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Abstract

This paper presents an integrated study on posshle
topdogical relationship between multidimensional smple
objectsin 01,2 and 3 D space. The formal categorisation
of spatial relationships is completed upon the 9-
intersections model. The focus is on the definition of a
unified set of conditions for eliminating relationships that
canrot be realised in reality. The negative condtions are
formulated on the basis of dimension and co-dimension o
objects, and connectivity of boundaries. The set of 25
condtions is sufficient for deriving dl the posshle
relationships mentioned currently in the literature and for
spedfying the relationships between surface and surface
in 3D space Drawings of example anfigurations verify
the obtained resultsin 3D space

1 Introduction

Thetopological spatial relationships gain an increasing
attention in the last decade. The topic of reseach has
shifted from isaues related to the definition of a particular
formalisn to represent topological reationships, to
implementation isues (see[2], [3], [12]). An important
implementation asped (in terms of performance) is the
spedfication of the spatia relationships (within a given
framework) that exist in redity. While alot of reseach is
already carried out in the darification of the relationships
between spatial objects (points, lines and regions) in 2D
space the investigations in 3D space ae fragmented and
incomplete. Thiswork is a contribution to the darification
of the relationships between simple spatial oljects in 3D
space and the total number of relationships that can occur
inredity.

To identify the spatial relationships between two
objedsin 3D space we use the 9-intersedion model (see
[7]), which was approved by the OpenGI S consortium as
a basic framework for implementation. Suppose two
simple spatial objects A and B are defined in the same
topological space/A and their boundary, interior and
exerior are denoted by 0A A°,A",0B,B° andB™ . The
binary relationship R(A,B) between the two objects is then
identified by composing all the posshle set intersedions
of the six topological primitives, i.e. A°n B°, 0An B°,
A" nB°, A°noB, 0AndB, A noB, A°nB”

0AnB™ and A" nB™, and deteding empty () or
non-empty (-0) intersedions. For example, if two
objeds have a ©mmon boundary, the intersedion
between the boundariesis non-empty, i.e. 0AnoB=-0;
if they have interseding interiors, then the intersedion
A°n B°is not empty, i.e A°nB°=-=0. Since in
principle each pair of intersedions can have éther the
empty or non-empty value, different "patterns' define
different relationships. Although, the theoretical number
of al the relationships that cen be derived from the 9
intersedions is 2°, i.e. 512 relationships, only a small
number of them can be seen in redity. The way to spedfy
posshle reationships is based on the dimination of
imposshble ones. To eiminate non-realisable relations,
conditions, referred to as negative ndtions, ae
composed. Some intersedions (or a @mbination of
intersedions) between topological primitives can never
occur inredity, and all the relationships that contain these
intersedions (or the combination) can be seardy
excluded from further considerations.

On the basis of the 9 intersedions between topol ogical
primitives and following the "elimination-of-imposshble-
relationships' approach, several authors have identified
relationships between spatia objects. Egenhofer and
Herring [6], Kufoniyi [10] investigate reationships
between spatial objects in 2D space Egenhofer [5]
presents relationships among 3D objectsin 3D space Bric
[1] investigates the largest combinations of objeds, using
the basic set of conditions introduced by van der Meij
[11]. De Hoop et a [4] report a dightly modified
approach to derive relationships between
multidimensional objedsin 3D space The studies related
to the 3D space ae not convincing. Basically, the authors
agreeon the number of most of the relationships with one
exception, i.e. surface and surfacein 3D space However,
sketches of posshle configurations in 3D space ae not
provided and the reader intuitively attempts to ched
results and conditions. The negative nditions used by
the authors, however, vary significantly and complicates
their comparison. For example, Egenhofer and Herring [6]
present 23 negative @nditions for relationships in 2D
space To cover the 3D stuations, 15 more mnditions are
added by van der Meij [11]. Bric [1] operates with 40
conditions. Most of the wnditions are related to a
particular configuration of objeds (e.g. conditions for line



and line), which leads to further dupications of the dfed
of some of them.

