

1

LuminaCity: a Real-Time Daylight

Analysis Tool for Architectural and

Urban Development Using Unreal

Engine

Siebren Meines

2023

MSc t hesis in Geomatics

MSc thesis in Geomatics

LuminaCity: a Real-Time Daylight Analysis Tool for Architectural and Urban
Development Using Unreal Engine

 Siebren Meines

 July 2023

A thesis submitted to the Delft University of Technology in partial fulfilment

of the requirements for the degree of Master

of Science in Geomatics

Siebren Meines: LuminaCity: a Real-Time Daylight Analysis Tool for Architectural
and Urban Development Using Unreal Engine (2023) This work is licensed under a
Creative Commons Attribution 4.0 International License. To view a copy of this
licence, visit http://creativecommons.org/licenses/by/4.0/.

The work in this thesis was carried out in the:

Geo-Database Management Centre
Chair of GIS Technology
Section Design Informatics
Architectural Engineering and Technology Department
Faculty of Architecture & the Built Environment
Delft University of Technology

Supervisors: Dr. Azarakhsh Rafiee & Dr. Eleonora Brembilla
Co-reader: Ken Arroyo Ohori

http://creativecommons.org/licenses/by/4.0/

Abstract

 This thesis presents the development of a real-time daylight analysis tool for

architectural and urban development using the Unreal Game Engine. The tool offers

architects and urban planners a fast and precise way of analysing outdoor daylight

conditions in their designs. The Unreal Game Engine provides real-time visualisation and

analysis of daylight conditions, which makes it an effective tool for real-time decision-making

during the design process. The study compares the light values and the process of

extracting these values in Unreal with the validated light model Radiance used in Honeybee

& Ladybug in the visual scripting program Grasshopper for Rhino. The thesis compares the

values of Unreal & Honeybee/ladybug based on outdoor illuminance values, calculation time

and ease of use. The comparison demonstrates the potential of Unreal as a valuable

daylight analysis tool, with measurements showing a Mean Absolute Error of 9.78% between

Honeybee and Unreal. In terms of computational time, the Unreal application requires only

0.6ms to execute and recalculate the daylight analysis, whereas the complete Honeybee

script took an average of 93 minutes to calculate daylight values, and a new angle

calculation took approximately 645 seconds. Furthermore, unlike Honeybee, which is

sensitive to the complexity of urban or complex geometries and requires challenging

adjustments, the Unreal application effortlessly accommodates complex geometry without

the need for extensive modification.

The thesis concludes that the tool provides a robust and efficient method for analysing

daylight conditions in architectural and urban design. The tool's ease of use and real-time

visualisation capabilities make it an essential addition to the design workflow. Finally, the

thesis presents the tool as a proof of concept for a geospatial urban development platform

with built-in geospatial analysis. The research has demonstrated the potential of real-time

simulation and analysis using the Unreal Game Engine as a powerful tool for architects and

urban planners.

Acknowledgements

I would like to extend my heartfelt appreciation to all those who have

contributed to this work, whether directly or indirectly. I would like to express deep

gratitude to my supervisors Azarakhsh Rafiee & Eleonora Brembilla, whose guidance

and support throughout the project were instrumental in shaping this research. Their

expertise in daylight and game engines proved instrumental in shaping this research.

However, their most significant contribution lied in their ability to help me prioritize

and maintain focus on the main objectives throughout the entirety of this research.

Thank you as well to the other members of my committee Bastiaan van Loenen &

Ken Arroyo Ohori, who provided valuable feedback and insights that helped to refine

my ideas and improve upon my methodologies.

 I would also like to express my gratitude to Rui de Klerk, Paul de Ruiter &

Hans Hoogenboom, who were of great help and incredibly helpful to spar with and

see things from a different perspective.

Finally, thank you to my family and friends, who supported me through long hours

spent writing code and analysing results - their encouragement kept me motivated

and focused during challenging times. This thesis would not exist without the

contributions from each of them.

Contents

List of Figures 12

List of Tables 15

List of Algorithms 17

Acronyms 19

1. Introduction 21

1.1. Motivation 22

1.2. Research questions 22

2. Theoretical background & Related work 25

2.1 3D city models 25

2.2 Raytracing 26

2.3 Daylight analysis 28

2.3.1 Luminance and Illuminance 28

2.3.2 Daylight Modelling and Simulation 29

2.3.3 Radiance 30

2.3.4 Honeybee 30

2.4 Unreal Engine 31

2.4.1 Key features and techniques. 32

2.4.2 Raytracing in Unreal 33

2.4.3 Development vs. Runtime 34

2.4.4 Blueprints vs. C++ 34

2.5 Cesium ion & OGC 3D Tiles 35

2.6 Daylight Analysis in Unreal 36

3. Methodology 39

3.1 Loading 3D city models in Unreal 39

3.2 Extracting light values from Unreal 40

3.3 Comparison of different light analysis methods vs. Benchmark 42

3.4 Interactive User Functionality 43

3.5 User Interface 44

4 Implementation 46

4.1 Tools, datasets and hardware used 46

4.2 Loading 3D city models in Unreal 47

4.3 Extracting light values from Unreal 49

4.4 Comparison of different light analysis methods vs. Benchmark 54

4.4.1 3D city model & Benchmarking in Honeybee 54

4.4.2 Measurement Points 56

4.4.3 Optimizing sun & sky model in Unreal 60

4.5 Interactive User Functionality 60

4.6 User Interface 66

5 Results & Discussion 68

5.1 Inverse square law 68

5.2 Importing 3D city models 69

5.3 Extracting light values from Unreal 72

5.4 Benchmarking results 73

5.5 Interactive User Functionality & Recommended workflow 79

6 Conclusions and future research 81

6.1 Conclusions 81

6.2 Limitations 83

6.3 Future work 84

6.4 Reflection 86

Bibliography 88

Appendix A Adding Geometry 93

Appendix B change Render at Runtime 95

Appendix C Grasshopper Script 96

Appendix D Benchmark Results 97

Appendix E Loading Cesium ion tiles at Runtime 101

Appendix F Change Sun position, date & time 102

Appendix G Reading Luminance value using custom C++ actor 104

Appendix H False Colour post processing 105

Appendix I User Interface 106

 11

 12

List of Figures

2.1 Different LOD of 3D city models 25

2.2 Principle of Raytracing 27

2.3.1 Formula to calculate lux 28

2.3.2 Luminance and illuminance 29

2.3.4 Connection between Honeybee, Radiance, and other related software 31

2.4.1 Different components of Unreal Engine 32

2.4.2 Realistic physical lighting in Unreal 34

2.5 Height-dependent building coloured 3D Tile using Cesium 36

3 Flowchart of methodology 39

3.3 Inverse square law 42

4.2.1 Converting CityJSON to Cesium 3D Tile using FME 48

4.2.2. Converting CityJSON to CityGML using FME 48

4.3.1 Measuring light values with HDR eye adaptation tool 50

4.3.2 Custom C++ actor to calculate luminance (value at top left part of the

screen)

52

4.3.3 False Colour Post-Processing Material 52

4.4.1 Benchmarking dataset with 3010 buildings in Rotterdam 54

4.4.2 simplified version of a section of the original dataset with adjacent closed

volumes

55

4.4.3 Complete Benchmarking dataset in Rotterdam 55

4.4.4 Simplified diagram of Grasshopper script 56

4.4.5 HDR image in Honeybee used to measure illuminance 57

4.4.6 Measurement points 1 to 39 58

4.4.7 Measurement points 40 to 48 58

4.4.8 Measurement points 48 to 58 59

4.4.9 Measurement points 59 to 135 59

4.5.1 Building Blocks 61

 13

4.5.2 Scale, Rotate, and Translate geometry at runtime 62

4.5.3 Import Cesium ion tiles at runtime 63

4.5.4 Changing render at runtime 64

4.5.5 Changing date & time at runtime 65

4.6 UI at runtime 66

5.2.1 Imported CityJSON model with adjusted height in Unreal 69

5.2.2 Cesium OSM tileset in Unreal 70

5.2.3 Google Maps API tile in Unreal 71

5.2.4 Google Maps API in Unreal with false colour rendering 71

5.4.1 Major validation works related to the development of CBDM 74

5.4.2 Measured Values in Honeybee and Unreal 75

5.4.3 Histogram of differences between Honeybee & Unreal 75

5.4.4 Relative differences between Honeybee & Unreal 76

5.4.5 Boxplot of differences between Honeybee & Unreal 77

5.4.6 Outlier points of lit areas in Unreal that are shadowed in Honeybee 78

14

 15

List of Tables

4.1 Overview of tools and datasets used. 47

5.1 Inverse square law experiment 68

5.4 Benchmarking results 74

16

 17

List of Algorithms

1 Calculating Luminance and Illuminance values using a custom C++ actor. 51

2 False Colour material 53

18

19

Acronyms

GPU Graphics Processing Unit 32

CRS Coordinate Reference System 34

UI User Interface 43

 20

 21

1. Introduction

With increasing weather extremities due to climate change, and the

densification and expansion of our urban environments, the need to consider

environmental factors such as daylight are becoming increasingly important.

Daylight plays a critical role in human health and well-being, but also

significantly impacts the energy efficiency and sustainability of buildings as

well as its impact on the visual appeal and liveability of a city.

To address these challenges, urban developers must carefully consider the

trade-offs between incorporating daylight in a way that maximises its benefits

while minimising potential drawbacks. As an answer to these challenges,

there are a range of strategies that cities can use to effectively incorporate

daylight into urban development. One key approach is the use of passive

solar development, which involves orienting buildings and windows in such a

way as to maximise the amount of daylight that enters the building (Morrissey

et al., 2011). This can be achieved through the consideration of the orientation

and placement of buildings, as well as the use of light-reflecting or absorbing

materials, the use of strategic window placement, skylights, and other

development elements that allow daylight to enter the building while

minimising energy loss.

Honeybee, a commonly used tool based on the Radiance model, serves this

purpose but comes with limitations. Its specific geometry requirements, limited

handling of larger-scale areas, and exponential increase in simulation time for

complex and large geometries limit its usability in real-world urban

environments. Consequently, there is a pressing need for a more time-

efficient and user-friendly approach to daylight analysis in urban design.

To tackle these challenges, this research explores the capabilities of the

Unreal Engine as a platform for physically accurate daylight simulation. The

Unreal Engine offers real-time rendering and interactive 3D visualisation,

which solve the limitations of Honeybee. The primary focus of this thesis is to

investigate the suitability of the Unreal Engine for scaling up physically

accurate daylight simulation tools. By leveraging the advanced features of the

Unreal Engine, such as its interactive platform, the ability to manipulate and

add geometry, and the integration of Cesium Tiles, the aim is to develop an

integrated solution that overcomes the limitations of existing tools and

provides urban developers with an intuitive tool for analysing daylight in their

designs. Furthermore, this research aims to contribute to the advancement of

architectural and urban design practices by providing a more efficient and

effective solution for incorporating daylight analysis into the design process.

 22

1.1. Motivation

With the densification of urban areas, climate change and housing shortages,

the architecture & urban development sector drastically needs to evolve. To

tackle these challenges, it is becoming increasingly important to incorporate

advanced technology and scientific methodologies into the design process.

Real-time daylight analysis is a critical aspect of architectural and urban

design, as it directly impacts the wellbeing and functionality of the built

environment. Traditional daylight analysis tools are often cumbersome and

difficult to use, making it challenging for designers to evaluate their designs

accurately and efficiently. Coming from a Bachelor of Architecture and the

Built Environment, I have experienced first-hand the frustration and limitations

of existing tools. This is why I am motivated to develop an alternative tool

using the Unreal Game engine. I believe that this tool has the potential to

revolutionise the way architects and urban developers evaluate their designs

by providing a user-friendly and accurate analysis & design platform. In

addition, I hope this tool will help to bridge the gap between the architectural

industry and scientific methodologies. My overarching goal is to establish a

new approach in architectural and urban development by creating a

comprehensive platform that integrates geospatial analysis with real-time

visual feedback. With this thesis, I hope to prove the concept of a daylight

analysis and design application using the Unreal Engine.

1.2. Research questions

This section states the research question and the sub-questions that will be

used to answer that question. It will also elaborate on how these questions will

be addressed.

Main Research Question:

To what extent is the Unreal Engine suitable to scale-up physically

accurate daylight simulation tools?

The main question will be answered using the sub-questions. The research will

result into a methodology to import 3D city models into an Unreal application.

Additionally, a study will be conducted to test different methods of extracting

light intensity from Unreal. Furthermore, a comparison and benchmark will be

performed to evaluate the light intensity in Unreal compared to physically

accurate and validated Honeybee. Lastly, an interactive light analysis

application will be developed, integrating design tools for architectural and

urban developers.

 23

Sub questions:

1. How can 3D city models be effectively integrated into an Unreal application?

This question will involve exploring different methods and formats for

integrating 3D city models into the Unreal Engine. Various integration

techniques will be compared, and a methodology will be developed based on

different scenarios. This methodology will then be implemented within the

Unreal application.

2. How can the light values extracted from Unreal be compared and validated

against industry-standard light models such as Radiance?

This will be addressed through a multi-step approach. First, light

information will be extracted from Unreal using various methods. A Honeybee

script will be developed to analyse and represent light values. Finally, a

comparison will be made between the light values obtained from Unreal and

the benchmark values from Honeybee, enabling the assessment of the realism

of lighting in Unreal.

3. To what extent do the light values simulated with Unreal Engine accurately

represent real-world lighting conditions?

To investigate the realism of lighting values in Unreal, an inverse square

law experiment will be conducted. This experiment will analyse the decay of

light intensity with distance, comparing the results with the expected theoretical

values. Additionally, the obtained lighting values will be compared against a

benchmark provided by Honeybee to further evaluate their accuracy.

4. In what ways can urban or architectural developers use an Unreal application

to test and develop different design scenarios?

This question focuses on exploring the possibilities of the Unreal Engine

for urban and architectural development. The research will investigate the

incorporation of in-game functionality that enables developers to test and iterate

different design scenarios within the application.

24

25

2. Theoretical background & Related work

The related work chapter provides an overview of the relevant literature and current

state of research in the areas of 3D city models, raytracing, daylight analysis, and

Unreal Engine. By addressing the benefits, challenges, and gaps in the existing

literature, theis thesis aims to contribute to the advancement of knowledge and the

development of improved daylight analysis tools within the context of architectural

and urban development.

2.1 3D city models

3D city models represent the physical characteristics of a city in 3D, including

buildings, roads, bridges, trees, and other infrastructure. They can be used for a

variety of applications, including emergency response, traffic management, and

urban development.

The main benefit of 3D city models is their ability to provide a more accurate and

comprehensive representation of a city compared to traditional 2D maps. By adding

a third dimension, these models can more accurately capture the shape, height, and

geometry of buildings, as well as the location and orientation of streets and other

infrastructure. This level of detail is particularly crucial for analyses dependent on

building geometry, such as noise, solar/light, and volumetric analysis (Biljecki et al.,

2016). 3D city models can be created at different levels of detail (LOD) based on the

acquisition technique and intended usage. Figure 2.1 illustrates the varying LODs of

3D city models.

Figure 2.1 Different LOD of 3D city models (Biljecki et al., 2016).

26

Despite their benefits, there are also challenges associated with the creation and

maintenance of 3D city models. These challenges include:

1. Standardisation. 3D models are often generated independently, using varying base

data and reconstruction software. Furthermore, there is a lack of standardisation in

terms of geometry and semantics (State of the Art in 3D City Modelling, 2022).

2. Data interoperability. Due to the lack of standardisation, it is also difficult to convert

data models into different formats (State of the Art in 3D City Modelling, 2022).

