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Chapter 1

Introduction

After rapid adoption of the OpenGIS specification, current GIS is becoming an integration of strong
database management and a powerful editing and visualization environment. A lot of research has been
done since the increasing requirement for representing, accessing and disseminating spatial data, and
more and more DBMSs (Oracle, Informix, Ingres, Postgres), and CAD/GIS applications (MicroStation,
MapInfo) give support to spatial operations.

However, current spatial DBMSs support only 2D representations and operations. For example: In-
formix supports three basic spatial data types: point, line and polygon; Ingres supports one more
type: circle, besides the three basic types; Oracle Spatial not only has points, lines, polygons and
circles, but gives further support to arc strings and compound polygons. In these three DBMSs, all
spatial data types and functions are 2-dimensional except that points may have a z-coordinate. No real
3D spatial primitive can be stored.

An effective solution to this problem has been developed at the Section GIS Technology, Technical
University of Delft [1]: A 3D primitive (polyhedron) can be defined as a bounded subset of 3D space
enclosed by a finite set of flat polygons, such that every edge of a polygon is shared by exactly one other
polygon. The polygons are in 3D space because they are represented by vertices, which can be 3D points
in Geo-DBMSs. Based on this idea, a true 3D primitive in the Geo-DBMS, including validation, conver-
sion, indexing and spatial functions in 3D, has been implemented, and topology is partially maintained
in 3D instead of 2D.

Since this was the first attempt of 3D spatial operations in Geo-DBMSs, more complex primitives can
be researched to implement. Many shapes in real world are freeform, i.e. not only polyhedrons, but
also curves and curved surfaces. Although freeform shapes can be simulated by tiny polygons, it is quite
unrealistic and inconvenient to store every polygon into DBMS, especially when shapes are very huge or
complex. A more efficient solution is to use a powerful mathematical model which is able to represent any
desired shape, and store this mathematical representation directly into DBMS. So here comes the objec-
tive of this research assignment: exploring database storage of 3D freeform curves and surfaces.

In order to store freeform curves and surfaces in Geo-DBMS, a powerful and convenient mathemati-
cal representation is required to represent any shapes we desire, so the report starts with Chapter 2
which introduces the three most popular mathematical models for representing curves and curved sur-
faces, and makes a choice. A detailed description of the NURBS model and its fundamental algorithms
will be given first in Chapter 3; then how NURBS can be used to construct freeform solids will also be
explained in this chapter. Chapter 4 gives a snapshot of two CAD applications: AutoCAD and Micro-
Station, to show how freeform curves and surfaces are supported in practice. Current database support
of spatial data is illustrated in Chapter 5, and Chapter 6 continues with the spatial data storage in a
particular spatial DBMS: Oracle Spatial. The report is closed with conclusions and recommendations in
Chapter 7.
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Chapter 2

Mathematical Representations of 3D
Freeform Curves and Surfaces

Various different representations of 3D freeform curves and surfaces are in use. Curves may be represented
by using different kinds of equations. In particular, we distinguish the following representations [6]:

1. explicit or Cartesian, where the curve is given as the graph of a function;

2. implicit, as the zero set of one or more global algebraic equations;

3. parametric, associated with a vector function of one parameter;

4. intrinsic, where points locally satisfy differential equations.

Among the representations above, the parametric representation is most widely used by CAD applica-
tions. In this chapter we will make a comparison of the three most popular parametric representations
for 3D freeform curves and surfaces, and choose one as our mathematical representation for database
storage.

2.1 Bézier

The following describes the mathematics for the so-called Bézier curves (Figure 2.1)/surfaces (Figure
2.2). It is attributed and named after a French engineer, Pierre Bézier, who used them for the body
design of the Renault car in the 1970’s. Consider n+1 control points Pk (k=0..n) in 3D space. The
Bézier parametric curve function is of the form

Figure 2.1: A cubic (degree 3) Bézier curve
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Figure 2.2: Bézier patch

C(u) =
n∑

k=0

PkBn
k (u) (0 ≤ u ≤ 1) (2.1)

B(u) is a Bernstein polynomial1 and it is defined by:

Bn
k (u) =

n!
k!(n− k!)

uk(1− u)n−k (2.2)

The extension of Bézier curves to surfaces is called the Bézier patch. The patch is constructed from
an (n+1)×(m+1) array of control points {Pi,j : 0 ≤ i ≤ n, 0 ≤ j ≤ m.} And the resulting surface, which
is now parameterized by two variables, is given by the equation

P (u, v) =
m∑

j=0

n∑
i=0

Pi,jBi,n(u)Bj,m(v) (2.3)

The Bézier patch is the surface extension of the Bézier curve (see Figure 2.2). Whereas a curve is a
function of one variable and takes a sequence of control points, the patch is a function of two variables
with an array of control points. Most of the methods for the patch are direct extensions of those for the
curves.

Some important properties of Bézier curves/surfaces are listed below:

• Endpoint interpolation: Bézier curves interpolate the first and the last control points: P0 = C(0)
and Pn = C(1); Bézier surfaces interpolate the four corner control points.

• Smoothness: With a Bezier curve, we can only get a smooth curve of the given degree, with con-
tinuous derivative everywhere, by defining a sequence of curves, each curve defined by (degree+1)
points. The directions of P1 − P0 and Pn − Pn−1 are always tangent to the Bézier curves at the
two endpoints P0 and P1 respectively. Hence, in order to make two Bźier curves join smoothly, we
need to put the last two control points of the first curve and the first two of the second curve in a
line.

• Convex hull: the curves are contained in the convex hulls of their defining control points;
1See Chapter 2.2 for explanation of polynomial
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• Variation diminishing: no straight line/plane intersects a curve more times than it intersects
the curve’s control polygon;

• Affine invariance: one can apply to Bézier curves/surfaces the usual transformations, such as
rotations, translations, and scalings, by just applying them to the control polygon/net;

• Partition of unity: For curve,
∑n

i=0 Bn
k (u) = 1 for all 0 ≤ u ≤ 1; For surface,

∑m
j=0

∑n
i=0 Bi,n(u)Bj,m(v) =

1 for all 0 ≤ u ≤ 1 and 0 ≤ v ≤ 1.

2.2 B-Spline

A B-spline (Figure 2.3) is a generalization of the Bézier curve. The theory for B-splines was first suggested
by a Romanian mathematician Schoenberg in 1946. A B-spline curve of degree p is defined by n+1 control

Figure 2.3: A B-spline curve with 8 control points

points P0, ..., Pn and a knot vector of m+1 knots:

T = {t0, t1, ..., tm}

where T is a nondecreasing sequence with ti ∈ [0, 1], and n, m and p must satisfy:

p ≡ m− n− 1 (2.4)

The B-spline parametric curve function is of the form:

C(t) =
n∑

i=0

PiNi,p(t) (2.5)

Ni,p(t) is the basis functions of B-splines, defined by:

Ni,0(t) =
{

1 if ti ≤ t ≤ ti+1

0 otherwise

Ni,p(t) =
t− ti

ti+p − ti
Ni,p−1(t) +

ti+p+1 − t

ti+p+1 − ti+1
Ni+1,p−1(t) (2.6)

Equation 2.6 is also called the Cox-de Boor recursion formulas [3].
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A B-Spline surface is an expansion of B-spline curves in two directions, with corresponding control
points, knot vectors, and univariate B-spline functions. The surface is defined by

S(u, v) =
n∑

i=0

m∑
j=0

Ni,k(u)Nj,l(v)Pi,j (2.7)

where the k,l are the orders (degree+1) of the B-spline surface in both directions. The Ni,k(u) are the
polynomial B-spline basis functions of degree k-1 in u parameter direction, and Nj,l(v) are the basis
functions of degree l-1 in v direction.

Here are some important properties of B-spline curves/surfaces:

• Piecewise polynomial curve: A B-spline curve is a piecewise polynomial curve.

A polynomial is a mathematical expression involving a sum of powers in one or more variables
multiplied by coefficients. For example, an univariate polynomial1 is defined by

f(x) =
n∑

i=0

aix
i (2.8)

A bivariate polynomial2 is defined by

f(x, y) =
n∑

i=0

m∑
j=0

ai,jx
iyj (2.9)

The highest power in a polynomial is called its degree. A piecewise polynomial curve is obtained
by fitting polynomials to each coordinate of an ordered sequence of points, which split the curve
into several segments. Each segment of the piecewise polynomial curve is constructed so that they
join with some level of continuity. Continuity is a general mathematical property obeyed by
mathematical objects in which all elements are within a neighborhood of nearby points. [25].

As B-spline can be viewed as the union of curve segments defined on each knot interval, its degree
is independent of the number of control points.

• Smoothness: A p-degree B-spline curve/surface is p-k times continuously differentiable at the
knots of multiplicity k (k knots clamped together). It is very difficult to visualize the difference
of smoothness for the parts with continuity bigger than 2. For continuity 1, the corresponding
point lies on the control polygon, while the continuity 0 forces the curve to pass through a control
point, which results a visual discontinuity. Figure 2.4 shows a 4-degree B-spline curve. It is easy
to calculate that the curve at the three multiple knots has continuities of 2, 1, 0 respectively. Note
that there’s a cusp at the multiple knots with continuity 0.

