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Summary

The GIS (geographic information system), which implements an integration of semantic,
geometric data and spatial relationships, seems to be the most appropriate system ensuring
a large scope of analysis and thus serving many applications and daily activities. Therefore
many CAD applications have been trying to provide some GIS functionality for years. On the
other hand, current GIS applications support only a limited number of geometry types (point,
linestring, polygon, etc.), and they are trying to support more complex geometry types, such
as freeform curves and surfaces, which are already supported in CAD applications. Freeform
curves and surfaces are everywhere in the real world and they are also essential to GIS fields. A
logical consequence of attempts from both sides has achieved agreements (OGC specifications)
on the manner for representing, accessing and disseminating spatial information in a central
DBMS.

After several years’ development, nowadays there are many mainstream DBMSs (database
management system) such as Oracle, Postgres, Informix and Ingres, which are able to manage
simple geometries. Examples of the supported geometries are: point, linestring, polygon, and
collection geometry types which are made up of the first three basic geometries. However,
these supported geometry types in current DBMSs are still limited. Complex geometry types
like freeform curves and surface are not yet supported. Freeform curves and surfaces are
essential shapes in CAD applications, therefore DBMSs cannot work fully collaborative with
CAD applications without supporting freeform shapes. Although freeform shapes can be
simulated by tiny line segments / triangles / polygons, it is quite unrealistic and inefficient to
store all these line segments / triangles / polygons into a DBMS, especially when shapes are
rather huge or complex. A more direct solution is to create freeform spatial data types based
on mathematical representations, and store the required parameters with the attributes of
the freeform spatial data types. Operators and functions on freeform spatial data types are
also necessary to manage (access, transform, validate, etc.) freeform curves and surfaces at
DBMS level.

This thesis presents my MSc research which aims at managing freeform shapes such as
Bézier curve, B-spline curve, and NURBS curve/surface, in a well-known spatial DBMS: Or-
acle Spatial. This is done by implementing user-defined data types for these freeform geome-
tries. Each instance of a user-defined data types represents a piece of freeform curve/surface,
and parameters of this freeform curve/surface are stored in the attributes of the user-defined
data type. The next step is to create 3D functions on these types to make Oracle Spatial
able to manage the freeform data types. Finally, data exchange of freeform shapes between
CAD applications (MicroStation and AutoCAD) and Oracle Spatial is also addressed in this
research, which means that freeform geometry models can be transferred from CAD applica-
tions to Oracle Spatial, and the other way around.
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Chapter 1

Introduction

The border between CAD (Computer-aided design) and GIS (Geographic information sys-
tem) is fading. Software for CAD was primarily designed to deal with large-scale models
(but relatively small in size), without maintenance of attributes and geographic coordinates
systems. In contrast, GIS was able to manage small-scale models (but very large in size),
maintain attributes and a variety of different geographic coordinate systems [1]. However, the
GIS, which implements an integration of semantic, geometric data and spatial relationships,
seems to be the most appropriate system ensuring a large scope of analysis and thus serving
many applications and daily activities, according to [14]. Therefore many CAD applications,
such as AutoCAD and MicroStation, have been trying to provide some GIS functionality for
years. On the other hand, current GIS applications support only a limited number of geom-
etry types (point, linestring, polygon, etc.), and they are trying to support more complex
geometry types, such as freeform curves and surfaces, which are already supported in CAD
applications. Freeform curves and surfaces are everywhere in the real world and they are
also essential to GIS fields. For example, a large number of roads are freeform curves, and
more and more modern buildings’ surfaces are freeform surfaces. A logical consequence of
attempts from both sides has achieved agreements (OGC specifications) on the manner for
representing, accessing and disseminating spatial information in a central DBMS (database
management system): a system in which spatial (geometry) data and attribute (semantic)
data are maintained in one integrated environment, as shown in Figure 1.1. Thus several
DBMS vendors (Oracle, Postgres, Ingres, etc.) have developed spatial DBMSs based on tra-
ditional DBMSs. A spatial DBMS differs from a traditional DBMS in that a spatial DBMS
is able to maintain spatial data types (point, linestring, polygons, etc.) beside the tradi-
tional data types (number, varchar, date, etc.), and there are also a number of functions on
these spatial data types, which can do operations like return geometric information, do basic
geometric transformations, maintain geometry validity, etc.

