
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

MSc thesis in Geomatics for the Built Environment 

 

 

Automated rooftop solar panel detection  

through Convolutional Neural Networks 

 

 
 

Simon Pena Pereira 

2023 





MSc thesis in Geomatics

Automated rooftop solar panel detection
through Convolutional Neural Networks

Simon Pena Pereira

January 2023

A thesis submitted to the Delft University of Technology in
partial fulfillment of the requirements for the degree of Master

of Science in Geomatics



Simon Pena Pereira: Automated rooftop solar panel detection through Convolutional Neural Net-
works (2023)
cb This work is licensed under a Creative Commons Attribution 4.0 International License.
To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/.

The work in this thesis was carried out in the:

Geo-Database Management Center
Delft University of Technology

Supervisors: Dr. Azarakhsh Rafiee
Dr. Stef Lhermitte

Co-reader: Dr. Roderik Lindenbergh

http://creativecommons.org/licenses/by/4.0/


Abstract

Transforming the global energy sector from fossil-fuel based to renewable energy sources
is key to limiting global warming and efficiently achieving climate neutrality. The de-
centralized nature of the renewable energy system allows private households to install
photovoltaic (PV) systems on their rooftops. In this context, planning an efficient grid ex-
pansion is becoming increasingly difficult. Therefore, deep learning (DL) techniques, such as
convolutional neural networks (CNNs), can support collecting meta data about PV systems
from aerial or satellite images, as research in the field of remote sensing has shown. How-
ever, previous research lacks the consideration of ground truth data-specific characteristics
of PV panels.

This thesis aims to implement a semantic segmentation model that detects PV systems in
aerial imagery to emphasize the relevance of area-specific characteristics for the training data
and convolutional neural network (CNN) hyperparameters. A CNN with U-Net architecture
is employed to analyze the impacts of land use types, rooftop colors, near-infrared (NIR) data,
and lower-resolution images on the detection rate of PV panels in aerial imagery. The results
indicate that a U-Net is suitable for classifying PV panels in high-resolution aerial images (10
cm) by reaching F1-scores of up to 91.75% while demonstrating the importance of adapting
the training data to area-specific ground truth data in terms of urban and architectural
properties.
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1. Introduction

Nearly three-quarters of human-caused greenhouse gas emissions that drive climate change
stem from the energy sector, making climate change primarily an energy problem (Climate-
Watch, 2022). Therefore, the energy sector is increasingly shifting towards more renewable
and sustainable energy sources in line with the Paris Agreement commitments to limit global
warming to an average of well below 2°C compared to the pre-industrial level (UNFCCC,
2015). Transitioning to renewable energy technologies is key to a clean and secure energy
system on the path to climate neutrality (UN, 2022). In this transition, solar energy is the
fastest-growing and most competitive source of renewable energy in the European Union
(EC, 2022).

Popular technologies to convert sunlight into energy are PV systems, concentrated solar
power systems, and solar thermal systems. Both, PV systems and concentrated solar power
systems convert solar energy into electricity. While concentrated solar power systems are
large-scale systems using mirrors that concentrate sunlight towards a receiver generating
heat to power steam turbines, PV systems rely on solar cells using the photovoltaic effect.
These cells compose PV panels that can be installed in large-scale solar power plants on the
ground or as floating PV systems on lakes but also in form of decentralized PV systems on
rooftops. In contrast, solar thermal systems mainly generate heat to produce hot water for
residential buildings (EC, 2022).

The energy sector’s growth is expected to continue in the upcoming decades mainly driven
by PV systems which are the most accessible sources of renewable energy for private house-
holds (EC, 2022). Due to this liberalization of the energy sector, national agencies, such as
the Federal Network Agency of Germany, demand a comprehensive and reliable data basis
for planning grid expansions (MaStR, 2023). Depending on the country, well to poorly-
documented registries of active PV systems exist, which are a hurdle for decision makers
involved in the development of an efficient energy transition.

An alternative method for populating the registries with up-to-date information about in-
stalled PV systems is the use of deep learning algorithms that learn how to detect objects in
satellite or aerial imagery. As indicated by Rausch et al. (2020), deep learning algorithms for
image classification, such as CNNs, can be useful for validating, updating, and completing
PV system registries.

1.1. Motivation

The comprehensive work by De Jong et al. (2020) demonstrates the ability to classify solar
panels with CNNs. To optimize the effectiveness as well as the efficiency of these algorithms,
research has mainly focused on the technical configurations of these networks. However,
the performance of these algorithms is calculated on the basis of the network’s prediction
in comparison to the ground truth data. Therefore, it is also crucial to understand the
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impact of diverse ground truth data on the performance of the network. The importance to
analyze the ground truth of PV panels and their surrounding with regard to differences in
land use or architectural characteristics becomes evident when statistics about PV panels are
created on a national or international scale. This hurdle became evident when De Jong et al.
(2020) conducted validations across different geographical areas. As regions or countries can
differ in building densities and sizes, rooftop colors and shapes, and sizes of PV systems,
it is of great relevance to know the impact of different aspects on the classification process.
Moreover, Da Costa et al. (2021) demands a shift from model-driven to data-driven research
to detect PV panels. By comparing multiple CNN models, it became evident that their results
differ insignificantly, which highlighted the importance of the reliable and comprehensive
data sets of annotated PV panels. Knowing the ground truth characteristics helps to collect
appropriate ground truth data and to adapt the algorithm in such a way that it can compute
reasonable predictions for the object of interest.

1.2. Objective and scope

This thesis aims to emphasize the importance of considering variations in ground truth
data when utilizing DL networks for the classification of PV panels in diverse urban envi-
ronments. To meet this objective, it requires a data pipeline that includes high-resolution
aerial imagery, area-specific ground truth data of PV panels, an appropriate algorithm for
detecting PV panels, and different methods for assessing the algorithm’s performance.

Pointing out specific causes that counteract or reinforce an effective detection of PV panels
is hardly possible when too many urban properties are included in the ground truth data.
To narrow down the variation of urban characteristics, the ground truth data collection is
limited to local areas within the city of Cologne in Germany. In this way, impacts on the
detection process can be isolated efficiently. Furthermore, additional and modified data in
form of NIR image channels and lower-resolution images are incorporated into the research
to allow conclusions concerning additional spectral information and different spatial reso-
lutions.

The DL algorithm employed in this study is a CNN with a U-Net architecture developed
by Ronneberger et al. (2015). The U-Net architecture is a straightforward CNN that has
demonstrated promising results for similar applications in previous research (Castello et al.,
2019; Da Costa et al., 2021). It computes semantic segmentations which are classified images
in which each pixel is associated with a target class or background information. Minor
modifications in the U-Net are required to obtain semantic segmentation with the same
dimensions as the input image and label. The input consists of manually generated ground
truth labels representing the target class of PV panels and aerial images at a resolution of 10
cm per pixel to compute pixel-based classifications of PV panels. Overall, the methodologies
employed in this thesis are compiled into a semi-automated pipeline, meaning that manual
working steps are required in the pre-and post-processing stages to execute the pipeline
from end to end. Further networks are not considered since a variation of CNNs does not
contribute to the previously defined objectives.
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1.3. Research questions

Following the objectives and the scope outlined in Section 1.2, this subchapter defines one
main research question and four subquestions that meet both conditions. The main question
covers the core of this thesis which is the application of the U-Net architecture to classify PV
panels on rooftops. It is defined as follows:

To what extent is a CNN with U-Net architecture suitable for detecting PV panels on
rooftops in aerial images?

The following four subquestions analyze the main question from different perspective:

• What is the impact of different land use types on the detection of PV panels?

• What is the effect of adding near-infrared data to aerial images on the detection of PV
panels?

• How is the correlation between roof and panel color affecting the detection of PV
panels?

• How sensitive is the model towards lower resolutions with regard to the panel size?

1.4. Thesis outline

The thesis document is structured into 6 chapters. Following the introduction, the theoretical
background knowledge is presented in Chapter 2 that is needed to understand the imple-
mentation of the U-Net as well as related research outcomes. In Chapter 3, an overview
of the employed methodology is given to outline each working step of collecting data, pre-
processing data, and analyzing the results. Based on this, the technical implementation of
the methodology is explained in detail in Chapter 4. Furthermore, it defines the study area
and the data used for the implementation. Moreover, the technical modifications of the em-
ployed U-Net are described. Following this, the results of the model are summarized and
analyzed in Chapter 5. In the final chapter (Chapter 6), the results are summarized and
discussed by answering the research questions. Additionally, the contribution of this thesis
to current research is described as well as suggestions for potential future work.

3





2. Theoretical background and related
work

This chapter gives an introduction to deep learning and explains the mathematical back-
ground of the neural network implemented for this thesis. Additionally, it provides an
overview of research projects dealing with DL algorithms to detect PV panels on aerial or
satellite images.

2.1. Deep learning

DL is often considered a sub-field of machine learning (ML) which originates in the field of
artificial intelligence (AI). DL models are composed of multiple layers that process nonlin-
ear information to learn representations of data at multiple levels of abstraction (Deng and
Yu, 2014; Lecun et al., 2015). Due to increased chip processing abilities, e.g., with parallel
computing on graphical processing units (GPUs), the increase of available training data, and
the advances of ML research, the DL-field has become increasingly popular (Deng and Yu,
2014). Especially with regard to real-world applications, such as image and human speech
recognition, DL methods were able to outperform the limited capabilities of conventional ML
methods (Lecun et al., 2015).
The wide range of DL techniques can be categorized into three main classes, namely deep
networks (DNs) for unsupervised learning, DNs for supervised learning, and hybrid DNs.
The key aspect of unsupervised learning is the absence of information about the target class
labels in the learning process. The algorithm aims to capture high-order correlation to ana-
lyze patterns in data. In contrast, supervised learning algorithms are capable of providing
discriminative power for pattern recognition due to always available information on target
class labels. The combination of both categories leads to hybrid DNs that can make use of
supervised DNs assisted by the outcome of unsupervised DNs, or vice versa where the dis-
criminative power helps to estimate the parameters of unsupervised DNs (Deng and Yu,
2014).
The DN used in this thesis is a CNN which is based on artificial neural networks (ANNs) for
supervised learning.

2.2. Artificial Neural Network (ANN)

ANNs are computational processing systems inspired by biological nervous systems (O’Shea
and Nash, 2015). Similar to the human brain which is composed of interconnected neurons,
an artificial neural network (ANN) consists of simple processing elements, also referred to
as nodes or units (O’Shea and Nash, 2015; Bishop, 1998). According to the all-or-none law,
neurons fire an electrical impulse (also referred to as action potential) along the axon to the
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synapses of the next neuron. The magnitude of the impulse’s effect depends on the neuron’s
strength, which is in terms of ANNs analogous to the parameter weight or wi of a unit. At
each unit, the weight is multiplied with an incoming signal xi at input i. If the weighted
sum of inputs from other units exceeds a certain threshold, the unit fires a signal to the next
unit. The firing threshold corresponds to the constant weight w0 which is called bias (Bishop,
1998). It corresponds to y-intercept of a linear equation (see Equation 2.1).

a =
d

∑
i=1

wixi + w0, (2.1)

The output of a single processing unit z is given from processing a in a non-linear activation
function g() (see Equation 2.2) which is described in more detail in Section 2.2.3.

z = g(a). (2.2)

One of the most common classes for a feedforward ANN is the multilayer perceptron (MLP)
which processes a multidimensional input vector through a set of hidden units, a so-called
hidden layer, in which the weighted sums of multiple units determine the final output (Fig-
ure 2.1). These decisions made in the hidden layer are associated with the process of learn-
ing. By stacking multiple hidden layers upon each other, a certain depth is given to the
network which is commonly called deep learning or deep neural network (DNN) (O’Shea
and Nash, 2015).

Figure 2.1.: Feedforward neural network (O’Shea and Nash, 2015)

A popular learning method that is complementary to the learning process of feedforward
multilayer perceptrons (MLPs) is backpropagation (Lecun et al., 2015). Its objective is the
adjustment of weights at all units to minimize the measured difference between the pre-
dicted output of the network and the desired output which corresponds to the target class
labels the algorithm is fed with. By doing that, the network can self-organize its weights
to construct appropriate internal representations for a specific task (Rumelhart et al., 1986).
The key aspect is the computation of the gradient (or derivative) of an objective function
(described in more detail in Section 2.2.4) with respect to all weights in the network. This
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is achieved by a backward pass through the network from the output layer at the top to the
input layer at the bottom (Lecun et al., 2015). This procedure minimizes the total error of
the network’s performance to reach a closer distance between the predicted output and the
label class target. The cycle of both a forward pass and a backward pass of data through the
network is called an epoch. For an appropriate adjustment of the weights, multiple epochs
can be executed consecutively.

In this thesis, an ANN class called CNN is applied for semantic segmentation of multispectral
orthophotos (described in Section 2.3). To run an ANN or CNN several decisions need to be
made by the user on which functions to incorporate into the network.

2.2.1. Input data split

The concept of a data split lies in constructing a network that generates representative and
unbiased predictions of data. Evaluating the network’s performance within and after the
training process helps the user to choose the appropriate network. Furthermore, it avoids
the selection of a network that is overfitted to the training data, making it unsuitable for
predictions on an independent testing set. Therefore, splitting the data set in training, val-
idation, and testing data set is a common approach to assess the network with validation
metrics (described in Section 2.6).

