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Abstract 

 This thesis presents the development of a real-time daylight analysis tool for 

architectural and urban development using the Unreal Game Engine. The tool offers 

architects and urban planners a fast and precise way of analysing outdoor daylight 

conditions in their designs. The Unreal Game Engine provides real-time visualisation and 

analysis of daylight conditions, which makes it an effective tool for real-time decision-making 

during the design process. The study compares the light values and the process of 

extracting these values in Unreal with the validated light model Radiance used in Honeybee 

& Ladybug in the visual scripting program Grasshopper for Rhino. The thesis compares the 

values of Unreal & Honeybee/ladybug based on outdoor illuminance values, calculation time 

and ease of use. The comparison demonstrates the potential of Unreal as a valuable 

daylight analysis tool, with measurements showing a Mean Absolute Error of 9.78% between 

Honeybee and Unreal. In terms of computational time, the Unreal application requires only 

0.6ms to execute and recalculate the daylight analysis, whereas the complete Honeybee 

script took an average of 93 minutes to calculate daylight values, and a new angle 

calculation took approximately 645 seconds. Furthermore, unlike Honeybee, which is 

sensitive to the complexity of urban or complex geometries and requires challenging 

adjustments, the Unreal application effortlessly accommodates complex geometry without 

the need for extensive modification.   

The thesis concludes that the tool provides a robust and efficient method for analysing 

daylight conditions in architectural and urban design. The tool's ease of use and real-time 

visualisation capabilities make it an essential addition to the design workflow. Finally, the 

thesis presents the tool as a proof of concept for a geospatial urban development platform 

with built-in geospatial analysis. The research has demonstrated the potential of real-time 

simulation and analysis using the Unreal Game Engine as a powerful tool for architects and 

urban planners. 
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1. Introduction 

With increasing weather extremities due to climate change, and the 

densification and expansion of our urban environments, the need to consider 

environmental factors such as daylight are becoming increasingly important. 

Daylight plays a critical role in human health and well-being, but also 

significantly impacts the energy efficiency and sustainability of buildings as 

well as its impact on the visual appeal and liveability of a city. 

To address these challenges, urban developers must carefully consider the 

trade-offs between incorporating daylight in a way that maximises its benefits 

while minimising potential drawbacks. As an answer to these challenges, 

there are a range of strategies that cities can use to effectively incorporate 

daylight into urban development. One key approach is the use of passive 

solar development, which involves orienting buildings and windows in such a 

way as to maximise the amount of daylight that enters the building (Morrissey 

et al., 2011). This can be achieved through the consideration of the orientation 

and placement of buildings, as well as the use of light-reflecting or absorbing 

materials, the use of strategic window placement, skylights, and other 

development elements that allow daylight to enter the building while 

minimising energy loss.  

Honeybee, a commonly used tool based on the Radiance model, serves this 

purpose but comes with limitations. Its specific geometry requirements, limited 

handling of larger-scale areas, and exponential increase in simulation time for 

complex and large geometries limit its usability in real-world urban 

environments. Consequently, there is a pressing need for a more time-

efficient and user-friendly approach to daylight analysis in urban design. 

To tackle these challenges, this research explores the capabilities of the 

Unreal Engine as a platform for physically accurate daylight simulation. The 

Unreal Engine offers real-time rendering and interactive 3D visualisation, 

which solve the limitations of Honeybee. The primary focus of this thesis is to 

investigate the suitability of the Unreal Engine for scaling up physically 

accurate daylight simulation tools. By leveraging the advanced features of the 

Unreal Engine, such as its interactive platform, the ability to manipulate and 

add geometry, and the integration of Cesium Tiles, the aim is to develop an 

integrated solution that overcomes the limitations of existing tools and 

provides urban developers with an intuitive tool for analysing daylight in their 

designs. Furthermore, this research aims to contribute to the advancement of 

architectural and urban design practices by providing a more efficient and 

effective solution for incorporating daylight analysis into the design process. 
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1.1. Motivation 

With the densification of urban areas, climate change and housing shortages, 

the architecture & urban development sector drastically needs to evolve. To 

tackle these challenges, it is becoming increasingly important to incorporate 

advanced technology and scientific methodologies into the design process. 

Real-time daylight analysis is a critical aspect of architectural and urban 

design, as it directly impacts the wellbeing and functionality of the built 

environment. Traditional daylight analysis tools are often cumbersome and 

difficult to use, making it challenging for designers to evaluate their designs 

accurately and efficiently. Coming from a Bachelor of Architecture and the 

Built Environment, I have experienced first-hand the frustration and limitations 

of existing tools. This is why I am motivated to develop an alternative tool 

using the Unreal Game engine. I believe that this tool has the potential to 

revolutionise the way architects and urban developers evaluate their designs 

by providing a user-friendly and accurate analysis & design platform. In 

addition, I hope this tool will help to bridge the gap between the architectural 

industry and scientific methodologies. My overarching goal is to establish a 

new approach in architectural and urban development by creating a 

comprehensive platform that integrates geospatial analysis with real-time 

visual feedback. With this thesis, I hope to prove the concept of a daylight 

analysis and design application using the Unreal Engine.   

1.2. Research questions 

This section states the research question and the sub-questions that will be 

used to answer that question. It will also elaborate on how these questions will 

be addressed.  

Main Research Question: 

To what extent is the Unreal Engine suitable to scale-up physically 

accurate daylight simulation tools? 

 

The main question will be answered using the sub-questions. The research will 

result into a methodology to import 3D city models into an Unreal application. 

Additionally, a study will be conducted to test different methods of extracting 

light intensity from Unreal. Furthermore, a comparison and benchmark will be 

performed to evaluate the light intensity in Unreal compared to physically 

accurate and validated Honeybee. Lastly, an interactive light analysis 

application will be developed, integrating design tools for architectural and 

urban developers. 
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Sub questions: 

1. How can 3D city models be effectively integrated into an Unreal application? 

This question will involve exploring different methods and formats for 

integrating 3D city models into the Unreal Engine. Various integration 

techniques will be compared, and a methodology will be developed based on 

different scenarios. This methodology will then be implemented within the 

Unreal application. 

 

2. How can the light values extracted from Unreal be compared and validated 

against industry-standard light models such as Radiance? 

This will be addressed through a multi-step approach. First, light 

information will be extracted from Unreal using various methods. A Honeybee 

script will be developed to analyse and represent light values. Finally, a 

comparison will be made between the light values obtained from Unreal and 

the benchmark values from Honeybee, enabling the assessment of the realism 

of lighting in Unreal. 

 

3. To what extent do the light values simulated with Unreal Engine accurately 

represent real-world lighting conditions? 

To investigate the realism of lighting values in Unreal, an inverse square 

law experiment will be conducted. This experiment will analyse the decay of 

light intensity with distance, comparing the results with the expected theoretical 

values. Additionally, the obtained lighting values will be compared against a 

benchmark provided by Honeybee to further evaluate their accuracy. 

 

4. In what ways can urban or architectural developers use an Unreal application 

to test and develop different design scenarios? 

This question focuses on exploring the possibilities of the Unreal Engine 

for urban and architectural development. The research will investigate the 

incorporation of in-game functionality that enables developers to test and iterate 

different design scenarios within the application.
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2. Theoretical background & Related work 

The related work chapter provides an overview of the relevant literature and current 

state of research in the areas of 3D city models, raytracing, daylight analysis, and 

Unreal Engine. By addressing the benefits, challenges, and gaps in the existing 

literature, theis thesis aims to contribute to the advancement of knowledge and the 

development of improved daylight analysis tools within the context of architectural 

and urban development. 

 

 

2.1 3D city models 

3D city models represent the physical characteristics of a city in 3D, including 

buildings, roads, bridges, trees, and other infrastructure. They can be used for a 

variety of applications, including emergency response, traffic management, and 

urban development. 

The main benefit of 3D city models is their ability to provide a more accurate and 

comprehensive representation of a city compared to traditional 2D maps. By adding 

a third dimension, these models can more accurately capture the shape, height, and 

geometry of buildings, as well as the location and orientation of streets and other 

infrastructure. This level of detail is particularly crucial for analyses dependent on 

building geometry, such as noise, solar/light, and volumetric analysis (Biljecki et al., 

2016). 3D city models can be created at different levels of detail (LOD) based on the 

acquisition technique and intended usage. Figure 2.1 illustrates the varying LODs of 

3D city models. 

 
Figure 2.1 Different LOD of 3D city models (Biljecki et al., 2016). 
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Despite their benefits, there are also challenges associated with the creation and 

maintenance of 3D city models. These challenges include:  

1. Standardisation. 3D models are often generated independently, using varying base 

data and reconstruction software. Furthermore, there is a lack of standardisation in 

terms of geometry and semantics (State of the Art in 3D City Modelling, 2022).  

2. Data interoperability. Due to the lack of standardisation, it is also difficult to convert 

data models into different formats (State of the Art in 3D City Modelling, 2022). 

3. Data quality. Many openly available 3D city models exhibit geometric and topological 

errors, such as missing surfaces, self-intersecting volumes, and duplicate vertices. 

(Biljecki et al., 2016). 

4. Data governance:  Ensuring proper governance and management of 3D city model 

data pose challenges.  

5. Cost. Current approaches to generating and maintaining 3D city models are often 

costly and labour-intensive (Steinhage et al., 2010).  

6. Urban analyses. There is a need for standardisation or toolkits for simulation, 

analyses, and management (Billen et al. 2015). 

 

CityJSON, a standardised data exchange format based on JSON (JavaScript Object 

Notation) (CityJSON, n.d.), is the official standard of the Open Geospatial Consortium (The 

Home of Location Technology Innovation and Collaboration | OGC, n.d.). JSON is a widely 

used data interchange format that is both human-readable and machine-readable. Even 

though there is some standardization in 3D city models, they are being used in varying 

formats. For instance, in the Netherlands, the Dutch Kadaster has published the 3D 

Basisvoorziening (Blankert, 2021), a 3D dataset representing the Netherlands in CityJSON 

format. Additionally, TU Delft has created 3DBAG (Ledoux et al., 2019), providing detailed 

3D representations of most buildings in the Netherlands in CityJSON format. However, 

despite the existence of unified national 3D city models like 3DBAG and 3D 

Basisvoorziening, individual municipalities maintain their own open 3D datasets. For 

instance, Rotterdam has a CityGML dataset, Den Haag has a CityGML dataset, and 

Amsterdam offers a Cesium 3D Tiles dataset (TU Delft, n.d.). Consequently, the importing 

of various 3D city models into Unreal requires addressing the diversity of formats and 

regional variations. 

 

 

2.2 Raytracing  

Raytracing is a technique used in computer graphics and simulation to create realistic and 

exact renderings of light distribution (Akenine-Möller et al., 2019). The technique is based on 

tracing the path of individual light rays as they interact with objects in a virtual scene, allowing 

for the calculation of light reflections, refractions, shadows, and other optical effects (see 

Figure 2.2).  

 

The fundamental principle behind raytracing is that each point on an object can cast multiple 

rays into the scene, which can be blocked, reflected, transmitted, absorbed, or diffused when 

interacting with new surfaces (Glassner, 1989).  
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Figure 2.2 Principle of Raytracing (Schmitt et al., 1988). 

 

Accurate rendering of reflective and transparent objects relies on the precise calculation of 

light reflections and refractions, according to well-established laws of physics. Snell's Law 

describes the propagation of light when it meets a surface, leading to refracted rays being 

either deflected away from or attracted toward the normal direction of the interface (Akenine-

Möller, 2019). Rays experiencing total internal reflection never cross over to neighbouring 

mediums; however, they still influence energy flow within the scene. Raytracing excels in 

accurately simulating shadows and global illumination effects. By tracing secondary rays from 

the intersection points towards light sources, it is possible to determine if an object is in shadow 

or receiving direct illumination. Additionally, global illumination techniques, such as ambient 

occlusion, radiosity, and path tracing, allow for realistic indirect lighting and the simulation of 

light bouncing between surfaces. Another essential part of efficient raytracing is the 

implementation of acceleration structures, like bounding volume hierarchies (BVH), KD trees, 

or octree hierarchies, which enable faster intersection testing, resulting in reduced rendering 

times without compromising accuracy (Hapala & Havran, 2011).  

 

Traditionally, raytracing has been computationally expensive, limiting its use to offline 

rendering. However, advancements in hardware and algorithms have made real-time 

raytracing possible (Singh & Narayanan, 2009). GPUs and specialized raytracing hardware 

have accelerated the rendering process, enabling interactive and immersive ray-traced 

experiences in video games, virtual reality, and architectural visualization. 
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2.3 Daylight analysis 

Daylight analysis plays a crucial role in urban environments as it directly impacts the quality 

of life and well-being of individuals residing in these areas. While some researchers argue that 

optimal light simulation requires a physical laboratory setup, this approach is often expensive 

(Chen et al., 2019). Alternatively, computer models can be employed for light simulation, 

offering a cost-effective solution. Many light simulation models rely on stochastic methods. 

Chen et al. (2019) suggest that VR lighting environments provide an effective means to 

represent physical light environments, accurately capturing various lighting attributes such as 

diffuse/glaring, bright/dim, open/close, noisy/quiet, in coherence with physical environments.  

 

2.3.1 Luminance and Illuminance 
Luminance and illuminance values play a crucial role in understanding the spatial distribution 

and and visual perception of light in architectural and urban environments. Comprehending 

luminance and illuminance is essential for optimizing lighting conditions, ensuring appropriate 

levels of brightness, and meeting lighting standards in various architectural and urban 

contexts. These measurements contribute to creating visually appealing, functional, and 

comfortable environments for occupants. 