A lot of research has been done since the increasing requirement for representing, accessing
and disseminating spatial data from CAD and GIS fields [13], and more and more DBMSs
give support to spatial data types and operations. For example, Informix supports three
basic spatial data types: point, line and polygon; Ingres supports one more type: circle,
beside the three basic types; Oracle Spatial not only has points, lines, polygons and circles,
but gives further support to arc strings and compound polygons. Beside spatial data types,
all these spatial DBMS also implemented operators and functions on the spatial data types,
so that geometric queries and operations are possible at DBMS level.

However, the currently supported spatial data types in DBMS are rather limited, mostly to
2D space. Although the points in most spatial DBMS can be 3D, the functions on spatial data
types are actually still based on 2D, which means the z values are not considered. The first
attempt of 3D spatial data type and operations in a spatial DBMS has been done successfully
at the Section GIS Technology, Technical University of Delft [2], and 3D polyhedrons can be
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Figure 1.1: Spatial DBMS as a central system

stored and manipulated in Oracle Spatial after this attempt. The basic idea of [2] is that a
3D polyhedron can be defined as a bounded subset of 3D space enclosed by a finite set of
flat polygons, such that every edge of a polygon is shared by exactly one other polygon. The
polygons are in 3D space because they are represented by vertices, which can be 3D points
in a spatial DBMS. Based on this idea, a true 3D polyhedron in the spatial DBMS, including
functions such as validation, volume, 3D transformation, etc., has been implemented.

After this attempt of 3D spatial data types and operations in a spatial DBMS, more com-
plex geometry types such as freeform curves and surfaces, can be researched to implement.
Many shapes in real world are freeform, i.e. not only contain points, linestrings and poly-
gons, but also curves and curved surfaces. Examples of these shapes include roads, territory
surfaces, building surfaces, etc. Furthermore, freeform shapes have been widely supported in
mainstream CAD applications (AutoCAD, MicroStation). As the integration system between
CAD and GIS, a spatial DBMS cannot work fully collaboratively with CAD/GIS applica-
tions before supporting freeform data types. Although freeform shapes can be simulated by
tiny line segments/triangles/polygons, it is quite unrealistic and inefficient to store all these
line segments/triangles/polygons into a DBMS, especially when shapes are rather huge or
complex. A more efficient solution is to implement freeform spatial data types which are able
to store freeform shapes directly in DBMS, and implement corresponding spatial operators
and functions to manage these shapes. The objectives of this thesis can be expressed in one
main question:

How can freeform curves and surfaces be managed in a spatial DBMS?

This question can be subdivided into four smaller questions:

1. Which kinds of freeform curves and surfaces should be chosen to be supported in a
spatial DBMS? Which parameters do they need to define a freeform curve/surface?

2. How can freeform curves and surfaces be stored in the spatial DBMS?

3. How can freeform curves and surface be manipulated in the spatial DBMS?

4. How can freeform curves and surfaces be transferred from the spatial DBMS to CAD/GIS
applications, and the other way around?.
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In order to answer these questions, theories and technologies from several fields (geometric
modeling, CAD, GIS, DBMS) were studied. Three popular mathematical representations for
freeform shapes: Bézier, B-spline and NURBS, are used as the freeform data types in the
spatial DBMS. As one of the most powerful spatial DBMS on market, Oracle Spatial 10i is
chosen as the spatial DBMS to build the freeform data types on. Another reason that Oracle
Spatial is chosen is the strong support for user-defined data types, which means that creation
of new data types is possible. A well-known CAD application, MicroStation v8, is used to
visualize freeform spatial data from Oracle Spatial and store freeform spatial data into Oracle
Spatial, because it is easy to get support from MicroStation’s developers. The freeform spatial
data transfer between MicroStation and Oracle Spatial can be done by writing JMDL code,
which is an extension of Java language by MicroStation, and using certain functions to access
Oracle and visualize freeform geometries [28].

Chapter 2 gives the background relevant to this research, including the mathematical
background for the three freeform shape models, and an introduction to spatial DBMSs.
Chapter 3 designs the conceptual models of freeform data types and spatial functions by
analyzing several important aspects. Based on the conceptual models, implementations of
freeform data types are explained in Chapter 4, and implementation of spatial functions are
explained in Chapter 5. Chapter 6 presents the approach to exchange freeform shape data
between Oracle Spatial 10i and MicroStation v8. Some test cases are created to demonstrate
the result of the research, and these are illustrated in Chapter 7. The report is closed with
conclusions and recommendations for future research in Chapter 8.



