

Oracle 10g Topology

Testing Oracle 10g Topology using cadastral data

ir. Friso Penninga

GISt Report No. 26 September 2004

Summary

This report describes the results of a first exploration of functionality and
performance of the topological data structure as provided by Oracle's newest DBMS
release, Oracle 10g Topology (Oracle10g Enterprise Edition Release 10.1.0.2.0 64bit
Production version). The overall conclusion should be that this product is the first
attempt to deal with topology in a geoDBMS environment and thus has to be
welcomed. However, based on this research several remarks about the offered
functionality can be made. Most remarks result from certain design decisions that are
in themselves understandable, but have some less favourable consequences.

Although performance tests were not very comprehensive, they did indicate that
queries with a topological nature (such as neighbour queries) are potentially much
faster when performed on the topological data structure. However, there is - due to
some 'overhead' in the topology structure - a break even point where the topological
and geometrical form are equally fast. The larger the data set, the better the relative
topological query performance (time savings up to 50% were attained). Queries with
a geometrical nature (such as line intersections and query windows) were on average
2-3 times slower in topological form, but huge deviations occurred regularly, most
likely due to some validation problems with the test data sets.

During the tests the author received help from Wilko Quak, Theo Tijssen and Peter
van Oosterom. Concept versions were reviewed by Peter van Oosterom, Wilko
Quak and Elfriede Fendel. Special thanks goes out to Siva Ravada, Senior
Development Manager Spatial Products at Oracle for his fast and accurate responses
on questions and problems.

ISBN:
ISSN: 1569-0245

© 2004 Section GIS technology
 OTB Research Institute for Housing, Urban and Mobility Studies
 TU Delft
 Jaffalaan 9, 2628 BX Delft, the Netherlands
 Tel.: +31 (0)15 278 4548; Fax +31 (0)15-278 2745
Websites: http://www.otb.tudelft.nl
 http://www.gdmc.nl

E-mail: gist@TU Delft.nl

All rights reserved. No part of this publication may be reproduced or incorporated into any
information retrieval system without written permission from the publisher.

The Section GIS technology accepts no liability for possible damage resulting from the findings of this
research or the implementation of recommendations.

This publication is the result of the research programme Sustainable Urban Areas, carried out by Delft
University of Technology.

Contents

1 Introduction ... 1

2 Topological data model... 3
2.1 Topology elements .. 3
2.2 Topology related tables .. 4

3 Loading cadastral data – procedure .. 7
3.1 Loading nodes, edges and faces ...7
3.2 Loading topology geometries (features)..9

4 Loading cadastral data – results...11

5 Testing with cadastral data ... 19

6 Conclusions ... 27
6.1 Conclusions independent of validation issues ...27
6.1.1 Functionality ..27
6.1.2 Querying ...28
6.2 Conclusions influenced by validation issues ..28
6.3 Overall conclusion ...29

References .. 31

Appendix A Scripts ... 33

Appendix B Test queries.. 39

OTB Research Institute for Housing, Urban and Mobility Studies iii

OTB Research Institute for Housing, Urban and Mobility Studies iv

1 Introduction

This report describes the research performed on data storage and retrieval in a
topological data structure as provided by the new release of the Oracle DBMS. The
main advantages of working with a topological data structure are the avoidance of
redundant data storage and the ability to maintain data consistency by the application
of validation rules. The objective of this research is to test whether the new Oracle
DBMS is able to live up to these expectations. The tests were performed on the
Oracle10g Enterprise Edition Release 10.1.0.2.0 64bit Production version. The
database is tested with cadastral data, as it is already available in the topological
winged edge data structure. The aim was to load and query a large cadastral data set;
in the test data of the Rotterdam and Zoetermeer cadastral offices were used.
Together they hold all cadastral data of the province Zuid-Holland (without history),
just over one million parcels. In order to be able to demonstrate the connection
between the size of the data set and the DBMS performance two more data sets were
used, i.e. the cadastral municipalities of Apeldoorn (one of the largest cadastral
municipalities, over 30,000 parcels) and Eck en Wiel (one of the smaller cadastral
municipalities, about 600 parcels).

This report is structured as follows: first the topological data model is explained in
chapter 2. The used procedure for loading cadastral data is described in chapter 3 and
the results of this procedure are subject of chapter 4. The actual testing is discussed
in chapter 5 and the report ends with conclusions in chapter 6.

OTB Research Institute for Housing, Urban and Mobility Studies 1

OTB Research Institute for Housing, Urban and Mobility Studies 2

2

2.1

Topological data model

Topology elements

The basic topology elements in an Oracle topology are its nodes, edges and faces.
These elements are all two-dimensional. A node is represented by a point and can be
used to model an isolated point feature or to bound edges. Every node has a
coordinate pair associated with it to describe the spatial location of the node. An
edge is bounded by a start and an end node and has a coordinate string associated
that describes the spatial representation. Each edge can consist of multiple vertices,
represented by linear as well as circular arc strings. As each edge is directed, it is
possible to determine which faces are located at the left and right hand side of the
edge. A face is represented by a polygon (that can be reconstructed from the several
edge strings) and has references to a directed edge on its outer and (if any) inner
boundaries. Each topology has a universal face that contains all other nodes, edges
and faces in the topology.

Nodes, edges and faces are the building blocks by which every real world object can
be constructed. These real world objects are modelled as features or (as Oracle likes
to call them) topology geometries. Each topology geometry is stored as a set of
topological elements, e.g. a parcel can consist of several faces. Oracle distinguishes
five different topology geometry types: point, line strings, (multi)polygons and
(combining the four previous topology geometry types) a heterogeneous collection.
To lay down the type of topology geometry, each topology geometry has a reference
to its topology geometry layer. These layers consist of collections of topology
geometries of a specific type, for instance 'parcels' or 'roads'. Oracle automatically
assigns unique IDs to topology geometries and topology geometry layers. Although
not used during the research, it is possible to define a hierarchy in topology geometry
layers. This hierarchy indicates that a topology geometry of the type of the topmost
hierarchy level consists of topology geometries at the next level down and so on. On
a cadastral data set this could be used to model the relationship between a cadastral
municipality, cadastral sections, cadastral sheets and parcel numbers.

In Oracle10 the relationships (generally 1:n) between topology geometries and the
nodes, edges and faces are stored as illustrated in figure 2.1. As there is only one
topology geometry type ('parcels') in the test, which furthermore has a 1:1
relationship with the face table, one can say that the DBMS creates a lot of overhead
given our specific purpose. This overhead might influence DBMS performance
significantly.

OTB Research Institute for Housing, Urban and Mobility Studies 3

Figure 2.1 Relationship between topology geometries and nodes, edges and faces [3]

As mentioned earlier the node, edge and face tables contain references to the
associated spatial location of the nodes, edges and faces. The edge table contains
several topological relationships as the Oracle topology model uses a winged edge
representation. As illustrated in figure 2.2 there are some differences in the way
Oracle defines the winged edge model and the way the Dutch cadastre does. As a
result the following relationships exist:

Oracle Dutch Cadastre
 next_left = ll_line
 previous_left = - fr_line
 previous_right = - lr_line
 next_right = fl_line

prev_right_id

left_face_id right_face_id

next_left_id

fr_line_id fl_line_id

lr_line_idll_line_id

r_obj_idl_obj_id

prev_left_id next_right_id

Figure 2.2 Winged-edge representation: Oracle definition (left) and Dutch Cadastre

definition (right)

2.2 Topology related tables

In order to be able to work with the collection of tables, the DBMS creates some
extra tables. The relationship table is already mentioned as it stores the relationship
between topology geometries at the one side and the nodes, edges en faces on the
other side. Another automatically generated table is the history table, which holds
track of all changes to the topology over time (this approach differs from the
cadastre as the cadastre stores historical data in the same tables, see [1] for more
details). The metadata tables store the properties of the tables, as well as references to
all indexes. The initialize metadata procedure creates most of these indexes on the
topology tables.

OTB Research Institute for Housing, Urban and Mobility Studies 4

The procedure to create and fill a topology with data consists of six steps:
1. Creating a new topology

The sdo_topo.create_topology procedure creates a topology with a
user-defined name of the topology. This name combined with
_NODE$, _EDGE$, _FACE$ and _HISTORY$ give the names of
the created topology tables.

2. Loading data into the node, edge and face table
This would normally be done in a bulk load, but can also be done
using insert-statements.

3. Creating topology geometry tables
For each topology geometry (feature) type a topology geometry table
has to be created.

4. Associate topology geometry tables with topology by defining the topology
geometry layers

By adding topology geometry layers to the topology the relationships
between the topology geometry tables and the node, edge or face
table are stored in the new <topology-name>_RELATION$ table

5. Initialize metadata and create indexes on topology tables
The sdo_topo.initialize_metadata procedure creates indexes on the
node, edge, face, history and relationship tables.

6. Constructing features from nodes, edges and faces
Using the topo_geometry constructor one can build the topology
geometries from nodes, edges or faces.

The created tables are defined as follows:

SQL> describe kadaster_node$
 Name Null? Type
 --- -------- -----------------------
 NODE_ID NOT NULL NUMBER
 EDGE_ID NUMBER
 FACE_ID NUMBER
 GEOMETRY SDO_GEOMETRY

SQL> describe kadaster_edge$
 Name Null? Type
 --- -------- -----------------------
 EDGE_ID NOT NULL NUMBER
 START_NODE_ID NUMBER
 END_NODE_ID NUMBER
 NEXT_LEFT_EDGE_ID NUMBER
 PREV_LEFT_EDGE_ID NUMBER
 NEXT_RIGHT_EDGE_ID NUMBER
 PREV_RIGHT_EDGE_ID NUMBER
 LEFT_FACE_ID NUMBER
 RIGHT_FACE_ID NUMBER
 GEOMETRY SDO_GEOMETRY

SQL> describe kadaster_face$
 Name Null? Type
 --- -------- -----------------------
 FACE_ID NOT NULL NUMBER
 BOUNDARY_EDGE_ID NUMBER
 ISLAND_EDGE_ID_LIST SDO_LIST_TYPE
 ISLAND_NODE_ID_LIST SDO_LIST_TYPE
 MBR_GEOMETRY SDO_GEOMETRY

OTB Research Institute for Housing, Urban and Mobility Studies 5

SQL> describe kadaster_history$
 Name Null? Type
 --- -------- -----------------------
 TOPO_TX_ID NOT NULL NUMBER
 TOPO_SEQUENCE NOT NULL NUMBER
 TOPOLOGY VARCHAR2(20)
 TOPO_ID NUMBER
 TOPO_TYPE NUMBER
 TOPO_OP VARCHAR2(3)
 PARENT_ID NUMBER

SQL> describe kadaster_relation$
 Name Null? Type
 --- -------- -----------------------
 TG_LAYER_ID NOT NULL NUMBER
 TG_ID NOT NULL NUMBER
 TOPO_ID NOT NULL NUMBER
 TOPO_TYPE NOT NULL NUMBER
 TOPO_ATTRIBUTE VARCHAR2(100)

The feature table looks like:

SQL> describe parcels
 Name Null? Type
 --- -------- -----------------------
 OBJECT_ID NUMBER
 FEATURE SDO_TOPO_GEOMETRY

where the object type SDO_TOPO_GEOMETRY is defined as:

CREATE TYPE sdo_topo_geometry AS OBJECT
 (tg_type NUMBER,
 tg_id NUMBER,
 tg_layer_id NUMBER,
 topology_id NUMBER);

Attribute tg_type defines the type of topology geometry (point, line,
polygon/multipolygon or heterogeneous collection). Tg_id is a unique ID of the
topology geometry and tg_layer_id the unique ID of the layer the topology geometry
belongs to. Topology_id is the unique ID of the topology the layer is in.