Typically, most data is assigned to the training data set that propagates through the network.
An important approach to evaluate the network’s performance in the training process is the
use of an independent validation data set that was not seen by the network before. By doing
that, the training progress can be observed based on an evaluation after each epoch. Lastly,
the network’s overall performance can be assessed on the prediction of the testing data set.
Further, splitting the data with random sampling is the preferred approach to form subsets
(Foody, 2017).

2.2.2. Weight and bias initialization

Training an ANN for the first time requires the initialization of weights at each unit so they
can then be modified through backpropagation as well as the initialization of a constant bias.
A common method for CNNs is a random sampling from the Gaussian distribution, e.g., with
a mean value of 0, a fixed standard deviation of 0.01, and a bias of 0 (Zeiler and Fergus, 2013;
Simonyan and Zisserman, 2014). However, this approach slows down the learning process
and may cause a poorer local optimum (He et al., 2015; Xu and Wang, 2022).

An improved method called Xavier initialization was presented by Glorot and Bengio (2010)
that consists of a uniform distribution U[-a,a] with a mean of 0 and a variance of 1

n where
n is the number of input features at each unit (Xu and Wang, 2022). Similar to the Xavier
initialization, He et al. (2015) proposed a method with a mean value of 0 and a variance of
2
n that is specifically designed for the use of the ReLU activation function.
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2.2.3. Activation function

As indicated by Equation 2.2, an ANN requires an activation function at each unit to process
a (see Equation 2.1) of one unit to the next unit in the network. Three typical activation
functions for ANNs are presented in Figure 2.2 below.
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Figure 2.2.: (a) sigmoid (b) tanh (c) ReLU

An often implemented activation function for ANNs was the tanh function which lost in
popularity due to ReLU that allows faster learning processes in deep ANNs (Lecun et al., 2015).
Furthermore, ReLU is easier to optimize and it demonstrates greater abilities in generalization
(Zeiler and Fergus, 2013).

The output of ReLU is either 0 or the input itself x (see Equation 2.3). If the input is smaller
or equal to 0 then the activation function does not f ire or pass the output to the next unit.
In order to move the threshold of the activation function, a bias unequal to 0 can shift the
activation function in both directions along the x-axis. Consequently, the value of the bias
corresponds to the opposite of the activation function’s threshold.

ReLU(x) = max(0, x) (2.3)

Commonly, either sigmoid or softmax functions are implemented in the output layer. While
softmax functions are typically used for multiclass classification problems, the sigmoid σ(x)
function is used for binary classifications to provide a probability classification between 0
and 1 (Equation 2.4) (Sharma et al., 2020).

σ(x) =
1

1 + e−x (2.4)

2.2.4. Loss and cost function

As described in Section 2.2, a crucial part of the learning process is the ability to train pa-
rameters through backpropagation. To define an appropriate adjustment of weights and
biases, the optimizer requires knowledge about the training progress at the end of each
feedforward propagation. Therefore, the loss function calculates the difference between the
predicted value ŷ and the target class label y to provide feedback to the optimizer (see fol-
lowing Section 2.2.5) that adjusts the weights. In the literature, the term cost function is often
used interchangeably with the term loss function, however, some authors are distinguishing
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between the loss function assessing the difference of ŷ and y and the cost function averaging
over all training examples (Bottou, 1991).

A simple and often used loss function in neural networks is the mean squared error (MSE).
Giving its name, it calculates the mean of the squares of the errors between predicted and
observed values (see Equation 2.5).

MSE =
1
n

n

∑
i=1

(yi − ŷi)
2 (2.5)

A widely used loss function for binary classification is the BCE (see Equation 2.6). For
multi-class classifications with more than one target class, the categorical cross-entropy loss
function can be applied.

BCE =
1
n

n

∑
i=1

(yi log(ŷi) + (1 − yi) log(1 − ŷi)) (2.6)

Built on the cross entropy loss function, Lin et al. (2017) proposed a dynamically scaled al-
ternative called FL (see Equation 2.7). It is specifically designed to tackle extreme imbalances
between the target class label and the background class. A so-called f ocusing parameter γ
is implemented that yields the best results at a value of 2 according to the experiments of
Lin et al. (2017).

FL(pi) = −(1 − ŷi)γ log(ŷi) (2.7)

2.2.5. Optimizer

The most common method to optimize ANNs is the implementation of a gradient descent
(GD) algorithm. It is based on a convex function (see Figure 2.3) and aims to minimize
the loss function by determining the appropriate parameters. This is done in the opposite
direction of the gradient of the loss function. The minimum loss for appropriate weight
values is defined by the lowest point of the convex function, called the point of convergence.
The step size taken to reach the convergence is the learning rate. Usually, the learning rate
is defined as very small, although defining it too small causes a slow convergence while
a large learning rate results in a loss function fluctuating around the point of convergence
(Ruder, 2016).
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Figure 2.3.: Comparison of small and large learning rates approaching the convergence (IBM,
2020)

There are three ways to incorporate the gradient descent in the training process, namely by
the batch gradient descent (BGD) (or vanilla GD), the stochastic gradient descent (SGD), and
the mini-batch GD (Ruder, 2016). The BGD computes the gradient of the loss function for
the entire data set so that the parameters are only adjusted once. In contrast to that, SGD
updates the parameters for one training example at a time. The combination of BGD and SGD
yields the method of mini-batch GD, where training examples are bundled up in batches for
which the parameters are adjusted respectively.

An efficient and robust algorithm for gradient-based optimization is the adaptive moment
estimation (Adam) proposed by Kingma and Ba (2014). It is used as a basis for many other
optimizers and has proven to outperform others. Further approaches to optimize the SGD
with Adam are regularization methods such as batch normalization and the early stopping
described in Section 2.5.1 and Section 2.5.2 (Ruder, 2016).

2.3. Convolutional Neural Network

The roots of CNNs lie in the necognitron introduced by Fukushima (1980), building the foun-
dation for one of the most popular publications about CNNs by Lecun et al. (1998) which
deals with the automated recognition of hand-written digits.

A CNN is a deep network (DN) with a hierarchical structure to extract high-level semantic
information from images by recognizing patterns (Alam et al., 2021). It is superior to a tradi-
tional ANN which struggles with the complexity of image data since it considers each pixel
as an input neuron with its own weight and bias. The high number of trainable parameters
causes a complexity that is both highly limited to computational power as well as prone to
overfit to training data. Overfitting is described as the reduced ability to generalize abstract
information since the model is learning too close to the training data set but is unable to do
prediction of an unseen test data set. The reduced number of trainable parameters allows

10



2.3. Convolutional Neural Network

the computation of much more complex input data which makes it specifically suitable for
processing images (O’Shea and Nash, 2015).

In general, a CNN model consists of a series of stages that are composed of up to three
different layers, namely a convolutional layer with elementwise activation functions (see
Section 2.2.3), a pooling layer, and fully connected layers with implemented activation func-
tions for classification (see Figure 2.4) (O’Shea and Nash, 2015; Lecun et al., 2015). The batch
normalization is an optional layer for regularization purposes that is described in more de-
tail in Section 2.5.1.

Figure 2.4.: Typical structure of a convolutional block (Wang et al., 2019)

2.3.1. Convolutional layer

In a convolutional layer, a filter matrix (or kernel) consisting of weights is sliding across an
input image to compute the dot product with the pixel values of local patches (see Figure
2.5). Each patch is denoted as a receptive field of an unit in the output layer. The output
matrix is a feature map (or activation map) that serves as an input to the following convo-
lutional layer (O’Shea and Nash, 2015). Lecun et al. (1998) describe the local connections
between feature maps and the corresponding weight sharing at each unit as a key aspect of
CNNs. The set of weights is the same for all units of a feature map, so it can detect the same
pattern in all parts of an image. In order to detect different types of patterns, each feature
map is provided with a different set of filter weights (Lecun et al., 2015).

Figure 2.5.: Convolutional operation (Reynolds, 2019)
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Each convolutional operation shrinks the size of the feature map (see Figure 2.5). Therefore,
a spatial padding operation called zero-padding is applied to preserve the same spatial
resolution. This is done by adding zero values to the feature map’s border. This method
only works with a convolutional stride of 1 (Simonyan and Zisserman, 2014).

The stride is defined as the distance between the centers of two filters that belong to neigh-
boring units in the feature map (Krizhevsky et al., 2017). In other words, it determines the
number of pixels the filter moves along an input image.

2.3.2. Pooling layer

Another key aspect of CNNs are pooling operations that aim to merge similar semantic
information of feature maps into a new feature map. Typically, a max-pooling layer is
incorporated at the end of each convolutional block as shown in Figure 2.4. It computes the
maximum of local patches of units which are outputted in a new feature map (see Figure 2.6).
As in convolutional operations, the feature maps shrink in dimensions. However, this is
intended for the max-pooling operation (Lecun et al., 2015). It furthermore reduces the
number of trainable parameters and therefore the complexity of the model. Commonly, a
kernel size of 2x2 with a stride of 2 is applied (O’Shea and Nash, 2015).

Figure 2.6.: Max-pooling operation (Reynolds, 2019)

2.3.3. Fully connected layer

The last layer before the output layer is the fully connected layer, which connects all units
with the units of the next layer. It inherits an activation function for computing the classifi-
cation (O’Shea and Nash, 2015).

2.4. U-Net architecture

The network architecture that is going to be used in this thesis was presented by Ronneberger
et al. (2015) and is called U − Net since it is shaped like the letter U.

The U-Net is based on the architecture of the so-called fully convolutional network. It is
modified in such a way that it allows training with few input images. Instead of using fully
connected layers it relies on the valid part of each convolution which denotes the output
of an unpadded (see padding in Section 2.3.1) convolution. As illustrated in Figure 2.7, it
consists of a contracting path (or encoder) on the left side, where the input is downsampled
by max-pooling layers, and an expansive path (or decoder) on the right side, where upsam-
pling operations are carried out by up-convolutional layers. Overall, it is composed of four
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convolutional blocks on each side, in addition to the convolutional block at the bottom of
the U-Net which receives downsampled input and outputs uplsampled layers (Ronneberger
et al., 2015).

Figure 2.7.: U-Net architecture consisting of a contracting and an expansive path with mul-
tiple convolutional and pooling operations applied on multi-channel feature maps as blue
boxes (Ronneberger et al., 2015)

In more detail, each convolutional block in the contracting path is composed of two consecu-
tive 3x3 convolutional layers, followed by a ReLU activation function, and a 2x2 max-pooling
layer with a stride of 2. The convolutional layers in the first block contain 64 filter layers
outputting a multi-channel feature map of 64 feature layers. Due to a convolutional stride
of 1, the input layer size decreases by 1 row or column of pixels at each side of the input
layer. Accordingly, both the x- and y-sizes of a layer shrink by the value of 2 after each
convolutional operation. With each max-pooling layer (with a stride of 2) the dimensions of
the layers in the next convolutional block are halved while the number of feature maps is
doubled. Localizing the feature representation computed in the contracting path requires an
increase in resolution which is achieved with four consecutive up-convolutional operations
(or transposed convolutions) in the expansive path. The higher resolutions of feature maps
are reconstructed by cropping and copying the feature maps from the respective level of the
contracting path. The convolutional layers in the expansive path follow the same structure
as in the encoding process, except for an additional final layer at the end of the U-Net that
is applying a 1x1 convolution to map the classification.

13



2. Theoretical background and related work

2.5. Regularization

In general, regularization methods intend to prevent the model from overfitting. In the
following, two methods are presented that can regularize the training process of a CNN.

2.5.1. Batch normalization

Applying SGD optimization (as described in Section 2.2.5) is an effective way of training a
model. Nevertheless, it requires a careful selection of the model’s hyper-parameters due
to its effect on the input data that amplifies with the increasing depth of the network. In
addition, the data distribution can change depending on the variation of input values. The
resulting change of unit distributions is referred to as internal covariate shi f t. To address
this issue, Ioffe and Szegedy (2015) proposed a mechanism called batch normalization that
can be implemented in a CNN structure to make the model more robust and to increase the
computational speed of training by allowing higher learning rates. The idea behind batch
normalization is to limit the distribution shifts of output values at each hidden layer. This is
achieved by fixing the means and variances of feature maps which cause a better gradient
flow through the CNN. In the context of batches, this is implemented by constraining the
output values of each feature map of a batch to have the same mean and variance. Also, this
allows the user to be less careful about parameter initialization.

2.5.2. Early stopping

Early stopping is a regularization method to stop the optimization process of the GD at an
appropriate point in the training process to avoid overfitting and underfitting (see Figure 2.8)
(Zhang and Yu, 2005). This point in time is reached when there is no further improvement
in the validation loss observed, therefore, a stagnation of the loss function over a certain
number of epochs. When the stagnation is exceeded, the validation loss increases again
since the model learned too close to the training data set and it is not able to classify the
validation data set. This method helps the user approximate an ideal number of epochs and
saves computational time.

Figure 2.8.: Training and validation loss with increasing number of epochs; Early stopping
at sweet point (IBM, 2021)
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2.6. Model evaluation

2.6.1. Accuracy

The most common metric is accuracy which is defined by the number of correctly predicted
images divided by the total number of predictions. Considering the context of this thesis,
correctly predicted images include true positives (TP), in which PV panels are correctly
identified as well as true negatives (TN) (absence of PV panels is correctly identified).

Accuracy =
TP + TN

TP + TN + FP + FN
(2.8)

2.6.2. Precision

Another metric called precision calculates the proportion of true positives to the total num-
ber of actual PV panels, including TP and not identified PV panels or false positives (FP).

