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Abstract

Point cloud data are gaining more importance in the Geomatics domain, with the develop-
ment of modern sensing technologies like LiDAR and photogrammetry. The size of massive
point clouds are growing, and the performance of traditional database solutions for its data
management become insufficient. It remains a huge challenge for researchers to come up
with a data management solution that handles the huge volumes of data, while providing
standardized functionalities (Van Oosterom et al. [2015]).

Space Filling Curve (SFC) has been explored as a good spaital access techniques for organiz-
ing point clouds. Existing SFC-based database solutions include PlainSFC (Van Oosterom
et al. [2015]), HistSFC(Liu [2022]), etc. However, they use a flat table to store point records
and it is not compact for massive point clouds. In this thesis, a SFC-based database solution
that manages point cloud in blocks is proposed. The purpose is to improve the performance
of current point cloud database solutions, especially with storage space. This model orga-
nizes the point clouds based on Space Filling Curve, and innovatively splits each SFC key
to a head and a tile. The points with the same SFC head are placed in the same block. SFC
tails and other property dimensions are stored as arrays in other columns.

Compared with the pgPointCloud and Oracle SDO PC, the intermediate SplitSFC prototype
does not show significant advantage in storage and data retrieval efficiency so far. However,
it is fair to believe that with the improvement of algorithms and implementations, it has the
potential to be an approximate and efficient point cloud data management solution.
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1. Introduction

1.1. Problem Statement

A point cloud is a discrete set of points in 3D space, and is one of the most widely used
formats for representing 3D shapes and objects. The most significant advantage is its sim-
plicity and efficiency in representing 3D data. It stores the coordinates of individual points
in space, rather than the complex geometry of surfaces and shapes, and may contain other
attributes like intensity, classification, etc. This makes it easy to process and analyse large
amounts of 3D data, such as from LiDAR sensors or 3D scans. Additionally, point cloud
data can be easily visualised, shared, and integrated with other software and systems. With
the developments in the point cloud acquisition technologies, like terrestrial and airborne
laser scanning, mobile mapping, image matching and multi-beam echo-sound techniques
etc., it becomes easier and easier to acquire data. Therefore, it is widely used in industries
such as surveying, architecture, engineering, construction, and robotics for applications such
as Building Information Modelling (BIM), 3D scanning, and autonomous navigation. The
popularity is expected to continue to grow in the coming years as the technology becomes
more widely available and the cost of data acquisition decreases.

The majority of the application of point cloud data is currently done at the file level, but
an efficient database solution is still crucial. Database Management System (DBMS) has ad-
vantages in functionalities, optimised disk IO strategies and automatic parallelization in the
query executions [Van Oosterom et al., 2015]. There are many commercial or open-source
DBMSs available and suitable to manage spatial data, like Oracle, PostgreSQL, MonetDB, etc.
Researchers and engineers have explored this field for many years. However, the database
solutions are still not mature yet, and the specific approach should depend on the use case,
the size and the structure of the data, and the type of queries frequently performed. The
most significant challenge is the size of the point cloud data. Point clouds can have large vol-
ume, with billions of points. Traditional relational databases are not well suited for handling
this amount of data. Other challenges include the need for fast querying and indexing, and
the need to support multi-dimensional data. To improve the performance, common tech-
niques include compression, sampling, indexing, partitioning, database optimization and so
on. One appropriate approach is to use Space Filling Curve (SFC) to group and encode the
points. Existing soluions include PlainSFC [Van Oosterom et al., 2015], HistSFC [Liu, 2022],
etc., but they do not employ a block-based storage and are not compact for massive points.

In this research, we come up with an improved storage model to increase the efficiency of
storage and manipulation of point clouds in databases. The approach is to split the SFC key
in a head and tail part and make blocks of points inside the database based on the SFC head,
resulting in a more compact storage. The effect on the manipulation of the data will also be
investigated, like the efficiency and of retrieving points. The expected outcome includes a
data model, a Python-based software for importing, querying and exporting, and a scientific
benchmark.
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1. Introduction

1.2. Use cases

Point cloud, as a representation of three-dimensional objects or environments created by
gathering a large number of points in 3D space, have numerous applications across vari-
ous industries. The ease to collect data and the richness, accuracy and versatility of point
cloud data contribute to its widespread use and growing popularity in various industries,
supporting diverse applications and enhancing decision-making processes.

A storage solution of massive point clouds is crucial, because it is the foundation of almost
all applications of point clouds. One major obstacle is to have a storage solution that is both
compact for storage space and efficient for data retrieval. The goal of our research, is to
come up such a solution and provide foundations for rich point cloud applications.

1.2.1. Data collection techniques

We can compare the data generation of 3D objects in CityGML and point clouds. CityGML
uses geometry to describe the shape of each 3D object, while point clouds use the location
of each point. The sensors, however, cannot directly distinguish the objects from each other.
Therefore, the sensor can first scan the 3D city objects and output the data as point clouds.
If the user wants CityGML to represent the landscape, the point clouds can be converted to
CityGML format later on, with some advanced algorithms.

The ease to collect massive point cloud data has improved significantly thanks to the devel-
opment of modern sensing technologies. Point clouds can be generated from various data
sources, such as LiDAR (Light Detection and Ranging), photogrammetry, navigation system,
laser scanning, or other 3D scanning technologies. The data collection technologies enable
point clouds to have applications in diverse fields and for different purposes.

LiDAR (Light Detection and Ranging)

The data collection process of the LiDAR system is simple and convenient. The LiDAR
system emits laser pulses towards the target area. The laser beams hit objects and return
to the sensor, measuring the time taken for the round trip. This information, combined
with GNSS (Global Navigation Satellite System) and IMU (Inertial Measurement Unit) data,
helps determine the precise 3D location of points. In the end, a large set of points will be
collected.

Photogrammetry

Photogrammetry is an image-based 3D reconstruction method. It uses a camera to capture
multiple 2D images of an area from different angles. The algorithm analyzes the overlap-
ping images to triangulate and create 3D point clouds by identifying common features and
reconstructing the geometry based on visual information.

1.2.2. Applications

The most significant advantage of point clouds is its accurate and rich details. It can de-
scribe the shape and geometry of 3D objects in detail, and it can also include the details of
texture, colour and intensity, providing a foundation for comprehensive analysis and visual-
ization. For example, Virtual Reality (VR) and Video Gaming needs a highly detailed scene

2



1.2. Use cases

Figure 1.1.: Real-time 3D vision on the car using LiDAR system
Source: Velodyne Lidar technology, 2020

Figure 1.2.: Using photogrammetry technique to reconstruct a pub with 102 images

to enhance the visual quality and realism of virtual reality experiences. Point clouds are
very suitable for this kind of application. Other possible applications include construction
of architecture and built environments, asset management, environmental change detection,
autonomous vehicle detection, and so on. In the Geomatics domain, point clouds can also
be integrated with Building Information Modeling (BIM) and Geographic Information Sys-
tems (GIS), enhancing data interoperability and enabling more comprehensive modelling
and analysis.

Digital Terrain Modelling (DTM)

A Digital Terrain Model (DTM) represents the bare ground of earth surface, removing any
above-ground object like buildings and vegetation. In theory, point cloud is not considered
valid representations of a terrain, because the rules to reconstruct the surface at unsampled
locations are not defined. Still, a DTM is usually generated using point cloud. Commonly-
used operations for point clouds that represent terrains include thinning, ground filtering,
outlier detection, shape detection and so on.

The Actueel Hoogtebestand Nederland (AHN) dataset is the Dutch national elevation dataset.
It is also the test dataset of our research. The AHN2 dataset contains 639 478 217 460 points.

3



1. Introduction

There are many applications, such as urban planning, civil engineering and hydrological
and flood risk Assessment. Take hydrological and flood risk assessment for example, the
elevation and gradient of the ground level are used to determine flow direction of each grid,
and the amount of water can be calculated in the area, so that the experts can predict the
water level in the ditches and rivers, whether floodplains and ditches can be sufficiently
drained and whether the dikes are still high and strong enough.

Figure 1.3.: The point clouds of a custom shape area from the AHN3
Source: rAHNextract, 2020

Figure 1.4.: Simulation of a flood event in New Mexico
Source: USGS

Online Point Cloud Service

Online point cloud service is easy and convenient for users, and can accommodate rich
functions to meet various requirements, from visualizing and downloading point cloud data
to implementing complex point cloud analysis.

Online point cloud service usually has a multi-layer and complex structure. Liu [2022]
proposed a 5-layer architecture on the cloud computing platform (Figure 1.5), combining the
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1.2. Use cases

inspiration from previous work [Richter and Döllner, 2014; Wang et al., 2018] and various use
cases. Due to the nature of handling massive datasets, online massive point cloud services
face several technical challenges. The performance is crucial, as users often require quick
and seamless access to specific portions or segments of point cloud data. As the volume of
point cloud data continues to increase, scalability becomes a critical factor. The data storage
and retrieval are a core part of the architecture.

Figure 1.5.: A 5-layer design of architecture of point cloud computing platform
Source: Liu, nD-PointCloud Data Management, 2022

A good example is the AHN2 3D viewer and download tool [van Oosterom et al., 2017;
Van der Maaden, 2019]. Previous AHN2 viewer only provide 2D visualizations for seletion,
but it cannot provide rich details from 3D point cloud, because the large volume of data
make it very demanding for the data storage, processing speed, and bandwidth and network
constraints. To solve the problem, the storage of AHN2 3D viewer is based on an octree
structure proposed by Schütz [2016], which took around 15 days with processing distributed
in different machines and processes. Since the surface of the Netherlands is very flat, this
octree structure of AHN2 is quite similar to a quadtree structure.
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Figure 1.6.: A screenshot of AHN2 3D viewer

1.3. Research questions

1.3.1. Research questions

In the research of literature and existing methods, we find that one major issue of point
cloud database solutions is the huge storage space because of the large volume of point
cloud data. Some existing solutions have employed Space Filling Curves to improve data
organization and querying performance. Noticing the characteristics of Space Filling Curve
(SFC) keys, such as the relationship between Morton Curve and 2n-tree structure, we can
consider designing a new storage model called SplitSFC, where SFC keys are split into two
parts, and the points with the same SFC head are stored in same block. We will study
its effect in storage and operational efficiency. Therefore, the main research question is
addressed as follows:

Does employing the split Space Filling Curve approach constitute an effective strategy
for managing massive point clouds in a relational database?

In order to answer the main question, the following sub-questions are proposed:

• How to efficiently use SFC to organise the points in blocks?

• How to split the SFC keys, i.e. by fixed-length or adaptive algorithm?

• How to query the points based on the suggested method?

• How does the proposed method work compared to the current solutions?

1.3.2. Research scopes

The main purpose of the research is to propose an improved storage model to efficiently
store and manage massive point clouds in the relational database. The methodology will
focus on splitting the SFC keys and making point blocks based on it. Eventually, a scientific
benchmark and comparison of different strategies will be made to validate the practicality
of the new methodology.
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On the other hand, the following aspects are not studied in this research:

1. The performance of various Space Filling Curves. We will only use the Morton curve
in this research.

2. Various selections of organizing dimensions. We will only encode X and Y coordinates.
Other dimensions like Z coordinate, time component, LoD and other attributes will not
be encoded into SFC key.

3. Compression of property dimensions. The research focuses on encoding and compres-
sion of the organizing dimensions, notably X and Y coordinates.