OTB Research Institute for Housing, Urban and Mobility Studies 6

3

3.1

Loading cadastral data - procedure

Loading nodes, edges and faces

The complete collection of scripts that are needed to load a cadastral data set into a
topological data structure can be found in appendix A. In this chapter the basic ideas
behind the procedure will be discussed. The relevant source data is stored in the
xfio_parcel, xfio_parcelover and xfio_boundary tables. A view that selects only the
current cadastral situation is defined on each table (lki_parcel, lki_parcelover and
lki_boundary). These three views are queried to select the relevant data. The edge
and face references in these tables have to be altered to ensure correct reference to
the universal face F0. After these preparations a new topology is created. The DBMS
creates the node, edge and face tables. Filling the edge table is the first step:

execute SDO_TOPO.CREATE_TOPOLOGY('KADASTER', 0.001);
insert into KADASTER_EDGE$
 select object_id,
 null,
 null,
 ll_line_id,
 -fr_line_id,
 fl_line_id,
 -lr_line_id,
 l_obj_id,
 r_obj_id,
 geo_polyline as geometry
from lki_boundary;

The Oracle topology model requires a start and an end node for each edge. These
nodes are not explicitly available in the cadastral topology and have to be derived
from the geo_polyline. Just using the first and last point of every polyline is not an
option, because it will lead to multiple nodes on the same spatial location, as at least
two edges share a node. These duplicates have to be filtered out. First a table called
vertices is created. In this table for each potential node a unique ID, an empty
new_id, a geometry containing the point, the edge_id they originated from and an
indicator if the node is a start or an end node are stored.

create table vertices(
 id number,
 newid number,
 geometry mdsys.sdo_geometry,
 fromedge number,
 isstart number);

declare
 rownmbr number;
 edgeid number;
 edge mdsys.sdo_geometry;
 start_node mdsys.sdo_geometry;
 end_node mdsys.sdo_geometry;
begin
 rownmbr := 1;
 for e in
 (select geometry, edge_id into edge, edgeid

from kadaster_edge$) loop
 start_node := startPoint(e.geometry);

OTB Research Institute for Housing, Urban and Mobility Studies 7

 end_node := endPoint(e.geometry);
 insert into vertices values (
 rownmbr,
 1,
 start_node,
 e.edge_id,
 0);
 rownmbr := rownmbr+1;
 insert into vertices values (
 rownmbr,
 1,
 end_node,
 e.edge_id,
 1);
 rownmbr := rownmbr+1;
 end loop;
end;
/

As the table vertices is filled with all possible nodes, it has to be determined which
possible nodes are identical. The basic idea is to select the node with the highest ID
from each subset of possible nodes with the same coordinates (found by the
sdo_join operator that uses the spatial index to identify points that interact) and use
that node as a node in the topological model. Table verts contains all IDs of the
possible nodes (id2) and the selected node_id (id), which will be used instead of the
possible nodes.

create table verts as
 (select distinct(max(b.id)) id, a.id id2 from
 vertices a,
 vertices b,
 table(sdo_join('VERTICES','GEOMETRY','VERTICES','GEOMETRY',

'mask=ANYINTERACT')) c
 where c.rowid1 = a.rowid and c.rowid2 = b.rowid
 group by a.id)
;

This table can be used as a translation table, as it contains the information which
node to add to the topology for every vertex. The ID of the node that goes into the
topology will be stored as newid in the table vertices:

update vertices v
set newid = (
 select vt.id
 from verts vt
 where (v.id = vt.id2))
;

As table vertices still contains all possible nodes, only the selected nodes (where ID
= newid) have to be inserted into the node table of the topology:

insert into KADASTER_NODE$
 select v.id as NODE_ID, null as EDGE_ID, null as FACE_ID,
v.GEOMETRY
from vertices v where (v.id=v.newid) ;

The complete table vertices can now be used to update the edge table, as each edge
needs a start and an end node. Therefore the start node_id is selected as the newid
from the vertices table where the edge_id of the topology matches the source edge
ID of the vertex:

update KADASTER_EDGE$ e
set start_node_id = (
 select newid

OTB Research Institute for Housing, Urban and Mobility Studies 8

 from vertices v
 where (e.edge_id=v.fromedge)and(v.isstart='0')),
 end_node_id = (
 select newid
 from vertices v
 where (e.edge_id=v.fromedge)and(v.isstart='1'));

The processing described above is time consuming and only necessary since Oracle
requires start and end node fields in the edge table. Oracle states in the
documentation that the start and end node are necessary to determine the edge's
direction. However, it is also possible to determine the direction based on the
coordinates in the geometry field and therefore it is not strictly necessary to demand
reference to these nodes in the topology model. This choice also causes some
redundant data storage, as the coordinates of the nodes are stored in the node table
as well as in the edge table (as part of the coordinates of the polyline).

As a last step in loading the topological data the faces are filled with data from
lki_parcel and lki_parcelover. The geometry itself is not stored in this table; only the
bounding box is stored explicitly in order to be able to create the R-tree faster as it is
not necessary to calculate the bounding boxes anymore. However, this incorporates
the risk of conflicts between the actual geometry and an erroneously inserted
bounding box. As the bounding box is present in the cadastral database this risk is
eliminated in the performed tests.

insert into KADASTER_FACE$ f
 select
 object_id as face_id,
 -line_id1 as boundary_edge_id,
 null as island_edge_id_list,
 null as island_node_id_list,
 geo_bbox as mbr_geometry

 from lki_parcel;

3.2 Defining topology geometries (features)

As the topology tables are filled, one can start defining the topology geometries. First
a topology geometry layer named 'parcels' and of type polygon is created. Other
layers like for instance 'boundaries' might be defined in the same way.

declare
begin
 sdo_topo.add_topo_geometry_layer('KADASTER','PARCELS','FEATURE',
 'POLYGON');
end;
/

The topology geometry table parcels can now be filled by iterating over all rows in
the kadaster_face$ table:

declare
 fid number;
 tli number;
begin
 select tg_layer_id into tli from user_sdo_topo_info where topology =
 'KADASTER' and table_name = 'PARCELS';
for a in
 (select face_id into fid from kadaster_face$ where face_id <> -1)
 loop

 insert into parcels values
 (a.face_id,

OTB Research Institute for Housing, Urban and Mobility Studies 9

 sdo_topo_geometry (
 'KADASTER', -- topology name
 3, -- topo-geomtry type polygon
 tli, -- TG_LAYER_ID
 sdo_topo_object_array (sdo_topo_object (a.face_id,3))));
end loop;
end;
/

It is possible to add extra attributes to the parcels table using standard SQL-
functionality to add and fill columns. Inserting topology geometries is quite
laborious, as one has to work with the topology geometry layer ID. As a layer is
created, the DBMS assigns a unique ID to this layer. This ID is stored in the
user_sdo_topo_info table. The insert statement requires this unique ID, so it is
necessary to query the info table using the arguments topology_name and
table_name. Both arguments can also be found in the insert-statement, but for some
unknown reason the DBMS is not able to find this ID on its own. Since the layer ID
is used hard-coded in the topology example in the Oracle documentation, it took a
while to find out how to retrieve this layer ID. In retrospect it would have been
easier if the other topology geometry constructor was used, as this constructor
requires the topology name, table name, column name and tg_type as arguments and
thus not the layer ID. The complete procedure to define the parcels is very time
consuming (over 40 hours for one million parcels), which is even worse if one
realizes that in the cadastral case a 1:1 relationship exists between a topology
geometry and a face.

One might say that the offered functionality does not match very well with our quite
straight forward data needs. The mandatory use of nodes causes a lot of work, but
does not contribute anything to the cadastral case, as a lack of clear linkage between a
node and a cadastral object. In a cadastral data set boundaries and parcels are the
relevant objects, not the vertices in the boundaries.

OTB Research Institute for Housing, Urban and Mobility Studies 10

4 Loading cadastral data – results

The loading process was first tested with a very small cadastral municipality called
Eck en Wiel (ECK00). This municipality consists of 586 parcels and it takes less than
five minutes to build the topology, create the parcel features and build a table with
the polygons of the parcel boundaries (needed for comparison between queries
performed on the topological data set and on a geometrical version). The topology
consists of 587 faces, 2,046 edges, 1,467 nodes and is illustrated in figure 4.1.

Figure 4.1 Small cadastral data test area: cadastral municipality of Eck en Wiel

As loading small data sets went smoothly, a large cadastral municipality was used as a
next test data set. Apeldoorn (cadastral municipality APD01) consists of 30,174
parcels and was loaded in about two hours. The Apeldoorn topology consists of
30,175 faces, 95,792 edges and 66,123 nodes. As illustrated in figure 4.2 on the next
page the cadastral municipality APD01 consists of two non-touching parts, separated
by municipality SRN00 (Hoog Soeren). One of the parts has a hole; this is the
cadastral municipality APD04.

OTB Research Institute for Housing, Urban and Mobility Studies 11

Figure 4.2 Test data set Apeldoorn (APD01)

Although the loading process did not result in any error messages, a visual check
(figure 4.3) of the results of the get_geometry() function shows that some errors
occurred in parcel 140154608 (APD01 Z 03448 G0000). The validation was not
performed yet.

Figure 4.3 Gaps and spikes in erroneous road parcel

At the left side the correct cadastral situation, at the right hand side the features in
the topology. One can see that something went wrong with the parcel containing the
street from the bottom left to the top right. Two holes appear and some strange
peaks occur. After examining this case thoroughly it turned out that the actual
geometry was not the same shape as illustrated before, but was in fact an invalid
geometry. The visualization tool created the two peaks and holes, but in reality the
geometry was of type multipolygon, but none of the polygons were properly closed.
All this was caused by two erroneous left–right pointers in the edge table. By mistake
two boundaries (marked in red circles, IDs 142755121 and 142754803) point not to

OTB Research Institute for Housing, Urban and Mobility Studies 12

the street parcel, but to the parcel marked by the arrow (see figure 4.4). In the most
recent cadastral data set these errors are corrected, but not in the test data set.

Figure 4.4 Two left-right pointers of edges point to the wrong parcel

To be able to illustrate the encountered problem in an error report to Oracle, a small
topology was built as illustrated in figure 4.5. Based on this topology four topology
geometries were defined, each consisting of one of the faces. The left-right face
pointers of edges e2 and e11 were changed to P2-P3 instead of P4-P1. As a result the
get_geometry() function returns some invalid geometries (even two multipolygons).
Contacting Oracle led to the announcement to fix this bug in the next release: "The
fix is in the next release and the validate on this data would now come back with this
message: 'Consecutive boundary edges -3 and -2 of face 1 do not meet at common
node'." (E-mail Siva Ravada, March 1st, 2004)

Figure 4.5 Small topology to illustrate invalid geometries due to erroneous left-right

references

OTB Research Institute for Housing, Urban and Mobility Studies 13

SQL> select f.feature.get_geometry()
 2 from prcls f
 3 ;

F.FEATURE.GET_GEOMETRY()(SDO_GTYPE, SDO_SRID, SDO_POINT(X, Y, Z),
SDO_ELEM_INFO,

SDO_GEOMETRY(2003, NULL, NULL, SDO_ELEM_INFO_ARRAY(1, 1003, 1),
SDO_ORDINATE_ARRAY(4, 4, 0, 0, 0, 4))

SDO_GEOMETRY(2007, NULL, NULL, SDO_ELEM_INFO_ARRAY(1, 1003, 1, 13, 1003,
1), SDO_ORDINATE_ARRAY(4, 1, 4, 4, 0, 0, 2, 0, 2, 1, 4, 1, 4, 4, 2, 3.5, 0,
4))

SDO_GEOMETRY(2007, NULL, NULL, SDO_ELEM_INFO_ARRAY(1, 1003, 1, 7, 1003, 1),
SDO_ORDINATE_ARRAY(4, 4, 2, 3.5, 0, 4, 4, 1, 2, 1, 2, 0, 4, 0, 4, 1))

SDO_GEOMETRY(2003, NULL, NULL, SDO_ELEM_INFO_ARRAY(1, 1003, 1),
SDO_ORDINATE_ARRAY(4, 4, 4, 6, 0, 6, 0, 4))

4 rows selected.

Then the validation process was tried for this erroneous topology and it seemed to
validate the topology, but later it was discovered that there was a mistake in the way
we carried out the validation process. In order to be able to validate the topology, a
topomap object has to be created first. A topomap object is associated with an in-
memory cache that is associated with a topology. After creation the topology has to
be loaded into the topomap, before it can be validated. As this is not explicitly
mentioned in the chapter of [3] with the topo_map-procedures, this loading was
omitted at first. As the validate procedure did not return a message like 'topomap is
empty' or something like that, this error was not directly discovered. Note that the
entire topology has to be loaded into the topo_map object, which requires a lot of
memory in case of large data sets. The complete validation process is given below.

variable res1 varchar2(4);
variable res2 varchar2(4);
call sdo_topo_map.create_topo_map('<TOPOLOGY_NAME>','TEMP');
call sdo_topo_map.load_topo_map('TEMP','TRUE') into :res1;
print res1;
call sdo_topo_map.validate_topo_map('TEMP') into :res2;
print res2;

Variable res2 will be true if the topology is marked valid. However, as opposed to
what one might expect, if the topology is not valid, res2 will not be false nor a
complete list of found topological problems will be returned. In fact the
validate_topo_map procedure will crash and produce an error message that points to
the first encountered topological problem:

call sdo_topo_map.validate_topo_map('TEMP') into :res
 *
ERROR at line 1:
ORA-29532: Java call terminated by uncaught Java exception:
oracle.spatial.topo.TopoValidationException: Consecutive boundary edges -3
and -2 of face 1 don't meet at common node

A clear drawback of this approach is that in order to fix ten topological errors, one
has to run the validate process eleven times. On the other hand this increases the
DBMS's robustness, but still a list with errors would come in handy, even more if
one considers the possible number of topological errors in a data set containing over
one million parcels. This number of errors, combined with the runtime of a single
validation process on very large data sets points out the necessity of a validation

OTB Research Institute for Housing, Urban and Mobility Studies 14

process, which returns all possible errors at once. As a result of this validation
problem a non-validated data set is used during the rest of the testing, which later
proved to be a bit dangerous.