Precision =
TP

TP + FP
(2.9)

2.6.3. Recall

To express the proportion of correctly identified PV panels to all predictions of PV panels,
the recall metric will be applied. It is calculated by the number of TP divided by the number
of TP and FN.

Recall =
TP

TP + FN
(2.10)

2.6.4. F1-score

Further, there is the F1-score which expresses the harmonic average of precision and recall.
It computes the overlap between ground truth data and prediction and divides it by the total
number of pixels.

F1 =
2 ∗ Precision ∗ Recall

Precision + Recall
=

2 ∗ TP
2 ∗ TP + FP + FN

(2.11)
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2.6.5. Intersection over Union (IoU) - Jaccard index

The Jaccard index or intersection over union (IoU) is a coefficient to measure the similarity
between two samples. It is calculated by dividing the intersection between the label and
prediction by the union of both samples. Its formula is similar to the F1-score, which is
why both validation metrics are positively correlated. Both output scores range between 0
and 1. For the IoU, 0 indicates no overlap between ground truth data and prediction, while
a score of 1 represents a total overlap. In comparison, the IoU penalizes under- and over-
segmentation more than the F1-score, which is based on the greater impact of FN and FP
(Müller et al., 2022).

Jaccard(U, V) =
|U ∩ V|
|U ∪ V| =

TP
TP + FP + FN

(2.12)

2.7. Deep Learning in remote sensing

Due to the increase in computing power in recent years, more and more deep neural net-
works were presented to solve object detection tasks in computer vision, and thereafter in
the remote sensing domain. Building on that knowledge, many CNN architectures have
been implemented in remote sensing analysis of the urban environment, for instance, for
the purpose of detecting roads, buildings, or vehicles (Shi et al., 2017; Ševo and Avramović,
2016; Vakalopoulou et al., 2015; Chen et al., 2014). Due to the massive scale-up of renew-
able energy, new applications for remote sensing techniques emerged in the solar energy
domain, such as the evaluation of the PV potentials of building rooftops (Chen et al., 2022),
the detection of damaged PV panels (Pierdicca et al., 2018), or the localization of PV panels
(De Jong et al., 2020; Da Costa et al., 2021; Rausch et al., 2020; Castello et al., 2019; Malof
et al., 2017).

In the following two sections, relevant literature concerning the detection of PV panels in
aerial images with CNNs is presented. First, Section 2.7.1 outlines a comprehensive project
that conducted image classification and object detection methods to identify PV panels in
aerial images. Section Section 2.7.2 introduces the results of three research projects that
carried out semantic segmentation, which is of great relevance to this thesis. Lastly, a
brief overview of PV panel types is given as PV panels are the objects of interest (see Sec-
tion 2.7.3).

2.7.1. Convolutional Neural Networks for Image Classification and Object
Detection

This section introduces the DeepSolaris project that was carried out by four national statisti-
cal offices from the Netherlands, Germany, and Belgium, together with the Open Universiteit
Nederland (De Jong et al., 2020). It is especially interesting as a reference to this thesis since it
includes the German state of North Rhine-Westphalia (NRW) as a study area which partially
covers the area of interest (AOI) for this thesis and therefore uses similar data sets.

Prior to the DeepSolaris publication, Curier et al. (2018) published a corresponding article
describing the data, its pre-processing steps as well as the annotation process for creating
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label data in more detail. These are crucial information for creating a suitable input data set
for this thesis.

Besides the state of NRW, the algorithms in the DeepSolaris project were also trained on
the province of Limburg in the Netherlands. The project aimed to create a new way of
producing official statistics by retrieving information from aerial images with deep learning
algorithms. The main objective was to map the locations of PV panels at a regional to a local
level and, thus provide a better understanding of the energy transition in the context of PV
panel installations. To achieve this goal, two approaches were tested for the state of NRW.
Firstly, the approach of image classification, in which the algorithm predicts whether the
image contains a PV panel or not. This approach demands a different method of annotating
the images because it does not determine the precise PV panel location within the image
but the image itself. They applied both models, InceptionResNetV2, as well as VGG16, with
pre-trained weights from ImageNet, which turned out to be beneficial for the performance
of both networks. Secondly, the approach of object detection is divided into two stages.
While the first stage is proposing potential pixel regions for the presence of an object, the
second stage is localizing the object. The most common localization method is the use of
bounding box regressions to predict the object’s exact location. For this approach, they went
one step further by applying the Mask R-CNN algorithm that computes pixel-based masks
of the object, in addition to the bounding box.

Overall, the DeepSolaris project demonstrated the ability of CNNs to detect PV panels in an
almost automatic manner. It furthermore succeeded in detecting 24% of so far unknown PV
panels in the cities of Bonn and Düren, which underlines the need for alternative ways of
detecting PV panels for national registries. Nevertheless, improvements are required con-
cerning the number of false-positive detections. Also, performance drops were detected
caused by the distance between the training and validation area in NRW. This exposed the
network to different geographic regions, with different urban planning and architectures,
causing overfitting to one specific region. In contrast, stable results were achieved for train-
ing the model on the region of Heerlen and validating it on an area nearby. Furthermore, it
was concluded that the difference between aerial images of 10 or 20 cm resolution lies in the
ability to distinguish smaller objects, such as rooftop skylights.

2.7.2. Convolutional Neural Network for Semantic Segmentation

In a project conducted by Malof et al. (2017), previous shortcomings faced with traditional
machine learning algorithms were tackled by shifting to CNNs, which achieved major im-
provements in object recognition. The applied CNN architecture was inspired by the designs
of the Visual Geometry Group (VGG) at Oxford University (Simonyan and Zisserman, 2014).
Overall, the model was trained based on circa 2.5 million training patches (aerial images)
with a resolution of 30 cm, which were grouped into batches of 64 image patches to be
trained for 16 epochs. The learning rate for the SGD was 0.001. Following their previous
work, they closed the performance gap between training and testing data sets and achieved
a recall rate of 80% and a precision of circa 95% on a testing data set. This project proves
how CNNs are superior to traditional ML algorithms. Furthermore, the project examined the
impact of utilizing transfer-learning (based on ImageNet), meaning that pre-trained weights
were incorporated into a different model, so that the training of the model did not need to
start from scratch. In contradiction to the results of Ševo and Avramović (2016), it turned
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out that the use of pre-trained weight was not beneficial for the approach of Malof et al.
(2017).

In a similar approach for mapping the location and size of PV panels, Castello et al. (2019)
proposed a CNN with U-Net architecture for image segmentation of high-resolution aerial
images. As in Malof et al. (2017)’s project, it outputs a semantic segmentation containing
either PV class or no-PV class pixels. An important outcome of this work is the trade-off
between solely including images with PV panels and adding images without PV panels. By
adding images without PV panels, the model can learn various objects in the surroundings
of PV panels, which might reduce the FP rate. On the other hand, having a relatively high
percentage of target class pixels per image improved the precision of the model. This can
be achieved by either considering smaller image patches or by including solely images that
include pixels associated with PV panels. Overall, the proposed algorithm achieved an
accuracy of 94%, an F1-score of 80%, and an IoU of 64% by utilizing 4680 images, grouped
into batches of 32 images that are propagated through the U-Net for a fixed number of 75
epochs. The weights are adjusted by a the Adam optimizer by using a weighted pixel-wise
categorical cross entropy function as loss function and a learning rate of 0.1 (Castello et al.,
2019).

One of the most recent studies on semantic segmentation for detecting PV systems was pub-
lished by Da Costa et al. (2021). Unlike previous studies, the focus was on solar plants and
not on small-scale PV panels on rooftops. Also, Sentinel-2 imagery was used instead of high
resolution aerial images as well as a NIR band in addition to the RGB bands. However, the
effect of the NIR band is not examined. The project discusses the performance differences be-
tween four CNN architectures, namely U-Net, DeepLabv3+, Pyramid Scene Parsing Network,
and Feature Pyramid Network, combined with four different backbones (Efficient-net-b0,
Efficient-net-b7, ResNet-50, and ResNet101). In total, 290 images were used for training, val-
idation, and testing purposes, which were grouped into batches of 5 images and propagated
through the model for a fixed number of 300 epochs. The input patches were generated
by applying a mosaicking technique that employs a sliding window to extract overlapping
patches from one greater scene (Carvalho et al., 2021). This approach aims to eliminate clas-
sification errors at the edges of image patches. To adjust the weight the Adam optimizer was
employed with a learning rate of 0.001 and the Dice Loss as loss function. Although the
U-Net-Eff-b7 combination achieved the best results (Accuracy: 98.08%; IoU: 91.17%;F1-score:
95.38%), it needs to be highlighted that the performances of all model–backbone combina-
tions were sufficient. The main outcome of their work is that results depend rather on the
quality of the input labels than on the type of CNN. That is why they recommend following
rather data-driven approaches to detect PV panels than model-driven approaches. This con-
clusion is backed by the fact that they obtain relatively poor results for PV panels located
in residential buildings due to smaller PV system sizes compared to the solar plants, which
they focus on (Da Costa et al., 2021).

2.7.3. PV panel types

To provide a better understanding of a PV panel’s visual appearance, Figure 2.9 shows a
generalized overview of PV panel types. In total, there are three types consisting of different
materials that impact the efficiency rate of the panel (SolarReviews, 2021). The panels either
distinguish themselves by color (black or blue) or by the appearance of the frame and grid
that assembles the PV cells. While the color might be of great importance for analyses con-
cerning the PV panel’s environment, the silver frame and grid could be of great significance
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for its detectability by CNNs. The latter is based on the fact that CNNs recognize patterns in
images, such as the bright edges of the panel’s metal frame. A potential challenge might be
the differentiation between PV systems and solar thermal systems. Although STC are slightly
larger than PV panels, both look similar in aerial images.

Figure 2.9.: (left) Monocrystalline, (middle) Polycrystalline, (right) Thin film (SolarReviews,
2021)
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The working steps carried out for this thesis are summarized in a workflow diagram in-
tended to provide an overview of this thesis and allow its reproducibility. The purpose of
each step in the workflow is explained in this chapter, while the technical details on how to
implement them, are further discussed in Chapter 4.

As outlined in Figure Figure 3.1, the workflow starts with the definition of a study area for
which aerial imagery, labeled data, and additional data need to be provided. Having the
data, multiple pre-processing steps are required to prepare the data in such a way that it can
be used by the CNN. The CNN with U-Net architecture is employed for training the detection
of PV panels, and for classifying PV panels. In the final section of the workflow, evaluation
methods are presented to assess the performance of the CNN.

Define study area & data Generating patches data split          data augmentation Train the model & classify data Post-processing & analysis

Figure 3.1.: Overview of workflow

3.1. Study area requirements

The main requirement for the study area is the availability of open spatial data. High-
resolution aerial images from which ground truth data can be derived are the foundation
for the classification and analysis in this thesis. Also, the availability of NIR data is essential
for the second research question.

Furthermore, the study area requires certain properties that are suitable for answering the
research questions. This is especially the case for the first and second research questions,
since both are highly linked to urban characteristics, referring to land use types and rooftop
colors. Against this backdrop, potential study areas need to be examined for a variety of both
aspects. Based on the assumption that different land use types represent different building
types and, therefore a variety in rooftop colors, it seems appropriate to divide the study
area into simple differentiable land use types. Hence, the study area is divided into three
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subareas, namely into a commercial area, a densely built-up area (city center) consisting
of residential and mixed land use, and suburbs solely used for residential purposes. The
selection of each subarea and respective analyses of its urban characteristics are presented
in Section 4.1.4.

3.2. Ground truth data collection

The next step, after having each AOI defined, is the annotation process of PV panels. In this
process, high diligence was required since manually drawn annotations shall represent the
ground truth on which the CNN is trained. In large-scale projects, for instance, conducted
by Bradbury et al. (2016), more manpower allows having multiple annotators labeling each
image independently to ensure a high quality of ground truth data. As this is not the case
for this thesis, each PV panel that was not identified as such with high confidence was
not considered. Particularly, this applies to STC, which are challenging to distinguish from
PV panels on aerial images due to their similar rectangular form and color. An indicator
to differentiate them is the coverage of panels on rooftops since PV panel installations are
usually more complex than compact STC (see Figure 3.2).

Figure 3.2.: Visual difference between PV panel (yellow polygon) and solar thermal collectors
in an aerial image (left) and 3D imagery from Google Earth (right)

The annotations are drawn as polygons outlining entire PV panel systems. To improve the
efficiency of finding PV panels in the image, repetitive checking of the same areas needs to
be avoided. For this reason, a grid was used to systematically scan the areas. By marking
each grid cell as PV panel, no PV panel, or unsure, areas were only checked once (see
Figure 3.3).
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Figure 3.3.: Grid to structure the annotation process; PV panel (green), no PV panel (red),
unsure (blue)

In the process of collecting ground truth labels additional properties were gathered to pro-
vide information about the actual differences between the subareas in Section 3.1. First,
all PV panel arrays that belong together received a unique system ID to allow queries and
statements on individual PV systems. Further, the number of PV panels per PV system was
counted to provide information about PV system sizes. Additionally, rooftop colors were
identified to determine predominate colors of each subarea, allowing for the analysis of the
second research question. The variation of rooftop colors is presented in Figure 3.4.

((a)) ((b)) ((c))

((d)) ((e)) ((f))

Figure 3.4.: Rooftop color comparison: (a) white, (b) black, (c) greyish, (d) reddish, (e) brown-
ish, (f) beige (sandy ground); PV systems outlined in yellow
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Furthermore, the contrast of the rooftop color is set into context by considering the color of
the PV panel. Therefore, the color of each PV system is documented.