• Strong convex hull: The curves/surfaces are contained in the convex hulls of their defining
control points. Especially, for B-spline curve, if u ∈ [ti, ti+1), p ≤ i ≤ m − p − 1, then the
curve C(t) is in the convex hull of the control points Pi−p, ..., Pi. For a B-spline surface with
a knot vector {u0, u1,..., um} in u direction and a knot vector {v0, v1,..., vn} in v direction, if
(u, v) ∈ [ui0 , ui0+1)× [vj0 , vj0+1), then the surface S(u,v) is in the convex hull of the control points
Pi,j , i0 − p ≤ i ≤ i0 and j0 − q ≤ j ≤ j0;

• Variation diminishing: No straight line/plane intersects a curve more times than it intersects
the curve’s control polygon;

• Affine invariance: An affine transformation is any transformation that preserves collinearity (i.e.,
all points lying on a line initially still lie on a line after transformation) and ratios of distances
(e.g., the midpoint of a line segment remains the midpoint after transformation). In general, an
affine transformation is a composition of rotations, translations, dilations, and shears, and they are
all subclasses of projective transformations [25]. For a B-spline curve/surface, one can apply the
affine transformations by just applying them to the control polygon/net.

1A polynomial in one variable.
2A polynomial in two variables.
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Figure 2.4: A B-spline curve with different continuity. The multiple knots are marked with circles; the
numbers beside the circles are the multiplicities of the knots.

• Partition of unity: For curve,
∑n

i=0 Ni,p(t) = 1 for all 0 ≤ t ≤ 1; for surface,
∑m

i=0

∑n
j=0 Ni,k(u)Nj,l(v) =

1 for all 0 ≤ u ≤ 1 and 0 ≤ v ≤ 1;

• Local modification scheme: Moving Pi changes a B-spline curve only in the interval [ti, ti+p+1],
because Ni,p(t) = 0 for u 6∈ [ti, ti+p+1]; similarly, moving Pi,j only affects a B-spline surface in the
rectangle [ui, ui+p+1) × [vj , vj+q+1), because Ni,p(u)Nj,q(v) is zero if (u,v) is outside of the this
rectangle.

2.3 NURBS

A NURBS (Nonuniform Rational B-Splines) curve C(u) (Figure 2.5), which is a vector-valued piecewise
rational polynomial function, is defined as:

C(u) =
∑n

i=0 wiPiNi,k(u)∑n
i=0 wiNi,k(u)

(2.10)

where
wi: weights
Pi: control points (vector)
Ni,k: normalized B-spline basis functions of degree k, defined by Equation 2.6.
A NURBS surface is defined in a similar way:

S(u, v) =

∑n
i=0

∑m
j=0 wi,jNi,k(u)Nj,l(v)Pij∑n

i=0

∑m
j=0 wi,jNi,k(u)Nj,l(v)

(2.11)

NURBS differ from B-splines mainly in two aspects: nonuniform, which means the knots of NURBS
are unequally placed; rational, which means the control points of NURBS have weight values. Below
are some important properties of NURBS curves/surfaces.

• Piecewise rational polynomial curve: A NURBS curve is a piecewise rational polynomial
curve. A rational curve is represented with rational functions of the form

x(u) =
X(u)
W (u)

y(u) =
Y (u)
W (u)

where X(u), Y(u),and W(u) are polynomials, that is, each of the coordinate functions has the same
denominator [2].
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Figure 2.5: A NURBS curve with 6 control points. B, N, and B3 illustrate the change of a point’s
position (same u) when the weight of P3 is 0/1/(bigger than 1) respectively. [9]

• Endpoint interpolation: NURBS curves interpolate the first and the last control points: P0 =
C(0) and Pn = C(1); NURBS surfaces interpolate the four corner control points.

• Smoothness: A p-degree NURBS curve/surface is p-k times continuously differentiable at the
knot of multiplicity k. The NURBS curves/surfaces are smooth with continuity larger than 1, and
are less smooth with continuity 1 and 0. This property is similar to the same property of B-splines.

• Strong convex hull: The curves/surfaces are contained in the convex hulls of their defining control
points. Especially, for NURBS curve, if u ∈ [ui, ui+1), p ≤ i ≤ m−p−1, then C(u) is in the convex
hull of the control points Pi−p, ..., Pi. For NURBS surface, if (u, v) ∈ [ui0 , ui0+1)× [vi0 , vi0+1), then
S(u,v) is in the convex hull of the control points Pi,j , i0 − p ≤ i ≤ i0 and j0 − q ≤ j ≤ j0;

• Variation diminishing: No straight line/plane intersects a curve more times than it intersects
the curve’s control polygon;

• Projective invariance: One can apply to curves/surfaces not only the affine transformations,
but also the projective transformations, by just applying them to the control polygon/net;

• Partition of unity: For curve,
∑n

i=0 Ni,p(t) = 1 for all 0 ≤ t ≤ 1; for surface,
∑m

i=0

∑n
j=0 Ni,k(u)Nj,l(v) =

1 for all 0 ≤ u ≤ 1 and 0 ≤ v ≤ 1;

• Local modification scheme: Moving Pi or changing its weight change a NURBS curve only in
the interval [ti, ti+p+1]; and moving Pi,j or changing its weight only affect a NURBS surface in the
rectangle [ui, ui+p+1)× [vj , vj+q+1).

2.4 Choosing a representation

Various properties hold for Bézier, B-spline and NURBS. A comparison of these representations would be
quite helpful in order to choose the most appropriate representation for 3D freeform curves and surfaces.
The properties mentioned in previous subsections are compared and listed in Figure 2.6.

From the comparison it is clear that NURBS and B-spline hold more helpful properties than Bézier
because:

• The NURBS and B-spline curves/surfaces are smoother than Bézier curves/surfaces.

• The local modification scheme property of NURBS and B-spline is very important to curve
design, because we can modify a curve locally without changing the shape in a global way.

11



Figure 2.6: Comparion between Bézier, B-spline and NURBS

• The NURBS and B-spline curves/surfaces can be modelled with more parameters than Bézier
curves/surfaces, which give more flexibility to shape design.

And NURBS are better than B-spline because:

• For the local modification scheme property, NURBS can change the curves/surfaces not only
by moving the control points, but also by changing their weights1.

• NURBS can represent exactly the conic sections, i.e. circles, ellipses, cones, cylinders. Such curves
occur very frequent in CAD/GIS applications, where several shapes and geometric constructions
are based on such geometric primitives [2].

• When we want to apply projective transformations to a NURBS curve/surface, projective in-
variance property guarantees that we can apply the transformations to control points and the
transformed NURBS curves/surfaces are defined by the transformed control points, leaving to the
visualization application the task of rendering the transformed curves/surfaces;

Although NURBS requires more complex algorithms to compute, it can be acceptable considering the
extraordinary properties by NURBS. From the above analysis, NURBS is chosen as the mathematical
representation for 3D freeform curves and surfaces in this report.

1This is very important for interactive shape design. Read next chapter for more explanation of NURBS’s local modi-
fication scheme.

12



13



Chapter 3

NURBS

Non-uniform rational B-splines are normally denoted as NURB splines or simply as NURBS. These
splines are very important for both graphics and CAD applications, and have been recognized by many
international standards, e.g., IGES, STEP, and PHIGS, as powerful tools for geometric design [2]. Based
on the introduction of NURBS in Chapter 2, this chapter continues with more advanced explanations
of NURBS, including fundamental algorithms, techniques for constructing freeform solids, and some
NURBS-based examples.

3.1 Representation

The definition of NURBS is already given in 2.10 and 2.11. Different parts of this definition are explained
below for better understanding of the NURBS representation.

3.1.1 Knot vector

From Chapter 2.2 we know that knot vectors are nondecreasing sequences in [0,1]. If a knot ti appears
k times (i.e., ti = ti+1 = ... = ti+k−1), where k > 1, ti is a multiple knot of multiplicity k. Otherwise, if
ti appears only once, it is a simple knot.

If the knots are equally placed (i.e., ti+1 - ti is a constant for all knots), the knot vector or the knot
sequence is called uniform, for example:

[0 0.2 0.4 0.6 0.8 1]

Otherwise, if the knots are unequally placed, it is called nonuniform. For example:

[0 0.3 0.75 0.95 1]

3.1.2 Basis functions

With its basis functions, a NURBS curve is contained in the convex hull of its control points. Moreover,
if u is in knot span [ui, ui+1], then the curve is in the convex hull of the control points Pi−p, Pi−p+1, ..., Pi.

NURBS basis functions also enable local modification scheme: changing the position/weight of a
control point Pi only affects the curve C(u) on the interval [ui, ui+p+1]. Recall that Ni,p(u) is non-zero
on interval [ui, ui+p+1]. If u is not in this interval, Ni,p(u) is zero and Ni,p(u)wiPi has no effect in
computing C(u). On the other hand, if u is in the indicated interval, Ni,p(u) is non-zero, and if Ni,p(u)Pi

is changed, so is C(u). This local modification scheme is very important to curve design, because we can
modify a curve locally without changing the shape in a global way. Moreover, if fine-tuning of a curve
shape is required, one can insert more knots (and therefore more control points) so that the affected
region could be restricted to a more narrow one.

14



3.1.3 Weights

The weights of NURBS wi affect only the range [ti, ti+p+1], and they should always be non-negative.
If wi = 0 (point B in Figure 2.5) then Pi has no effect on the shape.
If wi increases, the curve/surface is pulled toward Pi, and the other way around. Furthermore, for

a fixed knot vector, the movement by changing a control point’s weight is along a straight line through
this control point.

If all weights are equal, a NURBS curve/surface becomes a B-spline curve/surface. If furthermore
the number of control points n is equal to the degree p, and there are 2(p + 1) = 2(n + 1) knots with p
+ 1 of them clamped at each end, or in other words, the knot vector is just k zeros followed by k ones,
then the NURBS curve/surface reduces to a Bézier curve/surface. So actually B-spline and Bézier are
special cases of NURBS.