3. Data quality. Many openly available 3D city models exhibit geometric and topological

errors, such as missing surfaces, self-intersecting volumes, and duplicate vertices.

(Biljecki et al., 2016).

4. Data governance: Ensuring proper governance and management of 3D city model

data pose challenges.

5. Cost. Current approaches to generating and maintaining 3D city models are often

costly and labour-intensive (Steinhage et al., 2010).

6. Urban analyses. There is a need for standardisation or toolkits for simulation,

analyses, and management (Billen et al. 2015).

CityJSON, a standardised data exchange format based on JSON (JavaScript Object

Notation) (CityJSON, n.d.), is the official standard of the Open Geospatial Consortium (The

Home of Location Technology Innovation and Collaboration | OGC, n.d.). JSON is a widely

used data interchange format that is both human-readable and machine-readable. Even

though there is some standardization in 3D city models, they are being used in varying

formats. For instance, in the Netherlands, the Dutch Kadaster has published the 3D

Basisvoorziening (Blankert, 2021), a 3D dataset representing the Netherlands in CityJSON

format. Additionally, TU Delft has created 3DBAG (Ledoux et al., 2019), providing detailed

3D representations of most buildings in the Netherlands in CityJSON format. However,

despite the existence of unified national 3D city models like 3DBAG and 3D

Basisvoorziening, individual municipalities maintain their own open 3D datasets. For

instance, Rotterdam has a CityGML dataset, Den Haag has a CityGML dataset, and

Amsterdam offers a Cesium 3D Tiles dataset (TU Delft, n.d.). Consequently, the importing

of various 3D city models into Unreal requires addressing the diversity of formats and

regional variations.

2.2 Raytracing

Raytracing is a technique used in computer graphics and simulation to create realistic and

exact renderings of light distribution (Akenine-Möller et al., 2019). The technique is based on

tracing the path of individual light rays as they interact with objects in a virtual scene, allowing

for the calculation of light reflections, refractions, shadows, and other optical effects (see

Figure 2.2).

The fundamental principle behind raytracing is that each point on an object can cast multiple

rays into the scene, which can be blocked, reflected, transmitted, absorbed, or diffused when

interacting with new surfaces (Glassner, 1989).

27

Figure 2.2 Principle of Raytracing (Schmitt et al., 1988).

Accurate rendering of reflective and transparent objects relies on the precise calculation of

light reflections and refractions, according to well-established laws of physics. Snell's Law

describes the propagation of light when it meets a surface, leading to refracted rays being

either deflected away from or attracted toward the normal direction of the interface (Akenine-

Möller, 2019). Rays experiencing total internal reflection never cross over to neighbouring

mediums; however, they still influence energy flow within the scene. Raytracing excels in

accurately simulating shadows and global illumination effects. By tracing secondary rays from

the intersection points towards light sources, it is possible to determine if an object is in shadow

or receiving direct illumination. Additionally, global illumination techniques, such as ambient

occlusion, radiosity, and path tracing, allow for realistic indirect lighting and the simulation of

light bouncing between surfaces. Another essential part of efficient raytracing is the

implementation of acceleration structures, like bounding volume hierarchies (BVH), KD trees,

or octree hierarchies, which enable faster intersection testing, resulting in reduced rendering

times without compromising accuracy (Hapala & Havran, 2011).

Traditionally, raytracing has been computationally expensive, limiting its use to offline

rendering. However, advancements in hardware and algorithms have made real-time

raytracing possible (Singh & Narayanan, 2009). GPUs and specialized raytracing hardware

have accelerated the rendering process, enabling interactive and immersive ray-traced

experiences in video games, virtual reality, and architectural visualization.

28

2.3 Daylight analysis

Daylight analysis plays a crucial role in urban environments as it directly impacts the quality

of life and well-being of individuals residing in these areas. While some researchers argue that

optimal light simulation requires a physical laboratory setup, this approach is often expensive

(Chen et al., 2019). Alternatively, computer models can be employed for light simulation,

offering a cost-effective solution. Many light simulation models rely on stochastic methods.

Chen et al. (2019) suggest that VR lighting environments provide an effective means to

represent physical light environments, accurately capturing various lighting attributes such as

diffuse/glaring, bright/dim, open/close, noisy/quiet, in coherence with physical environments.

2.3.1 Luminance and Illuminance
Luminance and illuminance values play a crucial role in understanding the spatial distribution

and and visual perception of light in architectural and urban environments. Comprehending

luminance and illuminance is essential for optimizing lighting conditions, ensuring appropriate

levels of brightness, and meeting lighting standards in various architectural and urban

contexts. These measurements contribute to creating visually appealing, functional, and

comfortable environments for occupants.

Luminance refers to the amount of visible light emitted, reflected, or transmitted by a surface

in a specific direction. Measured in candelas per square meter (cd/m²), luminance represents

the perceived brightness of a surface, as perceived by the human eye (Luminous Intensity &

Photometry | auersignal.com, n.d.).

On the other hand, illuminance quantifies the amount of light falling on a surface and is typically

expressed in lux (lx). It indicates the quantity of light reaching a specific area. Lux provides

information about illuminance, serving as a measure of the brightness with which an area is

illuminated. It measures how much luminous flux (lumen) of a light source arrives per unit area

on a surface. The calculation of lux (see Figure 2.3.1) can be done in the following ways:

1. Lux [lx] = luminous flux [lm] / area [m2].

2. Lux [lx] = luminous intensity [cd] / radius or distance squared

 Figure 2.3.1 Formula to calculate lux (Luminous Intensity & Photometry |

auersignal.com, n.d.)

For example, if a luminous flux of 100 lumens falls uniformly on an area of 1 m², the illuminance

or would be 100 lux. The illuminance decreases as the distance from the light source

increases. Lux values can be used to determine if certain areas are satisfactorily illuminated.

To measure illuminance, a luxmeter, or light intensity meter, is used. It provides a reading of

the illuminance in lux at the measurement point. A luxmeter consists of a photo sensor,

29

typically containing photo diodes, which detect the light, and a display that shows the

measured lux value. These concepts are visualized in Figure 2.3.2, which illustrates the

relationship between luminous flux, luminous intensity, luminance, and illuminance.

Figure 2.3.2 Luminance and Illuminance (AnneCorning & Systems, 2022).

2.3.2 Daylight Modelling and Simulation
Daylight simulation models usually exist of a model that represents a sky and a model that

mimics the way light propagates. Sky models are mathematical representations of the sky

(Antonanzas-Torres et al., 2019). Common sky models include the CIE Standard Sky, Perez

Sky Model, and Climate-Based Sky Models (CBSM). These models consider factors like the

sun's position, sky type, and atmospheric conditions to generate exact representations of the

sky's luminance.

Sky models consists of multiple components. The most important two are (direct) sunlight and

(indirect) skylight (Mardaljevic, 1999). Sunlight is the direct light from the sun that reaches an

area. The position of the sun in the sky, influenced by factors like latitude, time of day, and

time of year, affects the intensity and direction of sunlight. Skylight refers to the diffuse light

from the sky that reaches an area through the atmosphere. It provides ambient illumination

and can significantly influence the overall lighting conditions. Skylight is affected by factors

such as cloud cover, atmospheric conditions, and the surrounding built environment.

In terms of light propagation, daylight models are mainly based on two main concepts:

raytracing and Monte Carlo simulation. Raytracing, a computer simulation method based on

geometric optics, models the path of light through a scene. It is widely utilised to visualise

object appearances in virtual environments and analyse light distribution in spaces (Glassner,

1989). Raytracing finds extensive use in lighting design and urban development to predict

illuminance levels and luminance distributions in both outdoor and indoor spaces. Notably, its

ability to accurately model light interactions with surfaces and materials allows designers to

anticipate space appearance under different lighting conditions.

Monte Carlo simulation, on the other hand, is a computer simulation method that utilises

random sampling to calculate the probability of different outcomes (Mooney, 1997). In the

context of daylight analysis, Monte Carlo simulations analyse light distribution in urban

environments by simulating the path of individual light photons as they interact with various

30

surfaces. This method accurately predicts light distribution in complex environments, such as

urban canyons, incorporating reflections, refractions, and scatterings (Wang, 2014).

2.3.3 Radiance
Radiance, a widely-used and powerful tool, for daylight simulations, combines deterministic

raytracing and Monte Carlo simulation to simulate lighting and daylighting in architectural and

urban design (Radiance — Radsite, n.d.). With its software tools, users can generate accurate

and detailed simulations of lighting conditions, including direct sunlight, skylight, and

reflections.

Radiance uses the Perez sky model as a fundamental component of its daylight simulation

capabilities. The Perez sky model, also known as the Perez all-weather model, is a

mathematical representation of the sky's luminance distribution based on measured sky

radiance data (Perez, 1993). It accurately describes the sky conditions throughout the year

under various weather conditions. The Perez model considers parameters such as solar

altitude, solar azimuth, turbidity, and other atmospheric properties to calculate the sky's

luminance distribution accurately. By simulating the behaviour of light rays interacting with

various surfaces, Radiance can calculate illuminance values, daylight factors, and other

metrics that help assess the quality and performance of natural lighting within architectural

spaces.

2.3.4 Honeybee
In the context of architectural and urban design, Radiance is often used within Grasshopper

through the integration of Honeybee plugins. Grasshopper provides a graphical no-code

interface for creating and manipulation of 3D models. Honeybee acts as a bridge between the

Grasshopper environment and Radiance, allowing users to create and analyse complex

daylighting scenarios within their architectural designs. Honeybee offers tools for simulating

lighting and daylighting conditions using Radiance. Together, these plugins enable users to

create accurate and detailed simulations of lighting conditions and evaluate the performance

of their design.

Honeybee offers various components for creating geometry, defining materials, specifying sky

conditions, and configuring analysis parameters. Users can create detailed 3D models of

buildings, assign materials with optical properties, and set up sky conditions using the Perez

sky model or other sky models available in Radiance.

Honeybee communicates with Radiance to perform the actual raytracing calculations. The

interaction between Honeybee, Radiance and other software is visualized in Figure 2.3.4.

Radiance traces light rays through the virtual environment, considering interactions with

surfaces, reflections, and refractions. This allows Honeybee to compute accurate metrics such

as illuminance, annual sunlight exposure, and other daylight performance indicators.

Honeybee provides visualizations and analysis outputs based on the simulation results. These

outputs can include color-coded maps of illuminance levels, daylight factor distributions,

annual daylight metrics, and more.

31

Figure 2.3.4 Connection between Honeybee, Radiance, and other related software

(Ladybug Tools | Home Page, n.d.)

2.4 Unreal Engine

Game engines, like Unreal, are software frameworks designed to develop interactive 3D

environments and gameplay mechanics, primarily for the creation of video games. However,

their potential extends beyond gaming and holds potential for geospatial applications, such as

urban development (Keil et al., 2021). Game engines provide a wide range of tools and

features that enable designers to build immersive 3D environments and characters quickly.

Leveraging geospatial data in game engines allows for the rapid creation of 3D environments

and prototypes, making Unreal useful for architectural and urban development.

Examples of the implementation of game engines for geospatial related topics include:

1. The Generation of 3D terrains or DEMs (Mat et al., 2014).

2. The recreation of historical towns in VR (Kersten et al. 2018).

3. Solar potential assessment (Buyuksaliha et al., 2017).

4. Quick prototyping of spatial layouts and building design (Edler et al., 2020).

32

5. Safety training in dangerous environments such as underground hazard safety

training (Liang et al., 2019).

6. Application of physical models for environmental simulation (Edler et al., 2019).

Among the game engines is the open-source Unreal Engine. Epic Games developed the
Unreal Engine in the late 1990s as the backbone of the video game Unreal. Unreal is widely
adopted in the gaming industry and has also gained traction in creating virtual reality and
augmented reality experiences. Initially developed for video games, the Unreal Engine has
evolved to encompass real-time visualisation and simulation applications. The Unreal Engine
is known for its powerful real-time rendering capabilities, making it an ideal tool for creating
high-quality 3D graphics and animations. It offers a range of features, including blueprint visual
scripting, C++ coding, real-time rendering, animation, and physics. In recent years, the Unreal
Engine has gained popularity in the field of architecture and urban development. Its real-time
rendering capabilities make it an ideal tool for creating immersive and interactive visualisations
of buildings and urban areas.

2.4.1 Key features and techniques.
The Unreal Engine is composed of three main parts (Lee, 2016), each with its own relationship

and components, as depicted in Figure 2.4.1. These parts include the Sound Engine,

responsible for handling music and sound in the game, the Physics Engine, which performs

calculations for lifelike physical interactions, and the Graphics Engine, which handles

rendering. The integration of these different engines within Unreal enables seamless

communication between them.

Figure 2.4.1 Different components of Unreal Engine

33

The Unreal Engine's exceptional speed and efficiency are achieved through the

implementation of various technical aspects. Several key features and techniques contribute

to its impressive performance:

1. Multithreading

Unreal Engine takes advantage of multi-core Central Processing Units (CPUs) by

using multithreading techniques, to improve performance and responsiveness

(Threaded Rendering, n.d.). This technique distributes tasks across multiple threads,

allowing for parallel processing of different aspects of the game engine.

2. GPU Acceleration

Unreal Engine uses GPU acceleration to offload computationally intensive tasks from

the CPU (GPUOpen by AMD, 2022). The GPU is designed for high-performance

graphics rendering. By applying this technique, Unreal Engine can realize real-time

rendering and complex visual effects.

3. Culling and Occlusion Techniques

Unreal employs culling and occlusion techniques to avoid rendering objects that are

not visible or blocked from view (GPUOpen by AMD, 2022). By not rendering non-

visible objects, Unreal reduces unnecessary computations and improves performance.

4. Precompiled Shaders

Unreal precompiles shaders during the development process, which lead to optimized

rendering at runtime (Shader Development, n.d.). By precompiling shaders, it

eliminates the need to compile shaders at runtime, improving startup times and

improving render-related performance.

2.4.2 Raytracing in Unreal
Unreal uses raytracing to model the behaviour of light. It simulates the path of individual light

rays as they interact with objects and surfaces. Unreal Engine uses real-time raytracing, which

combines raytracing with rasterization techniques (What Is Real-time Ray Tracing?, n.d.). This

hybrid approach allows for real-time light interactions. Unlike traditional rasterization methods,

which approximate lighting effects using simplified algorithms, raytracing in Unreal Engine

calculates the path of light rays as they bounce, reflect, and refract through a scene. This

leads to more realistic physical lighting, with realistic shadows, reflections, and global

illumination (see Figure 2.4.2).

34

Figure 2.4.2 Realistic physical lighting in Unreal (What Is Real-time Ray Tracing?, n.d.)

One of the advantages of raytracing in Unreal Engine is its speed and efficiency. Unreal

Engine uses a variety of optimization techniques, described in 2.4.1, to achieve real-time or

near-real-time rendering performance. This means that complex scenes with dynamic lighting

can be rendered smoothly and interactivity.

The speed and efficiency of real-time raytracing in Unreal Engine make it an appealing

possibility to explore as an alternative to traditional daylight analysis tools like Honeybee.

Honeybee, which uses Radiance for accurate daylight simulations, can be computationally

intensive and time-consuming, especially in dealing with complex geometry.

2.4.3 Development vs. Runtime
Unreal Engine operates in two modes: development and runtime. The development mode

facilitates real-time editing, debugging, and experimentation, allowing developers to iterate

rapidly on their ideas. The runtime mode focuses on delivering a smooth, optimized

experience to end-users without access to development tools or editing capabilities.