Chapter 2

Background

Before exploring how to manage freeform curves and surfaces in a spatial DBMS, familiar-
ity with mathematical representation of freeform curves and surfaces and spatial DBMS is
required. This chapter first shows the study of three widely used mathematical representa-
tions for freeform curves and surfaces: Bézier, B-spline and NURBS, and describes which
parameters are required by these representations. Then spatial DBMSs are investigated by
introducing OGC specifications and a mainstream spatial DBMS: Oracle spatial.

Section 3.1 gives the mathematical background of Bézier, B-spline and NURBS. Section
3.2 explains the spatial DBMS.

2.1 Freeform curves and surfaces

Implicit functions and parametric functions are the two most common forms of representing
curves and surfaces in geometric modelling [11].

An implicit function has the form:

f(x, y, z) = 0 (2.1)

A parametric function has the form:

p(u) = [x(u), y(u), z(u)] (umin < u < umax) (2.2)

Parametric functions hold a number of advantages over implicit functions. Some of the
most important ones include [3]:

• Points can be evaluated reasonably fast by numerically stable and accurate algorithms.

• There are more degrees of freedom than implicit functions have.

Represented with parametric functions, Bézier, B-spline and NURBS are three widely used
mathematical models for freeform curves and surfaces in current CAD applications. Bézier,
B-spline and NURBS all belong to an important geometric class called splines [6]. This
section gives a glance of the three mathematical models.

2.1.1 Bézier

Consider n+1 control points Pk (k=0..n) in 3D space. The Bézier parametric curve (Figure
2.1) function is of the form:

C(u) =
n∑

k=0

PkB
n
k (u) (0 ≤ u ≤ 1) (2.3)

4



2.1 Freeform curves and surfaces 5

Figure 2.1: A cubic (degree 3) Bézier curve

B(u) is a Bernstein polynomial1 and it is defined by:

Bn
k (u) =

n!
k!(n− k!)

uk(1− u)n−k (2.4)

The extension of Bézier curves to surfaces is called the Bézier patch (see Figure 2.2). The
patch is constructed from an (n+1)×(m+1) array of control points {Pi,j : 0 ≤ i ≤ n, 0 ≤
j ≤ m.}. The resulting surface, which is now parameterized by two variables, is given by the
equation

P (u, v) =
n∑

i=0

m∑
j=0

Pi,jBi,n(u)Bj,m(v) (2.5)

Most of the methods for patches are direct extensions of those for curves.

Figure 2.2: A bi-cubic (degree 3*3) Bézier surface

Some important properties of Bézier curves/surfaces are listed below:

• Endpoint interpolation: Bézier curves interpolate the first and the last control
points: P0 = C(0) and Pn = C(1); Bézier surfaces interpolate the four corner con-
trol points.

• Smoothness: The smoothness of a shape, which are made up of several curves, can be
represented with the continuity at connections [12]. Figure 2.3 shows the smoothness of
a shape with continuity 0, 1 and 2 at the connection. C0 continuity means connected;
C1 continuity requires the same tangency at the the connection point; C2 continuity
is commonly referred to as geometric continuity that can be visually recognized as
something “very smooth”; it is very difficult to visualize the difference of smoothness
for parts with continuity bigger than 2. With a Bézier curve, we can only get a smooth

1A polynomial is a mathematical expression involving a sum of powers in one or more variables multiplied
by coefficients.



2.1 Freeform curves and surfaces 6

Figure 2.3: Continuity

curve of a given degree, with C1 continuity, by defining a sequence of curves, each curve
defined by (degree+1) points. The directions of P1−P0 and Pn−Pn−1 are always tangent
to the Bézier curves at the two endpoints P0 and Pn respectively. Hence, in order to
make two Bézier curves join smoothly, we need to put the last two control points of the
first curve and the first two of the second curve in line.

• Convex hull: the curves are contained in the convex hulls of their defining control
points.

• Affine invariance: one can apply to Bézier curves/surfaces the usual transforma-
tions, such as rotations, translations, and scalings, by just applying them to the control
polygon/net.