3.1.4 Rational curves and surfaces

Curves/surfaces that are defined with a weight wi for each control point, are called rational curves.
Mathematically, such curves/surfaces are defined in four-dimensional space (since there’re four compo-
nents in a control point, three for coordinate and one for weight) and are projected to three-dimensional
space.

If a projective transformation is applied to a NURBS curve/surface, the result can be constructed
from the projective images of its control points. This is a nice property. When we want to apply affine
transformations or even projective transformations to a NURBS curve/surface, this property guarantees
that we can apply the transformation to the control points, and the transformed NURBS curve/surface
is defined by the transformed control points. Therefore, we do not have to transform the curve/surface.
Bézier curves and B-spline curves only satisfy the affine invariance property rather than this projective
invariance property. This is because only NURBS curves involve projective transformations.

3.2 Fundamental algorithms

Three fundamental algorithms for implementing NURBS are given in this part: evaluation algorithm,
knot insertion and degree elevation. There are more advanced algorithms for NURBS, such as point
inversion and projection, surface tangent vector inversion, transformations and projections, etc., Detailed
descriptions of these algorithms can be found in [2], and they are not going to be explained here for content
limitation.

3.2.1 Evaluation algorithm

An effective evaluation algorithm is given in [2] by using homogeneous coordinates.

1. Add one dimension to the control points (e.g. P (x, y, z) → P ′(x, y, z, 1)) and multiply them by
their corresponding weights (i.e. in 3D: Pi(xi, yi, zi) → P ′

i (wixi, wiyi, wizi, wi)).

2. Calculate NURBS in homogeneous coordinates:

C ′(u) =
n∑

i=0

P ′
iNi,k(u)

3. Map the points on ”homogeneous” NURBS back to the original coordinate system with:

map(x, y, z, W ) =
{

(x/W, y/W, z/W ), if W 6= 0
(x, y, z), if W=0

C(u) = map(C ′(u))

Nearly every algorithm on NURBS starts with these “projection” steps.
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3.2.2 Knot insertion

Knot insertion is an important algorithm for NURBS because it can be used for:

1. evaluating points and derivatives on curves and surfaces.

2. subdividing curves and surfaces.

3. adding control points in order to increase flexibility in shape control (interactive design).

Given a set of n+1 control points P0, P1, ..., Pn, a knot vector of m+1 knots U = {u0, u1, ..., um}
and a degree p, we want to insert a new knot t into the knot vector without changing the shape of the
B-spline curve C(u). Suppose the new knot t lies in the knot span [uk, uk+1]. From the strong convex hull
property, C(t) lies in the convex hull defined by control points Pk, Pk−1, ..., Pk−p and the basis functions
of all other control points are zero. Thus, the knot insertion computation can be restricted to control
points Pk, Pk−1, ..., Pk−p. The way of inserting t is to find p new control points Qk on segment Pk−1Pk,
Qk−1 on segment Pk−2Pk−1, ..., and Qk−p+1 on segment Pk−pPk−p+1 such that the old polyline between
Pk−p and Pk is replaced by Pk−pQk−p+1Qk−p+2...Qk−1QkPk by cutting the corners at Pk−p+1, ..., Pk−1.
All other control points are unchanged. Note that p-1 control points of the original control polyline are
removed and replaced with p new control points, as in Figure 3.1.

Figure 3.1: Knot insertion

De Boor’s Algorithm [3] gives the formula for computing the new control point Qi on segment Pi−1Pi

as the following:
Qi = (1− ai)Pi−1 + aiPi (3.1)

where ratio ai can be computed by:

ai =
t− ui

ui+p − ui
(3.2)

In summary, to insert a new knot t, we first find the knot span [uk, uk+1] that contains t. With k
available, p new control points Qk−p+1, ..., Qk are computed with the above formula. Finally, the original
control polyline between Pk−p and Pk is replaced with the new polyline defined by Pk−p, Qk−p+1, Qk−p+2,
... , Qk−1, Qk, Pk. Note that after inserting a new knot, the knot vector becomes u0, u1, ..., uk, t, uk+1,
..., um. If the new knot t is equal to uk, the multiplicity of uk is increased by one.

Knots are inserted into surfaces by simply applying the previous formulas and algorithms to the rows
and/or columns of control points.
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- ai

- âj

Figure 3.2: Degree elevation

3.2.3 Degree elevation

Since a B-spline curve is a piecewise polynomial curve, it is possible to raise its degree from k to k+m,
where m is an integer greater than or equal to 1. Thus, there must exist control points Qi and a new
knot vector T = [t0, ..., tn+k+m] such that

P (t) = Q(t) =
n∑

i=0

Ni,k+m(t)Qi (3.3)

where n+1 is the number of control points of Q(t), and Ni,k+m(t), i = 0, ..., n are the B-spline basis
functions of degree k+m+1 defined on the knot vector T. The curves P(t) and Q(t) have the same
geometry and parameterization. The computation of n, Qi, and T is referred to as elevating the
degree of the curve.

Degree elevation is important because quite often a designer wants to manipulate a curve/surface into
the shape he desires, but the degree limit of the parametric representation makes it impossible. Degree
elevation is the right operation to elevate the flexibility of the representation.

Due to the basis properties of B-spline, we can write a spline of degree n:

s(u) =
n∑

i=0

ciN
n
i (u)

with some knot sequence (ai) also as a linear combination of B-splines of degree n+1:

s(u) =
n∑

j=0

djN̂
n+1
j (u)

with the knot sequence(âj) obtained from (ai) by raising the multiplicity of each knot ai by one, as
illustrated in Figure 3.3.

Various papers (Piegl [2], Prautzsch and Piper [4] and Cohen [10]) give fast and efficient methods
for degree elevation. Both [10] and [4] elevate the degree by 1, whereas the method by Cohen [10] gives
stable and efficient algorithms for low-degree special cases, such as linear to quadratic, quadratic to
cubic, and Prautzsch and Piper’s method [4] is for general case. The method by Piegl [2], which achieve
the same result by extracting the Bézier segments from the curve, is more competitive in the case where
the degree is to be raised by more than 1. Here we present the algorithm by Piegl [2].

Because the algorithm of degree elevation for Bézier curve will be used in Piegl’s algorithm, we first
give a brief introduction of how to elevate Bézier curve’s degree by one:

Bézier degree elevation The degree of a Bézier curve can be increased by increasing the number
of control points. For a Bézier curve with n+1 control points p0...pn, the new representation with n+2
control points p̂0...p̂n+1 is given by:

C(u) =
n∑

k=0

pkBn
k (u) =

n+1∑
k=0

p̂iB
n+1
k (u)
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where
p̂0 = p0

p̂i = aipi−1 + (1− ai)pi ai =
i

n + 1

p̂n+1 = pn

Piegl’s NURBS degree elevation Piegl’s NURBS degree elevation can be summarized to three
steps:

1. The NURBS curve is decomposed into piecewise Bézier curve segments by inserting k-1 multiple
knot values at each internal knot.

2. These Bézier curve segments are degree elevated.

3. Remove unnecessary knot values.

The first step can be fulfilled using an algorithm developed in [2] (p173-176) which decomposes a
NURBS curve and returns Bézier segments.

The second step is just the Bézier degree elevation algorithm.
The third step is related to another fundamental algorithm for NURBS: knot removal. Knot removal

is the reverse operation of knot insertion. Here we only give the formulas for knot removal. Detailed
explanation and proof can be found in many papers [6][10][2][4].

Knot removal Let u = ur 6= ur+1 be a knot of multiplicity s, where 1 ≤ s ≤ p (degree). The equations
for computing the new control points for one removal of u are

P 1
i =

P 0
i − (1− ai)P 1

i−1

ai
r − p ≤ i ≤ 1

2
(2r − p− s− 1)

P 1
j =

P 0
j − ajP

1
j+1

1− aj

1
2
(2r − p− s + 2) ≤ j ≤ r − s (3.4)

with
ak =

u− uk

uk+p+1 − uk
k = i, j

For a surface, one can elevate the degree in either the u- or the v- direction. In this case, every row
or column of control points will be modified by the curve elevation algorithm for curves.

3.3 Free-form solids

Boundary representation There’re many representations for solids, among which boundary repre-
sentation is the most suitable one for freeform solids. Boundary representations represent a solid indi-
rectly by its boundary faces, which can be represented by their edges, which can again be represented
by their vertices.

The boundary representation satisfies Euler’s formula, which expresses an invariant relationship
among the number of faces f, edges e, and vertices v:

v − e + f = 2 (3.5)

This is only valid for simple objects without internal holes. For general cases, boundary representation
should satisfy:

v − e + f = 2(s− h) + r (3.6)

where r is the number of rings (loops) in faces, h is the number of holes through an object, and s is the
number of disjoint parts (shells) [11].
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Trimmed NURBS surfaces When NURBS surface patches are joined together to make a boundary
representation of solid models, only portions of a tensor product surface are often used. These may
be specified by giving a set of trimming curves in parameter (u,v) space of the patch. Such curves,
usually given as 2D NURBS splines, are converted into a set of closed loops by a suitable combination
with the boundary of parameter space. The used portions of the surface are those internal to the
loops, according to some loop orientation. Notice that in order to have a meaningful description, the
loops must not intersect themselves or each other. The geometry representation of the boundary using
trimmed NURBS surfaces can represent freeform solids of nearly every shape, as well as their Boolean
combinations. Trimmed NURBS are currently the industry standard representation of surfaces within
the kernel geometric libraries adopted by most CAD systems [7]. A typical trimmed NURBS surface with

Figure 3.3: Trimmed NURBS surface

three trimming loops is shown in Figure 3.3. It has one outer trimming loop and two inner trimming
loops. The trimming loops for a trimmed surface are arranged such that the outer trimming loop is
counter-clockwise and all the inner trimming loops are clockwise with respect to the outward normal in
the parametric domain.