This paper ams at providing a systematised and
integrated method for deriving relationships between
multidimensional spatial ojeds. For the purposg, firg a
unified set of negative mnditions is defined and seand
the posdble rdationships between objeds of any
dimension in 0,1,2 and 3D space ae derived.

2 Negative conditions

The types of objects considered here @rrespond to
simple geometric objects as they are defined in OpenGIS
(http://www.opengis.org) spedfications. The 0, 1,2 and
3D objects are referred to as points, lines, surfaces and
bodes with corresponding notations P, L, S and B. Thus
the notation R(L,S) means that the binary relationship
concens line and surface as the line is the first objed.
The reaionship R(SL) is the mnverse reationship,
which is referred to by the vice wersa part of the
conditi on.

For smplicity, al the intersedions will be represented
in avedor form and the empty and non-empty set will be
denoted by 0 and 1 Thus, each relationship (being a
sequence of 0 and 1) corresponds to a binary number,
which can be transformed to a dedma number (see[9],
[10]). For example, the relationship between objeds with
non-interseding baundaries and interiors can  be
represented as 000011111, which is the dedma number
31 This number will be denoted as a decimal code R0O31
(the ‘digunct’ reationship). It is apparent that different
ordering of the intersedions will result in a different
dedmal code. In this text, we will use the order shown in
Table 1.

The value of intersedions (empty, non-empty)
between interior, boundary and exterior depends on three
parameters the dimension of the objects, the dimension of
the space (related to the @m-dimension of the ohject) and
the type of boundary (conneded or disconneded) (see[5]
[8]). The three parameters, however, cannot be used to
define straightforward negative @nditions because each
configuration of objeds has different parameters. Still
many of the negative cnditions are derived on the basis
of one or ancther parameter that is used here to introduce
grouping of conditions. To avoid multiple expresson of
the same @nditions, the negative mnditions that can be
found among the ones given by Egenhofer and Herring
1992 are represented by the same verbal expresson.
These nditions, denoted by EH (in brackets) are
explicitly mentioned. All the negative nditions are
shown in Table 1. The following text presents the
negative cnditions C (in italic) distributed in 12 groups
(in bdd) for ohjeds with non-empty boundary. The
conditions for relationships spedfic for objeds with
empty boundaries are given in the group 13.

1. Any objects: R(L,L) in IR; R(L,L), R(S,S), R(L,9)
and R(SL) in IR% R(L,L), R(SS), R(B,B), R(L,9),
R(L,B), R(SB), R(SL), R(B,L), R(B,S) in IR*

C1. The exteriors of two oljects always intersect (EH1).
C2. If A’s boundary intersects with B’s exterior then A’s
interior intersects with B’s exterior too and vice \ersa
(EH3).

C3. A’s bourdary intersects with at least one part of B
andvice \ersa (EH5).

After the first threenegative cnditions, the number of
posshle binary relationships is reduced to 104 for spatial
objeds with equa dimensons and to 160 for spatial
objeds with different dimensions.

2. Objects with equal dimensions: R(L,L) in IR
R(gS,S) and R(L,L) in IR% R(L,L), R(S,S) and R(B,B) in
IR®.

C4. If both interiors are digoint then A’s interior
intersects with B's exterior and vice vesa (EH2).

C5. If A's interior intersects with B's boundary, then it
must also intersect with B’'s exerior and vice vesa
(EH4).

C5,can be applied also for relationships when the first
objed A has the higher dimension. However, this is not
necessry because the ondition C6 (also valid for such
objeds) diminates these ambinations (compare C5, and
C6inTable1), i.e. C6 ismore restrictive than C5,.

3. Objects with different dimensions. R(S,L),
RR(EL,S) in IR% R(B,L), R(L,B), R(B,S), and R(S,B) in
IR,

C6. The dosure of higher-dimensond object A always
intersects with the ederior of B (old: EH 16,17;
new. C6,,C6g).

If the two objects have different dimensions, their
boundaries never coincide, i.e. dA# 0B . Thisimpliesthat
both the boundary and the interior of the objed of the
higher dimension intersed with the eterior of the object
of the lower dimension.