 

Luminance refers to the amount of visible light emitted, reflected, or transmitted by a surface 

in a specific direction. Measured in candelas per square meter (cd/m²), luminance represents 

the perceived brightness of a surface, as perceived by the human eye (Luminous Intensity & 

Photometry | auersignal.com, n.d.). 

 

On the other hand, illuminance quantifies the amount of light falling on a surface and is typically 

expressed in lux (lx). It indicates the quantity of light reaching a specific area. Lux provides 

information about illuminance, serving as a measure of the brightness with which an area is 

illuminated. It measures how much luminous flux (lumen) of a light source arrives per unit area 

on a surface. The calculation of lux (see Figure 2.3.1) can be done in the following ways: 

 

1. Lux [lx] = luminous flux [lm] / area [m2]. 

2. Lux [lx] = luminous intensity [cd] / radius or distance squared 

 
 Figure 2.3.1 Formula to calculate lux (Luminous Intensity & Photometry | 

auersignal.com, n.d.) 

 

For example, if a luminous flux of 100 lumens falls uniformly on an area of 1 m², the illuminance 

or would be 100 lux. The illuminance decreases as the distance from the light source 

increases. Lux values can be used to determine if certain areas are satisfactorily illuminated. 

To measure illuminance, a luxmeter, or light intensity meter, is used. It provides a reading of 

the illuminance in lux at the measurement point. A luxmeter consists of a photo sensor, 
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typically containing photo diodes, which detect the light, and a display that shows the 

measured lux value. These concepts are visualized in Figure 2.3.2, which illustrates the 

relationship between luminous flux, luminous intensity, luminance, and illuminance. 

 

 

 
Figure 2.3.2 Luminance and Illuminance (AnneCorning & Systems, 2022). 

 

 

2.3.2 Daylight Modelling and Simulation 
Daylight simulation models usually exist of a model that represents a sky and a model that 

mimics the way light propagates. Sky models are mathematical representations of the sky 

(Antonanzas-Torres et al., 2019). Common sky models include the CIE Standard Sky, Perez 

Sky Model, and Climate-Based Sky Models (CBSM). These models consider factors like the 

sun's position, sky type, and atmospheric conditions to generate exact representations of the 

sky's luminance. 

Sky models consists of multiple components. The most important two are (direct) sunlight and 

(indirect) skylight (Mardaljevic, 1999). Sunlight is the direct light from the sun that reaches an 

area. The position of the sun in the sky, influenced by factors like latitude, time of day, and 

time of year, affects the intensity and direction of sunlight. Skylight refers to the diffuse light 

from the sky that reaches an area through the atmosphere. It provides ambient illumination 

and can significantly influence the overall lighting conditions. Skylight is affected by factors 

such as cloud cover, atmospheric conditions, and the surrounding built environment. 

 

In terms of light propagation, daylight models are mainly based on two main concepts: 

raytracing and Monte Carlo simulation. Raytracing, a computer simulation method based on 

geometric optics, models the path of light through a scene. It is widely utilised to visualise 

object appearances in virtual environments and analyse light distribution in spaces (Glassner, 

1989). Raytracing finds extensive use in lighting design and urban development to predict 

illuminance levels and luminance distributions in both outdoor and indoor spaces. Notably, its 

ability to accurately model light interactions with surfaces and materials allows designers to 

anticipate space appearance under different lighting conditions. 

 

Monte Carlo simulation, on the other hand, is a computer simulation method that utilises 

random sampling to calculate the probability of different outcomes (Mooney, 1997). In the 

context of daylight analysis, Monte Carlo simulations analyse light distribution in urban 

environments by simulating the path of individual light photons as they interact with various 
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surfaces. This method accurately predicts light distribution in complex environments, such as 

urban canyons, incorporating reflections, refractions, and scatterings (Wang, 2014). 

 

2.3.3 Radiance  
Radiance, a widely-used and powerful tool, for daylight simulations, combines deterministic 

raytracing and Monte Carlo simulation to simulate lighting and daylighting in architectural and 

urban design (Radiance — Radsite, n.d.).  With its software tools, users can generate accurate 

and detailed simulations of lighting conditions, including direct sunlight, skylight, and 

reflections. 

Radiance uses the Perez sky model as a fundamental component of its daylight simulation 

capabilities. The Perez sky model, also known as the Perez all-weather model, is a 

mathematical representation of the sky's luminance distribution based on measured sky 

radiance data (Perez, 1993). It accurately describes the sky conditions throughout the year 

under various weather conditions. The Perez model considers parameters such as solar 

altitude, solar azimuth, turbidity, and other atmospheric properties to calculate the sky's 

luminance distribution accurately. By simulating the behaviour of light rays interacting with 

various surfaces, Radiance can calculate illuminance values, daylight factors, and other 

metrics that help assess the quality and performance of natural lighting within architectural 

spaces. 

 

2.3.4 Honeybee  
In the context of architectural and urban design, Radiance is often used within Grasshopper 

through the integration of Honeybee plugins. Grasshopper provides a graphical no-code 

interface for creating and manipulation of 3D models. Honeybee acts as a bridge between the 

Grasshopper environment and Radiance, allowing users to create and analyse complex 

daylighting scenarios within their architectural designs. Honeybee offers tools for simulating 

lighting and daylighting conditions using Radiance. Together, these plugins enable users to 

create accurate and detailed simulations of lighting conditions and evaluate the performance 

of their design.  

 

Honeybee offers various components for creating geometry, defining materials, specifying sky 

conditions, and configuring analysis parameters. Users can create detailed 3D models of 

buildings, assign materials with optical properties, and set up sky conditions using the Perez 

sky model or other sky models available in Radiance. 

 

Honeybee communicates with Radiance to perform the actual raytracing calculations. The 

interaction between Honeybee, Radiance and other software is visualized in Figure 2.3.4. 

Radiance traces light rays through the virtual environment, considering interactions with 

surfaces, reflections, and refractions. This allows Honeybee to compute accurate metrics such 

as illuminance, annual sunlight exposure, and other daylight performance indicators. 

Honeybee provides visualizations and analysis outputs based on the simulation results. These 

outputs can include color-coded maps of illuminance levels, daylight factor distributions, 

annual daylight metrics, and more. 
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Figure 2.3.4 Connection between Honeybee, Radiance, and other related software 

(Ladybug Tools | Home Page, n.d.)  

 

 

2.4 Unreal Engine 

Game engines, like Unreal, are software frameworks designed to develop interactive 3D 

environments and gameplay mechanics, primarily for the creation of video games.  However, 

their potential extends beyond gaming and holds potential for geospatial applications, such as 

urban development (Keil et al., 2021). Game engines provide a wide range of tools and 

features that enable designers to build immersive 3D environments and characters quickly. 

Leveraging geospatial data in game engines allows for the rapid creation of 3D environments 

and prototypes, making Unreal useful for architectural and urban development.   

 

Examples of the implementation of game engines for geospatial related topics include:  

 

1. The Generation of 3D terrains or DEMs (Mat et al., 2014).  

2. The recreation of historical towns in VR (Kersten et al. 2018).  

3. Solar potential assessment (Buyuksaliha et al., 2017). 

4. Quick prototyping of spatial layouts and building design (Edler et al., 2020). 
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5. Safety training in dangerous environments such as underground hazard safety 

training (Liang et al., 2019). 

6. Application of physical models for environmental simulation (Edler et al., 2019). 

 

Among the game engines is the open-source Unreal Engine. Epic Games developed the 
Unreal Engine in the late 1990s as the backbone of the video game Unreal. Unreal is widely 
adopted in the gaming industry and has also gained traction in creating virtual reality and 
augmented reality experiences. Initially developed for video games, the Unreal Engine has 
evolved to encompass real-time visualisation and simulation applications. The Unreal Engine 
is known for its powerful real-time rendering capabilities, making it an ideal tool for creating 
high-quality 3D graphics and animations. It offers a range of features, including blueprint visual 
scripting, C++ coding, real-time rendering, animation, and physics. In recent years, the Unreal 
Engine has gained popularity in the field of architecture and urban development. Its real-time 
rendering capabilities make it an ideal tool for creating immersive and interactive visualisations 
of buildings and urban areas. 
 

2.4.1 Key features and techniques.  
The Unreal Engine is composed of three main parts (Lee, 2016), each with its own relationship 

and components, as depicted in Figure 2.4.1. These parts include the Sound Engine, 

responsible for handling music and sound in the game, the Physics Engine, which performs 

calculations for lifelike physical interactions, and the Graphics Engine, which handles 

rendering. The integration of these different engines within Unreal enables seamless 

communication between them. 

 
Figure 2.4.1 Different components of Unreal Engine 
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The Unreal Engine's exceptional speed and efficiency are achieved through the 

implementation of various technical aspects. Several key features and techniques contribute 

to its impressive performance: 

 

1. Multithreading   

Unreal Engine takes advantage of multi-core Central Processing Units (CPUs) by 

using multithreading techniques, to improve performance and responsiveness 

(Threaded Rendering, n.d.). This technique distributes tasks across multiple threads, 

allowing for parallel processing of different aspects of the game engine. 

2. GPU Acceleration 

Unreal Engine uses GPU acceleration to offload computationally intensive tasks from 

the CPU (GPUOpen by AMD, 2022). The GPU is designed for high-performance 

graphics rendering. By applying this technique, Unreal Engine can realize real-time 

rendering and complex visual effects. 

3. Culling and Occlusion Techniques 

Unreal employs culling and occlusion techniques to avoid rendering objects that are 

not visible or blocked from view (GPUOpen by AMD, 2022). By not rendering non-

visible objects, Unreal reduces unnecessary computations and improves performance. 

4. Precompiled Shaders  

Unreal precompiles shaders during the development process, which lead to optimized 

rendering at runtime (Shader Development, n.d.). By precompiling shaders, it 

eliminates the need to compile shaders at runtime, improving startup times and 

improving render-related performance. 
 

2.4.2 Raytracing in Unreal 
Unreal uses raytracing to model the behaviour of light. It simulates the path of individual light 

rays as they interact with objects and surfaces. Unreal Engine uses real-time raytracing, which 

combines raytracing with rasterization techniques (What Is Real-time Ray Tracing?, n.d.). This 

hybrid approach allows for real-time light interactions. Unlike traditional rasterization methods, 

which approximate lighting effects using simplified algorithms, raytracing in Unreal Engine 

calculates the path of light rays as they bounce, reflect, and refract through a scene. This 

leads to more realistic physical lighting, with realistic shadows, reflections, and global 

illumination (see Figure 2.4.2).  



 

34 

 
Figure 2.4.2 Realistic physical lighting in Unreal (What Is Real-time Ray Tracing?, n.d.) 

 

One of the advantages of raytracing in Unreal Engine is its speed and efficiency. Unreal 

Engine uses a variety of optimization techniques, described in 2.4.1, to achieve real-time or 

near-real-time rendering performance. This means that complex scenes with dynamic lighting 

can be rendered smoothly and interactivity. 

The speed and efficiency of real-time raytracing in Unreal Engine make it an appealing 

possibility to explore as an alternative to traditional daylight analysis tools like Honeybee. 

Honeybee, which uses Radiance for accurate daylight simulations, can be computationally 

intensive and time-consuming, especially in dealing with complex geometry.  

 

2.4.3 Development vs. Runtime 
Unreal Engine operates in two modes: development and runtime. The development mode 

facilitates real-time editing, debugging, and experimentation, allowing developers to iterate 

rapidly on their ideas. The runtime mode focuses on delivering a smooth, optimized 

experience to end-users without access to development tools or editing capabilities. 

Development mode is primarily used during the process of creating and editing a game or 

application in Unreal Engine. In development mode, developers have access to various tools, 

features, and debugging capabilities to use in the development process. It allows for real-time 

editing of the game's content, including levels, assets, materials, and blueprints. Developers 

can make changes and instantly see the results without needing to restart the game. 

 

Runtime mode refers to the execution of the game or application that has been built and 

packaged for distribution or testing. Users experience application without any access to 

development tools or editing capabilities. In runtime mode, the game or application runs 

independently of the Unreal Editor. It operates as a standalone program. Runtime mode may 

have different configuration settings compared to development mode, such as different 

graphical quality settings or performance optimizations specific to the target platform. 
 

2.4.4 Blueprints vs. C++ 
Unreal Engine has two main methods for development: Blueprints and C++ coding. Blueprints 

in Unreal Engine is a visual scripting system that allows developers, to create gameplay logic 
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and functionality using a no-code, node-based interface. It offers a more accessible and 

intuitive approach. On the other hand, C++ coding provides greater flexibility and control to 

create complex functionality.  

With Blueprints, developers can design and define object behaviour, character interactions, 

and environmental elements by connecting nodes representing different actions, events, 

variables, and conditions. It offers an accessible and intuitive way to quickly prototype 

gameplay mechanics and ideas without traditional coding. The visual nature of Blueprints 

facilitates collaboration between designers, artists, and programmers, as it allows for better 

understanding and visualization of logic flow. Blueprints support various functionalities, such 

as character movement, animation, AI behaviour, physics simulation, and user interfaces. 

Unreal Engine provides a library of pre-built Blueprint nodes and functions, and developers 

can also create custom Blueprint nodes using C++ to extend functionality. 

 

Unreal Engine is built on top of the C++ programming language, which allows for low-level 

access, performance optimization, and complex systems development. 

