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Summary 
 
Spatiotemporal data is becoming more and more important. An example of a spatiotemporal data 
set is a moving point object data set. Cars, airplanes or pedestrians can be examples of such 
moving point objects. 
 
A Database Management System (DBMS) has many advantages for storing large data sets in 
comparison to file-based approaches. The principle of the file-based approach is to make an 
application to operate on the data, which is stored in a data file. For every single application, a 
new program has to be developed. The main principle of the DBMS-approach is a data set in 
which the data is stored and a DBMS, which deals with the operations on the data. This DBMS 
takes care of the security of the data, keeps the data consistent and makes the data available for 
many different applications (interoperability). Spatial DBMSs like Oracle 9i Spatial have the 
extra advantage that they can handle spatial objects (for instance polygons or points) and can do 
spatial queries (find overlapping objects, calculate distances, etc.). In the case of moving point 
object data, it is worth to investigate whether a DBMS is useful or not. 
 
The main question of this research is: 

What is the potential and performance of a geo-DBMS to structure, index, query and 
visualize spatiotemporal point clouds of moving objects? 

 
Some researchers have been developing spatiotemporal data structures. These structures have 
some disadvantages. For instance, the model made by Vazirgiannis and Wolfson is especially 
made for road networks and another data model (developed by Wolfson) is relatively complicated 
and can be used for objects that move freely in space like aircrafts. Some approaches have the 
disadvantage that they have a lot of redundant storage. To overcome these disadvantages, a new 
approach is introduced. This model could be used for every purpose that deals with moving point 
object data (this makes it generic) and it does not contain any redundant storage. An efficient 
indexing method makes querying of the data in a DBMS faster. For many query types, indexing 
methods are available. In moving point object cases, most of these indexing methods are based on 
the R-tree. Often it is not known in advance which queries are going to be done on a data set and 
which structure and which indexing methods are going to be chosen. So it needs to be 
investigated which indexing methods gives the fastest access to the data. 
 
The main principle of this generic model is choosing a base table, from which, by using 
(materialized) views, three other data representations (based on different geometric data types) 
easily could be derived. In this way a set of four data representations is available for querying. 
These four data types are 2D points (x,y), 3D points (x,y,t), 2D lines (xi,yi, xi+1,yi+1) and 3D lines 
(xi,yi,ti, xi+1,yi+1,ti+1). In the 2D representations time is regarded as an attribute. From this set, 
many queries could be formulated, like the object�s speed, direction or acceleration. After the 
model is introduced, an efficient querying and indexing needs to be found. Because in Oracle 9i 
Spatial only the 2D and the 3D R-tree are implemented, the only way to manipulate the efficiency 
of accessing the data by the user is by formulating efficient queries.  
 
To demonstrate that this generic model is fast and flexible, two case studies have been done. In 
the first case, the data has been collected in advance and being analyzed afterwards. So, the data 
set is static. Every 0.1 seconds, photos have been taken from a helicopter. The vehicles on the 
highway have been detected in multiple photos. So a data set with positions and times (photo 
numbers) is created and used for this case. The data has been successfully implemented in the 
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generic model and has been queried in multiple ways. Spatial querying in Oracle 9i Spatial is 
possible in two ways: with a spatial function or with a spatial operator. The main difference is 
that the spatial operator needs a spatial index and should be faster than the spatial function. 
Because this data set was very small, the query-optimizer decided not to use the spatial index, but 
doing a full table scan. So, for more complex queries, the access was not really fast, but for larger 
data sets, a faster access with the spatial index is expected. 
 
The second case deals with real-time data. Because no true real-time data was available during 
the MSc-thesis project, a real-time simulation has been used to test the performance of the DBMS 
and the model. The data set contains GPS-tracking data from taxis driving in the surroundings of 
Rotterdam. Also for this real-time case, the model has been implemented successfully. Query 
times do not increase because of a continuously growing data set. The query times depend on an 
efficient way of formulating a query. Using the SDO_FILTER operator, which only uses the 
spatial index to check whether bounding boxes or rectangles are overlapping or not, is very fast 
and gives correct answers in 3D (2D space + time). In 2D, the query is posed with the 
SDO_RELATE operator (which compares two objects based on their geometries). This also gives 
fast response and correct answers. 
 
The main conclusion is that the generic model for storing moving point data in a geo-DBMS is 
flexible and efficient. The data can be accessed in a fast way, depending on the type of query and 
the method used for indexing. 
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Samenvatting 
 
Ruimtelijk-temporele gegevens worden steeds populairder. Een voorbeeld van deze ruimtelijk-
temporele gegevensverzamelingen is een verzameling van bewegende punt objecten. Gegevens 
over posities van bewegende vliegtuigen, voetgangers en auto�s zijn enkele voorbeelden hiervan. 
 
Het opslaan van grote hoeveelheden gegevens in Database Management Systemen (DBMS) heeft 
vele voordelen ten opzichte van het opslaan in bestanden. Het principe van het opslaan van 
gegevens in bestanden is dat er applicaties nodig zijn om met de gegevens te kunnen werken. 
Voor elke toepassing dient een aparte applicatie te worden ontwikkeld. Het principe van de 
DBMS oplossing is een gegevens set waarin de gegevens staan opgeslagen en een DBMS om op 
de gegevens bewerkingen en bevragingen uit te kunnen voeren. Dit DBMS zorgt ervoor dat de 
gegevens op een beveiligde en consistente manier worden opgeslagen en dat de gegevens door 
meerdere applicaties benaderd kunnen worden. Ruimtelijke DBMSs hebben het extra voordeel 
dat ook ruimtelijke gegevenstypen kunnen worden gedefinieerd zoals punten en vlakken en dat er 
ruimtelijke bevragingen mogelijk zijn (bijvoorbeeld het zoeken van overlappende vlakken). In het 
geval van bewegende puntobjecten is het op zijn minste nuttig om uit te zoeken of de DBMS-
oplossing gebruikt kan worden om de gegevens op te slaan, te bevragen en te bewerken.  
 
De hoofdvraag van dit onderzoek is: 

Wat zijn de mogelijkheden en de performance van een geo-DBMS om ruimtelijk-
temporele puntenwolken van bewegende objecten te structureren, te indexeren, te 
bevragen en te visualiseren? 

 
Er zijn onderzoekers geweest die opslagstructuren hebben ontwikkeld voor bewegende 
puntobjecten. De geformuleerde modellen hebben wel nadelen. Bijvoorbeel het model van 
Vazirgiannis en Wolfson, dat ontworpen is voor het modelleren van bewegende voertuigen in 
stedelijke gebieden of een ander model (van Wolfson) waarin voertuigen waarbij de snelheid 
constant blijft zijn gemodelleerd. Er zijn ook modellen met een sterk redundante opslag. Een 
efficiente indexering van de gegevens zorgt voor een snellere ontsluiting van de gegevens. Voor 
verschillende bevragingstypen zijn verschillende indexeermethoden beschikbaar. In het geval van 
bewegende puntobjecten zijn deze indexeermethoden in vele gevallen gebaseerd op de R-tree. 
Vaak is het van tevoren niet duidelijk wat voor vragen er aan de gegevens gesteld zullen worden 
en welke structuur en indexeringen daarbij moet worden gekozen. Daarom is een generiek model 
ontwikkeld voor het opslaan van gegevens over bewegende punt objecten. 
 
Het basisprincipe van het generieke model is het kiezen van een basistabel, waar drie andere 
representaties van de data (gebaseerd op verschillende geometrische data typen) vanaf kunnen 
worden geleid door gebruik te maken van (gematerializeerde) views. De 4 verschillende 
representaties zijn dan gebaseerd op een consistente set gegevens die 2D punten (x,y), 3D punten 
(x,y,t), 2D lijnen (xi,yi, xi+1,yi+1) en 3D lijnen (xi,yi,ti, xi+1,yi+1,ti+1) bevat. Tijd wordt in de 2D 
representaties behandeld als een attribuut. Op deze gegevens kunnen dan vele bevragingen 
worden gedaan, bijvoorbeeld om de snelheid en versnelling van objecten te bepalen of de 
bewegingsrichting. 
 
Nu het model is geïntroduceerd, kan een efficiënte indexeer- en bevraagmethode worden 
gevonden. Aangezien Oracle 9i Spatial (het gebruikte DBMS voor dit onderzoek) slechts de 2D 
en de 3D R-tree heeft ingebouwd, kan optimalisatie van de efficiency voor bevragingen door de 
gebruiker alleen worden bewerkstelligd door de bevraging zelf. 
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Om te laten zien dat dit generieke model snel en flexibel is, is voor twee sets gegevens dit model 
geïmplementeerd in Oracle 9i Spatial. In het eerste geval zijn de gegevens van tevoren 
ingewonnen en achteraf in de DBMS geanalyseerd. Vanuit een helicopter is elke 0.1 seconden 
een foto gemaakt van een snelweg. De voertuigen op deze snelweg zijn in meerdere foto�s 
gedetecteerd waardoor er een tabel ontstaat met voertuig_id�s, tijdstippen (fotonummers) en 
posities. Deze gegevens zijn succesvol geïmplementeerd in het generieke model en een aantal 
bevragingen is gedaan op deze gegevens. Omdat deze gegevensset vrij klein is, koos de Oracle 
query optimizer ervoor om een full-table scan te doen in plaats van gebruik te maken van de 
ruimtelijke indexering. Voor complexe bevragingen, leidt dit tot een trage respons tijd. Het is te 
verwachten dat als de hoeveelheid gegevens toeneemt, dat de query-optimizer dan wel gebruik 
zal maken van de index. 
 
De tweede case studie onderzoekt een real-time set gegevens. Er waren tijdens het 
afstudeeronderzoek geen real-time gegevens beschikbaar. Vandaar dat dit is gesimuleerd met 
track-logs van een aantal taxi�s in Rotterdam en omgeving. Gedurende twee jaar zijn deze 
gegevens verzameld voor ongeveer 60 taxi�s. Hieruit is een selectie gemaakt van zeven dagen 
waarvoor de simulatie is opgezet op een dusdanige manier dat er een continu groeiende tabel 
ontstaat. Het generieke model is ook in deze case succesvol geïmplementeerd. De tijden voor het 
genereren van het antwoord op een ruimtelijke vraag, groeit niet met een groeiende set gegevens, 
maar is afhankelijk van het aantal antwoorden, mits de bevraging juist is opgesteld. Met behulp 
van de SDO_FILTER operator die kijkt op basis van de index of de minimum bounding boxes of 
rectangles interacteren, kunnen de gegevens op een snelle manier worden bevraagd in 3D (2D 
ruimte + tijd). In 2D is gebruik gemaakt van de SDO_RELATE operator. Ook deze geeft snelle 
en correcte resultaten. 
 
De belangrijkste conclusie is dat het generieke model een snelle en flexibele methode is om 
gegevens van bewegende puntobjecten op te slaan in een DBMS. De gegevens kunnen op een 
snelle manier worden ontsloten afhankelijk van de bevraging en de indexering. 
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1. Introduction 
 
Temporality is an inherent aspect of geo-information. Nowadays applications of spatiotemporal 
GISs are becoming important. For instance with respect to Cadastral issues [15], national road 
databases [5], or the detection of traffic jams [14]. Traffic monitoring is an example of an 
application of modeling moving objects. Geo-DBMSs make it possible to manage large spatial 
data sets that can be accessed by multiple users at the same time. These spatial data sets usually 
contain 2D data, while more and more applications depend on 3D data [2]. In the case of moving 
objects, spatiotemporal data sets can also be seen as 3D data. (x-position, y-position, time). In the 
recent literature, the modeling of moving objects in a Geo-DBMS context is a subject [18].  
 
Continuous movement of objects poses new challenges to database technology. In conventional 
DBMSs, data is assumed to remain constant unless it is explicitly modified [20]. This statement 
causes efficient structuring methods for the data when the data set is continuously growing. Also 
querying these data sets is an issue that has to be taken into account. Examples of spatiotemporal 
queries are: Which object has the highest speed, what is the mean distance between two objects, 
which objects are in a certain time interval in that polygon, etc. Answering these queries, requires 
an efficient storage and indexing method in the case the data set is large. Visualizing the moving 
objects and answers on the queries is an important issue while handling spatiotemporal 
applications. Important is the distinction between real-time monitoring of moving objects and 
modeling the data afterwards (post processing / data mining).  
 
The main question of this research can be described as follows: 
 

What is the potential and performance of a geo-DBMS to structure, index, query and 
visualize spatiotemporal point clouds of moving objects? 

 
The word �potential� in this main question is focused in this research on efficiency and 
flexibility. To answer this main question, the following partial questions have been drawn: 

1. Why could a geo-DBMS be an efficient and flexible way to store moving point data? 
2. Which methods are available to structure and index moving point objects in a geo-DBMS 

context? 
3. Does a generic model exist to implement moving point objects in a geo-DMBS like 

Oracle 9i Spatial? 
4. Is this generic model sufficient for a static data set where the moving point object data is 

collected in advance? 
5. Is this generic model sufficient for a dynamic data set, where the moving point objects 

are collected real-time? 
 
These questions are answered by studying literature to find the available methods for structuring, 
indexing, querying and visualizing moving objects in a Geo-DBMS context. A generic model for 
moving object databases is developed. For two cases, this generic model has been implemented 
and tested, with Oracle 9i Spatial. This DBMS is chosen because it is one of the more advanced 
geo-DBMSs and also because of the knowledge available and experiences in the past in the 
section GIS technology at the TU Delft. The two cases (questions 4 and 5) are described in 
chapter 5 and 6 in this report. 
 
After this introduction, an overview will be given of space and time and the role that DBMSs 
could have in this space and time context. An important question is this chapter is why DBMSs 
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could be used in the case of spatiotemporal data. Some examples of available data structures for 
organizing moving point object data in DBMSs and of the available methods for indexing this 
data, found in the literature are described in chapter 3. In chapter 4, a generic model for this data 
will be introduced. The main idea of this model is organizing the data in a base table with 
different views suitable for the actual use or purpose.  
 
In chapters 5 and 6, two case studies are described where the generic model is implemented and 
tested.  With these case studies, the advantages and disadvantages of the model should become 
clear. Chapter 5 deals with a case where all the data is collected in advance. In chapter 6, the 
implementation of a real-time data set in Oracle is described and analyzed. In the last chapter, 
some conclusions and recommendations for future research can be found. 
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2. Space, time and DBMSs 
 
In this chapter, the concepts and definition of space and time will be discussed. In connection to 
Database Management Systems (DBMS), the advantages of the use of DBMSs will be mentioned 
to show why data with a spatial and a temporal aspect could be managed in such a DBMS. The 
final goal of this chapter is to make clear whether DBMSs or file-based systems could be useful 
to model and query moving point object data. 
 
First, in section 2.1, the definitions of space and time will be introduced. After that, in 2.2, 
DBMSs will be introduced in contradiction to file-based systems. In section 2.3, describing geo-
DBMSs will make the connection between space and DBMSs. Section 2.4 is dealing with 
temporal data and temporal DBMSs. In section 2.5, some conclusions will be drawn. It will 
become clear why it is useful to use DBMSs for spatiotemporal data. 
 

2.1 Concepts of space and time 
The ancient Greeks developed the first philosophies of space and time. The earliest work to 
develop an explicit conception of space and time may have been Hesiod�s mythological and 
philosophical treatise �Theogony� dating from the 7th century BC. In �Theogony� the world 
emerges from a state of �chaos� (a timeless and spaceless state) into �chronos� (ordered time) 
when �gaia� (the earth) appears [19].  
 
Raper [19] states that before the 20th century, most writers dealt with space and time as separate 
and distinct domains. This view was common in mathematics, geometry and philosophy. 
Einstein�s paper on the Special Theory of Relativity (published in 1905) revolutionized thinking 
on space and time making it clear that in some circumstances it was necessary to think of a 
unified space-time. Acceptance of space and time integration implies that the world can be 
regarded as consisting of four-dimensional �geo-phenomena� and their inter-relations.   
 
Langran mentions the space-time cube in [8]. Her goal is to identify a conception that treats the 
components of a spatiotemporal model most effectively and to develop that view of time as a 
conceptual model for a temporal GIS. The three-dimensional space-time cube represents one time 
and two space dimensions. Space-time cubes depict processes in two-dimensional space that are 
played out along a third temporal dimension. The trajectory of a two-dimensional object through 
time creates an upwards-moving worm-like pattern in this phase space.  
 
There are different ways to look at space and time, in a separate way, or combined where the time 
is an extra dimension. The other way to look at space and time is to represent space and time as 
something continuous or as something discrete. These views on space and time will become 
important later in this thesis. 
 

2.2 The Database Management System 
This section deals with Database Management Systems. First the file-based approach is 
described. After that, some shortcomings of file-based systems are described and on the end, the 
DBMS approach is introduced. In this last part, the definitions of a DBMS can be found. 
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File-based approach 
Worboys describes in [25] an example of a file-based system, where a vegetarian fast-food 
restaurant uses a file to store the menu and prices. Applications are developed to operate on the 
data. Records can be easily inserted and deleted. What characterizes a file-based system is a 
collection of applications that perform services like producing different reports for the end-user. 
Each application defines and processes its own data. They constitute what we call diversified 
systems, each branch of the company has its own data and its own applications for handling the 
data.  
 
In the moving-point object case, a file-based approach is also easy to use and does not have a 
complex structure. If you would like to do a query on the data (for instance, which vehicles drove 
when faster than 120 km/h?), the data file needs to be structured and sorted in the most efficient 
way and a program in for instance Java or C++ is easily written to answer this query. Even if the 
amount of data is very large, by structuring the data in the most efficient way for this specific 
query, the answer could be derived in a fast way. 
 
Worboys describes in his file-based example some problems that come with the growth and the 
use of the file-based system by more than one user: 
 Loss of integrity: Linkages between programs and files become complex. The programs 
made the relationships between the data in the files: if the relationships changed then the 
programs had to be changed. The development of software was becoming complex and costly and 
errors come in.  

Loss of independence: A too close linkage between program and data causes high 
software maintenance costs. For example, a change in a secondary storage medium requires a 
partial rewriting of many of the programs. 
 Loss of security: People from outside can also work with the applications and the files. So 
they can easily make changes that could harm the data or even the company, which uses the 
system.  
 
Some problems of file-based systems are described above. These problems result into a list of 
disadvantages of file-based systems. Some disadvantages from the list below are mentioned in 
[29] and [28].  
 
Separation of the data: Information needed for a particular task may be in different files � or even 
different departments� files. This makes that the data are difficult to retrieve and combine. 
Duplication of the data: Data could also be duplicated and this will lead to redundancy, that is: 
the same data can be stored in separate files. This can result in inconsistency � we update data in 
one file forgetting to update the same data stored in another file.  
Data dependence: The application must handle the physical storage as well as the content of the 
file. This makes that the data and the application are depending on each other. There is no access 
and process control of data except what is implemented in the application. 
Incompatibility of files: Files may vary due to, e.g., the used application programming language. 
This can make different files incompatible for other applications. 
Ad hoc application programs: Application programs perform specific tasks. New tasks may 
require a new application to be developed. For each new query, a new application has to be 
developed. 
 
Most of these disadvantages also count for moving point object data. If a query needs to be 
performed (for instance, which cars were on the highway A13 between 18th and 25th May 
2004?), a copy of the original file needs to be made, structured in the most efficient way and a 
query needs to be programmed. Making copies of the original data can lead to inconsistency 
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when new data needs to be added. Another example is that someone else would like to do a query 
on the same file. The other customer uses Microstation .dgn files instead of the ESRI shapefiles 
customer 1 needs; a conversion is needed with perhaps some loss of information. 
 