3.3. Pre-processing of aerial images and ground truth data

In the next stage of the workflow (see Figure 3.1), aerial images and ground truth data
(converted to a binary image) covering the same area must be processed in the same manner
to serve as a model input. The technical processing of both aerial images and ground truth
images is explained in more detail in Section 4.3.

3.3.1. Generating patches from orthophotos and ground truth labels

At this point of the workflow, it is important to consider the U-Net architecture structure
that dictates the dimensions of the input data. Since it only takes fixed input dimensions
(see Section 2.4) that need to be divisible by 2 to allow halving the dimensions with each
max-pooling, it is required to generate uniform tiles for both inputs. Furthermore, the
coverage of each tile needs to have an appropriate size to detect PV panels. A common
input dimension for PV panel detection is 256x256 pixels (Castello et al., 2019; Da Costa
et al., 2021). However, it is required to determine the dimensions with regard to the image
resolution in meters. For instance, Castello et al. (2019) implement a convolutional layer of
256x256 pixels having a spatial resolution of 25 cm while Da Costa et al. (2021) apply the
same dimensions for satellite images at a resolution of 10 m. Nevertheless, both dimensions
are appropriate concerning the PV system size since Da Costa et al. (2021) aim to detect
much larger PV system plants.

In this analysis, the input data has a spatial resolution of 10 cm. To find the appropriate
patch dimensions, the footprint sizes of buildings (with PV system) incorporated in the
classification are analyzed. Those footprint sizes range from 6 to 5,413 m2 with a mean of
410 m2. Consequently, having objects of around 20 x 20 m, an input dimension of 256x256
pixels (25.6 x 25.6 m) seems appropriate to capture building rooftops. For that reason, all
input data are tiled image patches of 256x256 pixels.

Furthermore, it is significant to create an appropriate selection of image patches that is for-
warded to the model. As Castello et al. (2019) indicated, having a relatively high percentage
of pixels associated with PV panels per patch is beneficial to improve the precision. Against
this backdrop and given that only little training data is available and the presence of rela-
tively small PV systems in the suburbs, it might be beneficial to include solely image patches
containing PV panel pixels.

3.3.2. Data split

The next step is the data split in training, validation, and testing data as described in Sec-
tion 2.2.1. Common split ratio used in research for PV panel detection implies a suitable
ratio of 70% for training data, 20% for validation data, and 10% for testing data (Castello
et al., 2019; Da Costa et al., 2021; Kingma and Ba, 2014). The split into the respective data
sets is conducted randomly to prevent a biased distribution of data.
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3.3.3. Data augmentation

The final step before feeding the network with data is the augmentation of data. Apply-
ing this method is especially important for this thesis since it enriches the variety of input
patches for the model. The augmentation is based on horizontal and vertical flips of in-
put patches. This method enhances the robustness of the model by reducing the effect of
overfitting, as proven by De Jong et al. (2020). Splitting needs to be carried out before data
augmentation to avoid the case that augmented patches are part of more than one data set.
Having the same patch in the training and test data set would not allow an unbiased evalu-
ation of the model’s accuracy since the patch was already seen by the model in the training
data set

Typical data augmentation techniques, such as random changes in brightness, contrast, sat-
uration, or hue, are not applied to the data to allow conclusions on the effect of unaltered
roof colors.

3.4. Classification with U-Net

As explained in Section 1.2, the CNN architecture employed in this thesis is the U-Net by
Ronneberger et al. (2015) presented in Section 2.4.

First, each augmented data set (training, testing, and validation) is grouped into batches that
allow memory efficient adjustments of weights in terms of the mini-batch method described
in Section 2.2.5. Secondly, the U-Net trains the detection of PV panels based on the training
batches for a fixed number of epochs (or iterations). The validation batches provide unbiased
insights into training progress. Lastly, the model is trained, meaning that the weights are
adjusted in such a manner that the model should be able to detect PV panels in the testing
data set. The final classification outputted by the model is a binary mask prediction of PV
panels (semantic segmentation). Using these masks, quantitative and qualitative (refers to
visual analysis) assessments can be conducted as described in the following Section 3.5.

The modification of the original U-Net architecture and the determination of its hyperpa-
rameters are described later in Section 4.4.

3.5. Evaluation of results

The assessment of the network’s performance is divided into two approaches. First, the
classification metrics described in Section 2.6 are applied to the predictions, followed by an
analysis of the aerial image’s MR within the region of the rooftop.

3.5.1. Classification metrics and visual assessment

The assessment of the model is based on the classification results of the testing data (10%).
The metrics (accuracy, precision, recall, F1-score, and IoU) evaluate the overall performance
of the model by calculating validation scores based on TP, TN, FP, and FN according to
their formulas. Further, the results can be reasoned by visual comparisons between images,
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labels, predicted probabilities (ranging between 0 and 1), and predicted masks (or prediction
binaries). This comparison is, in particular, useful to visually reason the differences between
precision and recall scores since they can be easily distinguished by considering FP and FN
in the classification.

3.5.2. Mean reflectance analysis

Calculating the MR is a method that computes the mean of pixel values of a certain region
in an image, for instance, the region can outline PV panels or rooftops to manually identify
differences in reflectance. This analysis is of particular interest for answering the second
and third research questions. It allows for distinguishing the MR values of multiple image
channels (or bands). Thus, the impact of the NIR band can be examined more closely by
comparing its MR value to those of RGB channels.

In total, the MR is calculated for five regions to analyze the classification from different
perspectives. First, the PV panel prediction is considered as one region that is compared
with the MR of the surrounding rooftop. By doing this, significant differences or similarities
can be identified between both prediction and rooftop. The second analysis compares FP
and FN located on a rooftop. In other words, the differences in MR between false PV panel
predictions on the rooftop and the missing classification of a PV panel are analyzed. Lastly,
the MR of the ground truth label is provided as a reference for the other regions. The results
of this method are presented in Section 5.3.3.
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This chapter describes in detail the technical implementation of the methodology presented
in Chapter 3. First, the software and hardware are listed and reasoned, followed by an
introduction to the study area of this thesis, after which each data set used is described in
Section 4.2. Finally, technical details on pre-processing the data, implementing the CNN, and
evaluating its performance are described.

4.1. Software and hardware used

4.1.1. QGIS

QGIS (version: 3.18.2-Zürich) is an open-source geographic information system (geographical
information system (GIS)) that was used in this study for defining the study area (Sec-
tion 4.1.4), generating ground truth labels (Section 4.2.2), and processing data (Section 4.3.1).
Within QGIS, the geospatial data abstraction library (GDAL) (version: 3.1.4) was used as a
plugin for raster operations such as GDAL Translate and GDAL Merge.

4.1.2. Software

Further, software used for implementing the methodology is the integrated development
environment (IDE) RStudio (version: 2022.07.0+548) to utilize the R programming language
(version: 4.1.2) for tiling aerial images and ground truth labels into patches (Section 4.3.2).
The R packages raster, sf, scales, and png are used to process rasters, vectors, and arrays.

The Python programming language (version: 3.7.3 64-bit) was used with the Visual Studio
Code (version: 1.72.2) IDE for splitting the input data (Section 4.3.3), generating a custom
data set (Section 4.3.4), post-processing the output data (Section 4.6), generating a heat map
(Figure 5.8), and in particular for constructing the CNN described in Section 4.4. The most
important library for this thesis was the TensorFlow library (version: 2.8.2). TensorFlow is
an open-source library for ML applications with particular attention on ANNs. Noteworthy
libraries used in the post-processing are rasterio and scikit-learn.

The post-processing step of calculating the MR as described in Section 3.5.2 was carried
out in the web application Google Earth Engine (GEE) using the programming language
JavaScript.
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4.1.3. Hardware

Instead of using the hardware of a local machine for running the model, the Colab (Colab-
oratory) from Google Research was used. It provides an online hosted Jupyter notebook
service that allows access to the computing resources of GPUs.

4.1.4. Define study area

The study area of this thesis is located in the city of Cologne in the state of NRW in Germany.
It fulfills the requirement of available open spatial data in terms of aerial images and addi-
tional vector data sets (see Section 4.2). As indicated in Section 3.1, the study area must be
divided into three subareas to answer the research questions (see Figure 4.1). The northern
subarea (1) is a commercial area in the district of Ossendorf in Cologne. The second district
is the city center of Cologne which predominately consists of residential and mixed land
use. Lastly, the residential areas of the southern districts of Hahnwald (3.1) and Meschenich
(3.2) are chosen to represent the suburbs.

Figure 4.1.: Study area overview: (1) commercial area, (2) city center, (3.1) suburb (Hahn-
wald), (3.2) suburb (Meschenich)

Differences in the urban area are also proven by Table 4.1 showing a notably low building
density in the commercial area, higher building densities in the suburbs, and the highest
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density of buildings in the city center1.

commercial city center suburbs total

Area (km2) 1,393 7,694 2,227 11,314
Buildings 638 20,998 5,055 26,691
Buildings/km2 456 2,729 2,270 2,359

Table 4.1.: Overview of building density in all areas (calculated based on building footprints
per area)

4.2. Data sets used

This section describes all data sets utilized in this study. The key data sets are the aerial
images and the manually generated ground truth labels. Additionally, a land use map and
building footprints were incorporated and covered in Section 4.2.3.

4.2.1. True digital orthophotos

The aerial images are provided by the open spatial data infrastructure (SDI) Geobasis NRW
as tiles with dimensions of 1 x 1 km in the format of JPG2000. Each tile has a resolution
(ground sample distance (GSD)) of 10 cm and an average position accuracy of 2 to 3 pixels
(20 - 30 cm). Furthermore, they consist of four spectral channels, namely RGB and NIR, with
a radiometric resolution of 8 bits and a temporal resolution of 2 years. The images underlie
the projected coordinate system ETRS89/UTM32 (EPSG 25832).

The aerial images were processed to distortion-free and true to scale images called digital
orthophotos (DOPs). In an additional step, DOPs were rectified to TrueDOPs by adjusting tilting
objects, e.g., buildings (see Figure 4.2) (GeobasisNRW, 2022). Therefore, TrueDOPs allow a
vertical view on the image by eliminating blind spots2 while preserving the geometric and
radiometric qualities of DOPs (see Figure 4.3). This is also an advantage over other DOP
providers, such as PDOK in the Netherlands (PDOK, 2022).

1In the following, the term city center refers to the areas of residential and mixed-use areas in the district of the
city center without considering waterways, parks, etc.

2refers to not visible areas in the image due to buildings appearing tilted in the image
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Figure 4.2.: Comparison between DOP (left) and TrueDOPs (right) (GeobasisNRW, 2020)

((a)) ((b)) ((c))

Figure 4.3.: (a) DOP with blind spot, (b) photo capturing with airborne camera, (c) TrueDOPs
without blind spot (GeobasisNRW, 2020)

4.2.2. Ground truth labels

Below, a comprehensive overview of ground truth labels and their characteristics is given.
In total, the data set contains around 12,508 PV panels spread over 171 buildings (manually
counted). Table 4.2 indicates that the city center is representing the most average area of all
three subareas in terms of PV panels per building and the mean building size. In general,
in the commercial area, larger rooftops allow significantly larger PV systems than smaller
rooftops in the suburbs. Figure 4.4 gives an impression of the visual extent of average PV
systems. The position accuracy of the manually drawn ground truth labels is relatively high
due to the basis of TrueDOPs for which the height of a building is not distorting the location
of a PV panel.

commercial city center suburbs total

Buildings with PV panels 31 62 78 171
PV panels 7,994 2,431 2,083 12,508
Mean PV panels/building 258 39 26 73
Buildings (with PV panel) mean size (m2) 1,364 418 140 410

Table 4.2.: Overview of PV panels in all areas
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((a)) ((b)) ((c))

Figure 4.4.: Average PV system sizes (Number of PV panels): (a) commercial (295), (b) city
center (40), (c) suburbs (28)

A strong variation in PV system sizes affects a balanced presence of target class pixels in
the label patches. Table 4.3 documents the imbalance between target class pixels and the
background pixel within a subarea based on all label patches of 256x256 pixels each. Fur-
thermore, it shows a divergence amongst all subareas, particularly between the commercial
area and the other two areas.

commercial (%) city center (%) suburbs (%)

10 cm 19.16 5.38 3.98
20 cm 10.03 1.75 1.4

Table 4.3.: Average percentage of pixels associated with PV panels per label patch for each
area at 10 and 20 cm resolutions

Further characteristics regarding the rooftop color are summarized in Figure 4.5, from which
the predominant colors per subarea can be derived. According to the histogram, white is
the most frequent roof color in the commercial area, and grey is the most frequent color in
the city center. In contrast, no predominant roof color can be determined for the suburbs as
the distribution of grey, black, and red rooftops is very similar.

Figure 4.5.: Distribution of roof colors (of rooftops with PV panel) per area
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The rooftop color might have different effects on the detection of PV panels depending
on the PV panel color. In the following Figure 4.6, the percentage of blueish or black PV
panels is summarized. It needs to be mentioned that blueish PV panels tend to appear in
light grey in TrueDOPs when exposed in directed orientation towards the sun as well as dark
blueish when they are opposed to the sun. Reflections can vary depending on the horizontal
and vertical angles between the sun, the PV panel, and the airborne camera capturing the
images. However, the comparison shows that blue is the predominant color of PV systems
in all subareas. Nevertheless, around a third of the PV systems in the suburbs is black as
well as a quarter of the PV systems in the commercial area. Another pattern observed in the
images is the fact that in the commercial area all buildings with PV panels have flat roofs
while buildings in the city center and the suburbs have flat or pitched roofs.