2.1.2 B-spline

A B-spline (Figure 2.4) is a generalization of the Bézier curve. A B-spline curve of degree p

Figure 2.4: A B-spline curve with 8 control points

is defined by n+1 control points P0, ..., Pn and a knot vector of m+1 knots:

U = {u0, u1, ..., um}

where U is a nondecreasing sequence with ui ∈ [0, 1], and n, m and p must satisfy:

p ≡ m− n− 1 (2.6)

The B-spline parametric curve function is of the form:

C(u) =
n∑

i=0

PiNi,p(u) (2.7)
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Ni,p(u) are the basis functions of B-splines, defined by:

Ni,0(u) =
{

1 if ui ≤ u ≤ ui+1

0 otherwise

Ni,p(u) =
u− ui

ui+p − ui
Ni,p−1(u) +

ui+p+1 − u

ui+p+1 − ui+1
Ni+1,p−1(u) (2.8)

A B-Spline surface is an expansion of B-spline curves in two directions, with corresponding
control points, knot vectors, and univariate B-spline functions. The surface is defined by

S(u, v) =
n∑

i=0

m∑
j=0

Pi,jNi,k(u)Nj,l(v) (2.9)

where the k,l are the orders (degree+1) of the B-spline surface in both directions. The Ni,k(u)
are the polynomial B-spline basis functions of degree k-1 in the u parameter direction, and
Nj,l(v) are the basis functions of degree l-1 in the v direction.

If the knot vector of a B-spline curve is just (p+1) zeros followed by (p+1) ones, this B-
spline curve reduces to a Bézier curve. Therefore actually B-spline curves are a generalization
of Bézier curves, and the same applies for surfaces.

Here are some important properties of B-spline curves/surfaces:

• Smoothness: A p-degree B-spline curve/surface has continuity of (p-k) at the knots of
multiplicity k (k knots clamped together). Figure 2.5 shows a 4-degree B-spline curve.
It is easy to calculate that the curve at the three multiple knots has continuity of 2, 1,
0 respectively. For continuity 1, the corresponding point lies on the control polygon,
while the curve pass through a control point for continuity 0, which results in a visual
discontinuity.

Figure 2.5: A B-spline curve with different continuity. The multiple knots are marked with
circles; the numbers beside the circles are the multiplicities of the knots.

• Strong convex hull: The curves/surfaces are contained in the convex hulls of their
defining control points. Especially, for a B-spline curve, if u ∈ [ui0 , ui0+1), p ≤ i0 ≤
m−p−1, then the curve C(u) is in the convex hull of the control points Pi, i0−p ≤ i ≤ i0.
For a B-spline surface with a knot vector {u0, u1,..., um} in u direction and a knot vector
{v0, v1,..., vn} in v direction, if (u, v) ∈ [ui0 , ui0+1)× [vj0 , vj0+1), then the surface S(u,v)
is in the convex hull of the control points Pi,j , i0 − p ≤ i ≤ i0 and j0 − q ≤ j ≤ j0.



2.1 Freeform curves and surfaces 8

• Affine invariance: An affine transformation is any transformation that preserves
collinearity (i.e., all points lying on a line initially still lie on a line after transforma-
tion) and ratios of distances (e.g., the midpoint of a line segment remains the midpoint
after transformation). In general, an affine transformation is a composition of rotations,
translations, dilations, and shears, and they are all subclasses of projective transforma-
tions [6]. For a B-spline curve/surface, one can apply the affine transformations by just
applying them to the control polygon/net.

• Local modification scheme: Moving Pi changes a B-spline curve only in the interval
[ui, ui+p+1], because Ni,p(u) = 0 for u 6∈ [ui, ui+p+1]; similarly, moving Pi,j only affects
a B-spline surface in rectangle [ui, ui+p+1)× [vj , vj+q+1), because Ni,p(u)Nj,q(v) is zero
if (u,v) is outside of the this rectangle.

2.1.3 NURBS

NURBS(Nonuniform Rational B-Splines) are nearly inevitable for computer-aided design,
manufacturing and engineering (CAD, CAM, CAE) and are part of numerous industry wide
used standards, e.g. IGES, STEP, and PHIGS [3]. Different from Bézier and B-spline,
NURBS support more freeform to modeling with the weights of control points, and only
NURBS are able to define the exact conic sections.

