings of the SY algorithm. Alternatively, the suggestions
offered in the Future work Section might also lead up to much optimal results.

• How can the scale transition be performed in a smooth manner when integrating it into the
broader Vario-Scale system? At the same time, what is the best way, from the point of view of
time and size complexity (from the perspective of Big O notation concepts [Kuredjian, 2017],
when looking conceptually at the efficiency of the various algorithms), to perform line general-
ization in particular and Vario-Scale operations in general?

The answer to this question lies again in the suggestions offered in the following man-
ner. Due to the way that the SY runs, it is again quite difficult to uphold the smooth
performance requirement. Another way of ensuring that the transition can be per-
formed in a smooth manner would be by simply running the workflow without SY.
As it can be seen in Figure 5.9, the linear characteristics of the RW algorithm make it
probably the best candidate when it comes to smooth changeovers and mathematically
improved time complexity. This being said, the usefulness of the Samsonov-Yakimova
algorithm still cannot be negated, as there are some cases where there results it pro-
duces are considerably better. At the same time, as we do know the root cause behind
the main issues which are occurring when it is used, there is a good chance that, after
doing those changes, all of these problems to go away. That being said, for the time
being at least, we may not consider it as a suitable answer for this question, and should
be considered with mild caution.

Finally, considering the answers to all of these sub-questions, we may move on to answering
the main research question:

To what extent can multiple line-generalization algorithms be simultaneously introduced in
the Vario-Scale structure such that they preserve the topology and enable an optimal line
density ( while trying to preserve the characteristics of the initial shape as well).

Before going any further, it could be said that yes, it is possible to . That being said, doing
such a process may end up being challenging, due to the many bits and pieces that one needs
to keep in mind when working out the final quirks when combining those solutions together.
All-in-all, in my personal perspective, while there may still be some issues when taking the
Samsonov-Yakimova algorithm from its isolation and introducing it into the tGAP generation
workflow, the overall integration of multiple generalization solutions still shows quite a few
promising signs when it comes to creating a better alternative to the original version.

By using the various coordination processes, which were described both throughout the pa-
per as well as in some of the previously answered sub-questions, the system is able to return
a result which does preserve the topology, while at the same time keeping an optimal ratio for
the line density. Lastly, besides managing to maintain these terms, the improved version of
the tGAP generation algorithm now also manages to better preserve the initial shape of more
types of topographic objects, thus giving the end-user an overall better experience. With that
in mind, and with most of the research which was done in this paper showing quite auspi-
cious results, it would still be a good idea to also be weary about the performance parameters
of the solution, as they are not quite up to the standard.

In the end, no one generalization solution is a silver bullet. They all have some strengths, and
some weaknesses. For this reason, the decision of combining them, one way or another, does
seem to be the way to go in the future of map generalization automatizing.
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6.2. Future work

In the final part of this Graduation Thesis, while keeping in mind some of the shortfalls that
we encountered in throughout this research process, it would be nice to present some of the
possible things which may be explored in a possible future deepening of this topic.

Sadly, it seems that there may be a number of issues with the methodology itself. The main
problem comes from the selection of the edges itself. In the Section 3.2.2, an alternative way
of selecting the edges which should be simplified is presented. The solution presented there,
while very suitable when used in the context of tGAP generation when using the Samsonov-
Yakimova, it can still have the exact same issue when using more than just one simplification
algorithms. In a nutshell, different algorithms means different requirements, which in terms
means it is more challenging to decide which is the right geometry to be selected for simpli-
fication. As a future investigation into this issue, trying to keep track of the multiple ways of
selecting the geometries, based on the right algorithm for them, should be researched.

Another problem which can arise from implementing the Samsonov-Yakimova orthogonal
line simplification comes from the fact that the algorithm introduces a lot of new geometry:
due to this fact, the initially-defined order for the other generalization operations (such as
merge and split) may end up changing drastically. While this was the case as well when it
came to the Reumann-Witkam algorithm (as a simplification here can also change the size of
a particular face in the planar partition), the issue is much more pronounced in SY, due to the
drastic changes that can occur. For example, let’s consider that we set the SY simplification in
such a way that, when it performs a simplification, it ends up enlarging the building objects.
In this particular situation, those faces should end up being merged/split at a later point in
the process, thus should stay visible for longer on the map. A better bookkeeping of these
sort of changes should be introduced in order to solve the issue.