In order to be able to test the DBMS query performance a large data set was loaded
into the topological data structure. As a test data set the cadastral data of the
cadastral offices Den Haag and Zoetermeer were used. Together they hold all
cadastral data of the province Zuid-Holland, which consists of 1,001,133 parcels,
3,363,761 boundaries and 2,401,586 nodes. The entire loading process requires about
five days. As we like to compare query performances between topological and
geometrical data structures the following statement was used to acquire a polygon
data set of Zuid-Holland:

create table PG as
 select
 p.object_id,
 p.feature.get_geometry() as GEOM
 from PARCELS p;
call createMetaData('PG','GEOM',0.1);
create index idx on
 PG(GEOM)
 indextype is mdsys.spatial_index;

During this process an error occurred:

 p.feature.get_geometry()
 *
ERROR at line 4:
ORA-06531: Reference to uninitialized collection
ORA-06512: at "MDSYS.SDO_UTIL", line 2327
ORA-06512: at "MDSYS.SDO_TOPO_GEOMETRY", line 524
ORA-06512: at line 1

The cause of this error was unclear. Although some kind of data error was a
possibility, we suspected the process ran out of memory, as memory usage during the
operation was very high and almost as high as the available amount of memory. In
order to be able to find the cause the input was split in ten and later in hundred
separate insert-statements, selecting on the last digits of the object_id:

insert into PG
 select
 p.object_id,
 p.feature.get_geometry()
 from PARCELS p where (p.object_id like '%01');

This time some of the insert-statements (with approximately 10.000 rows at a time)
went well, but some others produced the same error as mentioned above. More
precisely, the first 29 statements were successfully executed (last digits 00-28), the
next set (29-63) returned the error messages, 64-66 were successful again, 67 failed
and 68-99 were executed properly. The way in which the error messages appeared
showed some similarities, every time in the set 29-63 the error was returned after 7
minutes and 10 or 20 seconds. At this moment we still expected some kind of
memory leak which appeared after a certain amount of inserted rows. Restarting the
process after allowing the DBMS to use more memory did not solve the problem
and it showed that Oracle always uses about the maximal allowed memory capacity,
so at this time memory problems did not seem to be the most likely cause. In an
attempt to detect one of the exact parcels causing the problem, the first data set (last

OTB Research Institute for Housing, Urban and Mobility Studies 15

digits 29) was divided in ten parts, the process was restarted and repeated after the
next error. This finally led to a parcel ID of an erroneous parcel. Looking up the
cadastral situation showed that the erroneous parcel was one of the 34 very small,
round parcels as they appear in the purple parcel (ID 340644065, SKN00 D08605
G0000), see figure 4.6.

Figure 4.6 Thirty-four small parcels with missing left-right references

These parcels are really small (7-10 centimetres in diameter) and their
right_municip_IDs were empty. As an empty left or right municipality reference
normally indicates that a boundary is part of the office boundary, these empty
references are replaced with references to the universal face F0. In this case this
replacement is obviously erroneous, but situations exist where this can be correct, for
instance in Baarle-Nassau where a Belgian enclave is situated in the Netherlands. It
looks like the DBMS cannot handle situations like these.

It turned out that the parcels in this case have consecutive object_IDs, causing errors
in the set with parcel IDs ending with 29 until 63. The large parcel (marked in
purple) is owned by the municipality of Spijkenisse. The four island parcels are
owned by an investment company and they contain a shopping mall. The small
circle-shaped parcels are also owned by Spijkenisse, but also contain a building right

OTB Research Institute for Housing, Urban and Mobility Studies 16

of the investment company. It is very likely that the small parcels contain the
standards of several coverings to create a dry passage to all customers between the
different parts of the shopping mall. Two similar errors were found on another
location (id 340633554, SKN00 D08530 G0000) (see figure 4.7) in the same
municipality, probably again because of the founding of a covering. This time the
small parcels are located just outside of a home for the elderly. In this case only two
parcels have boundaries with incomplete references to their left and right faces.

Figure 4.7 Very small parcels with missing references

One might reason that if missing left or right hand side pointers caused the earlier
problems, the absence of further problems indicates that all other pointers are
correct. However, this is not very likely to be true as it is not expected that all other
references are correct. Probably only references to the universal face cause problems
like described above.

Earlier experiences with cadastral data led to the assumption that the errors with the
left and right pointers as described above perhaps could be avoided by the usage of
the combination of the left-right municipality, cadastral section, sheet and parcel
number as it is expected that these alternative topology references are better filled by
the Dutch Cadastre than the left-right IDs. As this might be true for some pointers
this would not solve the problems in Spijkenisse.

OTB Research Institute for Housing, Urban and Mobility Studies 17

OTB Research Institute for Housing, Urban and Mobility Studies 18

5 Testing with cadastral data

As mentioned in the introduction one of the major advantages of using a topological
data structure is the avoidance of redundant data storage. The risk of redundant data
storage is the possibility of data inconsistencies. Besides preventing data
inconsistencies the avoidance of redundancy might also reduce storage capacity
requirements, as double storage requires double storage capacity. However, the
question is whether the saved storage capacity is larger than the additional storage
capacity required for storing the topological relationships. This is also dependant of
the type of data, e.g. the number of points per edge.

The chapter on the topological data structure already showed that the current DBMS
topology implementation does not completely avoid redundant data storage, as point
geometry is stored both in node and in edge tables. The tables 5.1 and 5.2 illustrate
that due to storing extended topological relationships the topological data structure
requires about five times more storage capacity compared to storing the parcels as
polygons. One can also see that the indexes require about the same storage capacity
as the data itself. There are eight different indexes on the node, edge and face tables:
on the node table an index on the associated face ID and a spatial index on the node
geometry, on the edge table indexes on the start node, end node, left and right face
ID and a spatial index on the geometry and on the face table a spatial index on the
bounding box of the face. Note that on both data structures only the geometry is
stored, administrative data is not taken into account.

Topological
data structu e r

Eck en

Wiel

tables

Eck en

Wiel

indexes

#

Apel-

doorn

tables

Apel-

doorn

indexes

#

Zuid-

Holland

Tables

Zuid-

Holland

indexes

<topology>_node$ 0.08 0.16 2 2.78 5.86 2 100.61 276.14 2

<topology>_edge$ 0.48 0.40 5 20.19 17.33 5 732.20 715.83 5

<topology>_face$ 0.12 0.08 1 5.57 2.65 1 192.56 109.94 1

<topology>_relation$ 0.02 0.04 2 0.74 2.04 2 24.74 66.61 2

<topology>_history$ 0.00 0.00 1 0.00 0.00 1 0.00 0.00 1

feature_table 0.02 0.02 1 0.94 0.69 1 30.23 22.61 1

Sum 0.72 0.70 30.22 28.57 1080.34 1191.13
Total topological 1.42 58.79 2271.47

Table 5.1 Data storage (in Mb) (size of table, size of indexes (sum) and number of

indexes) of the topological data structure

Geometrical
data structu e r

Eck en

Wiel

table

Eck en

Wiel

index

#

Apel-

doorn

table

Apel-

doorn

index

#

Zuid-

Holland

Table

Zuid-

Holland

index

Polygons 0.21 0.08 1 9.52 2.65 1 310.97 109.90 1
Total geometrical 0.29 12.17 420.87

Table 5.2 Data storage (in Mb) (size of table, size of index and number of indexes) of the

geometrical data structure

OTB Research Institute for Housing, Urban and Mobility Studies 19

The main objective of the query testing is to determine the relative performance of
querying on a topological data structure. All queries are executed both topologically
and geometrically. One can expect that queries with a geometrical nature, such as
'which parcels are in this query window' or 'which parcels intersect with this line' are
faster in the geometrical form. At the same time one can expect queries based on
relationships, such as 'return all neighbours of this parcel' to be faster when
performed on a topological data structure. Below two queries, one query window and
one neighbour query, both described in topological and in geometrical form.

Query window in geometrical and topological form:

select p.object_id from pg p where sdo_anyinteract(p.geom,
sdo_geometry(2003,NULL,NULL, SDO_ELEM_INFO_ARRAY(1,1003,3),
SDO_ORDINATE_ARRAY(75000000,425000000,76000000,426000000)))='TRUE';

select q.object_id from parcels q where sdo_anyinteract(q.feature,
sdo_geometry(2003,NULL,NULL, SDO_ELEM_INFO_ARRAY(1,1003,3),
SDO_ORDINATE_ARRAY(75000000,425000000,76000000,426000000)))='TRUE';

Neighbour query in geometrical and topological form:

select p.object_id from pg p, pg g where g.object_id = 340633554 and
sdo_anyinteract(p.geom, g.geom) = 'TRUE';

select q.object_id from parcels q, parcels r where r.object_id = 340633554
and sdo_anyinteract(q.feature, r.feature) = 'TRUE' ;

Note that the possibility exists to query directly on the edge and faces tables by using
the left-right references instead of using the sdo_anyinteract statement. The small
cadastral data set of Eck en Wiel was the first one to become available for testing,
although it was not validated. In figure 5.1 the results of both the topological and
geometrical version of 15 queries are illustrated. The first four queries are query
windows, the next six are line queries and the last five queries are neighbour queries.
One can see that only the neighbour queries are sometimes as fast in the topological
version as in the geometrical form.

Queryresults Eck en Wiel

0
0.05
0.1

0.15
0.2

0.25
0.3

0.35
0.4

0.45
0.5

1 2 3 4 11 12 13 14 15

ECK geometrical ECK topological

Query results Eck en Wiel

5 6 7 8 9 10Number of returned parcels

Figure 5.1 Query performance in geometrical form and in topological form on the small

data set

OTB Research Institute for Housing, Urban and Mobility Studies 20

The length of the query time is more or less related to the size of the query itself, i.e.
to the number of returned parcels, as can be seen in figure 5.2. The topological form
seems to have a constant offset in comparison to the geometrical form.

Query results Eck en Wiel (ECK00)

0

0.05

0.1

0.15

0.2

0.25

0.3

0 50 100 150

Number of returned parcels

qu
er

yt
im

e
(s

ec
on

ds
)

ECK geometrical

ECK topological

Figure 5.2 Relation between query performance and number of returned parcels

The next test data set is the larger municipality of Apeldoorn (again not validated). It
turns out that this time the topological form is a bit quicker for neighbour questions,
as again the last five queries are neighbour queries (figure 5.3). A relationship
between the number of returned parcels and the query time is less obvious, most
likely due to the less homogeneous character of the Apeldoorn parcel data set (figure
5.4). Combining the results of both Eck en Wiel and Apeldoorn makes this even
clearer (figure 5.5).

Queryresults Apeldoorn

0

0.5

1

1.5

2

2.5

1 2 3 4 5 6 7 8 9 10 11 12 13 14

APD geometrical APD topological

Number of returned parcels

Figure 5.3 Query performance in geometrical form and in topological form on Apeldoorn

test set

OTB Research Institute for Housing, Urban and Mobility Studies 21

Query results Apeldoorn (APD01)

0

0.2

0.4

0.6

0.8

1

1.2

0 100 200 300 400

Number of returned parcels

Q
ue

ry
tim

e
(s

ec
on

ds
)

APD geomet

APD topologi

Topological
neighbourship
queries

cal

rical

Figure 5.4 Relationship between query time and number of returned parcels

Query results Apeldoorn and Eck en Wiel

0

0.2

0.4

0.6

0.8

1

1.2

0 100 200 300 400 500 600 700

Q
ue

ry
tim

e
(s

ec
on

ds
)

ECK geometrical ECK topological APD geometrical APD topological

Numer of returned parcelsNumber of returned parcels

Figure 5.5 Relationship between query time and number of returned parcels for all data

sets combined

0
5

10
15
20
25
30
35
40
45

1 2 3 4 5 6 7 8 9 10 11 12 13 14

Query results Zuid-Holland

geometrical topological

Query

Figure 5.6 Query performance on the large data set

OTB Research Institute for Housing, Urban and Mobility Studies 22

As the results of the neighbour queries on Apeldoorn indicated an increase of
relative performance of the topological form with the size of the data set, high hopes
were set for the results on the large Zuid-Holland data set. Figure 5.6 on the previous
page shows that the neighbour queries (10-14) are indeed over two times faster in
topological form than in geometrical form. As the topological form on the smallest
data set (586 parcels) was about two times slower than the geometrical form, it was
14% faster on the larger data set (30,174 parcels) and on average even 53% faster on
the very large (one million parcels) data set. This relative increase in performance is
illustrated in figure 5.7, where the neighbour queries on the three data sets are
compared. Although the absolute query times are different for each data set, these
three pictures clearly show the relative increase of the topological query performance.

Eck en Wiel Apeldoorn Zuid-Holland

Figure 5.7 Relative increase of topological query performance

Using the topological data storage the query window and line queries turned out to
be slower than on the geometrical data storage, just as one would predict. On average
the topological form is about two or three times slower, but some extreme peaks
occur as sometimes the topological form can be up to 30 times slower or two times
faster. A plausible explanation for the occurrence of these peaks could not be found,
but the assumption is that, generally speaking, these peaks will occur more often in
case of small query results, i.e. just a few returned parcels, although this is difficult to
prove due to the low absolute query times and differences. In order to give an idea
about query performance, query size and the difference between the geometrical and
topological results the results of a single run are in table 5.3.