The DBMS approach 
The database philosophy is an attempt to solve the problems described above. The main principle 
of the DMBS approach is that the data are stored in one logical centralized location. The 
Database Management System (DBMS) is a piece of software that manages the data by insulating 
the data from uncontrolled access, allowing definition of the data model, supporting manipulation 
of the data and providing appropriate two-way access channels between the exterior and the data. 
It allows the designer to define the structure of the data in the DBMS, providing levels of 
authorization that allow different groups of users access to appropriate data and managing 
transactions with the database that may be occurring concurrently. The DBMS also provides data 
independence, so that the data in the database are accessible without precise knowledge of 
implementation details [25].  
 
According to Peuquet [17], a data set is a collection of interrelated data specifically designed to 
be shared by multiple users. Data redundancy is controlled, and a uniform approach is used for 
accessing and modifying data within the data set. Database management systems (DBMS) 
incorporate data sets, as well as the computing software and hardware, the users, and the 
management staff to run the system. DBMSs, essentially computerized record-keeping systems, 
are used by virtually every enterprise today as a fundamental business tool for maintaining 
personnel, payroll, inventory and other information. DBMSs allow data to be kept secure, yet 
quickly accessed and updated by multiple users. 
 
Except for the data and the DBMS, some other parts are important for a multi-user DBMS 
environment. In figure 2.1, these elements are drawn. At first there is the physically stored 
number of data sets, where the DBMS is taking care of for instance redundancy control or 

Data set 1 

Data set 2 

Data set 3 

DBMS 

Application 1

Application 2

Client 1

Client 2

Client 3

Figure 2.1 DBMS with multiple data sets are used through different applications by several clients. 
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accessing and modifying the data. Above this DBMS, there can be a number of applications, 
which operate on the data. An example of an application is a Web Server. Finally, there are 
several users, using the applications to operate on the data, stored in the DBMS, posing ad hoc 
queries and doing analysis on the data. 
 
You can say that when subjects like multi-user, security, data integrity, consistency, redundancy 
and interoperability are relevant for the choice whether a file-based system or a DBMS approach 
should be chosen, the DBMS approach is preferred. 
 

2.3 Spatial data sets and geo-DBMSs 
In the previous section is shown that in many cases, the DBMS approach is preferred above the 
file-based approach. This section discusses spatial data sets and geo-Database Management 
Systems. Important is what the role of a geo-DBMS could be in spatiotemporal modeling. 
 
A geo-DBMS is a DBMS for spatial data. The main difference between a �normal� and a 
�spatial� data set can be found in the data types and the data query language. In conventional data 
sets, data types like integers, floats, character strings and binary values exist. In the spatial data, 
extra data types are added in such a way that spatial objects could be defined. Examples of spatial 
objects are points, polylines and polygons. Coordinates, reference systems and dimensional 
information have to be added to the data.  
 
In Oracle 9i Spatial, one of the most used spatial DBMSs, geometrical attributes are defined as 
the so-called MDSYS.SDO_GEOMETRY. This is a data type, in which many properties like the 
reference system or the geometry type could be managed as well as the coordinates of the data 
itself. In this MDSYS.SDO_GEOMETRY, the MDSYS indicates the schema in which the 
syntax, storage and semantics are described and SDO means Spatial Data Option. 
 
An �SDO_GEOMETRY� always looks like: 
Mdsys.sdo_geometry( 

    <sdo_gtype>,  
    <srid>,  
    <sdo_point>,  
    mdsys.sdo_elem_info_array( 

<sdo_starting_offset>,  
<sdo_etype>,  
<sdo_interpretation>),  

      mdsys.sdo_ordinate_array(<coordinates>)) 
 
The meaning of the different elements of the sdo_geometry mean: 

- sdo_gtype: This indicates the type of geometry (point, linestring, polygon, multipoint, 
multilinestring, multipolygon) and the dimension (0D, 1D, 2D, 3D) of its embedding 
space. Each geometry type has its own code, e.g. a 2D polygon has sdo_gtype = 2003. 
The first digit is the dimension and the last digit is the geometry type. 

- sdo_srid: This is a reference to the spatial reference system used by the coordinates. In 
this research local (Cartesian-) coordinates are used, so no sdo_srid is specified (NULL).  

- sdo_point: This element is used when only points are stored as single object or when a 
point is stored in addition to the other geometry. The SDO_POINT_TYPE has an x-, y- 
and z-element. 

- sdo_elem_info: This specifies the elements of the geometry with references to the 
coordinates (starting offset in the ordinate array), information about the element itself (e-
type) and an interpretation code (e.g. straight line, rectangle, circle) on how to interpret 
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the coordinates. This is stored in a variable array of numbers. A rectangular polygon 
specified by two coordinates is stored as sdo_elem_info_array = (1,1003,3). 

- Sdo_ordinates: This is a variable array of numbers and contains the coordinates. 

 
For instance, a rectangular polygon like figure 2.2 can be described as: 
 
INSERT INTO table (id, geometry) VALUES (1, 
Mdsys.sdo_geometry(2003,NULL,NULL, 
Mdsys.sdo_elem_info_array(1,1003,3), 
Mdsys.sdo_ordinate_array(2,2,4,4))); 

 
This means that the elements of sdo_geometry data type are: 

- sdo_gtype =2003 (2D polygon) 
- sdo_srid = NULL (no spatial reference system) 
- sdo_point = NULL (no point type) 
- sdo_elem_info = 1,1003,3 (coordinates start at position 1, outer polygon ring, rectangle) 
- sdo_ordinates =2,2, 4,4 (southwest and northeast coordinates) 

 
The other main difference between a conventional and a spatial DBMS is the query language. In 
conventional DBMSs, often SQL (Structured Query Language) is used. A query in SQL always 
looks like: 
 
SELECT <what/columns> 
FROM <table or view> 
WHERE <conditions>; 

 
When there are spatial object types, also spatial querying needs to be possible. For instance, it has 
to be possible to find all overlapping polygons from two data sets. Oracle developed two methods 
for spatial querying. The first method is the spatial function, which does not use a spatial index 
and the second is the spatial operator, which requires a spatial indexing and needs to be posed 
into the where-clause. More about spatial querying will be discussed in the chapters 3, 5 and 6. 
 

2.4 Temporal DBMSs 
A reasonable goal for geographic information systems (GIS) is that they be capable of tracing and 
analyzing changes in spatial information. A non-temporal GIS describes only one data state. This 
means that historical states are essentially forgotten and the anticipated or forecast future cannot 
be treated. In contrast, a temporal GIS would trace the changing state of a study area, storing 
historic and anticipated geographic states.  
 
The fundamental functions of a temporal GIS are inventory, analysis, updates, quality control, 
scheduling and display [8] (see figure 2.3). 

(2,2) (4,2)

(4,4)(2,4) 

Figure 2.2 Polygon with its coordinates 
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Inventory Store a complete description of the study area, and account for changes in 

both the physical world and computer storage. 
Analysis Explain, exploit, or forecast the components contained by and the processes 

at work in a region. 
Updates Supersede outdated information with current information. 
Quality Control Evaluate whether new data are logically consistent with previous versions 

and states. 
Scheduling Identify or anticipate threshold database states, which trigger predefined 

system responses. 
Display Generate a static or dynamic map, or a tabular summary, of temporal 

processes at work in a region. 

Storing temporal information in a DBMS is not straightforward. The many different 
representations of time, makes modeling temporal aspects of information very complex. Peuquet 
[17] categorizes time and space as well into what can be termed both continuous or discrete and 
absolute or relative. In figure 2.4, a graphical representation of these four elements is drawn.  

 
Every representation of time can be placed in the schema above. For instance, a timestamp �June 
16th, 2004 11:00 PM� is a discrete and absolute representation of time. While for instance a 
description like �Between last Thursday and yesterday� is a more continuous and relative one.  
 
Not only the description of time in the above figure is complex, also the variety of representations 
of time in a DBMS deserves some special attention. Time can be defined in several data types: 

- As a �date� data type: �June 16, 2004 11:03:24 PM�, �06-16-2004 23.03.24�, �11:35� or 
other variations.  

- As an integer �26�. This is always needs some extra information (for instance 26 minutes 
before the current timestamp).  

- As text �18th century�. 
In your temporal GIS (including a temporal DBMS) it is necessary to make decisions about how 
to represent time, depending on your purpose. A temporal extension has been developed on the 
SQL-92 standard. The language is designated TSQL [21]. This document, describes some 
concepts, like the ontology. It states for instance �An instant is modeled by a timestamp coupled 
with an associated scale (e.g., day, year, month). A period is modeled by the composition of two 

Figure 2.3 Major temporal GIS functions [8]. 

Discrete

Continuous

R
elative

A
bsolute

Figure 2.4 Varying views of reality [17] 
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instant timestamps and the constraint that the instant timestamp that starts the period equals or 
precedes (in the given scale) the instant timestamp that terminates the period�.  
 
A distinction needs to be made between valid time 
(also called user or real world time) and system 
time (transaction or DBMS time). If for instance 
object O is at position x,y at timestamp �June 16, 
2004 11:03:24 PM� and is put into the DBMS three 
minutes later, then there is a difference between 
these two timestamps.  
 
In the TSQL [21] extension on the SQL standard, 
definitions are given for timestamps, periods and 
instances. Except for these definitions, also some 
temporal functions are defined. Allen [1], defined 
in line with the 9-intersection model, a set of 
thirteen possible relationships between two 
temporal objects. Examples are �before�, �during� 
and  �meets�. In figure 2.5, you can find a graphical 
representation of these temporal relationships, 
which can be used in temporal queries. 
 
It can be concluded that time can be represented in 
many ways. The choice of how you would like to 
represent time in your DBMS, depends on the 
representation of time itself (continuous or discrete 
and absolute or relative), on how you would like to 
represent the data in your DBMS (as a �date� data 
type, as an integer or as text) and on which time 
you would like to manage the data in your DBMS 
(valid time or transaction time).  
 

2.5 Conclusions 
This chapter presented space and time as two different dimensions, which are or are not 
integrated. There has also been spoken about file-based systems and a DBMS approach. Besides 
conventional DBMSs, also spatial DBMSs are available, where spatial data types and spatial 
querying are implemented. In temporal DBMSs, time can be represented in several ways, which 
makes the modeling of time in a DBMS complex. 
 
As stated in section 2.1, time can be seen as an extra dimension of the space. So, if spatial 
DBMSs exist, if temporal DBMSs exist why shouldn�t spatiotemporal DBMSs? Using file-based 
systems or a (spatial) DBMS needs to be considered for every special case. As stated before, if 
you deal with multi-user aspects, security, data integrity, consistency, redundancy or 
interoperability, the (spatial) DBMS approach seems to be more appropriate. The extra advantage 
of using a DBMS for spatial purposes is that tools for spatial querying on spatial data are already 
available and easy to use. 
 
This thesis deals with moving object data, which is one special type of spatiotemporal data. The 
question is now, why should these data be stored and queried in a spatial DBMS? Because it is 

Relation  Pictorial example  
X equal Y  XXX 
   YYY 
X before Y     XXX 

  YYY 
X after Y   XXX 
      YYY 
X meets Y  XXX 
                   YYY 
X met-by Y          XXX 
   YYY 
X overlaps Y  XXX 
        YYY 
X overlapped-by Y       XXX 
   YYY 
X during Y       XXX 
   YYYYYY 
X contains Y  XXXXXX 
                                                      YYY 
X starts Y  XXX 
   YYYYYY 
X started-by Y  XXXXXX 
   YYY 
X finishes Y          XXX 
   YYYYYY 
X finished-by Y  XXXXXX 
            YYY 

Figure 2.5 Relationships of time-
intervals 
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possible that the purpose of the system that needs moving point data deals with multi-user 
aspects, security, integrity, consistency, redundancy and interoperability and because a complete 
suite of spatial queries and data types are already implemented in a geo-DBMS like Oracle 9i 
Spatial, it is at least worth to investigate whether it is useful to choose for a DBMS approach or 
not. Where file-based systems are often fast for special queries, DBMSs offer a perhaps less fast 
approach. But perhaps, this DBMS approach, with all its advantages, is still fast enough for many 
queries. 
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3. Spatiotemporal modeling, indexing and querying methods 
 
In this chapter, different data structures and indexing methods found in the literature, will be 
described that deal with spatiotemporal data. In relation to the subject of this thesis, only the 
spatiotemporal structures and indexing methods will be described which deal with moving 
objects. This implies that changes in for instance the shape, color, name, etc., during a certain 
time period, will be out of the context. However, both the terms �moving point object data� and 
�spatiotemporal data� are used in this chapter. In this thesis, these terms are used as being equal. 
 
The specific models described in this chapter will be extended in chapter 4 by a generic model for 
moving point objects in a DBMS context. However, this chapter is important to get an idea of the 
available methods and how these methods are related to each other. It gives an overview of the 
research that has been done before in this field. 
 
Before going into the data structures and indexing methods, a framework is introduced in 3.1. 
This framework is important to put the methods for structuring and indexing in a context. The 
spatiotemporal data structures will be described in paragraph 3.2. Different approaches for 
different purposes will be described.. In 3.3, the methods to index spatiotemporal data will be 
described. Indexing is important to increase the query-response time in large data sets. Section 
3.4 deals with querying spatiotemporal data In the last section, some conclusions will be derived 
from this chapter. 
 

3.1 A framework for spatiotemporal data models 
According to Langran [8], �five technical requirements will drive the development of a temporal 
GIS: a conceptual model of spatial change, treatment of aspatial attributes, data processing 
logistics, a spatiotemporal data access method and efficient algorithms to operate on the 
spatiotemporal data.� The first three requirements are part of the data structure; the temporal data 
access method is also related to indexing.  
 
The first part of this technical framework, the conceptual model, can be described as �the 
configuration of information, as it will be represented to the computer. It defines the entities, 
attributes and relationships to be portrayed; it also defines the operations to be performed and the 
constraints to be enforced. [8]� In the next section, some conceptual models for moving point 
object data will be described. 
 
Treatment of aspatial attributes is, except for the �attribute time�, outside the focus of this thesis. 
The color, shape, value, name, etc. are meant to stay constant. The objects, in this thesis can be 
represented as points, where other attributes than position or time, do not matter. However, it 
matters what you do with these �other aspatial attributes�. They do not change in time, so it might 
be useful to store these non-spatial, non-temporal attributes once and not on every timestamp in 
the case of moving point objects.  
 
The third technical requirement, mentioned by Langran is the �data processing logistics�. This 
deals with the primary storage structure, error control, and updating the stored data. It depends on 
the purpose of your system. It depends on whether it deals with real-time or post-processing data, 
the use of a DBMS or not, the collection of only current data or also storing the past 
spatiotemporal data, etc. The data processing logistics can be described as the conditions for your 
system. 
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The spatiotemporal access methods, the fourth technical requirement, will be described in this 
chapter (3.3). A number of indexing methods that can handle moving point data is available in 
literature. Indexing is important to get a faster access of your data. It decreases query-response 
times. Choosing the most optimal indexing method for a specific query could minimize these 
query-response times.  
 
The last technical requirement, the efficient algorithms, is also a very important one. You can 
imagine that it is efficient to store the results of queries that are used very often. With 
spatiotemporal data, you can think of the speed of moving objects. In many data structures this 
attribute is not available in the root table. For instance in Oracle 9i Spatial, it is possible to define 
�(materialized) views�. This is an efficient approach that stores the query results of pre-defined 
queries. Querying spatiotemporal data will be discussed in 3.4. 
 

3.2 Modeling spatiotemporal data 
A trajectory is the path described in space and time by a moving object. Such a trajectory can be 
represented in different ways. Some researchers described models to structure these trajectories 
into a DBMS. Ouri Wolfson et al described the MOST data model [24] and Marchand et al, 
defined the Spatiotemporal TOD [10]. Meng and Ding developed the DSTTMOD [11] and 
Vazirgiannis and Wolfson, also found a method to structure spatiotemporal data for moving 
objects [23]. In this section, these models will be described to get an overview of the previous 
work done in modeling moving point object data by making use of DBMSs. 

3.2.1 Vazirgiannis and Wolfson 
In [23], Michalis Vazirgiannis and Ouri Wolfson describe a model for moving objects on a road 
network. They show the need for a small and robust set of predicates with high expressive power, 
suitable for realistic implementation based on off the shelf DBMS technology. The underlying 
model they use consists of three parts.  
 
The first part is a map, where each tuple in the relation represents a road segment, defined as the 
road section between 2 intersections, with the following attributes: 
- Polyline: the block polyline given by a sequence of 2D x,y coordinates: (x1, 

y1),(x2,y2),�,(xn,yn). Usually the segment is a straight line, i.e. given by two (x,y) 
coordinates.  

- Fid: the road segment number (id). 
- Attributes for geocoding such as left side from street name, left side to street name, right side 

from street name, right side to street name, postal code, speed limit, one-way or not, etc. 
 
The second part of the model is the moving object. The route of a moving object O is specified 
by giving the starting address or (x,y) coordinate (start_point), the starting time and the planned 
destination of the trip or (x,y) coordinate (end_point). The attributes that can be added in this 
table are the fixed part the moving object, for instance things like the driver, color, weight, length, 
etc. 
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Vazirgiannis and Wolfson defined the trajectory as the third part of their model. This part is the 
true spatiotemporal (dynamic) part of their approach. The trajectory of an object, denoted T(O), is 
a relation with attributes sequence#, x, y, t, b. A tuple [i, (x,y), ti, b] in this relation indicates that 
(x,y) is the i�th intermediate point on O�s route L(O), and O will be there at time ti. A trajectory is 
a piece-wise linear function in 3D. The attribute b is a Boolean, which is False, if the i�th tuple is 
the beginning or the endpoint of a trajectory and True for if i is a point somewhere between the 
beginning and ending of the trajectory. If more than one moving objects are described in this 
model, an id-number needs to be added to the trajectory-part and the moving-object-part of the 
model. The connection between the road network and the trajectory is defined by a predicate 
�LOC(id,t)�, which returns the location of the moving object (id) on time (t) on the road network. 
In figure 3.1 [23], an example of a moving point representation in trajectories is given. 
 

3.2.2 The MOST data model 
Ouri Wolfson et al describe in [24], the Moving Objects Spatio-Temporal (MOST) data model. In 
their approach, they also make a distinction between static attributes and dynamic attributes. Data 
in a DMBS are assumed to be constant and not continuously updated. The solution according to 
Wolfson et al is representing the location as a function of time. This function is defined as the 
speed between two sampled points. So, the location changes as time passes, even without an 
explicit update.  
 
In more detail, a dynamic attribute A is represented by three sub-attributes, A.updatevalue, 
A.updatetime and A.function, where A.function is a function of a single variable t that has value 0 
at t=0. The value of a dynamic attribute depends on the time, and it is defined as follows. At time 
A.updatetime the value of A is A.updatevalue, and until the next update of A the value of A at 
time A.updatetime+t0 (where t0 is a positive number) is given by A.updatevalue+A.function(t0). 
An explicit update of a dynamic attribute may change its value sub attribute or its function sub-
attribute, or both sub attributes. When for instance a moving object is at x-coordinate 100000 

Figure 3.1. A moving point representation of two different objects [23] 
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(meters) at the update time and is driving with a constant speed of 2 m/s eastwards (x.function=2), 
the x-coordinate at t=60 seconds after the last update-time is 100000+2*60=100120.  
 