By writing C++ code, developers can create and customize game systems, implement 

advanced algorithms, optimize performance-critical sections, and integrate with external 

libraries and systems. Unreal Engine has many build-in classes, functions, and frameworks 

that developers amongst others can use to create game mechanics, implement game rules, 

create custom shaders. C++ coding is often preferred when working on large-scale projects, 

performance-critical features, or when extensive customization and control are required. 

 

Unreal Engine allows developers to seamlessly combine Blueprints and C++ code in the same 

project (C++ And Blueprints, n.d.). This enables a hybrid approach where complex systems 

and critical components can be written in C++, while other aspects can be implemented using 

Blueprints. 

 

 

2.5 Cesium ion & OGC 3D Tiles  

To expand the geospatial capabilities of Unreal, Epic Games started a collaboration with 

Cesium (Cozzi, 2021b). Cesium ion was chosen for creating and hosting 3D geospatial data, 

publishing tilesets (see Figure 2.5), integration with other geospatial data sources, and 

performing advanced geospatial analysis. Cesium ion offers a range of geospatial analysis 

tools, including terrain analysis, 3D measurements, and visibility analysis (Cozzi, 2021b). 

 

A key advantage of Cesium ion are Cesium 3D Tiles. Cesium 3D Tiles are the Open 

Geospatial Consortium (OGC) community standard for tiling massive and heterogeneous 3D 

content (Getz, 2021). Cesium OGC 3D tiling revolutionizes the visualization and distribution 

of complex geospatial data. Cesium not only enables the viewing of 3D tiles but also facilitates 

their creation, web-based hosting, and REST API-based serving through Cesium ion (Getz, 

2021). Notably, Cesium has collaborated with Safe FME to integrate Cesium plugins into FME, 

providing the capability to generate batched tile models (Getz, 2021). The CRS used for the 

3D tiles in Cesium aligns with the EPSG:4978 ellipsoid, which is equivalent to the WGS84 

ellipsoid commonly used for representing the Earth (Getz, 2021). 

 

Cesium ion tilesets empower the creation and hosting of 3D geospatial data, offering support 

for various formats such as OBJ, CityGML, photogrammetry, and LiDAR. These tilesets 

provide a scalable solution for visualizing large and complex datasets, with efficient streaming 

and rendering in real-time 3D environments. By integrating Cesium ion tilesets with Unreal 

through Cesium for Unreal, developers gain the ability to incorporate tiled/streamed 3D 

geospatial data seamlessly into their Unreal projects (Getz, 2021). 
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To showcase the geospatial capabilities of Unreal and Cesium, a collaborative effort resulted 

in the development of Project Anywhere. This open-source initiative harnesses the power of 

Cesium ion for Unreal to create interactive, real-time 3D visualizations of geospatial data. 

Project Anywhere demonstrates the potential for leveraging Cesium ion's capabilities in 

creating captivating and informative geospatial experiences (Getz, 2021). 

 

 
 

Figure 2.5 Height-dependent building coloured 3D Tile using Cesium (Cozzi, 2021a). 
 

 

 

2.6 Daylight Analysis in Unreal 

Even though the Unreal Engine is known for its qualitative looking light distribution, quantitative 

daylight analysis within the Unreal Engine, is not something that is widely used in the industry. 

This section aims to discuss and summarize some of the research conducted on daylight 

analysis in Unreal. 

 

1. Visualizing user perception of daylighting: a comparison between VR and reality 

(Hegazy et al., 2020).  

 

This article compares the perception of visual comfort in virtual reality with real-life scenarios. 

Participants in the study experienced both real rooms and reconstructed virtual spaces using 

Unreal Engine and Oculus Rift HMD. During the study participants were questioned about 

acceptability ratings and preferences. The results reveal significant differences in perception 

of real-life compared to reconstructed virtual spaces. Participants perceived greater warmth 

and rich colours under real sunlit settings compared to artificial sources or computer-

generated versions. However, Unreal-rendered scenes received better scores than purely 

synthetic ones in terms of glare control and overall appearance quality. These results imply 

certain limitations exist in the perception of daylight simulation in Unreal, while also highlighting 
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possibilities for optimizing render techniques in Unreal to reproduce more realistic daylighting 

characteristics.  

 

2. State-of-the-art review of solar design tools and methods for assessing daylighting 
and solar potential for building-integrated photovoltaics (Jakica, 2018).  
 
This paper mentions Unreal Engine as a tool that is increasingly being explored as a solar 

design tool for daylight analysis and design. It states that the advantage of using Unreal 

Engine for daylight analysis and design is its ability to generate highly detailed, interactive 3D 

models of buildings that accurately represent how sunlight will interact in architectural 

environments. These models can then be used to analyze solar performance and optimize PV 

panel placement. Another benefit of using Unreal Engine for daylight design is its compatibility 

with other modelling software commonly used in the industry, such as Revit or Rhino. This 

enables seamless data exchange and streamlined workflows. The paper mentions that as 

Unreal Engine's focus is on gaming rather than scientific physical analysis, its solar simulation 

capabilities may need additional validation testing before they can be widely adopted. 

Nonetheless, the authors note that Unreal Engine has enormous potential as a daylight design 

tool given its ease of use, low entry barrier, and strong graphical capabilities. 

 

3. Validating Game Engines as a Quantitative Daylighting Simulation Tool (Hegazy et 

al., 2021).  

 

The study aimed to evaluate the accuracy of Unreal Engine for indoor quantitative daylighting 

simulations. Traditionally, specialized tools like Radiance have been used for these types of 

simulations, but recent advancements in technology have led researchers to explore whether 

game engines could be a viable alternative. 

 

The study includes two case studies with different complexity levels and spatiotemporal 

settings. The first case study focuses on a simplified shoebox model to evaluate the accuracy 

of game engine rendering in a basic scenario. The second case study involves a more 

complicated office model with various functions and a large-scale space to assess the 

potential of game engines for simulating daylighting in realistic environments. 

In both case studies, illuminance levels at selected points were measured in Unreal Engine 

and compared to those calculated using Radiance and an illuminance meter for real-life 

measurements. The traditional rendering technique in the game engine showed a high 

variance in illuminance levels compared to the references. 

Contrary, real-time ray tracing demonstrated better accuracy. In the simplified model, real-

time ray tracing showed the lowest average error compared to the validated simulation results. 

In the complicated model, the average error of real-time ray tracing was close to that of the 

validated simulation, compared to the actual illuminance measurements. 

 

The study highlights the benefits of using real-time ray tracing in game engines for offering an 

immersive and interactive experience of virtual daylit spaces without sacrificing the 

quantitative accuracy of the simulated luminous environments. It suggests that game engines 

have the potential to be a valuable tool for daylighting simulation and should be further 

validated and adopted in daylighting research. Although this study focusses on the illuminance 

values in indoor environments, the conclusions suggest that Unreal can realistically propagate 

daylight, which is a good basis for the further research. 
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3. Methodology  

 

The methodology chapter provides a detailed description of the methodology used to 

develop the real-time daylight analysis tool for architectural and urban development 

using the Unreal Game engine. The purpose of this chapter is to provide a clear and 

concise description of the methods employed in the development of the tool. Figure 3 

shows a flowchart of that methodology that will lead to the interactive daylight analysis 

application in Unreal.  

 

 

Figure 3 Flowchart of methodology 

 

3.1 Loading 3D city models in Unreal 

3D city models come in various formats such as CityJSON and CityGML, which can 

vary depending on the country, province, or municipality. For instance, in the 

Netherlands, the Dutch Kadaster has published the 3D Basisvoorziening (Blankert, 

2021), a 3D dataset representing the Netherlands in CityJSON format. Additionally, 

TU Delft has created 3DBAG (Ledoux et al., 2019), providing detailed 3D 

representations of most buildings in the Netherlands in CityJSON format. However, 

despite the existence of unified national 3D city models like 3DBAG and 3D 

Basisvoorziening, individual municipalities maintain their own open 3D datasets. For 

instance, Rotterdam has a CityGML dataset, Den Haag has a CityGML dataset, and 

Amsterdam offers a Cesium 3D Tiles dataset (TU Delft, n.d.). Consequently, the 

importing of various 3D city models into Unreal requires addressing the diversity of 

formats and regional variations. 
 

Importing a City Model directly into Unreal presents several challenges. Firstly, 

Unreal does not support formats such as CityJSON and CityGML. One possible 

approach is to convert the model into an OBJ format and then import it into Unreal. 

However, this method leads to performance issues and prolonged import times due 

to the large number of buildings in a 3D City Model file. Additionally, maintaining 

consistent georeferencing becomes more difficult with this approach. While Unreal 

offers georeferencing capabilities, they are project-based rather than file or object-

based. Since the OBJ format uses a local CRS with offsets (Wikipedia contributors, 

2023), imported OBJs are not automatically placed in the correct location but would 

require manual adjustment. As a result, ensuring the integrity of the CRS and the 
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accurate positioning of buildings becomes exponentially challenging when dealing 

with different files and CRS. Therefore, both direct importing and importing in the 

form of OBJ prove impractical, requiring alternative approaches. 

 

To address the variations in 3D model formats, such as CityJSON and CityGML, and 

their incompatibility with direct placement into Unreal, different methodologies and 

scenarios will be tested to assess the usability of different formats of 3D City models 

in Unreal. For this purpose, Cesium ion, a plugin for Unreal, was used. Cesium ion 

brings tiling, georeferencing, standardization and other geospatial capabilities into 

the Unreal Game Engine. Cesium 3D Tiles are Open Geospatial Consortium (OGC) 

community standard for tiling of massive heterogenous 3D content (Getz, 2021).  

While CityGML is an accepted format by Cesium ion, CityJSON is not supported. 

Besides CityGML, and CityJSON, the Google Maps API & Cesium OSM tileset will 

also be tested.  

The Cesium OSM tile from Cesium ion enables the seamless import of OSM 3D 

tilesets into Unreal Engine, providing access to immersive and realistic 3D 

environments. These tilesets consist of 3D models and terrain data generated using 

OSM, bringing access to realistic 3D environments in Unreal. The tilesets generated 

by Cesium ion are optimized for performance and streaming, enabling efficient 

visualization of large-scale 3D city model datasets. 

On May 10th, 2023, Cesium made an exciting announcement regarding their 

partnership with Google Maps (Cozzi, 2023). As part of this collaboration, Google 

launched an exciting experimental release of Photorealistic 3D Tiles via their Map 

Tiles API. These 3D tiles are created based on Cesium's OGC standard. With the 

integration of the Google Maps API into Unreal Engine, developers can seamlessly 

incorporate these photorealistic tiles directly into their projects. This integration 

allows developers to incorporate the detailed and lifelike representations of real-

world environments provided by Google Maps into their Unreal Engine projects. 

 

To test the usability of loading 3D city models in Unreal, the following scenarios will 

be tested and compared to each other:  

 

1) Convert CityJSON to Cesium tile using FME 

2) Load CityGML directly into Cesium ion.  

2) Convert CityJSON to CityGML using FME 

3) Convert CityJSON to CityGML using citygml-tools 

4) Cesium OSM Tileset 

5) Google Maps API.  

 

 

3.2 Extracting light values from Unreal  

Because Unreal was originally designed for game development, lighting and its values 

are primarily focused on the visual aspects. However, Unreal does utilise physical units 

in its lighting calculations. 

 

Both Radiance & Unreal calculate illuminance values based on raytracing & monte 

Carlo simulation. However, there is a difference in the way Unreal & Radiance 

calculate Luminance. Radiance uses the relative luminance * 179. Relative luminance 

in Radiance is defined as (0.265*Red) + (0.670 * Green) + (0.0065 * Blue). Radiance 

multiplies by 179, because of the white light efficacy factor of 179 lm/W (gendaylit.pdf 

— Radsite, n.d.). Whereas Unreal uses the relative luminance values normalised to a 
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range between 0 & 1 multiplied by the intensity of the light source (Physical Lighting 

Units, n.d.). Relative luminance in Unreal is defined as (0.299 *Red) + (0.587 * Green) 

+ (0.114 * Blue). Unreal does not offer any explanation as to why this formula is 

chosen. it is important to note that the choice of formulas for calculating luminance in 

Radiance and Unreal can have implications for the accuracy and visual representation 

of light in their respective simulations. The multiplication by 179 in Radiance considers 

the specific white light efficacy factor, which may contribute to a more realistic 

representation of luminance values. In contrast, Unreal's normalization and 

multiplication by the intensity of the light source may offer a different perspective on 

luminance, potentially affecting the perceived brightness and visual appearance of 

scenes. These differences will be considered when implementing the functionality to 

calculate luminance in Unreal, considering both approaches. 

 

This thesis will focus on multiple ways to extract light values (Luminance & 

Illuminance) from Unreal: 

 

 

1. Accessing light information directly from build in functionality of Engine 

Unreal provides built-in functionality to calculate the amount of light in a specific area 

of the scene. This research will investigate accessing this functionality directly, 

incorporating it into a game mode at runtime, and experimenting with adjusting or 

modifying the light information functionality. 

 

2. Calculating Luminance and Illuminance values using a custom C++ actor. 

Another method that will be explored for calculating luminance and illuminance values 

is through the development of a custom C++ actor. The actor will capture the screen 

space coordinates and RGB values of the pixels. Once the RGB values are obtained, 

they will be converted into luminance & illuminance.  