A NURBS curve C(u) (Figure 2.6), which is a vector-valued piecewise rational polynomial
function, is defined as:

C(u) =
∑n

i=0 wiPiNi,k(u)∑n
i=0 wiNi,k(u)

(2.10)

where
wi: weights
Pi: control points (vector)
Ni,k: normalized B-spline basis functions of degree k, defined by Equation 2.8.

Figure 2.6: A NURBS curve with 6 control points. B, N, and B3 illustrate the change of a
point’s position (same u) when the weight of P3 is 0/1/(bigger than 1) respectively. [9]

Optional but important parameters for NURBS are the trim values. The lower and upper
trim values: t0 and t1, extract a subcurve from a whole NURBS curve, and the restriction
for trim values is that u0 ≤ t0 ≤ t1 ≤ u1.

A NURBS surface is defined in a similar way:

S(u, v) =

∑n
i=0

∑m
j=0 wi,jNi,k(u)Nj,l(v)Pij∑n

i=0

∑m
j=0 wi,jNi,k(u)Nj,l(v)

(2.11)

where the k,l are the orders (degree+1) of the NURBS surface in both directions. The Ni,k(u)
are the polynomial NURBS basis functions of degree k-1 in the u parameter direction, and
Nj,l(v) are the basis functions of degree l-1 in the v direction.
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NURBS differ from B-splines mainly in that the control points of NURBS have weight
values. Specially, when all weights of a NURBS curve are equal, this NURBS curve becomes
a B-spline curve. Therefore actually NURBS curves are a generalization of B-spline curves,
and the same applies for surfaces.

Below are some important properties of NURBS curves/surfaces.

• Endpoint interpolation: NURBS curves interpolate the first and the last control
points: P0 = C(0) and Pn = C(1); NURBS surfaces interpolate the four corner control
points.

• Smoothness: A p-degree NURBS curve/surface has continuity of p-k at the knot of
multiplicity k. The NURBS curves/surfaces are smooth with continuity larger than
1, and are less smooth with continuity 1 and 0. This property is similar to the same
property of B-splines.

• Strong convex hull: The curves/surfaces are contained in the convex hulls of their
defining control points. Especially, for a NURBS curve, if u ∈ [ui0 , ui0+1), p ≤ i0 ≤
m− p− 1, then C(u) is in the convex hull of the control points Pi, i0 − p ≤ i ≤ i0. For
a NURBS surface, if (u, v) ∈ [ui0 , ui0+1)× [vi0 , vi0+1), then S(u,v) is in the convex hull
of the control points Pi,j , i0 − p ≤ i ≤ i0 and j0 − q ≤ j ≤ j0;

• Projective invariance: One can apply to curves/surfaces not only the affine transfor-
mations, but also the projective transformations, by just applying them to the control
polygon/net;

• Local modification scheme: Moving Pi or changing its weight changes a NURBS
curve only in the interval [ui, ui+p+1]; and moving Pi,j or changing its weight only affect
a NURBS surface in the rectangle [ui, ui+p+1)× [vj , vj+q+1).

• Conic section: Only NURBS can represent exactly the conic sections, i.e. circles,
ellipses, cones, which are the curves generated by the intersections of a plane with
one or two nappes of a cone [6]. Such curves and surfaces occur very frequently in
CAD/GIS applications, where several shapes and geometric constructions are based on
such geometric primitives [3].

2.1.4 Summary

Bézier, B-spline and NURBS are three widely used mathematical models for representing
freeform curves and surfaces. From the introduction in this section, we know that various
helpful properties hold for Bézier, B-spline and NURBS. For example: define curves/surface
using control points; able to produce smooth shapes; affine (projective under NURBS) in-
variance; modify curves/surfaces locally instead of globally (except Bézier); etc. Bézier
curves/surfaces are special cases of B-spline curves/surfaces, and Bézier and B-spline curves/
surfaces are special cases of NURBS curves/surfaces.

The required parameters for the three models can be summarized as:

• All the three models use control points and degree to define a curve/surface.

• Bézier doesn’t require other parameters than control points and degree.

• B-spline require an additional parameter: knot vector.

• NURBS also require weight values in addition to the parameters required by a B-spline.