Figure 4.6.: Comparison of the PV panel colors per area (manually defined)

4.2.3. Additional data

Additional data sets incorporated in the methodology are building footprints and a land
use map. The building footprints are derived from the authoritative real estate cadastre
information system of NRW and provided in a vector format (OpenNRW, 2022b). The land
use map shows the existing and planned land use of the entire city area, including the three
study areas (OpenNRW, 2022a).

4.3. Pre-processing steps

The technical implementation of each working stage described in Section 3.3 is explained in
the following.

4.3.1. Processing TrueDOPs and ground truth labels

First, the TrueDOPs are merged per subarea in QGIS. The merged output is converted from a
JPEG2000 to a TIFF raster format due to processing issues that occurred with the JPEG2000
raster. To reduce the computational demand when working with large data sets, the merge
of all subareas TrueDOPs is conducted by building a virtual layer. This layer intends to provide
the spatial extent of all rasters for the rasterization of ground truth labels. The ground truth
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4.3. Pre-processing steps

labels are rasterized in QGIS, outputting a binary raster showing PV panels with a value of
1 and background information as no data.

This process was performed once at a resolution of 10 cm and once for downsampled data
at a lower resolution of 20 cm.

4.3.2. Generating DOP and ground truth label patches

The same grid used for collecting ground truth data (see Section 3.2) is reused to generate
input patches cropped to the dimensions of 256x256 pixels. Therefore, an additional grid
needs to be generated for the resolution of 20 cm. Both grids are generated (in QGIS) con-
sisting of georeferenced polygons with grid cells of the size 25.6 x 25.6 m (10 cm resolution)
and with 51.2 x 51.2 m (20 cm resolution). To consider only patches that contain target class
pixels, only those grid cells are extracted that intersect with the ground truth data.

The selection of grid cells is loaded in an R script to crop TrueDOPs and the ground truth
binary raster once to patches in PNG format and once to TIFF patches. The PNG format
is chosen due to the TensorFlow data set function that restricts the use of data formats
other than BMG, GIF, JPEG, or PNG. Saving patches as TIFFs is required to retrieve spatial
reference information in the post-processing (see Section 4.6).

Table 4.4 provides an overview of the number of patches on which the model is trained.

Resolution commercial city center suburbs total

Number of patches (10 cm) 100 100 100 300
Number of patches (20 cm) 50 77 73 200

Table 4.4.: Overview of patches per subarea that contain PV panels

4.3.3. Data split

A Python script is employed to read the folder of all patches using the Python library random
for splitting the patches into 90% training and 10% testing patches. The training patches are
split again at a later stage to obtain 70% training and 20% validation patches. The file names
are written into two lists (as text files) according to the training and testing split.

4.3.4. Compiling data to custom data set for TensorFlow

The patches of both TrueDOPs and labels of all areas are uploaded to the same directory in
separate folders on a Google Drive to be accessible for Google Colab. Moreover, both lists
defining the data split are uploaded to the folder of label patches on Google Drive.

In the Jupyter Notebook hosted in Google Colab, a TensorFlow data set (TFDS) is initialized
using the command-line tool TFDS command line interface (CLI). In this data set, a Python
script defines the source of data, the format of the data, and the data split. It is required
to modify the script so that it allows raster labels as input, and knows the respective input
dimensions as well as the source path to the respective Google Drive folder. Then, the TFDS
CLI is utilized to download and prepare the custom data set on-the-fly in Google Colab.
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4. Technical Implementation

4.3.5. Additional preparation steps

After loading the data, the training patches are split into training and validation, followed
by a normalization of each patch from unsigned 8 bits integers to decimal numbers between
0 and 1. Then, all patches are shuffled before being grouped into batches. As indicated
by Da Costa et al. (2021), a batch size of 5 seems appropriate when dealing with around
300 images. In the final step before forwarding the batches to the model, the patches are
augmented as described in Section 3.3.3.

4.4. Modified U-Net architecture and hyperparameter
definition

The U-Net architecture employed in this thesis is a slightly modified version (see Figure 4.7)
of the original architecture presented in Section 2.4. Its main differences lie in the additional
batch normalization layer (see Section 2.5.1) between the convolutional layer and the ReLU
activation (see Section 2.2.3) function. Furthermore, the dimensions of the feature maps do
not decrease after convolutional operations due to implemented zero-padding operations
(explained in Section 2.3.1). Therefore, the original copy and crop operations are replaced by
a simple copy operation to reconstruct the same spatial resolution at each level of the U-Net.
Additionally, the U-Net is designed to take patches of 256x256 pixels as input. The size of
the x- and y-dimensions is discussed in Section 3.3.1. Further, the selected input dimensions
meet the requirement of having tiles with even x- and y-dimensions which allow seamless
tiling after each max-pooling operation with a kernel size of 2x2 (Ronneberger et al., 2015).
The third dimension, which defines the number of image channels, can be manually changed
from 3 to 4 channels to either process RGB or RGB plus NIR images.
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Figure 4.7.: Modified U-Net architecture; Dark blue boxes represent input or output features
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4.4. Modified U-Net architecture and hyperparameter definition

Nevertheless, basic hyperparameters defined in the original U-Net architecture remain the
same such as the ReLU activation function. The same applies to convolutional kernels keep-
ing the size of 3x3 and a stride of 1, which was also utilized in similar studies (Castello et al.,
2019; Malof et al., 2017). Similarly, the max-pooling operation with a kernel of 2x2 pixels
and a stride of 2 is adapted. Further, the number of convolutional layers doubles with each
max-pooling operation from 64 down to 1024 layers.

The weights are initialized with the He uniform variance scaling initializer described in
Section 2.2.2, which is provided as a TensorFlow function. Transfer learning with pre-trained
weights is not employed due to the NIR band which is denoted as the fourth image channel.
Most pre-trained weights are based on RGB channels only. An overview of the total amount
of trainable parameters is provided in the following Table 4.5. It is defined by the sum of
weights and biases that can be adjusted during the training process.

Network Trainable parameters

U-Net for RGB 31,043,521
U-Net for RGB+NIR 31,044,097

Table 4.5.: Number of trainable parameters

4.4.1. Loss function and optimizer used

The imbalance between target class pixels and background information presented in Ta-
ble 4.3 results in uncertainty about the appropriate loss function to implement. As indicated
in Section 2.2.4, loss functions differ to calculate appropriate losses for different use cases.
Therefore, the uncertainty is faced by fine-tuning the learning process of the model with
regard to the loss function. According to Section 2.2.4, both, the BCE (Equation 2.6) and the
FL (Equation 2.7) seem suitable to be implemented in this study. A more precise comparison
in Table 4.6 shows the performance results for all areas combined3.

Area loss function accuracy (%) precision (%) recall (%) F1-score (%) IoU (%)

all areas BCE 98.87 95.32 87.29 91.13 91.25
all areas FL 99.21 94.36 93.76 94.06 93.97

Table 4.6.: Evaluation of U-Net with BCE using RGB TrueDOPs; Learning rate = 0.001; Number
of epochs = 100

According to Table 4.6 the FL achieves slightly better classification results than the BCE.
Nevertheless, the loss curve shows two minor spikes in the BCE (Figure 4.8) and one major
spike in the FL curve (Figure 4.9), which significantly affect the learning progress measured
by the F1-score.

3values in bold denote the better result
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4. Technical Implementation

Figure 4.8.: Training and validation loss function and F1-score for each epoch (BCE)

Figure 4.9.: Training and validation loss function and F1-score for each epoch (FL); (At epoch
40 the tip of the spike is at 4.5)

Considering smaller data sets of the subareas, both loss functions are compared again with
attention on the learning rate to tune the learning process of the Adam optimizer. For each
loss function, learning rates of 0.01, 0.001, and 0.0001 are implemented in the following.

((a)) Learning rate = 0.01 ((b)) Learning rate = 0.001 ((c)) Learning rate = 0.0001

((d)) Learning rate = 0.01 ((e)) Learning rate = 0.001 ((f)) Learning rate = 0.0001

Figure 4.10.: Model’s performance according to F1-score. First row: BCE; Second row: FL
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4.5. Training and testing experiments

loss LR accu. (%) prec. (%) recall (%) F1-score (%) IoU (%)

BCE 1e-2 96.91 84.74 22.63 35.72 59.31
BCE 1e-3 98.11 90.49 55.93 69.13 75.45
BCE 1e-4 99.23 93.97 85.1 89.31 89.95
FL 1e-2 96.21 0 0 0 48.1
FL 1e-3 98.04 98.39 49.17 65.57 73.39
FL 1e-4 98.90 84.57 86.76 85.65 86.88

Table 4.7.: Evaluation of U-Net based on FL and BCE with different learning rates using RGB
TrueDOPs of the city center; Epochs = 100

Figure 4.9 shows a similar behavior of both loss functions in the training process. Based on
the results of Table 4.7 showing the best U-Net performance for the combination of the BCE
loss function and a learning rate of 0.0001, both the loss function and the learning rate are
selected for the experiments outlined in Section 4.5. Furthermore, it becomes evident that
the accuracy metric is not suitable for assessing the performance of the model considering
the disparities between precision and recall while having high accuracies.

To avoid over- or underfitting, the early stopping method (Section 2.5.2) is tested with a
threshold (called patience) of 10, meaning that the training process stops when the validation
loss has not improved for 10 epochs. In three consecutive training runs, the point of early
stopping yields 38, 58, and 100 epochs. This variation is caused by fluctuations in the loss
function. Therefore, it is required to force the model to train for a certain number of epochs
to guarantee acceptable and comparable periods of training. Reading from Figure 4.10(c),
the point at which the validation loss starts to stabilize while the training loss continues to
increase is found around epoch 60. Based on this observation, a fixed number of 60 epochs
is picked.

Due to the comparatively low number of 100 samples (for subareas) from which 70% are
used for training, a batch size of 5 is chosen.

4.5. Training and testing experiments

After having the model defined, it is applied in multiple scenarios to serve the research
questions. In total, three kinds of experiments are carried out. The first experiment analyzes
the impact of training a model on different land use types. For this experiment, the U-
Net is trained and tested on each subarea as well as on all areas at once. Further, the
performance of each subarea model is evaluated based on cross-validations conducted on
all other subareas respectively. While the term cross-validation commonly refers to the data
split described in Section 3.3.2, this study employs the term to refer to the training and
evaluation across multiple land use types. Further experiments are conducted to analyze
the impact of including NIR data in the training process to meet the third research question.
The last research question is examined considering input data of different resolutions. An
overview of all scenarios is listed below:

1. Training and evaluating a U-Net within the same area based on TrueDOPs at a resolution
of 10 cm with RGB channels:
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• All areas combined (300 images).

• Each subarea on its own (100 images).

2. Evaluating the U-Net’s performance based on cross-validation :

• model trained on commercial area → evaluated on city center

• model trained on commercial area → evaluated on suburbs

• model trained on city center → evaluated on commercial area

• model trained on city center → evaluated on suburbs

• model trained on suburbs → evaluated on commercial area

• model trained on suburbs → evaluated on city center

3. Evaluating the U-Net’s performance by training and evaluating with NIR data:

• All areas combined with NIR data

• Each subarea with NIR data

4. Training and assessing the performance of the U-Net on lower resolution TrueDOPs:

• All areas combined at 20 cm resolution

• Each subarea at 20 cm resolution

4.6. Post-processing result for evaluation

As described in Section 3.5 there are two approaches to evaluate the model’s performance.
For the analysis of the classification metrics and the visual output, no further post-processing
steps are required. To only consider the output on rooftops, spatial operations are applied in
the second approach, requiring the data to be georeferenced. Since the input and output of
the model are patches in PNG format, the original reference system needs to be reassigned
to the patches. For that reason, the patches were saved as TIFFs in Section 4.3.2, so that the
spatial information of the original TIFF can be linked to an output PNG. The georeferenced
images, prediction masks, and labels serve as input in the following evaluations.
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5. Results and analysis

Following Chapter 4, in which the technical implementation of the model and the corre-
sponding pre- and post-processing steps are explained, this chapter presents and analyzes
the performance of the U-Net regarding the key aspects of the research questions. It follows
the structure of the experiments outlined in Section 4.5. Starting with the analysis of the
classification of all areas as well as each subarea on its own. All areas are quantitatively
evaluated based on classification metrics followed by visual analyses of sample results. Sec-
tion 5.2 presents the quantitative results of the cross-validation between the areas. In Sec-
tion 5.3 the impact of the NIR channel is described based on classification metrics, visual
comparisons, and analyzes of the prediction’s MR. Lastly, the classification performance of
lower-resolution TrueDOPs is presented. It needs to be mentioned that all sample images
shown in the following four sections are examples from different testing batches which were
not seen by the U-Net before.

5.1. Classification of all areas based on RGB TrueDOPs

The results presented in this subchapter are computed by training the U-Net on RGB TrueDOPs
of each subarea followed by a classification of the same area. The quantitative results in
Table 5.1 and the visual outputs are entirely based on the testing data sets of each area
which are not exposed to the U-Net during the training process. The same applies to the
combination of all subareas. As summarized in Table 4.4, each subarea is covered by 100
patches, while the combination of all subareas consists of 300 patches. Accordingly, each test
data set consists of around 10 patches (10%), whereas the test data set of all areas contains
around 30 images.

5.1.1. Quantitative evaluation of RGB classifications

The U-Net’s performance for each area is summarized by multiple classification scores in
Table 5.1.