This approach is straightforward for objects that move freely in space (e.g. aircraft). However, 
this would be inefficient (i.e. may generate many updates) for objects moving along a winding 
route, since each turn would constitute a change of x.function and y.function (where x and y are 
dynamic attributes of a moving object).  
 
To address this problem, Wolfson et al extend the dynamic attribute concept to include the route 
as follows. The location attribute L (L.x and L.y) is a dynamic attribute with five sub-attributes, 
namely L.route, L.x.updatevalue, L.y.updatevalue, L.updatetime, and L.speed. Among them, 
L.route is (the pointer to) a line spatial object indicating the route on which an object is moving. 
L.x.updatevalue and L.y.updatevalue are the x and y coordinates of a point on L.route; it is the 
location of the moving object at time L.updatetime, i.e. the time of the last location-update. 
L.speed is a linear function of the form f(t)=b⋅t, assuming linear interpolation between two 
sample points. It is defined by the speed b of the moving object, and it gives the current distance 
from the starting location as a function of time t elapsed since L.updatetime. The location at time 
L.updatetime+t is the point (x,y) which is at route distance L.speed⋅t along L.route from the point 
with coordinates (L.x.updatevalue, L.y.updatevalue). 
 

3.2.3 The Spatiotemporal Topological Operator Dimension 
In their approach [10], Marchand et al describe a method to implement spatiotemporal topological 
operators in multidimensional databases (MDDBs) through a hierarchy of topological operators 
representing spatial and temporal relationships between instances of objects. This hierarchy 
covers the three possible domains of spatiotemporal topological constrains e.g. spatial, temporal 
and spatiotemporal. At the root of this hierarchy users can make use of simple operators such as 
�same place� or �same time, same place� in their multidimensional query.  

 
Something also mentioned in [10], is the data structure, used for these topological operators. 
Marchand et al did experiments, where they used a data structure like presented in figure 3.2. 
They used the trajectory (they call it a spatial segment) as a primitive. According to this article, 
this structure permits to topologically query, at the finest granularity, each individual spatial 

Figure 3.2 The data structure of spatial segmented trajectories 
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entity as well as its temporal primitive. In the table, a lot of redundant storage is the result. Every 
x,y,t is denoted twice in the data set, but the advantage is the ease of use for the topological 
operators like BEFORE, DURING, ENDS AT, CROSSES, etc.  
 

3.2.4 A Discrete Spatio-Temporal Trajectory Based Moving Object Database System 
Meng and Ding describe in [11] their approach to model moving objects in a spatiotemporal 
DBMS. They call it the DSTTMOD, the Discrete Spatio-Temporal Trajectory Based Moving 
Object Database System. Their main goal was to support queries for location information not 
only in the past and present, but also in the future. In this model, trajectories are used to represent 
dynamic attributes of moving objects, including the past, current and future location information. 
Moving objects can submit moving plans of different length according to their moving patterns. 
Moreover, they can divide the whole moving plan into multiple sections and submit each section 
only when it is to be used. Different moving objects can set up different thresholds to trigger 
location updates. When a location update occurs to a moving object, not only its future trajectory 
is updated, but also the corresponding index records are adjusted. 
 
The whole trajectory of a moving object is in this model represented by a set of line segments in 
the spatial-temporal space (X,Y,T). Within each line segment, the movement of a moving object 
has the following properties: 

a) Spatially, the moving object moves along a straight line; 
b) The speed of the moving keeps constant. 

 
The position of a moving object is in this way a linear interpolation between two sampled points 
(the begin and the end point of every trajectory). In order to get information about the future 
locations of the moving objects, these objects need to submit their moving plans to the system in 
advance. During the process of moving, when the deviation of the actual location from the 
anticipative location exceeds a certain threshold a location update is triggered. In this case, both 
the current and the subsequent segments of the trajectory need to be updated and the 
corresponding indexing structures must also be modified to reflect the up-to-date situation.   
 
The structure of the table is the same as the structure of the method Marchand described (MOi, 
xi,yi,ti,xi+1,yi+1,ti+1). So also in this approach, the trajectory segment is the main primitive with the 
implied redundancy. 
 

3.3 Indexing methods 
The previous section presented some methods to model moving object data in a DBMS. All these 
models are developed for one or more applications. In this section, some of the indexing methods 
to speed up access to the stored spatiotemporal data will be described. 
 
Of course, indexing cannot be seen without knowing which queries are going to be done on the 
data. Section 3.4 deals with the querying of spatiotemporal data and that section discusses the 
choice for a sufficient indexing method. 
 
This section starts with describing the principles of the R-tree, because the most indexing 
methods for spatiotemporal data are based on these principles. After that, some more advanced 
indexing methods will be described.  
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3.3.1 The 2D and 3D R-tree 
An index is an ordered table where each record contains two fields: (1) the index field: This 
contains the value of the indexing field (in a sorted order) and (2) the pointer field: This contains 
the addresses of disk blocks that have the index value. When the index (which also requires disk 
space) requires only one disk block, a single-level index could be used. This works the same as 
the index in a book. When the index requires more than one disk block, the index also needs to be 
indexed (multi-level indexing) to cut down the search times [25].  
 
On the origin of the most indexing methods for spatiotemporal data, is the R-tree, which is a 
multi-level indexing method. The R-tree indexing method is based on Minimum Bounding 
Rectangles (MBR) in the 2D-case or Minimum Bounding Boxes (MBB) in the 3D-case. An R-
tree index stores this MBR or MBB that encloses each geometry in a spatial data set. This MBR 
or MBB is used to reduce the computational complexity in spatial queries and is defined along the 
axes. One of the properties of an R-tree is that all the leaf-nodes are on the same level (depth). 
Efficient insert and delete algorithms are defined to ensure that each node in the tree is always at 
least half full, so the overall tree structure remains balanced. 
 
The advantage of using an R-tree index is that the irregular sized MBRs or MBBs can fit the 
objects in the real world, in contrary to the subdivision of space in the quadtree. The disadvantage 
is that the MBRs or MBBs can be much larger than the objects itself. It causes the R-tree index to 
select more candidate objects, because empty parts of the MBRs will fall within the query 
window. This increases the load in the exact computation (the second step in solving a query), 
because more objects need to be processed [2]. An example of 2D R-tree can be found in figure 
3.3.  
 

 
As said before, the R-tree is also developed in 3D. An example of how these MBBs are organized 
can be found in figure 3.4. In the case of spatiotemporal data, the index is describes two spatial 
and one temporal dimension.  
 
Numerous researches have been developing spatiotemporal access methods as an auxiliary 
structure to support spatiotemporal queries. In [12], an overview is given of many spatiotemporal 
indexing methods. The different indexing methods in this article are organized in three parts, the 
first part is about indexing the past, the second part is about indexing the current time and the last 

Figure 3.3 An example of a 2D R-tree 
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part is about indexing methods that deal with spatiotemporal data from the future. In the next part 
of this section, some these methods will be described in a short way. 
 

3.3.2 Spatiotemporal indexing methods 
In this paragraph only the methods that could be useful for moving objects will be mentioned and 
explained, selected from [12]. First, in short two methods will be described that index the past 
trajectories (RT-tree) or the future trajectories (TPR-tree). After that, two methods will be 
described in some more detail, the 2+3 R-tree that indexes the past and the current trajectories 
and a method developed by Pfoser and Jensen which makes use of network-constrained moving 
object data. 
 
The RT-tree combines the R-tree and a temporal access method that has been developed to index 
past trajectories. In the RT-tree, a new entry is added to the regular R-tree that indicates start and 
end times of the current object. An RT-tree entry is of the form (id, MBR, ts, te), where id is the 
identifier, MBR is the minimum bounding rectangle of the trajectory, and ts and te give the time 
interval in which this object is valid. The RT-tree supports spatial queries as efficient as the 
regular R-tree. However time slice queries and interval queries may span the whole tree. It differs 
from the 3D R-tree because no MBB is used, but a MBR. The third (temporal) dimension is 
treated in the index table as separate attributes. 
 
One of the main methods to index future trajectories is the TPR-tree. The Time Parameterized R-
tree (TPR-tree) employs the idea of parametric bounding rectangles in the R-tree. At the 
construction time, the TPR-tree builds the so-called conservative bounding rectangles that enclose 
a set of moving objects. The lower bound of the conservative bounding rectangle is set to move 
with the minimum speed of the enclosed points, while the upper bound is set to move with the 
maximum speed of the enclosed points. In this case, the conservative bounding rectangle never 
shrinks, and is guaranteed to always contain the enclosed moving objects. To avoid the case 
where the bounding rectangles grow to be very large, whenever the position of an object o is 
updated, all the bounding rectangles on the nodes along the path to the leaf at which o is stored 
are recomputed.  
 
 

Figure 3.4 Example of minimum bounding boxes in the 3D R-tree [22] 
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2+3 R-tree 
An approach to index current and past trajectories is the 2+3 R-tree [13]. The main principle of 
this method is to use two separate R-trees, one for two-dimensional points, and another one for 
three-dimensional lines (hence the name 2+3 R-tree). In the 2+3 R-tree whenever the end time of 
an object�s position is unknown it is indexed under a two-dimensional R-tree, keeping the start 
time of its position along with its id. Note that the original R-tree (or any of its derivatives) keep 
only the object�s id (or a pointer to the actual data record) and its MBR in the leaf nodes. The 
two-dimensional R-tree used in this approach is thus minimally modified. Once the end time of 
an �open� object�s current state (i.e., position) is known, we are able to construct its three-
dimensional line (the 3D trajectory), insert it into the three-dimensional R-tree and delete the 
existing entry from the two-dimensional R-tree. 
 
It is important to note that now both trees may need to be searched, depending on the time point 
with respect to which the queries are posed. Similar to the case of the 3D R-tree any of the 
proposed R-tree derivatives could be used, provided that the leaf nodes of the two-dimensional 
one are minimally modified. 
 
A final remark should be done. The 2+3 R-tree is the real-time version of the 3D R-tree. That is 
to say that the two-dimensional R-tree serves the single purpose of holding the current (i.e., open) 
intervals. Should one know all movements a priori the two-dimensional R-tree would not be used 
at all, hence the 2+3 R-tree would be reduced to the 3D R-tree presented earlier. 
 
Pfoser and Jensen indexing method 
In [18], Pfoser and Jensen describe the method they developed to access spatiotemporal data. 
Their method works for network-constrained moving objects. The main idea is that the 3-
dimensional (x,y,t) space is mapped onto two 2-dimensional spaces. 2-dimensional indexing 
methods are fast and known very well.  
 
A two-dimensional network can be reduced to a one-dimensional space, by taking the edges of 
the network and transforming them into intervals. The first edge becomes the first sub-interval, 
which starts where the 1D interval starts and extends a distance that corresponds to its distance in 
the network. The second edge then starts where the first ends, etc. The end of the sub-interval 
corresponding to the last edge is the end of the 1D interval. The second dimension is time. Two 
2D-indexes, one for the network and one for the transformed trajectories can access the 3D 
(spatiotemporal) data. In figure 3.5, the main idea is drawn. 
 

Figure 3.5. 3D-space is subdivided into two 2D-spaces with the Pfoser and Jensen access method. [18] 
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Pfoser and Jensen also did a performance test with this indexing method. They used five different 
types of networks, three synthetic and two real world networks. The experiments show that the 
lower the complexity of a network, the more likely the mapping approach proves to be beneficial 
over indexing the data in 3D space.  
 

3.4 Querying spatiotemporal data 
The last of the technical requirements mentioned by Langran, deals with efficient querying of the 
data. In the previous chapter is described that time is often seen as an extra dimension. For some 
cases, this is true and for other cases, time needs a special treatment. This special treatment 
regarding to querying a data set will be described in this section.  
 
In advance, when the data is going to be structured in the DBMS, it is not known which queries 
are going to be done on the data. As a two dimensional example, there is a database of many 
spatial objects, let�s say houses, roads, lakes, railways, etcetera. If you would like to find the 
longest road, your first selection could be to select all the roads from the table with all objects. A 
possibility is to make a new table with roads, choose an efficient indexing method to answer the 
question and do the query. For this specific query, you will get the fastest answer.  
 
Another option is to answer the query on the table with all objects and select the longest road 
directly. So, this means not by making a copy of the original data, but just by adding a condition 
into your query where all the roads are going to be selected. The query itself will not be as fast as 
doing the query on a table with only roads and the specific indexing, but the main advantage is 
that you do not make a copy of the roads in a new table. Probably the same amount of work is 
done, but the variant with the �copy� will be (in total) slower, because a copy has to be stored 
explicitly, which also takes time. Especially if you work in a multi-user environment, it is 
necessary that the data stays consistent and with copies of tables, the consistency is in danger. 
 

Finding the longest road in your database with many kinds of objects will look like this in SQL: 
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Figure 3.6. On the left, first do a query in the time dimension (t=i) and then in the spatial dimension.,
assuming that you are looking for a point in the 3D (x,y,t) space. On the right, first has been queried
on the space (x,y=xi,yj) and after that querying on the time dimension, assuming that you are looking
for a point in the 3D (x,y,t) space. 
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SELECT max(length) 
FROM table_with_all_objects 
WHERE object_type=”road”; 
 
Querying moving object data is possible in three ways:  
- The first query type contains queries where only the time-dimension is involved. An example 

is �Which moving objects existed in the last hour?� 
- In the second query type, only the spatial dimensions are involved, for example �Which 

pedestrians have ever been at the park?� 
- The last query type contains both the spatial and the temporal dimension. An example is 

�Which pedestrians were in the park the last hour?�  
 

This third query type can be done in three ways, in figure 3.6 and 3.7 these queries are drawn: 
- The first way is first querying in the 2D space dimension and after that in the 1D time-

dimension.  
- The second way is the opposite, first querying in the 1D time dimension before the 2D spatial 

query is going to be queried.  
- The last possibility is querying the 3D-space (x,y,t) at once. 
It is up to the query optimizer to estimate the most efficient query plan for a given query and 
available model (with index). With the first two querying methods, a 2D (spatial) index and a 1D 
(time) index seems logical, for the third method, a 3D index seems to be the most appropriate 
one.  
 
For spatiotemporal data, the principle of not making copies of the table but querying the data at 
once, also counts. When using one table, which is in a real-time case continuously growing by 
updates, it is important that the data stays consistent and that no copies of the original data are 
going to be made in queries. So an efficient querying is very important. 
 

3.5 Conclusions 
This chapter started with a framework for a temporal GIS, which contains five technical 
requirements mentioned by Langran for a temporal GIS. The first requirement is a conceptual 
model. In 3.2, four different approaches to structure moving-point data are described. These 

t 

x 

y

Figure 3.7. Querying in both the spatial and the time dimensions, gives a box in which
the answer on the query can be found. 
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methods are mainly developed to structure moving point data in a DBMS context, designed for a 
special application.  
 
In many cases, it is not known in advance what kind of queries are going to be done on a data set. 
So what is needed is a data structure that is sufficient for most of the queries, application 
independent. An approach for such a model is going to be presented in the next chapter.  
 
Efficient querying (Langran�s fifth technical requirement) is only possible if an efficient indexing 
method has been chosen that organizes the data in an optimal way for the query. If you would like 
to do a specific query, it is possible to make a copy of (a part of) the original data set, find the 
optimal indexing method and do the query. This method is in many cases fast, but making copies 
of tables can harm the consistency of your data. So, an intelligent, but perhaps less fast querying 
method is necessary on the original table, depending on how often the query is going to be posed 
and depending on the speed gain.  
 
Once a data structure and indexing method has been chosen, the only way to optimize querying is 
by the query itself. Three ways of spatiotemporal querying have been described, first selecting on 
time and after that selecting on space or the opposite or selecting on space and time at the same 
time (3D querying). It is up to the query optimizer (which estimates the most efficient query 
plan), which method is going to be chosen. The influence of the user in choosing the most 
efficient way is by choosing a 2D structure for your data or a 3D structure and indexing method. 
 
In section 3.3, some indexing methods are described. Because in Oracle 9i Spatial, the 2D and the 
3D R-tree1 indexing methods are the only implemented methods that are useful for 
spatiotemporal data, the choice of which indexing method is going to be chosen as the most 
efficient and the most flexible one is limited. The choice for 2D or 3D indexing depends on the 
queries that are going to be examined. 

                                                        
1 Even when you make use of Linear Referencing with 4D data (X,Y,T,+M dimension of the linear 
referencing), only 3 dimensions can be indexed by the 3D R-tree.  
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4. A generic model for moving object DBMSs 
 
In the previous chapter (section 3.2), four models to structure moving object data in a DBMS 
were presented. These models have some disadvantages. For instance, the model made by 
Vazirgiannis and Wolfson is especially made for road networks and the MOST-datamodel is 
mainly developed for objects that move freely in space with more or less constant speed like 
aircrafts, but is less sufficient for objects that do not move in straight lines. The other two 
approaches, described by Marchand et al and the one described by Meng and Ding have the 
disadvantage that they have a lot of redundant storage. To overcome these disadvantages, a new 
approach is introduced in this chapter. This model could be used for every purpose (this makes it 
generic) and it does not contain any redundant storage. 
 
The previous chapter also concluded that if you do not know what queries are going to be done on 
the data set, a more generic model needs to be investigated that is perhaps less fast for a specific 
query, but is suitable for many queries. The question is now if this generic model is fast enough 
for many queries, making use of a suitable spatial index and an optimal query plan. 
 
A moving object data model contains static parts (for instance information about the size or color 
of the moving object) and dynamic parts (the changing position during a time period). This 
generic model focuses on this dynamic part. 
 
In this chapter, this generic model for moving point objects in a Geo-DBMS context will be 
introduced. In section 4.1, the components of this model will be introduced. Also some 
advantages and disadvantages of this model will be mentioned. Section 4.2 deals with views and 
materialized views in order to derive other �presentations� of the same model. In the last section, 
4.3 some conclusions will follow.  
 

4.1 The principles of the model 
It was shown in chapter 3, that a number of alternative models for moving point objects have 
been constructed. Two aspects can characterize these models. First, the time dimension is either 
separate or integrated with the spatial dimension (in such a case a 2D point and time as attribute 
becomes a 3D point in the spatiotemporal model). Secondly, for a single object the observations 
are either stored in separate records (with the sampled point in time) or in one record with a 
polyline attribute (kind of interpolation between the time samples). In the polyline case the time 
again can be separate or integrated with the spatial point data: 2D spatial polyline with separate 
attributes for timestamps or 3D spatiotemporal polyline) (see figure 4.1).   
 