Development mode is primarily used during the process of creating and editing a game or

application in Unreal Engine. In development mode, developers have access to various tools,

features, and debugging capabilities to use in the development process. It allows for real-time

editing of the game's content, including levels, assets, materials, and blueprints. Developers

can make changes and instantly see the results without needing to restart the game.

Runtime mode refers to the execution of the game or application that has been built and

packaged for distribution or testing. Users experience application without any access to

development tools or editing capabilities. In runtime mode, the game or application runs

independently of the Unreal Editor. It operates as a standalone program. Runtime mode may

have different configuration settings compared to development mode, such as different

graphical quality settings or performance optimizations specific to the target platform.

2.4.4 Blueprints vs. C++
Unreal Engine has two main methods for development: Blueprints and C++ coding. Blueprints

in Unreal Engine is a visual scripting system that allows developers, to create gameplay logic

35

and functionality using a no-code, node-based interface. It offers a more accessible and

intuitive approach. On the other hand, C++ coding provides greater flexibility and control to

create complex functionality.

With Blueprints, developers can design and define object behaviour, character interactions,

and environmental elements by connecting nodes representing different actions, events,

variables, and conditions. It offers an accessible and intuitive way to quickly prototype

gameplay mechanics and ideas without traditional coding. The visual nature of Blueprints

facilitates collaboration between designers, artists, and programmers, as it allows for better

understanding and visualization of logic flow. Blueprints support various functionalities, such

as character movement, animation, AI behaviour, physics simulation, and user interfaces.

Unreal Engine provides a library of pre-built Blueprint nodes and functions, and developers

can also create custom Blueprint nodes using C++ to extend functionality.

Unreal Engine is built on top of the C++ programming language, which allows for low-level

access, performance optimization, and complex systems development.

By writing C++ code, developers can create and customize game systems, implement

advanced algorithms, optimize performance-critical sections, and integrate with external

libraries and systems. Unreal Engine has many build-in classes, functions, and frameworks

that developers amongst others can use to create game mechanics, implement game rules,

create custom shaders. C++ coding is often preferred when working on large-scale projects,

performance-critical features, or when extensive customization and control are required.

Unreal Engine allows developers to seamlessly combine Blueprints and C++ code in the same

project (C++ And Blueprints, n.d.). This enables a hybrid approach where complex systems

and critical components can be written in C++, while other aspects can be implemented using

Blueprints.

2.5 Cesium ion & OGC 3D Tiles

To expand the geospatial capabilities of Unreal, Epic Games started a collaboration with

Cesium (Cozzi, 2021b). Cesium ion was chosen for creating and hosting 3D geospatial data,

publishing tilesets (see Figure 2.5), integration with other geospatial data sources, and

performing advanced geospatial analysis. Cesium ion offers a range of geospatial analysis

tools, including terrain analysis, 3D measurements, and visibility analysis (Cozzi, 2021b).

A key advantage of Cesium ion are Cesium 3D Tiles. Cesium 3D Tiles are the Open

Geospatial Consortium (OGC) community standard for tiling massive and heterogeneous 3D

content (Getz, 2021). Cesium OGC 3D tiling revolutionizes the visualization and distribution

of complex geospatial data. Cesium not only enables the viewing of 3D tiles but also facilitates

their creation, web-based hosting, and REST API-based serving through Cesium ion (Getz,

2021). Notably, Cesium has collaborated with Safe FME to integrate Cesium plugins into FME,

providing the capability to generate batched tile models (Getz, 2021). The CRS used for the

3D tiles in Cesium aligns with the EPSG:4978 ellipsoid, which is equivalent to the WGS84

ellipsoid commonly used for representing the Earth (Getz, 2021).

Cesium ion tilesets empower the creation and hosting of 3D geospatial data, offering support

for various formats such as OBJ, CityGML, photogrammetry, and LiDAR. These tilesets

provide a scalable solution for visualizing large and complex datasets, with efficient streaming

and rendering in real-time 3D environments. By integrating Cesium ion tilesets with Unreal

through Cesium for Unreal, developers gain the ability to incorporate tiled/streamed 3D

geospatial data seamlessly into their Unreal projects (Getz, 2021).

36

To showcase the geospatial capabilities of Unreal and Cesium, a collaborative effort resulted

in the development of Project Anywhere. This open-source initiative harnesses the power of

Cesium ion for Unreal to create interactive, real-time 3D visualizations of geospatial data.

Project Anywhere demonstrates the potential for leveraging Cesium ion's capabilities in

creating captivating and informative geospatial experiences (Getz, 2021).

Figure 2.5 Height-dependent building coloured 3D Tile using Cesium (Cozzi, 2021a).

2.6 Daylight Analysis in Unreal

Even though the Unreal Engine is known for its qualitative looking light distribution, quantitative

daylight analysis within the Unreal Engine, is not something that is widely used in the industry.

This section aims to discuss and summarize some of the research conducted on daylight

analysis in Unreal.

1. Visualizing user perception of daylighting: a comparison between VR and reality

(Hegazy et al., 2020).

This article compares the perception of visual comfort in virtual reality with real-life scenarios.

Participants in the study experienced both real rooms and reconstructed virtual spaces using

Unreal Engine and Oculus Rift HMD. During the study participants were questioned about

acceptability ratings and preferences. The results reveal significant differences in perception

of real-life compared to reconstructed virtual spaces. Participants perceived greater warmth

and rich colours under real sunlit settings compared to artificial sources or computer-

generated versions. However, Unreal-rendered scenes received better scores than purely

synthetic ones in terms of glare control and overall appearance quality. These results imply

certain limitations exist in the perception of daylight simulation in Unreal, while also highlighting

37

possibilities for optimizing render techniques in Unreal to reproduce more realistic daylighting

characteristics.

2. State-of-the-art review of solar design tools and methods for assessing daylighting
and solar potential for building-integrated photovoltaics (Jakica, 2018).

This paper mentions Unreal Engine as a tool that is increasingly being explored as a solar

design tool for daylight analysis and design. It states that the advantage of using Unreal

Engine for daylight analysis and design is its ability to generate highly detailed, interactive 3D

models of buildings that accurately represent how sunlight will interact in architectural

environments. These models can then be used to analyze solar performance and optimize PV

panel placement. Another benefit of using Unreal Engine for daylight design is its compatibility

with other modelling software commonly used in the industry, such as Revit or Rhino. This

enables seamless data exchange and streamlined workflows. The paper mentions that as

Unreal Engine's focus is on gaming rather than scientific physical analysis, its solar simulation

capabilities may need additional validation testing before they can be widely adopted.

Nonetheless, the authors note that Unreal Engine has enormous potential as a daylight design

tool given its ease of use, low entry barrier, and strong graphical capabilities.

3. Validating Game Engines as a Quantitative Daylighting Simulation Tool (Hegazy et

al., 2021).

The study aimed to evaluate the accuracy of Unreal Engine for indoor quantitative daylighting

simulations. Traditionally, specialized tools like Radiance have been used for these types of

simulations, but recent advancements in technology have led researchers to explore whether

game engines could be a viable alternative.

The study includes two case studies with different complexity levels and spatiotemporal

settings. The first case study focuses on a simplified shoebox model to evaluate the accuracy

of game engine rendering in a basic scenario. The second case study involves a more

complicated office model with various functions and a large-scale space to assess the

potential of game engines for simulating daylighting in realistic environments.

In both case studies, illuminance levels at selected points were measured in Unreal Engine

and compared to those calculated using Radiance and an illuminance meter for real-life

measurements. The traditional rendering technique in the game engine showed a high

variance in illuminance levels compared to the references.

Contrary, real-time ray tracing demonstrated better accuracy. In the simplified model, real-

time ray tracing showed the lowest average error compared to the validated simulation results.

In the complicated model, the average error of real-time ray tracing was close to that of the

validated simulation, compared to the actual illuminance measurements.

The study highlights the benefits of using real-time ray tracing in game engines for offering an

immersive and interactive experience of virtual daylit spaces without sacrificing the

quantitative accuracy of the simulated luminous environments. It suggests that game engines

have the potential to be a valuable tool for daylighting simulation and should be further

validated and adopted in daylighting research. Although this study focusses on the illuminance

values in indoor environments, the conclusions suggest that Unreal can realistically propagate

daylight, which is a good basis for the further research.

38

39

3. Methodology

The methodology chapter provides a detailed description of the methodology used to

develop the real-time daylight analysis tool for architectural and urban development

using the Unreal Game engine. The purpose of this chapter is to provide a clear and

concise description of the methods employed in the development of the tool. Figure 3

shows a flowchart of that methodology that will lead to the interactive daylight analysis

application in Unreal.

Figure 3 Flowchart of methodology

3.1 Loading 3D city models in Unreal

3D city models come in various formats such as CityJSON and CityGML, which can

vary depending on the country, province, or municipality. For instance, in the

Netherlands, the Dutch Kadaster has published the 3D Basisvoorziening (Blankert,

2021), a 3D dataset representing the Netherlands in CityJSON format. Additionally,

TU Delft has created 3DBAG (Ledoux et al., 2019), providing detailed 3D

representations of most buildings in the Netherlands in CityJSON format. However,

despite the existence of unified national 3D city models like 3DBAG and 3D

Basisvoorziening, individual municipalities maintain their own open 3D datasets. For

instance, Rotterdam has a CityGML dataset, Den Haag has a CityGML dataset, and

Amsterdam offers a Cesium 3D Tiles dataset (TU Delft, n.d.). Consequently, the

importing of various 3D city models into Unreal requires addressing the diversity of

formats and regional variations.

Importing a City Model directly into Unreal presents several challenges. Firstly,

Unreal does not support formats such as CityJSON and CityGML. One possible

approach is to convert the model into an OBJ format and then import it into Unreal.

However, this method leads to performance issues and prolonged import times due

to the large number of buildings in a 3D City Model file. Additionally, maintaining

consistent georeferencing becomes more difficult with this approach. While Unreal

offers georeferencing capabilities, they are project-based rather than file or object-

based. Since the OBJ format uses a local CRS with offsets (Wikipedia contributors,

2023), imported OBJs are not automatically placed in the correct location but would

require manual adjustment. As a result, ensuring the integrity of the CRS and the

40

accurate positioning of buildings becomes exponentially challenging when dealing

with different files and CRS. Therefore, both direct importing and importing in the

form of OBJ prove impractical, requiring alternative approaches.

To address the variations in 3D model formats, such as CityJSON and CityGML, and

their incompatibility with direct placement into Unreal, different methodologies and

scenarios will be tested to assess the usability of different formats of 3D City models

in Unreal. For this purpose, Cesium ion, a plugin for Unreal, was used. Cesium ion

brings tiling, georeferencing, standardization and other geospatial capabilities into

the Unreal Game Engine. Cesium 3D Tiles are Open Geospatial Consortium (OGC)

community standard for tiling of massive heterogenous 3D content (Getz, 2021).

While CityGML is an accepted format by Cesium ion, CityJSON is not supported.

Besides CityGML, and CityJSON, the Google Maps API & Cesium OSM tileset will

also be tested.

The Cesium OSM tile from Cesium ion enables the seamless import of OSM 3D

tilesets into Unreal Engine, providing access to immersive and realistic 3D

environments. These tilesets consist of 3D models and terrain data generated using

OSM, bringing access to realistic 3D environments in Unreal. The tilesets generated

by Cesium ion are optimized for performance and streaming, enabling efficient

visualization of large-scale 3D city model datasets.

On May 10th, 2023, Cesium made an exciting announcement regarding their

partnership with Google Maps (Cozzi, 2023). As part of this collaboration, Google

launched an exciting experimental release of Photorealistic 3D Tiles via their Map

Tiles API. These 3D tiles are created based on Cesium's OGC standard. With the

integration of the Google Maps API into Unreal Engine, developers can seamlessly

incorporate these photorealistic tiles directly into their projects. This integration

allows developers to incorporate the detailed and lifelike representations of real-

world environments provided by Google Maps into their Unreal Engine projects.

To test the usability of loading 3D city models in Unreal, the following scenarios will

be tested and compared to each other:

1) Convert CityJSON to Cesium tile using FME

2) Load CityGML directly into Cesium ion.

2) Convert CityJSON to CityGML using FME

3) Convert CityJSON to CityGML using citygml-tools

4) Cesium OSM Tileset

5) Google Maps API.

3.2 Extracting light values from Unreal

Because Unreal was originally designed for game development, lighting and its values

are primarily focused on the visual aspects. However, Unreal does utilise physical units

in its lighting calculations.

Both Radiance & Unreal calculate illuminance values based on raytracing & monte

Carlo simulation. However, there is a difference in the way Unreal & Radiance

calculate Luminance. Radiance uses the relative luminance * 179. Relative luminance

in Radiance is defined as (0.265*Red) + (0.670 * Green) + (0.0065 * Blue). Radiance

multiplies by 179, because of the white light efficacy factor of 179 lm/W (gendaylit.pdf

— Radsite, n.d.). Whereas Unreal uses the relative luminance values normalised to a

41

range between 0 & 1 multiplied by the intensity of the light source (Physical Lighting

Units, n.d.). Relative luminance in Unreal is defined as (0.299 *Red) + (0.587 * Green)

+ (0.114 * Blue). Unreal does not offer any explanation as to why this formula is

chosen. it is important to note that the choice of formulas for calculating luminance in

Radiance and Unreal can have implications for the accuracy and visual representation

of light in their respective simulations. The multiplication by 179 in Radiance considers

the specific white light efficacy factor, which may contribute to a more realistic

representation of luminance values. In contrast, Unreal's normalization and

multiplication by the intensity of the light source may offer a different perspective on

luminance, potentially affecting the perceived brightness and visual appearance of

scenes. These differences will be considered when implementing the functionality to

calculate luminance in Unreal, considering both approaches.

This thesis will focus on multiple ways to extract light values (Luminance &

Illuminance) from Unreal:

1. Accessing light information directly from build in functionality of Engine

Unreal provides built-in functionality to calculate the amount of light in a specific area

of the scene. This research will investigate accessing this functionality directly,

incorporating it into a game mode at runtime, and experimenting with adjusting or

modifying the light information functionality.

2. Calculating Luminance and Illuminance values using a custom C++ actor.

Another method that will be explored for calculating luminance and illuminance values

is through the development of a custom C++ actor. The actor will capture the screen

space coordinates and RGB values of the pixels. Once the RGB values are obtained,

they will be converted into luminance & illuminance.

3. HDR eye adaptation.

The HDR eye adaptation tool in Unreal is a built-in functionality that enables the game

engine to measure illuminance values in real-time. This tool mimics the way that the

human eye adapts to changing light conditions. It works by constantly measuring the

brightness illuminance of the scene and adjusting the exposure settings of the camera

accordingly. In this research the tool will be used to measure luminance & illuminance

values.

4. False Colour Post-Processing Material.

Light perception is a visual phenomenon. Radiance uses a False-colour rendering

technique to visualise the amount of light in different colours. This allows users to

quickly identify and understand the distribution of light in a certain model, without

looking at numerical data. In Unreal, this false-colour rendering will be implemented as

a post-processing material. Post-processing materials in Unreal are special types of

materials that can modify the final image output of a scene. (Post Process Materials,

n.d.). They can use information from lights in the scene to adjust the colour and

brightness of materials and apply effects such as bloom, lens flares, and colour

grading. This provides greater control over the final appearance of a scene.

Additionally, the feasibility of accessing the numerical values of the light and assigning

colours based on the numerical values of light. E.g., colouring every object with 5000

lux orange.