4. Objects with different dimensions and one of the
olgg'ects with zero co-dimension: R(L,S) and R(S.L) in
IR R(L,B), R(SB), R(B,L) and R(B,S) in IR,

C7. Theinterior of A always intersects with at least one of
the three topological primitives of B and vice vesa (new).

If both interiors are digoint, then the interior of the
objed with the lowest dimension (e.g. A) can be a subset
of either the boundary or the exterior, or bath, of the
oppcsite object (e.g. B). This means if the interior of A
does not intersed with the boundary of B, it must intersed
with its exterior. The ndition is true for al the
relationships between aobjects of the same dimenson, i.e.
R(L,L), R(S,S) and R(B,B), as well. However, the more
restrictive condition C4, isapplied in these @ses.

5. At least one of the objects has zer o co-dimension:
R(L,L) inIR; R(S,S), R(L,S) and R(SL) in IR% R(L,B)
R(SB), R(B,L), R(B,S), R(B,B) in IR®.



Table 1: Negative conditions for eliminating

impossible relationships in 0,1,2 and 3D space
(see text for specification of operands A and B)
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C8. If both interiors are digoint, then A's bounday
canrot intersect with B’sinterior (EH6).

C9. If A’'s interior intersects with B's interior and
exterior, then it must intersect with B's bounday too and
vice \ersa (EH7).

6. At least one of the objects has a disconnected
boundary: R(L,L), R(SL), R(SL), R(B,L), R(L,S),
R(L,S), R(L,B).

C10. Line objed A’'s bounday always intersects with at
most two parts of B and vice vesa (EH14).

7. Objects with connected boundaries and at least
one of the objects has a zero co-dimension: R(S,S) in
IR R(S,B) and R(B,S), R(B,B) in IR®.

C11 If A's boundary intersects with B's interior and
exerior, then it must intersect with B's bounday too
(new).

Since the co-dimenson of B is 0, the mnneded
boundary of A can intersed with B's exterior and interior
if and anly if it interseds with B'sboundary.

8. Objects with equal dimensions and zero co-
dFizsmensions: R(L,L)in IR R(SS) in IR? and R(B,B) in
IR
C12. If both boundaies do nd coincide, then at least one
bounday must intersect with the oppdasite exterior (EH8).
C13. If both interiors do nd coincide, then at least one
bounday must intersect with the oppdasite exterior (EH9).
C14. If A's interior intersect with B's exterior, then A's
bounday must also intersed with B's exterior (EH11).

9. Objects with equal dimensions and non-zero co-
dimensions: R(L,L) in IR?and R(S,S) in IR
C15. If A's interior is a subset of B's interior, then A’s
exerior intersects with bah B's bounday and B's
interior andvice \ersa (EH 13,).

The ondition istrue for every two objeds of the same
dimension, however when the c-dimension is zero the
dtricter condition C14 is applied. The non-zero co-
dimension allows the intersedion of the interior and the
oppdsite exterior without crossng the boundary, therefore
C14 cannot be used for the relationships R(L,L) in IR?and
R(S,S)in IR
C16. If A's interior intersects with B's boundary but A’s
bounday do not intersect with B's interior, then A's
bounday must intersect with B’'s exterior and vice vesa
(new).

If A's interior interseds with B's boundary without
crossng A's boundary, then B's interior is a subset of
either A'sinterior or A's exterior (due to the greater than
zero co-dimension). In bath cases, the ecterior of B
interseds with A's boundary. The @ndition is true for
relationships between objects of the same dimenson and
zero co-dimensions. In this case, B's interior is only a
subset of A's interior, which can be achieved by applying
Cl2

10. Objects with equal dimensions, connected
boundaries and non-zero co-dimensions: R(S,S) in IR}



C17. If A'sinterior does nat intersect with B's boundary
and A's bounday does not intersect with B’'s interior,
then both boundaies either intersed or nat with both
exteriors (new).

C18. If A'sinterior and bounday intersects respectively
with B’s boundary and interior, then at least one
bounday interseds with the exterior of the other object
(new).