All of these four models can be converted to each other (and could in that sense be considered 
equivalent) and most likely this can be realized with DBMS views (using spatial operators). In 
practice they may differ with respect to dynamic behavior (suitable or not for dynamically 
growing data in case of real-time monitoring) and ease of use during analysis and visualization. 
This depends on the specific platform used for the implementation (e.g. Informix has time-series 
data type support, which is then more efficient than a separate record for every moment in time). 
Anyhow, from the conceptual point of view, the models are quite similar and we will use the 
most elementary to illustrate spatiotemporal modelling. The base table, not assuming any explicit 
sequence, looks like (in a kind of pseudo SQL): 
 
create table mov_obj(id, t, position);  
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-- primary key is pair (id,t), position is the geometry and t is the time (for 
instance in seconds as integer) 

 
Based on this base table with 2D moving points and a separate time dimension, a number of 
views can be defined that could form the other 3 representations based on other geometries: the 
3D points, the 2D lines and the 3D lines. This is examined below. More views are defined to have 
easy access to derived attributes such as speed and acceleration (see section 4.2).  
 
create view mov_obj_3D_vw as –-view with 3D points 
select  
s.id as id,  
mdsys.sdo_geometry(3001, NULL,  
mdsys.sdo_point_type(a.position.sdo_point.x, a.position.sdo_point.y, a.t), 
NULL, NULL) as position 
from mov_obj a; 
 
create view trajectory_2D_vw as  --view with 2D line segments 
select  
a.id as id, 
mdsys.sdo_geometry(2002, NULL, NULL, mdsys.sdo_elem_info_array(1,2,1), 
mdsys.sdo_ordinate_array(a.position.sdo_point.x, a.position.sdo_point.y, 
b.position.sdo_point.x, b.position.sdo_point.y)) as position, 
a.t as t_beg, 
b.t as t_end 
from mov_obj a, mov_obj b 
where a.id=b.id and b.t=(select min(t) from mov_obj where t>a.t and id=a.id); 
 
create view trajectory_3D_vw as –-view with 3D line segments (with a more advanced PL/SQL 
select        --function, polylines could be returned) 
a.id as id, 
mdsys.sdo_geometry(3002, NULL, NULL, mdsys.sdo_elem_info_array(1,2,1), 
mdsys.sdo_ordinate_array(a.position.sdo_point.x, a.position.sdo_point.y, a.t, 
b.position.sdo_point.x, b.position.sdo_point.y, b.t)) as position 
from mov_obj a, mov_obj b 
where a.id=b.id and b.t=(select min(t) from mov_obj where t>a.t and id=a.id); 

 

Figure 4.1 Top row with sampled time: 2D points (time separate) or 3D points
(integrated time). Bottom row with interpolated time: 2D polylines (time
separate) or 3D polylines (time integrated). 
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4.2 Views and materialized views 
In this paragraph, the main principles of views and materialized views are described. First, in 
4.2.1, the views are explained and relevant views in the generic model are given and 4.2.2 deals 
with a special type of view, the Oracle�s materialized view. 

4.2.1 Views 
Views are customized presentations of data in one or more tables or other views. A view can also 
be considered a stored query. Views do not actually contain data. Rather, they derive their data 
from the tables on which they are based, referred to as the base tables of the views [16]. Like 
tables, views can be queried, updated, inserted into, and deleted from, with some restrictions. All 
operations performed on a view actually affect the base tables of the view. Views also provide an 
additional level of table security by restricting access to a predetermined set of rows and columns 
of a table. They also hide data complexity and store complex queries. For users, views �look� the 
same as tables. 
 
In fact, the DBMS does not store the result of a query, but the view�s definition in the data 
dictionary as the text of the query that defines the view. When you reference a view in a SQL 
statement, the DBMS executes the definition of the view and uses the answer for your SQL 
statement. The merged query will be optimized by the DBMS as if you issued the query without 
referencing the views. Therefore, the DBMS can use indexes on any referenced base table 
columns, whether the columns are referenced in the view definition or in the user query against 
the view. 
 
Some examples of creating views, with respect to moving point data: 
 
Find the next point of the same object in time: 
create view move_obj_succ as 
select t1.*, t2.t as next_t 
from mov_obj t1, mov_obj t2 
where t1.id=t2.id and t2.t=(select min(t) from move_obj where t>t1.t and id=t1.id); 
 

Calculate the direction and the speed of the moving object (view on a view): 
create view speed_obj_vw as  
select t1.id, t1.t, t1.next_t, t1.position, dir=diff(t2.position-t1.position), 
speed=distance(t2.position, t1.position)/(t2.t-t1.t)  
from mov_obj_succ t1, mov_obj_succ t2 
where t1.id=t2.id and t2.t=t1.next_t; 
 

Calculate the acceleration of the moving object (view on view on view): 
create view accel_obj_vw as 
select t1.id, t1.t, t1.next_t, t1.position, t1.speed, accel=(t2.speed-t1.speed)/(t2.t-
t1.t) 
from speed_obj_vw t1, speed_obj_vw t2 
where t1.id=t2.id and t2.t=t1.next_t; 

 
Using these views one can now derive statistic such as average speed. This can either be grouped 
by id (of vehicle), position and time. For grouping positions we assume a function (pos_group) to 
translate an xy(z)-coordinate in an encoding of a position group; e.g. parts of roads. Similar for 
time we assume a time group function (time_group) to get usable time units (e.g. a block of 15 
minutes). One can also make combinations of grouping when computing averages (e.g. by 
position and time): 
 
create view avg_speed_obj_vw as 
select id, avg(speed) from speed_obj_vw group by id; 
 
create view avg_speed_pos as 
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select position=pos_group(position), avg(speed) from speed_obj_vw group by 
pos_group(position); 
 
create view avg_speed_time as 
select time=time_group(t, 15), avg(speed) from speed_obj_vw group by time_group(t,15); 
 
create view avg_speed_pos_time as 
select position=pos_group(position), time=time_group(t,15), avg(speed) 
from speed_obj_vw group by pos_group(position), time=time_group(t,15); 

 
Of course, one could compute all kinds of other statistics in a similar way; for example the 
minimum or maximum speed (for the same types of groupings) or compute average, minimum, 
maximum acceleration (and again grouped by the different options: id, time or position or 
combinations of these). Quite another type of view may be used to analyze how close the cars are 
together (as a possible indication of traffic jams). In this case the ordering of the base table data is 
a bit more difficult compared to ordering on the linear time scale (as the space is two-
dimensional). However, we assume that the next car should be found ahead of the current driving 
direction (and also driving in the same direction).  
 
create view dist_objs as 
select p1.id1, p2.id, p1.t, p1.position, p1.speed, distance=length(diff(p1.position, 
p2.position)) 
from speed_obj_vw p1, speed_obj_vw p2 
where p1.t=p2.t and p1.dir = p2.dir and p2.id=  
  (select closest(id, p1.position) from speed_obj_vw); 

 
All these views may be nice from a functional point of view. However, without the proper storage 
and indexing the performance may be poor. Important aspects to consider are spatiotemporal 
clustering (so the physical ordering of the data) and spatiotemporal indexing (efficient selections 
of the record addresses based on spatiotemporal (range) queries). In Oracle the initial 
implementation would use an indexed organized table (on the key id, t) in order to obtain 
ordering of the data based on id and time. Further a 2D R-tree index (on position) or 3D R-tree 
functional index (on position and time) is used for initial spatiotemporal indexing. 
 

4.2.2 Materialized views 
Analysis may show that it is impossible to answer all (often used) queries based on a single 
physical ordering the base table and in the ultimate situation redundant data storage may be 
considered. Oracle offer �materialized views� (not part of the SQL92 standard) to implement this 
in an effective manner. By default a materialized view is only refreshed on demand (by calling a 
specific Oracle refresh procedure). However, it is possible to specify that the materialized view 
must be refreshed automatically after the transaction on the base table is committed, for example: 
 
create materialized view move_obj_succ_mv1  
refresh fast on commit 
as select t1.*, t2.t as next_t 
    from mov_obj t1, mov_obj t2 
    where t1.id=t2.id and t2.t=(select min(t) from move_obj where t>t1.t); 
 
Especially in highly dynamic situations (rapid data growth) this is not without problems (as it 
may not be very efficient to update the materialized view after every transaction). In such a 
situation it may be more effective (depending on the application) to collect a number of 
transactions and to refresh the materialized view only periodically, for example (the first time it is 
refreshed after 45 minutes, then after every 30 minutes): 
 
create materialized view move_obj_succ_mv2 
refresh start with ‘now+45 min’ next ’30 min’ 
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as select t1.*, t2.t as next_t 
    from mov_obj t1, mov_obj t2 
    where t1.id=t2.id and t2.t=(select min(t) from move_obj where t>t1.t); 

 

4.3 Final remarks 
Tuning the generic model, by choosing the appropriate storage and index structures and 
(materialized) views, makes it efficient for a given application, that is, a set of typical queries for 
a given (static or dynamic) data set.  
 
In the beginning of this chapter is stated that this model is generic, which means that it could be 
used for every purpose that deal with moving object data. So, also the model introduced by 
Vazirgiannis and Wolfson (see section 3.2) should fit in this model, or at least, all queries that can 
be posed on the Vazirgiannis and Wolfson model can also be posed on the introduced generic 
model. The Vazirgiannis and Wolfson model contains two static parts: the map and the moving 
object itself; and one dynamic part, the trajectory. The main characteristic of this dynamic part is 
that there is an object T(O), which is the trajectory of object O, which consists of tuples 
[sequence_nr, id, (x,y), time, Boolean]. All this information is already available in the generic 
model. This model can be created from the generic model by sorting the base table on id and on 
time. Your created table will be nearly the same as described by Vazirgiannis and Wolfson, 
except that the sequence number and the Boolean are not available, but these can be added by 
using a PL/SQL function. 
 
Create view mov_obj_VazWol as 
Select * from mov_obj order by id, t; 

 
It makes difference if your application deals with data that is already collected (post-processing) 
or with real-time data. In the first case, for instance indexing is much easier because the index (or 
indexes) only needs to be created once. In the real-time case, the data set is continuously growing, 
which needs special treatment of the indexing (which needs to be rebuild once in a while) and 
updating of the materialized views. How many times these materialized views have to be updated 
and how a fast index needs to be maintained, depends on your application, the amount of data and 
the users� intentions. 
 
The described model is generic. To demonstrate this, the model is implemented for two 
applications, a post-processing data set and a real-time simulation. In the next chapters, 5 and 6, 
these cases are described and followed by conclusions.  
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5. Case I � Traffic seen from a helicopter (post processing) 
 
In cooperation with groups for Photogrammetry and Remote Sensing from the Faculty of 
Aerospace Engineering and for Traffic Management from the Faculty of Civil Engineering and 
Geosciences within Delft University of Technology a DBMS has been populated with 
measurements of highway traffic during circumstances of congestion. The measurements are 
obtained by automatic analysis of image sequences that are taken with a digital high-resolution 
camera from a helicopter (see figure 5.1). A highway section of approximately 500m is monitored 
during an extended period of time (say 1 hr) with a recording frequency of 10 frames per second. 
On a crowded or congested highway this may lead to several millions of car observations. 
 
The goal of this effort is to extract parameters for so-called microscopic traffic flow models from 
the observations by querying the database. Microscopic models are those that take individual car 
driver's behavior into account, (including, therefore, variability in behavior between different 
drivers), as opposed to macroscopic models, where cars are treated as uniform entities like 
molecules in a streaming fluid. Since microscopic models are not yet fully understood (they are 
subject of study in the Traffic Management group), the database system should offer the 
flexibility to extract a large and partly unforeseen variety of parameters. The parameters should 
reflect drivers behavior concerning, for example, acceleration and deceleration in reaction to 
maneuvers of the vehicle in front, lane changing behavior, gap acceptance, etc. 
 
Except for doing research on traffic flows or getting experiences with automatic tracking of 
vehicles in photo series, this data file can also be the input for a case in this research, because 
positions (in pixels which are 0.1 meter on ground level) and timestamps (photo number) for each 
car are available after the vehicle detection step. This case could be used to test the generic model 
described in the previous chapter on a small data set where the data has been collected in 
advance. This means that the data set is not going to grow anymore and could be used to do 
analysis after the data is organized into the correct structure (post processing or data mining). 
 

 
 

 
 

 
 

Figure 5.1 a series of three photos (approximately 1 second between each picture) with 
vehicles taken from a helicopter. 

 
So, since the attributes (id, x, y, time) are available for every car, the generic model introduced in 
chapter 4 could be implemented for this data set in Oracle 9i Spatial. In section 5.1, issues that 
deal with the implementation of the generic model will be described. In 5.2, the implemented 
model will be reflected to the technical requirements, mentioned by Langran. In 5.3 and 5.4, two 
queries will be described and visualized. In 5.3, the query that calculates the vehicles that do not 
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keep two seconds distance from their predecessors and in 5.4 a query that calculates some traffic 
flow variables. On the end of this chapter, in 5.5, some conclusions will follow. 

5.1 Implementation of the generic model into Oracle 9i Spatial 
In chapter 4, the principles of the generic model are explained. The main idea is a base table and 
derived from this base table a set of views and materialized views. For this data set, a base table is 
created once, because all the data is collected in advance. The first choice that has to be made is 
whether using 2D points, 3D points, 2D polylines or 3D polylines as the base table.  
 
In Oracle 9i Spatial, these four different geometry types are defined as following: 
 
SDO_GEOMETRY(2001, NULL, SDO_POINT_TYPE(x, y, NULL), NULL, NULL)  --2D Point 
SDO_GEOMETRY(3001, NULL, SDO_POINT_TYPE(x, y, t), NULL, NULL)  --3D Point 
SDO_GEOMETRY(2002,NULL,NULL,SDO_ELEM_INFO_ARRAY(1,2,1), 

SDO_ORDINATE_ARRAY(xi, yi, xi+1, yi+1))     –-2D Polyline 
SDO_GEOMETRY(3002,NULL,NULL,SDO_ELEM_INFO_ARRAY(1,2,1), 

SDO_ORDINATE_ARRAY(xi, yi, ti, xi+1, yi+1, ti+1))   –-3D Polyline 
 
With an index on the geometry in the base table (e.g. a R-tree) and a limited amount of objects, 
these four base geometry types can be accessed in a fast way. On a view, it is also possible to 
create a spatial index via a functional index on the base table. On a materialized view on the other 
hand, spatial indexing is possible directly. So in this case, it might be useful to choose for a 
materialized view. These materialized views can be updated on demand. So the data model is 
flexible and can be accessed fast. 
 

5.2 Reflection to Langran�s technical requirements 
According to Langran [8], a temporal GIS has five technical requirements: a conceptual model, 
treatment of aspatial attributes, data processing logistics, a spatiotemporal data access method and 
efficient algorithms to operate on the spatiotemporal data. Since the model is successfully 
implemented, the generic model could be reflected to Langran�s technical requirements for a 
temporal GIS.  
 
About the conceptual model has been spoken before. Vehicles are driving on a part of a highway. 
From a helicopter every 0.10 seconds, pictures of these vehicles are taken. So, there is a 
conceptual model of (car_id, x, y and time). The data is collected in advance, before it comes into 
the DBMS.  
 
The third technical requirement of Langran�s temporal GIS, deals with clustering, volume and 
error control. The first of these three, the clustering is more a matter of primary indexing (or 
storage structure of the table) and will be discussed in 5.2.2. The volume control is something that 
is important in this case, in spite of a small data set is used. The amount of data is now around 
2300 records. But when during one hour, one kilometer with ten photos per second is going to be 
analyzed; the amount of data will grow to a very large amount of records. The third, error control 
is not within the scope of this research. Topics like lineage, completeness and logical consistency 
will not be discussed in this thesis. The other three requirements of Langrans temporal GIS will 
be discussed in this paragraph. 

5.2.1 Treatment of aspatial attributes 
A distinction can be made between the aspatial attribute �time� and the other aspatial attributes. 
First of all the �other aspatial attributes�: In this case, the x_width and the y_width attributes are 
mentioned. These attributes deal with the size of the car. You can also imagine that you add for 
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instance attributes like color, kind of vehicle, driver information etcetera. If there are a lot of 
timestamps, objects and attributes, then it seems logical to store this information once and not on 
every timestamp. With a unique car_id, this data can then be made available, because they will 
stay constant during the time. 
 
For the aspatial attribute time, there are four options: 
- In the 3-dimensional case, time is used as a spatial attribute. This is, in many cases, not really 

correct. For instance, if you want to calculate distances, a distance between two timestamps is 
a 2-dimensional distance. Then, time should be treated as a normal attribute with special 
characteristics.  

- You can store the attribute as an integer. It has the advantage that it is easy, because you can 
calculate with a decimal frame instead of hours, minutes and seconds, but it had the 
disadvantage that many applications (for instance ArcGIS 8.3) need time as a �date� data 
type. This data type can also be calculated when using views. 

- So, date is the third way of storing the attribute time. The advantage is that it is more easily to 
interpret hours, minutes etc than for instance 200 minutes from now. A disadvantage is that 
the �Date� data type can be interpreted in more than one ways. If you see for instance 09-07-
2004, you do not know if this is July 9th or September 7th. In Oracle, the �Date� data type is 
internally stored as a number that you can access in the way you want (for instance �DD-
MON-YY HH24-MI-SS� or �MM-DD-YYYY HH:MI�).  

- The last possibility is to store time as a sequence number like t0, t1, t2, etc. This can be used if 
the interval between ti and ti+1 is the same for every interval and if the width of this interval is 
known. Implicitly this is the same as when you use integers. 

 
These four options only deal with the implementation of the time-attribute. For a functional 
understanding of spatiotemporal DBMSs, these four options are the same, because they can all be 
transformed into another.  

5.2.2 Indexing the moving object database 
In paragraph 3.3, a lot of spatiotemporal indexing methods are discussed. Indexing methods (or 
spatiotemporal accessing methods) are one of Langran�s five technical requirements for a 
spatiotemporal GIS. Most of these methods are based on the R-tree. The basis of the R-tree is that 
objects that are close to each other (spatially) are close to each other in the tree. In Oracle Spatial 
9i, the R-tree is implemented. But it is implemented very deeply in the DBMS, so, that 
implementing other possibilities (variations of the R-tree) will be too much work for this thesis.  
 
If you are using a spatiotemporal query, e.g. �Which objects were in polygon P during period 
<ti,tj>?�, you would like to have an indexing structure, that serves the needs of this query. So, a 
3D R-tree seems the best, because objects that are close to each other in space and in time are in 
the same leaf node or at least in the same part of the R-tree.  
 
For testing performance, the data set used in this case is too small. But one can describe how the 
indexing is implemented in Oracle Spatial. Deleting, inserting and updating the geometry of 
features will affect the query performance, because the pointers in the nodes of the R-tree (which 
automatically will be updated when objects are inserted, updated or deleted) that point to a place 
on the hard disc, do not work in the most optimal way anymore. If the increase in query time will 
be too high, the index needs to be rebuilt. Especially with real-time data sets, the data set is 
growing continuously. In that case, rebuilding the index is really necessary. More about this topic 
can be found in chapter 6, which deals with a real-time data set.  



Chapter 5: Case I � Traffic seen from a helicopter (post processing) 
 

 
32 

5.2.3 Operating on spatiotemporal data 
Since the generic model is implemented, it is available to query. For often-used queries like speed 
and acceleration, views can be defined. Organizing the spatiotemporal data in a geo-DBMS has 
the advantage that you can use standard spatial queries like overlap and buffer. For instance, the 
question �which vehicles were on lane x at time t?� is a query where you can easily use the 
polygon overlap-function. In Oracle Spatial 9i, spatial queries can be formulated in two different 
ways: 
- as a spatial operator (uses the spatial index), example: 

select <attributes> from spatial_table a, spatial_table b 
where SDO_relate (a.geometry, b.geometry, 
'mask=anyinteract querytype=window')='TRUE'; 

- as a spatial function (does not use the spatial index), example: 
select <attributes> from spatial_table a, spatial_table b 
where sdo_geom.relate (b.shape, 'anyinteract', a.shape, 0.005)=’TRUE’; 

 
Example: 
For calculating the distance a vehicle has traveled between two successive measured points, the 
next statement has to be entered into SQL: 
 
select a.id, b.t “t_beg”, a.t “t_end”, 
sdo_geom.sdo_distance(a.position, b.position, 0.1) “distance” 
from mov_obj a, mov_obj b 
where a.id=b.id and and b.t=(select min(t) from mov_obj where t>a.t and id=a.id); 
 
Instead of entering “b.t=(select min(t) from mov_obj where t>a.t and id=a.id)”, a function 
like �NEXTTIME� could be implemented. NEXTTIME is one of the operators defined by 
Wolfson [24]. This could improve the querying of spatiotemporal data sets or could at least make 
the formulation of the query easier. In 4.2, an example has been given to calculate the next_t as 
an attribute in a view by making use of standard SQL (creation of the view mov_obj_succ). 
 