1.4. Thesis outline

The outline of the thesis is structured as follows:

Chapter 1 introduces the research topic about the data management of point cloud, the
potential use case of the study, the research questions and scopes and the thesis outline.

Chapter 2 explains the theoretical background of the research, including point cloud and its
data management and the spatial access methods. The data management system includes
file-based system and database management system. The most important spatial access
method is the Space Filling Curve.

Chapter 3 summarizes the existing database solutions for point clouds, especially the SFC-
based solutions. The state-of-the-art block-based storage models are pgPointCloud and Or-
acle SDO PC, and the SFC-based solutons include PlainSFC, DynamicSFC and HistSFC.

Chapter 4 describes the methodology of SplitSFC approach, including the motivation for the
design, storage model, the loading and querying procedure, and the benchmark framework.
The main idea of the methodology is the splitting of the SFC keys and making blocks based
on split SFC.

Chapter 5 details the used tools and the implementation, including hardware and software
environment, datasets and the details of constructing the pipelines.

Chapter 6 describes and analyses the results of the benchmark. From the mini-benchmark,
we gain more knowledge about the effects of parameters. From the medium benchmark, we
evaluate the performance of the SplitSFC prototype and compare it with that of pgPoint-
Cloud and Oracle SDO PC.

Chapter 7 draws the conclusions extracted from this benchmark, together with limitations
and future work.

Finally, the appendices contain the details, including the descriptions of the tested queries,
the specific data of the benchmark results and the usage of the prototype.
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2. Theoretical background

This chapter aims to provide the relevant theoretical knowledge for the subjects that will
follow in the rest of the thesis. With these introduced, the readers can understand the main
problem and approaches in this field.

The chapter is organised as follows: Section 2.1 introduces what the point cloud is, and the
term of point cloud data management system. Section 2.2 introduces Spatial Access Methods
in the database, namely how to index and cluster the points. Section 2.3 introduces the most
widely-used file system, including LAS / LAZ format and relevant softwares. Section 2.4
introduces the three types of model in point cloud DBMS solutions.

2.1. Point Cloud

A point cloud is a set of points in three-dimensional space. Point clouds are multi-dimensional
data. Each point usually contains XYZ coordinates and other attributes, like intensity, classi-
fication, RGB colour, etc. The major sources of the point clouds include the Light Detection
and Ranging (LiDAR) systems, photogrammetry, 3D scanning, navigation systems and con-
version from other types.

Van Oosterom et al. [2015] proposed that point clouds should be recognized as a distinct
form of spatial data representation, alongside vectors and rasters. While point clouds exhibit
similarities with vector-based structures due to their point-based nature, they also share
characteristics with raster data owing to their sampling nature. However, point clouds are
irregularly scattered, and differ from individual points or multi-points in vectors. Point
clouds are gaining more popularity and importance in the industry and academia. Hence,
it is necessary to acknowledge them as the third spatial data type and build standardization
for wide usage.

2.1.1. Dimensions and design aspects

The nature of the dimensions of the point cloud (Liu [2022]) is distinguished as follows:

• Spatial dimensions (XYZ): It is the most basic dimension for point clouds, as point
clouds are spatial data. XY or XYZ can be organized together in some spatial queries,
but Z dimensions may be queried less compared to X and Y dimensions, as query is
more often based on the footprint area, and XY indicates the location in the footprint
while Z indicates the height. The spatial extent of the point cloud is often stored in the
metadata of the point cloud.

• Temporal dimension: It is the acquisition time of the point, usually in GPS time. It
is also a key dimension, especially in spatio-temporal applications. With temporal
information, we can perform change detection with the point clouds.
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• LoD (Level of Detail): It delineates the level of intricacy within the 3D points. The
Level of Detail (LoD) holds significant importance in balancing data precision, storage
capacity, and computational demands. Certain systems or software platforms have
the capability to adjust LoD according to either the user’s preferences or the viewing
distance. For instance, during zoomed-out views, a lower LoD could be presented to
enhance efficiency, whereas zooming in prompts a transition to higher LoD to provide
more intricate details.

• Classification: It shows the type of object that the point belongs to. It enables point
cloud data to perform semantic analysis, e.g. the attributes of trees or buildings
in a certain region. The classification codes of LAS files are 0-never classified, 1-
unclassified, 2-ground, 6-building, 9-water, etc.

• Other property dimensions: Other dimensions are relatively less important than other
dimensions, and they may be not used in data organization or indexing, but they may
still be useful in some specific tasks. For example, RGB colour is useful in visualization,
and intensity can be used in 3D object detection and segmentaton.

Apart from the nature of the dimensions above, Van Oosterom et al. [2015] present more rel-
evant aspects to consider during the design phase of massive point cloud data management
systems:

• Spatial Access Method: It involves organizing points effectively, utilizing strategies
such as efficient blocking, clustering (employing Space Filling Curves), and various
indexing techniques within multidimensional space. A significant factor impacting
the clustering facet involves selecting dimensions for the calculation of clustering keys,
such as utilizing 2D (X, Y) or 3D (X, Y, Z) configurations.

• Compression technique: It plays a vital role in reducing storage space and facilitating
dissemination through wireless networks.

• Operation: It encompasses tasks such as loading, selecting, and complex algorithms
on point clouds, such as computing normal vectors, nearest neighbor search, and more.

• Parallel processing technique: It can maximize the computational capabilities of com-
puters. Parallel processing should in general have a better performance than single-
process systems, enabling more efficient utilization of computing resources.

2.1.2. Point Cloud Data Management System (PCDMS)

Point Cloud Data Management System (PCDMS)[Van Oosterom et al., 2015] refers to a sys-
tem that stores, organizes, processes and visualizes large volumes of 3D point clouds. It can
be categoried into file-based systems, database management systems, and hybrid systems.
The key challenge of PCDMS is to handle massive data and offer standardized functionalities
at the same time [Van Oosterom et al., 2015].

File-based systems use a file or a set of files to store the point cloud data, and rely on soft-
wares to edit, process, analyse and visualize them. Regardless of the format, a point cloud
file can often be seen as an array of point records, each of which contains the spatial co-
ordinates and potentially other dimensions. The file formats include ASCII format (plain
text file), PLY format (a standardised ASCII format) and LAS format. File-based systems
are flexible and efficient, and functionalities can be supported by the softwares. Therefore,
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currently most applications are based on file-based systems. However, it lacks native func-
tionality support, and the data retrieval has to go over many files, which is not convenient.
The LAS format and corresponding softwares are described in Section 2.3.

The Database Management System, on the other hand, manages the storage and the retrieval
both based on the DBMS itself. Softwares or programming languages are usually used for
complex algorithms only. For example, Structured Query Language (SQL) can be used to
query and update the data. The storage and querying can be more efficient with native
support, like parallel process techniques. Therefore, it is of high practical value to perform
research on the DBMS solutions for massive point clouds. The existing database solutions
are summarized in Section 3.

2.2. Spatial Access Methods

Spatial Access Methods are crucial in Point Cloud Database Management Systems (PCDBMS)
for efficient spatial operations. It has two aspects, spatial indexing and spatial clustering [van
Oosterom, 1999]. Point clouds are usually large and distributed in an irregular manner, and
the Spatial Access Method can speed up the spatial queries significantly.

Spatial indexing enables the system to know storage location fast when searching for certain
objects. Otherwise, a ’full table scan’ has to be done in a relational database, which means
that every record in the database has to be checked whether it meets the spatial selection
criterion. And Spatial Clustering stores neighbouring points physically together.

Figure 2.1.: Common spatial indexing methods

2.2.1. Importance of spatial indexing

Spatial Indexing is a key technique in the Point Cloud DBMS solutions. L Li et al. [2023]
summarized the two factors that have determined the spatial indexing techniques that have
been proposed.

First, the index can filter and exclude a large number of spatial targets unrelated to the
spatial operation, and improve the efficiency of spatial query. It enables the system to know
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storage location fast when searching for certain objects. Without a spatial index, a ’full table
scan’ has to be done in a relational database. As spatial data sets are usually very large,
this is unacceptable in practice for most applications. Therefore, a spatial index is required,
which enables the system to find the required object addresses efficiently without looking at
every object.

The second is that the multidimensional nature of the point cloud data makes traditional
database indexing techniques unsuitable. Point clouds have the following properties:

1. Point cloud has spatial dimensions and property dimensions, and the spatial dimen-
sions have a large amount of data;

2. The spatial operations of point clouds (such as spatial selection) require special calcu-
lations and it costs a large amount of calculations;

3. Point cloud data is multi-dimensional and needs to be specifically defined with a rea-
sonable order, making it impossible to apply common sorting techniques.

Therefore, a suitable spatial indexing method is vital in the database solution design. In
the storage process, the spatial indexing technique maps multi-dimensional data to a linear
space and has a clustering effect of storing spatially adjacent and query-related points physi-
cally together. In the querying process, it is a bridge connecting spatial query operations and
point cloud objects, and improves query speed significantly by eliminating a large number
of irrelevant targets.

Commonly used spatial indexes include grid index, B-tree index, R-tree index, Quadtree
index, Space Filling Curve, etc. They are introduced in the following sections.

2.2.2. One-dimensional indexing

Binary Search Tree

The Binary Search Tree (BST) is a rooted binary tree data structure with the key of each
internal node being greater than all the keys in the respective node’s left sub-tree and less
than the ones in its right sub-tree. This property makes it possible to efficiently search,
insert, and remove items in the tree. However, it is impractical for massive data due to poor
performance and high memory usage.

BST was discovered independently by several researchers. The algorithm is attributed to
Conway Berners-Lee and David Wheeler for the problem of storing labeled data in magnetic
tapes [Windley, 1960].

Figure 2.2.: A Binary Search Tree of size 9 and depth 3
Source: Wikipedia
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B-tree and its variants

B-tree [Bayer and McCreight, 1970], short for Balanced Tree, generalizes the Binary Search
Tree and allows for nodes with more than two children. It is a self-balancing tree where
all the leaf nodes are at the same level which allows for efficient searching, insertion and
deletion of records.

B-tree has a guaranteed time complexity of O(log n) for basic operations like insertion, dele-
tion, and searching, which makes it suitable for large data sets and real-time applications.
However, B-tree can have a high disk usage, and it does not suit all cases.

Figure 2.3.: A B-tree of depth 3
Source: Introduction of B-Tree, Geeks for Geeks

Apart from B-tree, sorted arrays and hash-based indexing can also be used to organize one-
dimensional data. For example, in our proposed data model, B-tree index is created in SFC
heads, and SFC tiles are organized as sorted arrays. Notably, these 1D indexing methods can
also be applied to multi-dimensional data if they are mapped to one-dimensional, with the
help of methods like Space Filling Curve. This topic will be further introduced in Section
2.2.4.

2.2.3. Multi-dimensional indexing

Multi-dimensional indexing poses more challenges due to the increase in complexity. In
high-dimensional spaces, data tends to become sparser, meaning that the available data
points are located farther apart from each other. This sparsity negatively impacts the effec-
tiveness of traditional indexing methods.

Multi-dimensional indexing mainly consists of hashing and the hierarchical methods [Gaede
and Günther, 1998]. In this section, we introduce two hierarchical indexing methods, R-tree
and 2n-tree, and their variants.