 

  

3. HDR eye adaptation.  

The HDR eye adaptation tool in Unreal is a built-in functionality that enables the game 

engine to measure illuminance values in real-time. This tool mimics the way that the 

human eye adapts to changing light conditions. It works by constantly measuring the 

brightness illuminance of the scene and adjusting the exposure settings of the camera 

accordingly. In this research the tool will be used to measure luminance & illuminance 

values.  

 

4. False Colour Post-Processing Material.  

Light perception is a visual phenomenon. Radiance uses a False-colour rendering 

technique to visualise the amount of light in different colours. This allows users to 

quickly identify and understand the distribution of light in a certain model, without 

looking at numerical data. In Unreal, this false-colour rendering will be implemented as 

a post-processing material. Post-processing materials in Unreal are special types of 

materials that can modify the final image output of a scene. (Post Process Materials, 

n.d.). They can use information from lights in the scene to adjust the colour and 

brightness of materials and apply effects such as bloom, lens flares, and colour 

grading. This provides greater control over the final appearance of a scene. 

Additionally, the feasibility of accessing the numerical values of the light and assigning 

colours based on the numerical values of light. E.g., colouring every object with 5000 

lux orange. 
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3.3 Comparison of different light analysis methods vs. Benchmark 

To validate the accuracy of daylight values in Unreal and its ability to realistically 

propagate daylight, a twofold approach is implemented. Firstly, an inverse square law 

experiment is conducted to investigate the behaviour of light values in Unreal and their 

adherence to the theoretical values predicted by the inverse square law (see Figure 

3.3). The outcome of this experiment will be used as the basis of the further 

benchmarking. It is important to note that the inverse square law primarily accounts for 

the spread of light and does not consider other factors such as diffraction or refraction 

caused by surrounding buildings. The objective of this experiment is to gain an initial 

understanding of Unreal's ability to accurately simulate light propagation. 

 

 

 

            Figure 3.3 Inverse square law (Inverse Square Law, n.d.).  

 

 

While the inverse square law experiment provides an initial insight into the spread of 

light, it is acknowledged that additional factors influence the daylight in urban 

environments. In the further benchmarking in an urban environment, other factors, 

including measurement errors, sun position, skylight intensity, and sun intensity, could 

influence the accuracy of the daylight measurements. By conducting the inverse 

square law experiment a baseline is established for further benchmarking and strive to 

understand the extent to which Unreal accounts for different behaviours of light. 

 

To further validate the realisticity of daylight propagation in urban environments, the 

values from Unreal are compared against the established light analysis method 

Radiance. A 3D city model tileset will be imported, and light values will be extracted 

from Unreal and compared to those extracted using Honeybee. A comparison between 

Honeybee and Unreal will be made in terms of their ability to handle complex 3D city 

models, the computational time required for calculations, and the accuracy of the 

results. 
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To calculate daylight values in Honeybee, a Grasshopper script will be developed to 

calculate point-in-time illuminance values within the tileset. The same 3D city model 

used in Honeybee will be imported into Unreal for benchmarking purposes. The 

illuminance values obtained from Honeybee will be compared to those from Unreal. 

 

To ensure the reliability and accuracy of the measurements, precautions will be taken 

to minimize potential errors.  

1. Each measurement point will be measured three times, mitigating the impact of 

random errors and measurement inaccuracies by averaging the results. 

2. To prevent information bias, the illuminance values from the Honeybee model will 

intentionally be hidden during measurements in Unreal. This approach aims to 

maintain objectivity and eliminate any unconscious bias that may arise from 

observing the values in the other application. 

3. Comprehensive coverage of a wide range of daylight scenarios will be achieved by 

strategically placing measurement points on different surfaces, considering areas 

exposed to direct sunlight as well as shaded regions. Moreover, various 

environmental complexities will be considered, such as obstruction caused by 

surrounding buildings, as well as the presence of diffraction and refraction effects. By 

incorporating these diverse scenarios, the study aims to validate the ability of Unreal 

to accurately simulate and calculate daylight propagation in urban environments. 

4. Finally, both the Unreal SunSky model and the Cesium SunSky model will be 

compared against the sun position in Honeybee and the resulting values.  

 

By following these methods and conducting a thorough evaluation, the study aims to 

provide valuable insights into the accuracy and performance of the Unreal Engine in 

simulating and calculating daylight values in urban environments. 

 

 

3.4 Interactive User Functionality 

User interaction plays a vital role in facilitating the architectural and urban design 

process. The Unreal Game Engine provides various tools for enabling user interaction 

in the application. The application should allow users to interactively remodel the urban 

design and recalculate daylight on the spot. To achieve this, the application will support 

scale, rotate, and translate functionalities, enabling users to adjust the design to their 

desired specifications. 

 

In addition to manipulating existing geometry, the application will also support the 

addition of new geometry to the urban environment. This will be facilitated through the 

inclusion of building blocks, offering a library of pre-defined elements that enable users 

to construct their designs quickly and efficiently. Furthermore, the application will also 

support the importing Cesium Tiles at runtime, enabling users to import new designs 

created in other applications or 3D city models. 

 

To enhance flexibility and customization, the application will provide users with the 

ability to switch between different render modes and modify rendering settings at 

runtime. This feature will enable users to visualise and analyse the urban design in 

various perspectives and lighting conditions, providing a deeper understanding of the 

impact of their design choices on the lighting environment.  
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The effectiveness and capabilities of user interaction within the application will be 

evaluated based on several criteria. The design capabilities will be compared against 

industry standard tools for architectural and urban daylight design, such as Rhino. This 

analysis will help identify the strengths and weaknesses of the application in terms of 

usability, efficiency, and overall user experience. Furthermore, the application will be 

evaluated based on its in-game functionality versus the development mode 

functionality. 

 

The creation and evaluation of user interaction and design capabilities aim to provide 

potential users with workflow recommendations and insights into the pros and cons of 

the application. These insights can guide future development, addressing any 

identified areas for improvement and improving the application's overall performance 

and user experience. 

 

3.5 User Interface 

Creating an intuitive UI is crucial for ensuring a positive user experience in the VR 

web application. The UI is designed to allow users to easily navigate between 

different features and functions of the application. 

The UI will be developed using the Unreal Engine's built-in UMG (Unreal Motion 

Graphics) system. This system enables the creation of user interfaces that can be 

used in VR. 

The UI will include a navigation menu that allows users to access the different 

functionalities from chapter 3.4, such as selecting different 3D models and changing 

the lighting settings. 
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4 Implementation 

This chapter describes the implementation of this research, building upon the 

methodology outlined in Chapter 3. This chapter aims to give a clear understanding of 

how the research methodology was put into action and the different parts involved. 

The sections in this chapter will provide practical insights and technical details on how 

the research objectives were achieved. The application is available at: 

https://github.com/siebren014/LuminaCity. Additionally, a demo video showcasing the 

application's functionality is available at: https://youtu.be/qc9LLf2PT40. 

 

4.1 Tools, datasets and hardware used 

Table 4.1 provides an overview of the various datasets and software used in the 

research project. Each entry includes the name of the dataset or software, the source 

from where it was obtained, and its specific usage in the Thesis. 

The hardware that was used for the development of this thesis is a laptop with  

an Intel Core i5-9300H processor with a speed of 2.40 GHz and a quad-core. The 

graphics controller is an NVIDIA GeForce GTX 1650. The laptop has 16GB of 

physical memory and 27GB of virtual memory.  

 

Dataset or Software Source Usage 

3DBAG Tile Rotterdam (3D BAG Viewer, n.d.) 

Dataset containing detailed 3D 

models of Rotterdam buildings. 

Used to evaluate the performance 

of importing and analysing different 

3D models in the Unreal 

application, as well as used as 

benchmark dataset for comparison 

of light values. 

Unreal Engine 

(Unreal Engine | the Most 

Powerful Real-time 3D 

Creation Tool, n.d.) 

Development platform utilised for 

creating the real-time daylight 

analysis tool. 

Rhino 
(Robert McNeel & 

Associates, n.d.) 

Modelling software employed for 

benchmarking purposes. Allows for 

the creation and manipulation of 3D 

geometry, providing access to 

Grasshopper for additional analysis 

capabilities. 

Grasshopper (Grasshopper, n.d.) 

Visual scripting software used in 

conjunction with Rhino for light 

analysis 

Ladybug/Honeybee 
(Ladybug Tools | Home 

Page, n.d.) 

Daylight analysis plugins for 

Grasshopper. Used to build Point-

in-time illuminance script. 

https://github.com/siebren014/LuminaCity
https://youtu.be/qc9LLf2PT40
https://3dbag.nl/en/download?tid=3312
https://www.unrealengine.com/en-US/
https://www.unrealengine.com/en-US/
https://www.unrealengine.com/en-US/
https://www.rhino3d.com/
https://www.rhino3d.com/
https://www.grasshopper3d.com/
https://www.ladybug.tools/
https://www.ladybug.tools/
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FME (Wij Zijn Tech | FME, n.d.) 

Data integration and transformation 

tool. Used to convert 3DBAG to 

Cesium tile & CityGML. 

Cesium ion (Cesium Ion, n.d.) 

Geospatial data hosting and 

visualisation platform. Used to host 

3D city models. 

Cesium for Unreal (Cesium for Unreal, n.d.) 

Integration of Cesium geospatial 

data in Unreal Engine and 

CesiumSunSky. 

GitHub (GitHub, n.d.) 
Version control and hosting of 

applications. 

VS Code (Visual Studio 2022, 2023) 

Integrated development 

environment for coding in Unreal. 

Used to add functionality in Unreal 

using C++ 

CityGML file Den Haag 

(3D Stadsmodel Den Haag 

2022 CityGML - 

Dataplatform, n.d.) 

CityGML dataset of Den Haag (The 

Hague). Used to evaluate the 

performance of importing and 

analysing different 3D models in the 

Unreal application 

citygml-tools (Citygml4j, n.d.) 
Used to convert CityJSON to 

CityGML 

Google Maps API 

(Google Maps 

Platform  |  Google for 

Developers, n.d.) 

To generate a Google Maps API 

key to implement the google maps 

tileset  

Table 4.1. Overview of tools and datasets used. 

 

 

4.2 Loading 3D city models in Unreal 

To test the different scenarios mentioned in section 3.2, the following steps will be 

taken: 

 

1) Convert CityJSON to Cesium tile using FME 

Since CityJSON is not an accepted format by Unreal nor Cesium ion, the CityJSON 

(3DBAG) dataset first needs to be converted to the Cesium Tileset format using FME 

(see Figure 4.2.1). Afterwards the Cesium Tileset can uploaded to Cesium ion. With 

the data uploaded to Cesium ion, a connection is made between Unreal and the 

Cesium ion account. From the Cesium ion assets tab in Unreal, the desired tile is 

selected and loaded into Unreal. Optionally, the z-coordinate can be adjusted to 

ensure proper alignment with the Cesium world terrain. It is important to consider that 

using FME for conversion adds additional steps to the workflow. However, this 

method allows you to import the CityJSON datasets into Unreal, providing enhanced 

https://www.fme.nl/
https://cesium.com/platform/cesium-ion/
https://cesium.com/platform/cesium-for-unreal/
https://github.com/
https://visualstudio.microsoft.com/vs/
https://ckan.dataplatform.nl/dataset/3d-stadsmodel-den-haag-2021-citygml
https://ckan.dataplatform.nl/dataset/3d-stadsmodel-den-haag-2021-citygml
https://ckan.dataplatform.nl/dataset/3d-stadsmodel-den-haag-2021-citygml
https://github.com/citygml4j/citygml-tools
https://developers.google.com/maps
https://developers.google.com/maps
https://developers.google.com/maps
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visualization and interaction within the Unreal environment.

 
Figure 4.2.1. Converting CityJSON to Cesium 3D Tile using FME. 

 

 

 

2) Load CityGML directly into Cesium ion.  

CityGML is accepted by Cesium ion, so can be directly uploaded without conversion. 

When uploading the CityGML file to Cesium ion, there is the possibility to clamp the 

buildings to “Cesium World terrain” or “Mean Sea level”. This eliminates the need to 

manually adjust the z-coordinate of the buildings.  

 

3) Convert CityJSON to CityGML using FME  

Instead of converting a CityJSON file, into the Cesium tiles format, it can also be 

converted into CityGML format using FME (see Figure 4.2.2). The resulting CityGML 

file is then uploaded to Cesium ion, following the previously mentioned steps. This 

approach offers the advantage of enabling compatibility with the CityGML format for 

further processing and taking away the need to manually adjust the z-coordinate of 

CityJSON files converted to Cesium tiles. However, it requires using FME for 

conversion and involves additional steps for uploading to Cesium ion. 

Figure 4.2.2. Converting CityJSON to CityGML using FME. 
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4) Convert CityJSON to CityGML using citygml-tools (Citygml4j, n.d.) 

Alternatively, to using FME to convert CityJSON to CityGML format, citygml-tools can 

be used. Citygml-tools is the recommended tool to convert CityJSON to CityGML by 

the creators of the CityJSON format (Converting to/From CityGML Files, n.d.). To 

import the 3DBAG dataset into Unreal in CityGML format, utilize citygml-tools and the 

"from-cityjson" command in the command line to convert the dataset. Next, upload the 

resulting CityGML file to Cesium ion. In the Unreal Project, connect the Cesium ion 

account and load the desired tile from the Cesium ion assets. This method involves 

using command-line tools and the citygml-tools application, which adds additional 

steps for uploading to Cesium ion, which can add complexity to the workflow. 