Offset NURBS NURBS curves can also be constructed by moving an existing NURBS curve Cbase(u)
along a certain direction N(u) over an offset d in 3D space. This is called offset NURBS. The parametric
form of the offset NURBS curves is given by:

C(u) = Cbase(u) + dN(u)

where d is the offset distance, and N(u)/N(u,v) are the unit normals computed at u/(u,v) [8].

Swung NURBS Swung by NURBS is also a solid construction method for freeform solids. Let a
NURBS curve P(u) be a profile curve defined in x-z plane, and let another NURBS curve T(v) be
trajectory curve defined in x-y plane, we can obtain a NURBS surface by swinging P(u) about z-axis
and simultaneously scaling it according to T(v). So this swung surface is:

S(u, v) = (aPx(u)Tx(v), aPx(u)Ty(v), Pz(u))

where a is an arbitrary scaling factor.
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Swept NURBS NURBS surfaces can also be constructed by traversing NURBS curve C(u) along a
NURBS curve path T(v) in 3D space. A general form of swept surface S(u, v) is given by:

S(u, v) = T (v) + M(v)C(u)

where M(v) is a 3× 3 matrix incorporating rotation and nonuniform scaling of C(u) as a function of v.
If M(v) is the identity matrix for all v, then Equation 3.3 becomes

S(u, v) = T (v) + C(u)

We call this surface a generalized translational sweep [2].
An example of swept NURBS is given in Chapter 3.4.3.

Skinned NURBS Skinning NURBS is a process of blending K NURBS curves (u direction) together
in v direction to form a NURBS surface. These curves are commonly called section curves. Take Figure
3.4 as example: assume the series of curves are defined on the same knot vector, and have common
degree (if not, we can make them uniform by knot insertion/removal and degree elevation). The process

Figure 3.4: NURBS skinning: surface interpolation through cross-sectional curves [9].

is given as:

1. Choose degree q for direction v. The value of q is arbitrary, the only restriction is q ≤ K + 1

2. Form a knot vector in v direction. This is done by first calculating the knot value in v direction for
each NURBS curve, then determining the knot vector in v direction. Formulas for these calculations
can be found in [2] (p462, p365).

3. Compute control points for skinned surface by interpolating the nth control points of separate
curves with corresponding knot values. Note that the number of control points for all section
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curves is the same because the knot vector and degree are both same. These three values satisfy
Equation 2.4.

3.4 Examples

Three examples: a circle, a cylinder and a freeform surface, are given below to show NURBS’ convenience
in representing conics and freeform curves/surfaces:

3.4.1 Circle

A circle in x-y plane with its center at (0,0,0) and radius=1 (Figure 3.5).
Knots:

U = [0, 0, 0,
1
4
,
1
4
,
1
2
,
1
2
,
3
4
,
3
4
, 1, 1, 1]

Weights:

wi = [1,

√
2

2
, 1,

√
2

2
, 1,

√
2

2
, 1,

√
2

2
, 1]

Control points:

Pi = [(1, 0, 0), (1, 1, 0), (0, 1, 0), (−1, 1, 0), (−1, 0, 0), (−1,−1, 0), (0,−1, 0), (1,−1, 0), (1, 0, 0)]

It is obvious that the degree of the circle is 2, so the NURBS formula for this circle is given as:

C(u) =
8∑

i=0

Ni,2(u)Pw
i

Figure 3.5: A NURBS Circle

3.4.2 Cylinder

A cylinder (Figure 3.6) can be constructed with the idea of offset NURBS. The moving of a NURBS
curve C(u) along direction W for distance d can be mathematically defined as:

S(u, v) = C(u) + dW =
n∑

i=0

Ri,p(Pi + dW )
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Ri,p is another form of NURBS’ basis function in Equation 2.10. It is defined by:

Ri,p,j,q(u) =
Ni,p(u)Nj,qwi,j∑n

k=0

∑m
l=0 Nk,p(u)Nl,q(v)wk,l

Because d is fixed in the v direction, the final representation is:

S(u, v) =
n∑

i=0

1∑
j=0

Ri,p,j,q(u, v)Pi,j

We can use the circle’s NURBS representation in Chapter 3.4.1 here to represent the bottom circle of
cylinders. Hence, a cylinder’s knot vector, control points and weights in u direction are the same with
the example in Chapter 3.4.1: U, Pi and wi.

The knot vector in v direction is:
[0, 0, 1, 1]

because for fixed u, S(u,v) is a straight line segment from C(u) to C(u)+dW.
The control points are:

Pi,0 = Pi(i = 0, 1, ..., 8)

Pi,1 = Pi,0 + dW

Weights:
wi,1 = wi

wi,0 = wi,1

Figure 3.6: A NURBS cylinder

3.4.3 A freeform surface

The surface in Figure 3.7 is a NURBS surface constructed by sweeping curve C1(u) along curve C2(v)
without any rotation and nonuniform scaling. C1(u) is a NURBS curve with control points P 1

i and
weights w1

i (i=0,...,3) in y-z plane, and C2(v) is a NURBS curve with control points P 2
j and weights w2

j

(j=0,...,3) in x-z plane.
According to explanation of swept NURBS in Chapter 3.3, we know that M(v) for this surface is

the identity matrix, because no rotation and nonuniform scaling is applied. Hence the surface can be
described by the equation below:

S(u, v) = C1(u) + C2(v)

Knot vectors in u and v direction are the knot vectors of C1 and C2 respectively.
The control points are:
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Pi,j = P 1
i + P 2

j i=0,...,3 j=0,...,3

Weights:

wi,j = w1
i w2

j i=0,...,3 j=0,...,3

Figure 3.7: A freeform surface in perspective view (drawn with Rhinoceros 3.0)
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Chapter 4

Freeform Curves/Surfaces in CAD
Applications

Bézier, B-spline and NURBS play an important role in CAD world, and they have been widely used
in current CAD applications. After the theoretical research in the previous chapters, now let’s take a
look at two popular CAD applications: AutoCAD 2004 and MicroStation V8, to learn how freeform
curves/surfaces can be designed with the three representations in practice.

4.1 AutoCAD

AutoCAD is one of the most famous CAD applications nowadays. It is able to create and modify freeform
curves/surfaces represented with Bézier, B-spline and NURBS [27].

The tool ’Spline’ in AutoCAD 2004 is used to create NURBS curves. To define a NURBS curve,
we need to give several fit points, which differ from control points in that NURBS curves pass (not
exactly) through fit points. All the fit points have a tolerance value, which describes how closely the
spline fits the set of fit points we specify. The lower the tolerance, the more closely the spline fits the
points. At zero tolerance, the spline passes through the points. After defining all the fit points, control
points for this curve will be calculated by AutoCAD 2004. These control points have equal weights 1
by default, which actually represent a B-spline. As a special case for B-Spline, we can get Bézier curves
in AutoCAD 2004 when the order is one less than the number of control points.

Figure 4.1 illustrates the fit points, control points, and the tolerance’s influence on curves.
Figure 4.2 (a) shows a NURBS curve in AutoCAD 2004. N
An existing NURBS curve can be edit by the tool ’SPLINEDIT’. Options for the edit can be

• Fit Data. Edits the fit point data that define the spline, including changing the tolerance.

Figure 4.1: Control points, Fit points and Tolerance in AutoCAD 2004
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(a) Creating a NURBS curve.

(b) Changing the weight of a control point.

(c) Elevating the order from 4 to 6.

Figure 4.2: Creating and editing a NURBS curve in AutoCAD 2004

25



Figure 4.3: Surface of Revolution in AutoCAD 2004

• Close. Changes an open spline into a continuous, closed loop.

• Move Vertex. Moves a fit point to a new location.

• Refine. Modifies a spline definition by adding and weighting control points and elevating the order
(maximum 26) of the spline.

• Reverse. Changes the direction of the spline.

Figure 4.2 (b) shows the change of the shape in Figure 4.2 (a) by changing a control point P’s weight
from 1.0 to 0.1 .

Figure 4.2 (c) shows the change of the shape in Figure 4.2 (b) by elevating the order from 4 to 6.
Freeform surfaces cannot be defined directly by giving fit points in AutoCAD 2004. They can only

be constructed by a number of geometric construction methods, such as sweep, extrude and revolution.
Figure 4.3 shows a surface constructed by revolving a NURBS curve about an axis (the vertical line in
the middle).

4.2 MicroStation

MicroStation is another popular CAD application which is able to design freeform curves/surfaces. B-
spline and Bézier1 are supported in MicroStation, while NURBS is absent. In other words, the control
points in MicroStation have no weights [24].

To define a B-spline, we can choose to define between input data points or pick line string. The
input data points don’t have to be control points, they can also be the points on the curve (like the
fit points in AutoCAD), curve approximation points and Catmull-Rom points. The Catmull-Rom curve
is popular with aircraft and ship hull designers. It passes directly through the data points or vertices on
which it is based. If we want curves to be build by pick line string, the curve is constructed based on
the vertices of an identified line string or complex chain (results in open B-spline) or shape or complex
shape (results in closed B-spline).

Figure 2.3 shows a B-spline defined by 8 control points.
MicroStation enable us to do the following modifications to an existing B-spline:

• Move data point. Moves data points (control points, etc.) to new locations.