Query name QW5 QW6 C1 C2 N1 N2 N3 N4 N5

Geometrical (s) 94.42 271.74 2.26 7.01 9.64 13.04 9.79 11.66 12.56
Topological (s) 168.8 1264.86 14.05 28.16 5.62 6.80 5.42 4.76 4.71
parcels queried 112011 524254 3615 2124 161 501 191 5 40

Query name L1 L2 L3 L4 QW1 QW2 QW3 QW4

Geometrical (seconds) 17.6 12.48 3.48 27.21 0.27 3.39 10.64 72.37
Topological (seconds) 33.8 21.7 13.02 41.29 5.97 7.85 12.96 37.93
parcels queried 1378 1291 268 1772 40 720 2714 20629

Table 5.3 Query times and number of returned parcels. The query names correspond to

the names in the figure on the next page

OTB Research Institute for Housing, Urban and Mobility Studies 23

QW 1 2 3 4 5 6

C1

C2

L4

L3

L2

L1

Figure 5.8 Queries on the Zuid-Holland data set

These queries are illustrated in figure 5.8. L1 until L4 are line queries, with L4
consisting of 13 line segments whereas the other lines consist of one segment only.
The query windows QW 1-6 dimensions are 1x1, 2x2, 4x4, 8x8, 16x16 an 32x32
kilometres. The complex shape C1 consists of a polygon of 3x3 kilometres with a
rhombic hole of 0.5 square kilometres. Second complex shape C2 has more fanciful
boundaries, but can be described best as something similar to a pair of glasses.

To this point the DBMS performed as predicted, but for some unknown reasons the
data set of Zuid-Holland became corrupt. There might be a relationship with the fact
that the data set was not valid as validating was impossible due to the DBMS's
approach with returning one error at a time. The problem was discovered by
comparing the results of a large query test with the results of the same test repeated
two days later. Although the query times looked about the same in the second test, it
turned out that some topological versions of queries did not return the correct
number of parcels anymore. At this time it was unclear what was causing these
erroneous query results. In the time between the two query tests nothing was
changed in the data set, only a validation process was carried out, but as this process
only reads the data, it is not likely to cause such a problem. The different topology
tables were all looking good as they still contain all data and all indexes were present
and valid. Rebuilding indexes just to make sure that they were available did not make
any difference. At this moment the question arises whether the problem originated
from the data or from the DBMS itself. Therefore the Apeldoorn data set was
queried again and it turned out that these query results were also erroneous. Given
the fact that now two independent data sets were causing troubles, all trace and log
files were examined closely in order to find out whether there were any indications
that something went wrong with the DBMS itself. Since not a single clue could be

OTB Research Institute for Housing, Urban and Mobility Studies 24

found the focus shifted again towards the data itself. As Apeldoorn is - compared to
the Zuid-Holland data set - a small data set it was possible to rebuild the entire
topology (all tables and indexes) in one day, although validating was omitted as it is
nearly impossible to validate a data set within the DBMS validation approach.
Executing the same queries again now showed that the topological queries were
returning the correct answers, but performance seemed to have dropped. As
extensive testing was done already on the Zuid-Holland data set it was decided to
rebuild the entire Zuid-Holland topology tables and indexes in order to be able to
judge whether performance problems occur or not. Rebuilding the topology did
solve the problem of erroneous query results, but the topological query performance
also dropped dramatically. Generally speaking performance dropped by a factor four.
In these tests even the topological form of the neighbour queries was about 70%
slower compared to the geometrical form, whereas these queries were over 50%
faster in the first test round. Again no clues to the cause of this performance
problem could be discovered in the trace and log files.

In order to test whether it was possible to reproduce the same query errors it was
reconstructed which actions were performed at the time of the first occurrence of
the problem. Re-executing all this different tests and validation processes did not lead
to another corrupt data set, which makes it even more obscure what caused the query
errors and the performance drop. Although it was very unclear what caused the
earlier problems, it was important to make sure whether these problems were caused
by some topological errors in the data or not. As mentioned earlier validating using
the topo_map objects was quite slow. Therefore the validation process was carried
out using the Java api and executed on a faster machine than the Casagrande server.
Zuid-Holland could not be validated as a lot of problems arise from the shared
boundary between the cadastral offices of Den Haag and Zoetermeer (which are two
independent data sets). These identical boundaries occur in both data sets, but they
have different object IDs which causes the following validation errors (as the two
identical boundaries intersect each other):

went wrong:oracle.spatial.topo.TopoValidationException: Edge 310439292
coordinate string has an intersection with another edge
oracle.spatial.topo.TopoValidationException: Edge 310439292 coordinate
string has an intersection with another edge
 at oracle.spatial.topo.TopoMap.validateCache(TopoMap.Java:6680)
 at ValidateTopology.main(ValidateTopology.Java:64)

Fixing all these shared boundaries was considered to be too laborious, so it was
decided to create a new topology with only the Zoetermeer office. This subset of the
Zuid-Holland data set consists of 577,540 parcels (577,541 faces, 1,962,170 edges
and 1,407,361 nodes). While query performance on the Zuid-Holland data set was
still dramatically, the Zoetermeer data showed good performance of the topological
neighbour queries. These queries were performed almost 60% faster than the
geometrical version of the neighbour queries. However again it was too laborious to
create an entirely error free topological data set. At first the errors indicated some
other topological errors in Spijkenisse, again due to missing or incorrect references of
the minuscule circle shaped parcels. After fixing these errors, problems arise with
arc-shaped boundaries. Erroneously the DBMS documentation states that the DBMS
is capable of handling circular arcs as 'an edge may have several vertices making up a
line string, circular arc string, or combination' (page 1-3, 1-4 Oracle Topology
documentation [3]) it is not capable of handling these boundaries correct as it

OTB Research Institute for Housing, Urban and Mobility Studies 25

miscalculates intersections of these arcs. Oracle states that this is a documentation
error. However, as for instance our test data sets contain multiple circular arcs, it
would be a desirable extension in future DBMS releases when circular arcs would be
handled correctly.

After all some important questions remain unanswered. It has not become clear what
caused the sudden incorrect answers of the topological queries on the Zuid-Holland
data set, why performance decreased dramatically in the rebuild Zuid-Holland data
set and why the Zoetermeer data set at the same time was returning promising query
times (but without validation, all kinds of side effects of non-robust processing may
cause these effects).

OTB Research Institute for Housing, Urban and Mobility Studies 26

6

6.1

Conclusions

From this first exploration of Oracle 10g Topology 's functionality and performance
several meaningful conclusions can be drawn. As the DBMS is only tested with
invalid data sets the conclusions are grouped in two classes, namely the findings
unrelated to the invalid state and the findings that might be/are infected by the
invalid state of the data set.

Conclusions independent of validation issues

6.1.1 Functionality

 The current implementation does not completely avoid redundant data storage,
as geometry is stored both in node and edge tables. However, as long as the user
uses the supplied api for data editing instead of directly updating the node, edge
and face tables, data consistency is maintained. This can be considered a suitable
solution for the average user, but the expert user probably wants to edit directly
on the node, edge and face tables as it is much quicker than using all kinds of
extra functionality.

 The insertion statement for the face table requires a bounding box. This

bounding box is used to create R-trees faster. This incorporates the risk of input
errors with non-fitting bounding boxes. Although it would slow down the
topology construction process, it would be better to derive these bounding
boxes in the DBMS itself to ensure data integrity.

 As the validation process returns one error at a time, it is not suitable for making

a data set valid, but only for keeping it valid during edit operations. This Oracle
design decision is based on the fact that usually a topological error causes other
errors, thus resulting in a list of cascading orders. This is an understandable
argument, but from a user perspective a list of errors might be desirable as one
can often recognize the 'root' errors in the list, thus enabling correction of
multiple topological errors in one validation round.

 It is not possible to expand the set of topological rules. If one wants for instance

to enforce a planar partition of features, a non-overlap rule is needed.

 It is a disadvantage that to validate the entire topology has to be loaded into the

topo_map object, as this requires a lot of memory in case of large data sets.

 Oracle Topology is not able to deal with holes in the topology as references to

the universal face. The holes has to be modelled as distinct faces. The creation
of this additional faces can be difficult, as for instance the cadastral data set does
not contain this face for the Belgium exclave within the Netherlands.

OTB Research Institute for Housing, Urban and Mobility Studies 27

 Storing data in a topological data structure requires about 4-5 times more storage
capacity, partially caused by the number and size of required indexes. It is
important to recognise that this data set was a worst case scenario, as its edges
do not consist of a lot of points, thus reducing the effect of avoiding redundant
data storage.

 Erroneously the documentation states that the DBMS is capable of handling

circular arcs. However, handling circular arcs would be a desirable extension of
the functionality in a future release.

6.1.2 Querying

 Topological queries are limited to the any_interact statement. The actual type of
interaction can only be found using the geometrical sdo_relate function, which
makes a distinction between the interaction types touch, overlapbydisjoint,
overlapbyintersect, equal, inside, coveredby, contains, covers, anyinteract and on.

 Queries with a topological nature (like neighbour queries) are potentially much

faster when performed on the topological data structure. There is however, due
to some 'overhead' in the topology structure, a break-even point where the
topological and geometrical approach are equally fast. The larger the data set, the
better the relative topological query performance. Time savings of over 50% are
attainable when using the topological query form.

 Queries with a geometrical nature (such as line intersections and query windows)

are slower when performed on a topological data structure. On average these
queries are two or three times slower, but huge deviations occur regularly.

6.2 Conclusions influenced by validation issues

The general conclusion at this stage is that Oracle10g Topology looks promising, but
is not very stabile when data contains topological errors.

 Oracle Topology is very sensitive to data errors (for instance the wrongly defined

bounding boxes), but at the same time these errors are discovered late
(sometimes not until querying) and are accompanied by unclear error messages.

 The get_geometry() function is also very sensitive (for non-validated) data with

errors in the left-right references of an edge. Again the error messages are not
very clear.

A lesson can also be learned by the Dutch Cadastre as the current situation of
duplicating office boundaries in the data sets of both offices causes problems when
one wants to combine these data sets. Identical boundaries now have different
boundary IDs without any reference to the twin boundary ID.

OTB Research Institute for Housing, Urban and Mobility Studies 28

6.3 Overall conclusion

Oracle 10g Topology is the first attempt to handle topology issues in a DBMS
environment and thus has to be welcomed. However, some critical remarks can be
made. Erroneously the documentation stated that the DBMS is capable of handling
circular arcs. This would be however a desirable extension of the functionality. Other
remarks are consequences of certain design decisions that are understandable,
although this does not alter the possibility of improving these points in further
development. This applies mainly on all remarks on the validation process.

OTB Research Institute for Housing, Urban and Mobility Studies 29

OTB Research Institute for Housing, Urban and Mobility Studies 30

References

[1] Oosterom, P.J.M. van, C.H.J. Lemmen. Spatial Data Management on a Very
Large Cadastral Database. In: P.J.M. van Oosterom, C.H.J. Lemmen (eds.);
Computers, Environment and Urban Systems (CEUS), Jaargang: 2001, vol
25, no. 4-5, 2001, p. 509-528

[2] Oosterom, Peter van, et all. The Balance Between Geometry and Topology.
In: Advances in Spatial Data Handling, 10th International Symposium on
Spatial Data Handling, Dianne Richardson and Peter van Oosterom (eds.),
ISBN 3-540-43802-5, Springer-Verlag, Berlin, 2002, pages 209-224.