In this case, on a root table with 2D point objects, three views are created (figure 5.2): 
- First, the one described above, this is the speed and the distance between two measured 

points. The geometry (position) of the objects could also be added to the view; but because 
this dist_view contains information between two points, the geometry should be a line-
geometry.  
create view dist_view as 
select  
a.id,  
b.t as t1,  
a.t as t2, 
sdo_geom.sdo_distance(a.position, b.position, 0.1) as distance, 
sdo_geom.sdo_distance(a.position, b.position, 0.1)/(a.t - b.t)*3.6 as speed 
from mov_obj a, mov_obj b 
where a.id=b.id and b.t=(select min(t) from mov_obj where t>a.t and id=a.id); 

Table point_objects 
id 
SDO_Geometry 
(2D_points) 
T 

 

View 
dist/speed 
id 
T1 
T2 
Distance 
Speed 

View 
point_speed
id 
T 
Speed 

View 
Acceleration 
id 
T1 
T2 
Acceleration 

Figure 5.2 Root table (2D points) with three views, (1) the speed and distance between two points,
(2) the speed in one point and (3) the acceleration between two points. 
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- Second, a view on the first view, where the speed in a measured point is calculated by taking 
the average of the speed before and the speed after the measured point (taken from the 
dist_view). 
create view point_speed_view as 
select a.id, b.t1 as t, (a.speed+b.speed)/2 as point_speed  
from dist_view a, dist_view b 
where a.id=b.id and a.t2=b.t1; 

- Third, a view on a view on a view; the acceleration of the vehicle between two measured 
points. Taking the sum of the speed in two measured points and dividing it by the time 
between these points calculate this. 
create view accel_view as 
select a.id, a.t as t1, b.t as t2, 
((b.point_speed-a.point_speed))/(b.t-a.t) as accel 
from point_speed_view a, point_speed_view b 
where a.id=b.id and b.t=(select min(t) from point_speed_view where t>a.t and id=a.id); 

 
In the database, this syntax is stored and not the results. If you would like to use the results of this 
query, you can treat this like a table. An example, which vehicles were driving faster than 120 
km/h and at which time: 
 
select id, t1, t2, speed       
from dist_view where speed>120 order by t1; 
 
        ID      T1         T2         SPEED 
---------- ---------- ---------- ---------- 
       108          0          1      122.4 
       102          1          2      122.4 
       108          1          2      122.4 
       108          2          3      122.4 
       108          3          4      122.4 
       108          4          5      122.4 
       108          5          6      122.4 
       108          6          7        126 
       108          7          8      122.4 
       108          8          9        126 
       108          9         10        126 
       108         10         11      122.4 
 
12 rows selected. 
 
As shown above, with the generic model, a base table with a set of views and materialized views, 
operating on the spatiotemporal data is easy. In the next two paragraphs, two slightly more 
complex queries are described on the spatiotemporal data.  
 
Other examples of spatial queries that can be done easily on a data set are for instance: 
On which time, car A (with id=108) starts to accelerate: 
SELECT t1  
FROM accel_view 
WHERE id=108 and t1=(select min(t1) from accel_view where accel>0); 
 

On which place, the speed is the lowest? 
SELECT a.speed, b.position 
FROM dist_view a, mov_obj b 
WHERE a.id=b.id and a.t=b.t 
 and a.speed=(select min(speed) from dist_view); 

 
In the same way, numerous other queries can be done. Some of the more interesting queries are 
going to be discussed in more detail in the next sections. 
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5.3 Query: Keep two seconds distance from your predecessor 
The Dutch government recently ran a campaign to keep two seconds distance from your 
predecessor on a highway. This was, of course, to avoid car crashes, but can also be a 
spatiotemporal query on this helicopter data set: Which cars do not keep two seconds distance 
from their predecessor? Or which cars are within two seconds distance in front of another car?  
 
In section 3.4 is stated that queries could be solved in different ways. In this section, these three 
ways of answering the query above will be described. In the first part of this section, the way of 
querying looks like the left figure of figure 3.6 (select with fixed time) and in the second part, the 
query will be answered by using the right figure of figure 3.6 (select with fixed position). In the 
third part, the 3D querying will be described. This method looks the most like figure 3.7. In 5.3.4, 
visualization of this query will be the topic. 

5.3.1 A spatial query, method 1 
To answer the question described above, a spatiotemporal query can be used that is doing a 
selection in the time dimension before doing the spatial query. The first step is to define a 
rectangle in front of each car, where no cars are allowed. The width of this rectangle is the same 
as the width of the road (e.g. 2 meters) and the length of each rectangle is the same as the speed 
(in meters/second) of the vehicle multiplied by two seconds (see figure 5.3).  
 

In the SQL statement described below, can be seen that this rectangle has been build for a straight 
road and the reference system of the coordinates are x-axis (road length), y-axis (road width). For 
more complicated situations, the calculation of the coordinates of these rectangles is a little more 
complicated, because also the driving direction is necessary. The width of this rectangle 
(speed_box) is then perpendicular to the driving direction. You have to calculate such a rectangle 
on every timestamp and for every car.  
 
create materialized view speed_box –-build materialized view with rectangles 
build immediate as 
select a.id, a.t, b.point_speed, 
mdsys.sdo_geometry(2003, NULL,NULL, 
mdsys.sdo_elem_info_array(1,1003,3), 
mdsys.sdo_ordinate_array(a.position.sdo_point.x, (a.position.sdo_point.y-10), 
(a.position.sdo_point.x+b.point_speed/0.18), (a.position.sdo_point.y+10))) as position 
from mov_obj a, point_speed_view b 
where a.id=b.id and a.t=b.t; 

 
The second step is to use the SDO_GEOM.RELATE function or the SDO_RELATE operator to 
check whether another vehicle (point object) is in that area at that time: 
 
 

Figure 5.3 Calculating a rectangle gives the area where no other cars are �allowed� at the same
time. Car x does not keep enough distance to car y at time=i. 
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select a.id, b.id, b.t  
from speed_box a, mov_obj b 
where a.t=b.t and a.id<>b.id  
and sdo_geom.relate (b.position, 'inside', a.position, 0.005)=’TRUE’; -- function 
 
select a.id, b.id, a.t 
from speed_box a, mov_obj b 
where a.t=b.t and a.id<>b.id 
and sdo_relate (a.position, b.position, 'mask=inside querytype=window')='TRUE';  

  -- operator 

 
The main difference is that the spatial operator needs a spatial index and the spatial function does 
not. Unfortunately, the querying is not very fast. For 2300 objects, the query-time is about 3 
minutes (for both the spatial function and the spatial operator). The performance should be much 
better. So looking into the query-plan, to see what happens might be useful: 
 
PLAN_TABLE_OUTPUT 
-------------------------------------------------------------------------------- 
 
--------------------------------------------------------------------- 
| Id  | Operation            |  Name        | Rows  | Bytes | Cost  | 
--------------------------------------------------------------------- 
|   0 | SELECT STATEMENT     |              |   359 | 62107 |    14 | 
|*  1 |  HASH JOIN           |              |   359 | 62107 |    14 | 
|   2 |   TABLE ACCESS FULL  | MOV_OBJ      |  2300 |   103K|     4 | 
|   3 |   TABLE ACCESS FULL  | SPEED_BOXES  |  2300 |   285K|     8 | 
--------------------------------------------------------------------- 
 
Predicate Information (identified by operation id): 
--------------------------------------------------- 
 
   1 - access("B"."T"="A"."T") 
       filter("B"."ID"<>"A"."ID" AND 
              "MDSYS"."SDO_RTREE_RELATE"(B."POSITION",A."POSITION",'mask=ANYINTERACT 
              querytype=window')='TRUE') 
 
Note: cpu costing is off 

 
As you can see in the query-plan described above, for both tables, a �full-table-scan� is used, 
which means that the query-optimizer does not use the spatial index. Even when an index on the 
id and time attributes is used, the spatial index is ignored. So, for this small amount of records, 
the Oracle-query-optimizer thinks that it is more efficient to ignore the index. By making use of 
the index, the query-response times should be much lower and probably with a larger amount of 
data, the query-optimizer will make use of the index, because then a full-table-scan is more 
expensive in terms of performance. 
 

Figure 5.4 the areas in front of the cars overlap, so an effective 2D R-tree indexing is not 
possible. 
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In figure 5.4 you can see an example of the geometry of all rectangles (like figure 5.3) in front of 
one car. As you can see, these rectangles are overlapping each other. This makes the indexing 
very difficult and does not make the querying much faster. This is probably another reason why 
the query-optimizer does not use the spatial index. So, for a very large data set, it is recommended 
to find another method or to split the data set into smaller parts.  
 
As described here, the query was in 2D. Doing the same query in 3D is much more difficult 
because the rectangles (see figure 5.3) will become boxes. This is not a standard Oracle 9i Spatial 
primitive (except for the boxes in the 3D R-tree) and needs to be implemented to do this query. 
Another shortcoming of Oracle 9i Spatial is that the spatial functions and operators do not work 
in 3D. The only operator that works in 3D is the SDO_FILTER, which uses the spatial index to 
identify either the set of spatial objects that are likely to interact spatially with a given object 
(such as an area of inters), or pairs of spatial objects that are likely to interact spatially. Objects 
interact spatially if they are not disjoint. In chapter 6, a method is described to solve this problem.  
 
5.3.2 Spatial querying, method 2 
In the previous section, first selecting all the objects that were on the same time on the road as the 
studying object and then querying the 2D space have solved the query finding the objects that are 
within two seconds distance from each other. In this section, the results for the alternative 
querying method are going to be discussed; first selecting in the spatial dimension and secondly 
in the time dimension. The query can be rewritten as �Which objects are on position x,y between 
0 and 2 seconds from now. Because a vehicle does not come exactly on the same position as its 
predecessor, an interpolation is necessary in the driving direction (by making use of the 2D line 
segments (trajectories), which is one of the materialized views described in chapter 4.1). The 
position x,y needs to be considered as a line segment perpendicular to the driving direction (see 
figure 5.5). So, the query will become an intersection between two sets of line segments. 

 
The following statement will create the materialized view with line segments perpendicular to the 
driving direction (in this case along the x-axis): 
 
create materialized view mov_obj_ppd_lin  
build immediate as  
select t.id as id, t.t as t,  
mdsys.sdo_geometry(2002, NULL, NULL, 
   mdsys.sdo_elem_info_array(1,2,1), 
   mdsys.sdo_ordinate_array(t.position.sdo_point.x, (t.position.sdo_point.y-10), 
   t.position.sdo_point.x, (t.position.sdo_point.y+10))) as position 
from mov_obj t; 

 
In the query, the trajectories need to be found that have a starting timestamp, which is between 0 
and 2 seconds after t=i, where i is the timestamp of the line perpendicular on the driving 
direction. In SQL, the query will look like:  

Driving direction
Ida,xai,yai

Idb,xbi,ybi Idb,xbj,ybj 

Figure 5.5 Finding the objects that were on position xai,yai at time i results in an intersection of two 
sets of line segments. 
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select s.id, t.id, t.t 
from trajectory_2d_mvw s, mov_obj_ppd_lin t 
where  
s.id<>t.id 
and s.t>t.t and s.t<(t.t+20) 
and sdo_relate(s.position, t.position, 'mask=anyinteract querytype=window')='TRUE'; 
 
The answer will be retrieved in around 1 minute and the results are correct. The answers were a 
little bit different then the query described in 5.3.1, but that is because the query was formulated 
in a different way. This querying method is faster than the one in 5.3.1. If you take a look at the 
query plan Oracle uses, you can see that the results are still not satisfactory, because only one of 
the two spatial indexes is used: 
 
 PLAN_TABLE_OUTPUT 
----------------------------------------------------------------------------------------- 
 
----------------------------------------------------------------------------------------- 
| Id  | Operation                     |  Name              | Rows  | Bytes | Cost (%CPU)| 
----------------------------------------------------------------------------------------- 
|   0 | CREATE TABLE STATEMENT        |                    |   301 |  2330K| 11823   (0)| 
|   1 |  LOAD AS SELECT               |                    |       |       |            | 
|   2 |   NESTED LOOPS                |                    |   301 |  2330K| 11823   (0)| 
|   3 |    TABLE ACCESS FULL          | MOV_OBJ_PPD_LIN    |  3594 |    13M|     8   (0)| 
|*  4 |    TABLE ACCESS BY INDEX ROWID| TRAJECTORY_2D_MVW  |     1 |  3956 | 11823   (1)| 
|   5 |     DOMAIN INDEX              | ITRAJECTORY_2D_MVW |       |       |            | 
----------------------------------------------------------------------------------------- 
 
Predicate Information (identified by operation id): 
--------------------------------------------------- 
 
   4 - filter("S"."ID"<>"T"."ID" AND "S"."T_BEG">"T"."T" AND 
              "S"."T_BEG"<"T"."T"+20) 

 
A conclusion that can be drawn is that the query optimizer in some cases chooses not to use the 
spatial index. Why it does not choose the spatial index is not clear, so this could be a 
recommendation for further research. It is expected that the spatial index will be used when the 
data set is much bigger. 

5.3.3 Spatial querying, method 3 
The third method for spatiotemporal querying is querying in the spatial and the temporal 
dimensions at the same time. The rectangles in front of each car (see figure 5.3) will now become 
boxes with the time as height. The main problem is that boxes do not exist in Oracle 9i Spatial. 
Arens [2] has found a solution to implement a 3D primitive into a geo-DBMS. In his thesis, he 
proposes an extension to Oracle Spatial that describes a 3D polyhedron as a set of 3D faces. The 
implementation should be: 
 
INSER INTO table (id, geometry) VALUES (2, 
mdsys.sdo_geometry(3008, NULL, NULL, 
mdsys.sdo_elem_info_array( 
25,1006,1, 29,1006,1, 33,1006,1, 37,1006,1, 41,1006,1, 45,1006,1), 
--25 is the first face, the first 24 are used by the coordinates 
mdsys.sdo_ordinate_array( 
1,1,0, 1,3,0, 3,3,0, 3,1,0, 1,1,2, 1,3,2, 3,1,2, 3,3,2, -- the coordinates 
1,2,3,4, --bottom face starts at index 25 
8,7,6,5, --top face starts at index 29 
1,4,8,5, --front face starts at index 33 
2,6,7,3, --back face starts at index 37 
1,5,6,2, --left face starts at index 41 
4,3,7,8 -–right face starts at index 45 
))); 
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This means that elements of sdo_geometry are: 
- sdo_gtype = 3008 (3D polyhedron) 
- sdo_srid = NULL (no spatial reference system) 
- sdo_point = NULL (no point type) 
- sdo_elem_info = 6 times x,1006,1 (exterior polyhedron boundary, x is where the face starts) 
- sdo_ordinates = 8 coordinate triplets and 6 face descriptions 

 
The only problem is now that Oracle does not recognize 3008 as sdo_gtype. For this case it is not 
important if a real box is implemented, because the only operator that works in 3D is the 
SDO_FILTER operator. So, another object, that has the same bounding box, as the box described 
above should also work. Therefore, implementing a 3D line is also a possibility. This line should 
look like figure 5.6.  
 
The 3D lines that define the box in front of each car are created as: 
 
create materialized view speed_box_lin  
build immediate as 
select s.id, s.t, mdsys.sdo_geometry(3002,NULL,NULL, 
mdsys.sdo_elem_info_array(1,2,1), 
mdsys.sdo_ordinate_array 
(s.position.sdo_point.x, (s.position.sdo_point.y-10), s.t, 
(s.position.sdo_point.x+t.point_speed/0.18), (s.position.sdo_point.y+10), s.t)) as 
position 
from mov_obj s, point_speed t where s.id=t.id and s.t=t.t; 
 
And the 3D spatiotemporal query (which makes use of the SDO_FILTER operator) looks like: 
 
select a.id, b.id, a.t 
from speed_box_lin a, mov_obj_3d_vw b 
where  
b.t=a.t and b.id<>a.id and 
sdo_filter (b.position, a.position, 'querytype=window')='TRUE'; 
 
This statement implies that in the �mov_obj_3d_vw� time is also an attribute. Otherwise instead 
of �b.t�, �b.position.sdo_point.z� must be entered. Both materialized views are indexed spatially 
with a 3D spatial R-tree. 
 

x0,y0,t0 

x1,y1,t1

Figure 5.6 A query with a box is implemented as a SDO_FILTER operator
with a line, which bounding box is the same as the box needed for the query 
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The results of this query are (of course) the same as the query described in 5.3.1, but the query-
response times are not much faster (about 2 minutes). If you look into the query-plan, you can see 
that the query-optimizer also chooses to use a full-table scan for this query.  
 
PLAN_TABLE_OUTPUT 
-------------------------------------------------------------------------------- 
 
------------------------------------------------------------------------------- 
| Id  | Operation            |  Name          | Rows  | Bytes |TempSpc| Cost  | 
------------------------------------------------------------------------------- 
|   0 | SELECT STATEMENT     |                |    34 |   262K|       |   267 | 
|*  1 |  HASH JOIN           |                |    34 |   262K|  3168K|   267 | 
|   2 |   TABLE ACCESS FULL  | MOV_OBJ_3D_VW  |   817 |  3156K|       |     3 | 
|   3 |   TABLE ACCESS FULL  | SPEED_BOX_LIN  |  3431 |    12M|       |     8 | 
------------------------------------------------------------------------------- 
 
Predicate Information (identified by operation id): 
--------------------------------------------------- 
 
   1 - access("B"."SYS_NC00008$"="A"."T") 
       filter("B"."ID"<>"A"."ID" AND 
              "MDSYS"."SDO_RTREE_FILTER"(B."POSITION",A."POSITION",'querytype=window') 
='TRUE') 
 
 
Note: cpu costing is off 

 
It can be concluded that querying in 3D (2D space + time) is in this case not faster than querying 
in 2D. A reason for this is that the query-optimizer does not use the spatial index.  

5.3.4 Visualization 
In �Cartography, visualization of spatial data� [7], Kraak and Ormeling discuss the use of 
dynamic variables opposed to traditional graphic variables, which are used to represent spatial 
data within individual frames. According to them an appropriate dynamic graphic can be used if 
the spatial data it represents is dynamic by nature. But as Bertin has stated, the user should be 
aware of: �movement only introduces one additional variable, it will be dominant, it will distract 
all attention from the other (graphical) variables� [3]. MacEachren [9] has defined the dynamic 
variables: duration, order, rate of change, frequency, display time and synchronization. These 
dynamic variables can be seen as additional tools to design an animation. 
 