 

5) Cesium OSM Tileset 

The Cesium OSM Tileset is a built-in feature of Cesium ion, which can easily be added 

to the Unreal project from the Cesium ion assets. This approach has the advantage of 

eliminating the need of uploading and importing datasets. However, the quality, or level 

of detail of the tileset might not meet the requirements of the user.  

 

6) Google Maps API.  

To integrate Google Maps data into your Unreal project, you will need to obtain a 

Google Maps API key. By pasting this API key into a "Blank 3D Tiles" tileset in Unreal, 

you can add the Google Maps API dataset of buildings in Unreal. This approach 

provides the advantage of seamlessly incorporating Google Maps data into your 

project. However, it is important to note that it requires a Google Maps API key and 

may introduce a dependency on external services. 

 

 

4.3 Extracting light values from Unreal  

To extract light values from Unreal, several methods were explored: 

 

1) HDR eye adaptation.  

To set up a reliable baseline for measuring luminance and illuminance values in the 

scene, the decision was made to use the built-in HDR eye adaptation tools (see Figure 

4.3.1). The main consideration for this decision was the inherent availability and 

integration of these tools within the engine, which ensured their accuracy and reliability. 

By using the built-in nature of these tools, they served as a solid reference point for 

comparing light values with Honeybee and evaluating results obtained from alternative 

methods. This approach guaranteed that in case other methods did not perform as 

desired, the benchmarking process would still be supported by exact and dependable 

measurements from the built-in tools. 

However, it is important to note that the built-in HDR eye adaptation tools have certain 

limitations. They do not work at runtime, require manual reading of light values, and 

lack the capability to export or save the measured data. Therefore, to address these 

limitations and ensure a comprehensive analysis of daylight values, it was imperative 

to explore more possibilities for extracting and calculating the desired information. 
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Figure 4.3.1 Measuring light values with HDR eye adaptation tool  

 

2) Accessing light information directly from build in functionality of Engine. 

To harness the functionality behind the HDR eye adaptation tool at runtime, and export 

the measured daylight values, efforts were undertaken to directly access the functions 

responsible for calculating lighting by accessing them in a C++ script. Functionality 

from the file “PostProcessVisualizeHDR.cpp”, containing HDR Eye Adaptation tool that 

measures luminance and illuminance values in development mode, and functionality 

from “IlluminanceMeter.cpp” were made “BlueprintCallable”, which should allow 

accessibility through blueprints, making them available at runtime.  

 

By making these functions available at runtime, the research aimed to use the power 

of the HDR eye adaptation tool and extract valuable lighting data in dynamic 

environments. This approach would supply the flexibility to capture and analyze 

luminance and illuminance values on the fly, facilitating real-time adjustments and 

enhancing the overall accuracy of our lighting analysis.  
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3) Calculating Luminance and Illuminance values using a custom C++ actor. 

As an alternative to utilizing the built-in functionality for accessing daylight information, 

a custom C++ actor was developed to calculate the luminance values at runtime. The 

actor passes the screen texture below the cursor as an input and calculates the 

luminance value based on the amount of light emitted from the surface. The 

implementation details of this custom actor are provided in pseudo-code in Algorithm 

1. 

 

To invoke the actor, a Blueprint (Appendix G) was created. The resulting luminance 

values were then normalized within a range of 0 to 256 and multiplied by the intensity 

of the light. Alternatively, they can be multiplied by 179, to follow the method of 

Radiance to calculate luminance. In the user interface, the resulting luminance values 

are shown in the top left corner of the screen (Figure 4.3.2). 
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Figure 4.3.2 Custom C++ actor to calculate luminance (value at top left part of 

the screen) 

 

4) False Colour Post-Processing Material.  

As an alternative to the previous methods, that numerically represent the amount of 

light on a surface, a false colour Post-Processing material was developed to visually 

represent the light distribution in a scene. By utilising the PostProcessInput0 parameter 

and a false colour texture, objects in the scene are assigned colours based on their 

Illuminance values, providing a visual representation of the light distribution. The 

implementation code is provided in Algorithm 2 and the resulting rendering style can 

be observed in Figure 4.3.3. 

 

Figure 4.3.3 False Colour Post-Processing Material 

 

To ensure an informative visual representation without distracting the user, the false 

colour material is only applied to the buildings. In Unreal Engine, the sky is rendered 

at a considerable distance from the scene, with a deep scene depth. By leveraging the 
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"depth" information, objects with a scene depth smaller than 10,000 are exclusively 

rendered, effectively excluding the sky from the false colour representation. Similarly, 

the terrain can be excluded from the rendering by adjusting its "custom depth" value. 

 

In addition to illuminance values, the same logic and a custom material node with C++ 

code were employed to represent the amount of luminance in false colour. The 

corresponding blueprints can be found in Appendix H.  

 

This post-processing material allows for the visual representation of both luminance 

and illuminance values in false colour. The colours assigned to specific values can be 

customized using the created custom material node, providing flexibility for 

representing the data in relative or absolute scales. 
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4.4 Comparison of different light analysis methods vs. Benchmark 

The inverse square law experiment was implemented in Unreal by creating a point light 

of 100 lux and measuring the Illuminance values on a white surface at r distance from 

the source. Besides that, there were no other objects or lights active in the scene, to 

have the results as accurate as possible.  To benchmarking the daylight propagation 

of Unreal in urban environments and facilitate a comparison with values from 

Honeybee, a 3D city model was used. The dataset (see Figure 4.4.1) that was used is 

tile 3312 from 3DBAG. This dataset comprises 3010 buildings located in Rotterdam, 

the Netherlands, with coordinates 51.896438174141096, 4.477799465615449, 

covering an approximate area of 1.75 m². The initial file size of the dataset before 

importing into the system was 19716 kB.  

Figure 4.4.1 Benchmarking dataset with 3010 buildings in Rotterdam 
 

4.4.1 3D city model & Benchmarking in Honeybee  
The implementation of the benchmarking phase encountered several challenges that 

required adjustments to the initial plan. The intention was to utilise the 3DBAG 

CityJSON tile for comparison; however, it posed compatibility issues with Rhino, as 

CityJSON format is not supported. Consequently, the OBJ version of the 3DBAG tile 

was used instead, which could be loaded in Rhino. However, it was not compatible 

with the Honeybee model due to specific geometry requirements. 

 

Attempts were made to fix the geometry of the mesh using methods such as mesh 

repair and mesh Boolean union. Unfortunately, these measures proved ineffective as 

the 3DBAG OBJ consists of multiple meshes, making it incompatible with Honeybee. 

The presence of height differences on the ground level further complicated the 

situation. It became evident that Honeybee required individual buildings, with adjacent 

rooms and closed volumes.  

 

To address these issues, the benchmarking dataset was simplified to two variants. 

Firstly, a manually constructed simplified version of a section of the original dataset 

was created, ensuring adjacent closed volumes (see Figure 4.4.2). Secondly, a single 

building was selected from the original dataset to generate a Honeybee model, while 

the remaining buildings served as context to cast shadows on the model without 

calculating their individual light values (see Figure 4.4.3). 
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Figure 4.4.2 simplified version of a section of the original dataset with adjacent closed 

volumes 
 

   Figure 4.4.3 Complete Benchmarking dataset in Rotterdam 
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These two simplified versions were then used as input for the Grasshopper script that 

calculates the point-in-time luminance & Illuminance values. The script is implemented 

in the following way:  

- An adjacent, closed volume is loaded as Building input.  

- The other geometry is loaded in the Context geometry input.  

- These 2 inputs are then combined to for the Honeybee Model 

- Weather data is loaded from a weather file from 

https://www.ladybug.tools/epwmap/.  In this research the weather file which is 

closest to the site of the benchmarking location was chosen, which was at 

Schiphol Airport Amsterdam.  

- The Honeybee Model is created with a resolution of 5 cm using the 

"grid_size" parameter. 

- To optimize calculation times, the Radiance Parameters, also known as 

"RadPar", are set to detail level 0 (low). 

- The Weather data and Honeybee Model are used as input for a point-in-time 

image that calculates the brightness values given a particular point in time. In 

the case of this research point-in-time is 21st of June at 12:00 

- These values are then used as input data for 2 HDR images. The first one is 

a FalseColor, which is mainly used for visual appearance. The AdjustHDR is 

used to extract the brightness values.  

 

A simplified diagram of the script can be seen in Figure 4.4.4. The full script is placed 

in Appendix C.  

 

   Figure 4.4.4 Simplified diagram of Grasshopper script 

 

4.4.2 Measurement Points  
To perform a benchmarking of the daylight values in Unreal and Honeybee, the same 

model of buildings that were used in Honeybee, was imported in Unreal. Once the 

Unreal model was set up, illuminance values were extracted from both the Unreal and 

Honeybee models. The values in Unreal were extracted using the build-in HDR Eye 

Adaptation tool at runtime (see Figure 4.3.1). In Honeybee the values were extracted 

by creating a HDR image and clicking on the location of the points to extract the 

illuminance values (see Figure 4.4.5). To ensure the reliability and accuracy of the 

measurements, several precautions were taken to minimize potential errors and 

information bias. 

 

https://www.ladybug.tools/epwmap/
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Figure 4.4.5 HDR image in Honeybee used to measure illuminance 

 

To address measurement errors, each measurement point was measured three times, 

taking the average of these measurements. This approach aimed to enhance the 

overall precision and reliability of the collected data, by reducing the impact of random 

errors and measurement errors. To prevent information bias, the illuminance values 

from the Honeybee model were intentionally not visible during the measurements. This 

approach was implemented to eliminate any unconscious bias that might arise from 

seeing the values in the other application. By concealing the Honeybee values, the 

measurement process remained objective and unbiased. 

 

To ensure comprehensive coverage of various scenarios of daylight propagation, the 

measurement points were strategically placed on different surfaces, taking into 

consideration areas exposed to direct sunlight as well as shaded regions. The specific 

placement of the points can be seen in Figure 4.4.6, 4.4.7, 4.4.8 and 4.4.9. This 

approach allowed for an examination of how light propagated in both illuminated and 

non-illuminated areas within the models. Furthermore, the choice of measurement 

points aimed to represent a balanced representation of varying environmental 

complexities. Points were chosen with various levels of obstruction caused by 

surrounding buildings, as well as varying degrees of diffraction and refraction effects. 

By incorporating these different scenarios, the study sought to display the overall ability 

of Unreal to accurately simulate and calculate daylight propagation in diverse urban 

environments. The hypothesis for the benchmarking is that in complex scenarios, the 

disparities in daylight values between Unreal and Honeybee will be greater compared 

to simpler scenarios. 
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Figure 4.4.6 Measurement points 1 to 39 

 

 
Figure 4.4.7 Measurement points 40 to 48 
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Figure 4.4.8 Measurement points 48 to 58 

 

 
Figure 4.4.9 Measurement points 59 to 135 
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4.4.3 Optimizing sun & sky model in Unreal  
Unreal offers 2 different sun & sky models, that of Unreal, and that of Cesium ion. 

During the benchmarking process, the choice of sun models was an important 

consideration. To ensure accuracy and alignment with the Honeybee model, both 

options were compared against the position of the sun in Honeybee and the resulting 

values. 

Upon first observations, it became evident that the standard light values of both 

the Unreal SunSky model, and the Cesium SunSky model, were both too high, and not 

automatically adjusted based on date, time, and position. This meant that the values 

of direct sunlight and sky light had to be adjusted manually. The direct sunlight 

component has the physical unit of lux, but the skylight models do not have a physical 

unit, but rather a relative one.  

 Initial experiments with the direct sunlight, showed that values of lit areas in 

Unreal generally aligned with those from Honeybee. However, areas without direct 

sunlight showed significantly lower values. To address this discrepancy, adjustments 

were made to the Skylight intensity and Directional light values. 

To achieve a more realistic representation, the Skylight intensity was 

increased. This adjustment enhanced the contribution of indirect lighting from the sky, 

compensating for the lower values in areas without direct sunlight. Additionally, the 

Directional light intensity was decreased.  

Finding the right balance between values in simpler scenarios with minimal 

reflection and those with extensive reflection, as well as scenarios where there was no 

direct light and those with direct light, was crucial to have come to a realistic 

propagation of daylight under various scenarios in Unreal. This involved an iterative 

process of fine-tuning the Skylight and Directional light to accurately capture the 

propagation of daylight and reflection in different environmental conditions. 

Finally, after evaluating various scenarios and light sources, it was found that the 

optimal balance was achieved using the Unreal SunSky with the skylight set to 15 and 

the sunlight to 25000 lux. Through these adjustments and considerations, the Unreal 

model achieved a closer alignment with the Honeybee model, ensuring a more exact 

representation of lighting conditions and enhancing the overall realism of the 

simulation. The fact that the skylight in Unreal does not have a unit, makes it difficult 

to compare the values of the light settings from Unreal with Honeybee. In Honeybee 

the light values of direct sunlight were 44800 lux and indirect light 1200 lux.  

 

 

4.5 Interactive User Functionality 

To make the platform interactive and usable for design rather than solely light analysis, 

functionality was added that allows users to explore the urban design, move around 

freely, and interact with objects and elements within the scene. 