1Bézier is also treated as a special case of B-spline in MicroStation.
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Figure 4.4: A closed B-spline curve converted to an open curve in MicroStation V8

• Closure. Convert a closed/open B-spline to a open/closed curve.

• Refine. Set the curve’s order; deform the curve; flatten the curve; change the tolerance value.

• Reverse. Changes the direction of the spline.

Figure 4.4 shows the conversion of a closed B-spline to a open curve. Notice the change to its control
points. Although this B-spline’s shape remains the same, it is not closed any more.

To define B-spline surfaces, we can either input data points in two directions (u,v), which is sim-
ilar with defining B-spline curves, or using geometry construction methods, which can be extruding,
sectioning, sweeping, skinning, etc.

Figure 4.5 shows a B-spline surface constructed with data points in both u- and v-direction. Data
points must be input row by row, and the number of data points for each row should be no less than the
order in u-direction, the number of rows should be no less than the order in v-direction.

Figure 4.6 shows a B-spline surface constructed by three B-spline curves (can also use lines, line
strings, arcs, ellipses, complex chains, or complex shapes). From Figure 4.6 it can be inferred that
MicroStation probably uses skinning method to construct B-spline surfaces from B-spline curves.

4.3 Summary

AutoCAD and MicroStation both give nice support to freeform curves and surfaces. AutoCAD uses
NURBS to represent freeform curves and surfaces, whereas MicroStation uses B-spline. Both of them
can easily define freeform curves by specifying data points (control points/fit points), and define freeform
surfaces by geometry construction methods (sweeping, skinning, revolution, etc.). Freeform surfaces can
also be defined by specifying data points in u and v directions in MicroStation. After the freeform
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Figure 4.5: A B-spline surface constructed with data points in MicroStation V8

Figure 4.6: A B-spline surface constructed by cross-sections in MicroStation V8
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curves/surfaces are created, all their properties (degrees, control points’ positions, closure, etc.) can be
edited in AutoCAD and MicroStation. AutoCAD is also able to modify control points’ weights.
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Chapter 5

Database Storage of Spatial Data

Database management systems (DBMSs) have extraordinary ability in managing huge amounts of data.
Because of the increasing need from GIS/CAD for spatial data, more and more DBMSs have imple-
mented modules for spatial data managing, including spatial data types, functions to store, query and
analyze spatial data, etc. Such DBMSs are called spatial DBMSs. Several years’ research on spatial
data has achieved some standards, the Open GeoSpatial Consortium specifications, and some of these
specifications give standards for spatial DBMSs. A general introduction of spatial DBMSs will be given
in this chapter.

5.1 OGC specifications

The OGC (Open GeoSpatial Consortium) is a non-profit organization dedicated to open systems geo-
processing. OGC gives standards in the GIS field and recommends the directions for GIS researchers.
One of the main tasks of OGC is to develop specifications, which follows strict procedures and policies.
First, various topics are mentioned by OGC’s members and discussed in the TC (Technical Committee)
and/or PC (Planning Committee). Then, recommendation papers are generated from the discussion top-
ics, and maybe adopted by TC/PC. Finally, some of the adopted recommendation paper may become
specifications under The OGC Technical Committee Policies & Procedures [14].

The OGC creates two kinds of specifications: Abstract specifications and Implementation specifica-
tions.

5.1.1 Abstract specifications

The purpose of Abstract specifications1 is to create and document a conceptual model sufficient
enough to allow for the creation of Implementation Specifications. One OGC abstract specification, the
Spatial schema, gives a standard for geographic information by specifying geometry and topology sep-
arately as a UML (Unified Modeling Language) package dependency tree in Figure 5.1. The geometry
package (Figure 5.2) has several internal packages that separate primitive geometric objects, aggregates
and complexes, which have a more elaborate internal structure than simple aggregates [7]. Some repre-
sentations of freeform curves and surfaces, such as Bézier curve/surface and B-spline curve/surface, have
been standardized in the geometric package.

Take the ’GM BSplineCurve’ package in Figure 5.3 as example. There are four attributes: ’degree’,
’curveForm’, ’knotSpec’ and ’isPolynomial’, and one constructor in this package.

• The ’degree’ attribute specify the algebraic degree of the basis functions;

• The ’curveForm’ attribute is used to identify particular types of curve which this spline is being
used to approximate, or set to ’NULL’ if no such approximation is intended;

• The ’knotSpec’ attribute gives the type of knot distribution used in defining this spline;

• The ’isPolynomial’ attribute is set to ’True’ if this is a polynomial spline.
1This abstract specification has also been accepted by ISO and is referred as ISO 19107.
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Figure 5.1: UML package dependency tree [7]

• The class constructor ’GM BSplineCurve’ takes four parameters (degree, control points, knots,
knot types) to construct a B-spline curve. [7].

Note that the weight values are stored along with the coordinates of control points as an extra dimension.

Unfortunately, NURBS has not been standardized in the latest Spatial schema, although it has
already been included in many geometric standards, such as OpenGL, IGES, STEP and PHIGS [2]. For
example in OpenGL, function ’gluNurbsCurve()’ is used to describe a NURBS curve with the following
parameters [26]:

nknots Specifies the number of knots.

knot Specifies an array of knot values.

stride Specifies the offset (as a number of single-precision floating-point values) between successive curve
control points.

ctlarray Specifies a pointer to an array of control points.

order Specifies the order of the NURBS curve.

5.1.2 Implementation specifications

The Implementation specifications are unambiguous technology platform specifications for imple-
mentation of industry-standard, software application programming interfaces [14]. One OGC implemen-
tation specification that we should pay attention is the OpenGIS Simple Features Specification
for SQL (SFS)[16]. This specification defines standard SQL schema for simple geospatial features
(geometric primitives) which are based on OGC Abstract specifications. Although OGC Abstract
specifications also defines standards for complex features (topological primitives), they are still missing

31



Figure 5.2: Geometric package in the Spatial Schema [7]. The Bézier type, B-spline type and their
related types are marked with red boxes.
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Figure 5.3: GM BSplineCurve package [7]

in SFS and other OGC Implementation specifications. The SQL schema in SFS is for two target
SQL environments: SQL92 and SQL92 with Geometry Types. The difference between SQL92
and SQL92 with Geometry Types is simply as the difference between their names that geometry
types exist in the latter environment while not in the first one. Both environments are recommended to
standardize the following aspects:

Spatial type A spatial DBMS should support the following spatial types (Figure 5.4):

• Geometry

• Point

• Curve

• LineString, Line, LinearRing

• Polygon

• Surface

• GeometryCollection

• MultiPoint

• MultiCurve

• MultiLineString

• MultiPolygon

• MultiSurface

The difference between Multi type and non-Multi type is that the first type is a geometric collection
of the latter type.

SFS also asserted the rules that define valid geometry types. For example, the assertions for
polygons are:

1. Polygons are topologically closed.

2. The boundary of a polygon consists of a set of linea rings that make up its exterior and interior
boundaries.

3. No two rings in the boundary cross, the rings in the boundary of a polygon may intersect at
a Point but only as a tangent.

4. A polygon may not have cut lines, spikes or punctures.

5. The interior of every polygon is a connected point set.

6. The exterior of a polygon with 1 or more holes is not connected. Each hole defines a connected
component of the exterior.
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Figure 5.4: Geometry Class Hierarchy in SFS

These rules should be checked during insertion of spatial data, and invalid data should not be
accepted when these rules are violated.

Exchange formats The Well-Known Text (WKT) representation and the Well-Known Binary (WKB)
representation are recommended to be used to exchange (import/export) spatial data. WKT/WKB
provides standard textual/binary representations for spatial reference system information. The
nine geometries above, including simple or non-simple, closed or non-closed, can be represented
accurately using WKT/WKB. For example:

A Polygon with one exterior ring and one interior ring represented with WKT:

POLYGON((0 0,10 0,10 10,0 10,0 0),(5 5,7 5,7 7,5 7, 5 5))

A POINT(1 1) represented with WKB:

0101000000000000000000F03F000000000000F03F

This is a collection of:

• Byte order : 01

• WKB type : 01000000

• X : 000000000000F03F

• Y : 000000000000F03F

Spatial operators/functions A spatial database cannot ’manage’ spatial data types without spatial
operators/functions. SFS also defines a lot of spatial functions, including functions for constructing
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a geometry value given its WKT/WKB, functions that test spatial relationships, functions for
distance relationships, functions that implements spatial operators and spatial functions on each
spatial data types. SFS doesn’t define any validation function. Validation of spatial data should
be checked innerly before insertion.

We list the names of these spatial functions below to give readers an overview. Explanation for
each function can be found in [16].