The topic of the Space Scale Cube was not touched at all throughout the duration of this
project. For this reason, seeing the ultimate impact that the workflow that was researched in
this paper would be another very excellent trajectory for continuing the topic at hand. A good
starting point in this direction would be overlaying all of the simplifications which have been
performed, then looking, transition to transition, what changes are created, from the most
complex version of a particular line geometry to its most simplest. This way, it would be easy
to visualise the changes, and use this as a basic for going further into 3D.

Due to the apparently complexity of the implementation of Samsonov-Yakimova (caused by
all of the edge-cases which can occur), the development itself can be cumbersome, and dif-
ficult to solve issues, should they arise. For this reason, implementing the line-shifting al-
gorithm presented in Buchin et al. [2011] could be an excellent alternative, as it seems easier
to adapt for out situations, and has the exact same application as SY. Last thing that would
be worth exploring in possible future research on this topic would be a better way of decid-
ing which algorithm to use for a particular situation. For example, instead of looking at the
topographic category of the left and right neighbours, we can analyse the geometrical char-
acteristics (such as, for example, by creating a histogram with the values of the component
angles). Then, the objects with the same characteristics are grouped together. This idea can
go further and further down, with even concepts from Machine Learning that could be intro-
duced (perhaps, in a discussing where we try to teach a system how to detect what the best
solution is for individual features).
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A. Reproducibility self-assessment

A.1. Marks for each of the criteria

Figure A.1.: Reproducibility criteria to be assessed.

Grade/evaluate yourself for the 5 criteria (giving 0/1/2/3 for each):

1. input data - 3 - All data can be easily accessible

2. preprocessing - 3 - there is no preprocessing neeeded (if the data is in its correct form

3. methods - 1 -

4. computational environment - 3 - available on Github

5. results - 2 - needs quite a lot of twaking to reach a final result
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B. Various Figures and UML diagrams

Datasets # Faces # Buildings # Edges # Points in the outline of edges

Small Dataset 98 64 187 1082
Subset-1 546 177 1173 7015
Subset-2 1585 466 3379 21484
Subset-3 4460 1594 9036 54046

Original Dataset 13238 5193 26208 158178

Table B.1.: Compatibility matrix of multiple classes
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B. Various Figures and UML diagrams

Figure B.1.: Differences between using the RW and SY algorithms on a random building
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Figure B.2.: Activity Diagram of the tGAP Generation Algorithm
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B. Various Figures and UML diagrams

Figure B.3.: Success Status of Simplifica-
tion calls - Subset-1

Figure B.4.: Success Status of Simplifica-
tion calls - Subset-2

Figure B.5.: Success Status of Simplifica-
tion calls - Subset-3

Figure B.6.: Success Status of Simplifica-
tion calls - Original Dataset
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Figure B.7.: Runtime of different variants of the workflow]
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B. Various Figures and UML diagrams

Figure B.8.: The Class diagram for the Samsonov-Yakimova components
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C. Various Algorithm - in Pseudocode

C. Various Algorithm - in Pseudocode

Algorithm C.1: Attaching operations to Segment Collection
Data: Segment Collection - seg coll; Index of the shortest segment - idx
Result: Segment Collection wth Operations attached

1 Attach default ‘Keep‘ operation to all segments, and Relevant Node as default ‘Not
Applicable‘ (NA);

2 for seg in seg coll do
3 seg.operation← Operation.Keep;
4 seg.operation.relevant node← RelevantNode.NA;

5 Begin initial length check;
6 if seg coll.length <4 OR (seg coll.is circular AND seg coll.length <6) then
7 return Exception;