 

 

Building Blocks: To enhance the ease and efficiency of design iterations, the platform 

offers a library of predefined building blocks. These standardised components could 

be readily integrated into the design, enabling rapid prototyping and exploration of 

various architectural configurations. Users can select various objects, including a 

house, cube & appartement building, which they can drag into world space, and place 

on the terrain (see Figure 4.5.1). The implementation can be seen in appendix A.   
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Figure 4.5.1 Building Blocks  

 

 

Scale, Rotate, and Translate: To facilitate design modifications, the platform 

incorporated intuitive controls for scaling, rotating, and translating objects (see Figure 

4.5.2). This was done by implementing C++ code based on the RuntimeTransformer 

GitHub repository (Xyahh, n.d.). 

The application is available as a plugin that works for UE4, but not for UE5. As this 

thesis is implemented in UE5, the code was slightly adjusted and implemented as 

normal code, instead of a plugin. This decision was made as it was observed that 

plugins often become incompatible with newer versions of the Unreal application, 

whereas C++ code is easily transferred from a project in one version of the Engine to 

another version.  
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Figure 4.5.2 Scale, Rotate, and Translate geometry at runtime 

 

 

 

 

Cesium Tiles at runtime: Leveraging the capabilities of Cesium ion, the application 

integrated dynamic placement of Cesium Tiles at runtime, enabling users to import 

geometry created in other applications (see Figure 4.5.3). To initiate the import 

process, the user simply provides the URL of a Cesium ion Tile, which is then loaded 

into the application. This allows users to import designs and tilesets from external 

sources. The implementation can be seen in appendix E.   



 

63 

 

Figure 4.5.3 Import Cesium ion tiles at runtime  

 

 

Change Render at Runtime: The platform offers the flexibility to change the rendering 

settings at runtime. Users can dynamically adjust lighting conditions, shadows, and 

other rendering parameters to simulate different times of day or environmental 

conditions. This is done by when a user presses the button lit or dark logo on the 

bottom left of the screen (see Figure 4.5.4), the Post-Processing material is either 

switched on, or off. The blueprint implementation can be seen in appendix B.  
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Figure 4.5.4 Changing render at runtime  

 

 

Change sun position: In addition to the user interaction features, the implemented 

platform includes the capability to update the sun position, date, and time. This 

functionality allowed users to simulate different lighting conditions and evaluate the 

impact of varying solar positions throughout the day and across different seasons. The 

users can drag the different sliders to adjust the date and time (see Figure 4.5.5). The 

implementation can be seen in appendix F.   
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Figure 4.5.5 Changing date & time at runtime  
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4.6 User Interface 

The UI is developed using the Unreal Engine's built-in UMG (Unreal Motion 

Graphics) system. This system enables the creation of user interfaces that can be 

used in different systems including Windows, Mac, Linux and VR. 

The implemented UI, as can be seen in Figure 4.6 and depicted in Blueprints in 

Appendix I, includes various components. The menu located on the right side of the 

screen displays various buttons, including a dynamic text field. This text field 

facilitates the loading of designs through Cesium ion. Users can import designs from 

Cesium ion by pasting a link into a text field.  Other sliders are available to adjust the 

day, time, and month. Additionally, icons of a cube, row house, and apartment 

building, for instance, are situated in the lower-right corner, allowing users to drag 

and drop these objects into the virtual "world". Furthermore, it enables users to add, 

scale, rotate, and move buildings or geometry within the environment, and change 

the render settings. 

The UI aims to provide users with a seamless and intuitive experience within the 

application, enabling efficient navigation and interaction with its diverse 

functionalities. 

 

Figure 4.6 UI at runtime 
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5 Results & Discussion 

The results section of this thesis presents the findings and outcomes of the research 

conducted to explore the potential of using the Unreal Engine for real-time daylight 

analysis. The purpose of this section is to provide a comprehensive overview and 

analysis of the data collected during the study. 

 

5.1 Inverse square law 

The inverse square law experiment conducted in Unreal aimed to examine if the light 

propagation in Unreal is realistic. The theoretical values were calculated based on the 

expected behaviour of light intensity according to the inverse square law. These were 

then compared with the results from measurements in the Unreal application. The 

obtained measurements are in Table 5.1. The obtained results from Unreal closely 

aligned with the expected trend, demonstrating a decrease in light intensity as the 

distance from the source increased. The measured values in Unreal were in line with 

the theoretical values, indicating the accuracy of the simulation in replicating the 

physical properties of light. Minor deviations between the Unreal values and the 

theoretical values can be attributed to various factors, including the inherent limitations 

of the simulation and slight measurement inaccuracies.  

These results demonstrate promising findings for the further benchmarking of daylight 

analysis. The close alignment between the measured values in Unreal and the 

theoretical values indicates the engine's capability to accurately replicate real-world 

lighting behaviours. It is important to reiterate that this experiment was solely done to 

get an initial understanding of Unreal's ability to accurately simulate light propagation. 

Although promising for further benchmarking, these results do not imply Unreal’s ability 

to realistically propagate light in (complex) urban environments.  

 

 

 Source 1m 2m 3m 4m 

Theoretical 
Value 

100 100 25 11,11 6,25 

Unreal Values 100 99,021 
 

24,762 10,394 5,894 

% difference  n/a 0,98 0,99 6,44 5,70 

Table 5.1 Inverse square law experiment 
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5.2 Importing 3D city models  

As previously mentioned in Chapter 3.1, Cesium 3D Tiles are the OGC community 

standard for streaming 3D tiles (Getz, 2021). However, the process of uploading 3D 

city models to the Unreal application using Cesium ion revealed several notable 

findings. Out of the 5 methods to import or add 3D city models to the Unreal application, 

only the 3rd method of converting CityJSON to CityGML using citygml-tools (Citygml4j, 

n.d.), failed. The citygml-tools format for converting CityJSON to CityGML was not 

compatible with Cesium ion. 

 

During the process of importing different formats of 3D city models into the Unreal 

application with Cesium ion, notable discrepancies were observed in the z-coordinate 

values of the placed buildings across different formats. Cesium ion accepts CityGML 

format for importing 3D city models, providing a viable option for integrating geospatial 

data into the Unreal environment. It is crucial to note that Cesium World terrain, being 

a custom Geodic terrain offered by Cesium, can potentially affect the placement and 

alignment of the imported models. 

Various models and ways of importing yielded various results related to z-coordinate 

of the buildings. CityGML buildings, when imported, can be clamped to either the 

Cesium World terrain, or the ellipsoid. However, CityJSON files that are converted to 

CityGML using FME, although clamped to the same terrain as files that originally came 

in the CityGML format, are displayed at a different z-coordinate, usually above the 

terrain. Cesium ion does not provide any specifics of the format of CityGML that is 

accepted or recommended, but not every format of CityGML is accepted or clamped 

to the terrain correctly.   

When uploading a Cesium tileset to Cesium ion, it does not provide the option to clamp 

it to a terrain, instead its CRS is used, which clamps it to the ellipsoid. This causes 

CityJSON files that are converted to Cesium tiles using FME, to be displayed below 

the Cesium World terrain.  

To overcome these limitations, an alternative approach was explored, which involved 

uploading the city models as Cesium tiles using FME and adjusting their z-coordinate 

manually. This method allowed for the georeferencing of models on the Ellipsoid, 

providing greater flexibility in positioning and alignment. However, it should be noted 

that if the desired outcome is to incorporate Cesium World Terrain, manual adjustment 

of the model's z-coordinate is necessary to ensure proper alignment. 

   Figure 5.2.1 Imported CityJSON model with adjusted height in Unreal 
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In addition to importing 3D city models, Unreal also provides the option of utilising a 

readily available Cesium OSM building dataset. This dataset is based on 

OpenStreetMap and allows for the visualisation of OpenStreetMap buildings in Unreal 

in 3D. The buildings in this tileset are clamped to the Cesium World terrain. While this 

eliminates the need to upload data onto Cesium ion, it should be acknowledged that, 

as can be seen comparing Figure 5.2.1 & 5.2.2, the level of detail in the buildings is 

significantly lower compared to the CityJSON or CityGML datasets that were imported. 

Figure 5.2.2 Cesium OSM tileset in Unreal 

 

 

Another alternative for importing and integrating 3D city models into Unreal is to utilise 

the Google Maps API tileset. This tileset by far offers the highest level of detail and 

realisticity (see Figure 5.2.3). However, it is important to consider the impact on 

application performance. Loading the tileset requires approximately 30 seconds, which 

can be a noticeable delay compared to other 3D City models. Additionally, the 

movement within the application may become slightly less smooth due to the increased 

processing and rendering requirements of the highly detailed tileset. It however does 

produce extremely realistic looking results that also considers trees and street furniture 

(see Figure 5.2.4). 
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Figure 5.2.3 Google Maps API tile in Unreal 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.2.4 Google Maps API in Unreal with false colour rendering 
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While Cesium ion is widely recognized as an Open Geospatial Consortium (OGC) 

community standard for tiling massive heterogeneous 3D content (Getz, 2021), the 

findings of this study shed light on the unanticipated complexity and interoperability 

challenges associated with importing 3D city models into the Unreal application. These 

findings highlight the importance of considering factors such as format compatibility, 

terrain clamping, and manual adjustments of z-coordinates to achieve precise 

positioning of the imported models. By gaining a comprehensive understanding of the 

strengths and limitations of different import methods, users can make well-informed 

decisions when integrating real-world city data into the Unreal environment. 

 

 

5.3 Extracting light values from Unreal  

Accessing and retrieving light values from Unreal Engine presented a mixed outcome 

during this research. Although the retrieval of light values was accomplished, the 

implementation of an export or save functionality was not included in this study. Initially, 

accessing light information directly from the built-in functionality of the Engine proved 

to be more challenging than anticipated. While Unreal Engine is an open-source game 

engine, not all functions are readily accessible (Build Configurations Reference, n.d.). 

The engine's design limits the ease of retrieving certain aspects of light information 

and intensity, as they are not explicitly made accessible. For instance, the HDR Eye 

Adaptation tool in Unreal Engine cannot be recreated or invoked within a project 

directly. To utilise such functionality, one must develop a custom engine and define 

the desired features. Several attempts were made to implement a custom engine with 

this functionality, but they were ultimately unsuccessful and prone to crashing after 

extended build times. 

 

However, alternative methods for retrieving light values yielded more promising 

results. Unreal Engine offered multiple approaches to extract and represent light 

values within the application. The HDR Eye Adaptation tool, despite its inability to 

function at runtime, provided valuable luminance and illuminance values. On the other 

hand, calculating luminance values using a custom C++ actor proved to be effective, 

while retrieving illuminance values through this method proved to be more challenging 

due to its complex calculations and many parameters.   

 

In addition, modifying the rendering of the 3D city model using a custom false-colour 

post-processing material proved successful. This approach allowed for the 

visualisation of light values and their relative distribution. By creating a custom material 

node, it was possible to specify the colour range based on luminance or illuminance 

values, resulting in visually informative renderings. 

 

While the custom engine approach faced obstacles, the exploration of other 

possibilities for extracting light values proved fruitful. Nonetheless it is important to note 

the potential of creating a custom engine for achieving complete customizability, 

although further investigation and experimentation with alternative methods are 

recommended before pursuing this path. 

 

Overall, the combination of different techniques showcased the potential of Unreal 

Engine as a platform for accessing and analysing light values, with the HDR Eye 

adaptation, custom C++ actor and post-processing material offering viable solutions 
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for calculating and visualising luminance and illuminance values. Ultimately the HDR 

eye-adaptation tool was used to extract lighting values for benchmarking, as it was 

easier to navigate through the environment in development mode, than using the 

custom C++ actor at runtime. The post-processing material was primarily designed for 

visual representation rather than precise extraction of light values, making it less 

suitable for benchmarking.  

 

 

5.4 Benchmarking results  

This section presents the benchmarking results of Honeybee and Unreal, for daylight 

analysis with a 3D city model. The objective was to evaluate the performance and 

effectiveness of these tools in handling complex geometry and large-scale analysis 

tasks. 

Honeybee encountered challenges with the complex geometries of 3D city models. 

Both CityJSON and CityGML formats are not supported by Rhino. As a workaround, 

the OBJ version of the 3DBAG tile was used, which could be loaded into Rhino. 

However, compatibility issues arose when trying to integrate this geometry with 

Honeybee due to specific requirements regarding closed and adjacent volumes. 

 

Honeybee proved to be incredibly sensitive to complex geometries. Honeybee Rooms, 

which form the Honeybee Model, require geometry to be adjacent and form closed 

volumes. 3D city models, however, consist of numerous non-closed and non-adjacent 

volumes. Additionally, the presence of height differences between the ground floor and 

surrounding structures posed difficulties in creating a Honeybee model.  

Moreover, the computational time required by Honeybee scripts was substantial. To 

run the full script with a 3D City model took on average 93 minutes. Adding new 

geometry to the calculation, also took 93 minutes, as it required the entire script to run 

from the start. This prolonged computation time resulted in delays and inefficiencies 

during the analysis process, particularly when dealing with large and complex 

geometries. 

Considering these limitations and complexities, it became evident that Honeybee may 

not be the most suitable tool for handling complex geometric scenarios and large-scale 

daylight analysis tasks. The challenges related to geometry requirements, slow 

computational speed, and limitations in handling complex geometries hindered the 

workflow productivity and efficiency.  

 

In contrast to Honeybee, the Unreal tool demonstrated efficiency in handling complex 

geometry and conducting real-time daylight analysis. The Unreal application exhibited 

no significant issues related to computational time or geometry complexity. The tool 

seamlessly handled the complex geometries present in the 3D city model, regardless 

of their complexity or scale. The computational time for various operations, including 

runtime for new angle calculations, complete script and adding new geometry, was 

consistently low, with an average of 0.6 milliseconds. This real-time processing allowed 

for efficient analysis iterations and real-time adjustments to the model. 