C19. If A’s closure intersects with B's closure, then it
must intersect with B’ s exterior too, and vice vasa (new).

11. Objects with different dimensions, non-zero co-
dimensions and one of them with a disconnected
boundary: R(S, L) and R(L, S) in IR®,

C20. If A's interior intersects with B's boundary but not
B’s interior, then B’'s interior must intersect with A’s
exterior (new).

As can be redised, the condition is true for al the

relationships between objects with dfferent dimensions
too, however, when the co-dimension is zero, the more
restrictive condition C8 isapplied.
C21. If the bourdary of B intersects with the bounday of
A but the interior of B does not intersect with both the
interior and bounday of B, then the interior must
intersect with the exterior of A (new)

The ondition is aso true for all the reationships
between objeds with dfferent dimensions, however,
when the -dimension is zero, the more restrictive
condition C7 is applied.

12. Objects with equal dimensions, non-zero co-
dimension and disconnected boundaries: R(L,L) in IR?
and IR®.

C22. If A'sboundary is a subset of B's boundary, then the
two boundaies coincide and vice \‘ersa (EH15,,
EH15;,).

13. At least one of the objects has empty boundary:
R(P,P), R(P,L), R(P,S), R(P,B), R(L,P), R(SP), R(B,P).
C23. If A'sboundary isthe ampty set, all the intersections
between A's bounday and B's topdogical primitives will
be the empty set andvice versa (new).

C24. A's interior intersects only with ore part of B and
vice-versa (EH20, EH23y).

C25. If A's interior does not intersect with B's interior,
then A's exterior must intersect with B's interior and vice
versa.

The set of 25 negative cnditions presented hereis the
minimal set reported currently in the literature.

3 Possblerelationships

The negative cnditions defined above ae applied to
identify topological binary relationships between smple
spatial ohjeds regardiess of the space in which they are
embedded. A program in J (http://www.jsoftware.com/)
computes the resulting posgble relationships.

Line and line relationships in IR Lines are spatial
objeds with disconneded boundaries and conneded
interiors. Embedded in IR, their co-dimensons are zero.
Therefore the following 19 conditions (counting all the
parts of the conditions) have to be applied: C1, C2, C2;,
C3, C3, C4, C4, C5, C5, C8, C8, C9, C9, C10,
C10,, C12, C13, Cl14, and C14,. Since the two dojeds
have equal dimension bath parts of all the mnditions have
to be used. The number of identified possble
relationships is eight and they are given the names:
digoint, contains, inside, equd, meet, covers, coveredBy,
overlap. Drawings with the interacting objeds can be
foundin [5].
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Figure 1: Surface and linein R®: 31
relationships (19 in R? face drawn as
reactangle)

Line and line relationships in IR? and IR % The
negative mnditions applicable for R(L,L) in IR* and IR®
are 17: C1, C2, C2,, C3, C3,, C4, C4, C5, C5, C10,
C10,, C15, Ci15, C16, Cl6, C22, and C22,. Lines
embedded in IR? or IR® have disconneded boundaries and
conneded interiors but the co-dimensions are non-zero.
Therefore, the negative cnditionsthat have to be used are
the mnditions for al objects, for ojeds of the same
dimension, for objects with dsconneded boundaries, for
objeds of the same dimenson and non-zero co-
dimension, and conditions for line and line relationships
in IR?and IR. The number of all the relationships is 33.
Drawing o all therelationshipsare given in [6]
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Figure 2: Body and line inIR®: 19 relationships

Surface and line in IR% The mnfiguration surfaces and
line falls in the groups of objeds with different
dimensions, at leas one non-zero co-dimension and one
disconneded boundary, i.e. the negative conditions for
R(S, L) are 9: C1, C2,, C3,, C6, C6,, C7,, C8,, C9, and
C10,. The conditions leave 19 possble relationships. The
examples of geometric representations are shown in
Figure 1 (the @ases when the surface is represented as a
redangle aevalid for 2D space).