42

3.3 Comparison of different light analysis methods vs. Benchmark

To validate the accuracy of daylight values in Unreal and its ability to realistically

propagate daylight, a twofold approach is implemented. Firstly, an inverse square law

experiment is conducted to investigate the behaviour of light values in Unreal and their

adherence to the theoretical values predicted by the inverse square law (see Figure

3.3). The outcome of this experiment will be used as the basis of the further

benchmarking. It is important to note that the inverse square law primarily accounts for

the spread of light and does not consider other factors such as diffraction or refraction

caused by surrounding buildings. The objective of this experiment is to gain an initial

understanding of Unreal's ability to accurately simulate light propagation.

 Figure 3.3 Inverse square law (Inverse Square Law, n.d.).

While the inverse square law experiment provides an initial insight into the spread of

light, it is acknowledged that additional factors influence the daylight in urban

environments. In the further benchmarking in an urban environment, other factors,

including measurement errors, sun position, skylight intensity, and sun intensity, could

influence the accuracy of the daylight measurements. By conducting the inverse

square law experiment a baseline is established for further benchmarking and strive to

understand the extent to which Unreal accounts for different behaviours of light.

To further validate the realisticity of daylight propagation in urban environments, the

values from Unreal are compared against the established light analysis method

Radiance. A 3D city model tileset will be imported, and light values will be extracted

from Unreal and compared to those extracted using Honeybee. A comparison between

Honeybee and Unreal will be made in terms of their ability to handle complex 3D city

models, the computational time required for calculations, and the accuracy of the

results.

43

To calculate daylight values in Honeybee, a Grasshopper script will be developed to

calculate point-in-time illuminance values within the tileset. The same 3D city model

used in Honeybee will be imported into Unreal for benchmarking purposes. The

illuminance values obtained from Honeybee will be compared to those from Unreal.

To ensure the reliability and accuracy of the measurements, precautions will be taken

to minimize potential errors.

1. Each measurement point will be measured three times, mitigating the impact of

random errors and measurement inaccuracies by averaging the results.

2. To prevent information bias, the illuminance values from the Honeybee model will

intentionally be hidden during measurements in Unreal. This approach aims to

maintain objectivity and eliminate any unconscious bias that may arise from

observing the values in the other application.

3. Comprehensive coverage of a wide range of daylight scenarios will be achieved by

strategically placing measurement points on different surfaces, considering areas

exposed to direct sunlight as well as shaded regions. Moreover, various

environmental complexities will be considered, such as obstruction caused by

surrounding buildings, as well as the presence of diffraction and refraction effects. By

incorporating these diverse scenarios, the study aims to validate the ability of Unreal

to accurately simulate and calculate daylight propagation in urban environments.

4. Finally, both the Unreal SunSky model and the Cesium SunSky model will be

compared against the sun position in Honeybee and the resulting values.

By following these methods and conducting a thorough evaluation, the study aims to

provide valuable insights into the accuracy and performance of the Unreal Engine in

simulating and calculating daylight values in urban environments.

3.4 Interactive User Functionality

User interaction plays a vital role in facilitating the architectural and urban design

process. The Unreal Game Engine provides various tools for enabling user interaction

in the application. The application should allow users to interactively remodel the urban

design and recalculate daylight on the spot. To achieve this, the application will support

scale, rotate, and translate functionalities, enabling users to adjust the design to their

desired specifications.

In addition to manipulating existing geometry, the application will also support the

addition of new geometry to the urban environment. This will be facilitated through the

inclusion of building blocks, offering a library of pre-defined elements that enable users

to construct their designs quickly and efficiently. Furthermore, the application will also

support the importing Cesium Tiles at runtime, enabling users to import new designs

created in other applications or 3D city models.

To enhance flexibility and customization, the application will provide users with the

ability to switch between different render modes and modify rendering settings at

runtime. This feature will enable users to visualise and analyse the urban design in

various perspectives and lighting conditions, providing a deeper understanding of the

impact of their design choices on the lighting environment.

44

The effectiveness and capabilities of user interaction within the application will be

evaluated based on several criteria. The design capabilities will be compared against

industry standard tools for architectural and urban daylight design, such as Rhino. This

analysis will help identify the strengths and weaknesses of the application in terms of

usability, efficiency, and overall user experience. Furthermore, the application will be

evaluated based on its in-game functionality versus the development mode

functionality.

The creation and evaluation of user interaction and design capabilities aim to provide

potential users with workflow recommendations and insights into the pros and cons of

the application. These insights can guide future development, addressing any

identified areas for improvement and improving the application's overall performance

and user experience.

3.5 User Interface

Creating an intuitive UI is crucial for ensuring a positive user experience in the VR

web application. The UI is designed to allow users to easily navigate between

different features and functions of the application.

The UI will be developed using the Unreal Engine's built-in UMG (Unreal Motion

Graphics) system. This system enables the creation of user interfaces that can be

used in VR.

The UI will include a navigation menu that allows users to access the different

functionalities from chapter 3.4, such as selecting different 3D models and changing

the lighting settings.

45

46

4 Implementation

This chapter describes the implementation of this research, building upon the

methodology outlined in Chapter 3. This chapter aims to give a clear understanding of

how the research methodology was put into action and the different parts involved.

The sections in this chapter will provide practical insights and technical details on how

the research objectives were achieved. The application is available at:

https://github.com/siebren014/LuminaCity. Additionally, a demo video showcasing the

application's functionality is available at: https://youtu.be/qc9LLf2PT40.

4.1 Tools, datasets and hardware used

Table 4.1 provides an overview of the various datasets and software used in the

research project. Each entry includes the name of the dataset or software, the source

from where it was obtained, and its specific usage in the Thesis.

The hardware that was used for the development of this thesis is a laptop with

an Intel Core i5-9300H processor with a speed of 2.40 GHz and a quad-core. The

graphics controller is an NVIDIA GeForce GTX 1650. The laptop has 16GB of

physical memory and 27GB of virtual memory.

Dataset or Software Source Usage

3DBAG Tile Rotterdam (3D BAG Viewer, n.d.)

Dataset containing detailed 3D

models of Rotterdam buildings.

Used to evaluate the performance

of importing and analysing different

3D models in the Unreal

application, as well as used as

benchmark dataset for comparison

of light values.

Unreal Engine

(Unreal Engine | the Most

Powerful Real-time 3D

Creation Tool, n.d.)

Development platform utilised for

creating the real-time daylight

analysis tool.

Rhino
(Robert McNeel &

Associates, n.d.)

Modelling software employed for

benchmarking purposes. Allows for

the creation and manipulation of 3D

geometry, providing access to

Grasshopper for additional analysis

capabilities.

Grasshopper (Grasshopper, n.d.)

Visual scripting software used in

conjunction with Rhino for light

analysis

Ladybug/Honeybee
(Ladybug Tools | Home

Page, n.d.)

Daylight analysis plugins for

Grasshopper. Used to build Point-

in-time illuminance script.

https://github.com/siebren014/LuminaCity
https://youtu.be/qc9LLf2PT40
https://3dbag.nl/en/download?tid=3312
https://www.unrealengine.com/en-US/
https://www.unrealengine.com/en-US/
https://www.unrealengine.com/en-US/
https://www.rhino3d.com/
https://www.rhino3d.com/
https://www.grasshopper3d.com/
https://www.ladybug.tools/
https://www.ladybug.tools/

47

FME (Wij Zijn Tech | FME, n.d.)

Data integration and transformation

tool. Used to convert 3DBAG to

Cesium tile & CityGML.

Cesium ion (Cesium Ion, n.d.)

Geospatial data hosting and

visualisation platform. Used to host

3D city models.

Cesium for Unreal (Cesium for Unreal, n.d.)

Integration of Cesium geospatial

data in Unreal Engine and

CesiumSunSky.

GitHub (GitHub, n.d.)
Version control and hosting of

applications.

VS Code (Visual Studio 2022, 2023)

Integrated development

environment for coding in Unreal.

Used to add functionality in Unreal

using C++

CityGML file Den Haag

(3D Stadsmodel Den Haag

2022 CityGML -

Dataplatform, n.d.)

CityGML dataset of Den Haag (The

Hague). Used to evaluate the

performance of importing and

analysing different 3D models in the

Unreal application

citygml-tools (Citygml4j, n.d.)
Used to convert CityJSON to

CityGML

Google Maps API

(Google Maps

Platform | Google for

Developers, n.d.)

To generate a Google Maps API

key to implement the google maps

tileset

Table 4.1. Overview of tools and datasets used.

4.2 Loading 3D city models in Unreal

To test the different scenarios mentioned in section 3.2, the following steps will be

taken:

1) Convert CityJSON to Cesium tile using FME

Since CityJSON is not an accepted format by Unreal nor Cesium ion, the CityJSON

(3DBAG) dataset first needs to be converted to the Cesium Tileset format using FME

(see Figure 4.2.1). Afterwards the Cesium Tileset can uploaded to Cesium ion. With

the data uploaded to Cesium ion, a connection is made between Unreal and the

Cesium ion account. From the Cesium ion assets tab in Unreal, the desired tile is

selected and loaded into Unreal. Optionally, the z-coordinate can be adjusted to

ensure proper alignment with the Cesium world terrain. It is important to consider that

using FME for conversion adds additional steps to the workflow. However, this

method allows you to import the CityJSON datasets into Unreal, providing enhanced

https://www.fme.nl/
https://cesium.com/platform/cesium-ion/
https://cesium.com/platform/cesium-for-unreal/
https://github.com/
https://visualstudio.microsoft.com/vs/
https://ckan.dataplatform.nl/dataset/3d-stadsmodel-den-haag-2021-citygml
https://ckan.dataplatform.nl/dataset/3d-stadsmodel-den-haag-2021-citygml
https://ckan.dataplatform.nl/dataset/3d-stadsmodel-den-haag-2021-citygml
https://github.com/citygml4j/citygml-tools
https://developers.google.com/maps
https://developers.google.com/maps
https://developers.google.com/maps

48

visualization and interaction within the Unreal environment.

Figure 4.2.1. Converting CityJSON to Cesium 3D Tile using FME.

2) Load CityGML directly into Cesium ion.

CityGML is accepted by Cesium ion, so can be directly uploaded without conversion.

When uploading the CityGML file to Cesium ion, there is the possibility to clamp the

buildings to “Cesium World terrain” or “Mean Sea level”. This eliminates the need to

manually adjust the z-coordinate of the buildings.

3) Convert CityJSON to CityGML using FME

Instead of converting a CityJSON file, into the Cesium tiles format, it can also be

converted into CityGML format using FME (see Figure 4.2.2). The resulting CityGML

file is then uploaded to Cesium ion, following the previously mentioned steps. This

approach offers the advantage of enabling compatibility with the CityGML format for

further processing and taking away the need to manually adjust the z-coordinate of

CityJSON files converted to Cesium tiles. However, it requires using FME for

conversion and involves additional steps for uploading to Cesium ion.

Figure 4.2.2. Converting CityJSON to CityGML using FME.

49

4) Convert CityJSON to CityGML using citygml-tools (Citygml4j, n.d.)

Alternatively, to using FME to convert CityJSON to CityGML format, citygml-tools can

be used. Citygml-tools is the recommended tool to convert CityJSON to CityGML by

the creators of the CityJSON format (Converting to/From CityGML Files, n.d.). To

import the 3DBAG dataset into Unreal in CityGML format, utilize citygml-tools and the

"from-cityjson" command in the command line to convert the dataset. Next, upload the

resulting CityGML file to Cesium ion. In the Unreal Project, connect the Cesium ion

account and load the desired tile from the Cesium ion assets. This method involves

using command-line tools and the citygml-tools application, which adds additional

steps for uploading to Cesium ion, which can add complexity to the workflow.

5) Cesium OSM Tileset

The Cesium OSM Tileset is a built-in feature of Cesium ion, which can easily be added

to the Unreal project from the Cesium ion assets. This approach has the advantage of

eliminating the need of uploading and importing datasets. However, the quality, or level

of detail of the tileset might not meet the requirements of the user.

6) Google Maps API.

To integrate Google Maps data into your Unreal project, you will need to obtain a

Google Maps API key. By pasting this API key into a "Blank 3D Tiles" tileset in Unreal,

you can add the Google Maps API dataset of buildings in Unreal. This approach

provides the advantage of seamlessly incorporating Google Maps data into your

project. However, it is important to note that it requires a Google Maps API key and

may introduce a dependency on external services.

4.3 Extracting light values from Unreal

To extract light values from Unreal, several methods were explored:

1) HDR eye adaptation.

To set up a reliable baseline for measuring luminance and illuminance values in the

scene, the decision was made to use the built-in HDR eye adaptation tools (see Figure

4.3.1). The main consideration for this decision was the inherent availability and

integration of these tools within the engine, which ensured their accuracy and reliability.

By using the built-in nature of these tools, they served as a solid reference point for

comparing light values with Honeybee and evaluating results obtained from alternative

methods. This approach guaranteed that in case other methods did not perform as

desired, the benchmarking process would still be supported by exact and dependable

measurements from the built-in tools.

However, it is important to note that the built-in HDR eye adaptation tools have certain

limitations. They do not work at runtime, require manual reading of light values, and

lack the capability to export or save the measured data. Therefore, to address these

limitations and ensure a comprehensive analysis of daylight values, it was imperative

to explore more possibilities for extracting and calculating the desired information.

50

Figure 4.3.1 Measuring light values with HDR eye adaptation tool

2) Accessing light information directly from build in functionality of Engine.

To harness the functionality behind the HDR eye adaptation tool at runtime, and export

the measured daylight values, efforts were undertaken to directly access the functions

responsible for calculating lighting by accessing them in a C++ script. Functionality

from the file “PostProcessVisualizeHDR.cpp”, containing HDR Eye Adaptation tool that

measures luminance and illuminance values in development mode, and functionality

from “IlluminanceMeter.cpp” were made “BlueprintCallable”, which should allow

accessibility through blueprints, making them available at runtime.

By making these functions available at runtime, the research aimed to use the power

of the HDR eye adaptation tool and extract valuable lighting data in dynamic

environments. This approach would supply the flexibility to capture and analyze

luminance and illuminance values on the fly, facilitating real-time adjustments and

enhancing the overall accuracy of our lighting analysis.

51

3) Calculating Luminance and Illuminance values using a custom C++ actor.

As an alternative to utilizing the built-in functionality for accessing daylight information,

a custom C++ actor was developed to calculate the luminance values at runtime. The

actor passes the screen texture below the cursor as an input and calculates the

luminance value based on the amount of light emitted from the surface. The

implementation details of this custom actor are provided in pseudo-code in Algorithm

1.

To invoke the actor, a Blueprint (Appendix G) was created. The resulting luminance

values were then normalized within a range of 0 to 256 and multiplied by the intensity

of the light. Alternatively, they can be multiplied by 179, to follow the method of

Radiance to calculate luminance. In the user interface, the resulting luminance values

are shown in the top left corner of the screen (Figure 4.3.2).

52

Figure 4.3.2 Custom C++ actor to calculate luminance (value at top left part of

the screen)

4) False Colour Post-Processing Material.

As an alternative to the previous methods, that numerically represent the amount of

light on a surface, a false colour Post-Processing material was developed to visually

represent the light distribution in a scene. By utilising the PostProcessInput0 parameter

and a false colour texture, objects in the scene are assigned colours based on their

Illuminance values, providing a visual representation of the light distribution. The

implementation code is provided in Algorithm 2 and the resulting rendering style can

be observed in Figure 4.3.3.

Figure 4.3.3 False Colour Post-Processing Material

To ensure an informative visual representation without distracting the user, the false

colour material is only applied to the buildings. In Unreal Engine, the sky is rendered

at a considerable distance from the scene, with a deep scene depth. By leveraging the

53

"depth" information, objects with a scene depth smaller than 10,000 are exclusively

rendered, effectively excluding the sky from the false colour representation. Similarly,

the terrain can be excluded from the rendering by adjusting its "custom depth" value.