R-tree and its variants

R-tree [Guttman, 1984] is the one of the most widely used spatial indexing structures. The
‘R’ in R-tree refers to rectangle. Its fundamental design revolves around the organization
of spatial objects within a balanced tree structure. Each node in the R-tree encompasses a
bounding rectangle that encapsulates spatial objects or child nodes.

The root node of R-tree encompasses all the spatial objects in the dataset. Intermediate
nodes represent bounding rectangles that enclose their child nodes’ spatial extents, and
leaf nodes contain references to the actual spatial objects or further node levels. R-trees
dynamically adjust their structure by splitting nodes or merging nodes to maintain balance
and optimize query performance. These adjustments occur during insertions or deletions to
ensure efficient search operations.
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R-trees efficiently handle spatial queries, such as range searches, nearest neighbor searches,
and intersection queries. They exploit the hierarchical nature to prune irrelevant branches of
the tree during searches, reducing the search space and improving query performance. R-
trees have many variations, such as R*-tree. R+-tree, Sort-Tile-Recursive-tree, and Hilbert R-
tree. R*-tree employs more sophisticated node splitting and reinsertion techniques compared
to the traditional R-tree, aiming to enhance the tree’s balance and reduce overlap among
bounding rectangles. And R+-tree reduces overlap among bounding rectangles and refines
the splitting strategies in order to minimize unnecessary space overlap between rectangles
while maintaining efficient query performance.

(a) 2D

(b) 3D

Figure 2.4.: R-trees for point clouds
Source: Wikipedia

2n-tree and its variants

2n-tree is based on recursive decomposition of multi-dimensional space into 2n equal sub-
regions [Finkel and Bentley, 1974]. It starts with a root node representing the entire area,
which is then recursively divided into 2n equal sub-regions, called child nodes. Each sub-
region is represented by 2n children in a 2n-tree, leading to a tree-like structure where each
node either has 2n children or is a leaf node (a node with no children). The 2n-tree is called
Quadtree in 2D space and Octree in 3D space.
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(a) Space division of Quadtree (b) Tree structure of Quadtree

(c) Space division of Octree (d) Tree structure of Octree

Figure 2.5.: A Quadtree and a Octree structure
Source: OpenDSA & Sung et al. [2001]

The Quadtree family encompasses variations like Point Quadtree, which stores points at the
leaf nodes, and Region Quadtree, which stores information about regions in the leaf nodes.
Point-region (PR) Quadtree [Orenstein, 1982] stores a list of points that exist within a region
in the leaf nodes. These variations allow for flexibility in handling different types of spatial
data efficiently.

Morton curve is a type of Space Filling Curve and it can represent the materialized path in
2n-tree. This property will be introduced in Section 2.2.4.

2.2.4. Space Filling Curves

Space filling curve is a continuous, self-repeating curve that traverses through every point
in a given space. It was initially proposed in the 1890s. From a mathematical point of view,
the space filling curve can be regarded as a method of mapping a multidimensional data
space into a one-dimensional data space. As a curve, the space filling curve passes through
each discrete grid in the multi-dimensional space, and only once through each grid cell, and
finally the grids of the multi-dimensional space are numbered uniformly in a linear order.

There is no natural ordering in the multi-dimensional data space in the first place. The fact
that storage disks are one-dimensional storage devices complicates the problem of storing
multi-dimensional data in a one-dimensional space. Therefore, a mapping function from a
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(a) Point Quadtree (b) Region Quadtree

Figure 2.6.: A Quadtree and a Octree structure
Source: Psomadaki [2016]

multi-dimensional space to a one-dimensional space is needed. This mapping function is
distance-invariant, so that adjacent elements in the space are mapped to points on a straight
line and correspond one to one. Among all space filling curves, Morton curve (Z-order curve
or Peano curve) [Morton, 1966] and Hilbert curve [Hilbert, 1935] are most widely used with
spatial data.

Figure 2.7.: Common Spatial Filling Curve
Source: van Oosterom [1999]

Hilbert Curve

The Hilbert curve is named after mathematician David Hilbert. The Hilbert curve exhibits a
structured, fractal-like shape. It is constructed by recursively dividing a space-filling square
or hypercube into smaller squares or hypercubes and then connecting these smaller elements
in a specific order to form a curve.
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The Hilbert curve is good at locality preservation. Nearby points in multidimensional space
tend to be close to each other along the curve. This property makes it useful for applications
where preserving the spatial relationship between data points is essential.

Figure 2.8.: The Hilbert Curve for 2, 4 and 8 bit representation
Source: Psomadaki [2016]

Morton Curve

The Morton curve, named after its creator, G. Morton, also referred to as the Z-order curve
due to its zigzagging pattern, is a method used for interleaving the bits of multiple di-
mensions to create a one-dimensional curve. This curve maintains spatial proximity among
adjacent points in multiple dimensions by combining the coordinates of points along differ-
ent axes into a single value, where nearby points in space tend to have nearby values on the
curve. However, it results in ‘jumps’ in the curve. In other words, two consecutive keys may
not always be neighbouring to each other.

The Morton curve works by partitioning the space into smaller squares or hypercubes and
then recursively subdividing these squares or hypercubes into smaller regions. This process
generates a curve that visits each subdivision in a specific order, ensuring that nearby points
in space are also close along the curve.

Figure 2.9.: The Morton curve for 2, 4 and 8 bit representation
Source: Schütz [2016]

If we compare Morton Curve and Hilbert Curve, we can tell that Morton Curve is easier
to implement, and Hilbert curve excels in explicitly preserving spatial locality. The choice
between Morton and Hilbert curves often depends on the trade-offs between simplicity,
locality preservation, and the specific needs of the application at hand.

Morton-Quadtree hierachy
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The Morton Curve has a strong connection with the 2n-tree [Van Oosterom et al., 2015].
It can represent the hierarchical structure of 2n-tree. Figure 2.10 illustrates the node and
the range in 2D. All points have integer coordinates. By truncating the last n bits of the
Morton codes of the points recursively, Morton codes at upper levels are derived. That
is to say, the Morton codes of points implicitly have a hierarchy which is equivalent to a
Quadtree structure. A branch node covers the nodes on the level below, and represents the
spatial extent of a quadrant. Thus, the branch node also indicates a range of Morton codes
starting from the lower-left corner to the upper-right. The property is extensible to higher
dimensions because of the Quadrant recursive properties of space filling curves.

Figure 2.10.: The hierarchical structure of Morton Curve and Quadtree
Source: Haicheng Liu [2020]

2.3. Point Cloud File-based System

The majority of point cloud data management is currently done at the file level. Regardless
of the format, a point cloud file can often be organized as an array of point records, each
of which contains the coordinates and attributes of one point. The common file formats
include ASCII plain text files, PLY (Polygon File Format) format and the LAS format. In this
section, only LAS / LAZ format and related tools will be introduced.

2.3.1. LAS / LAZ format

The LAS (LiDAR Data Exchange Standard) format, currently at version 1.4, is the most
widely used standard for point cloud data. As the name implies, it was designed for datasets
that originate from LiDAR scanners. The American Society for Photogrammetry and Remote
Sensing (ASPRS) is responsible for the maintenance of this data standard. The schema of
LAS format [ISPRS, 2019] contains three main parts:

• Header contains information about the data such as its version, the point format
(which tells the different dimensions stored for each point) and other metadata.
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• Variable Length Records (VLRs) store additional information such as the SRS (Spatial
Reference System), description on extra dimensions added to the points.

• Point Records contain the point records, and the dimensions may include X, Y, Z,
intensity, return number, classification, GPS time, etc.

LAZ is a lossless compression of LAS format [Isenburg, 2013]. The schema is shown in
Figure 2.11. It keeps the header and VLRs directly from LAS, but the point record part is
stored as blocks with scaling and offsetting techniques for compression. Because of lossless
compression and built-in support for LAZ in point cloud processing softwares, the trade-off
between LAS and LAZ lies in the storage size and the processing time, as the compression
and decompression operations on LAZ files do take extra time.

Figure 2.11.: The schema of LAZ format
Source: Isenburg [2013]

2.3.2. Softwares

Softwares and programming libraries are essential to process, analysis and visualize file-
based point clouds. The most popular point cloud processing software, LASTools, was
developed by Martin Isenburg around the early 2000s. According to their official website,
it provides a set of command-line tools that can efficiently classify, tile, convert, compress,
filter, raster, triangulate, contour, clip and polygonize LiDAR data.
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Laspy and PDAL are a Python and a C++ library for translating and manipulating point
cloud data respectively. PDAL also includes an abstraction layer for solutions using LAS
files, Oracle and PostgreSQL.

2.4. Point Cloud DBMS

The ongoing discourse surrounding the applicability of Database Management Systems
(DBMS) in managing point cloud data remains a topic of continuous investigation [Liu,
2022]. While file-based solutions maintain popularity among users, database solutions of-
fer distinct advantages such as enhanced functionalities, optimized disk IO strategies, and
automated parallelization during query executions [Van Oosterom et al., 2015].

However, the development of a DBMS solution is consistently confronted with challenges.
Among these challenges are the management of huge data volumes, high dimensionality of
the data, and the imperative need for efficient querying and indexing mechanisms tailored
to point cloud datasets. Furthermore, researchers and developers keep on seeking improved
solutions, indexing structures, and query languages for point cloud data.

Within point cloud DBMS solutions, three types of storage model can be distinguished
[Van Oosterom et al., 2015; Psomadaki, 2016]:

• Flat table model: Points are directly stored in a table, one row per point. It is simple
and flexible, but it usually occupies a lot of storage space. Therefore, it is more suitable
for small point clouds.

• Block-based model: Blocks of points are stored in the table, one row per block. This
storage model is compact and has better scalability, thus suitable for massive point
clouds.

• Hierarchical model: Points are stored in a tree structure.
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3. Existing database solutions

The state-of-the-art database solutions for point cloud are introduced in this chapter. The
storage models can be categorized into flat table model (Section 3.1), block-based model
(Section 3.2) and hierarchical model. The SFC-based model has been studied in the past ten
years and will be introduced in Section 3.3.

Figure 3.1.: The category of database solutions for point clouds

3.1. Flat table model

In a flat table, each record stores a single point. The possible solutions are:

Normal table with numberal data type and B-tree index

Each dimension stores an individual column, and B-tree indexes can be created on frequently
searched columns. However, as spatial querying is usually multi-dimensional,this solution
is very inefficient for spatial data retrieval and analysis.

Table with geometry data type and R-tree index

The spatial dimensions XYZ are stored as a geometry type and the R-tree index can be
created on the geometry column. Other attributes are stored in individual columns. This
data organization supports more spatial functions and speeds up spatial queries signifi-
cantly. The disadvantage is that the R-tree index may occupy large storage space, and the
point geometry type can support at most three dimensions in Oracle and four dimensions
in PostgreSQL.

Table with 1D key and B-tree index
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It is also called the PlainSFC approach (Van Oosterom et al. [2015]). The organizing dimen-
sions are stored not by their original values, but their 1D key value (e.g. SFC key) , and this
column is set as the primary key. The property dimensions are attached to the key.

In Oracle, this can be relatively easier to implement with Index-Organized Table (IOT),
which is a specialized type of table that stores data primarily within an index structure.
Unlike traditional heap-organized tables where data is stored in an unsorted manner and
indexes are separate structures, an IOT organizes the data and stores it directly within the
B-tree index structure.

3.2. Block-based model

The block-based models in Oracle and PostgreSQL differ and are based on different data
types.