[3] Oracle Spatial Topology and Network Data Models, 10g Release 1 (10.1), Oracle

Corp. 2003

OTB Research Institute for Housing, Urban and Mobility Studies 31

OTB Research Institute for Housing, Urban and Mobility Studies 32

Appendix A Scripts

Retrieving data from the cadastral database
--
set echo on;
set timing on;
--
-- Make a link to the database with the cadastral data.
--
drop table lki_boundary;
drop table lki_parcel;
drop table lki_parcelover;

create table lki_boundary
as
 select *
 from kadtest.lki_boundary;

create table lki_parcel
as
 select *
 from kadtest.lki_parcel;

create table lki_parcelover
as
 select *
 from kadtest.lki_parcelover
 where object_id in (select distinct object_id from lki_parcel);

create unique index lki_parcel_idx_1 on lki_parcel(object_id);
create index lki_parcelover_idx_1 on lki_parcelover(object_id);
create unique index lki_boundary_1 on lki_boundary(object_id);
create index lki_boundary_2 on lki_boundary(l_obj_id);
create index lki_boundary_3 on lki_boundary(r_obj_id);

analyze table lki_parcel compute statistics;
analyze table lki_parcelover compute statistics;
analyze table lki_boundary compute statistics;

quit;

Removing old tables and topologies
set echo on;
set timing on;

drop table PARCELS;

execute sdo_topo.delete_topo_geometry_layer('KADASTER','PARCELS','FEATURE');

execute SDO_TOPO.DROP_TOPOLOGY('KADASTER');

select * from user_sdo_topo_info;
select * from user_sdo_topo_metadata;
//select * from kadaster_relation$;

//purge recyclebin;

quit;

OTB Research Institute for Housing, Urban and Mobility Studies 33

Alter data to update relationships
--
-- Parameters:
-- &1 -- the name of the municipaly.
--
set echo on;
set timing on;

--
-- Setting references to external object to null.
--
update lki_boundary
set l_obj_id = -1
where l_municip = ' ';

update lki_boundary
set r_obj_id = -1
where r_municip = ' ';

--In case one works with only one municipality:

--update lki_boundary
--set ll_line_id = -1
--where abs(ll_line_id) not in (select object_id from lki_boundary);

--update lki_boundary
--set fl_line_id = -1
--where abs(fl_line_id) not in (select object_id from lki_boundary);

--update lki_boundary
--set lr_line_id = 1
--where abs(lr_line_id) not in (select object_id from lki_boundary);

--update lki_boundary
--set fr_line_id = 1
--where abs(fr_line_id) not in (select object_id from lki_boundary);

quit;

Create and fill the topology
set echo on;
set timing on;

--
-- Create a topology.
--
purge recyclebin;

execute SDO_TOPO.DROP_TOPOLOGY('KADASTER');
execute SDO_TOPO.CREATE_TOPOLOGY('KADASTER', 0.001);

--
-- Load topology data.
--

insert into KADASTER_EDGE$
 select object_id,
 null,
 null,
 ll_line_id,
 -fr_line_id,
 fl_line_id,
 -lr_line_id,
 l_obj_id,
 r_obj_id,
 geo_polyline as geometry
from lki_boundary;

--
-- First create a table with all endpoints of edges.

OTB Research Institute for Housing, Urban and Mobility Studies 34

-- Tp prevent duplicates, the endpoint of a geometry is only added when it's mot
-- the same as the startpoint.
--

drop table vertices purge;
create table vertices(
 id number,
 newid number,
 geometry mdsys.sdo_geometry,
 fromedge number,
 isstart number);

declare
 rownmbr number;
 edgeid number;
 edge mdsys.sdo_geometry;
 start_node mdsys.sdo_geometry;
 end_node mdsys.sdo_geometry;
begin
 rownmbr := 1;
 for e in
 (select geometry, edge_id into edge, edgeid from kadaster_edge$)
loop
 start_node := startPoint(e.geometry);
 end_node := endPoint(e.geometry);
 insert into vertices values (
 rownmbr,
 1,
 start_node,
 e.edge_id,
 0);
 rownmbr := rownmbr+1;
 insert into vertices values (
 rownmbr,
 1,
 end_node,
 e.edge_id,
 1);
 rownmbr := rownmbr+1;
 end loop;
end;
/

call createMetaData('VERTICES','GEOMETRY',0.1);

create index vertices_idx1 on vertices(geometry) indextype is mdsys.spatial_index;
create index vertices_idx2 on vertices(id);
analyze table vertices compute statistics;
call analyzeRtree('VERTICES_IDX1');

drop table verts;
create table verts as
 (select distinct(max(b.id)) id, a.id id2 from
 vertices a,
 vertices b,
 table(sdo_join('VERTICES','GEOMETRY','VERTICES','GEOMETRY','mask=ANYINTERAC
T')) c
 where c.rowid1 = a.rowid and c.rowid2 = b.rowid
 group by a.id)
;

drop index verts_idx1;
create index verts_idx1 on verts(id2);
analyze table verts compute statistics;

update vertices v
set newid = (
 select vt.id
 from verts vt
 where (v.id = vt.id2))
;

insert into KADASTER_NODE$
 select v.id as NODE_ID, null as EDGE_ID, null as FACE_ID, v.GEOMETRY
from vertices v where (v.id=v.newid) ;

OTB Research Institute for Housing, Urban and Mobility Studies 35

--drop table vertices;
--drop table verts purge;
--
-- Create the exterior face.
--
insert into KADASTER_FACE$
values
(
 -1,
 null,
 null,
 null,
 null
);

-- Fill the exterior face.
--
-- TODO: Now we assume that the topology (municipality) consists of one part.
-- TODO: Check about clockwise and ccw.
--
update KADASTER_FACE$
set
 island_edge_id_list = (
 select sdo_list_type(max(object_id))
 from lki_boundary
 where l_municip = ' ')
 where face_id = -1;
insert into KADASTER_FACE$ f
 select
 object_id as face_id,
 -line_id1 as boundary_edge_id,
 null as island_edge_id_list,
 null as island_node_id_list,
 geo_bbox as mbr_geometry
 from lki_parcel;

create or replace function find_islands(
 parcel_id in number)
return sdo_list_type
is
eiland1 number;
rval sdo_list_type := sdo_list_type();
begin
 select line_id2
 into eiland1
 from lki_parcel where object_id = parcel_id;
 if (eiland1 <> 0) then
 rval.extend;
 rval(rval.last) := -eiland1;
 end if;

 for pcover in (
 select line_id1 , line_id2 , line_id3 , line_id4 , line_id5 , line_id6 ,
line_id7 , line_id8 , line_id9 , line_id10
 from lki_parcelover
 where object_id = parcel_id) loop

 if (pcover.line_id1 <> 0) then
 rval.extend;
 rval(rval.last) := -pcover.line_id1;
 end if;
 if (pcover.line_id2 <> 0) then
 rval.extend;
 rval(rval.last) := -pcover.line_id2;
 end if;
 if (pcover.line_id3 <> 0) then
 rval.extend;
 rval(rval.last) := -pcover.line_id3;
 end if;
 if (pcover.line_id4 <> 0) then
 rval.extend;
 rval(rval.last) := -pcover.line_id4;

OTB Research Institute for Housing, Urban and Mobility Studies 36

end if;
 if (pcover.line_id5 <> 0) then
 rval.extend;
 rval(rval.last) := -pcover.line_id5;
 end if;
 if (pcover.line_id6 <> 0) then
 rval.extend;
 rval(rval.last) := -pcover.line_id6;
 end if;
 if (pcover.line_id7 <> 0) then
 rval.extend;
 rval(rval.last) := -pcover.line_id7;
 end if;
 if (pcover.line_id8 <> 0) then
 rval.extend;
 rval(rval.last) := -pcover.line_id8;
 end if;
 if (pcover.line_id9 <> 0) then
 rval.extend;
 rval(rval.last) := -pcover.line_id9;
 end if;
 if (pcover.line_id10 <> 0) then
 rval.extend;
 rval(rval.last) := -pcover.line_id10;
 end if;

 end loop;

 return rval;
end find_islands;
/
show errors

update KADASTER_FACE$ f
set island_edge_id_list = find_islands(f.face_id)
where f.face_id <> -1;

--
-- Initialize topology metadata.
--
execute sdo_topo.initialize_metadata('KADASTER');

--
-- Connect all edges to their endpoints.
--

drop index vertices_idx3;
drop index vertices_idx4;
create index vertices_idx3 on vertices(fromedge);
create index vertices_idx4 on vertices(isstart);
analyze table vertices compute statistics;

update KADASTER_EDGE$ e
set start_node_id = (
 select newid
 from vertices v
 where (e.edge_id=v.fromedge)and(v.isstart='0')),
 end_node_id = (
 select newid
 from vertices v
 where (e.edge_id=v.fromedge)and(v.isstart='1'));

update KADASTER_NODE$ n
set EDGE_ID = (select min(edge_id) from KADASTER_EDGE$ e where e.start_node_id =
n.node_id)
where edge_id is null;

update KADASTER_NODE$ n
set EDGE_ID = (select -min(edge_id) from KADASTER_EDGE$ e where e.end_node_id =
n.node_id)
where edge_id is null;

OTB Research Institute for Housing, Urban and Mobility Studies 37

Create features

#!/bin/sh

CONNECT=$1
TOPOLOGY=$2

cat > tmp_topo.sql << EOF
set echo on;
set timing on;

execute sdo_topo.delete_topo_geometry_layer('${TOPOLOGY}','PARCELS','FEATURE');
drop table parcels purge;

create table parcels(
 object_id number,
 feature sdo_topo_geometry);

declare
begin
 sdo_topo.add_topo_geometry_layer('${TOPOLOGY}','PARCELS','FEATURE','POLYGON');
end;
/

--
-- See if this query works.
--

declare
fid number;
tli number;
begin
select tg_layer_id into tli from user_sdo_topo_info where topology = '${TOPOLOGY}'
and table_name = 'PARCELS';
for a in
 (select face_id into fid from kadaster_face$ where face_id <> -1)
loop

 insert into parcels values
 (a.face_id,
 sdo_topo_geometry (
 '${TOPOLOGY}', -- topology name
 3, -- topo-geomtry type polygon
 tli, -- TG_LAYER_ID
 sdo_topo_object_array (sdo_topo_object (a.face_id,3)))
);
end loop;
end;
/

quit;
EOF

sqlplus $1 @tmp_topo

#rm -f tmp_topo.sql

OTB Research Institute for Housing, Urban and Mobility Studies 38

Appendix B Test queries

Eck en Wiel and Apeldoorn

set echo on;
set timing on;

--
-- geometry queries eck
--
-- query window

select p.object_id from pg_eck p where sdo_anyinteract(p.geom,
sdo_geometry(2003,NULL,NULL,SDO_ELEM_INFO_ARRAY(1,1003,3),SDO_ORDINATE_ARRAY(15950
0000,442350000,159800000,442650000)))='TRUE';

select p.object_id from pg_eck p where sdo_anyinteract(p.geom,
sdo_geometry(2003,NULL,NULL,SDO_ELEM_INFO_ARRAY(1,1003,3),SDO_ORDINATE_ARRAY(15880
0000,440700000,160000000,441300000)))='TRUE';

select p.object_id from pg_eck p where sdo_anyinteract(p.geom,
sdo_geometry(2003,NULL,NULL,SDO_ELEM_INFO_ARRAY(1,1003,3),SDO_ORDINATE_ARRAY(15893
0000,440600000,159470000,442800000)))='TRUE';

select p.object_id from pg_eck p where sdo_anyinteract(p.geom,
sdo_geometry(2003,NULL,NULL,SDO_ELEM_INFO_ARRAY(1,1003,3),SDO_ORDINATE_ARRAY(15865
0000,440700000,160200000,444000000)))='TRUE';

-- line

select p.object_id from pg_eck p where sdo_anyinteract(p.geom,
sdo_geometry(2002,NULL,NULL,
SDO_ELEM_INFO_ARRAY(1,2,1),SDO_ORDINATE_ARRAY(158500000,444000000,160000000,441000
000)))='TRUE';

select p.object_id from pg_eck p where sdo_anyinteract(p.geom,
sdo_geometry(2002,NULL,NULL,
SDO_ELEM_INFO_ARRAY(1,2,1),SDO_ORDINATE_ARRAY(158500000,441800000,
160000000,441800000)))='TRUE';

select p.object_id from pg_eck p where sdo_anyinteract(p.geom,
sdo_geometry(2002,NULL,NULL,
SDO_ELEM_INFO_ARRAY(1,2,1),SDO_ORDINATE_ARRAY(158900000,440500000,158900000,444000
000)))='TRUE';

select p.object_id from pg_eck p where sdo_anyinteract(p.geom,
sdo_geometry(2002,NULL,NULL,
SDO_ELEM_INFO_ARRAY(1,2,1),SDO_ORDINATE_ARRAY(159400000,440500000,159400000,444000
000)))='TRUE';

select p.object_id from pg_eck p where sdo_anyinteract(p.geom,
sdo_geometry(2002,NULL,NULL,
SDO_ELEM_INFO_ARRAY(1,2,1),SDO_ORDINATE_ARRAY(158500000,441000000,160500000,441000
000)))='TRUE';

select p.object_id from pg_eck p where sdo_anyinteract(p.geom,
sdo_geometry(2002,NULL,NULL,
SDO_ELEM_INFO_ARRAY(1,2,1),SDO_ORDINATE_ARRAY(158500000,443700000,160500000,443700
000)))='TRUE';

-- neighbour

select p.object_id from pg_eck p, pg_eck g where g.object_id = 140560612 and
sdo_anyinteract(p.geom, g.geom) = 'TRUE';

select p.object_id from pg_eck p, pg_eck g where g.object_id = 140826938 and
sdo_anyinteract(p.geom, g.geom) = 'TRUE';

OTB Research Institute for Housing, Urban and Mobility Studies 39

select p.object_id from pg_eck p, pg_eck g where g.object_id = 140458960 and
sdo_anyinteract(p.geom, g.geom) = 'TRUE';

select p.object_id from pg_eck p, pg_eck g where g.object_id = 140873993 and
sdo_anyinteract(p.geom, g.geom) = 'TRUE';

select p.object_id from pg_eck p, pg_eck g where g.object_id = 140179548 and
sdo_anyinteract(p.geom, g.geom) = 'TRUE';