The functions for constructing a geometry value given its WKT include:

• GeomFromText( geometryTaggedText String, SRID Integer) : Geometry

• PointFromText ( pointTaggedText String, SRID Integer): Point

• LineFromText( lineStringTaggedText String, SRID Integer) : LineString

• PolyFromText( polygonTaggedText String, SRID Integer): Polygon

• MPointFromText (multiPointTaggedText String, SRID Integer): MultiPoint

• MLineFromText ( multiLineStringTaggedText String, SRID Integer): MultiLineString

• MPolyFromText( multiPolygonTaggedText String, SRID Integer): MultiPolygon

• GeomCollFromTxt( geometryCollectionTaggedText String, SRID Integer): GeomCollection

• BdPolyFromText( multiLineStringTaggedText String, SRID Integer): Polygon

• BdMPolyFromText( multiLineStringTaggedText String, SRID Integer): MultiPolygon

The functions for constructing a geometry value given its WKB include:

• GeomFromWKB( geometryTaggedWKB String, SRID Integer) : Geometry

• PointFromWKB( pointTaggedWKB String, SRID Integer): Point

• LineFromWKB( lineStringTaggedWKB String, SRID Integer) : LineString

• PolyFromWKB( polygonTaggedWKB String, SRID Integer): Polygon

• MPointFromWKB (multiPointTaggedWKB String, SRID Integer): MultiPoint

• MLineFromWKB ( multiLineStringTaggedWKB String, SRID Integer): MultiLineString

• MPolyFromWKB( multiPolygonTaggedWKB String, SRID Integer): MultiPolygon

• GeomCollFromTxt( geometryCollectionTaggedWKB String, SRID Integer): GeomCollection

• BdPolyFromWKB( multiLineStringTaggedWKB String, SRID Integer): Polygon

• BdMPolyFromWKB( multiLineStringTaggedWKB String, SRID Integer): MultiPolygon

The functions that test spatial relationships include:

• Equals(g1 Geometry, g2 Geometry) : Integer

• Disjoint(g1 Geometry, g2 Geometry) : Integer

• Touches(g1 Geometry, g2 Geometry) : Integer

• Within(g1 Geometry, g2 Geometry) : Integer

• Overlaps(g1 Geometry, g2 Geometry) : Integer

• Crosses(g1 Geometry, g2 Geometry) : Integer

• Intersects(g1 Geometry, g2 Geometry) :Integer

• Contains(g1 Geometry, g2 Geometry) : Integer

• Relate(g1 Geometry, g2 Geometry, patternMatrix String) : Integer

The functions for distance relationships include:

• Distance(g1 Geometry, g2 Geometry) : Double Precision

The functions that implements spatial operators include:
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• Intersection (g1 Geometry, g2 Geometry) : Geometry

• Difference (g1 Geometry, g2 Geometry) : Geometry

• Union (g1 Geometry, g2 Geometry) : Geometry

• SymDifference(g1 Geometry, g2 Geometry) : Geometry

• Buffer (g1 Geometry, d Double Precision) : Geometry

• ConvexHull(g1 Geometry) : Geometry

There’re also spatial functions for each spatial data types. For example, the spatial functions for
’curve’ are:

• StartPoint(c Curve) : Point

• EndPoint(c Curve) : Point

• IsClosed(c Curve) : Integer

• IsRing(c Curve) : Integer

• Length(c Curve) : Double Precision

Metadata The set of feature tables should be registered in the GEOMETRY COLUMNS meta-
data view, in which metadata of each geometry column will be registered in a row. GEOM-
ETRY COLUMNS metadata views store the identity of the feature table of which it is a
member, the spatial reference system ID, the type of geometry for the column, and the coordinate
dimension.

Spatial Reference System A spatial DBMS should also develop its Spatial Reference System,
which identifies the coordinate system for all geometries stored in the geometric columns, and
gives meaning to the numeric coordinate values for any geometry instance stored in the columns.
The columns of Spatial Reference System tables are the Spatial Reference System Identifier
(SRID), the Spatial Reference System Authority Name (AUTH NAME), the Authority Specific
Spatial Reference System Identifier (AUTH SRID) and the Well-known Text description of the
Spatial Reference System (SRTEXT). The Spatial Reference System Identifier (SRID) constitutes
a unique integer key for a Spatial Reference System within a database[16].

Several commercial DBMSs have already published their products which partially embraces the
OGC’s specifications. Some of these spatial DBMSs are discussed in the next section.

5.2 Spatial support in current databases

Several spatial DBMSs are available on the market now. In order to take a closer look at current
spatial DBMSs, four mainstream spatial DBMSs: Ingres [20], Informix [21], Postgres [23] and
Oracle [17], are chosen and studied in aspects of their supported spatial types, import formats, spatial
operators/functions, spatial index, metadata and Spatial Reference System.

5.2.1 Ingres

Ingres is a well known OpenSource DBMS developed by CA (Computer Associations). Ingres gives nice
support to spatial data types, although it doesn’t support OGC specification.

Spatial types The spatial data are supported by the Ingres Spatial Object Library in Ingres.
There’re nine spatial data types, all in 2D:

• point

• lseg

• line

• long line

• box
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Figure 5.5: A polygon with 4 vertices

• polygon

• long polygon

• circle

• nbr

These data types actually represent four geometry types: point, line, polygon and circle. Points are
defined by their x coordinates and y coordinates; lines are defined by begin point and end point;
polygon type contains number of points(vertices) and an array of points’ coordinates; circle type
is defined by its center point and radius.

The following example shows how to insert a polygon with four vertices: (-1,-1), (-1,1), (1,1), (1,-1),
as Figure 5.5:

CREATE TABLE example table
(id integer,shape polygon(4)); //4 is the number of vertices

INSERT INTO example table VALUES ( 1 ,
’((-1,-1),(-1,1),(1,1),(1,-1))’,
);

Exchange formats WKT and WKB are not supported.

Spatial operators/functions Supported spatial operators include equality operator, binary opera-
tor(inside, intersects and overlaps) and overlap operator. Supported spatial functions include area,
length, perimeter and distance.

Spatial index In Ingres we are also able to make R-tree index on spatial columns. R-Tree organizes
data in a tree-shaped structure, with a minimum bounding rectangle(MBR) at the nodes.
MBR indicate the farthest extent of the data that is connected to the subtree below. A search
using an R-tree index can quickly descend the tree to find objects in the general area of interest and
then perform more exact tests on the objects themselves. An R-tree index can improve performance
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because it eliminates the need to examine objects outside the area of interest. Without an R-tree
index, a query would need to evaluate every object to find those that match the query criteria.

Metadata Not mentioned.

Spatial Reference System Not mentioned.

5.2.2 Informix

IBM’s Informix developed spatial functionalities in its Spatial DataBlade Module, and partially
implemented the OGC standard Simple Features Specification for SQL in this module. Accordingly,

Spatial types Six spatial types mentioned in SFS are implemented in Informix, they are

• ST Point

• ST MultiPoint

• ST LineString

• ST MultiLineString

• ST Polygon

• ST MultiPolygon.

ST Point has not only x and y coordinate values, but may include z coordinate and an m value.
An m(measure) coordinate is a value that conveys information about a geographic feature.

Below is an example showing how to create a spatial table and insert the polygon in Figure 5.5
using IBM Informix load format in Informix:

CREATE TABLE example table (
id integer,
shape ST Polygon); //spatial column

INSERT INTO example table VALUES (
1,
’5 polygon (-1 -1, -1 1, 1 1, 1 -1)’
);

Exchange formats Exchange formats of spatial types can be IBM Informix load format, WKT, WKB
and shape representation, a widely used industry standard defined by ESRI(Environmental Sys-
tems Research Institute). The IBM Informix load format is like: ’SRID, TYPE(coordinate, ...,
coordinate)’, where SRID is a integer which references its Spatial Reference System; TYPE
is the geometric name such as point, polygon, etc.; coordinates of points/vertices are specified
between () one bye one, separated by comma. ESRI’s shape representation is beyond the scope of
this report, so it will not be explained here. A full description can be found from ESRI website at
http://www.esri.com/library/whitepapers/pdfs/shapefile.pdf.

Spatial operators/functions There’re about 100 2-dimensional spatial operators and functions in
Informix Spatial DataBlade Module. All SFS-compliant functions have the prefix ST , while
functions that extend SFS have the prefix SE . The tasks for these functions can be:

• Generate a geometry from a well-known text representation. For example, the function
ST GeomFromText() takes a well-known text representation and returns an ST Geometry.

• Generate a geometry from a well-known binary representation. For example, the function
ST GeomFromWKB() takes a well-known binary representation and returns an ST Geometry.

• Generate a geometry from an ESRI shape representation. For example, the function SE GeomFromShape()
takes an ESRI shape representation and returns an ST Geometry.
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• Convert a geometry to an external format. For example, the function ST AsText() returns
the well-known text representation of a geometry object.

• Manipulate the ST Point data type. For example, the function ST X() returns the X coordi-
nate of a point.

• Manipulate the ST LineString and ST MultiLineString data types. For example, the function
ST PointN() returns the nth point.

• Manipulate the ST Polygon and ST MultiPolygon data types. For example, the function
ST Area() calculates the area of polygons.

• Obtain parameters of a geometry. For example, the function ST Distance() returns the short-
est distance to another geometry.

• Determine the properties of a geometry. For example, the function ST IsValid() determines
whether a geometry is topologically valid.

• Determine if a certain relationship exists between two geometries. For example, the function
ST Intersects() determines whether two geometries intersect.

• Compare geometries and return a new geometry based on how the geometries are related. For
example, the function ST Intersection() computes the intersection of two geometries.

• Generate a new geometry from an existing geometry. For example, the function ST Envelope()
generates the bounding box of a geometry.

• Manage collections. For example, the function ST NumGeometries() returns the number of
geometries in the collection.

• Nearest-neighbor queries. For example, the function SE Nearest() retrieves nearby geometries
in increasing distance order.

• Assist in managing spatial reference systems. For example, the function ST SRID() returns
a geometrys spatial reference ID.

• Administration. For example, the function SE MetadataInit() reinitializes the spatial refer-
ence system memory cache.

The Informix Spatial DataBlade module implemented a spatial validation function: ST IsValid().
Actually spatial data are validated before accepted, so ST IsValid() always returns TRUE. This
function may be used to validate spatial data supplied by other implementations of the OGC
specifications.