3.2.1. pgPointCloud

pgPointCloud (Ramsey, 2013) is a PostgreSQL extension for storing point cloud (LIDAR)
data. It is efficient and robust. It has two point cloud data types, PC Point and PC Patch.
The former one is for a flat table, and the later one stores blocks of points. A PC Patch
record stores the ID of the point block and a list of points with all the dimensions (Figure
3.2). The records are stored in a TOAST (The Oversized-Attribute Storage Technique) table.
Just like PostGIS extension, pgPointCloud also provides functions to query and manipulate
the points.

Figure 3.2.: An example of PC PATCH schema

3.2.2. Oracle SDC PC

The block-based model in Oracle usually stores point blocks as Binary Large OBject (BLOB)
types in a table. The most widely used approach is based on SDC PC data type(Oracle,
2019). There are two tables in the schema. One is the Base PC Table. It contains SDO PC
objects (Oracle, 2019) and their identifiers. The other table is the Block Table. Its columns
contain SDO PC BLK object (point blocks), block ID, the number of points in the block, etc.
A R-tree or a Hilbert-R tree can be built as an index. However, the organization of blocks
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only supports XY dimensions, and all other dimensions can only be stored as property
dimensions.

Figure 3.3.: The schema for Oracle SDO PC object
Source: Alfarrarjeh et al. [2020]; Liu [2022]

3.3. SFC-based data organization

Due to the size of point cloud data, efficient data organization with techniques like spatial
indexing and compression are crucial. In order to sort and create index on multiple organiz-
ing dimensions of the points, a Space Filling Curve (SFC) encoding is often applied to the
points.

There are mainly three advantanges of using SFC to organize points:

1. Dimension reduction. It reduces the dimensions to one, and the points can be sorted
and a B-tree index can be easily created on the SFC key. If a full-resolution curve is
applied, the SFC key has uniqueness and can also be set as the primary key.

2. Spatial clustering. SFCs especially Morton Curve and Hilbert Curve have good clus-
tering effects, making the points clustered on the physical level.

3. Lossless compression. If the full-resolution SFC key is computed, there is no need
to store the original values of the organizing dimensions. The original values can be
obtained by decoding the SFC keys. This can potentially save huge storage space.

In this way, the multiple dimensions are reduced to one and the points can be sorted or
indexed with ease. On the other hand, some SFCs like Morton curve has a deep connection
with 2n-tree, which can potentially increase the querying efficiency.
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3.3.1. PlainSFC

Van Oosterom et al. [2015] first designed a flat table model with Morton keys of points. It is
named as PlainSFC by Liu [2022].

The main table contains columns of x, y, z and the Morton code. If the Morton code is a full-
resolution encoding, the organizing dimensions can be removed. A B-tree index is created
on the Morton code and the points are reordered by the index. The query algorithms are
based on the relationship between Morton curve and 2n-tree.

As to querying, PlainSFC adopts two filters, shown in Figure 3.4. The first filter uses the
Morton-Quadtree hierarchy to approximate the query geometry and derive the ranges. Then
a second filtering will be conducted in a following step to complete the query. Other query
geometries can also be addressed.

Figure 3.4.: The loading and querying procedure of PlainSFC
Source: Liu [2022]

Its performance was compared with a normal flat table with a XY B-tree index.The bench-
marking results show that loading of PlainSFC method took longer time due to the com-
putation of the Morton code of each points, and the queries of the PlainSFC approach are
much faster and scale well than a normal flat table thanks to better spatial data organization
and smarter data accessing strategy.

3.3.2. DynamicSFC

Psomadaki [2016] designed a database solution for dynamic point clouds using Space Filling
Curve. I call it DynamicSFC. Dynamic point clouds are commonly used for identifying
changes during a certain period or performing spatio-temporal analysis. Unlike static point
clouds, the time component is a key dimension for dynamic point clouds. Therefore, the
integration of time and space is a key problem in the research.

The encoding of time and space is based on the Space Filling Curve. Psomadaki investigated
two approaches of integrating space and time (integrated and non-integrated), treatments of
z (as an organizing dimension or a non-organizing dimension), and made implementations
in Oracle.

From the benchmarking results, it can be inferred that the integrated approach has a better
performance in managing and querying dynamic point clouds. From the perspective of
data organization, this approach offers a very compact storage model, which in the case of
z as organizaing dimension, includes an IOT with only one column. From the perspective
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of querying, this approach offers scalable query response times and has much less false
hits than a Minimum Bounding Rectangle approximation, which is commonly in spatial
databases nowadays.

3.3.3. HistSFC

Due to the non-uniform distributions of point clouds, PlainSFC may generate many empty
ranges with no points inside during the querying process, and it significantly increases the
time cost of the filtering process. To solve this problem, an improved distribution-aware
method called HistSFC is introduced by Haicheng Liu [2020], and it uses HistogramTree for
range computation.

HistogramTree is an additional pointer-based structure besides the main table of PlainSFC.
It is compact and is stored in a flat table. It presents data distribution and guides range
computation in the filtering process. As shown in Figure 3.5, it records the point count for
each SFC node at different level. If the count exceeds the threshold of the tree, it will be
partitioned into SFC nodes in a lower level. From the pointer of the parent SFC node, all
its children can be visited. A height field is used in a HistTree node to distinguish different
nodes, because branch nodes at different levels may possess identical keys. The HistTree
can be built either during or after the data loading process or afterwards, and the update is
automatic when there is change in the main table.

Figure 3.5.: A 2D HistTree example, with threshold being 100
Left: point counting, middle: pointer structure of HistTree, with each node storing a SFC

key and number of points, right: structure of a HistTree node
Source: Haicheng Liu [2020]

The query is executed with the aid of HistTree. Unlike PlainSFC which adopts a fixed
depth for recursive decomposition of nodes, HistSFC employs a flexible strategy which is
adaptive to point density, as shown in Figure 3.6. The main querying process lies in an
overlap detection between HistTree nodes and the query window. There are three types of
nodes according to their spatial relationship with the query window, i.e. outside, inside
and boundary. The boundary nodes influence the False Positive Rate (FPR) of selection
significantly, which then impacts the performance of a secondary filtering. An adaptive
range generation method is developed to refine boundary nodes and thus optimized the
whole querying process.

The performance of HistSFC is evaluated by comprehensive benchmarks with two use cases,
AHN2 and flood risk querying. By comparing PlainSFC and HistSFC to the state-of-the-art
solutions, HistSFC is the most efficient solution among them.
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Figure 3.6.: Range generation using a 3D HistTree
Green nodes: within query geometry, red nodes: intersecting query geometry; white

nodes: outside query geometry
Source: Liu [2022]
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The methodology chapter describes the proposed SplitSFC approach. Section 4.1 gives the
motivation and inspiration for using a split SFC key for the managing massive point clouds
in relational database. Section 4.2 provides the description of the storage model in the
database. Section 4.3 gives an overview of procedures and algorithms, including data prepa-
ration, loading and querying. Finally, Section 4.4 illustrates the benchmarking strategy to
validate and improve the methodology.

4.1. Motivation

SplitSFC is an improved block-based method proposed in this thesis, inspired by the PlainSFC
approach and the hierarchy of Morton code. The advantages of using SFC to organize points
have been discussed in Section 3.3. They are dimension reduction, spatial clustering effect
and lossless compression. The PlainSFC approach has shown promising performance im-
provement in the benchmark. However, there is a significant drawback in its data organiza-
tion, as a flat table is not a compact structure for massive point clouds. Therefore, it can be a
possible significant improvement to design a block-based model using Space Filling Curve.
If we can store the common property for each block rather than storing it repeatedly for all
points, the data can be hugely compressed.

The numerical observation in a PlainSFC table is the initial inspiration of the SplitSFC ap-
proach. It can be noticed in the purple box of Figure 4.1 that the same head parts are shared
with many points. If we group the points with the same SFC head together in a block, then
each SFC head is stored once and shared with multiple points. In this way, the SFC keys
have a potential to be highly compressed.

Figure 4.1.: From PlainSFC to SplitSFC: grouping points with SFC head

In addition, the geometric meaning of the split is related to the hierarchical structure of
2n-tree and Morton Curve, as introduced in Section 2.2.4. Based on this structure, the point
clouds are decomposed naturally. Each block corresponds to a Morton node in a certain
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level. In other words, the points within the same quadrant are stored in the same block. The
spatial coordinate of each point can then be decomposed into two parts, (a) the spatial extent
of the quadrant, and (b) the specific location of the point inside this quadrant. Correspond-
ingly, when the Morton code of each point is split into two parts, the SFC head corresponds
to the spatial extent of the quadtrant while the SFC tile corresponds to the specific location
of the point within the quadrant. Therefore, the points with the same SFC head are in the
same blocks, and the SFC head is stored as the main property of the block.

Figure 4.2.: The geometric meaning of the split, adapted from Liu [2022]

The most commonly used SFCs are Morton Curve and Hilbert Curve. We use Morton Curve
because of its simplicity and close relationship with 2n-tree. The algorithm of generating
Morton curve is bitwise interleaving, therefore the encoding and decoding are rather effi-
cient. In comparison, Hilbert curve has a relatively complex algorithm. On the other hand,
the connection between Morton Curve and 2n-tree structure makes it ideal for speeding up
the querying process.

4.2. Storage Model

The SplitSFC schema contains three components: two tables and one index (Table 4.1).

• Metadata table describes the metadata of the point cloud dataset, providing context
and helping the user to understand its characteristics. It stores the dataset name,
Spatial Reference ID, the number of points, the spatial extent, the length of the SFC
head and tile, etc.

• Points table stores the specific dimensions of the points. The original values of the
organizing dimensions are converted into a SFC head and a SFC tail. The points with
the same SFC head are grouped into one block. The table stores one block per record.
The SFC head column is integer, and the other columns are arrays. The points in one
block are sorted by their SFC tails, and the SFC tail and the other property dimensions
of each point are stored in SFC tile column and the remaining columns.

• A B-tree index is created on the SFC head column for efficient data retrieval.

Spatial Reference System

The Spatial Reference Identifier (SRID) is specified in the metadata table, together with other
geometry information such as the total number of the points and the spatial extent of the
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Table Column Data Type Description

Metadata

name string The name of the dataset
srid integer The Spatial Reference ID of the dataset

point count (big) integer The number of points of the dataset
ratio double The fixed ratio of SFC head and tile ranges

scales array of double The scale factors for organizing dimensions
offsets array of double The offset factors for organizing dimensions
bbox array of double The spatial extent of XYZ coordinates

Points
sfc head integer The SFC head ranges
sfc tail array of integer A sorted array of SFC tails of the points in the block

other dimensions array An array of values of points in the block

Table 4.1.: The schema of the SplitSFC approach

point cloud. By default, the used SRIDs are defined by the European Petroleum Survey
Group (EPSG).

The values in X, Y, and Z fields are scaled and shifted from the original coordinates. Similar
to LAS format, the values in the database need to be multiplied by a scaling value and added
to an offset value to convert to the actual coordinates, i.e.:

Xcoordinate = Xrecord · Xscale + Xoffset

Ycoordinate = Yrecord · Yscale + Yoffset

The scaling factors Xscale, Yscale and the offsets Xoffset, Yoffset are also stored in the metadata
table. To encode the organizing dimensions to Morton code, the values should be converted
into integer data type. Notice that the number of decimals that can be stored are determined
by the scaling factor. For example, the scaling factors 0.1, 0.01, and 0.001 would give us 1, 2,
and 3 decimals respectively.