Knowing this theory, ESRI has provided an extension on ArcGIS to handle spatiotemporal data: 
the Tracking Analyst [26]. Its functionality is comparable to its predecessor, available as an 
extension to ArcView 3.x, although the possibilities to serve real-time data to the application are 
now part of ArcIMS. It is possible to display point and track data (real-time and fixed time) by 
temporal symbology renderers (shape and size), symbolize time by color (show the aging of 
data), actions (based on attribute or spatial queries) and highlighting. Besides, the user is in 
control by the interactive playback manager to start, pause, stop and rewind the animation (for an 
example, see figure 5.6). Note that the colors of the objects are based on their id (which does not 
add much information), therefore another attribute may be more interesting to use as color 
attribute basis; e.g. acceleration (red: slow down, green: speed up, and yellow: about equal 
speed). 
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As with most cartographical visualizations the dynamic map could be used for exploratory data 
analysis to reveal unknown or difficult to recover information from the data alone. One could 
state database queries to expose this kind of information, but some more qualitative and 
descriptive facts like trends, are perhaps to be appreciated by carefully inspection of the 
animation. For this, the dynamic variables should be appropriate and careful used, with the 
notification of Bertin in mind. 
 
In an animation (see also figure 5.6), vehicles are displayed as circles that are moving on a road. 
The last 10 timestamps are visible (the last timestamp is the biggest and 10 timestamps before the 
smallest). There�s a cross on the circle when a driver did not keep enough distance to his 
predecessor (remember that 10 timestamps is one second).  

 

Figure 5.6 the last 10 timestamps of cars with crosses if they do not keep enough distance. The green
dots are cars that accelerate and red if they decelerate; yellow for equal speed. 

Figure 5.7 Visualization method: Dots (two vehicles) plotted in 3D (time is third dimension).
With red dots, the vehicle is decelerating, green accelerating and yellow if the speed is more or
less equal. Another option is to make the distance to the predecessor as third dimension. 
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Another option is to visualize in 3D, where parts of the trajectory become red when the vehicle is 
decelerating and is green when the vehicle is accelerating; yellow if the speed is more or less 
constant (see figure 5.7). This can be done for instance with ArcScene, also a part of ESRIs 
ArcGIS. 
 

5.4 Query: Calculating traffic flow variables 
The data set used in this case was originally meant for research on traffic flows. These variables 
are used to analyze and test existing traffic models. The most common used traffic flow variables 
are [6]: 
 
- Mean Time Headway: The mean period between the passing moment of the preceding 

vehicle and the vehicle considered on a certain location.  

1

1 n

i
i

Th h
n n=

= =∑
 

- hi is the time between two passing cars on a road segment 
- T is the length of the period 
- n is the number of cars on the road segment. 

- Mean Distance Headway: The mean distance between the rear bumper of the preceding 
vehicle and the rear bumper of the considered vehicle at a specific moment in time on a road 
segment. 
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j
j
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- sj is the distance headway of the jth vehicle 
- X is the length of the road segment 
- m is the number of vehicles present on the road segment. 

- Intensity: number of vehicles in a given time interval on a specific location. 
1nq

T h
= =

 
- n is the number of vehicles 
- T is the length of the period of time 

- Density: number of vehicles per unit of length on a specific road segment. 
1mk

X s
= =

 
- m is the number of vehicles 
- X is the length of the road section 

- Mean speed (instantaneous): mean speed on a road section at a given moment.  
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i
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= ∑
 

- vi is the speed of vehicle i at a given moment 
- n is the number of vehicles on a road section at a given moment. 

The variables mean speed, density and mean distance headway are considered on a road section 
(for instance one lane between kilometers a and b) at a specific moment in time. The variables 
intensity and mean time headway are considered on a cross section of a road or lane for a certain 
period of time.  
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It would be very useful for traffic flow researchers to have these variables in the geo-DBMS if 
you also keep the data in the geo-DBMS. So, with a query (in a view), these variables can be 
calculated.  

 
For the variables mean speed, density and mean distance headway, polygons are defined that are 
the same as the lanes. So for every timestamp on every lane, these variables were calculated. An 
example for lane number 2 and after 12*0.1 seconds (see figure 5.10): 
 
select  
avg(sdo_geom.sdo_area(b.position,0.1))/((count(a.id))*100) “MDH (m)”, 
count(a.id) / (avg(sdo_geom.sdo_area(b.position,0.1))*0.01) “Density (veh/m)”, 
sum(c.point_speed)/count(c.id) “Mean_speed (km/h)” 
from mov_obj a, lanes b, point_speed c 
where b.lane_nr=2 
and a.t=12 
and a.id=c.id 
and c.t=12 
and sdo_relate (a.position, b.position, 'mask=anyinteract querytype=window') = 'TRUE'; 
 
The results: 
 
MDH      DENSITY    MEAN_SPEED 
(m)         (veh/m)   (km/h) 
---------- ---------- ---------- 
42.0466667 .023783098      16.2 
 
Also the other two variables, mean time headway and intensity can be calculated, with such a 
query (where the time period T is 10 (=1 second)). The mean time headway can only be 
calculated when the number of vehicles is not equal to zero: 
 
select count(a.id)/1 as intensity (veh/s), 1/count(a.id) as MTH (s) 
from trajectory_2d_vw a  
where a.t1>0 and a.t1<10 and 
sdo_relate(a.position,  mdsys.sdo_geometry(2002,NULL,NULL, 
mdsys.sdo_elem_info_array(1,2,1), 
mdsys.sdo_ordinate_array(450,240,450,302)),'mask=anyinteract querytype=window')='TRUE'; 

 
These variables are calculated on lines (like detection lines on a highway). The number of 
vehicles passing such a line is calculated. So for every line, the two variables are calculated. The 
results for the highlighted line (figure 5.8) are: 
 

Figure 5.8 The variables are calculated on the lines and the lanes 
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INTENSITY        MTH 
(veh/s)          (s) 
---------- ---------- 
.818181818 1.22222222 
 

5.4 Conclusions 
 
In this chapter, the results of the first case study are discussed. The generic model, as described in 
chapter 4, is successfully implemented in Oracle 9i Spatial and loaded with test data from this test 
case. With a normal 2D R-tree, the data is spatially indexed and with a small set of views, the 
data is queried. Simple queries like �maximum speed� or �time of acceleration� can easily be 
done. Two more complex queries are discussed, calculating the vehicles that are within two 
seconds distance from their predecessor and calculating variables that are used in traffic flow 
modeling. 
 
Querying is possible in three different ways: 
- first querying in the spatial dimensions and after that in the time dimension,  
- the second method is first querying in the time dimension and after that in the spatial 

dimensions  
- and the third method is querying in 3D, where the spatial and the temporal dimensions are 

queried at once (see chapter 3).  
These methods are compared in this case study. The query �Which objects keep less than 3 
seconds distance from their predecessors?� is posed in three different ways, �Which objects are in 
two seconds distance from vehicle A?�, �Are there any objects on position xa,ya between now and 
two seconds?� and the third way was the first query in 3D (2D space + time). The answers for the 
first and second method were not exactly the same, but that is because the queries were not 
exactly the same.  
 
But what differ are the query response times. For the first and the third method, the query 
optimizer does not use the spatial index and for the second method, only one spatial index is used 
and because of that much faster. It is expected that when the number of objects grow, the query 
optimizer will make use of the spatial index, because a full table scan will be more expensive in 
that case in terms of performance. When the query optimizer makes use of the spatial index and 
when it does not, could be a recommendation for further research. 
 
A choice has to be made, which of the four representations, based on four different geometries is 
to be used as the base table. The 2D points, the 2D lines, the 3D points or the 3D lines. If one is 
chosen (for instance 2D points), the other primitives can be derived in materialized views.  
 
The choice also depends on whether you would like to use 2D or a 3D spatial index (which could 
also be functional index on a 2D location and time). A 3D index should be better, because then 
the objects that are close to each other in space and time are close to each other in the R-tree. This 
is not tested.  
 
The third consideration is the spatiotemporal queries, which you would like to use. In Oracle 9i 
Spatial, the number of 3D queries is limited (only the SDO_FILTER is available in 3D) and the 
number of 3D primitives is limited (for instance, a box is no primitive in Oracle 9i Spatial; 3D 
boxes are only possible in indexes, not as a real primitive).  
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With the ArcGIS 8.3 Tracking Analyst, the moving objects can be animated in an effective way. 
By careful inspection of the animation, a lot of information can be derived from the information, 
like the vehicles that accelerate or the vehicles that are driving too close to their predecessors.  
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6. Case II - Taxi cabs in Rotterdam (real-time) 
 
The Advise Office for Geo-Information and ICT (AGI), one of the parts of the Dutch Ministry of 
Traffic and Public Works, has a data set available for research, where GPS tracking data is stored 
of a number of taxis operating near Rotterdam. For a period of two years, data has been captured 
and stored in ASCII files. For this case, a set of one week tracking data is used. The tracking data 
has already been preprocessed, which means that the records, which for instance only contain 
zeros as a result of too few satellites, are deleted from these files. So, the used data set is a raw 
data file, where all �not possible measurements� are deleted.  
 
Every two or three seconds, a GPS point is stored on a batch in the taxi, which has been read out 
into an ASCII file. So, each batch number stands for a taxi number. All these files are inserted 
into one table in Oracle 9i Spatial, which results in a table with more than 250.000 records (about 
60 taxis during one week).  Each record contains the following attributes: 
 
SQL> describe taxidata; 
 Name                                      Null?    Type 
 ----------------------------------------- -------- ---------------------------- 
 POSITION                                           MDSYS.SDO_GEOMETRY 
 T                                                  DATE 
 TAXI_ID                                            NUMBER(8) 

 
The original data set contained much more information about the taxi itself, but that is of less 
importance in this case. With this table, the first part of the generic model is a fact. Internally in 
the DBMS, the DATE data type is treated as a number that corresponds with time in (metric) 
days.  
 
The goal of this case is to investigate how the generic model works for a real-time case and how 
indexing works for 2D and 3D (2D location + time) with a continuously growing data set. Also 
querying spatiotemporal data in 2D and 3D will be an issue in this case. 
 
Because the goal of this chapter deals with real-time data and because all the data is collected in 
advance, the data has to be simulated as real-time. Section 6.1 will describe how the real-time 
situation is simulated. Section 6.2 will deal with indexing issues. Indexing is important, because it 
gives faster access of your data. Especially in real-time, indexing is difficult and has to be 
handled with great care. Querying the data set will be discussed in 6.3 and 6.4. Because the data 
set is big, the performance of the geo-DBMS with the spatial index could be tested. Section 6.3 
deals with 2D querying and 6.4 with querying in 3D, which needs a special treatment because of 
the limitations of Oracle 9i Spatial. In the last section 6.5, some conclusions are derived from this 
test. 
 

6.1 Real-time simulation 
The data used for this case is collected in 1998. To make this case �real-time�, the data has to be 
simulated as being real-time. ESRI will soon release its �ArcIMS Tracking Server� [27]. The 
ArcIMS Tracking Server provides a solution for collecting and sending real-time data from many 
data sources and formats to Web and desktop clients. The Tracking Server contains two 
functional elements: the Real-Time Message Server and the Real-Time Web Mapping 
component. These elements work together to collect and distribute real-time data to the people 
who use it on the Web and desktop clients [4].  
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The main goal of using ArcIMS Tracking Server in our application is simulating a real-time 
situation in such a way that a table in Oracle 9i Spatial will be filled for as long as the simulation 
exists. In this way, the index and the generic model could be tested and bottlenecks in 
spatiotemporal modeling in a real-time situation could be found. Unfortunately, the ESRI ArcIMS 
Tracking Server is not released at the moment of writing this thesis. Therefore, another solution 
has to be found.  
 
The solution is a PL/SQL built application, which selects every 10 seconds objects from the 
original table and inserts this into another table. The selected objects are objects within a time 
interval of 10 seconds. This time interval shifts while time passes. In this way, there is a 
continuously growing table with spatiotemporal data.  
 
insert into taxi_temp2     -- the new growing table 
  (id, position, t)  
select  
  id, position, t  
from  
  taxidata                                       -- the original data set 
where  
  t<(current_date+10/(24*60*60)-2082.6) and   
  t>=(current_date-2082.6);    

-- 2082.6 is an initiation value, which is the difference between 
now and the first data point in days. The value 10/(24*60*60) means 
10 seconds. So data is selected in the interval [now-init_value, 
now-intit_value+10sec> 

 
This SQL statement is repeated every 10 seconds by using a �shell-script� that sleeps for 10 
seconds (see appendix B) and then posing the above described SQL-statement. So the new table 
�taxi_temp2� will on the end of the simulation be a copy from the original table, at least in the 2D 
case. The chosen base table contains 2D data. So for testing the 2D index, this real-time 
simulation suffices. For the 3D case, the script above looks a little bit different (see appendix B), 

Figure 6.1 The growing of the table in relation to the time. The number 1 on the x-axis means 
at 12:00 midnight after one day. 
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because the �position� has to be a 3D coordinate, where the third coordinate is �time�, not as a 
�date�-data type, but as a number. An alternative is to use a functional index, where the x,y-
position of the vehicles and the time dimension are treated separately in the model, but are 
combined in the index. 
 
When this real-time simulation is used, the data set that is the result after seven days of growing 
does not contain the same amount of records as the original table. This is because the �shell-
script� sleeps for ten seconds, and then it is inserting new records in the table (which costs time) 
and sleeps again for 10 seconds. So 10 seconds of data growth is put into the growing table in a 
time that is a little bit longer than 10 seconds. So there are some gaps in the growing data set. But 
this has no influence on the rest of the results, because there is still a continuously growing data 
set which is nearly as large as the original data set. 
 
In figure 6.1, the growing of the table in relation to the time is given. You can see the difference 
between day (line is more vertical) and night (line is more horizontal). This pattern is shown 
every day. 
 

6.2 Real-time indexing 
Now there is a continuously growing data set. Before spatial querying, indexing the continuously 
growing data set is necessary, because it improves query times. The question is now, how often is 
rebuilding the spatial index necessary.  
 
Not every time a record is inserted into the growing table, the index has to be rebuilt. It depends 
on the parameters Oracle uses for the number of leaf nodes and the number of entities allowed in 
each leaf node. Every time, a leaf node has to be split or if the depth of the R-tree has to grow, the 
pointers in the index that refer to the clustering of the data on the hard disc will be involved. 
Oracle uses a number that gives an indication of the R-tree quality. This number increases while 
inserting records into a table. Oracle compares this quality number after inserting a record with 
the quality number after updating the R-tree. If the quality number increases with 50% (this is the 
default), Oracle �advises� to rebuild the index.  
 
The quality parameter can increase enormously if a new object is inserted into the table that is 
outside the bounding box of one of the nodes in the R-tree or if the number of objects in a leaf 
node is too high, so that the index needs to go one level deeper. 
 
select  
sdo_tune.rtree_quality('user','index_name'), 
from dual; 
 
With the SQL statement above, the R-tree quality is given. Oracle just �advises� to rebuild the 
index, but does not do this automatically. With the script, given in appendix B, the index quality 
number will be checked and the R-tree will be rebuilt if necessary.  Every minute this script is 
executed, for getting an overview of the index during the test.   

Results for the 2D and 3D R-tree 
It is expected that on the first part of the test, the index have to be rebuild often. Because the tree 
is not very deep, the numbers of objects that will fit into the leaf nodes are limited. When the R-
tree is going to be deeper (more levels of non-leaf nodes), the number of objects that will fit in the 
leaf nodes will grow and the tree will be more stable.  
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The expectations of the test with the 3D index differ from the 2D case. Because the time 
dimension grows continuously, the result of the 3D test should not be the same as the result from 
the 2D test. It depends on the scale of the time parameter in the 3D index, how many times the 
index needs to be rebuilt. If the time parameter has a large scale (for instance you use minutes as 
unit), the 3D space will grow very fast in the time-dimension. If you use for instance days as a 

Figure 6.2. Above the Oracle quality parameter during the 2D test. The index is rebuilt only in the 
beginning of the test, later it stays more or less constant. Under, the behaviors of the 3D index, where
the quality parameter grows during the test, because the time dimension grows. 
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unit (which is actually used), the 3D space will not grow so fast, so it is not necessary to rebuild 
the index that often.  
 
In figure 6.2, you can see how the index parameter behaves during the test and demonstrates that 
this is according to the expectations. In figure 6.3, you can see the data grow in 2D. In orange, the 
points objects are drawn that were inserted into the table on the first day and in green the point 
objects that were inserted on the second day. You can see that the area, in which the point objects 
exist, has grown. So, the bounding rectangles from the R-tree needed to be enlarged and the tree 
becomes unstable and had to be rebuilt. After this second day, the area in which the objects exist 
does not grow anymore and you can see that the index quality parameter stays constant. 
 

Another thing that can be said about these results is that the index quality parameter will increase 
when the number of objects increases. In the beginning the parameter grows faster than later in 
the test. What the effect is on the query times will be discussed in 6.3.  
 

6.3 Querying the real-time data in 2D 
During each test (the 2D test and the 3D test), the continuously growing data set has been 
queried. To test the generic model for this real-time case, a query has been used that has been 
repeated every minute. For five regions, the query was �How many objects were in polygon P the 
last hour�. In two dimensions, this query is relatively easy. But in 3D, this query will be �How 
many objects were in this box (because time is the third dimension).� This query will be 
discussed in paragraph 6.4.  

Figure 6.3. In orange the point objects that were added into the table on the first day and in green
the objects that were added on the second day. Also the querying areas are drawn. 
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For the 2D query, a spatial operator (SDO_RELATE) has been used. As said before, for the 
spatial operator, the data set must be spatially indexed. The two data sets that have been 
compared in the query are taxi_temp2 (the continuously growing table with point data) and the 
study_area (the five polygons which have been queried). 
 
The used polygons differed in size. One covered the whole area, one the whole urban area in and 
around Rotterdam, one covered the centre of Rotterdam and two small areas, the Rotterdam Train 
Station and a highway cross Ridderkerk.  
 
The used query looks like this (both taxi_temp2 and study_area make use of 2D spatial index:  
 
select  
  count(a.id),  
  b.name  
from  
  taxi_temp2 a,     --growing table with point objects 
  study_area b     --table with 5 polygons 
where  
  sdo_relate(a.position, b.position, 'mask=inside querytype=window')='TRUE'  
  and a.t>(current_date-2082.6-1/24)   --2082.6 is the initialization value 
  and t<= (current_date-2082.6)  
group by b.name; 
 
In a �Log-file�, all the answers and query times are collected (for a script see appendix B). A 
graph of all the query times looks like figure 6.4.  

 
If you compare this result to the graph of the growing data set (figure 6.1), you can see that there 
is a dependency. When many objects are added, the query time increases (that is a result of the 
fact that there are more answers). The average query time is 39 seconds. The answers can be 

Figure 6.4 The query times of a spatiotemporal query: �How many objects were in these polygons the last
hour?� on the growing spatiotemporal data set. 0.0 is at night, 0.5 is at 12:00 PM and so on. 
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found in figure 6.6. In contradiction to the prediction that the query time was dependant on the 
index, the query time is mainly dependant on the number of selected objects within the time 
frame.  
 
In the query described above, the sdo_relate operator has been used. This is an operator that 
checks if two geometries interact, also for complex geometries. Another option is to use the 
sdo_filter operator. This is an operator that checks if the bounding rectangles (or boxes) of two 
geometries interact. For a rectangle and for a point, the bounding rectangle is equal to the object 
itself. Because this sdo_filter operator is less complex, query times should be faster. This 
prediction is not true because the query optimizer does not use the spatial index.  
 