In addition to illuminance values, the same logic and a custom material node with C++

code were employed to represent the amount of luminance in false colour. The

corresponding blueprints can be found in Appendix H.

This post-processing material allows for the visual representation of both luminance

and illuminance values in false colour. The colours assigned to specific values can be

customized using the created custom material node, providing flexibility for

representing the data in relative or absolute scales.

54

4.4 Comparison of different light analysis methods vs. Benchmark

The inverse square law experiment was implemented in Unreal by creating a point light

of 100 lux and measuring the Illuminance values on a white surface at r distance from

the source. Besides that, there were no other objects or lights active in the scene, to

have the results as accurate as possible. To benchmarking the daylight propagation

of Unreal in urban environments and facilitate a comparison with values from

Honeybee, a 3D city model was used. The dataset (see Figure 4.4.1) that was used is

tile 3312 from 3DBAG. This dataset comprises 3010 buildings located in Rotterdam,

the Netherlands, with coordinates 51.896438174141096, 4.477799465615449,

covering an approximate area of 1.75 m². The initial file size of the dataset before

importing into the system was 19716 kB.

Figure 4.4.1 Benchmarking dataset with 3010 buildings in Rotterdam

4.4.1 3D city model & Benchmarking in Honeybee
The implementation of the benchmarking phase encountered several challenges that

required adjustments to the initial plan. The intention was to utilise the 3DBAG

CityJSON tile for comparison; however, it posed compatibility issues with Rhino, as

CityJSON format is not supported. Consequently, the OBJ version of the 3DBAG tile

was used instead, which could be loaded in Rhino. However, it was not compatible

with the Honeybee model due to specific geometry requirements.

Attempts were made to fix the geometry of the mesh using methods such as mesh

repair and mesh Boolean union. Unfortunately, these measures proved ineffective as

the 3DBAG OBJ consists of multiple meshes, making it incompatible with Honeybee.

The presence of height differences on the ground level further complicated the

situation. It became evident that Honeybee required individual buildings, with adjacent

rooms and closed volumes.

To address these issues, the benchmarking dataset was simplified to two variants.

Firstly, a manually constructed simplified version of a section of the original dataset

was created, ensuring adjacent closed volumes (see Figure 4.4.2). Secondly, a single

building was selected from the original dataset to generate a Honeybee model, while

the remaining buildings served as context to cast shadows on the model without

calculating their individual light values (see Figure 4.4.3).

55

Figure 4.4.2 simplified version of a section of the original dataset with adjacent closed

volumes

 Figure 4.4.3 Complete Benchmarking dataset in Rotterdam

56

These two simplified versions were then used as input for the Grasshopper script that

calculates the point-in-time luminance & Illuminance values. The script is implemented

in the following way:

- An adjacent, closed volume is loaded as Building input.

- The other geometry is loaded in the Context geometry input.

- These 2 inputs are then combined to for the Honeybee Model

- Weather data is loaded from a weather file from

https://www.ladybug.tools/epwmap/. In this research the weather file which is

closest to the site of the benchmarking location was chosen, which was at

Schiphol Airport Amsterdam.

- The Honeybee Model is created with a resolution of 5 cm using the

"grid_size" parameter.

- To optimize calculation times, the Radiance Parameters, also known as

"RadPar", are set to detail level 0 (low).

- The Weather data and Honeybee Model are used as input for a point-in-time

image that calculates the brightness values given a particular point in time. In

the case of this research point-in-time is 21st of June at 12:00

- These values are then used as input data for 2 HDR images. The first one is

a FalseColor, which is mainly used for visual appearance. The AdjustHDR is

used to extract the brightness values.

A simplified diagram of the script can be seen in Figure 4.4.4. The full script is placed

in Appendix C.

 Figure 4.4.4 Simplified diagram of Grasshopper script

4.4.2 Measurement Points
To perform a benchmarking of the daylight values in Unreal and Honeybee, the same

model of buildings that were used in Honeybee, was imported in Unreal. Once the

Unreal model was set up, illuminance values were extracted from both the Unreal and

Honeybee models. The values in Unreal were extracted using the build-in HDR Eye

Adaptation tool at runtime (see Figure 4.3.1). In Honeybee the values were extracted

by creating a HDR image and clicking on the location of the points to extract the

illuminance values (see Figure 4.4.5). To ensure the reliability and accuracy of the

measurements, several precautions were taken to minimize potential errors and

information bias.

https://www.ladybug.tools/epwmap/

57

Figure 4.4.5 HDR image in Honeybee used to measure illuminance

To address measurement errors, each measurement point was measured three times,

taking the average of these measurements. This approach aimed to enhance the

overall precision and reliability of the collected data, by reducing the impact of random

errors and measurement errors. To prevent information bias, the illuminance values

from the Honeybee model were intentionally not visible during the measurements. This

approach was implemented to eliminate any unconscious bias that might arise from

seeing the values in the other application. By concealing the Honeybee values, the

measurement process remained objective and unbiased.

To ensure comprehensive coverage of various scenarios of daylight propagation, the

measurement points were strategically placed on different surfaces, taking into

consideration areas exposed to direct sunlight as well as shaded regions. The specific

placement of the points can be seen in Figure 4.4.6, 4.4.7, 4.4.8 and 4.4.9. This

approach allowed for an examination of how light propagated in both illuminated and

non-illuminated areas within the models. Furthermore, the choice of measurement

points aimed to represent a balanced representation of varying environmental

complexities. Points were chosen with various levels of obstruction caused by

surrounding buildings, as well as varying degrees of diffraction and refraction effects.

By incorporating these different scenarios, the study sought to display the overall ability

of Unreal to accurately simulate and calculate daylight propagation in diverse urban

environments. The hypothesis for the benchmarking is that in complex scenarios, the

disparities in daylight values between Unreal and Honeybee will be greater compared

to simpler scenarios.

58

Figure 4.4.6 Measurement points 1 to 39

Figure 4.4.7 Measurement points 40 to 48

59

Figure 4.4.8 Measurement points 48 to 58

Figure 4.4.9 Measurement points 59 to 135

60

4.4.3 Optimizing sun & sky model in Unreal
Unreal offers 2 different sun & sky models, that of Unreal, and that of Cesium ion.

During the benchmarking process, the choice of sun models was an important

consideration. To ensure accuracy and alignment with the Honeybee model, both

options were compared against the position of the sun in Honeybee and the resulting

values.

Upon first observations, it became evident that the standard light values of both

the Unreal SunSky model, and the Cesium SunSky model, were both too high, and not

automatically adjusted based on date, time, and position. This meant that the values

of direct sunlight and sky light had to be adjusted manually. The direct sunlight

component has the physical unit of lux, but the skylight models do not have a physical

unit, but rather a relative one.

 Initial experiments with the direct sunlight, showed that values of lit areas in

Unreal generally aligned with those from Honeybee. However, areas without direct

sunlight showed significantly lower values. To address this discrepancy, adjustments

were made to the Skylight intensity and Directional light values.

To achieve a more realistic representation, the Skylight intensity was

increased. This adjustment enhanced the contribution of indirect lighting from the sky,

compensating for the lower values in areas without direct sunlight. Additionally, the

Directional light intensity was decreased.

Finding the right balance between values in simpler scenarios with minimal

reflection and those with extensive reflection, as well as scenarios where there was no

direct light and those with direct light, was crucial to have come to a realistic

propagation of daylight under various scenarios in Unreal. This involved an iterative

process of fine-tuning the Skylight and Directional light to accurately capture the

propagation of daylight and reflection in different environmental conditions.

Finally, after evaluating various scenarios and light sources, it was found that the

optimal balance was achieved using the Unreal SunSky with the skylight set to 15 and

the sunlight to 25000 lux. Through these adjustments and considerations, the Unreal

model achieved a closer alignment with the Honeybee model, ensuring a more exact

representation of lighting conditions and enhancing the overall realism of the

simulation. The fact that the skylight in Unreal does not have a unit, makes it difficult

to compare the values of the light settings from Unreal with Honeybee. In Honeybee

the light values of direct sunlight were 44800 lux and indirect light 1200 lux.

4.5 Interactive User Functionality

To make the platform interactive and usable for design rather than solely light analysis,

functionality was added that allows users to explore the urban design, move around

freely, and interact with objects and elements within the scene.

Building Blocks: To enhance the ease and efficiency of design iterations, the platform

offers a library of predefined building blocks. These standardised components could

be readily integrated into the design, enabling rapid prototyping and exploration of

various architectural configurations. Users can select various objects, including a

house, cube & appartement building, which they can drag into world space, and place

on the terrain (see Figure 4.5.1). The implementation can be seen in appendix A.

61

Figure 4.5.1 Building Blocks

Scale, Rotate, and Translate: To facilitate design modifications, the platform

incorporated intuitive controls for scaling, rotating, and translating objects (see Figure

4.5.2). This was done by implementing C++ code based on the RuntimeTransformer

GitHub repository (Xyahh, n.d.).

The application is available as a plugin that works for UE4, but not for UE5. As this

thesis is implemented in UE5, the code was slightly adjusted and implemented as

normal code, instead of a plugin. This decision was made as it was observed that

plugins often become incompatible with newer versions of the Unreal application,

whereas C++ code is easily transferred from a project in one version of the Engine to

another version.

62

Figure 4.5.2 Scale, Rotate, and Translate geometry at runtime

Cesium Tiles at runtime: Leveraging the capabilities of Cesium ion, the application

integrated dynamic placement of Cesium Tiles at runtime, enabling users to import

geometry created in other applications (see Figure 4.5.3). To initiate the import

process, the user simply provides the URL of a Cesium ion Tile, which is then loaded

into the application. This allows users to import designs and tilesets from external

sources. The implementation can be seen in appendix E.

63

Figure 4.5.3 Import Cesium ion tiles at runtime

Change Render at Runtime: The platform offers the flexibility to change the rendering

settings at runtime. Users can dynamically adjust lighting conditions, shadows, and

other rendering parameters to simulate different times of day or environmental

conditions. This is done by when a user presses the button lit or dark logo on the

bottom left of the screen (see Figure 4.5.4), the Post-Processing material is either

switched on, or off. The blueprint implementation can be seen in appendix B.

64

Figure 4.5.4 Changing render at runtime

Change sun position: In addition to the user interaction features, the implemented

platform includes the capability to update the sun position, date, and time. This

functionality allowed users to simulate different lighting conditions and evaluate the

impact of varying solar positions throughout the day and across different seasons. The

users can drag the different sliders to adjust the date and time (see Figure 4.5.5). The

implementation can be seen in appendix F.

65

Figure 4.5.5 Changing date & time at runtime

66

4.6 User Interface

The UI is developed using the Unreal Engine's built-in UMG (Unreal Motion

Graphics) system. This system enables the creation of user interfaces that can be

used in different systems including Windows, Mac, Linux and VR.

The implemented UI, as can be seen in Figure 4.6 and depicted in Blueprints in

Appendix I, includes various components. The menu located on the right side of the

screen displays various buttons, including a dynamic text field. This text field

facilitates the loading of designs through Cesium ion. Users can import designs from

Cesium ion by pasting a link into a text field. Other sliders are available to adjust the

day, time, and month. Additionally, icons of a cube, row house, and apartment

building, for instance, are situated in the lower-right corner, allowing users to drag

and drop these objects into the virtual "world". Furthermore, it enables users to add,

scale, rotate, and move buildings or geometry within the environment, and change

the render settings.

The UI aims to provide users with a seamless and intuitive experience within the

application, enabling efficient navigation and interaction with its diverse

functionalities.

Figure 4.6 UI at runtime

67

68

5 Results & Discussion

The results section of this thesis presents the findings and outcomes of the research

conducted to explore the potential of using the Unreal Engine for real-time daylight

analysis. The purpose of this section is to provide a comprehensive overview and

analysis of the data collected during the study.

5.1 Inverse square law

The inverse square law experiment conducted in Unreal aimed to examine if the light

propagation in Unreal is realistic. The theoretical values were calculated based on the

expected behaviour of light intensity according to the inverse square law. These were

then compared with the results from measurements in the Unreal application. The

obtained measurements are in Table 5.1. The obtained results from Unreal closely

aligned with the expected trend, demonstrating a decrease in light intensity as the

distance from the source increased. The measured values in Unreal were in line with

the theoretical values, indicating the accuracy of the simulation in replicating the

physical properties of light. Minor deviations between the Unreal values and the

theoretical values can be attributed to various factors, including the inherent limitations

of the simulation and slight measurement inaccuracies.

These results demonstrate promising findings for the further benchmarking of daylight

analysis. The close alignment between the measured values in Unreal and the

theoretical values indicates the engine's capability to accurately replicate real-world

lighting behaviours. It is important to reiterate that this experiment was solely done to

get an initial understanding of Unreal's ability to accurately simulate light propagation.

Although promising for further benchmarking, these results do not imply Unreal’s ability

to realistically propagate light in (complex) urban environments.

 Source 1m 2m 3m 4m

Theoretical
Value

100 100 25 11,11 6,25

Unreal Values 100 99,021

24,762 10,394 5,894

% difference n/a 0,98 0,99 6,44 5,70

Table 5.1 Inverse square law experiment

69

5.2 Importing 3D city models

As previously mentioned in Chapter 3.1, Cesium 3D Tiles are the OGC community

standard for streaming 3D tiles (Getz, 2021). However, the process of uploading 3D

city models to the Unreal application using Cesium ion revealed several notable

findings. Out of the 5 methods to import or add 3D city models to the Unreal application,

only the 3rd method of converting CityJSON to CityGML using citygml-tools (Citygml4j,

n.d.), failed. The citygml-tools format for converting CityJSON to CityGML was not

compatible with Cesium ion.

During the process of importing different formats of 3D city models into the Unreal

application with Cesium ion, notable discrepancies were observed in the z-coordinate

values of the placed buildings across different formats. Cesium ion accepts CityGML

format for importing 3D city models, providing a viable option for integrating geospatial

data into the Unreal environment. It is crucial to note that Cesium World terrain, being

a custom Geodic terrain offered by Cesium, can potentially affect the placement and

alignment of the imported models.

Various models and ways of importing yielded various results related to z-coordinate

of the buildings. CityGML buildings, when imported, can be clamped to either the

Cesium World terrain, or the ellipsoid. However, CityJSON files that are converted to

CityGML using FME, although clamped to the same terrain as files that originally came

in the CityGML format, are displayed at a different z-coordinate, usually above the

terrain. Cesium ion does not provide any specifics of the format of CityGML that is

accepted or recommended, but not every format of CityGML is accepted or clamped

to the terrain correctly.

When uploading a Cesium tileset to Cesium ion, it does not provide the option to clamp

it to a terrain, instead its CRS is used, which clamps it to the ellipsoid. This causes

CityJSON files that are converted to Cesium tiles using FME, to be displayed below

the Cesium World terrain.

To overcome these limitations, an alternative approach was explored, which involved

uploading the city models as Cesium tiles using FME and adjusting their z-coordinate

manually. This method allowed for the georeferencing of models on the Ellipsoid,

providing greater flexibility in positioning and alignment. However, it should be noted

that if the desired outcome is to incorporate Cesium World Terrain, manual adjustment

of the model's z-coordinate is necessary to ensure proper alignment.

 Figure 5.2.1 Imported CityJSON model with adjusted height in Unreal

70

In addition to importing 3D city models, Unreal also provides the option of utilising a

readily available Cesium OSM building dataset. This dataset is based on

OpenStreetMap and allows for the visualisation of OpenStreetMap buildings in Unreal

in 3D. The buildings in this tileset are clamped to the Cesium World terrain. While this

eliminates the need to upload data onto Cesium ion, it should be acknowledged that,

as can be seen comparing Figure 5.2.1 & 5.2.2, the level of detail in the buildings is

significantly lower compared to the CityJSON or CityGML datasets that were imported.