To simplify the data model, all points in one database should use the same Spatial Reference
System, including SRID, scales and offsets.

The organizing and non-organizing dimensions

The dimensions of the points include spatial coordinate XYZ, time component, LoD (Level of
Detail) compoment, classification, intensity, etc., as introduced in Section 2.1.1. The dimen-
sions can be divided into organizing dimensions and associate dimensions (non-organizing
dimension) based on whether they are encoded into SFC keys or not. The possible orga-
nizing dimensions usually include XYZ coordinates, time components, and Level of Details
(LoD) components, depending on the user need.

In our research, We will not investigate time and LoD component, as they are not within the
scope of the research. We will only encode X and Y coordinates. The remaining attributes
will be stored in their original forms in the table. As we use the Dutch National Digital
Surface Model for experiments, there are two reasons for encoding only X and Y: (a) the
Netherlands is very flat; (b) the tested queries are mainly based on 2D geometry. So we treat
the Z dimension as an associate attribute, rather than a spatial dimension.
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4.3. Procedure and Algorithms

4.3.1. Pre-processing and Loading

The purpose of the preparation and loading procedure is to generate the SFC keys of the
point clouds, physically order and organize the points and load them into the database.

The whole procedure (Figure 4.3) is divided into three phases: the pre-processing, the load-
ing and the post-processing.

• Pre-processing: The raw point clouds are converted into point blocks during the pro-
cessing. The steps in the pre-processing procedure are (a) reading the LAS/LAZ file,
(b) encoding the organizing coordinates into the Morton key, (c) splitting the key into
two parts, (d) grouping the points with the same SFC head into blocks and (e) sorting
the points in each block based on the SFC tail.

• Loading: This step is the bulk loading of the point blocks into a normal heap table.

• Post-processing: A B-tree index is built upon the sfc head column, and the connection
with the database is closed.

Figure 4.3.: The preparation and loading procedure for the SplitSFC approach

Morton encoding and decoding algorithm

To make a morton code, we need to interleave the bits of organization dimensions. For-loop
method, Magic Bits method and Look-Up Table (LUT) method are three Morton encoding al-
gorithms. Baert [2013] compared the performance of three algorithms. The results in Figure
4.4show that the Look-Up Table Method is much more efficient than other algorithms.
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Figure 4.4.: The performance comparison of three Morton encoding methods
Source: Baert [2013]

Therefore, we use the Lookup Table (LUT) method to encode and decode the Morton codes.
The algorithm is a divide-and-conquer method. The main idea is to pre-compute splitting a
certain subset of bits, and then split the input integers byte by byte, and shift the results in
place. For example, if there are only two organizing dimensions i.e. XY coordinates, we can
first make the LookUp table for X values, and for Y values, just shift them to the left by 1
bit.

Splitting algorithm

The splitting algorithm is based on fixed-length, and the length is computed by the ratio of
the head length and the tail length:

ratio =
length(SFChead)
length(SFCtail)

· 100%

4.3.2. Querying

We mainly focus on the 2D geometry querying with XY coordinates as organizating dimen-
sions. The geometry query can be rectangle, circle or polygon.

The querying procedure has two steps, filter step and refinement step. In the first step, we
only filter out the points within the bounding box of the given geometry, and the output is
a set of decoded points. In the refinement step, we apply a specific geometry filter on the
points.

Filter step

The filter step is to perform a range query based on SFC keys. The steps are:

1. Compute the bounding box of the given query geometry;

2. Perform range query in the SFC heads, and obtain a set of the fully contained SFC
head ranges and a set of overlapping SFC head values;

3. Import the fully contained SFC head ranges into a temporary table, and join the range
table and the point block table, and the obtained points are all within the bounding
box;
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Figure 4.5.: The querying procedure of SplitSFC approach

4. Select the records from the point block table that are within the set of overlapping SFC
heads, unpack each block, and perform range query in the SFC tails;

5. Merge the points from step 3 and step 4, and they are all points within the given
bounding box;

6. Decode the points.

Refinement step

The points obtained from the filter step are all points within the bounding box, not the given
2D geometry. The goal in the refinement step is to filter out the points outside the geometry.
Oracle and PostgreSQL/PostGIS both offer this kind of geometry functions.

Morton range search algorithm

The query algorithm needs to be modified for the SFC data organisation.

The algorithm uses the characteristics that Morton Curve is strongly associated with 2n-tree.
When querying with SFC keys, the geometry region needs to be converted into Morton key
ranges, then the query becomes a search problem in one dimension.

For an multi-dimensional Morton Curve, each shift of n bits to the left is equivalent to
moving one level deeper in the 2n-tree. Here we will explain the algorithm in a situation
with 2D Morton Curve and Quadtree. We will iterate each bit from left to right, moving two
bits at a time. In each iteration, we need to determine the containment relationship of the
four quadrants with the query range. There are three possible containment relationships:
refine possible, no overlap and fully contained. To determine the relationship, we compare
the bounding box in the quadrant to the query range. The bounding box of the quadrant
can be obtained by decoding the largest and smallest Morton key in the quadrant, i.e.:

quadrant x min, quadrant y min = DecodeMorton2D(Morton key min)

quadrant x max, quadrant y max = DecodeMorton2D(Morton key max)

Next, we compare x and y ranges of quadrant and query geometry to determine their con-
tainment relationship. If it is not contained, then no further query is performed on that
level. if it is full containment, all Morton ranges within that quadrant are the target range.
If refinement is possible, we will continue to explore the sub-regions of that quadrant, i.e.,
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Figure 4.6.: An example of range search using 2D Morton Curve, adapted from the
presentation of PCServe [Meijers, 2022]

Input query range is [2, 4] for x, [2, 3] for y; output Morton range [12, 15] and [36, 37]
Brown line: Quadtree depth of 1. Purple line: Quadtree depth of 2, orange line:

Quadtree depth of 3

for that quadrant, we continue to move two bits to the right to determine the containment
relationship.

4.4. Benchmark

Benchmark is crucial in the research and development process of designing database so-
lutions. The assessment of the performance of the prototype guides for the direction of
improvement. We use the benchmark framework designed by Van Oosterom et al. [2015] to
evaluate our prototype for mainly three reasons:

• The tested dataset Actueel Hoogtebestand Nederland 2 (AHN2) is open data and easily
accessible. Therefore, the results are reproductive.

• The benchmark framework is well-designed. It is based on user requirement analysis,
and considers the general-purpose functionalities comprehensively. In addition, to
explore the scalability of the Point Cloud DBMS, it scales up the input dataset 10 times
in each stage.
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• Several state-of-the-art database solutions have been tested with this framework, there-
fore we can directly compare the performance of SplitSFC with that of other solutions
in PostgreSQL.

Figure 4.7.: Approximated projection of the extents of the used datasets in Google Maps:
Purple area is for 20M dataset, blue area is for 210M dataset, green area is for 2201M

dataset, read area is for 23090M dataset
Source: Van Oosterom et al. [2015]

4.4.1. Scalability

The benchmark uses the Actueel Hoogtebestand Nederland 2 (AHN2) dataset. The test
datasets are the subsets of it, and they are tailored for the three stages of the benchmark
(Van Oosterom et al. [2015]):

• Mini-benchmark: It starts with a small dataset of about 20 million points in Delft
Campus. In this stage, we can explore the effects of different parameters, and the
results serve as a basis to decide on parameter settings in the next stage benchmark.

• Medium-benchmark: In this stage, the benchmark uses several dataset up to 23090M
with about 20 billion points. It explores the scaling behaviour of the database solution,
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and extends the querying functionalities of the mini-benchmark.

• Full-benchmark: In this stage, the complete AHN2 dataset is loaded into the database
and queried. However, we only perform mini-benchmark and medium-benchmark in
our experiments.

4.4.2. Querying Functionalities

In the benchmark framework (Van Oosterom et al. [2015]), all queries are selection of points.
Most are selected within a query region, and the types of regions include rectangles (axis-
aligned or diagonal), circles, simply polygons, polygons with holes, buffer of polylines, etc.
The geometries are shown in Figure 4.8. We also perform nearest queries and height queries.
See Appendix A for detailed queries.

The query return method is Create Table As Select (CTAS), which means the returned points
are all stored in a new table (Van Oosterom et al. [2015]).

(a) Up to 210M dataset (b) Up to 23090M dataset

Figure 4.8.: Queries used in the medium benchmark
Source: van Oosterom et al., Massive point cloud data management: Design,

implementation and execution of a point cloud benchmark, 2015

35





5. Implementation

The implementation chapter contains a description of the prototype implemented to show
whether the SplitSFC approach is an effective solution for massive point cloud data manage-
ment. For the implementation of SplitSFC, a set of Python scripts have been developed. The
scripts can import LAS/LAZ files into PostgreSQL in the designed schema, perform basic
spatial queries and output LAS files from the database.

This chapter is organized as follows: Section 5.1 presents the tools and datasets used to
develop the prototype and perform the experiments. After that, Section 5.2 gives the im-
plementation details of the prototype, including the importer, the querying tool and the
exporter.

5.1. Tools

5.1.1. Hardware

In order to make the results comparable with other solutions being tested within the same
benchmark framework, we use the same hardware environment as that in the point cloud
data management research by Van Oosterom et al. [2015]; van Oosterom et al. [2017]. The
supercomputer is called pakhuis, and the settings are:

A HP DL380p Gen8 server with 128 GB RAM and 2 × 8 Intel Xeon processors
E5-2690 at 2.9 GHz, RHEL 6 as operative system and different disks directly
attached including 400 GB SSD, 5 TB SAS 15 K rpm in RAID 5 configuration
(internal), and 2 × 41 TB SATA 7200 rpm in RAID 5 configuration (in Yotta
disk cabinet).

5.1.2. Software

The main softwares for the implementation are PostgreSQL and Python.

• PostgreSQL and PostGIS are the DBMS used for the storage and manipulation of
point cloud data. It is chosen because it is the most advanced open-source relational
database management system, and has good spatial support with PostGIS. The ver-
sions are PostgreSQL 9.3.2 and PostGIS 2.1.1.

• Python handles the data preparation outside the database because SQL is unsuitable
for complicated algorithms like SFC encoding and decoding. It was chosen for its
simplicity, but it also poses a significant disadvantage in time efficiency. The Python
version that we use is the 3.
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• Psycopg2 is used for connecting Python and PostgreSQL, and it allows execution of
raw SQL commands in Python. In the older version of the implementation, SQLAlchemy
was used because of its simple ORM model and beauty in grammar, but it was replaced
by psycopg2 due to its advantage in efficiency.

Figure 5.1.: The hardware and software environment for the SplitSFC prototype

5.1.3. Datasets

As mentioned in Section 4.4, we employ the Actueel Hoogtebestand Nederland 2 (AHN2)
dataset to evaluate performance. This dataset comprises a total of 640 billion points, with a
sample density ranging from 6 to 10 points per square meter across the country. The Spatial
Reference System for AHN2 is the Amersfoort/RD New, identified by the Spatial Reference
System Identifier (SRID) 28992. All datasets involved in these experiments are formatted in
LAS and contain solely XYZ dimensions.