--
-- topological queries eck
--
-- query window

select q.object_id from parcels_eck q where sdo_anyinteract(q.feature,
sdo_geometry(2003,NULL,NULL,SDO_ELEM_INFO_ARRAY(1,1003,3),SDO_ORDINATE_ARRAY(15950
0000,442350000,159800000,442650000)))='TRUE';

select q.object_id from parcels_eck q where sdo_anyinteract(q.feature,
sdo_geometry(2003,NULL,NULL,SDO_ELEM_INFO_ARRAY(1,1003,3),SDO_ORDINATE_ARRAY(15880
0000,440700000,160000000,441300000)))='TRUE';

select q.object_id from parcels_eck q where sdo_anyinteract(q.feature,
sdo_geometry(2003,NULL,NULL,SDO_ELEM_INFO_ARRAY(1,1003,3),SDO_ORDINATE_ARRAY(15893
0000,440600000,159470000,442800000)))='TRUE';

select q.object_id from parcels_eck q where sdo_anyinteract(q.feature,
sdo_geometry(2003,NULL,NULL,SDO_ELEM_INFO_ARRAY(1,1003,3),SDO_ORDINATE_ARRAY(15865
0000,440700000,160200000,444000000)))='TRUE';

-- line

select q.object_id from parcels_eck q where sdo_anyinteract(q.feature,
sdo_geometry(2002,NULL,NULL,
SDO_ELEM_INFO_ARRAY(1,2,1),SDO_ORDINATE_ARRAY(158500000,444000000,160000000,441000
000)))='TRUE';

select q.object_id from parcels_eck q where sdo_anyinteract(q.feature,
sdo_geometry(2002,NULL,NULL,
SDO_ELEM_INFO_ARRAY(1,2,1),SDO_ORDINATE_ARRAY(158500000, 441800000, 160000000,
441800000)))='TRUE';

select q.object_id from parcels_eck q where sdo_anyinteract(q.feature,
sdo_geometry(2002,NULL,NULL,
SDO_ELEM_INFO_ARRAY(1,2,1),SDO_ORDINATE_ARRAY(158900000,440500000,158900000,444000
000)))='TRUE';

select q.object_id from parcels_eck q where sdo_anyinteract(q.feature,
sdo_geometry(2002,NULL,NULL,
SDO_ELEM_INFO_ARRAY(1,2,1),SDO_ORDINATE_ARRAY(159400000,440500000,159400000,444000
000)))='TRUE';

select q.object_id from parcels_eck q where sdo_anyinteract(q.feature,
sdo_geometry(2002,NULL,NULL,
SDO_ELEM_INFO_ARRAY(1,2,1),SDO_ORDINATE_ARRAY(158500000,441000000,160500000,441000
000)))='TRUE';

select q.object_id from parcels_eck q where sdo_anyinteract(q.feature,
sdo_geometry(2002,NULL,NULL,
SDO_ELEM_INFO_ARRAY(1,2,1),SDO_ORDINATE_ARRAY(158500000,443700000,160500000,443700
000)))='TRUE';

-- neighbour
select q.object_id from parcels_eck q, parcels_eck r where r.object_id = 140560612
and sdo_anyinteract(q.feature, r.feature) = 'TRUE' ;

select q.object_id from parcels_eck q, parcels_eck r where r.object_id = 140826938
and sdo_anyinteract(q.feature, r.feature) = 'TRUE' ;

select q.object_id from parcels_eck q, parcels_eck r where r.object_id = 140458960
and sdo_anyinteract(q.feature, r.feature) = 'TRUE' ;

OTB Research Institute for Housing, Urban and Mobility Studies 40

select q.object_id from parcels_eck q, parcels_eck r where r.object_id = 140873993
and sdo_anyinteract(q.feature, r.feature) = 'TRUE' ;

select q.object_id from parcels_eck q, parcels_eck r where r.object_id = 140179548
and sdo_anyinteract(q.feature, r.feature) = 'TRUE' ;

--
-- geometry queries apd
--
-- query window
select p.object_id from pg_apd p where sdo_anyinteract(p.geom,
sdo_geometry(2003,NULL,NULL,SDO_ELEM_INFO_ARRAY(1,1003,3),SDO_ORDINATE_ARRAY(19530
0000,469460000,195600000,469760000)))='TRUE';

select p.object_id from pg_apd p where sdo_anyinteract(p.geom,
sdo_geometry(2003,NULL,NULL,SDO_ELEM_INFO_ARRAY(1,1003,3),SDO_ORDINATE_ARRAY(19020
0000,471400000,194800000,475700000)))='TRUE';

select p.object_id from pg_apd p where sdo_anyinteract(p.geom,
sdo_geometry(2003,NULL,NULL,SDO_ELEM_INFO_ARRAY(1,1003,3),SDO_ORDINATE_ARRAY(18110
0000,467900000,184300000,475400000)))='TRUE';

select p.object_id from pg_apd p where sdo_anyinteract(p.geom,
sdo_geometry(2003,NULL,NULL,SDO_ELEM_INFO_ARRAY(1,1003,3),SDO_ORDINATE_ARRAY(18210
0000,464300000,196500000,475300000)))='TRUE';

-- line
select p.object_id from pg_apd p where sdo_anyinteract(p.geom,
sdo_geometry(2002,NULL,NULL,
SDO_ELEM_INFO_ARRAY(1,2,1),SDO_ORDINATE_ARRAY(194400000,472000000,195900000,469000
000)))='TRUE';

select p.object_id from pg_apd p where sdo_anyinteract(p.geom,
sdo_geometry(2002,NULL,NULL,
SDO_ELEM_INFO_ARRAY(1,2,1),SDO_ORDINATE_ARRAY(194400000, 470000000, 195900000,
470000000)))='TRUE';

select p.object_id from pg_apd p where sdo_anyinteract(p.geom,
sdo_geometry(2002,NULL,NULL,
SDO_ELEM_INFO_ARRAY(1,2,1),SDO_ORDINATE_ARRAY(180000000,474000000,199000000,474000
000)))='TRUE';

select p.object_id from pg_apd p where sdo_anyinteract(p.geom,
sdo_geometry(2002,NULL,NULL,
SDO_ELEM_INFO_ARRAY(1,2,1),SDO_ORDINATE_ARRAY(178400000,470200000,200000000,470200
000)))='TRUE';

select p.object_id from pg_apd p where sdo_anyinteract(p.geom,
sdo_geometry(2002,NULL,NULL,
SDO_ELEM_INFO_ARRAY(1,2,1),SDO_ORDINATE_ARRAY(184200000,462700000,184200000,475800
000)))='TRUE';

-- neighbour
select p.object_id from pg_apd p, pg_apd g where g.object_id = 140187964 and
sdo_anyinteract(p.geom, g.geom) = 'TRUE';

select p.object_id from pg_apd p, pg_apd g where g.object_id = 140567793 and
sdo_anyinteract(p.geom, g.geom) = 'TRUE';

select p.object_id from pg_apd p, pg_apd g where g.object_id = 140877486 and
sdo_anyinteract(p.geom, g.geom) = 'TRUE';

select p.object_id from pg_apd p, pg_apd g where g.object_id = 140499936 and
sdo_anyinteract(p.geom, g.geom) = 'TRUE';

select p.object_id from pg_apd p, pg_apd g where g.object_id = 140232417 and
sdo_anyinteract(p.geom, g.geom) = 'TRUE';

--
-- topological queries apd
--
-- query window

select q.object_id from parcels_apd1 q where sdo_anyinteract(q.feature,
sdo_geometry(2003,NULL,NULL,SDO_ELEM_INFO_ARRAY(1,1003,3),SDO_ORDINATE_ARRAY(19530
0000,469460000,195600000,469760000)))='TRUE';

OTB Research Institute for Housing, Urban and Mobility Studies 41

select q.object_id from parcels_apd1 q where sdo_anyinteract(q.feature,
sdo_geometry(2003,NULL,NULL,SDO_ELEM_INFO_ARRAY(1,1003,3),SDO_ORDINATE_ARRAY(19020
0000,471400000,194800000,475700000)))='TRUE';

select q.object_id from parcels_apd1 q where sdo_anyinteract(q.feature,
sdo_geometry(2003,NULL,NULL,SDO_ELEM_INFO_ARRAY(1,1003,3),SDO_ORDINATE_ARRAY(18110
0000,467900000,184300000,475400000)))='TRUE';

select q.object_id from parcels_apd1 q where sdo_anyinteract(q.feature,
sdo_geometry(2003,NULL,NULL,SDO_ELEM_INFO_ARRAY(1,1003,3),SDO_ORDINATE_ARRAY(18210
0000,464300000,196500000,475300000)))='TRUE';

-- line
select q.object_id from parcels_apd1 q where sdo_anyinteract(q.feature,
sdo_geometry(2002,NULL,NULL,
SDO_ELEM_INFO_ARRAY(1,2,1),SDO_ORDINATE_ARRAY(194400000,472000000,195900000,469000
000)))='TRUE';

select q.object_id from parcels_apd1 q where sdo_anyinteract(q.feature,
sdo_geometry(2002,NULL,NULL,
SDO_ELEM_INFO_ARRAY(1,2,1),SDO_ORDINATE_ARRAY(194400000, 470000000, 195900000,
470000000)))='TRUE';

select q.object_id from parcels_apd1 q where sdo_anyinteract(q.feature,
sdo_geometry(2002,NULL,NULL,
SDO_ELEM_INFO_ARRAY(1,2,1),SDO_ORDINATE_ARRAY(180000000,474000000,199000000,474000
000)))='TRUE';

select q.object_id from parcels_apd1 q where sdo_anyinteract(q.feature,
sdo_geometry(2002,NULL,NULL,
SDO_ELEM_INFO_ARRAY(1,2,1),SDO_ORDINATE_ARRAY(178400000,470200000,200000000,470200
000)))='TRUE';

select q.object_id from parcels_apd1 q where sdo_anyinteract(q.feature,
sdo_geometry(2002,NULL,NULL,
SDO_ELEM_INFO_ARRAY(1,2,1),SDO_ORDINATE_ARRAY(184200000,462700000,184200000,475800
000)))='TRUE';

-- neighbour
select q.object_id from parcels_apd1 q, parcels_apd1 r where r.object_id =
140187964 and sdo_anyinteract(q.feature, r.feature) = 'TRUE' ;

select q.object_id from parcels_apd1 q, parcels_apd1 r where r.object_id =
140567793 and sdo_anyinteract(q.feature, r.feature) = 'TRUE' ;

select q.object_id from parcels_apd1 q, parcels_apd1 r where r.object_id =
140877486 and sdo_anyinteract(q.feature, r.feature) = 'TRUE' ;

select q.object_id from parcels_apd1 q, parcels_apd1 r where r.object_id =
140499936 and sdo_anyinteract(q.feature, r.feature) = 'TRUE' ;

select q.object_id from parcels_apd1 q, parcels_apd1 r where r.object_id =
140232417 and sdo_anyinteract(q.feature, r.feature) = 'TRUE' ;
--
-- extra large line queries apd
-- geometry
--

select p.object_id from pg_apd p where sdo_anyinteract(p.geom,
sdo_geometry(2002,NULL,NULL,
SDO_ELEM_INFO_ARRAY(1,2,1),SDO_ORDINATE_ARRAY(194400000,466600000,194400000,476200
000)))='TRUE';

-- topo
select q.object_id from parcels_apd q where sdo_anyinteract(q.feature,
sdo_geometry(2002,NULL,NULL,
SDO_ELEM_INFO_ARRAY(1,2,1),SDO_ORDINATE_ARRAY(194400000,466600000,194400000,476200
000)))='TRUE';

quit;

Zoetermeer office
set echo on;

OTB Research Institute for Housing, Urban and Mobility Studies 42

set timing on;

--
-- geometry queries
--
-- line

select p.object_id from pg_small p where sdo_anyinteract(p.geom,
sdo_geometry(2002,NULL,NULL,
SDO_ELEM_INFO_ARRAY(1,2,1),SDO_ORDINATE_ARRAY(62117500,440570000,137367000,4376600
00)))='TRUE';

select p.object_id from pg_small p where sdo_anyinteract(p.geom,
sdo_geometry(2002,NULL,NULL,
SDO_ELEM_INFO_ARRAY(1,2,1),SDO_ORDINATE_ARRAY(94822500,480343000,94545300,41424000
0)))='TRUE';

select p.object_id from pg_small p where sdo_anyinteract(p.geom,
sdo_geometry(2002,NULL,NULL,
SDO_ELEM_INFO_ARRAY(1,2,1),SDO_ORDINATE_ARRAY(71679500,427128000,94545300,41424000
0)))='TRUE';

select p.object_id from pg_small p where sdo_anyinteract(p.geom,
sdo_geometry(2002,NULL,NULL,
SDO_ELEM_INFO_ARRAY(1,2,1),SDO_ORDINATE_ARRAY(102029000,466762000,99672800,4623270
00,94961100,458308000,92050900,452627000,84290400,449024000,81934500,442926000,773
61300,441263000,82904600,434473000,92466600,432948000,104523000,432394000,11339200
0,433780000,121291000,434750000,131824000,435858000,137090000,438353000)))='TRUE';