Query plan with an index on the 2D geometries, when making use of the sdo_filter operator 
(which lets the query optimizer choose for a full-table scan): 
 
PLAN_TABLE_OUTPUT 
-------------------------------------------------------------------------------- 
 
----------------------------------------------------------------------- 
| Id  | Operation            |  Name          | Rows  | Bytes | Cost  | 
----------------------------------------------------------------------- 
|   0 | SELECT STATEMENT     |                |     1 |  7862 |   608 | 
|   1 |  SORT AGGREGATE      |                |     1 |  7862 |       | 
|*  2 |   FILTER             |                |       |       |       | 
|   3 |    NESTED LOOPS      |                |   181 |  1389K|   608 | 
|*  4 |     TABLE ACCESS FULL| TAXIDATA_TEMP  |   221 |   850K|   166 | 
|*  5 |     TABLE ACCESS FULL| STUDY_AREA     |     1 |  3923 |     2 | 
----------------------------------------------------------------------- 

 
The resulting query response times are therefore the same as shown in figure 6.4.  
 

6.4 Querying in 3D 
The same test as in 2D has been carried out in 3D with respect to the real-time simulator and 
rebuilding the index. Some things are more difficult in 3D, for instance the 3D querying. Now, a 
point is not a x,y pair anymore and a polygon a series of x,y pairs, but the point is now an x,y,t 

t

y

x 

Study area
t=0

t=1

Figure 6.5 The query �how many polygons were in polygon P (is a box) the last
hour� becomes a 3D query, where the third dimension is t. 
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triple and the polygon is a series of x,y,t triples. So your query is no longer �How many objects 
were in polygon P the last hour?� but it will be �How many objects were in box B�, where Bx=Px, 
and By=Py, and T ∈  [tnow, tnow  -1 hour]. This query box looks like figure 6.5. 
 
3D points 
First of all, it is necessary to know how the 3D points are implemented in Oracle 9i Spatial. 
Normally, a 3D point is implemented in Oracle like this: 
 
INSERT INTO table (id, position) VALUES (1, 
Mdsys.sdo_geometry(3001, NULL,  
mdsys.sdo_point_type(1,1,0), --the point coordinates (1,1,0) 
NULL, NULL)); 
 
In this mdsys.sdo_point_type, the three values must be of the NUMBER type. In the original 
table, the time is a DATE type. So, this DATE type needs to be converted into a NUMBER type 
(for instance the number of seconds). There is chosen for a solution where time=current_date-
min(time). This returns a  NUMBER type that will become bigger every second. 
 
Secondly, the study box needs to be implemented. The same method has been used that has been 
described in section 5.3, which makes use of the 3D bounding box of a 3D line. 
 
SDO_FILTER 
In Oracle 9i Spatial, only one operator works in 3D. This is the SDO_FILTER. This operator uses 
the spatial index to identify either the set of spatial objects that are likely to interact spatially with 
a given object (such as an area of interest), or pairs of spatial objects that are likely to interact 
spatially, based on a box overlap. Objects interact spatially if they are not disjoint.  
 
This operator performs only a primary filter operation based on overlapping boxes. The 
secondary filtering operation, performed by the SDO_RELATE operator, can be used to 
determine with certainty if objects interact spatially, but this is only relevant for other objects than 
boxes or rectangles, because the box or rectangles are equal to the Minimum Bounding Boxes or 
Rectangles in the index. 
 
To see if two groups of polygons are likely to interact spatially (based on the index), the 
SDO_FILTER operator is implemented like: 
 
SELECT A.gid 
  FROM Polygons A, query_polys B 
  WHERE SDO_FILTER(A.Geometry, B.Geometry, ‘querytype=WINDOW’)=’TRUE’; 

 
In this example, the table Polygons A must by spatially indexed. It is not said that all objects from 
Polygons A and query_polys B interact spatially, but their bounding rectangles interact. 
 
The 3D query 
Now, there is a 3D line, with a bounding box. When we go back to the query �How many point 
objects were in polygon P the last hour?� in 3D, the 3D line is not the same for every query. The 
idea is to repeat the query every minute, so the line will move into the time direction every 
minute. Because the 3D box changes every time you pose it (because time passes), a new record 
with geometry needs to be inserted into the table with �study boxes� and the index needs to be 
rebuild. After that, the query can be posed. All of this looks like: 
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delete study_boxes; 
 
insert into study_boxes (position) values 
(mdsys.sdo_geometry(3002,NULL,NULL, 
mdsys.sdo_elem_info_array(1,2,1), 
mdsys.sdo_ordinate_array(35680,403400, 
((select current_date-min(a.t) from taxidata a)-(1/24)), 
   151440, 489500, 
   (select current_date-min(a.t) from taxidata a)))); --insert the box into table 
 
alter index Istudy_boxes rebuild parameters ('sdo_fanout=32 sdo_indx_dims=3 
layer_gtype=line');     --rebuild the index of the box 
 
set timing on; 
insert into stquery_results4 
select 
 count(a.id), current_timestamp 
from taxidata_temp4 a, study_boxes b 
where sdo_filter (a.position, b.position, 'querytype=window')='TRUE';  --the actual query 
set timing off; 
 
The �current_date-min(a.t)� is used, because this is the same as the implemented t-value in the 
x,y,t triple in the taxidata_temp4 table (the growing table with 3D point data). This query has 
been carried out for two of the same �polygons� as in the 2D case. So, the same query (with 
different polygons) has been carried out two times every minute, independent from each other. In 
figure 6.6 you can see the results of both queries.  
 
The query-plan for the 3D sdo_filter operation looks like:  
 
PLAN_TABLE_OUTPUT 
-------------------------------------------------------------------------------- 
 
-------------------------------------------------------------------------------- 
| Id  | Operation                  |  Name           | Rows  | Bytes | Cost(%CPU) | 
-------------------------------------------------------------------------------- 
|   0 | SELECT STATEMENT           |                 |     1 |  7866 | 13929   (0)| 
|   1 | SORT AGGREGATE             |                 |     1 |  7866 |            | 
|   2 | NESTED LOOPS               |                 |   172K|  1290M| 13929   (0)| 
|   3 | TABLE ACCESS FULL          | STUDY_BOXES     |    82 |   314K|     2   (0)| 
|   4 | TABLE ACCESS BY INDEX ROWID| TAXIDATA_TEMP4  |  2098 |  8078K| 13929   (1)| 
|   5 | DOMAIN INDEX               | ITAXIDATA_TEMP4 |       |       |            | 
-------------------------------------------------------------------------------- 
 

So, you can see (in figure 6.6) that the queries give realistic and proposed correct results. But 
something more important is the time that is necessary for answering the question. In figure 6.7, 
you can see the query-times elapsed (from the log-file) for both queries as a function of the time. 
It can be concluded that querying the complete data set with the SDO_FILTER operator is very 
quick (hardly never more than one second response time). It can also be concluded that the query 
response times are not too much dependent on the quality of the index, because the query 
response times do not increase when the number of objects in the queried data set increase. From 
the query-plan it can be concluded that in this query, the spatial index is used and works very 
well. 
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Figure 6.6 Results of 3D query, where in the upper graph, you see the number of objects in the total 
area for the last hour and in the lower graph, you see the results for a small part of the area. 
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Figure 6.7 Query response times for the 3D query done with the SDO_Filter operator on the
continuously growing dataset. In the upper graph, you can see the response times for the query 
done on the total area and in the lower graph, you can see the query posed on a smaller area. 
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6.5 Conclusions 
A real-time simulator has been built to test if the generic model is flexible and fast. Because at the 
moment of writing this thesis, the ESRI ArcIMS Tracking Server was not available, a PL/SQL 
application has been build, where a table is growing every 10 seconds with more and more data. 
So there is a continuously growing table with point data. To see what happens to the 2D and 3D 
index in the case of a real-time data set, some tests have been carried out. Also 2D and 3D queries 
have been done on the continuously growing data set. In this section, some conclusions that can 
be derived from these tests are discussed. 
 
The first conclusion is that the generic model also suffices while using a real-time data set. A 
continuously growing data set has been successfully implemented into the generic model with 
views. The model is fast and flexible. 
 
It is possible to implement an index that can be rebuilt automatically. Oracle 9i Spatial uses a 
quality parameter. The quality parameter can increase relatively fast if a new object is inserted 
into the table that is outside the bounding box of one of the nodes in the R-tree or if the number of 
objects in a leaf node is too high, so that the index needs to go one level deeper. 
 
For the 2D R-tree, the quality of the index does not increase when the number of objects will 
become bigger. Oracle 9i Spatial uses a number that gives an idea of the quality of the R-tree. 
This quality parameter increases when new objects are inserted into the 2D R-tree. The more 
objects are entered into the table and the more these objects cover a larger part of the area, the2D 
R-tree will become more stable and does not need to be rebuilt very often.  
 
The quality of the 3D R-tree will increase when time passes in the real-time situation. This is 
because the objects that are inserted in the table are not close to the existing objects in the 3D 
space (two spatial and one temporal dimension). That is because the data set is growing in the 
temporal dimension, while the spatial dimensions were covered after a while. Depending on the 
units used for the spatial dimensions (days or minutes), the 3D R-tree needs to be rebuilt often. 
 
The query time for the 2D query �Which objects where in polygon P during the last hour?� is not 
dependant on the number of objects in the continuously growing table. It depends on the number 
of objects that has to be selected. A reason for this could be that the continuously growing table is 
sorted on time, because when new records are inserted, they will be inserted on the end of the 
table. So, all objects that were inserted in the last hour are sorted close to each other on the end of 
the table. 
 
Doing the same query in 3D is much more difficult, because for the query �Which 3D points were 
in box B?�, boxes need to be defined. In this case, the height of the query box is �one hour�. The 
width and breadth are the same as the polygons in the 2D query. As a solution, the SDO_FILTER 
operator has been used. This is the only operator that works in 3D and selects objects that are 
likely to interact based on the index. 
 
It can be concluded that querying the complete data set or a part of it with the SDO_FILTER 
operator is very fast (hardly never more than one second response time). It can also be concluded 
that the query response times are not dependent on the quality of the index, because the query 
response times do not increase when the number of objects in the queried data set increase.  
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7. Conclusions and recommendations 
 
Spatiotemporal data is becoming more and more important for many different applications. An 
example of spatiotemporal data is the moving point object data. Geo Database Management 
Systems have the advantage that large amounts of geo-data can be stored and accessed in an 
efficient way. Especially when aspects like multiple users, data consistency, redundancy, and 
integrity are important, DBMSs have many advantages. In Oracle 9i Spatial, there are spatial 
functions and operators available to query the geographical data.  
 
This leads to the following question, which is the main question of this research: 
 

What is the potential and performance of a geo-DBMS to structure, index, query and 
visualize spatiotemporal point clouds of moving objects? 

 
Some models are described that are able to structure moving point data in a geo-DBMS 
environment. All these models have some disadvantages. A model is introduced in this thesis that 
is generic, which means that it should be suitable for all applications that deal with moving point 
object data.  
 
The main principle of this generic model is choosing a base table, from which, by using 
(materialized) views, three other data representations (based on different geometric data types) 
easily could be derived. In this way a set of four data representations is available for querying. 
These four data types are 2D points (x,y), 3D points (x,y,t), 2D lines (xi,yi, xi+1,yi+1) and 3D lines 
(xi,yi,ti, xi+1,yi+1,ti+1) where in the 2D representations time is regarded as an attribute. 
 
This model is implemented for two cases; the first case deals with static data (where the data has 
been collected in advance and analyzed in the DBMS afterwards). The second case deals with 
real-time data, where the collection and analysis are done at (nearly) the same time. 
 
Conclusions from this research are described in this chapter. These conclusions will answer the 
main question and the sub-questions defined in the introduction (chapter 1). In section 7.1, these 
conclusions are described, followed by some recommendations for future research in 7.2. 
 

7.1 Conclusions 
The conclusions described in this section can also be found in the chapters 2 to 6 in this thesis. 
These conclusions will be discussed using the sub-questions described in chapter 1. 
 
Why could a geo-DBMS be an efficient and flexible way to store moving point data? 
This thesis deals with moving object data, which is one special type of spatiotemporal data. The 
question is now, why should these data be stored and queried in a spatial DBMS? Because a 
complete suite of spatial queries and data types are already implemented in a geo-DBMS (Oracle 
9i Spatial) and because a DBMS takes care of the data, it is at least worth to investigate whether it 
is useful to choose for a database approach or not. Another reason is that it is possible to define 
ad-hoc queries in an easy way (flexibility) and because DBMSs have a good performance 
(efficiency). 
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Which methods are available to structure and index moving point objects in a geo-DBMS 
context? 
Langran described a framework for a temporal GIS by giving technical requirements. One of 
these technical requirements is a conceptual model, from which the modeling of dynamic point 
clouds is an example. Four conceptual models are described. These models have some 
disadvantages. For instance, the model made by Vazirgiannis and Wolfson is especially 
developed for road networks and the MOST-datamodel (developed by Wolfson) is relatively 
complicated and suitable for objects that move freely in space like aircrafts. The other two 
approaches, described by Marchand et al and the one described by Meng and Ding have the 
disadvantage that they have a lot of redundant storage. To overcome these disadvantages, a new 
approach is introduced in this thesis. This model could be used for every purpose (this makes it 
generic) and it does not contain any redundant storage. 
 
Efficient querying is only possible if an efficient storage structure and indexing method has been 
chosen that organizes the data in an optimal way for the query. If you would like to do a query, it 
is possible to make a copy of (a part of) the original data set, find the most efficient indexing 
method and do the query. This method is in many cases fast (except that making a copy of the 
data can be slow), but making copies of tables can harm the consistency of your data. So, an 
intelligent, but perhaps less fast querying method is necessary on the original table. 
 
In Oracle 9i Spatial, only the 2D and the 3D R-tree indexing methods are implemented and 
suitable for spatiotemporal data. The choice of which indexing method is going to be chosen as 
the most efficient and the most flexible one is limited. The choice for 2D or 3D spatial indexing 
depends on the queries that are going to be examined. 
 
Does a generic model exist to implement moving point objects in a geo-DMBS like Oracle 9i 
Spatial? 
A generic model is introduced for modeling moving object data in a geo DBMS. Adapting the 
generic model, by choosing the appropriate storage and index structures and (materialized) views, 
makes it efficient for a given application, that is, a set of typical queries for a given (static or 
dynamic data set). With a normal 2D R-tree index, the 2D data (and a 3D R-tree for 3D data) is 
accessed and with a small set of views and materialized views, the data is queried. 
 
It makes difference if your application deals with data that is already collected (post-processing) 
or with real-time data. In the first case, for instance indexing is much easier because all the data is 
already in the DBMS. In the real-time case, the data set is continuously growing, which needs 
special treatment of the index and the updating of the views and materialized views. How many 
times these views have to be updated and how often the index needs to be rebuild, depends on 
your application, the amount of data and the users� intentions. 
 
A choice has to be made, which of the four primitives is to be used as the base table. The 2D 
points, the 2D lines, the 3D points or the 3D lines. If one is chosen (for instance 2D points), the 
other primitives can be derived in (materialized) views. The choice for a base table depends on 
the spatiotemporal queries, which you would like to use. In Oracle 9i Spatial, the number of 3D 
queries is limited (only the SDO_FILTER is available in 3D) and the number of 3D primitives is 
limited (for instance, a box is no primitive in Oracle 9i Spatial). There only exist boxes (3D) in 
the 3D R-tree index (Minimum Bounding Box). These can be used for the querying with the 
SDO_FILTER operator. 
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Is this generic model sufficient for a static data set where the moving point object data is 
collected in advance? 
The generic model is successfully implemented in Oracle 9i Spatial and loaded with test data 
from a test case with moving object data that were collected in advance. Every 0.1 seconds, 
photos of a piece of highway were taken from a helicopter. The vehicles in these photos were 
detected and tracked in multiple photos. This resulted in a data set (2300 records) with positions 
and times for every vehicle that was driving on that part of the highway in that period.  
 
With an R-tree index, the data is accessed and with a small set of views, the data is queried. 
Simple queries like �maximum speed� or �time of acceleration� can easily be done. Two more 
complex questions are discussed, calculating the vehicles that are within two seconds distance 
from their predecessor and calculating variables that are used in traffic flow modeling. 
 
Querying is possible in three different ways. The first method queries the spatial dimension 
before querying the time dimension. The second method is the opposite, first querying the 
temporal dimension before querying the spatial dimensions. And the third method queries the 
spatial and temporal dimensions at once with a 3D query. These methods are compared in this 
static case study.  
 
The query �Which objects keep less than 2 seconds distance from their predecessors?� is posed in 
three different ways, �Which objects are in two seconds distance from vehicle A?� and �Are there 
any objects on position xa,ya between now and two seconds?�. The results were a little bit 
different because both queries are not exactly the same. Querying in three dimensions resulted in 
the same answers as for the first method. 
 
Something more important is the query times. For the first and the third querying method, the 
query optimizer did not use the spatial index, but chose for a full table scan. For the second 
method, only one spatial index is used and is because of that much faster. It is expected that when 
the number of objects increase, the query optimizer will make use of the spatial index, because a 
full table scan will be more expensive in that case in terms of performance. 
 
With the ArcGIS 8.3 Tracking Analyst, the moving objects can be animated in an effective way. 
By careful inspection of the animation, a lot of information can be derived from the information, 
like the vehicles that accelerate or the vehicles that are driving too close to their predecessors. 
 
Is this generic model sufficient for a dynamic data set, where the moving point objects are 
collected real-time? 
For the second case study, a data set has been used in which about 60 taxis have been driven near 
Rotterdam for two years. One week of this data set has been used (250000 records) to test the 
generic model for real-time storage and analysis. Because no real-time data was available, a real-
time simulator has been built on this taxi data set to test if the generic model is flexible and fast in 
real-time situations.  
 
It can be concluded that the generic model also suffices when using a real-time data set. A 
continuously growing data set has been successfully implemented into the generic model with 
views. The model is fast and flexible. It is possible to implement an index that can be rebuilt 
automatically.  
 
For the 2D R-tree, the quality of the index does not increase when the number of objects will 
become bigger. Oracle 9i Spatial uses a number that gives an idea of the quality of the R-tree. 
This quality parameter increases when new objects are inserted into the 2D R-tree. The more 
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objects are entered into the table and the more these objects cover a larger part of the area, the2D 
R-tree will become more stable and does not need to be rebuilt very often.  
 
The quality of the 3D R-tree will increase when time passes in the real-time situation. This is 
because the objects that are inserted in the table are not close to the existing objects in the 3D 
space (two spatial and one temporal dimension). That is because the data set is growing in the 
temporal dimension, while the spatial dimensions were covered after a while. Depending on the 
units used for the spatial dimensions (days or minutes), the 3D R-tree needs to be rebuilt often. 
 
The query time for a 2D query �Which objects where in polygon P during the last hour?� is not 
dependant on the number of objects in the continuously growing table. It depends on the number 
of objects that are selected. A reason for this is that the objects that are inserted on the end of the 
table. So the continuously growing table is sorted on time. Because of that, he used 2D query 
selects objects that are close to each other in the sorted table. 
 
For querying in 3D, the SDO_FILTER operator has been used. This is the only operator that 
works in 3D and selects objects that are likely to interact based on the index. It can be concluded 
that querying the complete data set or a part of it with the SDO_FILTER operator is very fast 
(hardly never more than one second response time). The 3D R-tree gives for this query fast access 
to the data. 
 