The following example returns any geometry that overlaps the window defined with ST PolyFromText:

SELECT name from example table
WHERE SE EnvelopesIntersect(shape,
ST PolyFromText(’polygon((20000 20000,60000 20000,60000 60000,20000 60000,20000 20000))’,
5));

Spatial index Informix supports R-tree index. To create an R-tree index for our example, use the
following statement:

CREATE INDEX shape idx
on example table (shape ST Geometry ops)
USING RTREE;

Metadata After creating a spatial table or inserting a spatial column to a normal table, we need to
register their metadata in the geometry columns table, which has a rather similar structure
with the GEOMETRY COLUMNS metadata view in SFS. Required information includes
user name, spatial column name, column type, srid, etc.

Spatial Reference System Before creating a spatial column, setup of Spatial Reference System
is required in the Spatial Reference Table. The columns of this table include srid, description
of the spatial reference system, the name of the standard or standards body cited for the reference
system, scale factors, etc.
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5.2.3 Postgres

Postgres is a popular DBMS developed by a team of developers who subscribe to the PostgreSQL
development mailing list. PostGIS adds support for geographic objects to the Postgres as an option.
PostGIS’ support of spatial data can be revealed from the following aspects:

Spatial types PostGIS supports seven spatial types in SFS, they are:

• POINT

• MULTIPOINT

• LINESTRING

• MULTILINESTRING

• POLYGON

• MULTIPOLYGON

• GEOMETRYCOLLECTION

All of these types can be 2-, 3- or 4-dimensional.

Below is an example showing how to create a spatial table and insert the polygon in Figure 5.5
using the Well Known Texture representation:

CREATE TABLE example table (id int4);

SELECT AddGeometryColumn(’example table’, ’shape’, 128, ’POLYGON’, 2 ); //square is

column name, 128 is SRID, 2 is dimension

INSERT INTO example table(id, shape) VALUES
(1, GeometryFromText(’POLYGON(-1 -1, -1 1, 1 1, 1 -1)’, 128));

Notice that in PostGIS, a spatial column can only be added to existing tables using ’AddGeome-
tryColumn’ function instead of the common used SQL statement: ’alter table’.

Exchange formats WKT and WKB are used to exchange spatial data in PostGIS.

Spatial operators/functions PostGIS also has both OGC compliant spatial functions and their
own extension functions. Below is a list of some OGC compliant spatial functions, they can
be grouped as Management Functions, Geometry Relationship Functions, Geometry Processing
Functions, Geometry Accessors and Geometry Constructors.

Management Functions:

• AddGeometryColumn(varchar, varchar, varchar, integer, varchar, integer)

• DropGeometryColumn(varchar, varchar, varchar)

• SetSRID(geometry)

Geometry Relationship Functions:

• Distance(geometry,geometry)

• Equals(geometry,geometry)

• Disjoint(geometry,geometry)

• Intersects(geometry,geometry)

• Touches(geometry,geometry)

• Crosses(geometry,geometry)

• Within(geometry,geometry)

• Overlaps(geometry,geometry)
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• Contains(geometry,geometry)

• Intersects(geometry,geometry)

• Relate(geometry,geometry, intersectionPatternMatrix)

• Relate(geometry,geometry)

Geometry Processing Functions:

• Centroid(geometry)

• Area(geometry)

• Length(geometry)

• PointOnSurface(geometry)

• Boundary(geometry)

• Buffer(geometry,double,[integer])

• ConvexHull(geometry)

• Intersection(geometry,geometry)

• SymDifference(geometry,geometry)

• Difference(geometry,geometry)

• GeomUnion(geometry,geometry)

• GeomUnion(geometry set)

• MemGeomUnion(geometry set)

Geometry Accessors Functions:

• AsText(geometry)

• AsBinary(geometry)

• SRID(geometry)

• Dimension(geometry)

• Envelope(geometry)

• IsEmpty(geometry)

• IsSimple(geometry)

• IsClosed(geometry)

• IsRing(geometry)

• NumGeometries(geometry)

• GeometryN(geometry,int)

• NumPoints(geometry)

• PointN(geometry,integer)

• ExteriorRing(geometry)

• NumInteriorRings(geometry)

• InteriorRingN(geometry,integer)

• EndPoint(geometry)

• StartPoint(geometry)

• GeometryType(geometry)

• X(geometry)

• Y(geometry)

• Z(geometry)

41



There’re several Geometry Constructors Functions with the form AFromB(), where the characters
in A can be ’Geometry’, ’Point’, ’Line’, ’Polygon’, ’Linestring’, ’MPoint’, ’MLine’, ’MPoly’, and
’GeomColl’; characters in B can be ’Text’ or ’WKB’.

PostGIS implemented a spatial validation function: isvalid(geometry), as an extension functions.
This function returns true if the geometry is valid.

The following example calculate the area of the polygon in Figure 5.5.

SELECT area(shape) FROM example table WHERE id = 1;

Spatial index PostGIS supports two kinds of spatial index methods: R-tree index and GiST (General-
ized Search Trees) index. The GiST index breaks up data into ”things to one side”, ”things which
overlap”, ”things which are inside” and can be used on a wide range of data-types, including GIS
data [23].

Metadata Metadata of spatial columns are stored in the GEOMETRY COLUMNS table. These
metadata should contain name of the spatial table, name of the spatial column, spatial dimension,
SRID and spatial type.

Spatial Reference System Spatial reference systems are defined in the SPATIAL REF SYS table.
Columns of this table fully follow the OGC specification ’Simple Features Specification for SQL’.

5.2.4 Oracle

Oracle series began to support spatial data in its option Oracle Spatial since Oracle 8i. Oracle Spatial is
compliant with Simple Features Specification for SQL. The supported spatial types are: point, line,
polygon, and their multi-version. The types are stored with information such as data type, dimension (2,
3, or 4), coordinates, interior or exterior, holes, etc. System table Spatial Reference System stores
the information of spatial reference system. System view USER SDO GEOM METADATA stores
the meta data. Oracle Spatial will be further studied in the next chapter.

5.2.5 A summary

Spatial data types are supported and handled well in the four DBMSs above. Three of the four are
compliant with OGC specification ’Simple Feature Specification for SQL’, except Ingres. There’re point,
line and polygon in all of them, while curve, surface and more complex geometries are still absent. Spatial
data types can be 2-, 3- or 4-dimensional, but operations and functions of 3- or 4-dimensional spatial
data are actually done by first projecting these data into 2-dimension. WKT and WKB formats are used
in most of the five, some of them also developed their own formats and utilities, which are quite helpful
to copy/retrieve spatial data into/from spatial databases.

The spatial functionalities of the four spatial DBMSs are summarized in Figure 5.6.
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Figure 5.6: Spatial functionalities of Ingres, Informix, Postgres and Oracle, * represents SFS features
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Chapter 6

Oracle Spatial

Partially compliant with OGC specification, Oracle Spatial 9i is one of the most powerful spatial DBMSs
on market. This chapter continues the exploration of current spatial DBMSs in the last chapter by
zooming into Oracle spatial. Six important aspects of a spatial DBMSs: supported spatial type, their
exchange formats, spatial operators and functions, metadata, Spatial Reference System, and spatial
index, will be detailedly studied for Oracle Spatial 9i in this chapter.

6.1 Spatial types

Before explaining the spatial types supported by Oracle Spatial, an Entity Relationship diagram in
Figure 6.1 would be helpful to understand the object-relational model in Oracle Spatial 9i.

Figure 6.1: ER diagram for Oracle Spatial
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Unlike other spatial DBMSs in which different spatial types represent different geometries, there’s only
one spatial type: SDO GEOMETRY in Oracle Spatial. Several kinds of geometries can be represented by
setting attributes of SDO GEOMETRY. Oracle Spatial defines the object type SDO GEOMETRY as[17]:

CREATE TYPE sdo geometry AS OBJECT (
SDO GTYPE NUMBER,
SDO SRID NUMBER,
SDO POINT SDO POINT TYPE,
SDO ELEM INFO SDO ELEM INFO ARRAY,
SDO ORDINATES SDO ORDINATE ARRAY);

SDO GTYPE The SDO GTYPE(geometry type) value is 4 digits in the format dltt. d is the number
of dimension (2, 3, or 4); l specifies which dimension (3 or 4) contains the measure value; tt
represents geometry types, for example, dl01 represents point, dl02 represents line/curve, dl03
represents polygon, etc. Supported geometry types are:

• UNKNOWN GEOMETRY

• POINT

• LINE/CURVE

• POLYGON(with/without holes)

• COLLECTION

• MULTIPOINT

• MULTILINE/MULTICURVE

• MULTIPOLYGON.

SDO SRID This attribute is used to relate a spatial reference system to this geometry. ”null” values
means this geometry doesn’t related to any reference system.

SDO POINT When SDO POINT value is not null, this geometry is just a single point, otherwise it is
one of other geometries. Using SDO POINT is convenient when there’re only point geometries in
a layer.

SDO ELEM INFO This attribute indicates the format of coordinates in SDO ORDINATES by re-
peating the following attributes:

SDO STARTING OFFSET This attribute indicate the starting offset of current element’s first
coordinate in SDO ORDINATES;

SDO ETYPE Type of current element, can be simple elements or compound elements. Espe-
cially, geometries which are unsupported by Oracle Spatial can be represented by setting
SDO ETYPE to zero. Geometries with type 0 elements must contain at least one nonzero
element, which should be an approximation of the unsupported geometry.

SDO INTERPRETATION Interpretation for SDO ETYPE. Especially, when this is an zero
type element, the SDO INTERPRETATION value for the type zero element can be any
numeric value, and applications are responsible for determining the validity and significance
of the value[17].