Figure 5.2.2 Cesium OSM tileset in Unreal

Another alternative for importing and integrating 3D city models into Unreal is to utilise

the Google Maps API tileset. This tileset by far offers the highest level of detail and

realisticity (see Figure 5.2.3). However, it is important to consider the impact on

application performance. Loading the tileset requires approximately 30 seconds, which

can be a noticeable delay compared to other 3D City models. Additionally, the

movement within the application may become slightly less smooth due to the increased

processing and rendering requirements of the highly detailed tileset. It however does

produce extremely realistic looking results that also considers trees and street furniture

(see Figure 5.2.4).

71

Figure 5.2.3 Google Maps API tile in Unreal

Figure 5.2.4 Google Maps API in Unreal with false colour rendering

72

While Cesium ion is widely recognized as an Open Geospatial Consortium (OGC)

community standard for tiling massive heterogeneous 3D content (Getz, 2021), the

findings of this study shed light on the unanticipated complexity and interoperability

challenges associated with importing 3D city models into the Unreal application. These

findings highlight the importance of considering factors such as format compatibility,

terrain clamping, and manual adjustments of z-coordinates to achieve precise

positioning of the imported models. By gaining a comprehensive understanding of the

strengths and limitations of different import methods, users can make well-informed

decisions when integrating real-world city data into the Unreal environment.

5.3 Extracting light values from Unreal

Accessing and retrieving light values from Unreal Engine presented a mixed outcome

during this research. Although the retrieval of light values was accomplished, the

implementation of an export or save functionality was not included in this study. Initially,

accessing light information directly from the built-in functionality of the Engine proved

to be more challenging than anticipated. While Unreal Engine is an open-source game

engine, not all functions are readily accessible (Build Configurations Reference, n.d.).

The engine's design limits the ease of retrieving certain aspects of light information

and intensity, as they are not explicitly made accessible. For instance, the HDR Eye

Adaptation tool in Unreal Engine cannot be recreated or invoked within a project

directly. To utilise such functionality, one must develop a custom engine and define

the desired features. Several attempts were made to implement a custom engine with

this functionality, but they were ultimately unsuccessful and prone to crashing after

extended build times.

However, alternative methods for retrieving light values yielded more promising

results. Unreal Engine offered multiple approaches to extract and represent light

values within the application. The HDR Eye Adaptation tool, despite its inability to

function at runtime, provided valuable luminance and illuminance values. On the other

hand, calculating luminance values using a custom C++ actor proved to be effective,

while retrieving illuminance values through this method proved to be more challenging

due to its complex calculations and many parameters.

In addition, modifying the rendering of the 3D city model using a custom false-colour

post-processing material proved successful. This approach allowed for the

visualisation of light values and their relative distribution. By creating a custom material

node, it was possible to specify the colour range based on luminance or illuminance

values, resulting in visually informative renderings.

While the custom engine approach faced obstacles, the exploration of other

possibilities for extracting light values proved fruitful. Nonetheless it is important to note

the potential of creating a custom engine for achieving complete customizability,

although further investigation and experimentation with alternative methods are

recommended before pursuing this path.

Overall, the combination of different techniques showcased the potential of Unreal

Engine as a platform for accessing and analysing light values, with the HDR Eye

adaptation, custom C++ actor and post-processing material offering viable solutions

73

for calculating and visualising luminance and illuminance values. Ultimately the HDR

eye-adaptation tool was used to extract lighting values for benchmarking, as it was

easier to navigate through the environment in development mode, than using the

custom C++ actor at runtime. The post-processing material was primarily designed for

visual representation rather than precise extraction of light values, making it less

suitable for benchmarking.

5.4 Benchmarking results

This section presents the benchmarking results of Honeybee and Unreal, for daylight

analysis with a 3D city model. The objective was to evaluate the performance and

effectiveness of these tools in handling complex geometry and large-scale analysis

tasks.

Honeybee encountered challenges with the complex geometries of 3D city models.

Both CityJSON and CityGML formats are not supported by Rhino. As a workaround,

the OBJ version of the 3DBAG tile was used, which could be loaded into Rhino.

However, compatibility issues arose when trying to integrate this geometry with

Honeybee due to specific requirements regarding closed and adjacent volumes.

Honeybee proved to be incredibly sensitive to complex geometries. Honeybee Rooms,

which form the Honeybee Model, require geometry to be adjacent and form closed

volumes. 3D city models, however, consist of numerous non-closed and non-adjacent

volumes. Additionally, the presence of height differences between the ground floor and

surrounding structures posed difficulties in creating a Honeybee model.

Moreover, the computational time required by Honeybee scripts was substantial. To

run the full script with a 3D City model took on average 93 minutes. Adding new

geometry to the calculation, also took 93 minutes, as it required the entire script to run

from the start. This prolonged computation time resulted in delays and inefficiencies

during the analysis process, particularly when dealing with large and complex

geometries.

Considering these limitations and complexities, it became evident that Honeybee may

not be the most suitable tool for handling complex geometric scenarios and large-scale

daylight analysis tasks. The challenges related to geometry requirements, slow

computational speed, and limitations in handling complex geometries hindered the

workflow productivity and efficiency.

In contrast to Honeybee, the Unreal tool demonstrated efficiency in handling complex

geometry and conducting real-time daylight analysis. The Unreal application exhibited

no significant issues related to computational time or geometry complexity. The tool

seamlessly handled the complex geometries present in the 3D city model, regardless

of their complexity or scale. The computational time for various operations, including

runtime for new angle calculations, complete script and adding new geometry, was

consistently low, with an average of 0.6 milliseconds. This real-time processing allowed

for efficient analysis iterations and real-time adjustments to the model.

The benchmarking results between Unreal and the Radiance Honeybee method

revealed valuable insights into the accuracy and reliability of the Unreal tool for daylight

analysis (see Table 5.4). Comparing the illuminance values obtained from both

methods, the Unreal application demonstrated a Mean Absolute Error of 9.78% when

compared to Radiance Honeybee. This suggests the reliability and accuracy of Unreal

for daylight analysis tasks.

74

The benchmarking study highlighted the potential of Unreal as a daylight analysis tool.

Unreal's real-time capabilities, efficient computation, and seamless handling of

complex geometries make it highly effective and efficient for such scenarios. As

depicted in Figure 5.4.2, 5.4.3 and 5.4.4, the average differences between the values

of Unreal Engine and Honeybee are relatively similar. Figure 5.4.4 shows the

normalised difference between the measurements. The Root Mean Square Error

(RMSE) absolute value was found to be 3576.63, indicating the overall magnitude of

the differences between Unreal and Honeybee measurements. Furthermore, the

relative RMSE was determined to be 13.23%, standing for the percentage of the RMSE

relative to the average measured values.

The Mean Bias Error (MBE) absolute value was calculated to be -5.24 lux, showing a

slight bias towards lower values in Unreal compared to Honeybee. The relative MBE

was determined to be -0.02%, suggesting a negligible relative bias between the two

methods.

It is worth noting that all these values fall below the prediction error of commonly used

daylight simulation models when validated against real-life measurements, as depicted

in Figure 5.4.1. These findings further reinforce the accuracy and reliability of Unreal

Engine simulating daylight information.

As Honeybee, and the models in Figure 5.4.1, are models and not measurements done

in the physical world, it is impossible to determine which model is closer to reality. For

a more in-depth comparison, conducting real-life measurements and comparing those

values with Unreal and Honeybee outputs would provide deeper insights into their

performance and alignment with actual daylight conditions.

 Runtime new angle Runtime Complete
script

Runtime adding new
geometry

Illuminance values

Unreal 0.6 msec 0.6 msec 0.6 msec 9.78% difference
with Radiance

Radiance Honeybee 645sec 93 min 93 min -

Table 5.4 Benchmarking results

Figure 5.4.1 Major validation works related to the development of CBDM (Brembilla &

Mardaljevic, 2019).

75

Figure 5.4.2 Measured Values in Honeybee and Unreal

Figure 5.4.3 Histogram of differences between Honeybee & Unreal

76

Figure 5.4.4 Relative differences between Honeybee & Unreal

To analyze the distribution and variability of the measurements, a box plot

representation (Figure 5.4.5) was used. The majority of the measurements fell within

the expected range, as indicated by the box representing the interquartile range (IQR).

To identify potential outliers, the 1.5IQR rule was applied, classifying data points below

Q1 - 1.5 * IQR or above Q3 + 1.5 * IQR as outliers. Based on this rule, points 12, 25,

41, 43, 66, 80, 96, 110, 112, 134, and 135 were identified as outliers. These outliers

significantly deviated from the other data points, suggesting possible irregularities or

measurement errors.

77

Figure 5.4.5 Boxplot of differences between Honeybee & Unreal

Further analysis of the benchmarking results reveals the following notable

observations and conclusions:

1) Honeybee exhibited more consistent values, with fewer variations among

nearby measurements. On the other hand, Unreal displayed more granular

and subtle differences, likely due to its higher resolution for daylight

calculations.

2) Unlit surfaces in Unreal generally had lower illuminance values, indicating that

the indirect light component was slightly too low.

3) In contrast, lit surfaces in Unreal showed significant positive differences

compared to Honeybee, suggesting variations likely caused by slightly

different sun positions in Unreal and Honeybee.

4) Point 25, which had complex surrounding geometries, was expected to be an

outlier due to potential refraction issues. The fact that this point is an outlier is

not surprising.

5) However, the presence of outliers in other points, such as 12, 41, 43, 66, 80,

96, 110, 112, 134, and 135, representing simple scenarios with minimal

interference or refraction, was highly unexpected. During the benchmarking

stage, it was observed that the built-in Unreal SunSky and Cesium SunSky

displayed different sun positions with the same input settings of date and

time. This discrepancy in sun position between Unreal and Honeybee may

have caused these outliers in the data. The most reasonable explanation for

these outliers is that the sun position in Unreal and Honeybee is not exactly

78

the same, despite using the same date, time, and hour. Figure 5.4.6

showcases some of these outlier points, where surfaces that appeared

shaded in Honeybee were fully exposed to the sun in Unreal, with

unobstructed sunlight from surrounding buildings. This discrepancy in sun

position between the two simulations could account for the disparities

observed in the measurements.

6) The optimal balance in Unreal was achieved by using the Unreal SunSky with

the skylight set to 15 and the sunlight to 25000 lux. In Honeybee, the light

values for direct sunlight were 44800 lux and for indirect light were 1200 lux.

Comparing the light settings between Unreal and Honeybee is challenging

because the skylight in Unreal does not have a unit, making it difficult to

directly compare values. Further research is necessary to establish a

relationship between the daylight units in Unreal and Honeybee.

Figure 5.4.6 Outlier points of lit areas in Unreal that are shadowed in Honeybee

These outliers emphasize the need for further investigation and understanding of the

underlying factors that influenced these deviating measurements. logical initial step

would be to explore the apparent disparities in sun position between Unreal and

Honeybee, as well as establish a relationship between the daylight units in Unreal and

Honeybee. Examining these aspects, will give valuable insights into the underlying

causes of the variations and refine and optimize the daylight simulation process in

Unreal.

79

5.5 Interactive User Functionality & Recommended workflow

Providing users with design capabilities is essential for the practical usability of the

application to assess daylight conditions during different design stages. The focus of

this thesis is to assess whether the Unreal environment offers a suitable platform for

daylight analysis in architectural and urban development. This underlines the

importance of user interaction and design possibilities within the platform.

User interaction in the application encompasses various functionalities and

considerations. One key aspect is the ability to measure illuminance and luminance

and visualize the distribution of light in real-time. Users can import Cesium ion tilesets,

add building blocks, edit geometry, and adjust the sun position dynamically at runtime.

While building blocks and geometry editing are suitable for initial massing studies, they

may lack the desired granularity in later design stages that require more refined and

detailed designs. Comparatively, the Honeybee environment in Rhino offers enhanced

design capabilities and ease of use for creating refined designs. Consequently,

architects and urban developers are recommended to design using their preferred

design tools such as Rhino or Revit and import the designs into Unreal using Cesium

ion. Alternatively, users familiar with Unreal or seeking additional functionality may

choose to use the application in development mode. The built-in functionality available

in development mode provides more extensive options for measuring light values and

designing compared to the implemented functionality at runtime.

The application is currently not recommended for detailed daylight analysis requiring

the extraction and export of light values for further processing. Adding this functionality

proved to be too complex within the timeframe of this thesis. Currently, for such use

cases, it is recommended to use Honeybee or alternative tools that support the

required functionality.

In collaborative urban development or architectural teams, it might be advantageous

to involve a GIS specialist who can prepare the desired area of interest by selecting

the appropriate 3D city model and potentially creating pre-determined building blocks

for various types of structures, such as family houses, apartment blocks, and office

buildings. The application can then be used by architects and urban developers to

explore and test different design scenarios in collaborative design sessions within this

predefined environment.

Additionally, it is important to note that the application did not include user research

and feedback, which would have supplied valuable insights for validating and further

developing the user interaction and design capabilities of the Unreal environment. User

research is essential for understanding the needs, preferences, and challenges faced

by architects and urban developers when using the application. By incorporating user

feedback, it would be possible to refine the functionalities, address usability issues,

and enhance the overall user experience.

Overall, the user interaction and recommended workflow within the Unreal

environment for daylight analysis in architectural and urban development play a crucial

role in its practical applicability. By providing real-time measurement and visualization

of illuminance and luminance, along with the flexibility to import designs from preferred

tools and collaborate within a predefined environment, the Unreal application offers

valuable capabilities for early design stages and collaborative sessions. The real-time

visualization of the light is arguably the most valuable aspect of the application during

80

the design phase of urban and architectural development. However, for more refined

and detailed designs, architects and urban developers are advised to leverage the

enhanced design capabilities of tools like Rhino or Revit in combination with Cesium

ion for importing designs into Unreal. Additionally, while the application may not

currently support detailed daylight analysis with export functionality, alternative tools

such as Honeybee can fulfil those requirements. By understanding the strengths and

limitations of the Unreal environment and integrating it into the design workflow

appropriately, users can effectively use the application for informed decision-making

in architectural and urban development projects.

81

6 Conclusions and future research

In this final section, the research provides a concise summary of the conclusions,

limitations, future work, and reflection. It highlights the potential of the Unreal Engine

as a real-time daylight analysis tool in architectural and urban development, while

acknowledging the encountered limitations.

6.1 Conclusions

This research aimed to explore the potential of the Unreal Engine as a platform for

real-time daylight analysis in architectural and urban development. By investigating the

effective integration of 3D city models into an Unreal application, the study has

demonstrated the viability and versatility of utilising the Unreal Engine for daylight

analysis for architectural and urban development. The conclusions section will begin

by answering the sub-questions before answering the main research question.

1. How can 3D city models be effectively integrated into an Unreal application

The results discussed in Chapter 5.2 has shown that integrating 3D city models into

the Unreal application is possible through various methods. Importing CityGML or

CityJSON datasets using Cesium ion proved to be a viable option, although challenges

related to differences in z-coordinates and terrain clamping need to be addressed. The

use of Cesium OSM buildings and Google Maps API tilesets offers alternatives with

varying levels of detail and performance considerations. Ultimately the user will have

to decide the 3D city model based on their needs, but the application offers a variety

of viable options.

2. How can the light values extracted from Unreal be compared and validated

against industry-standard light models such as Radiance?

The process of accessing and retrieving light values from Unreal Engine posed

challenges (see Chapter 5.3), but various methods were employed to overcome them.