 

The benchmarking results between Unreal and the Radiance Honeybee method 

revealed valuable insights into the accuracy and reliability of the Unreal tool for daylight 

analysis (see Table 5.4). Comparing the illuminance values obtained from both 

methods, the Unreal application demonstrated a Mean Absolute Error of 9.78% when 

compared to Radiance Honeybee. This suggests the reliability and accuracy of Unreal 

for daylight analysis tasks. 
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The benchmarking study highlighted the potential of Unreal as a daylight analysis tool. 

Unreal's real-time capabilities, efficient computation, and seamless handling of 

complex geometries make it highly effective and efficient for such scenarios. As 

depicted in Figure 5.4.2, 5.4.3 and 5.4.4, the average differences between the values 

of Unreal Engine and Honeybee are relatively similar. Figure 5.4.4 shows the 

normalised difference between the measurements. The Root Mean Square Error 

(RMSE) absolute value was found to be 3576.63, indicating the overall magnitude of 

the differences between Unreal and Honeybee measurements. Furthermore, the 

relative RMSE was determined to be 13.23%, standing for the percentage of the RMSE 

relative to the average measured values. 

The Mean Bias Error (MBE) absolute value was calculated to be -5.24 lux, showing a 

slight bias towards lower values in Unreal compared to Honeybee. The relative MBE 

was determined to be -0.02%, suggesting a negligible relative bias between the two 

methods. 

It is worth noting that all these values fall below the prediction error of commonly used 

daylight simulation models when validated against real-life measurements, as depicted 

in Figure 5.4.1. These findings further reinforce the accuracy and reliability of Unreal 

Engine simulating daylight information. 

As Honeybee, and the models in Figure 5.4.1, are models and not measurements done 

in the physical world, it is impossible to determine which model is closer to reality. For 

a more in-depth comparison, conducting real-life measurements and comparing those 

values with Unreal and Honeybee outputs would provide deeper insights into their 

performance and alignment with actual daylight conditions. 

 

 

 Runtime new angle Runtime Complete 
script  

Runtime adding new 
geometry 

Illuminance values 

Unreal  0.6 msec 0.6 msec 0.6 msec 9.78% difference 
with Radiance 

Radiance Honeybee 645sec 93 min 93 min - 

Table 5.4 Benchmarking results 

 

 

   
Figure 5.4.1 Major validation works related to the development of CBDM (Brembilla & 

Mardaljevic, 2019).  
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Figure 5.4.2 Measured Values in Honeybee and Unreal 

 

 

 
Figure 5.4.3 Histogram of differences between Honeybee & Unreal 
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Figure 5.4.4 Relative differences between Honeybee & Unreal 

 

To analyze the distribution and variability of the measurements, a box plot 

representation (Figure 5.4.5) was used. The majority of the measurements fell within 

the expected range, as indicated by the box representing the interquartile range (IQR). 

To identify potential outliers, the 1.5IQR rule was applied, classifying data points below 

Q1 - 1.5 * IQR or above Q3 + 1.5 * IQR as outliers. Based on this rule, points 12, 25, 

41, 43, 66, 80, 96, 110, 112, 134, and 135 were identified as outliers. These outliers 

significantly deviated from the other data points, suggesting possible irregularities or 

measurement errors. 
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Figure 5.4.5 Boxplot of differences between Honeybee & Unreal 

 

 

Further analysis of the benchmarking results reveals the following notable 

observations and conclusions: 

1) Honeybee exhibited more consistent values, with fewer variations among 

nearby measurements. On the other hand, Unreal displayed more granular 

and subtle differences, likely due to its higher resolution for daylight 

calculations. 

2) Unlit surfaces in Unreal generally had lower illuminance values, indicating that 

the indirect light component was slightly too low. 

3) In contrast, lit surfaces in Unreal showed significant positive differences 

compared to Honeybee, suggesting variations likely caused by slightly 

different sun positions in Unreal and Honeybee. 

4) Point 25, which had complex surrounding geometries, was expected to be an 

outlier due to potential refraction issues. The fact that this point is an outlier is 

not surprising. 

5) However, the presence of outliers in other points, such as 12, 41, 43, 66, 80, 

96, 110, 112, 134, and 135, representing simple scenarios with minimal 

interference or refraction, was highly unexpected.  During the benchmarking 

stage, it was observed that the built-in Unreal SunSky and Cesium SunSky 

displayed different sun positions with the same input settings of date and 

time. This discrepancy in sun position between Unreal and Honeybee may 

have caused these outliers in the data. The most reasonable explanation for 

these outliers is that the sun position in Unreal and Honeybee is not exactly 
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the same, despite using the same date, time, and hour. Figure 5.4.6 

showcases some of these outlier points, where surfaces that appeared 

shaded in Honeybee were fully exposed to the sun in Unreal, with 

unobstructed sunlight from surrounding buildings. This discrepancy in sun 

position between the two simulations could account for the disparities 

observed in the measurements. 

6) The optimal balance in Unreal was achieved by using the Unreal SunSky with 

the skylight set to 15 and the sunlight to 25000 lux. In Honeybee, the light 

values for direct sunlight were 44800 lux and for indirect light were 1200 lux. 

Comparing the light settings between Unreal and Honeybee is challenging 

because the skylight in Unreal does not have a unit, making it difficult to 

directly compare values. Further research is necessary to establish a 

relationship between the daylight units in Unreal and Honeybee. 

 

 

Figure 5.4.6 Outlier points of lit areas in Unreal that are shadowed in Honeybee 

 

 

 

These outliers emphasize the need for further investigation and understanding of the 

underlying factors that influenced these deviating measurements. logical initial step 

would be to explore the apparent disparities in sun position between Unreal and 

Honeybee, as well as establish a relationship between the daylight units in Unreal and 

Honeybee. Examining these aspects, will give valuable insights into the underlying 

causes of the variations and refine and optimize the daylight simulation process in 

Unreal. 
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5.5 Interactive User Functionality & Recommended workflow  

Providing users with design capabilities is essential for the practical usability of the 

application to assess daylight conditions during different design stages. The focus of 

this thesis is to assess whether the Unreal environment offers a suitable platform for 

daylight analysis in architectural and urban development. This underlines the 

importance of user interaction and design possibilities within the platform. 

 

User interaction in the application encompasses various functionalities and 

considerations. One key aspect is the ability to measure illuminance and luminance 

and visualize the distribution of light in real-time. Users can import Cesium ion tilesets, 

add building blocks, edit geometry, and adjust the sun position dynamically at runtime. 

 

While building blocks and geometry editing are suitable for initial massing studies, they 

may lack the desired granularity in later design stages that require more refined and 

detailed designs. Comparatively, the Honeybee environment in Rhino offers enhanced 

design capabilities and ease of use for creating refined designs. Consequently, 

architects and urban developers are recommended to design using their preferred 

design tools such as Rhino or Revit and import the designs into Unreal using Cesium 

ion. Alternatively, users familiar with Unreal or seeking additional functionality may 

choose to use the application in development mode. The built-in functionality available 

in development mode provides more extensive options for measuring light values and 

designing compared to the implemented functionality at runtime. 

 

The application is currently not recommended for detailed daylight analysis requiring 

the extraction and export of light values for further processing. Adding this functionality 

proved to be too complex within the timeframe of this thesis.  Currently, for such use 

cases, it is recommended to use Honeybee or alternative tools that support the 

required functionality.  

In collaborative urban development or architectural teams, it might be advantageous 

to involve a GIS specialist who can prepare the desired area of interest by selecting 

the appropriate 3D city model and potentially creating pre-determined building blocks 

for various types of structures, such as family houses, apartment blocks, and office 

buildings. The application can then be used by architects and urban developers to 

explore and test different design scenarios in collaborative design sessions within this 

predefined environment. 

 

Additionally, it is important to note that the application did not include user research 

and feedback, which would have supplied valuable insights for validating and further 

developing the user interaction and design capabilities of the Unreal environment. User 

research is essential for understanding the needs, preferences, and challenges faced 

by architects and urban developers when using the application. By incorporating user 

feedback, it would be possible to refine the functionalities, address usability issues, 

and enhance the overall user experience.  

 

Overall, the user interaction and recommended workflow within the Unreal 

environment for daylight analysis in architectural and urban development play a crucial 

role in its practical applicability. By providing real-time measurement and visualization 

of illuminance and luminance, along with the flexibility to import designs from preferred 

tools and collaborate within a predefined environment, the Unreal application offers 

valuable capabilities for early design stages and collaborative sessions. The real-time 

visualization of the light is arguably the most valuable aspect of the application during 
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the design phase of urban and architectural development. However, for more refined 

and detailed designs, architects and urban developers are advised to leverage the 

enhanced design capabilities of tools like Rhino or Revit in combination with Cesium 

ion for importing designs into Unreal. Additionally, while the application may not 

currently support detailed daylight analysis with export functionality, alternative tools 

such as Honeybee can fulfil those requirements. By understanding the strengths and 

limitations of the Unreal environment and integrating it into the design workflow 

appropriately, users can effectively use the application for informed decision-making 

in architectural and urban development projects. 
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6 Conclusions and future research  

In this final section, the research provides a concise summary of the conclusions, 

limitations, future work, and reflection. It highlights the potential of the Unreal Engine 

as a real-time daylight analysis tool in architectural and urban development, while 

acknowledging the encountered limitations.  

 

6.1 Conclusions  

This research aimed to explore the potential of the Unreal Engine as a platform for 

real-time daylight analysis in architectural and urban development. By investigating the 

effective integration of 3D city models into an Unreal application, the study has 

demonstrated the viability and versatility of utilising the Unreal Engine for daylight 

analysis for architectural and urban development. The conclusions section will begin 

by answering the sub-questions before answering the main research question.  

1. How can 3D city models be effectively integrated into an Unreal application 

The results discussed in Chapter 5.2 has shown that integrating 3D city models into 

the Unreal application is possible through various methods. Importing CityGML or 

CityJSON datasets using Cesium ion proved to be a viable option, although challenges 

related to differences in z-coordinates and terrain clamping need to be addressed. The 

use of Cesium OSM buildings and Google Maps API tilesets offers alternatives with 

varying levels of detail and performance considerations. Ultimately the user will have 

to decide the 3D city model based on their needs, but the application offers a variety 

of viable options.  

 

2. How can the light values extracted from Unreal be compared and validated 

against industry-standard light models such as Radiance? 

The process of accessing and retrieving light values from Unreal Engine posed 

challenges (see Chapter 5.3), but various methods were employed to overcome them. 

Utilizing the HDR Eye Adaptation tool, custom C++ actors, and post-processing 

materials enabled the extraction and visualization of light values. However, the 

implementation of an export or save functionality was realized in this thesis. To ensure 

accuracy and reliability, further refinement and experimentation are recommended. 

Despite the obstacles encountered, the combination of these techniques demonstrated 

the potential of Unreal Engine for accessing and analyzing daylight values. The HDR 

Eye Adaptation tool proved useful in extracting daylight values, while the post-

processing materials served as a powerful visualization tool to depict the distribution 

of light. 

 

3. To what extent do the light values simulated with Unreal Engine accurately 

represent real-world lighting conditions? 

The research findings indicate that the lighting values extracted from Unreal align 

closely with the expected trends based on the inverse square law (Chapter 5.1). The 

comparison and validation of daylight propagation in urban environments extracted 

from Unreal compared against industry-standard light model Radiance, have 

highlighted both the strengths and limitations of the Unreal Engine in achieving 

accurate daylight simulations in urban environments. In the benchmarking experiments 

conducted in urban environments, an average deviation of 9.78% was observed (see 

Chapter 5.4). However, the results did have some more extreme outliers. While the 
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extracted values have shown promise, further refinement and validation are necessary 

to ensure the realism and reliability of lighting representations in Unreal, under different 

circumstances and in different locations. The benchmarking demonstrates the engine's 

capability to replicate real-world lighting behaviours, although minor deviations and 

limitations exist. 

 

4. In what ways can urban or architectural developers use an Unreal 

application to test and develop different design scenarios? 

Using Unreal to test and develop different design scenarios and the resulting impact 

on daylight, offers designers both advantages and disadvantages. The real-time nature 

of the engine enables instant feedback and visualisation of design choices, allowing 

for iterative exploration and informed decision-making. This iterative approach 

enhances the design process by facilitating rapid prototyping, spatial analysis, and 

visualisation of daylight conditions, thereby empowering designers to create more 

sustainable and efficient built environments. However, it is important to recognize the 

limitations of the application, particularly regarding the level of detail required for 

refined and detailed designs. Chapter 5.5 makes recommendations for architects and 

urban developers. architects and urban developers are recommended to use their 

preferred design tools, such as Rhino or Revit, and import their designs into Unreal 

using Cesium ion for enhanced design capabilities. For detailed daylight analysis with 

export functionality, it is recommended to use Honeybee or alternatives, as this 

functionality is not integrated in the application yet. By understanding the strengths and 

limitations of the Unreal environment and integrating it strategically into the design 

workflow, users can effectively incorporate the application in their workflow for 

informed decision-making in architectural and urban development projects. 

To what extent is the Unreal Engine suitable to scale-up physically accurate 

daylight simulation tools? 