We only perform the mini-benchmark and the medium benchmark from the original bench-
mark framework. Four datasets have been tailored to perform the benchmark, varying from
20 million points in TU Delft campus to 20 billion points in South Holland Province. Each
dataset stores ten times more points than the previous dataset. Table 5.1 and Figure 4.7 show
the details of the dataset and an approximate spatial extent projection.

Name Points Files Size (GB) Area (km2) Description
20M 20,165,862 1 0.4 1.25 TU Delft Campus

210M 210,631,597 1 4 11.25 Major part of Delft city
2201M 2,201,135,689 153 42 125 City of Delft and surroundings

23090M 23,090,482,255 1492 440.4 2000 Major part of South Holland

Table 5.1.: Dataset description
Source: Van Oosterom et al. [2015]

5.2. Implementation

Three Python tools have been developed to implement the functionalities of the SplitSFC
approach. All these tools require input parameters.
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• Importer: It can convert LAS / LAZ files into the designed format and load them into
the database.

• Querying tool: It can perform 2D geometrical query and elevation query on the point
records in the tables, and save the results in a new table.

• Exporter: It can convert the point records in the query returned table into a LAS file.

5.2.1. Importer

The purpose of this tool is to convert the LAS files into desired format and load them into
the database. The given parameters include the path, name, SRID of the dataset, the split
ratio of the SFC key, and the configuration of database connection. The importer script
has two modes. One is single-file importing, and the other is multiple-file importing. In
the multiple-file mode, the point clouds are processed and imported per file, otherwise the
program may be terminated due to memory limits if the dataset is too big.

The data preparation process is in Python, and outputs the data in CSV files. In the loading
process, Python connects to the database using psycopg2, creates the tables, copies the CSV
files into the tables, and creates the B-tree index.

1. Data pre-processing

Calculate metadata

To begin with, we use laspy to read the metadata and the point records in the LAS files. The
metadata table has six columns, including name, srid(Spatial Reference ID), point count (the
number of points), head length, tail length and bbox (bounding box). The name and SRID
is given in the parameters. There are two situations, regarding whether the input are one
file or multiple files:

If there is only one file, then the number of points and bounding box can be directly obtained
from the header of the file.

If there are multiple files, iterate the header of each file, sum up the point count and merge
the bounding box. Next, we calculate the length of the SFC head and SFC tail by the given
ratio. We take the maximum value of the X and Y coordinates, encode them into a Morton
key. Based on the length of this key, we can calculate the length of the SFC head and SFC
tail with the ratio.

Calculate and split the Morton key

The implementation of spliting uses the bitwise operators in Python. We encode the XY
coordinates of each point to Morton key using the LookUp Table (LUT) algorithm introduced
in Section 4.3.1, and split the Morton key into a head and tile based on the length computed
in the previous step.

Group the points based on SFC head

Both Python and PostgreSQL can sort and group the points. If we use Python, we can use
the sorted and groupby method from the itertools. If we use PostgreSQL, we need to transfer
all points with their Morton codes and non-organizing dimensions into a flat table in the
database, and use the native groupby support of PostgreSQL and load the processed data
into a new table. In the experiment, we find the Python implementation faster, probably
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because the data transfer with ungrouped points creates a huge overhead. Therefore, the
final implementation employs the sorting and grouping in Python.

For large data, it is more efficient to use ’copy’ method rather than ’insert’ method to load
data into the database. Therefore, we write the pre-processed data into CSV files. The points
in each block are sorted by the value of SFC tail. SFC tail and the other attributes are nested
into lists.

2. Loading

Connect to the database, create table

In this step, Python connects to the database and creates a metadata table and a point record
table. The number of the columns of the point record table actually depends on the number
of dimensions that we want to keep. In this prototype, we only keep XYZ coordinates, and
XY coordinates are converted into the SFC key, therefore we have three columns in this case:
sfc head, sfc tail and z. The points in each block are sorted by the value of their SFC tail,
and other dimensions are stored in separate columns of the array.� �
CREATE TABLE pc_metadata (

name TEXT ,

srid INT ,

point_count BIGINT ,

head_length INT ,

tail_length INT ,

scales DOUBLE PRECISION[],

offsets DOUBLE PRECISION[],

bbox DOUBLE PRECISION []

);

CREATE TABLE pc_record (

sfc_head INT ,

sfc_tail INT[],

z DOUBLE PRECISION []

);� �
Import data into the database

After the tables are established, the metadata values are inserted into the pc metadata table
and the point blocks are copied into the pc record table in the form of CSV file. Copy
method is used because it is more efficient than insertion, and our data volume is huge.� �
COPY pc_record FROM stdin WITH CSV HEADER� �
Post-processing

Build a B-tree index on SFC head column.

The B-tree index can improve the querying performance.� �
CREATE INDEX btree_index ON pc_record USING btree (sfc_head)� �
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5.2.2. Querying tool

The querying tool allows the users to perform 2D geometry query for points in the database.
The input 2D geometry can be . The given parameters include the source dataset name (i.e.
20M), the querying mode and the geometry. The query mode means the type of the 2D
geometry, and it supportInrectangular, circular and polygonal addition, attribute query is
also supported. the user s can put parameters as minz or maxz to query by elevation.

The query return method in the selection queries is CTAS (Create Table As Select) so for
each query the returned points are saved in a new table. If the user wants to visualize the
points, the data can be exported to LAS files with the exporter (See Section 5.2.3).

2D Geometry Search (rectangular, circular, polygonal)

Calculating Bounding Box

To simplify the querying process, the rectangular, circular and polygonal searches are searched
with the bounding box of the given geometry first, and then we search the points within the
bounding box with the specific geometry. For rectangular search alongside the axis, the
given geometry is the bounding box. For circular search, the bounding box is the center
point plus or minus the radius. For polygon search, just take the maximum and minimum
value of the vertices of the given polygon.

Filter search

In this quad-code search, first the fully contained and overlapping SFC head ranges are
taken out. All rows with the fully contained SFC head ranges are taken out and the points
are decoded to XYZ coordinates. The rows with overlapping SFC head ranges need to go
deeper with the search depth, and only the tails that are within the given ranges are taken
out and the points are decoded back to XYZ coordinates. The results are created as a new
table in the database, and the format is the PostGIS data type Geometry(PointZ).

Refinement search

Now the points are all within the bounding box of the given geometry, and they are in the
original format: XYZ coordinates. The next step is to perform a query based on the specific
geometry. This can be achieved by using ST DWithin or ST Within method from PostGIS
for circle or polygon respectively.

For example, the SQL for refinement step of circular query is:� �
DELETE FROM {pc_record}

WHERE NOT ST_DWithin(point , ST_MakePoint ({ center_x}, {center_y}),

{radius });� �
The SQL for refinement step of polygonal query is:� �
DELETE FROM {pc_record}

WHERE NOT ST_Within(point , ST_GeomFromText (’{ wkt_string }’))� �
Attribute Search

After performing the geometry query, an additional attribute query can be performed, if
requested by the user. The corresponding SQL for minz search is (minz is the value of
parameter) :
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5. Implementation

� �
DELETE FROM {pc_record}

WHERE ST_Z(point) < {minz}� �
5.2.3. Exporter

The exporter cannot be used alone. It needs to used with a querying tool. The querying tool
first creates a table that contains all the points of the given query, then the exporter outputs
a LAS file that contains all points in the querying result table.

Figure 5.2.: Visualization of the query results of 20M dataset in CloudCompare
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6. Results and analysis

Chapter 6 illustrates the benchmark results and analysis of the SplitSFC prototype and other
state-of-the-art block models for PCDBMS. In Section 6.1, the effects of parameters like ratio,
scales and offsets were explored, and the benchmark was done at mini-level with 20M and
210M dataset. In Section 6.2, the medium benchmark is executed. It shows the performance
of the SplitSFC prototype, in comparison with other solutions.

6.1. Mini benchmark

In order to explore the effects of ratio, scales and offsets, three questions have been investi-
gated:

1. How much storage space is saved by dropping two decimal places of precision?

2. Can shifting the points to the corner of their bounding box potentially save the storage
space?

3. What is the ratio for the optimized storage size in each set of scales and offsets?

To answer these questions, we imported the 20M dataset and the 210M dataset into the
database with three sets of scales and offsets. With each set of scales and offsets, we test
different ratios, starting with a 50% split, and then shift the SFC head either two bits to the
left or right.

Explanation Scales Offsets
Solution 1 Default value [0.01, 0.01] [0, 0]
Solution 2 The points are shifted to the corner of the bounding box [0.01, 0.01] [min x, min y]
Solution 3 The resolution is reduced to 1m [1, 1] [0, 0]

Table 6.1.: Scales and offsets for the test

6.1.1. Scales

To explore the effect of scales, we compare the import time and storage size of Solution 1
and Solution 3 in Table 6.2.

From Table 6.2 and Figure 6.1, we can infer that:

1. Reducing the precision does not significantly decrease the importing time.

2. Reducing the precision dramatically saves the storage space. In the case of the tested
dataset, when the precision is reduced by two decimal points, the total storage size is
reduced by almost half.
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6. Results and analysis

Datasets Resolution (m) Import Time(s) Size (MB) Points/s Size Per Million Points (MB)

20M 0.01 105.21 119 191672 5.90
1 215.56 44 93551 2.18

210M 0.01 1349.6 1215 156070 5.77
1 1422.31 696 148091 2.30

2201M 0.01 11443.59 12288 192347 5.58
1 11857.9 6854 185626 3.11

23090 0.01 120778.07 130048 191181 5.63
1 102824.69 44032 224562 1.91

Table 6.2.: Importing and storage performance with a 0.01m resolution and 1m resolution

(a) Imported points per second (b) Size per million point

Figure 6.1.: The comparison of importing and storage efficiency between Solution 1 and 3

6.1.2. Offsets

To explore the effect of offsets, we compare the import time and storage size of Solution 1
and Solution 2 in Table 6.3.

Datasets Offset (m) Import Time (s) Size (MB) Points/s Size Per Million Points (MB)

20M [0, 0] 105.21 119 191672.48 5.90
[85000, 446250] 200.63 120 100512.70 5.95

210M [0, 0] 1349.6 1215 156069.65 5.77
[84000, 445000] 5126.94 1232 41083.30 5.85

Table 6.3.: Importing and storage performance with no shifting and shifting to the corner

(a) Total import time (b) Total size

Figure 6.2.: The comparison of importing time and storage size between Solution 1 and 2
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6.1. Mini benchmark

From Table 6.3 and Figure 6.2, we can infer that shifting the points to the corner may not
help much with either increasing importing efficiency or storage space. More discussion
about the possible reasons are discussed in Section 6.1.3.

6.1.3. Ratio

For each set of scales and offsets, we have already tested several possible head-tail splits and
recorded their performance. In this section, a detailed experiment on the effect of ratio is
carried out. See Appendix B for detailed data.

(a) Default mode (b) Shifting mode (c) Resolution = 1m

Figure 6.3.: The comparison of import time for different ratios in all three modes

(a) Default mode (b) Shifting mode (c) Resolution = 1m

Figure 6.4.: The comparison of storage size for different ratios in all three modes

As shown from Figure 6.3 and Figure 6.4, we can infer that (a) the most suitable ratio for
different situations can be different; (b) slight change in splitting ratio does not significantly
improve the efficiency or the storage size.

We draw scatter plots and histogram of the number of points in each block for the importing
of 210M dataset in Solution 1 (default mode), with an input ratio of 50%, 55% and 60%. The
frequency of the number of points per block seems to follow the Gaussian distribution. As
the ratio increases, the SFC head becomes longer, and the number of blocks increases, and
the number of points per block decreases.