-- query window

select p.object_id from pg_small p where sdo_anyinteract(p.geom,
sdo_geometry(2003,NULL,NULL,
SDO_ELEM_INFO_ARRAY(1,1003,3),SDO_ORDINATE_ARRAY(75000000,425000000,76000000,42600
0000)))='TRUE';

select p.object_id from pg_small p where sdo_anyinteract(p.geom,
sdo_geometry(2003,NULL,NULL,
SDO_ELEM_INFO_ARRAY(1,1003,3),SDO_ORDINATE_ARRAY(75000000,425000000,77000000,42700
0000)))='TRUE';

select p.object_id from pg_small p where sdo_anyinteract(p.geom,
sdo_geometry(2003,NULL,NULL,
SDO_ELEM_INFO_ARRAY(1,1003,3),SDO_ORDINATE_ARRAY(75000000,425000000,79000000,42900
0000)))='TRUE';

select p.object_id from pg_small p where sdo_anyinteract(p.geom,
sdo_geometry(2003,NULL,NULL,
SDO_ELEM_INFO_ARRAY(1,1003,3),SDO_ORDINATE_ARRAY(75000000,425000000,83000000,43300
0000)))='TRUE';

select p.object_id from pg_small p where sdo_anyinteract(p.geom,
sdo_geometry(2003,NULL,NULL,
SDO_ELEM_INFO_ARRAY(1,1003,3),SDO_ORDINATE_ARRAY(75000000,425000000,91000000,44100
0000)))='TRUE';

select p.object_id from pg_small p where sdo_anyinteract(p.geom,
sdo_geometry(2003,NULL,NULL,
SDO_ELEM_INFO_ARRAY(1,1003,3),SDO_ORDINATE_ARRAY(75000000,425000000,107000000,4570
00000)))='TRUE';

-- complex query shapes

select p.object_id from pg_small p where sdo_anyinteract(p.geom,
sdo_geometry(2003,NULL,NULL,
SDO_ELEM_INFO_ARRAY(1,1003,1,11,2003,1),SDO_ORDINATE_ARRAY(87000000,456000000,9000
0000,456000000,90000000,459000000,87000000,459000000,87000000,456000000,88000000,4
57500000,88500000,458000000,89000000,457500000,88500000,457000000,88000000,4575000
00)))='TRUE';

select p.object_id from pg_small p where sdo_anyinteract(p.geom,
sdo_geometry(2003,NULL,NULL,
SDO_ELEM_INFO_ARRAY(1,1003,1,33,2003,1,43,2003,1),SDO_ORDINATE_ARRAY(109690000,454
447000,109899000,453966000,110442000,453925000,110630000,454259000,110943000,45425
9000,111131000,453946000,111653000,453904000,111924000,454154000,111904000,4544880
00,111611000,454823000,111152000,454802000,110943000,454468000,110630000,454488000
,110421000,454802000,109962000,454802000,109690000,454447000,110024000,454509000,1

OTB Research Institute for Housing, Urban and Mobility Studies 43

10316000,454509000,110358000,454217000,110045000,454280000,110024000,454509000,111
298000,454509000,111611000,454468000,111569000,454217000,111298000,454259000,11129
8000,45450900)))='TRUE';

-- neighbour

select p.object_id from pg_small p, pg_small g where g.object_id = 340633554 and
sdo_anyinteract(p.geom, g.geom) = 'TRUE';

select p.object_id from pg_small p, pg_small g where g.object_id = 310460084 and
sdo_anyinteract(p.geom, g.geom) = 'TRUE';

select p.object_id from pg_small p, pg_small g where g.object_id = 340621392 and
sdo_anyinteract(p.geom, g.geom) = 'TRUE';

select p.object_id from pg_small p, pg_small g where g.object_id = 310391758 and
sdo_anyinteract(p.geom, g.geom) = 'TRUE';

select p.object_id from pg_small p, pg_small g where g.object_id = 340644065 and
sdo_anyinteract(p.geom, g.geom) = 'TRUE';

--
-- topological queries
--
-- line

select q.object_id from parcels_small q where sdo_anyinteract(q.feature,
sdo_geometry(2002,NULL,NULL,
SDO_ELEM_INFO_ARRAY(1,2,1),SDO_ORDINATE_ARRAY(62117500,440570000,137367000,4376600
00)))='TRUE';

select q.object_id from parcels_small q where sdo_anyinteract(q.feature,
sdo_geometry(2002,NULL,NULL,
SDO_ELEM_INFO_ARRAY(1,2,1),SDO_ORDINATE_ARRAY(94822500,480343000,94545300,41424000
0)))='TRUE';

select q.object_id from parcels_small q where sdo_anyinteract(q.feature,
sdo_geometry(2002,NULL,NULL,
SDO_ELEM_INFO_ARRAY(1,2,1),SDO_ORDINATE_ARRAY(71679500,427128000,94545300,41424000
0)))='TRUE';

select q.object_id from parcels_small q where sdo_anyinteract(q.feature,
sdo_geometry(2002,NULL,NULL,
SDO_ELEM_INFO_ARRAY(1,2,1),SDO_ORDINATE_ARRAY(102029000,466762000,99672800,4623270
00,94961100,458308000,92050900,452627000,84290400,449024000,81934500,442926000,773
61300,441263000,82904600,434473000,92466600,432948000,104523000,432394000,11339200
0,433780000,121291000,434750000,131824000,435858000,137090000,438353000)))='TRUE';

-- query window
select q.object_id from parcels_small q where sdo_anyinteract(q.feature,
sdo_geometry(2003,NULL,NULL,
SDO_ELEM_INFO_ARRAY(1,1003,3),SDO_ORDINATE_ARRAY(75000000,425000000,76000000,42600
0000)))='TRUE';

select q.object_id from parcels_small q where sdo_anyinteract(q.feature,
sdo_geometry(2003,NULL,NULL,
SDO_ELEM_INFO_ARRAY(1,1003,3),SDO_ORDINATE_ARRAY(75000000,425000000,77000000,42700
0000)))='TRUE';

select q.object_id from parcels_small q where sdo_anyinteract(q.feature,
sdo_geometry(2003,NULL,NULL,
SDO_ELEM_INFO_ARRAY(1,1003,3),SDO_ORDINATE_ARRAY(75000000,425000000,79000000,42900
0000)))='TRUE';

select q.object_id from parcels_small q where sdo_anyinteract(q.feature,
sdo_geometry(2003,NULL,NULL,
SDO_ELEM_INFO_ARRAY(1,1003,3),SDO_ORDINATE_ARRAY(75000000,425000000,83000000,43300
0000)))='TRUE';

select q.object_id from parcels_small q where sdo_anyinteract(q.feature,
sdo_geometry(2003,NULL,NULL,
SDO_ELEM_INFO_ARRAY(1,1003,3),SDO_ORDINATE_ARRAY(75000000,425000000,91000000,44100
0000)))='TRUE';

select q.object_id from parcels_small q where sdo_anyinteract(q.feature,
sdo_geometry(2003,NULL,NULL,

OTB Research Institute for Housing, Urban and Mobility Studies 44

SDO_ELEM_INFO_ARRAY(1,1003,3),SDO_ORDINATE_ARRAY(75000000,425000000,107000000,4570
00000)))='TRUE';

-- complex shapes

select q.object_id from parcels_small q where sdo_anyinteract(q.feature,
sdo_geometry(2003,NULL,NULL,
SDO_ELEM_INFO_ARRAY(1,1003,1,11,2003,1),SDO_ORDINATE_ARRAY(87000000,456000000,9000
0000,456000000,90000000,459000000,87000000,459000000,87000000,456000000,88000000,4
57500000,88500000,458000000,89000000,457500000,88500000,457000000,88000000,4575000
00)))='TRUE';

select q.object_id from parcels_small q where sdo_anyinteract(q.feature,
sdo_geometry(2003,NULL,NULL,
SDO_ELEM_INFO_ARRAY(1,1003,1,33,2003,1,43,2003,1),SDO_ORDINATE_ARRAY(109690000,454
447000,109899000,453966000,110442000,453925000,110630000,454259000,110943000,45425
9000,111131000,453946000,111653000,453904000,111924000,454154000,111904000,4544880
00,111611000,454823000,111152000,454802000,110943000,454468000,110630000,454488000
,110421000,454802000,109962000,454802000,109690000,454447000,110024000,454509000,1
10316000,454509000,110358000,454217000,110045000,454280000,110024000,454509000,111
298000,454509000,111611000,454468000,111569000,454217000,111298000,454259000,11129
8000,45450900)))='TRUE';

-- neighbour

select q.object_id from parcels_small q, parcels_small r where r.object_id =
340633554 and sdo_anyinteract(q.feature, r.feature) = 'TRUE' ;

select q.object_id from parcels_small q, parcels_small r where r.object_id =
310460084 and sdo_anyinteract(q.feature, r.feature) = 'TRUE' ;

select q.object_id from parcels_small q, parcels_small r where r.object_id =
340621392 and sdo_anyinteract(q.feature, r.feature) = 'TRUE' ;

select q.object_id from parcels_small q, parcels_small r where r.object_id =
310391758 and sdo_anyinteract(q.feature, r.feature) = 'TRUE' ;

select q.object_id from parcels_small q, parcels_small r where r.object_id =
340644065 and sdo_anyinteract(q.feature, r.feature) = 'TRUE' ;

quit;

Zuid-Holland

set echo on;
set timing on;

--
-- geometry queries
--
-- line

select p.object_id from pg p where sdo_anyinteract(p.geom,
sdo_geometry(2002,NULL,NULL,
SDO_ELEM_INFO_ARRAY(1,2,1),SDO_ORDINATE_ARRAY(62117500,440570000,137367000,4376600
00)))='TRUE';

select p.object_id from pg p where sdo_anyinteract(p.geom,
sdo_geometry(2002,NULL,NULL,
SDO_ELEM_INFO_ARRAY(1,2,1),SDO_ORDINATE_ARRAY(94822500,480343000,94545300,41424000
0)))='TRUE';

select p.object_id from pg p where sdo_anyinteract(p.geom,
sdo_geometry(2002,NULL,NULL,
SDO_ELEM_INFO_ARRAY(1,2,1),SDO_ORDINATE_ARRAY(71679500,427128000,94545300,41424000
0)))='TRUE';

select p.object_id from pg p where sdo_anyinteract(p.geom,
sdo_geometry(2002,NULL,NULL,
SDO_ELEM_INFO_ARRAY(1,2,1),SDO_ORDINATE_ARRAY(102029000,466762000,99672800,4623270
00,94961100,458308000,92050900,452627000,84290400,449024000,81934500,442926000,773
61300,441263000,82904600,434473000,92466600,432948000,104523000,432394000,11339200
0,433780000,121291000,434750000,131824000,435858000,137090000,438353000)))='TRUE';

-- query window

OTB Research Institute for Housing, Urban and Mobility Studies 45

select p.object_id from pg p where sdo_anyinteract(p.geom,
sdo_geometry(2003,NULL,NULL,
SDO_ELEM_INFO_ARRAY(1,1003,3),SDO_ORDINATE_ARRAY(75000000,425000000,76000000,42600
0000)))='TRUE';

select p.object_id from pg p where sdo_anyinteract(p.geom,
sdo_geometry(2003,NULL,NULL,
SDO_ELEM_INFO_ARRAY(1,1003,3),SDO_ORDINATE_ARRAY(75000000,425000000,77000000,42700
0000)))='TRUE';

select p.object_id from pg p where sdo_anyinteract(p.geom,
sdo_geometry(2003,NULL,NULL,
SDO_ELEM_INFO_ARRAY(1,1003,3),SDO_ORDINATE_ARRAY(75000000,425000000,79000000,42900
0000)))='TRUE';

select p.object_id from pg p where sdo_anyinteract(p.geom,
sdo_geometry(2003,NULL,NULL,
SDO_ELEM_INFO_ARRAY(1,1003,3),SDO_ORDINATE_ARRAY(75000000,425000000,83000000,43300
0000)))='TRUE';

select p.object_id from pg p where sdo_anyinteract(p.geom,
sdo_geometry(2003,NULL,NULL,
SDO_ELEM_INFO_ARRAY(1,1003,3),SDO_ORDINATE_ARRAY(75000000,425000000,91000000,44100
0000)))='TRUE';

select p.object_id from pg p where sdo_anyinteract(p.geom,
sdo_geometry(2003,NULL,NULL,
SDO_ELEM_INFO_ARRAY(1,1003,3),SDO_ORDINATE_ARRAY(75000000,425000000,107000000,4570
00000)))='TRUE';