Area precision (%) recall (%) F1-score (%) IoU (%)

commercial 89.40 91.5 90.44 88.96
city center 89.1 85.59 87.31 88.25
suburbs 97.86 60.66 74.89 78.96
all areas 91.64 88.74 90.16 90.36

Table 5.1.: Classification results of each subarea and all areas combined
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Considering the F1-score and the recall the best performance is achieved by the U-Net
trained on patches of the commercial area. Both networks trained on commercial areas and
all areas show the most consistent performance scores around 90% (±1.7%). The network
based on city center patches achieved approximately high and constant results between 85
and 90%. Except for achieving the highest precision score, the network trained on suburb
patches yields the poorest scores in the recall, F1-score, and IoU. Consequently, the network
tends to predict PV panels only at those locations where PV panels are actually installed
while it is prone to omit PV panels in the classification.

5.1.2. Visual evaluation of RGB classifications

In the following, examples of classifications of each area are presented. The examples are
selected based on the presence of special features which allow detailed statements about
the performance of the U-Net. Each example covers four images, the input image, the
ground truth label (or true mask), the predicted probability, and the binary classification
(or predicted mask). The predicted probability presents the direct output of the sigmoid
activation function showing the probabilities between 0 and 1 of a pixel representing a PV
panel (see Section 2.2.3). A threshold of 0.5 is splitting the probabilities into background
pixels and target class predictions. The probability is included to observe pixels with low
probabilities that might indicate potential misclassifications.

Commercial area. The first example in Figure 5.1 shows a successful classification on the
rooftop while indicating a minor confusion by a staircase (leading to the building on the
right) resulting in a few FP predictions. Nevertheless, it proves the capability of differentiat-
ing PV panels from the rectangular shape of a glass roof at the bottom of the image.

City center. The next example (Figure 5.2) reveals difficulties in the prediction of the darker
PV panels at the lower right edge of the image. Further, it shows how shadows cause FN
predictions which are represented by the missing detection of the right end of the PV panel
array. Overall, the presence of shadows in the input samples is rare since most PV panels
are installed at predominantly sunlit locations.

According to Figure 5.3, the network is having difficulties in detecting black PV panels in
the city center. In the following paragraph, this type of PV panel is analyzed in a suburban
setting (see Figure 5.5).

Suburbs. In both, Figure 5.4 and Figure 5.5, the U-Net is facing classifications of black PV
panels in the suburbs. In the first image, the PV panel’s appearance is in sharp contrast
with the light grey rooftop facilitating the detection of almost all PV panels. Further, the PV
panel edges consist of white frames which highlight the boundaries of the panel. Contrary
to this, the PV system in the lower left of the next figure is representing a homogeneous
black surface without bright edges, installed on a dark rooftop. The predicted probability
of that patch indicates a little recognition of the PV system’s outer boundaries whereas the
inner surface is not considered at all. Consequently, the detection of the entire PV system is
omitted.

Furthermore, FP predictions are caused due to the confusion of a PV system and the glass
roof of a conservatory in Figure 5.5.

Similar to the misclassification of the conservatory, Figure 5.6 shows a FP prediction at the
exact position of a skylight. Nevertheless, a close-by skylight at the left edge of the patch is
classified correctly (as background pixels) since it appears less blueish in the image.
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Lastly, the network proves the ability to deal with PV panels and STC in one image, as
shown in Figure 5.7. Despite the similar blueish color and the rectangular shape, both STC
are not classified as PV panels. Further observations have shown that STC are predominantly
installed on rooftops of private households rather than on apartment buildings.

Figure 5.1.: Example located in the commercial area and based on the network trained on all
areas; Special feature: Glass roof

Figure 5.2.: Testing sample located in the city center; Prediction by network trained on the
city center; Special feature: Shadow

Figure 5.3.: Testing sample located in the city center; Prediction by network trained on the
city center; Special feature: Black PV panels

Figure 5.4.: Detection of black PV panels in suburbs
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Figure 5.5.: Misclassification of black PV panels in the suburbs; Special feature: Conserva-
tory

Figure 5.6.: Misclassification in the suburbs; Special feature: Skylight

Figure 5.7.: Testing sample located in the suburbs; Special feature: STC

As observed in Figure 5.2, Figure 5.3, and Figure 5.5, the model has difficulties detecting
black PV panels. It can be assumed that this type of PV panel (Figure 5.3 and Figure 5.5)
without bright frames hinders the detection of patterns. Especially in combination with dark
rooftops, the detection rate of the PV color might decline due to little contrast. However,
the presented FN predictions are all located at the patches’ edges. To analyze whether this
could be an artifact (a systematic anomaly produced by the model), all FN predictions are
overlapped within one patch (see Figure 5.8). This overlap creates a heat map of errors,
so systematic errors can be identified by their location in the patch. The heat map shows
one hotspot of errors in the center-left and one hotspot in the lower right corner of the
patch. Overall, it proves that there is no artifact at the patches’ edges, which reinforces the
previous assumption that the model has difficulties in detecting black PV panels without
bright frames, that are located on dark rooftops.
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Figure 5.8.: Heat map of all FN predictions computed from 56 RGB testing images of all areas
and each subarea, see Appendix B (from purple = no FN, to yellow = multiple FN)

Overall, the following three subfigures demonstrate how well the U-Net can train on each
subarea. The network for the commercial area can converge to the F1-score of the training
data after around 20 epochs. In contrast, the city center network is less consistent while the
suburb network faces much more fluctuations as well as more epochs to converge.

It becomes evident that areas with a higher average of target pixels per patch achieve better
F1-scores and start to stabilize at earlier stages in the training process (see Table 4.3). This is
the result of larger PV system sizes in commercial areas, which provide uniform patterns of
long panel arrays and homogeneous colors to learn by the U-Net.

((a)) commercial area ((b)) city center ((c)) suburbs

Figure 5.9.: U-Net’s training and validation performance according to F1-score per subarea

5.2. Cross-validation: commercial area, city center, and
suburb

Conducting cross-validations indicate which areas are most suitable for training a network
that is capable of classifying other areas. It can also be considered as the most average area
that comprises key features of different areas.
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Table 5.2 summarizes the F1-scores of all cross-validations as well as the results of training
and predicting networks based on images of the same subarea. It stands to reason that
each network performs best on the area on which it was trained. The best results of the
cross-validations across different land use types are highlighted in bold.

trained/predicted commercial (%) city center (%) suburbs (%)

commercial 90.44 72.89 61.85
city center 59.82 87.31 77.73
suburbs 48.52 63.49 74.89

Table 5.2.: F1-scores of cross predictions

Overall, training images of the city center suit best for classifying commercial areas or sub-
urbs. Vice versa, the network trained on images of the commercial area achieves the best
classification of the city center. The poorest F1-score result of less than 50% is achieved
by a network trained on suburb images classifying images of commercial areas. The re-
sults demonstrate the greatest discrepancies between commercial areas and suburbs while
showing that a network trained on images of the city center serves as the best allrounder
for classifying different land use areas. To provide a visual impression of the results, three
samples on which the cross-validation is applied are attached in Appendix C.

The fact that the greatest discrepancy lies between the commercial area and the suburbs is
also reflected by their differences in terms of predominant roof colors, variations of roof
color, the number of PV panels installed, and the mean size of buildings with PV systems.

5.3. Classification based on TrueDOPs including NIR data

In this subchapter, the overall performance of a U-Net trained on RGB-NIR images is evalu-
ated. Both training and evaluation are conducted based on the same testing patches used in
the previous sections. In addition to the 3-channel RGB images, the NIR channel is included,
resulting in four-channel images. First, the quantitative results per area are presented, fol-
lowed by a performance comparison between RGB and RGB-NIR image classifications. Fur-
ther, a qualitative analysis of this comparison is carried out by considering the visual differ-
ences between the new results and certain examples from the previous subchapter. Lastly,
the impact of the NIR channel is analyzed in more detail based on its MR.

5.3.1. Quantitative evaluation of RGB+NIR classifications

Despite the high precision of U-Nets trained on images of the suburbs, the best classification
performance is achieved by a network trained on images of all areas (see Table 5.3). Similar
to the previous results (see Table 5.1) the suburb network obtains the greatest gap of around
44% between precision and recall scores.
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5.3. Classification based on TrueDOPs including NIR data

Area precision (%) recall (%) F1-score (%) IoU (%)

commercial 93.91 84.07 88.72 87.35
city center 92.07 83.41 87.53 88.45
suburbs 96.81 52.65 68.21 74.71
all areas 94.06 89.55 91.75 91.81

Table 5.3.: Evaluation of RGB-NIR image classification

The comparison of classification scores between RGB and RGB-NIR-based networks (see Fig-
ure 5.10) shows a performance drop when the NIR channel is included in the classification
of suburbs. In contrast, both, the commercial and the city center networks perform compar-
atively consistently in the classification of both image compositions. A minor performance
drop can be identified in the classification of RGB-NIR images of the commercial area while
the performance slightly increases in the case of the city center. Despite both negative trends,
the performance of the network trained on images of all areas increases.

Figure 5.10.: Comparison of RGB and RGB-NIR-based classifications assessed with F1-score
and IoU

5.3.2. Visual evaluation of RGB+NIR classifications

Commercial area. Figure 5.11 shows the improved classification result compared to the
RGB image classification in Figure 5.1. This RGB-NIR sample proves the slightly increased
performance of the network trained on images of all areas. This does not apply in the case
of the patch showing a skylight (see Figure 5.6). Both classifications are nearly identical.

City center. A further improvement can be observed in Figure 5.12. While the RGB image-
based classification (see Figure 5.3) is not able to detect the black PV panels in this patch, the
additional NIR channel allows a partial classification. The comparison of both classifications
indicates an improved capability of detecting bright rooftop edges as shown by the predicted
probabilities in Figure 5.12. Although the edges are represented with little confidence, the
probabilities appear clearer than in Figure 5.3.
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Suburbs. The drawback of detecting bright edges more easily becomes evident in Fig-
ure 5.13. Although lower probabilities are assigned to the terrace than to the PV panels on
the rooftop, the probabilities are high enough to exceed the threshold to generate a binary
mask. Nevertheless, the prediction of the black PV panels improved since the coverage of
the predicted mask is more coherent than in Figure 5.4.

Despite the improvements in classifying black PV panels, the black PV panels in Figure 5.14
are still not detected by the network. As explained in Section 5.1, it is assumed that the
frameless type of PV panel and the little contrast to the rooftop cause the misclassification.
Another aspect that might reinforce the misclassification is the case of having two different
types of PV panels in one image patch. In that case, the U-Net must output similar prediction
probabilities for two objects that belong to the same class but differ visually.

Furthermore, the classification of Figure 5.7 worsens when a NIR channel is added to the
RGB image as shown in Figure 5.15. The network confuses the STC with PV panels as well as
with a black rooftop in the lower left corner of the image patch.

Figure 5.11.: RGB-NIR image classification in commercial area and based on the network
trained on all areas; Special feature: Glass roof

Figure 5.12.: RGB-NIR image classification of the city center; Special feature: Black PV
panels

Figure 5.13.: Misclassification of terrace; Special feature: Black PV panels

46



5.3. Classification based on TrueDOPs including NIR data

Figure 5.14.: RGB-NIR: Misclassification of black PV panels in the suburbs; Special feature:
Conservatory

Figure 5.15.: RGB-NIR: Misclassification of STC in the suburbs

5.3.3. Analysis of mean reflectance

This section provides a closer look at the impact of a NIR channel by comparing the MR of
PV panel predictions, ground truth labels, FP, FN, and TN. The MR values are solely based
on pixels within a building’s footprint. It intends to differentiate the prediction errors in a
more detailed approach as well as to provide an impression of how a NIR might contribute to
those errors or even improves the classification. Therefore, some results are also compared
to the classifications presented in Section 5.1.

City center. Figure 5.16 shows the MR curves of the corresponding regions in the left image,
represented in the respective colors. The MR indicates a significant mismatch between the
ground truth label and the FN predictions that causes misclassifications of blueish PV panels
in the shadow and black PV panels on the right edge of the image. Further, FP are located at
the boundary of PV panels causing a similar MR as the PV panel prediction. The MR of the
NIR channel is for most regions on a similar reflectance level as the RGB channels.
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Figure 5.16.: MR of RGB-NIR testing sample located in the city center; Prediction by network
trained on the city center; Special feature: Shadow; the colors in the diagram correspond
to the polygon colors in the image (ground truth labels are not visualized)

An exception of the flat reflectance curve is the red region representing TN predictions. This
curve indicates a much lower reflectance of the red channel than the ground truth reflectance
as well as a higher reflectance of the NIR channel. The curve’s shape is therefore slightly
reflected by the FP curve. Nevertheless, the notable increase of MR between the red and the
NIR channels might be caused by the balcony plant reflecting NIR radiation much stronger.

The next two figures compare the results of RGB and RGB-NIR-based classifications (see Fig-
ure 5.17 and Figure 5.18). In all regions, the mean NIR reflectance is higher than the respec-
tive reflectances of the RGB channels. Despite the discrepancy between the MR of TN and FN
predictions, the PV panels are partially classified as background pixels. Furthermore, both
classifications contain FP predictions at the same spot in the center of the image. Since the
spot only covers a fraction of a homogeneous rooftop in terms of colors, it can be assumed
that not only the reflectance is determining its classification. As CNNs can learn patterns, it
is likely that the prediction is based on the combination of the dark roof color (of the rooftop
side orientated to the northwest) and the pattern of parallel bright edges of a dormer and
the boundary to the next rooftop. This pattern would correspond to the bright (e.g., silver or
white) frame that typically bounds PV panels. While the same pattern can also be found on
the other side of the rooftop, it seems to have a different reflectance due to the sunny side
of the rooftop being orientated to the southeast.