As mentioned in the previous subsection, the shifting does not save storage space than the
default mode. This phenomenon may be related to the effect of ratio. My initial hypothesis
is that it might help to save some storage space, because the shifting makes the resolution
of X and Y smaller, and the length of the SFC keys is shorter. Take the 210M dataset for
example, the total length of the SFC key shrinks from 52 bits to 38 bits, but the reality is that
the total database size does not decrease at all.
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6. Results and analysis

(a) ratio = 50% (b) ratio = 55% (c) ratio = 60%

Figure 6.5.: The distribution of the number of points in each block, tested with 210m dataset
scales = [0.01, 0.01, 0.01], offsets = [0, 0, 0]

We retrieve the number of blocks in the table and calculate the distribution of the number
of points in each block (See Figure 6.5). As we can see, in Solution 2 (shifting mode), the
number of points in each block dramatically decreases for each level of splitting ratio, which
means the grouping is not so effective. This is probably because the spatial partitioning
of the quadtree changes. Without shifting, the original quadtree extent covers a large area.
After shifting the altered spatial extent of the quadtree shrinks dramatically.

6.2. Medium benchmark

In the medium benchmark stage, we import the 20M, 210M, 2201M and 23090M datasets
into three databases. We compare the performance of the SplitSFC prototype with that of
other block-based solutions in PostgreSQL and Oracle. The flat table solution takes up much
more space, therefore it is not meaningful to compare with it. The results of other solutions
were benchmarked by Van Oosterom et al. [2015]. The other two solutions are:

• pgPointCloud: The point blocks are stored as PC Patch objects. See Section 3.2 for
details. The blocking and loading process are done with an external tool called PDAL.

• Oracle SDO PC: In this solution, the points are stored in a BLOB, and the blocks stored
as SDO PC BLK objects. The metadata is stored as SDO PC objects in a different table.
2D Hilbert key is computed for each point, and is stored as the primary key in an IOT
table.

6.2.1. Importing and storage

From Table 6.4 and Figure 6.6, we can tell that:

• Importing time: The SplitSFC prototype is faster than Oracle SDO PC, but slower than
pgPointCloud. They also show different scalability when the imported dataset grows.
When the size of the dataset grows ten times larger, the importing time of the SplitSFC
prototype and Oracle SDO PC grows almost ten times as well, but the importing time
of pgPointCloud grows less dramatically.

• Storage size: The SplitSFC prototype occupies slightly more than pgPointCloud, but
much less than Oracle SDO PC.
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6.2. Medium benchmark

Dataset Approach Time(s) Size (MB) Points/sTotal Initial Load Close Total Index

20M
pgPointCloud 153.41 22.03 130.53 0.85 101.77 0.69 131451

Oracle SDO PC 296.22 0.35 228.17 67.7 226.5 0.2 68077
pg SplitSFC 105.21 87.99 17.22 0 119 0.03 191672

210M
pgPointCloud 129.14 0.81 121 7.33 1009.13 5.18 1631033

Oracle SDO PC 1246.87 0.25 557.7 688.92 2244.5 1.44 168928
pg SplitSFC 1349.6 1189.04 160.56 0 1215 0.05 156070

2201M
pgPointCloud 754.22 0.86 687.49 65.87 10245.61 53.05 2918427

Oracle SDO PC 16737.02 0.86 7613.39 9122.77 21220.5 13.25 131513
pg SplitSFC 11443.59 9796.2 1647.24 0.15 12288 1.75 192347

23090M
pgPointCloud 12263.05 0.87 7450.1 4812.08 106781.48 552.77 1882931

Oracle SDO PC 192612.07 0.31 96148.06 96463.7 220085.5 165.55 119881
pg SplitSFC 120778.07 104319.59 16457.31 1.17 130048 37 191181

Table 6.4.: Importing results, ratio = 50%

Figure 6.6.: The comparison of import time of three PC-DBMS solutions

6.2.2. Data retrieval

The complete results are shown in Appendix C. Apart from query response times, the num-
ber of points in each query is also recorded, to evaluate the accuracy and reliability of the
querying algorithm. The queried points are further exported to LAS files and visualized in
CloudCompare software to validate the reliability of the results (See Figure 5.2).

From Figure 6.7 and 6.8, we can infer:

• SplitSFC is slower compared to other solutions, but the querying response times are
acceptable in real-world applications.

• The query response time remains almost constant for the same query geometry when
we increase the coverage of the dataset.

• The number of returned points have slight differences, probably due to the nature of
our range query algorithm with Morton keys. Also, other data models seem to use
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6. Results and analysis

Figure 6.7.: The comparison of query response time for all queries

Figure 6.8.: The comparison of the number of points for query in 210M dataset

a polygon approximation of the circle, but we use the distance method for the circle
search to test the SplitSFC approach.

• The factors that affect the querying response time include the querying geometry it-
self and the size of the dataset. As the experiments show, the spatial extent and the
complexity of query geometry itself matters much more than the size of the dataset.
Query 13 and 14 are complicated polylines and the program crashes when the PostGIS
is performing the polygon query.
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7. Conclusions and discussion

In Chapter 7, conclusions and discussion were drawn from the results, and it offers a com-
prehensive summary of the whole research. We will first present the conclusions, contribu-
tions and limitations in Section 7.1, and illustrate the future work in Section 7.2.

7.1. Conclusions and Discussion

7.1.1. Conclusions

The objective of this research is to come up with an efficient point cloud DBMS solution using
split Space Filling Curve. The main research question is to find out whether employing the
split Space Filling Curve approach constitutes an effective strategy for managing massive
point clouds in a relational DBMS.

In order to draw an answer to the main question, we will discuss the sub-questions first.

How to efficiently use SFC to organise the points in blocks?

A block-based model is used as it is more compact than a flat table and occupies less space.
We do the following to organize the points more efficiently:

• Scales and offsets. Since the data type of the values for Morton encoding is integer,
we need to scale the original float values to integers. To convert these values to the
actual coordinates on the ground, they need to be multiplied by a scaling factor and
added to an offset value. The scaling factor determines the number of decimals that
can be stored. For example, the factors 0.1, 0.01, and 0.001 would give us 1, 2, and 3
decimals respectively.

• Morton curve. The points are encoded with Morton keys. Morton keys can index and
cluster the points and map the multi-dimensional data into a 1D space, therefore it may
optimize the data retrieval performance. On the other hand, as a full resolution curve,
the Morton keys are stored and the original values are dumped, this can potentially
save storage space.

• Splitting and grouping. Each Morton key is splitted into a head and a tile, and the
points with the same head are grouped into one block. The SFC head implies the
rough region of the points. It can be stored once, and shared with many points inside
the same region. Therefore, it can not only clustering the points, but also potentially
save storage space.
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7. Conclusions and discussion

In summary, this kind of point organization will not only index and cluster the points to
improve the querying performance, but also has potential to compress data and save storage
space. Therefore, the approach theoretically has the potential to become an effective strategy
for data management of massive point clouds.

How to split the SFC keys, i.e. by fixed-length or adaptive algorithm?

In this thesis, we split the SFC keys with a fixed-length approach. We include ‘ratio’ as the
parameter, and it determines the length of the SFC head and SFC tail. The ratio should either
be too big or too small, otherwise it loses the effects of clustering and compression. Different
sets of scales and offsets have been tested alongside the ratios, and it shows that selection
of ratio is related to many factors, such as the point distribution. The recommended pa-
rameter tuning approach is to test ratios around 50%-60% on a small dataset, and compares
the results. Once a suitable ratio is found, use this ratio for a bigger dataset with similar
patterns.

How to query the points based on the suggested method?

The querying algorithm contains two steps, filter step and refinement step. In the filter step,
the points within the bounding box of the given geometry are retrieved. The range search
algorithm is based on the hierarchy of Morton Curve that represents the 2n-tree structure.
In the refinement step, the points outside the given geometry are filtered out.

How does the proposed method work compared to the current solutions?

In this research, the performance of SplitSFC prototype is compared with those of pgPoint-
Cloud and Oracle SDO PC. The metrics of performance includes importing time, storage
size and query response time. The benchmarking results show:

• SplitSFC takes longer time to import, because of the extra time in Morton key compu-
tation, sorting and grouping and the nature of Python implementation.

• pgPointCloud and SplitSFC occupy comparable storage space, and Oracle SDO PC
occupies more storage space. Notably, if the algorithm and the implementation are
improved, there is a chance that SplitSFC can have a better performance compared to
other state-of-the-art database solutions.

• SplitSFC is significantly slower in querying. However, this may also be due to the
nature of Python implementation and code quality.

Having given answers to the sub-question above, the main research question can also be
answered: Does employing the split Space Filling Curve approach constitute an effective
strategy for managing massive point clouds in a relational database?

While the split Space Filling Curve (SplitSFC) approach presents potential advantages for
managing massive point clouds in a relational database, my study’s findings suggest that its
immediate implementation may not yield a definitive improvement.

The results of the research show that SplitSFC approach has longer import time and query-
ing response time, and occupies a little more storage space than pgPointCloud. However,
the observed performance drawbacks might be attributed to specific factors such as the pro-
gramming language used (Python) and the need for optimizations, including an adaptive
SFC key splitting algorithm and implementation in C++. Thus, while theoretically promis-
ing, the current empirical evidence indicates a ’probable’ rather than a conclusive ’yes’ or
’no’ regarding the effectiveness of SplitSFC in its present form for this particular applica-
tion.
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7.1. Conclusions and Discussion

7.1.2. Contributions

In this research, we design, implement and benchmark an improved block-based model
namely SplitSFC approach to manage massive point clouds in relational database. The
purpose is to improve the performance of current point cloud database solutions, especially
with storage space. This model organizes the point clouds based on Morton Curve, and
innovatively splits the SFC keys to heads and tiles. The model groups the points with the
same SFC head into blocks, and stores SFC tails and other property dimensions as arrays in
other columns.

Although the SplitSFC model does not show significant advantage in storage and data re-
trieval efficiency so far, it is fair to believe that with the improvement of algorithms, schemas,
implementations, it has the potential to be an approximate and efficient point cloud database
solution.

7.1.3. Limitations

A few major criticisms are made about the methodology and implemented prototype.

Fixed-length SFC key splitting

In this research, we only experiment with a fixed-length split, which means each block is a
quadrant of the same level or same size. However, the nature of the point clouds determines
that the point distribution is irregular, therefore the quadrants should not be the same size.
In dense areas, the quadrant usually contains too many points, and it can be divided further,
which means the length of the SFC head can be longer. On the contrary, in a sparse area, a
quadrant may contain too few points, and it can be combined with neighbouring quadrants
to form a bigger quadrant, which means the length of the SFC head should be shorter.

Programming language

Python is used for most algorithms. However, Python itself is much slower than lower-level
languages like C or C++ due to its interpreted nature. And the algorithms like Morton
encoding and decoding are expensive. Therefore, the implemented prototype is not very
efficient in its current state.

It also causes trouble for the benchmark. Other data models were implemented with tools
like C++. Our solution shows a significantly longer loading time and querying time, but it
is hard to tell whether it is due to the nature of our data model , or due to the nature of
Python.