 

Regarding the main question of the extent to which the Unreal Engine is suitable for 

scaling up physically accurate daylight simulation tools, it can be concluded that while 

the engine showcases significant potential, further advancements are necessary. The 

Unreal Engine provides a robust foundation for real-time visualisation and analysis, but 

additional research and development are needed to refine its accuracy, expand its 

capabilities, and address the limitations identified throughout this study. This includes 

improving the comparability and validation of lighting values, enhancing the realism of 

lighting simulations and refining user functionality. The Unreal Engine offers a 

promising platform for real-time daylight analysis in architectural and urban 

development. Most notably, the real-time aspect of Unreal compared to the slow and 

cumbersome processes in Honeybee, along with the ease of importing large datasets, 

highlights the potential of the Unreal Engine in architectural and urban development. 

While challenges and opportunities for improvement exist, the findings of this study 

contribute to the growing body of knowledge surrounding real-time daylight simulations 

and pave the way for further advancements in this field.  
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6.2 Limitations 

The implementation of the research methodology encountered several limitations, 

which are essential to acknowledge for a comprehensive understanding of the study's 

scope and potential implications. Firstly, the comparison of light values between 

Honeybee and Unreal posed challenges due to the difficulty in extracting and aligning 

the values. This necessitated manual selection of points for comparison, which limited 

the amount of sample points for the benchmarking and could introduce information 

bias and potential inaccuracies. 

 

Furthermore, the functionality offered by the Unreal application in comparison to the 

custom-built application may not fully cater to the diverse needs of all users. The 

disparity in available features and tools raises the possibility that certain users may 

require additional functionalities beyond what the current implementation offers. 

 

Another limitation is the absence of user testing. The application's usability and user 

experience have not been systematically evaluated through user feedback and testing 

sessions. This leaves room for uncertainties regarding the user-friendliness and 

effectiveness of the tool in real-world scenarios. 

 

Moreover, the validation of illuminance values was limited to a specific time and 

location, disregarding the potential variations in solar settings across different times 

and locations. The reliance on a single instance for validation restricts the 

generalizability of the findings and highlights the need for further validation across 

various scenarios. 

 

Additionally, it is important to note that Honeybee provides a broader range of 

functionalities beyond point-in-time illuminance analysis, such as sun-hour analysis 

and annual radiance simulations. While the current implementation shows promise, 

these extended capabilities have not been fully explored or tested in this study. 

Although this research showed promising results in daylight measurements, and the 

other functionality of Honeybee in essence is also based on raytracing, in which Unreal 

showed great efficiency, they will have to be implemented or built, so pose risks. 

Nonetheless, by recognizing these considerations and proactively addressing them, it 

is possible to enhance the overall usability and effectiveness of the Unreal application 

for a wider range of user requirements. 

 

By acknowledging these limitations, it becomes evident that further research and 

refinement are necessary to address these constraints and enhance the overall 

robustness and applicability of the developed methodology and tool. 
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6.3 Future work  

The findings and limitations of this study open several avenues for future research and 

development in the field of real-time daylight analysis using the Unreal Engine. Building upon 

the insights gained from this research, the following areas hold potential for further 

investigation: 

 

1. Enhanced comparison and extraction methods: Future work should focus on 

developing more robust and automated methods for comparing light values between 

Honeybee and Unreal. This could involve exploring advanced algorithms or data 

processing techniques to streamline the extraction process and reduce manual 

intervention. 

2. User testing and feedback: Conducting thorough user testing sessions is crucial to 

validate the usability and effectiveness of the developed application. User feedback 

and observations can provide valuable insights for improving the user interface, 

functionality, and overall user experience. Iterative testing and refinement cycles 

should be employed to ensure that the tool meets the needs of its intended users. 

3. Validation across diverse scenarios: To enhance the reliability and generalizability 

of the findings, further validation of illuminance values should be performed across 

different times and locations. Incorporating a broader range of solar settings and 

considering varying geographical conditions would contribute to a more 

comprehensive assessment of the tool's accuracy and reliability. 

4. Extended functionality and integration: Expanding the functionality of the Unreal 

application to include additional daylight analysis features, such as sun-hour analysis 

and annual radiance simulations, would provide users with a more comprehensive 

toolkit for evaluating daylight conditions. Moreover, exploring integration possibilities 

with other software platforms, such as GIS or BIM tools, could further enhance the 

application's capabilities and its integration into existing design workflows. 

5. Connection to weather data in Unreal:  Integrating weather data into Unreal to adjust 

the SunSky settings accordingly based on date and time would provide a more realistic 

representation of outdoor lighting conditions. This integration would further enhance 

the accuracy and automation of the daylight analysis within the application. 

6. Standardized conversion for 3DBAG: There are potential areas for future 

development and improvement of import 3DBAG. The focus area is addressing the 

challenges associated with differences in z-coordinates and terrain clamping when 

importing CityJSON datasets using Cesium ion. To streamline the integration process, 

it is recommended to explore the development of standardized conversion methods or 

improve the compatibility between the formats. 

7. Sun position: Given the observed disparities in sun position between Unreal and 

Honeybee, it is recommended to conduct further investigations to accurately align the 

sun positions. Addressing this misalignment will contribute to more reliable and 

accurate daylight analysis in the platforms, enabling more accurate comparisons and 

facilitating better decision-making in architectural and urban design processes. 

8. Integrating functionality of existing geospatial urban development tools:  

Integrating the functionality of tools such as ArcGIS Urban (Urban Planning & Design-

Smart City Planning | ArcGIS Urban, n.d.) and 3D Cityplanner (Strategis Groep bv, 

n.d.), or incorporating the real-time daylight analysis capabilities of LuminaCity into 

these applications, presents a valuable opportunity for expanding functionality. ArcGIS 

Urban and 3D Cityplanner offer a wide range of features, including 3D modeling, 

spatial analysis, and visualization. By merging their strengths, we can harness their 

data management and analysis capabilities while overcoming limitations in daylight 

analysis. This integration allows users to conduct urban development analysis, 

considering factors such as land use, transportation, infrastructure, and real-time 
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daylight conditions. Ultimately, aiding in informed decision-making and supports 

scientifical, sustainable urban planning. 
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6.4 Reflection 

Throughout the course of this thesis, I have learned a great deal about daylight 

analysis and the Unreal Engine. Although I had some experience in daylight analysis 

during my Bachelor of Architecture and the Built Environment, as well as experience 

in C++ during my Master of Geomatics, I quickly found myself on a steep learning 

curve. This required a lot of dedication and perseverance, as well as strong project 

and time management skills to stay on track and ensure I was meeting my goals. 

The educational foundation provided by the Geomatics field equipped me with the 

necessary knowledge and abilities to tackle these challenges effectively, both in 

terms of planning and programming. 

 

One of the biggest challenges I faced during this project was exporting the light 

values from the Unreal Engine. This complex and time-consuming process required 

manual comparison of light values rather than automated techniques, resulting in 

lower accuracy and reproducibility. Despite the difficulties, however, I remained 

committed to the project and focused on finding innovative solutions to overcome 

any obstacles that arose. 

 

Despite the challenges, I found the experience of developing a real-time daylight 

analysis tool using the Unreal Engine to be incredibly exciting and rewarding. The 

ability to create highly realistic virtual environments that can be explored in real time 

opens new possibilities for the architectural and urban development industries. By 

providing a tool that is both easy to use and highly accurate, it can help professionals 

in these fields make more informed decisions about their designs and improve the 

overall quality of the built environment. 

 

Furthermore, I believe that the bigger goal of this thesis, which was to prove the 

concept of a geospatial urban development platform with built-in geospatial analysis, 

has tremendous potential to transform the way we approach architecture and urban 

development. By incorporating geospatial analysis into the design process, we can 

ensure that new developments are aligned with the natural features of the 

environment and consider factors such as sun exposure and shadow analysis. This 

can ultimately lead to more sustainable and environmentally friendly development 

practices, which are critical for our planet's future. 

 

Looking back on this experience, I can see how much I have grown both personally 

and professionally. I have developed a deeper understanding of the importance of 

time management, project management, and the value of developing a minimum 

viable product (MVP). In previous projects, I frequently found myself getting 

sidetracked by the multitude of intriguing elements that captured my attention, 

diverting my focus from the primary objective. If I were to undertake a similar project 

in the future, I would immediately refine my scope and focus on specific features, as 

well as allocate more time to learning the Unreal Engine and other tools that would 

be required for the project. 

 

In conclusion, this thesis has been an incredible learning experience for me, and I 

am incredibly grateful for the opportunity to have worked on such an exciting and 

innovative project with my supervisors. I believe that the real-time daylight analysis 

tool that I have developed has the potential to revolutionise the way we approach 

architectural and urban development, and I am excited to see where this technology 

will take us in the future. 
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Appendix A Adding Geometry  
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Appendix B change Render at Runtime 
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Appendix C Grasshopper Script 
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Appendix D Benchmark Results 

Point Honeybee Unreal Difference 

1 19027 19164 0,72 

2 22589 22521 -0,3 

3 32838 33639 2,44 

4 16641 16556 -0,51 

5 16922 15786 -6,71 

6 19135 19605 2,46 

7 24344 24677 1,37 

8 16711 17900 7,12 

9 24165 24509 1,42 

10 26296 27750 5,53 

11 46611 46142 -1,01 

12 30286 20041 -33,83 

13 45752 48251 5,46 

14 46038 48393 5,12 

15 28156 27308 -3,01 

16 22876 26674 16,6 

17 28156 27481 -2,4 

18 32578 28398 -12,83 

19 44606 48099 7,83 

20 24612 27432 11,46 

21 17842 17618 -1,26 

22 15861 17535 10,55 

23 12293 13764 11,97 

24 22017 22145 0,58 

25 29588 37851 27,93 

26 23019 23262 1,06 

27 37482 42839 14,29 

28 42906 52108 21,45 

29 35567 35472 -0,27 

30 47184 47308 0,26 

31 29857 29996 0,47 

32 22017 27478 24,8 

33 21301 21129 -0,81 

34 32434 32696 0,81 

35 6859 8107 18,2 

36 32434 33726 3,98 

37 35137 41512 18,14 

38 32846 36580 11,37 

39 26295 27007 2,71 

40 47000 40092 -14,7 

41 24003 31898 32,89 

42 46900 41002 -12,58 

43 24648 33543 36,09 
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44 42900 37234 -13,21 

45 26921 19058 -29,21 

46 46500 41012 -11,8 

47 43100 41512 -3,68 

48 25758 24259 -5,82 

49 35638 31711 -11,02 

50 21157 18052 -14,68 

51 36498 36219 -0,76 

52 36677 36272 -1,1 

53 37357 36301 -2,83 

54 19869 18723 -5,77 

55 20048 18935 -5,55 

56 46325 41037 -11,42 

57 17422 17590 0,96 

58 46665 40933 -12,28 

59 20083 18290 -8,93 

60 19707 18049 -8,41 

61 20209 18743 -7,25 

62 18830 18106 -3,84 

63 15832 17240 8,89 

64 18562 17817 -4,01 

65 38144 41275 8,21 

66 29768 40433 35,83 

67 27387 31708 15,78 

68 20960 17658 -15,75 

69 18436 18508 0,39 

70 20710 17939 -13,38 

71 17814 17896 0,46 

72 30412 31956 5,08 

73 29767 30635 2,92 

74 14069 15797 12,28 

75 33868 34763 2,64 

76 18311 17917 -2,15 

77 15454 15578 0,8 

78 46450 46019 -0,93 

79 17185 20293 18,09 

80 13691 20800 51,92 

81 17688 17587 -0,57 

82 20585 20751 0,81 

83 37142 38046 2,43 

84 39147 41782 6,73 

85 20083 18197 -9,39 

86 14762 15078 2,14 

87 20960 18296 -12,71 

88 20960 17402 -16,98 

89 15390 15370 -0,13 
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90 35621 35653 0,09 

91 20960 17482 -16,59 

92 33365 35688 6,96 

93 20835 18328 -12,03 

94 34618 36720 6,07 

95 20960 17765 -15,24 

96 14762 18744 26,97 

97 21587 18399 -14,77 

98 22139 18840 -14,9 

99 20835 18239 -12,46 

100 23484 18286 -22,13 

101 18311 17734 -3,15 

102 19332 18274 -5,47 

103 18687 17387 -6,96 

104 18186 18246 0,33 

105 19332 17649 -8,71 

106 20209 18357 -9,16 

107 20960 17708 -15,52 

108 46199 41363 -10,47 

109 44696 42122 -5,76 

110 22607 31381 38,81 

111 19582 19438 -0,74 

112 22607 32631 44,34 

113 20960 18837 -10,13 

114 44445 42327 -4,77 

115 19833 18213 -8,17 

116 19833 18352 -7,47 

117 45698 42593 -6,79 

118 16808 17583 4,61 

119 44946 44256 -1,54 

120 42172 42292 0,28 

121 24111 22936 -4,87 

122 37894 41181 8,67 

123 35119 36064 2,69 

124 29893 29813 -0,27 

125 31665 31053 -1,93 

126 27387 24144 -11,84 

127 22607 22146 -2,04 

128 22464 18602 -17,19 

129 20585 18789 -8,72 

130 20960 18836 -10,13 

131 21462 18741 -12,68 

132 22464 19520 -13,11 

133 24612 22645 -7,99 

134 22858 30779 34,65 

135 22213 30693 38,18 
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  Average 9,789407407 
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Appendix E Loading Cesium ion tiles at 

Runtime 
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Appendix F Change Sun position, date & time 
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Appendix G Reading Luminance value using 

custom C++ actor 
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Appendix H False Colour post processing 
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Appendix I User Interface 
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