-- complex query shapes

select p.object_id from pg p where sdo_anyinteract(p.geom,
sdo_geometry(2003,NULL,NULL,
SDO_ELEM_INFO_ARRAY(1,1003,1,11,2003,1),SDO_ORDINATE_ARRAY(87000000,456000000,9000
0000,456000000,90000000,459000000,87000000,459000000,87000000,456000000,88000000,4
57500000,88500000,458000000,89000000,457500000,88500000,457000000,88000000,4575000
00)))='TRUE';

select p.object_id from pg p where sdo_anyinteract(p.geom,
sdo_geometry(2003,NULL,NULL,
SDO_ELEM_INFO_ARRAY(1,1003,1,33,2003,1,43,2003,1),SDO_ORDINATE_ARRAY(109690000,454
447000,109899000,453966000,110442000,453925000,110630000,454259000,110943000,45425
9000,111131000,453946000,111653000,453904000,111924000,454154000,111904000,4544880
00,111611000,454823000,111152000,454802000,110943000,454468000,110630000,454488000
,110421000,454802000,109962000,454802000,109690000,454447000,110024000,454509000,1
10316000,454509000,110358000,454217000,110045000,454280000,110024000,454509000,111
298000,454509000,111611000,454468000,111569000,454217000,111298000,454259000,11129
8000,45450900)))='TRUE';

-- neighbour

select p.object_id from pg p, pg g where g.object_id = 340633554 and
sdo_anyinteract(p.geom, g.geom) = 'TRUE';

select p.object_id from pg p, pg g where g.object_id = 310460084 and
sdo_anyinteract(p.geom, g.geom) = 'TRUE';

select p.object_id from pg p, pg g where g.object_id = 340621392 and
sdo_anyinteract(p.geom, g.geom) = 'TRUE';

select p.object_id from pg p, pg g where g.object_id = 310391758 and
sdo_anyinteract(p.geom, g.geom) = 'TRUE';

select p.object_id from pg p, pg g where g.object_id = 340644065 and
sdo_anyinteract(p.geom, g.geom) = 'TRUE';

--
-- topological queries
--
-- line

select q.object_id from parcels q where sdo_anyinteract(q.feature,
sdo_geometry(2002,NULL,NULL,
SDO_ELEM_INFO_ARRAY(1,2,1),SDO_ORDINATE_ARRAY(62117500,440570000,137367000,4376600
00)))='TRUE';

OTB Research Institute for Housing, Urban and Mobility Studies 46

select q.object_id from parcels q where sdo_anyinteract(q.feature,
sdo_geometry(2002,NULL,NULL,
SDO_ELEM_INFO_ARRAY(1,2,1),SDO_ORDINATE_ARRAY(94822500,480343000,94545300,41424000
0)))='TRUE';

select q.object_id from parcels q where sdo_anyinteract(q.feature,
sdo_geometry(2002,NULL,NULL,
SDO_ELEM_INFO_ARRAY(1,2,1),SDO_ORDINATE_ARRAY(71679500,427128000,94545300,41424000
0)))='TRUE';

select q.object_id from parcels q where sdo_anyinteract(q.feature,
sdo_geometry(2002,NULL,NULL,
SDO_ELEM_INFO_ARRAY(1,2,1),SDO_ORDINATE_ARRAY(102029000,466762000,99672800,4623270
00,94961100,458308000,92050900,452627000,84290400,449024000,81934500,442926000,773
61300,441263000,82904600,434473000,92466600,432948000,104523000,432394000,11339200
0,433780000,121291000,434750000,131824000,435858000,137090000,438353000)))='TRUE';

-- query window
select q.object_id from parcels q where sdo_anyinteract(q.feature,
sdo_geometry(2003,NULL,NULL,
SDO_ELEM_INFO_ARRAY(1,1003,3),SDO_ORDINATE_ARRAY(75000000,425000000,76000000,42600
0000)))='TRUE';

select q.object_id from parcels q where sdo_anyinteract(q.feature,
sdo_geometry(2003,NULL,NULL,
SDO_ELEM_INFO_ARRAY(1,1003,3),SDO_ORDINATE_ARRAY(75000000,425000000,77000000,42700
0000)))='TRUE';

select q.object_id from parcels q where sdo_anyinteract(q.feature,
sdo_geometry(2003,NULL,NULL,
SDO_ELEM_INFO_ARRAY(1,1003,3),SDO_ORDINATE_ARRAY(75000000,425000000,79000000,42900
0000)))='TRUE';

select q.object_id from parcels q where sdo_anyinteract(q.feature,
sdo_geometry(2003,NULL,NULL,
SDO_ELEM_INFO_ARRAY(1,1003,3),SDO_ORDINATE_ARRAY(75000000,425000000,83000000,43300
0000)))='TRUE';

select q.object_id from parcels q where sdo_anyinteract(q.feature,
sdo_geometry(2003,NULL,NULL,
SDO_ELEM_INFO_ARRAY(1,1003,3),SDO_ORDINATE_ARRAY(75000000,425000000,91000000,44100
0000)))='TRUE';

select q.object_id from parcels q where sdo_anyinteract(q.feature,
sdo_geometry(2003,NULL,NULL,
SDO_ELEM_INFO_ARRAY(1,1003,3),SDO_ORDINATE_ARRAY(75000000,425000000,107000000,4570
00000)))='TRUE';

-- complex shapes

select q.object_id from parcels q where sdo_anyinteract(q.feature,
sdo_geometry(2003,NULL,NULL,
SDO_ELEM_INFO_ARRAY(1,1003,1,11,2003,1),SDO_ORDINATE_ARRAY(87000000,456000000,9000
0000,456000000,90000000,459000000,87000000,459000000,87000000,456000000,88000000,4
57500000,88500000,458000000,89000000,457500000,88500000,457000000,88000000,4575000
00)))='TRUE';

select q.object_id from parcels q where sdo_anyinteract(q.feature,
sdo_geometry(2003,NULL,NULL,
SDO_ELEM_INFO_ARRAY(1,1003,1,33,2003,1,43,2003,1),SDO_ORDINATE_ARRAY(109690000,454
447000,109899000,453966000,110442000,453925000,110630000,454259000,110943000,45425
9000,111131000,453946000,111653000,453904000,111924000,454154000,111904000,4544880
00,111611000,454823000,111152000,454802000,110943000,454468000,110630000,454488000
,110421000,454802000,109962000,454802000,109690000,454447000,110024000,454509000,1
10316000,454509000,110358000,454217000,110045000,454280000,110024000,454509000,111
298000,454509000,111611000,454468000,111569000,454217000,111298000,454259000,11129
8000,45450900)))='TRUE';

-- neighbour

select q.object_id from parcels q, parcels r where r.object_id = 340633554 and
sdo_anyinteract(q.feature, r.feature) = 'TRUE' ;

select q.object_id from parcels q, parcels r where r.object_id = 310460084 and
sdo_anyinteract(q.feature, r.feature) = 'TRUE' ;

OTB Research Institute for Housing, Urban and Mobility Studies 47

select q.object_id from parcels q, parcels r where r.object_id = 340621392 and
sdo_anyinteract(q.feature, r.feature) = 'TRUE' ;

select q.object_id from parcels q, parcels r where r.object_id = 310391758 and
sdo_anyinteract(q.feature, r.feature) = 'TRUE' ;

select q.object_id from parcels q, parcels r where r.object_id = 340644065 and
sdo_anyinteract(q.feature, r.feature) = 'TRUE' ;

quit;

OTB Research Institute for Housing, Urban and Mobility Studies 48

Reports published before in this series:
 GISt Report No. 1, Oosterom, P.J. van, Research issues in integrated querying of geometric and thematic

cadastral information (1), Delft University of Technology, Rapport aan Concernstaf Kadaster, Delft 2000,
29 p.p.

 GISt Report No. 2, Stoter, J.E., Considerations for a 3D Cadastre, Delft University of Technology, Rapport
aan Concernstaf Kadaster, Delft 2000, 30.p.

 GISt Report No. 3, Fendel, E.M. en A.B. Smits (eds.), Java GIS Seminar, Opening GDMC, Delft 15
November 2000, Delft University of Technology, GISt. No. 3, 25 p.p.

 GISt Report No. 4, Oosterom, P.J.M. van, Research issues in integrated querying of geometric and thematic
cadastral information (2), Delft University of Technology, Rapport aan Concernstaf Kadaster, Delft 2000,
29 p.p.

 GISt Report No. 5, Oosterom, P.J.M. van, C.W. Quak, J.E. Stoter, T.P.M. Tijssen en M.E. de Vries,
Objectgerichtheid TOP10vector: Achtergrond en commentaar op de gebruikersspecificaties en het
conceptuele gegevensmodel, Rapport aan Topografische Dienst Nederland, E.M. Fendel (eds.), Delft
University of Technology, Delft 2000, 18 p.p.

 GISt Report No. 6, Quak, C.W., An implementation of a classification algorithm for houses, Rapport aan
Concernstaf Kadaster, Delft 2001, 13.p.

 GISt Report No. 7, Tijssen, T.P.M., C.W. Quak and P.J.M. van Oosterom, Spatial DBMS testing with data
from the Cadastre and TNO NITG, Delft 2001, 119 p.

 GISt Report No. 8, Vries, M.E. de en E. Verbree, Internet GIS met ArcIMS, Delft 2001, 38 p.
 GISt Report No. 9, Vries, M.E. de, T.P.M. Tijssen, J.E. Stoter, C.W. Quak and P.J.M. van Oosterom, The

GML prototype of the new TOP10vector object model, Report for the Topographic Service, Delft 2001,
132 p.

 GISt Report No. 10, Stoter, J.E., Nauwkeurig bepalen van grondverzet op basis van CAD
ontgravingsprofielen en GIS, een haalbaarheidsstudie, Rapport aan de Bouwdienst van Rijkswaterstaat, Delft
2001, 23 p.

 GISt Report No. 11, Geo DBMS, De basis van GIS-toepassingen, KvAG/AGGN Themamiddag, 14
november 2001, J. Flim (eds.), Delft 2001, 37 p.

 GISt Report No. 12, Vries, M.E. de, T.P.M. Tijssen, J.E. Stoter, C.W. Quak and P.J.M. van Oosterom, The
second GML prototype of the new TOP10vector object model, Report for the Topographic Service, Delft
2002, Part 1, Main text, 63 p. and Part 2, Appendices B and C, 85 p.

 GISt Report No. 13, Vries, M.E. de, T.P.M. Tijssen en P.J.M. van Oosterom, Comparing the storage of
Shell data in Oracle spatial and in Oracle/ArcSDE compressed binary format, Delft 2002, .72 p.
(Confidential)

 GISt Report No. 14, Stoter, J.E., 3D Cadastre, Progress Report, Report to Concernstaf Kadaster, Delft
2002, 16 p.

 GISt Report No. 15, Zlatanova, S., Research Project on the Usability of Oracle Spatial within the RWS
Organisation, Detailed Project Plan (MD-NR. 3215), Report to Meetkundige Dienst – Rijkswaterstaat, Delft
2002, 13 p.

 GISt Report No. 16, Verbree, E., Driedimensionale Topografische Terreinmodellering op basis van
Tetraëder Netwerken: Top10-3D, Report aan Topografische Dienst Nederland, Delft 2002, 15 p.

 GISt Report No. 17, Zlatanova, S. Augmented Reality Technology, Report to SURFnet bv, Delft 2002, 72 p
 GISt Report No. 18, Vries, M.E. de, Ontsluiting van Geo-informatie via netwerken, Plan van aanpak, Delft

2002, 17 p.
 GISt Report No. 19, Tijssen, T.P.M., Testing Informix DBMS with spatial data from the cadastre, Delft

2002, 62 p.
 GISt Report No. 20, Oosterom, P.J.M. van, Vision for the next decade of GIS technology, A research

agenda for the TU Delft the Netherlands, Delft 2003, 55 p.
 GISt Report No. 21, Zlatanova, S., T.P.M. Tijssen, P.J.M. van Oosterom and C.W. Quak, Research on

usability of Oracle Spatial within the RWS organisation, (AGI-GAG-2003-21), Report to Meetkundige
Dienst – Rijkswaterstaat, Delft 2003, 74 p.

 GISt Report No. 22, Verbree, E., Kartografische hoogtevoorstelling TOP10vector, Report aan
Topografische Dienst Nederland, Delft 2003, 28 p.

 GISt Report No. 23, Tijssen, T.P.M., M.E. de Vries and P.J.M. van Oosterom, Comparing the storage of
Shell data in Oracle SDO_Geometry version 9i and version 10g Beta 2 (in the context of ArcGIS 8.3), Delft
2003, 20 p. (Confidential)

 GISt Report No. 24, Stoter, J.E., 3D aspects of property transactions: Comparison of registration of 3D
properties in the Netherlands and Denmark, Report on the short-term scientific mission in the CIST – G9
framework at the Department of Development and Planning, Center of 3D geo-information, Aalborg,
Denmark, Delft 2003, 22 p.

 GISt Report No. 25, Verbree, E., Comparison Gridding with ArcGIS 8.2 versus CPS/3, Report to Shell
International Exploration and Production B.V., Delft 2004, 14 p. (confidential).

	Introduction
	Topological data model
	Topology elements
	Topology related tables

	Loading cadastral data - procedure
	Loading nodes, edges and faces
	Defining topology geometries (features)

	Loading cadastral data – results
	Testing with cadastral data
	Conclusions
	Conclusions independent of validation issues
	Functionality
	Querying

	Conclusions influenced by validation issues
	Overall conclusion