Figure 5.17.: RGB: Classification example of the city center; Special feature: Black PV panels
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Figure 5.18.: RGB-NIR: Classification example of the city center; Special feature: Black PV
panels

The next two examples present nearly successful classifications in the city center (Figure 5.19)
and the suburbs (Figure 5.20). Both examples demonstrate how well classifications can work
when homogeneous rooftops in terms of color, size, and structure, and PV panels in either
dark or bright colors compose a clear contrast. This contrast is indicated by the distance
between the MR of TN and ground truth.

Considering the MR of the NIR channel, it becomes evident that in both cases no specific
pattern can be derived from the MR.

Figure 5.19.: RGB-NIR: City center example with blue PV panels

Figure 5.20.: RGB-NIR example with black PV panels in the suburbs
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The visual differences of the last comparison are previously analyzed in Figure 5.7 and Fig-
ure 5.15. However, the MR of the FP provides a better understanding of the misclassification.
While most PV panel predictions in previous examples show a flat curve of RGB-NIR re-
flectances, this curve in Figure 5.22 has a kink towards a lower NIR reflectance. This kink
might be influenced by the FP prediction of the black rooftop in the lower left corner as well
as of the STC. Likewise, the gap between ground truth reflectance and PV panel prediction
widens.

Figure 5.21.: RGB classification located in the suburbs; Special feature: STC

Figure 5.22.: RGB-NIR classification located in the suburbs; Special feature: STC

To gain a better understanding of the difference between PV panels and STC, the MR of only
one building is extracted in the following Figure 5.23. The FP curve of the STC proves a
strong mismatch to the ground truth label concerning the reflectance of the red channel.
This reflectance is converging with the FN and TN curves, proving that the classification as
a PV panel would be unlikely if the MR of the NIR channel did not converge to the ground
truth label. Consequently, the NIR channel is mainly contributing to the confusion between
PV panels and STC.

50



5.4. Classification of lower-resolution TrueDOPs

Figure 5.23.: RGB-NIR classification of one building in the suburbs; Special feature: STC

5.4. Classification of lower-resolution TrueDOPs

This subchapter is covering the last experiment carried out dealing with the classifications
of TrueDOPs at 20 cm spatial resolution instead of 10 cm TrueDOPs utilized in previous classi-
fications.

5.4.1. Quantitative evaluation of RGB classifications at 20 cm resolution

The classification scores in Table 5.4 show that the commercial area network performs better
with lower-resolution images than networks trained on city center or suburb images. Most
notable is the gap between precision and recall of city center and suburb classifications.
It indicates a low number of FP predictions but an even higher number of FN predictions
represented by missing PV panel predictions.

Area precision (%) recall (%) F1-score (%) IoU (%)

commercial 87.29 85.17 86.22 86.89
city center 93.12 12.47 22 55.4
suburbs 85.46 28.12 42.32 62.89
all areas 77.09 62.09 68.78 75.04

Table 5.4.: Evaluation of U-Net based on RGB TrueDOPs at 20 cm resolution

Despite the constant classification scores of the commercial area, Figure 5.24 demonstrates
performance drops for lower-resolution images, particularly in the case of the city center
and suburb networks.
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Figure 5.24.: Comparison of classifications at 10 and 20 cm resolutions assessed with F1-score
and IoU

Nevertheless, both networks face difficulties when training on lower-resolution images (see
Figure 5.25). Strong fluctuations in the performance curve (according to the F1-score) can be
observed. After 50 epochs of training on images of the commercial area, the learning process
starts to stabilize. In contrast, Figure 5.25(b) does not show a stabilization within the first 60
epochs of training the suburb network.

((a)) Commercial area ((b)) Suburbs

Figure 5.25.: Training and validation F1-score for each epoch

5.4.2. Visual evaluation of RGB classifications at 20 cm resolution

Commercial area. Lastly, one example from each subarea is presented. Although Figure 5.26
shows a prediction of a network trained on images from all areas, it demonstrates well how
the contrast between the PV system and the rooftop color, and its size affect its predictions.

City center. In Figure 5.27, an image patch classified by the city center network provides
an almost empty prediction mask. The predicted probability patch reveals many bright
lines of low probabilities indicating the consideration of multiple objects by the network.
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This output gives an impression of the difficulties faced in a heterogeneous urban area
with a higher variety of objects, in particular for a larger image extent. Further, it partially
contributes to the low classification score of city center image patches at 20 cm resolution.

Suburbs. Different from Figure 5.6, the skylight in the middle of the PV system is not
considered as a FP. However, the glass roof of a carport is misclassified. Also, the predicted
probability is showing the PV panel with less confidence than previous predictions but it is
high enough to exceed the threshold of 0.5.

Figure 5.26.: Classification of a 20 cm resolution images of the commercial area

Figure 5.27.: Classification of a 20 cm resolution images of the city center

Figure 5.28.: Classification of a 20 cm resolution images of the suburbs; Special feature:
Carport
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Following this research on how suitable a CNN with U-Net architecture is for the detection of
PV panels in aerial images, the aim of emphasizing the significance of area-specific ground
truth data is achieved as quantitative and qualitative analyses demonstrate in Chapter 5.
In the context of the research questions and related research, these results are discussed in
the following Section 6.1. The limitations encountered in this research are summarized in
Section 6.2, followed by the conclusions on the research questions (Section 6.3). Further,
the outcome contributing to current scientific knowledge is presented in Section 6.4. The
final chapter provides an outlook of methods and analysis to be potentially implemented in
future research.

6.1. Discussion

In this section, the preliminary results, defining the hyperparameters of the U-Net in Sec-
tion 4.4.1, and the results achieved in Chapter 5 are discussed in the context of the results of
related research described in Section 2.7 and the research questions defined in Section 1.3.

First, the hyperparameters are discussed, starting with the initialization of weights. The ini-
tialization of random weights using He uniform stands in contrast to the often used transfer-
learning method in related research. The method is defined by the use of weights of another
model that was trained on large data sets containing millions of images, such as ImageNet
or COCO (ImageNet, 2020; Lin et al., 2014). In the case of this research, this method could
be especially useful to avoid initial fluctuations of validation losses in the training, which are
reinforced by little training data and small batch sizes. Transfer-learning could allow a head
start in the training, which is reflected by a constant training progress inducing the model to
converge faster, meaning that fewer epochs are required to train the model. For that purpose,
Da Costa et al. (2021) implemented pre-trained weights from ImageNet, although its effect
was not further examined. Nevertheless, the effect of implementing pre-trained weights is
debatable. Whereas De Jong et al. (2020) concluded that the model benefits from transfer-
learning, Malof et al. (2017) demonstrated that pre-trained weights are not a guarantee for
an improvement of the model’s performance.

Concerning the number of epochs, it is noticeable that most related projects are relying on
a constant number of epochs rather than implementing the early-stopping method, despite
the use of relatively high numbers of training images (De Jong et al., 2020; Malof et al.,
2017). Finding an appropriate number of epochs without causing the model to overfit was
especially challenging with few input images. The number of epochs is partially linked to
the number of input images since more images can train a model much faster than fewer
images. In comparison to this research, Castello et al. (2019) trained a U-Net on 4,680 images
for 75 epochs and Da Costa et al. (2021) trained a U-Net on 210 images for a fixed number
of 300 epochs, which is roughly the same number of images used in this research to train
the model on all areas. Nevertheless, it became clear that the number of epochs significantly
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depends on how well the model can detect PV panels, which is determined by the charac-
teristics of the ground truth data but also by the size of the PV systems, in proportion to
the image resolution and the image dimensions. Latter defines the proportion of target class
pixels per image, which varies concerning different land use types.

Additionally, the proportion of target class pixels per image patch is of great importance for
the loss function and the learning rate. Both hyperparameters are required to be selected
with care regarding the data used. It turned out that the combination of the BCE and a
learning rate of 0.0001 works best for the area-specific data sets, in comparison to the FL.
In contrast, both Castello et al. (2019) and Da Costa et al. (2021) aimed to address class
imbalances with weighted loss functions, such as the Dice Loss or the weighted pixel-wise
categorical cross entropy function. This would distort the comparison between area-specific
ground truth data since there is no class imbalance for commercial areas while there is
an imbalance for suburbs. This research addresses this issue by carefully choosing image
dimensions that consider PV system sizes of different land use types. Also, it was attempted
to counter-act the effect of class imbalances by solely considering those image patches that
contain target class pixels.

Nevertheless, the implementation of weighted loss functions can be a reasonable approach
for image resolutions of less than 10 cm. As indicated by De Jong et al. (2020), the minor
resolution difference between 10 and 20 cm impacts the model’s ability to differentiate small
objects, such as skylights, from PV panels. Similar results were obtained in Section 5.4.1
when the spatial resolution was decreased to 20 cm while keeping the same hyperparame-
ters. In addition to FP classifications that confuse skylights or glass roofs with PV panels, the
impact of heterogeneous environments (e.g., various types of urban objects, building shapes,
and heights) became evident. This impact is reflected by significant performance drops of
models that classified images of the city center.

It is hardly possible to compare the quantitative results of models that were trained on
millions of images (De Jong et al., 2020; Malof et al., 2017) and this U-Net, which relied
on 100-300 images when it comes to their significance. Nevertheless, similar challenges, as
well as qualitative results, can be observed in related projects. In summary, the performance
of the model trained on RGB images (10 cm) is quantified by an F1-score of 90.16% and an
IoU of 90.36%. The results of subareas vary between an F1-score of 74.89% for the suburbs
and 90.44% for the commercial area and IoU scores between 78.96% and 88.96% for the
suburbs (lower score) and the commercial area (higher score), respectively. In comparison,
this performance is significantly better than the U-Net’s performance of Castello et al. (2019)
achieving an F1-score of 80% and an IoU of 64%. Nevertheless, their model was applied to
a greater variety of urban and rural settings from different regions. In contrast, Da Costa
et al. (2021) achieved a better performance (F1-score: 95.38%; IoU: 91.17%), given that their
project focuses solely on one type of PV system, namely large-scale solar plants.

Moreover, two observations concerning the precision and recall scores occurred similarly in
related research. Firstly, the recall scores turned out to be lower than the precision scores
in all experiments, except in the case of the commercial area, which achieved the highest
recall of 91.5% (see Section 5.1.1). Da Costa et al. (2021) achieved a similar gap by obtaining
a recall score of 93.1% and a precision score of 88.5%. It can be assumed that this gap was
determined by the size of the PV systems (large-scale solar plants and large PV systems
in commercial areas) in the images, resulting in fewer target class pixels being omitted.
In the case of this research, the annotations of PV panels might contribute to a higher FP
rate, resulting in a lower precision score. The PV panels were annotated in form of PV panel
arrays, also in cases where there is barely a gap between the arrays. Having arrays annotated
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individually aimed to collect specific meta data about their color, which can differ when the
PV panels are directly exposed to the sun or slightly opposed. Especially smaller gap sizes
tend to be generalized by the model as one continuous surface by filling the gaps with FP
predictions, which affects the precision score (see Section B.2).

The second observation concerns a higher precision than recall score. The precision scores
of classifications at 10 cm resolution varies between 89.1% and 97.86%. The gap between
both scores is reflected by more FN than FP predictions, meaning that most PV panel classi-
fications are correct, while few PV panels are not detected at all. A comparable discrepancy
is observed in the results of Malof et al. (2017) achieving a recall of 80% and precision of
95%. The results of this research demonstrated that heterogeneous rooftops and PV sys-
tems in terms of rooftop sizes, shapes, and colors, as well as PV panel types, cause more FN
predictions which affect the recall score.

Another effect that could contribute to a lower recall score is the misclassification of PV pan-
els at the edges of image patches. To avoid such artifacts, Da Costa et al. (2021) followed the
image mosaicking approach by Carvalho et al. (2021), in which overlapping image patches
are generated to eliminate errors at the patches’ edges. Although this method was not im-
plemented in this research, a heat map showing all FN predictions (Figure 5.8) was created
to analyze potential errors. The heat map proved that no artifact is systematically generated
at the patches’ edges.

Furthermore, this research reflects the large-scale cross-validations conducted in the Deep-
Solaris project by De Jong et al. (2020) on a local level (see Section 5.2). In the DeepSolaris
project, the model’s performance remained constant when the training area was nearby the
validation area, while performance drops of the model were noticed for cross-validations
within an entire state as well as in a cross-border context. Similarly, this thesis proved
that differences in architectural and urban characteristics can already have an impact on the
model’s predictions within a city. In particular, this is the case between the suburbs and
commercial areas.

It is important to note that the impact of the NIR channel on the detection of PV panels
cannot be set in the context of related research as Da Costa et al. (2021) did not evaluate the
impact of the NIR band. Moreover, there is no further research known that examines the use
of the NIR channel in aerial imagery to detect PV panels. However, the results indicate mixed
effects. Minor improvements and declines in the detection rate were noticed in the images
of commercial areas and the city center, as well as in all images combined. In the case of the
suburbs, the NIR rather caused a performance drop of the model than an improvement of
the performance (see Section 5.3.1).