SDO ORDINATES Arrays of coordinates are stored here with the format specified in SDO ELEM INFO.

The SQL statements below create a spatial table with a spatial column, then insert the polygon in
Figure 5.5 into this table.

CREATE TABLE example table(
id NUMBER,
shape SDO GEOMETRY);
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INSERT INTO example table VALUES(
1,
SDO GEOMETRY(
2003, --two-dimensional polygon
NULL,
NULL,
SDO ELEM INFO ARRAY(1,1003,3),

--1003 indicates simple polygon, 1 indicates vertices are connected by straight line
segments

SDO ORDINATE ARRAY(-1,-1, -1,1, 1,1, 1,-1)

--coordinates for four vertices

));

Notice that the SQL statement above is not the only possibility to represent this polygon. We can also
set SDO ETYPE to 1003 and SDO INTERPRETATION to 3, which indicates a rectangle. In this case,
only coordinates of top-right and bottom-left vertices should be specified in SDO ORDINATE ARRAY.

6.2 Exchange format

Because Oracle Spatial represents different spatial types by setting attribute of SDO GEOMETRY,
WKT and WKB cannot be used as the exchange formats of spatial data. However, if one want to define
a Spatial Reference System, WKT should be used to describe the user-defined SRS.

6.3 Spatial operators and functions

Oracle Spatial support a large number of operators and functions for spatial data types. Spatial op-
erators require the spatial columns to be indexed first, and they must be used in the ’where’ clause of
queries. Spatial functions differ from operations in that they don’t require the indexing. Oracle Spatial’s
spatial functions can be grouped into: Relationship, Validation, Single-object operations and Two-object
operations. Both of operators and functions are included in the Spatial PL/SQL application pro-
gramming interface (API).

Figure 6.2 lists the main operators.
Figure 6.3 lists operators, provided for convenience, that perform an SDO RELATE operation of a

specific mask type.
Figure 6.4 lists the spatial functions in Oracle Spatial. The can be grouped into:

• Relationship (True/False) between two objects: RELATE, WITHIN DISTANCE

• Validation: VALIDATE GEOMETRY WITH CONTEXT, VALIDATE LAYER WITH CONTEXT

• Single-object operations: SDO ARC DENSIFY, SDO AREA, SDO BUFFER, SDO CENTROID,
SDO CONVEXHULL, SDO LENGTH, SDO MAX MBR ORDINATE, SDO MIN MBR ORDINATE,
SDO MBR, SDO POINTONSURFACE

• Two-object operations: SDO DISTANCE, SDO DIFFERENCE, SDO INTERSECTION, SDO UNION,
SDO XOR

The two validation functions: VALIDATE GEOMETRY WITH CONTEXT and VALIDATE LAYER
WITH CONTEXT, are used to check type consistency and geometry consistency. For type consistency,
Oracle Spatial checks whether: 1. The SDO GTYPE is valid. 2. The SDO ETYPE values are consistent
with the SDO GTYPE value. 3. The SDO ELEM INFO ARRAY has valid triplet values. For geometry
consistency, the checking follows several rules such as: polygons are not self-crossing; no two vertices
on a line or polygon are the same; polygons are oriented correctly (Exterior ring boundaries must be
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Figure 6.2: Main Spatial Operator of Oracle Spatial

Figure 6.3: Convenience Operators for SDO RELATE Operations
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Figure 6.4: Spatial Functions
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oriented counterclockwise, and interior ring boundaries must be oriented clockwise), etc. The difference
between VALIDATE GEOMETRY WITH CONTEXT and VALIDATE LAYER WITH CONTEXT is
that the latter one validates all geometries stored in a column are valid, instead of a single geometry.

Although Oracle Spatial enables us to define new geometry types, all these operators and functions
cannot be applied to these user-defined types because Oracle Spatial doesn’t recognize them. In order to
make the spatial database fully supports 3D freeform curves and surfaces, we need to create the operators
and functions for user-defined types by writing PL/SQL or JAVA codes. PL/SQL (Procedural Language
extensions to SQL) is a procedural language which allows us to combine SQL statements with standard
procedural programming [19]. Implementation of such operators and functions will be finished later in
the practical part of my MSc thesis research.

6.4 Metadata

Oracle Spatial requires spatial users to update meta data in a view called USER SDO GEOM METADATA
after creating spatial columns. The required meta information are:

TABLE NAME The name of the table with spatial columns.

COLUMNE NAME The name of the spatial column.

DIMINFO DIMINFO registers the dimension name, their value range and tolerance value.

SRID Associated coordinate reference system, set to 0 if none associated.

The following SQL statement insert the metadata of example table:

INSERT INTO USER SDO GEOM METADATA
VALUES(
’example table’,
’shape’,
SDO DIM ARRAY( --10X10 grid
SDO DIM ELEMENT(’X’, 0, 10, 0.005), --X axis
SDO DIM ELEMENT(’Y’, 0, 10, 0.005), --Y axis
),
NULL --SRID
);

6.5 Spatial Reference System

Information of the Spatial Reference System is stored in the table MDSYS.CS SRS. The structure
of MDSYS.CS SRS is shown in Figure 6.5.

6.6 Spatial index

Index can improve the efficiency of database query. Index of spatial data in Oracle Spatial are stored
in two metadata views: xxx SDO INDEX INFO and xxx SDO INDEX METADATA, where xxx can be
USER or ALL[17]. Type 0 elements are not indexed by Oracle Spatial.

The SQL for creating a spatial index is:

create index index name on spatial table (spatial column ) INDEXTYPE is MDSYS.SPATIAL INDEX;

The emphasized attributes in lowercase like attribute should be specified.
By default, a R-Tree index is created. Quadtree can be used besides R-Tree, although discouraged.
The following SQL statement creates an R-Tress index on the spatial column in Chapter 6.1:
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Figure 6.5: MDSYS.CS SRS Table

CREATE INDEX example spatial idx
ON example table(shape)
INDEXTYPE IS MDSYS.SPATIAL INDEX;

If spatial columns are spatial indexed, we can use spatial query to return topological intersection,
area, distance, validity, etc. The spatial query in Oracle Spatial in done in two levels: the first level is
called primary filter, which compares geometry approximations and return superset of accurate result;
the second level is called secondary filter, where the result from primary filter is further compared
with accurate computation to make exact result. Suppose there’s another geometry with name attribute
’polygon b’. The following example shows how to get the topological intersection of ’polygon a’ and
’polygon b’:

SELECT SDO GEOM.SDO INTERSECTION(a.shape, b.shape, 0.005)

--0.005 is the tolerance value

FROM example table a, example table b
WHERE a.id= 1 AND b.id= 2;
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Chapter 7

Conclusions and Recommendations

This report presented my research work and equipped me with a solid background for the practical part
of my MSc thesis work. Based on the study in the previous chapters, conclusions on representing freeform
curves/surfaces and managing spatial data in spatial DBMSs are given, then considerations for my MSc
final project and recommendations for further research are indicated.

My research work shows that:

• NURBS is excellent and more competitive in representing freeform curves and surfaces than Bézier
and B-Spline. This is largely due to its nice mathematical and geometrical properties:

– NURBS can represent nearly all kinds of shapes, including conic sections, which are very
important for CAD/GIS applications.

– The local modification property make shape design using NURBS very convenient.
– NURBS curves and surfaces are both affine invariant and projective invariant, which are

quite important for transformations in CAD/GIS applications.

Therefore NURBS will be used in the practical part of my MSc thesis, to implement the freeform
spatial data types in a Geo-DBMS.

• OGC specifications should consider involving the NURBS types. Now there’re several freeform
spatial data types, like Bézier and B-Spline, in OGC specifications, but NURBS is still not men-
tioned.

• GIS applications should be able to support NURBS types. GIS aims at representing and analyzing
the real world, where freeform curves and surfaces are very common. However, currently only
simple geometries are supported in GIS applications. NURBS curves and surfaces are very popular
in CAD applications and have been recognized as very important tools for geometric design [2]. As
the rapid develop of GIS research, NURBS types are also necessary for GIS applications to model
the real world.

• Spatial DBMS is playing a more and more important role in GIS field. In order to make GIS
fully support freeform shapes, freeform spatial data types should also be implemented in spatial
DBMSs. Oracle Spatial is an appropriate spatial DBMS to implement the freeform spatial data
types, because (a) it has powerful support to spatial data types; (b) it enables user-defined spatial
data types.

From this research assignment, my MSc final project will try to:

• Choose a mathematical model from Bézier/B-spline/NURBS to represent the freeform curves/surfaces,
find what are the criteria for valid freeform curves/surfaces, and implement freeform curve/surface
spatial types in a spatial DBMS based on the mathematical model.

• Determine whether OGC specifications are going to be considered or not.

• Determine which spatial functions and operators are needed for the freeform types, then implement
these spatial functions and operators.
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• Implement validation functions for the freeform spatial types.

• Define 3D objects by combining freeform surfaces using the freeform spatial types.

• Implement 3D index for the freeform spatial types.

• Choose a CAD/GIS application which is able to exchange data with spatial DBMSs and visualize
freeform shapes.

• Exchange freeform types with the CAD/GIS application without losing consistency.

Further research on freeform curves/surface in spatial DBMSs and CAD/GIS fields can consider the
following aspects:

• A complete set of spatial functions and operators for freeform curves/surfaces types.

• Conversion tools between freeform geometry types and flat geometry types.

• Visualization techniques based on precise geometry instead of polygonal approximation.
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