Utilizing the HDR Eye Adaptation tool, custom C++ actors, and post-processing

materials enabled the extraction and visualization of light values. However, the

implementation of an export or save functionality was realized in this thesis. To ensure

accuracy and reliability, further refinement and experimentation are recommended.

Despite the obstacles encountered, the combination of these techniques demonstrated

the potential of Unreal Engine for accessing and analyzing daylight values. The HDR

Eye Adaptation tool proved useful in extracting daylight values, while the post-

processing materials served as a powerful visualization tool to depict the distribution

of light.

3. To what extent do the light values simulated with Unreal Engine accurately

represent real-world lighting conditions?

The research findings indicate that the lighting values extracted from Unreal align

closely with the expected trends based on the inverse square law (Chapter 5.1). The

comparison and validation of daylight propagation in urban environments extracted

from Unreal compared against industry-standard light model Radiance, have

highlighted both the strengths and limitations of the Unreal Engine in achieving

accurate daylight simulations in urban environments. In the benchmarking experiments

conducted in urban environments, an average deviation of 9.78% was observed (see

Chapter 5.4). However, the results did have some more extreme outliers. While the

82

extracted values have shown promise, further refinement and validation are necessary

to ensure the realism and reliability of lighting representations in Unreal, under different

circumstances and in different locations. The benchmarking demonstrates the engine's

capability to replicate real-world lighting behaviours, although minor deviations and

limitations exist.

4. In what ways can urban or architectural developers use an Unreal

application to test and develop different design scenarios?

Using Unreal to test and develop different design scenarios and the resulting impact

on daylight, offers designers both advantages and disadvantages. The real-time nature

of the engine enables instant feedback and visualisation of design choices, allowing

for iterative exploration and informed decision-making. This iterative approach

enhances the design process by facilitating rapid prototyping, spatial analysis, and

visualisation of daylight conditions, thereby empowering designers to create more

sustainable and efficient built environments. However, it is important to recognize the

limitations of the application, particularly regarding the level of detail required for

refined and detailed designs. Chapter 5.5 makes recommendations for architects and

urban developers. architects and urban developers are recommended to use their

preferred design tools, such as Rhino or Revit, and import their designs into Unreal

using Cesium ion for enhanced design capabilities. For detailed daylight analysis with

export functionality, it is recommended to use Honeybee or alternatives, as this

functionality is not integrated in the application yet. By understanding the strengths and

limitations of the Unreal environment and integrating it strategically into the design

workflow, users can effectively incorporate the application in their workflow for

informed decision-making in architectural and urban development projects.

To what extent is the Unreal Engine suitable to scale-up physically accurate

daylight simulation tools?

Regarding the main question of the extent to which the Unreal Engine is suitable for

scaling up physically accurate daylight simulation tools, it can be concluded that while

the engine showcases significant potential, further advancements are necessary. The

Unreal Engine provides a robust foundation for real-time visualisation and analysis, but

additional research and development are needed to refine its accuracy, expand its

capabilities, and address the limitations identified throughout this study. This includes

improving the comparability and validation of lighting values, enhancing the realism of

lighting simulations and refining user functionality. The Unreal Engine offers a

promising platform for real-time daylight analysis in architectural and urban

development. Most notably, the real-time aspect of Unreal compared to the slow and

cumbersome processes in Honeybee, along with the ease of importing large datasets,

highlights the potential of the Unreal Engine in architectural and urban development.

While challenges and opportunities for improvement exist, the findings of this study

contribute to the growing body of knowledge surrounding real-time daylight simulations

and pave the way for further advancements in this field.

83

6.2 Limitations

The implementation of the research methodology encountered several limitations,

which are essential to acknowledge for a comprehensive understanding of the study's

scope and potential implications. Firstly, the comparison of light values between

Honeybee and Unreal posed challenges due to the difficulty in extracting and aligning

the values. This necessitated manual selection of points for comparison, which limited

the amount of sample points for the benchmarking and could introduce information

bias and potential inaccuracies.

Furthermore, the functionality offered by the Unreal application in comparison to the

custom-built application may not fully cater to the diverse needs of all users. The

disparity in available features and tools raises the possibility that certain users may

require additional functionalities beyond what the current implementation offers.

Another limitation is the absence of user testing. The application's usability and user

experience have not been systematically evaluated through user feedback and testing

sessions. This leaves room for uncertainties regarding the user-friendliness and

effectiveness of the tool in real-world scenarios.

Moreover, the validation of illuminance values was limited to a specific time and

location, disregarding the potential variations in solar settings across different times

and locations. The reliance on a single instance for validation restricts the

generalizability of the findings and highlights the need for further validation across

various scenarios.

Additionally, it is important to note that Honeybee provides a broader range of

functionalities beyond point-in-time illuminance analysis, such as sun-hour analysis

and annual radiance simulations. While the current implementation shows promise,

these extended capabilities have not been fully explored or tested in this study.

Although this research showed promising results in daylight measurements, and the

other functionality of Honeybee in essence is also based on raytracing, in which Unreal

showed great efficiency, they will have to be implemented or built, so pose risks.

Nonetheless, by recognizing these considerations and proactively addressing them, it

is possible to enhance the overall usability and effectiveness of the Unreal application

for a wider range of user requirements.

By acknowledging these limitations, it becomes evident that further research and

refinement are necessary to address these constraints and enhance the overall

robustness and applicability of the developed methodology and tool.

84

6.3 Future work

The findings and limitations of this study open several avenues for future research and

development in the field of real-time daylight analysis using the Unreal Engine. Building upon

the insights gained from this research, the following areas hold potential for further

investigation:

1. Enhanced comparison and extraction methods: Future work should focus on

developing more robust and automated methods for comparing light values between

Honeybee and Unreal. This could involve exploring advanced algorithms or data

processing techniques to streamline the extraction process and reduce manual

intervention.

2. User testing and feedback: Conducting thorough user testing sessions is crucial to

validate the usability and effectiveness of the developed application. User feedback

and observations can provide valuable insights for improving the user interface,

functionality, and overall user experience. Iterative testing and refinement cycles

should be employed to ensure that the tool meets the needs of its intended users.

3. Validation across diverse scenarios: To enhance the reliability and generalizability

of the findings, further validation of illuminance values should be performed across

different times and locations. Incorporating a broader range of solar settings and

considering varying geographical conditions would contribute to a more

comprehensive assessment of the tool's accuracy and reliability.

4. Extended functionality and integration: Expanding the functionality of the Unreal

application to include additional daylight analysis features, such as sun-hour analysis

and annual radiance simulations, would provide users with a more comprehensive

toolkit for evaluating daylight conditions. Moreover, exploring integration possibilities

with other software platforms, such as GIS or BIM tools, could further enhance the

application's capabilities and its integration into existing design workflows.

5. Connection to weather data in Unreal: Integrating weather data into Unreal to adjust

the SunSky settings accordingly based on date and time would provide a more realistic

representation of outdoor lighting conditions. This integration would further enhance

the accuracy and automation of the daylight analysis within the application.

6. Standardized conversion for 3DBAG: There are potential areas for future

development and improvement of import 3DBAG. The focus area is addressing the

challenges associated with differences in z-coordinates and terrain clamping when

importing CityJSON datasets using Cesium ion. To streamline the integration process,

it is recommended to explore the development of standardized conversion methods or

improve the compatibility between the formats.

7. Sun position: Given the observed disparities in sun position between Unreal and

Honeybee, it is recommended to conduct further investigations to accurately align the

sun positions. Addressing this misalignment will contribute to more reliable and

accurate daylight analysis in the platforms, enabling more accurate comparisons and

facilitating better decision-making in architectural and urban design processes.

8. Integrating functionality of existing geospatial urban development tools:

Integrating the functionality of tools such as ArcGIS Urban (Urban Planning & Design-

Smart City Planning | ArcGIS Urban, n.d.) and 3D Cityplanner (Strategis Groep bv,

n.d.), or incorporating the real-time daylight analysis capabilities of LuminaCity into

these applications, presents a valuable opportunity for expanding functionality. ArcGIS

Urban and 3D Cityplanner offer a wide range of features, including 3D modeling,

spatial analysis, and visualization. By merging their strengths, we can harness their

data management and analysis capabilities while overcoming limitations in daylight

analysis. This integration allows users to conduct urban development analysis,

considering factors such as land use, transportation, infrastructure, and real-time

85

daylight conditions. Ultimately, aiding in informed decision-making and supports

scientifical, sustainable urban planning.

86

6.4 Reflection

Throughout the course of this thesis, I have learned a great deal about daylight

analysis and the Unreal Engine. Although I had some experience in daylight analysis

during my Bachelor of Architecture and the Built Environment, as well as experience

in C++ during my Master of Geomatics, I quickly found myself on a steep learning

curve. This required a lot of dedication and perseverance, as well as strong project

and time management skills to stay on track and ensure I was meeting my goals.

The educational foundation provided by the Geomatics field equipped me with the

necessary knowledge and abilities to tackle these challenges effectively, both in

terms of planning and programming.

One of the biggest challenges I faced during this project was exporting the light

values from the Unreal Engine. This complex and time-consuming process required

manual comparison of light values rather than automated techniques, resulting in

lower accuracy and reproducibility. Despite the difficulties, however, I remained

committed to the project and focused on finding innovative solutions to overcome

any obstacles that arose.

Despite the challenges, I found the experience of developing a real-time daylight

analysis tool using the Unreal Engine to be incredibly exciting and rewarding. The

ability to create highly realistic virtual environments that can be explored in real time

opens new possibilities for the architectural and urban development industries. By

providing a tool that is both easy to use and highly accurate, it can help professionals

in these fields make more informed decisions about their designs and improve the

overall quality of the built environment.

Furthermore, I believe that the bigger goal of this thesis, which was to prove the

concept of a geospatial urban development platform with built-in geospatial analysis,

has tremendous potential to transform the way we approach architecture and urban

development. By incorporating geospatial analysis into the design process, we can

ensure that new developments are aligned with the natural features of the

environment and consider factors such as sun exposure and shadow analysis. This

can ultimately lead to more sustainable and environmentally friendly development

practices, which are critical for our planet's future.

Looking back on this experience, I can see how much I have grown both personally

and professionally. I have developed a deeper understanding of the importance of

time management, project management, and the value of developing a minimum

viable product (MVP). In previous projects, I frequently found myself getting

sidetracked by the multitude of intriguing elements that captured my attention,

diverting my focus from the primary objective. If I were to undertake a similar project

in the future, I would immediately refine my scope and focus on specific features, as

well as allocate more time to learning the Unreal Engine and other tools that would

be required for the project.

In conclusion, this thesis has been an incredible learning experience for me, and I

am incredibly grateful for the opportunity to have worked on such an exciting and

innovative project with my supervisors. I believe that the real-time daylight analysis

tool that I have developed has the potential to revolutionise the way we approach

architectural and urban development, and I am excited to see where this technology

will take us in the future.

87

88

Bibliography

3D BAG Viewer. (n.d.). https://3dbag.nl/en/download?tid=3312

3D Stadsmodel Den Haag 2022 CityGML - Dataplatform. (n.d.).

https://ckan.dataplatform.nl/dataset/3d-stadsmodel-den-haag-2021-citygml

Akenine-Möller, T., Haines, E., & Hoffman, N. (2019). Real-time rendering. Crc Press.

AnneCorning, & Systems, R. V. (2022, October 14). The Language of Light | Radiant

Vision Systems. Radiant Vision Systems.

https://www.radiantvisionsystems.com/blog/language-light

Antonanzas-Torres, F., Urraca, R., Polo, J., Perpiñán-Lamigueiro, O., & Escobar, R.

(2019). Clear sky solar irradiance models: A review of seventy models. Renewable

and Sustainable Energy Reviews, 107, 374-387.

Biljecki, F., Ledoux, H., Du, X., Stoter, J., Soon, K. H., & Khoo, V. H. S. (2016). THE

MOST COMMON GEOMETRIC AND SEMANTIC ERRORS IN CITYGML

DATASETS. ISPRS Annals of Photogrammetry, Remote Sensing & Spatial

Information Sciences, 4.

Billen, R., Cutting-Decelle, A. F., Métral, C., Falquet, G., Zlatanova, S., & Marina, O.

(2015). Challenges of semantic 3D city models: a contribution of the COST research

action TU0801. International Journal of 3-D Information Modelling (IJ3DIM), 4(2), 68-

76.

Blankert, A. (2021). All Dutch 3D buildings in 1.9 GB. Geodan Research.

https://research.geodan.nl/all-dutch-3d-buildings-in-1-9gb/

Brembilla, E., & Mardaljevic, J. (2019). Climate-Based Daylight Modelling for

compliance verification: Benchmarking multiple state-of-the-art methods. Building and

Environment, 158, 151-164.

Build Configurations Reference. (n.d.). https://docs.unrealengine.com/5.2/en-

US/build-configurations-reference-for-unreal-engine/

Buyuksaliha, G., Bayburta, S., Baskaracaa, A. P., Karimb, H., & Rahmanb, A. A.

(2017). Calculating solar energy potential of buildings and visualisation within unity 3D

game engine. International Archives of the Photogrammetry, Remote Sensing and

Spatial Information Sciences, 42(4/W5).

C++ and Blueprints. (n.d.). https://docs.unrealengine.com/5.1/en-US/cpp-and-

blueprints-example/

Cesium for Unreal. (2015, June 30). Cesium. https://cesium.com/platform/cesium-for-

unreal/

Cesium ion. (n.d.). Cesium. https://cesium.com/platform/cesium-ion/

https://research.geodan.nl/all-dutch-3d-buildings-in-1-9gb/
https://docs.unrealengine.com/5.2/en-US/build-configurations-reference-for-unreal-engine/
https://docs.unrealengine.com/5.2/en-US/build-configurations-reference-for-unreal-engine/
https://docs.unrealengine.com/5.1/en-US/cpp-and-blueprints-example/
https://docs.unrealengine.com/5.1/en-US/cpp-and-blueprints-example/
https://cesium.com/platform/cesium-ion/

89

Chen, Y., Cui, Z., & Hao, L. (2019). Virtual reality in lighting research: Comparing

physical and virtual lighting environments. Lighting Research & Technology, 51(6),

820-837.

Citgml4j. (n.d.). GitHub - citygml4j/citygml-tools: Collection of tools for processing

CityGML files. GitHub. https://github.com/citygml4j/citygml-tools

CityJSON. (n.d.). CityJSON. https://www.cityjson.org/

Converting to/from CityGML files. (n.d.). CityJSON.

https://www.cityjson.org/tutorials/conversion/

Cozzi, P. (2021a, February 28). Introducing 3D Tiles. Cesium.

https://cesium.com/blog/2015/08/10/introducing-3d-tiles/

Cozzi, P. (2021b, March 16). Announcing Our Collaboration with Epic Games to Create

Cesium for Unreal Engine. Cesium. https://cesium.com/blog/2020/06/04/cesium-for-

unreal-engine/

Cozzi, P. (2023, May 15). Cesium Partners with Google Maps Platform to Render Its

New Photorealistic 3D Tiles. Cesium. https://cesium.com/blog/2023/05/10/cesium-

partners-with-google-maps-platform/

Edler, D., Keil, J., & Dickmann, F. (2020). From Na Pali to Earth—An ‘unreal’engine

for modern geodata?. In Modern approaches to the visualisation of landscapes (pp.

279-291). Springer VS, Wiesbaden.

Edler, D., Keil, J., Wiedenlübbert, T., Sossna, M., Kühne, O., & Dickmann, F. (2019).