Overall, the implementation of the Adam optimizer, with a learning rate of 0.0001, and the
BCE as a loss function was beneficial for conducting the experiments described in Section 4.5.
The discussion of the hyperparameters and the corresponding results prove the importance
to consider the correlation between hyperparameters and area-specific ground truth data.
Therefore, improvements in the detection rate (in terms of the F1-score and IoU) can be
achieved for different land use types, when adapting the model’s hyperparameters such
as loss function, learning rate, the number of epochs, or batch sizes with regard to the
characteristics of the AOI and the PV systems. Finally, setting the quantitative and qualitative
results in the context of related research indicates how well U-Net performed in multiple
experiments.
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6.2. Limitations

The experiments indicate great potential for detecting PV panels on rooftops while having
certain limitations discussed in the following section.

Collecting ground truth data. Since the ground truth data is manually collected, its quality
strongly depends on the annotator’s ability to identify PV panels. As explained in Sec-
tion 3.2, objects are only annotated if they are PV panels with high confidence to avoid
feeding the model with false data. By doing so, PV panels that appear poor or ambiguous
in the image are neglected as training data to not affect the detectability of PV panels. The
annotator could overcome this limitation if accurate PV panel locations are available for the
training area. Having a complete ground truth data set has the potential of improving the
recall rate by omitting fewer PV panels while it might decrease the precision score due to
more FP predictions since the model becomes less specific about the object of interest.

Amount of input data. Having little training and validation data, and therefore small batch
sizes, reinforce fluctuations in the learning process. As a consequence, it takes longer to
reach the point of convergence, meaning more epochs are needed to train the model appro-
priately. Also, a larger set of ground truth data allows a more comprehensive representation
of reality, which increases the classification scores’ significance. Against this backdrop, the
results of the thesis must be considered in the context of limited data given.

Data augmentation. To analyze the correlation between rooftop and PV panel colors, the
input images were not augmented in terms of brightness, contrast, saturation, or hue. There-
fore, the basic data augmentation covering horizontal and vertical flips can be considered a
limitation to the overall performance of the model.

Weights. The impact of utilizing randomly initialized weights or transfer-learning is not
examined in this research. Therefore, it can be considered as a limitation as it is not known
whether the use of random weights is affecting the learning process compared to the use of
pre-trained weights. The choice to not implement transfer-learning in this thesis is based on
the number of image channels used as input. Pre-trained weights are commonly trained on
data sets consisting of 3 channel RGB images while this thesis incorporates 4 channel images
consisting of RGB and NIR. Approaches to incorporate this method only for the RGB channels
while initializing the weights for the NIR channel randomly would distort the comparability
between RGB and RGB+NIR classifications.

Output format. A minor drawback of the workflow implemented for this thesis is the
restriction to the PNG format instead of using TIFF. The restriction is determined by the
available input formats offered by TensorFlow. This complicates the use of output prediction
in geographical information systems (GISs). Nevertheless, a workaround to tackle this issue
is presented in Section 4.6.

6.3. Conclusion

• What is the impact of different land use types on the detection of PV panels?

The results of Section 5.1 demonstrate various aspects emerging from different land
use types that need to be considered when compiling an appropriate training data set.
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These aspects are variations in PV panels sizes and urban as well as architectural char-
acteristics that impact the efficiency of the networks’ learning processes and, therefore,
the quality of the classification. Commercial areas stand out due to their homogeneity
in terms of little variations in rooftop characteristics, such as roof colors, slopes, and
sizes. This homogeneity in combination with predominantly large PV systems facili-
tates the training process of the network since it can converge faster for clear structures
in which PV panels stand out noticeably due to greater coverage of target class pixels
per image patch. However, the opposite effect emerges from residential areas in the
suburbs having small PV systems installed on flat or pitched roofs with up to 6 dif-
ferent roof colors resulting in a low recall score caused by falsely classified PV panels
indicating a class imbalance (see Section 4.2.2 and Section 5.1.1). Despite a high preci-
sion score, very specific objects can be picked out that cause potential confusion with
PV panels, such as skylights, glass roofs, STC, and conservatories. Since a city center
represents a mix of commercial and residential characteristics, it is most suitable as a
training area for a network predicting PV panels in commercial areas and suburbs.

Overall, the experiments prove that it is of great relevance to adapt the training data
to the properties of the AOI.

• Why is the correlation between roof color and panel color affecting the detection of PV
panels?

Regardless of the land use type, the results indicate that networks are prone to failure
when black PV panels are installed on dark rooftops. In particular, this applies to black
PV panels without a bright frame, which affects their detectability since they compose
a continuous surface rather than clear patterns that are easier to recognize for CNNs.
Having black rooftops and PV panels predominantly located in suburbs (in the case of
this thesis) indicates an aspect contributing to a low recall score of 60.66% that impairs
the detection rate (Section 5.1.1). On the contrary, a high contrast composition of PV
panels and rooftops facilitates successful detections. Consequently, it is recommended
to pay attention to the rooftop color as it can be considered an essential factor affecting
the detection.

• What is the effect of adding near-infrared data to aerial images on the detection of PV
panels?

Adding a NIR channel to RGB imagery has indicated different effects on the detection of
PV panels in different areas (see Section 5.3.1). While there is little to no effect on the
detection process in the city center, there is only a marginal performance drop in the
case of the commercial area (from an F1-score of 90.44% to 88.72%) as well as a slight
increase in detection performance of all areas combined (from an F1-score of 90.16%
to 91.75%). These performance changes are marginal, which is why they cannot be
assigned to a specific cause. It can be assumed that these minor trends change when
the model is repeatedly trained due to little training data. Most noticeable are the
negative impacts on the detection rate of PV panels in the suburbs, where the F1-score
declines from 74.89% to 68.21%. In this case, analyses have shown how the NIR channel
contributes to misclassifications between PV panels and other objects. Nevertheless,
the classification based on all areas (300 images in total) achieves the highest F1-score
of all experiments of 91.75%.

• How sensitive is the model towards lower-resolution images with regard to the PV
system size?
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The DL model is particularly sensitive towards lower-resolution images of areas in
which comparatively small PV systems are located (see Section 5.4). Accordingly, the
sensitivity depends strongly on the ratio between the spatial resolution and the image
patch dimensions. In this study, the spatial resolution is decreased from 10 to 20 cm per
pixel while keeping the patch pixel dimensions to feed the U-Net with the same num-
ber of input pixels as for image patches of 10 cm resolution. Consequently, a scenery
of a greater extent is shown to the network in which PV panels cover smaller portions
of image patches represented by fewer pixels, which causes a greater imbalance be-
tween target class pixels and background information. Further, the characteristics of
PV panels are less noticeable in the image making it more challenging for the model to
learn them. Additionally, more objects are exposed to the model which might increase
the risk of misclassification.

Conclusion on the main research question:

• To what extent is a CNN with U-Net architecture suitable for detecting PV panels on
rooftops?

This thesis aims to detect PV panels on rooftops using a CNN with U-Net architecture.
Within the scope of the research questions, the outcomes provide insights into the suit-
ability of a U-Net to detect PV panels. Multiple aspects need to be considered to allow
successful classifications, such as defining ground truth data with urban and archi-
tectural characteristics corresponding to the area of predictions as well as appropriate
hyperparameters concerning the ground truth data. The impacts of these character-
istics are outlined by the subquestions indicating that a U-Net is overall suitable for
classifying PV panels on RGB TrueDOPs at 10 cm spatial resolution.

6.4. Contribution

The contributions to scientific knowledge concerning semantic segmentations of PV panels
through CNNs are summarized by the following categories.

Land use types. This thesis contributes to research by emphasizing the impact of differences
in land use types and their characteristics on the detection of PV panels. It proved that
urban and architectural differences within one city have a significant impact on the detection
rate of a CNN with U-Net architecture. Therefore, it brings new knowledge to data-driven
approaches concerning the detection of rooftop PV panels with CNNs.

Rooftop colors. The research conducted specific analyses to gain a better understanding of
the correlation between rooftop color and PV panel types. This knowledge helps to interpret
the recall and precision scores of semantic segmentations with CNNs.

NIR. The integration of NIR data in the training of a CNN for PV panel detection is an ap-
proach that has rarely been examined in related research. The results and analysis provided
in this thesis indicate that adding a NIR to RGB imagery is not causing a significant improve-
ment in the model’s performance. Nevertheless, it might have potential when analyzed in
semantic segmentations that are based on more training data.

Change of resolution. Comparing different sizes of rooftop PV systems in different urban
environments showed how crucial the proportion between image dimensions, spatial res-
olution, and the PV system sizes is. The thesis presented an approach that considers the
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rooftop sizes of the AOI in proportion to the image patch dimensions to find appropriate in-
put dimensions. This helps in the prevention of class imbalances between target class pixels
and background information.

6.5. Future work

Drawing on this thesis’s limitations and insights gained during the work, recommendations
and ideas about future research are presented in the following.

Additional input data. Future approaches to improve the classification of PV panels could
make use of additional data. For instance, the use of height data or building footprint could
put attention on the rooftop to reduce confusion with other urban objects in the surround-
ing.

Another approach could be the use of thermal infrared imagery, which recently gained pop-
ularity for monitoring the condition of PV panels. The promising results of Wang et al.
(2022) and Buerhop et al. (2022) show how effective the use of thermal images can be in de-
tecting PV panels in complex surroundings. Given the availability of georeferenced thermal
imagery, which is often not available as open data, its usage as an additional image channel
would outline an interesting data foundation for classifying PV panels in urban areas.

Classes. Since this thesis has focused on the detection of PV panels, a binary classification is
employed. However, the implementation of a multi-class classification incorporating ground
truth data of PV panels and STC could allow more precise learning to distinguish both types
of panels.

Amount of training data. The process of collecting ground truth data is time-consuming
and strongly depends on the annotator’s knowledge of the PV system locations. As proven
by Kriese et al. (2022) and Liu et al. (2020), enriching training data set with synthetic data
generated by AI has great potential to increase the performance of CNNs. This method could
help in future applications to train a CNN on larger data sets with greater varieties of PV
panels.

Weights. Given the data basis of RGB imagery, it is recommended to make use of transfer
learning to integrate pre-trained weights in the CNN. Nevertheless, it should be analyzed
whether transfer-learning or random weights achieve better performances to obtain optimal
results.

Regularization. Having a greater amount of data allows a more stable and, therefore, re-
liable learning process. Therefore, it is recommended to implement the method of early
stopping to finish the training process at an appropriate number of epochs. If the method of
early stopping is not implemented, it is of great importance to find the point of convergence
manually to prevent the model from overfitting. It is inadvisable to rely on epoch numbers
that were used in related research since the detectability of PV panels can be affected by the
land use type, region, and country. In addition to batch normalization, a dropout method
can be implemented to prevent the model from overfitting (Srivastava et al., 2014).
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A. Reproducibility self-assessment

A.1. Marks for each of the criteria

Figure A.1.: Reproducibility criteria to be assessed.

Grade/evaluate yourself for the 5 criteria (giving 0/1/2/3 for each):

no. criteria grade

1. Input data Aerial images 3
Ground truth data 0
Building footprints 3
Land use maps 3

2. Methods Preprocessing 1
Analysis 1
Computational environment 2

3. Results 1

Table A.1.: Evaluation of reproducibility criteria
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A.2. Self-reflection

This chapter provides a self-reflection about the reproducibility of this thesis, which is di-
vided into the criteria of input data, methods, and results.

The first criterion concerns the training data, the building footprints, and the land use maps.
The aerial images are permanently available in the SDI of NRW, see GeobasisNRW (2023).
Similarly, the building and land use maps are openly available, see OpenNRW (2022b) and
OpenNRW (2022b). In contrast, the ground truth data is manually generated and not pub-
licly available.

The implemented preprocessing steps and analyses are reproducible by following the docu-
mentation given by this thesis in Chapter 3 and Chapter 4. The computational environment
concerns mainly free usable software, such as QGIS, and programming languages like R
(in R-Studio) and Python (in Visual Studio Code). Additionally, the programming language
JavaScript was used in the computing platform GEE, which is free for noncommercial pur-
poses. The most important environment for carrying out the work was the Colab from
Google Research in combination with the ML library TensorFlow. Access to Colab is free.
Nevertheless, to have constant access to the computing resources of the GPUs, 100 compute
units were acquired for a fee of 9.25 €.

Lastly, the results and analyses are documented in form of descriptions, tables, and maps in
Chapter 5. Additional output images that were used to compute a heat map in Section 5.1.1
are provided in the Appendix B. Moreover, samples from the output generated in cross-
validation experiments are summarized in Appendix C.
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B. Images, labels, and predicted masks included for heat map
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B. Images, labels, and predicted masks included for heat map
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B.1. Patches from all areas

   

   

 

Figure B.1.: All subareas: RGB testing images, labels, and prediction
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B. Images, labels, and predicted masks included for heat map
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B.2. Model for commercial area
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B. Images, labels, and predicted masks included for heat map

   

   

   

   

   

 

Figure B.2.: Commercial area: RGB testing images, labels, and prediction
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B.2. Model for commercial area
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B. Images, labels, and predicted masks included for heat map

B.3. Patches from the city center
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B.3. Patches from the city center

   

   

   

 

Figure B.3.: City center: RGB testing images, labels, and prediction
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B. Images, labels, and predicted masks included for heat map
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B.4. Patches from the suburbs
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B. Images, labels, and predicted masks included for heat map

   

   

   

   

   

Figure B.4.: Suburbs: RGB testing images, labels, and prediction
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C. Sample results of cross-validation

C. Sample results of cross-validation

Figure C.1.: Cross-validation examples showing RGB testing images, labels, predicted prob-
abilities, and prediction masks
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