8 Shortcut Simplification Case;
9 if seg coll.length = 4 AND idx - interior then

10 seg coll[idx].operation← Operation.ShortcutInterior;
11 return seg coll

12 Begin normal classification process;
13 Go to the right of the idx;
14 try:
15 seg coll[idx+1].operation← Operation.Ignore;
16 try:
17 seg coll[idx+2].operation← Operation.Extend;
18 seg coll[idx+2].operation.relevant node← RelevantNode.Start;

19 catch IndexOutOfBoundsException:
20 if seg coll.is circular then
21 seg coll[first].operation← Operation.Extend;
22 seg coll[first].operation.relevant node← RelevantNode.Start;
23 else
24 seg coll[idx+1].operation← Operation.KeepAnchorPointOnly;
25 seg coll[idx+1].operation.relevant node← RelevantNode.End;

26 catch IndexOutOfBoundsException:
27 if seg coll.is circular then
28 seg coll[first].operation← Operation.Ignore;
29 seg coll[second].operation← Operation.Extend;
30 seg coll[second].operation.relevant node← RelevantNode.Start;
31 else
32 seg coll[idx+1].operation← Operation.KeepAnchorPointOnly;
33 seg coll[idx+1].operation.relevant node← RelevantNode.End;

34 Go to the left of the idx, and perform the same process;
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Algorithm C.2: Transforming a Median Substitution to a (directionally biased)
Shortcut Substitution

Data: Advanced Segment Collection - adv seg coll
Result: One of the Extend Operations transformed into Keep Only Anchor Point,

the point and line elements
1 idExtendStart← get id from adv seg coll WHERE adv seg coll[id] ==

Operation.Extend AND adv seg coll[id].operation.relevant node ==
RelevantNode.Start;

2 idExtendEnd← get id from adv seg coll WHERE adv seg coll[id] ==
Operation.Extend AND adv seg coll[id].operation.relevant node ==
RelevantNode.End;

3 if bias is Direction.Left then
4 adv seg coll[idExtendEnd] = Operation.KeepWithAnchorPoint;
5 pointID← idExtendEnd;
6 lineID← idExtendStart;
7 return pointID, lineID;
8 else
9 adv seg coll[idExtendStart] = Operation.KeepWithAnchorPoint;

10 pointID← idExtendStart;
11 lineID← idExtendEnd;
12 return pointID, lineID;

73





Bibliography

Hildegard Lewy and Julius Lewy. The origin of the week and the oldest west Asiatic calendar.
Hebrew Union College Annual, 17:1–152, 1942.

Georg Gartner. The Relevance of Cartography, 2014. URL https://www.esri.com/

about/newsroom/arcnews/the-relevance-of-cartography/?rmedium=arcnews&

rsource=https://www.esri.com/esri-news/arcnews/winter1314articles/

the-relevance-of-cartography.

Matthew Williams. Imago Mundi, 2019. URL https://www.jmatthewthomas.com/post/

imago-mundi.

Daniel Thomas. City of London creates virtual reality map to aid office development, 2020.
URL https://www.ft.com/content/b232d83d-702d-4534-bce6-d10a21d78796.

Grand View Research. Digital Map Market Size, Share & Trends Analysis Report By Type
(GIS, LiDAR, Aerial Photography, Digital Orthophotography), By Usage, By Services, By
End Use, By Region, And Segment Forecasts, 2020 - 2027. Technical report, 2020. URL
https://www.grandviewresearch.com/industry-analysis/digital-map-market.

Edie Punt and Jamie Conley. Generalization for Multi-scale Mapping. In Esri User
Conference, 2014. URL https://proceedings.esri.com/library/userconf/proc14/

tech-workshops/tw_585.pdf.

Anne Ruas. Map Generalization. In Encyclopedia of GIS, pages 631–632. Springer US, Boston,
MA, 2008. doi: 10.1007/978-0-387-35973-1{\ }743.

Google Developers. Scale, 2021. URL https://developers.google.com/earth-engine/

guides/scale.

Marion Dumont, Guillaume Touya, and Cécile Duchêne. Designing multi-scale maps: lessons
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