Surface and linein IR Surface and line enbedded in IR
% have the same properties as surface ad line in IR?, but
the ®@-dimensons are non-zero. The non-zero co-
dimension permits 12 more configurations than in IR, i.e.
the total number of al the posshle relationshipsis 31 (see
Figure 1). The conditions used for the relationship R(S,L)
are 8: C1, C2,, C3,, C6,, C6y,, C10, C20, and C21,.

Body and line in IR® Configurations between body
and line can exis only in IR ie one of the @
dimensionsis aways zero. The two objeds have different
dimensions and one of them has disconneded boundaries.
These propertiesrequire 9 negative @nditions for R(B,L):
C1, C2, C3,, C6, C6,, C7,, C8, C9, and C10, and 9
conditi ons for the vice-versarelationship R(L,B): C1, C2,,
C3, C6, C6y, C7, C8, C9, and C10,. The comparison
with the @nfiguration surface and line in IR? shows that
the negative cnditions are identical and, consequently,
the number of posshle relationships is 19. Examples of
posshle geometric configurations are shown in Figure 2.
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Figure 3: Surface and surface in IR °: 38
relationships

Surface and surface in IR% The configuration surface
and surfacein IR? has the following properties: conneded
boundaries, equal dimensions and zero co-dimensions.
Thisimplies that 19 negative cndition hasto be sdected:
C1, C2, C2,, C3g, C3,, C4,, C4, C5, C5;, C8,, C8,, C9,
C9%, C11, C11, C12, C13, Cl4, and C14,. The
conditions are similar to the ones applied to the
relationship between line and line in IR The only
differenceis C10, which is replaced with C11. Therefore
the number of relationships is the same, i.e. 8, but one
relationship, i.e. R511is new. Drawings of the posshle
configurations are given in [5]. Visudly, the relationship
R511isthe same as R255, i.e. bath objeds overlap each
other. However, the intersedions between the boundaries
of topological primitives for bah reationships are
different.

Figure 4: Examples of closed surfaces

Surface and surfacein IR® The possble relationships
between surface and surface ae determined by the
following propertiess equa dimensions, conneded
boundaries and non-zero co-dimensons. The @nditions
to be applied are 18, i.e. C1, C2,, C2,, C3a, C3,, C4,, C4,,
C5,, C5,, C15, C15, 16, 16, C17, C18, C18,, C19,
and C19, The number of obtained relationshipsis 38 (see
Figure 3).

Bric [1] is the only author reporting relationships
between surfacesin IR, but the obtained relationships are
different. Relationships R117, R159, R277 and R405 are



not eleded as possble ones and 12 new relationships are
reported, which (in our judgement) require self-
interseding surfaces. The 12 new relationships are R279,
R285 R317, R343 R407, R412 RA33, R445, R471,
R501, R503 and R509 Relationships R279 and R285
could not be interpreted with any geometric configuration
between simple surfaces; relationships R317, R343, R407,
R413 R433 R445 and R471 can be redlised only by a
closed surface (seeFigure 4).
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Figure 5: Body and surfacein R®: 19
relationships

Body and surface in IR® The mnfiguration body and
surface in IR® has similar characteristics to surface ad
linein IR?, i.e. one of the objeds has a @-dimension zero.
However, the line has disconneded boundaries.
Therefore, the condition C10, which refers to
disconneded boundaries, must be replaced with C11.
Thus the set of posdble relationships R(B,S) can be
obtained by 9 conditions C1, C2, C3,, C6, C6 C7y,
C8p, C9,and C11,,. The conditions C1, C2,, C3,, C6,, C6q,
C7, C8, C9, and C11, determine dl the converse
relationships, i.e. R(S,B). The number of the relationships
is 19 (seeFigure 5). The mmparison between surface and
linein IR? (see
Figure 1), and bady and surface in IR 3 (see Figure 5)
shows difference only in one reationship, i.e. R255,
which isreplaced by R511

Body and body in IR * The properties of this
configuration are egqua to the properties surface and
surface in 2D space i.e. equal dimensions, conneded
boundaries, and zero co-dimensons. Therefore the same
19 negative mnditions must be applied, i.e. C1, C2, C2,,
C3a, C3,, C4, C4,, C5, C5, C8, C8,, C9, C9, C11,
C11,, C12, C13, C14, and C14,. The number of possible
relationships is again 8. Examples of possible geometric
configurations can be found in [5].