Dimensions in the tested dataset

The imported datasets only have XYZ dimensions. This is because the original benchmark
experiments [Van Oosterom et al., 2015] use the datasets with only XYZ dimensions. The
benefit is that we focus on studying the effects of compressing the XYZ dimensions, and
the results are easier to compare. However, we also lack knowledge about these models’
performance when there are many dimensions.

Moreover, in the implemented prototype, only XY dimensions are encoded into Morton
keys. Ideally, it would be better to explore the effects of encoding XYZ dimensions into
Morton keys, or even time components and Level of Details in the SFC keys.
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7. Conclusions and discussion

Limited functionalities

Current implementation of the SplitSFC approach only supports 2D geometry query and
height query. More functionalities should be developed to support real-world application,
i.e. nearest neighbour search, complex spatial analysis.

Parallel Loading

In our implemented prototype, the file is loaded one after one. The allocation for compu-
tational resources is not optimized. If the pre-processing and loading process can perform
parallelly, the importing efficiency will be significantly improved.

Data transfer

Whether in data importing or retrieval process, a large volume of data is transferred back
and forth in LAS files, Python and PostgreSQL. The data transfer and I/O itself is very
expensive, therefore it would be better to develop some native database functions to support
more algorithms.

7.2. Future Work

Adaptive splitting algorithm

The point cloud is irregularly distributed, with dense points in some places and sparse
points in other places. Therefore, splitting with a fixed-size quadrant is inappropriate. The
next step in the improvement of algorithm is to replace the fixed-length splitting algorithm
to an adaptive splitting algorithm.

We can learn from the data structure and algorithm of the HistSFC approach to compute the
distribution of the points. For example, a HistogramTree structure can be computed in the
beginning to provide a guide for Morton key splitting.

3D Morton key

In this research, the splitting is only explored with a 2D Morton curve. The splitting effect
of the 3D Morton curve is unknown. On the other hand, how to encode the 3D Morton key
is also a question. Take AHN2 dataset for example, since the Netherlands is very flat, the
data range in the Z dimension is much smaller than the X and Y dimensions. In this case,
maybe the Z dimension is only encoded into the head part of the Morton key, which means
it can result in a 3D Morton head and a 2D Morton tail.

Multi-split algorithm

In our research, the Morton key has a head/tail split, which means it is splitted into two
parts. A more imaginative splitting is to split it into multiple sections, i.e. Morton head,
Morton body, Morton tail. This can potential save more storage space.

Implementation with C++

Python is unsuitable to process massive point clouds due to its interpreted nature. To sig-
nificantly improve the performance of the prototype, a C++ implementation is cruicial.
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A. Description of the queries

There are seventeen queries in the benchmark. All queries are from Van Oosterom et al.
[2015]. The original geometries of the queries are stored in the GitHub repository:

https://github.com/NLeSC/pointcloud-benchmark

Dataset ID Key Area (km2) Description

20M

1 S RCT 0.0027 Small axis-aligned rectangle
2 M RCT 0.0495 Medium axis-aligned rectangle
3 S CRC 0.0013 Small circle, radius 20 m
4 M CRC 0.0415 Medium circle, radius 115 m
5 S SIM 0.0088 Small, simple polygon
6 M COM o 0.0252 Medium, complex polygon, 1 hole
7 M DG RCT 0.0027 Medium, narrow, diagonal rectangular area

210M

8 L COM os 0.1341 Large, complex polygon, 2 holes
9 S L BUF 0.0213 Small polygon (10 m buffer in line of 11 pts)

10 S RCT UZ 0.0021 Small axis-aligned rectangle, cut in max. z
11 S RCT LZ 0.0051 Small axis-aligned rectangle, cut in min. z
12 L RCT LZ 0.1419 Large axis-aligned rectangle, cut in min. z

2201M 13 L L BUF 0.0475 Large polygon (1 m buffer in line of 61 pts)
14 L DG L BUF 0.0499 Large polygon (2 m buffer in diag. line of 8 pts)

23090M
15 L RCT 0.2342 Large axis-aligned rectangle
16 L RCT N 0.1366 Large axis-aligned rectangle in empty area
17 L CRC 0.1256 Large circle

Table A.1.: Query description
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B. Importing results for ratio experiment

Here are the benchmarking results of the ratio experiment shown in Section 6.1.3.

Solution 1: Default mode

Scales = [0.01, 0.01]

Offsets = [0, 0]

Dataset Input ratio Length (bits) num block mean num pts in blocks Import Time(s) Size (MB)SFC head SFC tail

20M
(52 bits)

0.5 26 26 75 268878 119.48 116
0.6 30 22 3097 6511 121.39 119
0.65 32 20 12111 1665 122.48 127

210M
(52 bits)

0.5 26 26 3496 60249 1395.72 2405
0.55 28 24 6895 30548 1445.88 1205
0.6 30 22 27089 7776 1226.33 1230

Table B.1.: The importing results of solution 1, default mode

Solution 2: Shifting mode

Scales = [0.01, 0.01]

Offsets = [min x, min y]

Dataset Input ratio Length (bits) num block mean num pts in blocks Import Time(s) Size (MB)SFC head SFC tail

20M
(34 bits)

local test)

0.15 4 30 16 1260366 185.37 119
0.2 6 28 56 360105 201.56 120
0.25 8 26 208 96951 200.74 120
0.35 10 24 775 26020 200.63 120
0.4 12 22 3036 6642 192.89 124
0.45 14 20 11988 1682 183.22 132
0.5 16 18 47346 426 179.14 139
0.55 18 16 186141 108 183.87 241

210M
(38 bits)

0.25 8 30 120 1755263 5141.34 1229
0.35 12 26 1702 123755 5126.94 1232
0.45 16 22 26903 7829 4865.18 1264
0.5 18 20 105943 1988 5105.57 1340

Table B.2.: The importing results of solution 2, shrifting mode

Solution 3: resolution = 1m

Scales = [1, 1]

Offsets = [0, 0]

55



B. Importing results for ratio experiment

Dataset Input ratio Length (bits) num block mean num pts in blocks Import Time(s) Size (MB)SFC head SFC tail

20M
(34 bits)

local test)

0.5 18 20 3 6721954 232.26 44
0.6 22 16 24 840244 220.96 44
0.7 26 12 336 60017 212.28 44
0.8 30 8 5042 4000 206.2 48

210M
(38 bits)

0.5 18 20 15 14042106 2655.55 435
0.6 22 16 180 1170176 2659.81 435
0.7 26 12 2831 74402 2513.27 438
0.8 30 8 43818 4807 2636.74 467

Table B.3.: The importing results of solution 1, default mode
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C. Querying results for medium
benchmark

The detailed querying results in the medium benchmark are described here. There are
three database solutions tested for comparison. They are pgPointCloud, Oracle SDO PC
and SplitSFC in PostgreSQL. See Section 6.2 for details of the database storage model. For
each query, we record the number of returned points and the query response time. Notably,
the results of Q13-Q14 are not shown, because it got killed in the refinement step.

Approach Dataset Number of points Time (s)
1 2 3 4 5 6 7 1 2 3 4 5 6 7

pgPointCloud

20M

74947 718131 34697 563108 182930 387142 45821

0.32 2.14 0.2 1.69 0.61 1.72 0.41
210M 0.32 2.15 0.2 1.65 0.64 1.62 0.46

2201M 0.31 2.19 0.21 1.67 0.67 1.63 0.41
23090M 0.32 2.19 0.21 1.68 0.68 1.68 0.44

Oracle SDO PC

20M

74947 718131 34697 563110 182930 387145 45821

0.41 1.38 0.34 1.21 0.62 1.38 0.53
210M 0.38 1.28 0.36 1.22 0.62 1.29 0.54

2201M 0.39 1.36 0.36 1.23 0.6 1.33 0.5
23090M 0.4 1.3 0.34 1.21 0.6 1.4 0.53

SplitSFC

20M

77604 720700 34623 562743 182759 387104 45848

10.75 84.34 8.1 85.19 37.74 87.87 151.15
210M 10.82 84.1 8.14 85.33 38.12 87.5 151.35

2201M 10.88 83.28 8.19 85.65 38.75 87.3 151.36
23090M 31.96 82.74 8.3 83.82 39.07 87.7 151.66

Table C.1.: The querying results of Q1-Q7 queries within Delft Campus

Approach Dataset Number of points Time (s)
8 9 10 11 12 8 9 10 11 12

pgPointCloud
210M 2273141 620392 2434 591 342952 7.03 2.26 0.19 0.22 3.31

2201M 2273141 620392 2434 591 342952 7.13 2.17 0.19 0.23 3.32
23090M 2273152 620932 2434 591 342952 7.23 2.33 0.19 0.22 3.32

Oracle SDO PC
210M 2273290 620394 2434 591 342952 44.76 1.7 0.34 0.37 3.59

2201M 2273290 620394 2434 591 342952 45.12 1.67 0.34 0.37 3.48
23090M 2273290 620394 2434 591 342952 44.79 1.73 0.36 0.39 3.6

SplitSFC
210M 2271841 620540 2366 629 341809 673.41 454.54 7.17 10.26 356.59

2201M 2271841 620540 2366 629 341809 677.07 451.87 9.73 10.31 357.31
23090M 2271841 620540 2366 629 341809 670.18 452.13 9.56 10.52 362.08

Table C.2.: The querying results of Q8-Q14 in Major part of Delft

Approach Dataset Number of points Time (s)
15 16 17 15 16 17

pgPointCloud 23090M 3992425 0 2201330 9.2 0.09 5.25
Oracle SDO PC 23090M 3992513 0 2201333 4.52 0.29 3.13

SplitSFC 23090M 3981188 0 2202932 450.94 0.18 311.96

Table C.3.: The querying results of Q15-Q17 in South Holland
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D. Software usage

The source code is stored and maintained in GitHub repository:

https://github.com/cynthiacai56/splitSFC/

The usage of all tools is simple. First, put the parameters in a json file. Then, execute the
corresponding Python script.

Importer

The importer has two modes. One for single file loading, and the other for loading all files
in one folder.

The command:� �
python3 importer.py --input import.json� �
The parametes in query 20m.json file:� �
{

"config ": {

"dbname ": "splitsfc",

"user": "admin",

"password ": "aaa",

"host": "localhost",

"port": 5432

},

"imports ": {

"210m": {

"mode": "file",

"srid": 28992 ,

"path": "/data /210m/ahn_bench000210.las",

"ratio ": 0.55

}

"2201m": {

"mode": "dir",

"srid": 28992 ,

"path": "/data /2201m",

"ratio ": 0.55

}

}

}� �
Querying tool

The command:
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D. Software usage

� �
python3 query.py --input query_20m.json� �
The parametes in import.json file:� �
{

"config ": {

"dbname ":" splitsfc",

"user": "admin",

"password ": "aaa",

"host": "localhost",

"port": 5432

},

"queries ":{

"A1_S_RCT ": {

"source_dataset ": "20m",

"mode": "bbox",

"geometry ": [85670 , 85721 , 446416 , 446469]

},

"A3_S_CRC ": {

"source_dataset ": "20m",

"mode": "circle",

"geometry ": [[85365 , 446595] , 20]

}

}

}� �
Exporter

The exporter cannot be used alone. You need to run querying tool with the same json file
first, and then run the exporter. The querying tool first creates a table that contains all the
points of the given query, then the exporter outputs a LAS file that contains all points in the
querying result table.

The command:� �
python3 exporter.py --input query_20m.json� �
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