Immersive VR experience of redeveloped post-industrial sites: The example of “Zeche

Holland” in Bochum-Wattenscheid. KN J. Cartogr. Geogr. Inf, 69, 267-284.

gendaylit.pdf — Radsite. (n.d.). https://www.radiance-

online.org/learning/documentation/manual-pages/pdfs/gendaylit.pdf/view

Getz, G. (2021, March 15). 3D Tiles Now an OGC Community Standard for Streaming

Massive 3D Geospatial Content. Cesium. https://cesium.com/blog/2019/02/05/3d-

tiles-ogc-community-standard/

Glassner, A. S. (Ed.). (1989). An introduction to ray tracing. Morgan Kaufmann.

GPUOpen by AMD. (2022, November 17). Unreal Engine Performance Guide - AMD

GPUOpen. AMD GPUOpen. https://gpuopen.com/unreal-engine-performance-guide/

Hapala, M., & Havran, V. (2011, March). Kd‐tree traversal algorithms for ray tracing.

In Computer Graphics Forum (Vol. 30, No. 1, pp. 199-213). Oxford, UK: Blackwell

Publishing Ltd.

Hegazy, M., Ichiriyama, K., Yasufuku, K., & Abe, H. (2020). Visualizing user perception

of daylighting: a comparison between VR and reality. BuildSIM-Nordic 2020, 13.

Hegazy, M., Ichiriyama, K., Yasufuku, K., & Abe, H. (2021). Validating Game Engines

as a Quantitative Daylighting Simulation Tool. 10.52842/conf.caadria.2021.2.285.

https://github.com/citygml4j/citygml-tools
https://www.cityjson.org/
https://www.cityjson.org/
https://cesium.com/blog/2015/08/10/introducing-3d-tiles/
https://www.radiance-online.org/learning/documentation/manual-pages/pdfs/gendaylit.pdf/view
https://www.radiance-online.org/learning/documentation/manual-pages/pdfs/gendaylit.pdf/view
https://cesium.com/blog/2019/02/05/3d-tiles-ogc-community-standard/
https://cesium.com/blog/2019/02/05/3d-tiles-ogc-community-standard/

90

Inverse Square Law. (n.d.). http://hyperphysics.phy-

astr.gsu.edu/hbase/Forces/isq.html

Jakica, N. (2018). State-of-the-art review of solar design tools and methods for

assessing daylighting and solar potential for building-integrated

photovoltaics. Renewable and Sustainable Energy Reviews, 81, 1296-1328.

Keil, J., Edler, D., Schmitt, T., & Dickmann, F. (2021). Creating immersive virtual

environments based on open geospatial data and game engines. KN-Journal of

Cartography and Geographic Information, 71(1), 53-65.

Kersten, T. P., Deggim, S., Tschirschwitz, F., Lindstaedt, M., & Hinrichsen, N. (2018).

Segeberg 1600—Eine Stadtrekonstruktion in virtual reality. KN-Journal of Cartography

and Geographic Information, 68(4), 183-191.

Ladybug Tools | Home Page. (n.d.). https://www.ladybug.tools/

Ledoux, H., Arroyo Ohori, K., Kumar, K., Dukai, B., Labetski, A., Vitalis, S., & Stoter,

J. (2019). CityJSON: A compact and easy-to-use encoding of the CityGML data model.

Open Geospatial Data, Software and Standards, 4(1), 4.

https://doi.org/10.1186/s40965-019-0066-x

Lee, Joanna. Learning unreal engine game development. Packt Publishing Ltd, 2016.

Liang, Z., Zhou, K., & Gao, K. (2019). Development of virtual reality serious game for

underground rock-related hazards safety training. IEEE access, 7, 118639-118649.

Luminous intensity & Photometry | auersignal.com. (n.d.).

https://www.auersignal.com/en/technical-information/visual-signalling-

equipment/luminous-intensity/#What_is_the_density_of_luminance_(cd/m%C2%B2)

Mardaljevic, J. (1999). Daylight simulation: validation, sky models and daylight

coefficients (Doctoral dissertation, De Montfort University).

Mat, R. C., Shariff, A. R. M., Zulkifli, A. N., Rahim, M. S. M., & Mahayudin, M. H. (2014,

June). Using game engine for 3D terrain visualisation of GIS data: A review. In IOP

Conference Series: Earth and Environmental Science (Vol. 20, No. 1, p. 012037). IOP

Publishing.

Mooney, C. Z. (1997). Monte carlo simulation (No. 116). Sage.

Morrissey, J., Moore, T., & Horne, R. E. (2011). Affordable passive solar design in a

temperate climate: An experiment in residential building orientation. Renewable

Energy, 36(2), 568-577.

Perez, R., Seals, R., & Michalsky, J. (1993). All-weather model for sky luminance

distribution—preliminary configuration and validation. Solar energy, 50(3), 235-245.

Physical Lighting Units. (n.d.). https://docs.unrealengine.com/5.1/en-US/using-

physical-lighting-units-in-unreal-engine/

Post Process Materials. (n.d.). Unreal Engine Documentation.

https://docs.unrealengine.com/4.26/en-

US/RenderingAndGraphics/PostProcessEffects/PostProcessMaterials/

http://hyperphysics.phy-astr.gsu.edu/hbase/Forces/isq.html
http://hyperphysics.phy-astr.gsu.edu/hbase/Forces/isq.html
https://www.ladybug.tools/
https://doi.org/10.1186/s40965-019-0066-x

91

Radiance — Radsite. (n.d.). https://www.radiance-online.org/

Robert McNeel & Associates. (n.d.). Rhinoceros 3D. www.rhino3d.com.

https://www.rhino3d.com/

Schmitt, A., Müller, H., & Leister, W. (1988). Ray tracing algorithms—theory and

practice. In Theoretical Foundations of Computer Graphics and CAD (pp. 997-1030).

Springer Berlin Heidelberg.

Shader Development. (n.d.). https://docs.unrealengine.com/5.0/en-US/shader-

development-in-unreal-engine/

Singh, J. M., & Narayanan, P. J. (2009). Real-time ray tracing of implicit surfaces on

the GPU. IEEE transactions on visualization and computer graphics, 16(2), 261-272.

State of the Art in 3D City Modelling. (2022, July 13). GIM International.

https://www.gim-international.com/content/article/state-of-the-art-in-3d-city-modelling-

2

Steinhage, V., Behley, J., Meisel, S., & Cremers, A. B. (2010, March). Automated

updating and maintenance of 3D city models. In ISPRS joint workshop on” Core Spatial

Databases-Updating, Maintenance and Services-from Theory to Practice (pp. 1-6).

Strategis Groep bv. (n.d.). 3D Cityplanner, the future of urban development.

https://3dcityplanner.com/en/

The Home of Location Technology Innovation and Collaboration | OGC. (n.d.).

https://www.ogc.org/

Threaded Rendering. (n.d.). https://docs.unrealengine.com/5.0/en-US/threaded-

rendering-in-unreal-engine/

TU Delft. (n.d.). Open datasets. https://3d.bk.tudelft.nl/opendata/

Unreal Engine | The most powerful real-time 3D creation tool. (n.d.). Unreal Engine.

https://www.unrealengine.com/en-US/

Urban Planning & Design-Smart City Planning | ArcGIS Urban. (n.d.). Esri.

https://www.esri.com/en-us/arcgis/products/arcgis-urban/overview

Visual Studio 2022 | Download for free. (2023, May 23). Visual Studio.

https://visualstudio.microsoft.com/vs/

Wang, Z. H. (2014). Monte Carlo simulations of radiative heat exchange in a street

canyon with trees. Solar Energy, 110, 704-713.

What is real-time ray tracing? (n.d.). Unreal Engine. https://www.unrealengine.com/en-

US/explainers/ray-tracing/what-is-real-time-ray-tracing

Wij zijn tech | FME. (n.d.). FME. https://www.fme.nl/

Wikipedia contributors. (2023). Wavefront .obj file. Wikipedia.

https://en.wikipedia.org/wiki/Wavefront_.obj_file

https://www.radiance-online.org/
https://www.gim-international.com/content/article/state-of-the-art-in-3d-city-modelling-2
https://www.gim-international.com/content/article/state-of-the-art-in-3d-city-modelling-2
https://www.gim-international.com/content/article/state-of-the-art-in-3d-city-modelling-2
https://www.gim-international.com/content/article/state-of-the-art-in-3d-city-modelling-2
https://www.ogc.org/
https://3d.bk.tudelft.nl/opendata/
https://www.esri.com/en-us/arcgis/products/arcgis-urban/overview
https://www.esri.com/en-us/arcgis/products/arcgis-urban/overview
https://www.esri.com/en-us/arcgis/products/arcgis-urban/overview
https://visualstudio.microsoft.com/vs/
https://www.fme.nl/

92

Xyahh. (n.d.). GitHub - xyahh/UE4RuntimeTransformer: A Runtime Gizmo

Transformer tool helps you translate/rotate/scale objects in runtime! Easily provide

editing tools to your final product! GitHub.

https://github.com/xyahh/UE4RuntimeTransformer

https://github.com/xyahh/UE4RuntimeTransformer

93

Appendix A Adding Geometry

94

95

Appendix B change Render at Runtime

96

Appendix C Grasshopper Script

97

Appendix D Benchmark Results

Point Honeybee Unreal Difference

1 19027 19164 0,72

2 22589 22521 -0,3

3 32838 33639 2,44

4 16641 16556 -0,51

5 16922 15786 -6,71

6 19135 19605 2,46

7 24344 24677 1,37

8 16711 17900 7,12

9 24165 24509 1,42

10 26296 27750 5,53

11 46611 46142 -1,01

12 30286 20041 -33,83

13 45752 48251 5,46

14 46038 48393 5,12

15 28156 27308 -3,01

16 22876 26674 16,6

17 28156 27481 -2,4

18 32578 28398 -12,83

19 44606 48099 7,83

20 24612 27432 11,46

21 17842 17618 -1,26

22 15861 17535 10,55

23 12293 13764 11,97

24 22017 22145 0,58

25 29588 37851 27,93

26 23019 23262 1,06

27 37482 42839 14,29

28 42906 52108 21,45

29 35567 35472 -0,27

30 47184 47308 0,26

31 29857 29996 0,47

32 22017 27478 24,8

33 21301 21129 -0,81

34 32434 32696 0,81

35 6859 8107 18,2

36 32434 33726 3,98

37 35137 41512 18,14

38 32846 36580 11,37

39 26295 27007 2,71

40 47000 40092 -14,7

41 24003 31898 32,89

42 46900 41002 -12,58

43 24648 33543 36,09

98

44 42900 37234 -13,21

45 26921 19058 -29,21

46 46500 41012 -11,8

47 43100 41512 -3,68

48 25758 24259 -5,82

49 35638 31711 -11,02

50 21157 18052 -14,68

51 36498 36219 -0,76

52 36677 36272 -1,1

53 37357 36301 -2,83

54 19869 18723 -5,77

55 20048 18935 -5,55

56 46325 41037 -11,42

57 17422 17590 0,96

58 46665 40933 -12,28

59 20083 18290 -8,93

60 19707 18049 -8,41

61 20209 18743 -7,25

62 18830 18106 -3,84

63 15832 17240 8,89

64 18562 17817 -4,01

65 38144 41275 8,21

66 29768 40433 35,83

67 27387 31708 15,78

68 20960 17658 -15,75

69 18436 18508 0,39

70 20710 17939 -13,38

71 17814 17896 0,46

72 30412 31956 5,08

73 29767 30635 2,92

74 14069 15797 12,28

75 33868 34763 2,64

76 18311 17917 -2,15

77 15454 15578 0,8

78 46450 46019 -0,93

79 17185 20293 18,09

80 13691 20800 51,92

81 17688 17587 -0,57

82 20585 20751 0,81

83 37142 38046 2,43

84 39147 41782 6,73

85 20083 18197 -9,39

86 14762 15078 2,14

87 20960 18296 -12,71

88 20960 17402 -16,98

89 15390 15370 -0,13

99

90 35621 35653 0,09

91 20960 17482 -16,59

92 33365 35688 6,96

93 20835 18328 -12,03

94 34618 36720 6,07

95 20960 17765 -15,24

96 14762 18744 26,97

97 21587 18399 -14,77

98 22139 18840 -14,9

99 20835 18239 -12,46

100 23484 18286 -22,13

101 18311 17734 -3,15

102 19332 18274 -5,47

103 18687 17387 -6,96

104 18186 18246 0,33

105 19332 17649 -8,71

106 20209 18357 -9,16

107 20960 17708 -15,52

108 46199 41363 -10,47

109 44696 42122 -5,76

110 22607 31381 38,81

111 19582 19438 -0,74

112 22607 32631 44,34

113 20960 18837 -10,13

114 44445 42327 -4,77

115 19833 18213 -8,17

116 19833 18352 -7,47

117 45698 42593 -6,79

118 16808 17583 4,61

119 44946 44256 -1,54

120 42172 42292 0,28

121 24111 22936 -4,87

122 37894 41181 8,67

123 35119 36064 2,69

124 29893 29813 -0,27

125 31665 31053 -1,93

126 27387 24144 -11,84

127 22607 22146 -2,04

128 22464 18602 -17,19

129 20585 18789 -8,72

130 20960 18836 -10,13

131 21462 18741 -12,68

132 22464 19520 -13,11

133 24612 22645 -7,99

134 22858 30779 34,65

135 22213 30693 38,18

100

 Average 9,789407407

101

Appendix E Loading Cesium ion tiles at

Runtime

102

Appendix F Change Sun position, date & time

103

104

Appendix G Reading Luminance value using

custom C++ actor

105

Appendix H False Colour post processing

106

Appendix I User Interface

107

108

	MSc thesis in Geomatics
	Abstract
	Acknowledgements
	Contents
	List of Figures
	List of Tables
	List of Algorithms
	Acronyms
	1. Introduction
	1.1. Motivation
	1.2. Research questions

	2. Theoretical background & Related work
	2.1 3D city models
	2.2 Raytracing
	2.3 Daylight analysis
	2.3.1 Luminance and Illuminance
	2.3.2 Daylight Modelling and Simulation
	2.3.3 Radiance
	2.3.4 Honeybee

	2.4 Unreal Engine
	2.4.1 Key features and techniques.
	2.4.2 Raytracing in Unreal
	2.4.3 Development vs. Runtime
	2.4.4 Blueprints vs. C++

	2.5 Cesium ion & OGC 3D Tiles
	2.6 Daylight Analysis in Unreal

	3. Methodology
	3.1 Loading 3D city models in Unreal
	3.2 Extracting light values from Unreal
	3.3 Comparison of different light analysis methods vs. Benchmark
	3.4 Interactive User Functionality
	3.5 User Interface

	4 Implementation
	4.1 Tools, datasets and hardware used
	4.2 Loading 3D city models in Unreal
	4.3 Extracting light values from Unreal
	4.4 Comparison of different light analysis methods vs. Benchmark
	4.4.1 3D city model & Benchmarking in Honeybee
	4.4.2 Measurement Points
	4.4.3 Optimizing sun & sky model in Unreal

	4.5 Interactive User Functionality
	4.6 User Interface

	5 Results & Discussion
	5.1 Inverse square law
	5.2 Importing 3D city models
	5.3 Extracting light values from Unreal
	5.4 Benchmarking results
	5.5 Interactive User Functionality & Recommended workflow

	6 Conclusions and future research
	6.1 Conclusions
	6.2 Limitations
	6.3 Future work
	6.4 Reflection

	Bibliography
	Appendix A Adding Geometry
	Appendix B change Render at Runtime
	Appendix C Grasshopper Script
	Appendix D Benchmark Results
	Appendix E Loading Cesium ion tiles at Runtime
	Appendix F Change Sun position, date & time
	Appendix G Reading Luminance value using custom C++ actor
	Appendix H False Colour post processing
	Appendix I User Interface