7.2 Recommendations 
Some recommendations will follow from the conclusions described in 7.1. 
 
Tests have been carried out to demonstrate if the generic model described chapter 3 is fast and 
flexible. This has been done for 2 and 3 dimensions. It is recommended to prove this also for four 
dimensions (x,y,z and time). Then, this model could also be applied to for instance airplanes.  
 
Another recommendation is to test the ESRI ArcIMS Tracking Server. It is assumed that this 
makes spatiotemporal modeling in real-time situations a lot easier and the real-time data can be 
visualized directly with the Tracking Analyst. It provides a solution for collecting and sending 
real-time tracking data from many data sources to web or desktop clients. This server could 
replace the real-time simulator used in the real-time case study. 
 
In this research, the standard Oracle 9i Spatial R-tree has been used. But according to several 
researchers more efficient algorithms are available. Testing such indexing methods could improve 
accessing the moving point data in a geo DBMS. 
 
A spatial index uses the primary key and the spatial (or spatiotemporal) information of the object. 
When you are dealing with moving point objects, the minimum bounding box (or rectangle) of a 
point object is the point object itself. So, all the information that is in the base table (id, position 
and time) is also available in the index. In theory it should be possible to not even store the base 
table and just have an index, which contains all the information. It is recommended to test if this 
method works with the current DBMS-technology. 
 
A 3D index in spatiotemporal modeling is built on the spatial and the temporal dimension. 
Scaling the time dimension can influence the spatial index. For instance, using minutes as a unit 
instead of days enlarges the time dimension. It is recommended to investigate on which scale the 
index works in the most efficient way. 
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Querying spatiotemporal data in Oracle 9i Spatial is possible with functions and with operators. 
The main difference is that a spatial function does not need a spatial index while a spatial 
operator does. The spatial operator does not always use the spatial index. Sometimes, the query 
optimizer determines that a full table scan is more efficient than using the index. This is 
especially the case when small data sets are used. It needs to be investigated when the spatial 
operator does and when it does not use the spatial index. 
 
At might be interesting to test the generic model also for other spatiotemporal applications like 
for instance a cadastral database where spatial changes occur with polyhedrons, polygons or 
polylines. It is recommended to implement this generic model in some applications e.g. for traffic 
monitoring.  



Chapter 7: Conclusions and recommendations 
 

 
62 

 
 



Literature 
 

 
63 

Literature 
 
[1] Allen, J.F., 1983, Maintaining Knowledge about Temporal Intervals, in Communications of 
ACM Volume 26, Issue 11, p 832-843. 
[2] Arens, C.A. 2003. Maintaining Reality � Modelling 3D spaatial objects in a Geo-DBMS using 
a 3D primitive. Delft. Masterthesis, section GIS technology, TU Delft. 
[3] Bertin, J., Semiology of graphics. Madison, Wisc.: University of Wisconsin Press, 1983. 
[4] ESRI, White paper �What is the ArcIMS Tracking Server?� May 2003. 
[5] Heres, L. 2000. Hodochronologics: History an dtime in the Ntional Road Database. In: Time 
in GIS: Issues in spatio-temporal modelling. Delft, Nederlandse Commissie voor Geodesie. P46-
56. 
[6] Hoogendoorn, S.P., Botma, H., Minderhoud, M.M., Traffic flow theory and simulation. TU 
Delft, Transportation and Traffic Engineering Section, Faculty of Civil Engineering, 2004.  
[7] Kraak, M.-J. and Ormeling, F. J., 1996, Cartography, visualization of spatial data, (London: 
Addison Wesley Longman). 
[8] Langran, G. 1992, Time in Geographic Information Systems. London, Taylor & Francis. 
[9] MacEachren, A.M., 1994, Visualization in modern cartography: Setting the Agenda. In 
Visualization in Modern Cartography (A. M. MacEachren and D. R. F. Taylor, Oxford, UK: 
Pergamon), pp. 1-12. 
[10] Marchand P., Brisebois A., Bédard Y., Edwards G., 2003, Imlementation and evaltuation of 
a hypercube-based method for spatio-temporal exploration and analysis. Journal of the 
International Society of Photogrammetry and Remote Sensign (ISPRS) theme issue "Advanced 
techniques for analysis of geo-spatial data" dans la catégorie "multi-scale hierarchies of spatial 
operators".  
[11] Meng X., Ding Z., DSTTMOD: A Discrete Spatio-Tempral Trajectory Based Moving Object 
Database System. DEXA2003, LNCS 2736(Springer Verlag), September,2003, Prague.444-453 
[12] M. F. Mokbel, T. M. Ghanem, and W. G. Aref, "Spatio-temporal Access Methods", IEEE 
Data Engineering Bulletin, 26(2), 40-49, Jun., 2003. 
[13] Nascimento, M.A., Silva, J.R.O. and Theodoridis, Y., Access Structures for Moving Points. 
A Timecenter technical report. Aalborg 1998.  
[14] NRC Handelsblad, 9-9-2003, article Mobiele filemeldingen (in Dutch). 
[15] Oosterom, P. van, 2000, Time in Cadastral Maps. In: Time in GIS: Issues in spatio-temporal 
modelling. Delft, Nederlandse Commissie voor Geodesie. P36-45 
[16] Oracle 9i Database Concepts release 2 
[17] Peuquet, D.J., 2002, Representations of Space and Time. New York, Guildford Press. 
[18] Pfoser, D and Jensen, C.S., 2003, Indexing of Network-Constrained Moving Objects. A 
TIMECENTER Technical report. 
[19] Raper, J. 2000. Multidimensional Geographic Information Science. London, Taylor & 
Francis. 
[20] Saltenis, S., Jensen, C.S., Leutenegger, S.T. Lopez, M.A. 1999. Indexing the positions of 
continuously moving objects. Aalborg. A TIMECENTER Technical report. 
[21] Snodgrass, R.T. TSQL2 Language Specification. University of Arizona, Tucson 1994.  
[22] Theodoris Y, Vazirgiannis, M. and Selles, T. Spatio-Temporal Indexing for Large 
Multimedia Applications. In Proceedings of the IEEE Conference on Multimedia Computing and 
Systems, IMCS, June 1996. 
[23] Vazirgiannis, M. Wolfson, O., A Spatiotemporal Model and Language for Moving Objects 
on Road Networks. 2001. In Proceedings of the 7th International Symposium on Advances in 
Spatial and Temporal Databases, pages 20-35, 2001. 8 



Literature 
 

 
64 

[24] Wolfson O., Xu B., Chamberlain S., Jiang L., Moving Object Databases: Issues and 
Solutions. Proceedings of the 10th International Converence on Science and Statistical Database 
Management, Capri, Italy, 1998: 111-122. 
[25] Worboys, M.F., 1995, GIS � A computing perspective. London, Taylor & Francis. 
 
Internet 
[26] ESRI, http://www.esri.com/software/arcgis/arcgisxtensions/trackinganalyst/index.html, 2004 
[27] ESRI, http://www.esri.com/software/arcims/tracking_server.html (February 2004) 
[28] Hansen, K.T. Introduction to Databases,  http://www.aitel.hist.no/fag/dbs-
e/lek01/lesson01.pdf  
[29] Department of Computer Science, University College Cork. 
http://www.cs.ucc.ie/~abf/CS507-8/L2.pdf 
 
 



Appendix A: Glossary 
 

 
65 

Appendix A: Glossary 
 
2D � 2-Dimensional; 2D objects are flat, e.g. a polygon; objects in 2D space are spanned with 2 
coordinates (usually length and width). 
3D � 3-Dimensional; 3D objects have a volume, e.g. a polyhedron or a 3D point; objects in 3D 
space are spanned with 3 coordinates (usually length, width and height or length, width and time). 
Consistency � When all copies of data are the same (changes in the data are updated in all 
copies), the data is consistent.  
Database � Term, which can be used for DBMS and for data set. 
Data set � A collection of related data; 
DBMS � Database management system; collection of programs to maintain the data in the data 
sets. 
DBMS approach � Approach to organize data by making use of a DBMS instead of organizing 
data in files. 
Density � Number of vehicles per unit of length.  
File-based approach � Approach to organize data by making use of programs; The data is 
organized in files. 
Full-table scan � Procedure to search for records by scanning the complete table and not by 
making use of an index. 
Geo-DBMS � DBMS that supports the management of geographical data. 
GIS � Geographical Information System; decision supporting system for storing, maintaining, 
querying, analyzing and visualizing geographical data. 
Index � An ordered table where each record contains an index-field (value) and a pointer field 
(address on hard disk).  
Integrity � When the linkages (relationships) between data sets are well maintained, the integrity 
of the data set is good.  
Intensity � Number of vehicles per number of time. 
Interoperability � The ability for a system or components of a system to provide information 
portability and inter application, cooperative process control;  
(Materialized) views � View on the data that can be treated as a table in a DBMS, but only the 
syntax is stored and not the data itself; A view is materialized when the data is also stored in a 
table that can be updated on demand. 
MBB � Minimum Bounding Box; box around a 3D object that is parallel with the coordinate 
system axis and encloses the object. 
MBR � Minimum Bounding Rectangle; rectangle around a 2D object that is parallel with the 
coordinate system axis and encloses the object. 
MDSYS.SDO_GEOMETRY � A geographical data type, used in Oracle 9i Spatial.  
Mean Distance Headway � The mean distance between the rear bumper of the preceding vehicle 
and the rear bumper of the considered vehicle. 
Mean Time Headway � The mean period between the passing moment of the preceding vehicle 
and the vehicle considered.  
Moving point objects � Objects that can be represented as points and move in space and time. 
Oracle 9i Spatial � One of the most often used DBMSs with a spatial extent. 
PL/SQL � Procedural Language/Structured Query Language; an Oracle extension to allow 
procedures in SQL.  
Point cloud � Cloud of points; in this thesis a set of moving point objects. 
Post-processing data � data that has been collected in advance; the processing or analysis of the 
data comes afterwards. 
Query � A question or request to select a number of objects.  
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Query-plan -  Plan used by the Query-optimizer in which order parts of the query are going to be 
carried out. 
Query-optimizer � An internal process that chooses the most optimal query plan for answering a 
query. 
Query-response time � The time between posing a query and getting the response. 
Real-time data � Data that is going to be processed or analyzed at the same moment, or nearly 
the same moment as the data is collected. 
Redundancy � When data (for instance a coordinate) is stored more than one time, the data set 
contains redundancy. 
R-tree � 2D or 3D spatial index that tiles up objects. 
SDO_ELEM_INFO � This specifies the elements of the geometry with references to the 
coordinates, information about the element itself and an interpretation code in the 
MDSYS.SDO_GEOMETRY data type. 
SDO_FILTER � Spatial operator that can be used when two or more dimensions are involved; 
this operator compares bounding boxes or rectangles to find candidates that interact spatially. 
SDO_GTYPE � This indicates the type of geometry in the MDSYS.SDO_GEOMETRY data 
type. 
SDO_ORDINATES � This is a variable array of numbers and contains the coordinates in the 
MDSYS.SDO_GEOMETRY data type. 
SDO_POINT � This element is used when only points are stored as single object or when a point 
is stored in addition to the other geometry in the MDSYS.SDO_GEOMETRY data type. 
SDO_RELATE � Spatial operator that can be used when two dimensions are involved; this 
operator compares coordinates to find the objects that interact spatially. 
SDO_SRID � This is a reference to the spatial reference system used by the coordinates in the 
MDSYS.SDO_GEOMETRY data type. 
Space-time cube � Three-dimensional representation that contains two spatial dimensions and 
one temporal dimension; 
Spatial function � Function that works on spatial data; A spatial function does not need a spatial 
index to operate.  
Spatial operator � Function that works on spatial data; A spatial operator needs a spatial index to 
operate. 
SQL � Structured Query Language; language to query data in a DBMS. 
Trajectory � The path of a moving object described in space in time. 
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Appendix B: Scripts 
This appendix contains the scripts used for the second case study (Taxi cabs in Rotterdam). 
 
 
2D Real-time simulator. This script is run every 10 seconds. The continuously growing table, is 
taxidata_temp. 
 
insert into taxidata_temp  
(id, position, t_time)  
select id, position, t_time from taxidata where  
t_time<(current_date+10/(24*60*60)-2074.696) and  
t_time>=(current_date-2074.696); 
exit; 
 
Repeated every 10 seconds by making use of a shell script: 
 
#!/bin/sh 
while (sleep 10); 
do 
sqlplus baars/marco@gisbase @minute_taxidata_update.sql & 
done 
 
 
3D Real-time simulator. This script is run every 10 seconds. A table (taxidata_temp4) is 
growing every 10 seconds with records. The current_date-min(s.t_time) clause is necessary to 
make a �NUMBER� data type from a �DATE� data type that is ascending. This is necessary 
because in the sdo_geometry, only �NUMBER� datatypes are allowed. So finally the time 
dimension in the sdo_geometry is a number, which is in fact the number of days between now, 
and the first data point in days. So, this number should not be interpret as a �real� timestamp, but 
for the test this makes no sense. 
 
lock table taxidata_temp4 in exclusive mode; 
insert into taxidata_temp4 (id, position, t_time) 
select s.id, 
mdsys.sdo_geometry(3001, NULL,  
 mdsys.SDO_POINT_TYPE(s.position.sdo_point.x,  
   s.position.sdo_point.y,  
   (select current_date-min(s.t_time) from taxidata s)), 
 NULL, NULL), 
s.t_time 
from taxidata s  
where  
t_time<(current_date+30/(24*60*60)-2151.64) and –-value 2151.64 is an initiation value 
t_time>=(current_date-2151.64); 

 
Also makes use of a shell script for repeating every 30 seconds: 
 
#!/bin/sh 
while (sleep 30); 
do 
sqlplus baars/marco@gisbase @minute_taxidata_update4.sql & 
done 
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Script, which checks the quality parameter of the index and rebuilds the 2D R-tree if necessary 
(see also figure 6.2). 
 
set echo on; 
set serveroutput on; 
 
DECLARE 
 
min_qual number; 
qual number; 
degr number; 
nrob number; 
statement varchar2(400); 
qual2 number; 
 
BEGIN 
 
select quality into min_qual from upd_qual_val4 where  
time=(select max(time) from upd_qual_val4); 
 
select  
sdo_tune.rtree_quality('baars','Itaxidata_temp4'), 
sdo_tune.quality_degradation('baars','Itaxidata_temp4'), 
count(b.taxi_id) into qual, degr, nrob 
from dual, taxidata_temp4 b; 
 
IF 
(qual/min_qual-1 > 0.5) 
THEN 
  
insert into idx_qual_taxidata_temp4  
(time, degradation, quality, nr_obj, upd_bool)  
values (current_timestamp, degr, qual, nrob, 1); 
  lock table taxidata_temp4 in exclusive mode; 
  statement := 'alter index Itaxidata_temp4 rebuild';  
  execute immediate statement; 
  select  
  sdo_tune.rtree_quality('baars','Itaxidata_temp4') into qual2 
  from dual; 
  insert into upd_qual_val4 (time, quality) values (current_timestamp, qual2); 
   
ELSE 
insert into idx_qual_taxidata_temp4  
(time, degradation, quality, nr_obj, upd_bool)  
values (current_timestamp, degr, qual, nrob, 0); 
END IF; 
END; 
/ 
exit; 
 
With a shell script to repeat this every minute: 
 
#!/bin/sh 
while (sleep 60); 
do 
sqlplus baars/marco@gisbase @idx_update.sql & 
done 
 

 
A script that checks the quality of the 3D R-tree and rebuilds if necessary (see also figure 6.2). 
 
set echo on; 
set serveroutput on; 
 
DECLARE 
 
min_qual number; 
qual number; 
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degr number; 
nrob number; 
statement varchar2(800); 
qual2 number; 
 
BEGIN 
 
select quality into min_qual from upd_qual_val4 where  
time=(select max(time) from upd_qual_val4); 
 
select  
sdo_tune.rtree_quality('baars','Itaxidata_temp4'), 
sdo_tune.quality_degradation('baars','Itaxidata_temp4'), 
count(b.id) into qual, degr, nrob 
from dual, taxidata_temp4 b; 
 
IF 
(qual/min_qual-1 > 0.5) 
THEN 
  
insert into idx_qual_taxidata_temp4  
(time, degradation, quality, nr_obj, upd_bool)  
values (current_timestamp, degr, qual, nrob, 1); 
  lock table taxidata_temp4 in exclusive mode; 
  statement := ' alter index Itaxidata_temp4 rebuild parameters (''sdo_fanout=32 
sdo_indx_dims=3 layer_gtype=point'')';  
  execute immediate statement; 
  select  
  sdo_tune.rtree_quality('baars','Itaxidata_temp4') into qual2 
  from dual; 
insert into upd_qual_val4 (time, quality) values (current_timestamp, qual2); 
   
ELSE 
insert into idx_qual_taxidata_temp4  
(time, degradation, quality, nr_obj, upd_bool)  
values (current_timestamp, degr, qual, nrob, 0); 
END IF; 
END; 
/ 
exit; 
 
And a shell script which repeats this every 3 minutes: 
 
#!/bin/sh 
while (sleep 180); 
do 
sqlplus baars/marco@gisbase @idx_upd_qual4.sql & 
done 

 
A 2D spatiotemporal query, which has been done every minute. Resulting query times are in 
figure 6.4. 
  
select 
  count(a.id),  
  b.name,  
  to_char(max(a.t_time), 'DD-MON-YY HH24:MI:SS') "max time" 
from  
  taxi_temp2 a,  
  study_area b 
where  
  sdo_relate(a.position, b.position, 'mask=inside querytype=window')='TRUE'  
  and a.t_time>(current_date-2082.6-1/24)  
  and t_time<= (current_date-2082.6)  
group by b.name 
order by count(a.id); 
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And also here the shell script that repeats this every minute: 
 
#!/bin/sh 
while (sleep 60); 
do 
sqlplus baars/marco@gisbase @stquery 2>&1 | tee -a stquery_output.txt & 
done 

 
 
A 3D spatiotemporal query, using the SDO_FILTER operator. Results can be found in figures 
6.6 and 6.7. This has been done for two different geometries, one that covers the complete area 
(with the coordinates mentioned in this script below) and one that covers a small area. That script 
is the same except the coordinates. 
 
set serveroutput on; 
set echo on; 
 
delete study_boxes; 
 
insert into study_boxes (position) values 
(mdsys.sdo_geometry(3002,NULL,NULL, 
mdsys.sdo_elem_info_array(1,2,1), 
mdsys.sdo_ordinate_array(35680,403400, 
((select current_date-min(a.t_time) from taxidata a)-(1/24)), 
   151440, 489500, 
   (select current_date-min(a.t_time) from taxidata a)))); 
 
alter index Istudy_boxes rebuild parameters ('sdo_fanout=32 sdo_indx_dims=3 
layer_gtype=line'); 
 
set timing on; 
insert into stquery_results4 
select 
 count(a.id), current_timestamp 
from taxidata_temp4 a, study_boxes b 
where sdo_filter (a.position, b.position, 'querytype=window')='TRUE'; 
set timing off; 
exit; 
 
The shell-script for repetition: 
 
#!/bin/sh 
while (sleep 180); 
do 
sqlplus baars/marco@gisbase @stquery4 2>&1 | tee -a stquery_output4.txt & 
done 
 

 