Point and point: Since the points are ohjects with
empty boundaries and equal dimensions, the cnditions
that have to be applied are 10: C1, C23, C23,, C23,

C23;, C23,, C24,, C24,, C25, and C25,. These mnditions
eliminate 510 relationships and leave only two, i.e. equal
and digoint

Point and any other object X: R(P,X), R(X,P). The
relationships between a point and any other object are
only three i.e a point can be digoint, lay on the boundary
or the interior of the objed. These mnfigurations can be
obtained by applying 11 conditions for R(P,X): C1, C6,,
C6q, C7, C23, C23, C23, C24, C24,, C24. and C25;
and 11 conditions for R(X,P): C1, C6, C6, C7, C23,
C23,, C23,, C24y, C24,, C24; and C25,.

The mmparison between conditions used by different
authors (complete lists are given in [1],[6]), shows a
significant reduction in the number needed for each
configuration of objeds. For example, Bric 1993 has
obtained the relationships between surface ad line
applying 14 conditions, between body and line gplying
15 conditions, and baly and surface applying 16
conditi ons. Egenhofer and Herring 1992 have reported 20
conditions for line and line, 19 conditions (one less than
above) for line and surface but have ohtained e
relationship more, i.e R511, which is impossble for
simplelines and surfaces.

4  Conclusions

This paper presents a unified set of conditions for
deriving the  possble  reationships  between
multidimensional simple spatia oljects in 1,2 and 3D
space The mnditions are systemised on the basis of
dimension, co-dimension and connedivity of boundaries.
Thus most of the mnditions (15 of 23, see[6]) derived for
2D space ae propagated in 3D space ad the overa
number of conditions is reduced. All the relationships
derived are verified with drawings. This proves that all
the @nditions are “sufficiently” restrictive, i.e. there is
not a configuration left that cannot be represented by an
appropriate drawing. Indeed, the question “Are the
conditions too restrictive? is also valid. Too redtrictive
conditions will eliminate relationships that are posshle
and, practicdly, there isnot away to detect this effed. As
was $own above (e.g. R159 for surface and surface in
3D), relationships between complex objeds might be
influenced. Additional analysis of the intersedions
between exteriors contribute to the negative answer
(seq13).

Applying these negative @nditions, the total number
of relationshipsthat can be identified by the 9-intersedion
and hence has to be ®nsidered for implementation, is
reduced to 69. Note that the number of relationships
concerns simple spatial ohjed, e.g. surfaces with holes or
bodies with tunnels might have different relationships.

Anaysing the derived topological reationships,
several conclusions can be drawn that can be of favour at
the implementation level:



Thetopological relationships are related to the types of
objeds, i.e. some of the relationships never ocaur between
particular types. For example, R509 is possble only
between bady and line and bady and surface Thisimplies
that certain reationships (respedively the intersedions
between the topological primitives) may not be deded,
if the dimension of the objectsis known in advance

The reationships are related to the geometric
partitioning performed for a particular applicaion. Thisis
to say that some relationships may not be neaded because
the geometric partitioning of the object is not appropriate.
For example R455 performed for body and surface may
never be needed for urban appli caions.

The study clearly shows inefficiency and insufficiency
of the verbal identification of relationships. Some of the
names established for relationships in 2D space ae not
applicable for relationships between 3D objects. The
relationships between surfacesin 3D space ae one typical
example. Some of the names refer to formaly different
relationships, eg. overlap stands for R511 (e.g. surface
and surfacein 2D) and R255 (e.g. surface and line in 3D).
Most of the reationships are not aszciated with
appropriate names and even it is difficult to spedfy the
type of interaction. Many examples can be found among
the relationships between body and surface or body and
line. In this resped a unified coding of the relationships
(similar to the ading used here) might be an alternative.

Having spedfied the cnditions for multidimensional
simple objects, the next step hasto be toward an extension
for identifying conditions for surfaces with holes and
bodies with tunnels,
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