• Surfaces require knot vector and degree in both u and v direction.
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2.2 Spatial DBMS

According to [13], the GIS, i.e. the integration of semantic, geometric data and spatial rela-
tionships, seems to be the most appropriate system ensuring a large scope of analysis and
thus serving many applications and daily activities. Both CAD applications and DBMSs
are trying to represent geometric data together with semantic data. Several years’ attempts
have achieved some agreements on the manner for representing, accessing and disseminating
spatial information, i.e. the OGC specifications [15][18], and there are already a number of
DBMSs (Oracle Spatial, PostGIS, Informix, etc.) which follow the OGC specifications.

This section gives an overall introduction to spatial DBMS by first explaining the OGC
specifications, and then demonstrating one representative spatial DBMS on the market: Or-
acle Spatial.

2.2.1 OGC Specifications

The OGC (Open GeoSpatial Consortium) is a non-profit organization dedicated to open sys-
tems geoprocessing [16], and they give directions and recommendations to GIS researchers.
Much geospatial data is available via the Web and in off-line repositories, but most of these
data are stored in different data formats, using different data models, coordinate reference
systems, geometry models, etc. Thus, sharing spatial data has required considerable time,
expertise and special software. OGC specifications define a series of common software inter-
faces and encodings, which enable users to carry out their research on the same data format
and concentrate on the same research direction. Nowadays OGC specifications have been
widely accepted by GIS researchers.

Two main categories of OGC specifications are the Abstract Specifications and Im-
plementation Specifications.

Abstract Specifications

The purpose of Abstract Specifications1 is to create and document a conceptual model
sufficient enough to allow for the creation of Implementation Specifications. One OGC ab-
stract specification, the Spatial Schema, gives a standard for geographic information by
specifying geometry and topology separately as a UML (Unified Modeling Language)2 pack-
age dependency tree. The geometry package (Figure 2.7) has several internal packages that
separate primitive geometric objects, aggregates and complexes, which have a more elabo-
rate internal structure than simple aggregates [7]. Two representations of freeform curves
and surfaces, i.e. Bézier curve/surface and B-spline curve/surface, have been standardized in
the geometric package.

Figure 2.8 shows the spline curves packages defined in Spatial Schema, where Bézier
curve and B-spline curve are specified in the GM BSplineCurve package. Different from
the parameters explained in Section 2.1, four parameters: ’degree’, ’curveForm’, ’knotSpec’
and ’isPolynomial’, are required by this package. Their explanations are as follows [7]:

• The ’degree’ attribute specifies the algebraic degree of the basis functions;

• The ’curveForm’ attribute is used to identify particular types of curve which this spline
is being used to approximate, or set to ’NULL’ if no such approximation is intended;

• The ’knotSpec’ attribute gives the type of knot distribution used in defining this spline;
1This abstract specification has also been accepted by ISO and is referred as ISO 19107.
2See [17] for an explanation of UML.
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Figure 2.7: Geometric package in the Spatial Schema [7]. The Bézier type, B-spline type
and their related types are marked with red boxes.



2.2 Spatial DBMS 12

Figure 2.8: Spline packages in Spatial Schema

• The ’isPolynomial’ attribute is set to ’True’ if this is a polynomial spline. The dif-
ference between a polynomial spline and a normal B-spline in this package is that a
polynomial spline passes through the control points, while a normal B-spline doesn’t.

• The class constructor ’GM BSplineCurve’ takes four parameters (degree, control
points, knots, knot types) to construct a B-spline curve.

NURBS is not explicitly standardized in Spatial Schema. However, as one of the most
powerful mathematical representations for freeform curves and surfaces, NURBS have already
been included in many geometric standards, such as OpenGL, IGES, STEP and PHIGS,
and supported by mainstream CAD applications (AutoCAD, MicroStation). For example,
function ’gluNurbsCurve()’ in OpenGL is used to describe a NURBS curve with the following
parameters [19]:

nknots Specifies the number of knots.

knot Specifies an array of knot values.

stride Specifies the offset (as a number of single-precision floating-point values) between
successive curve control points.

ctlarray Specifies a pointer to an array of control points.

order Specifies the order of the NURBS curve.

Implementation Specifications

The Implementation Specifications are unambiguous technology platform specifications
for implementation of industry-standard, software application programming interfaces [15].
One OGC implementation specification that we should pay attention to is the OpenGIS
Simple Features Specification for SQL (SFS)[18], because this specification defines a
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standard SQL schema for simple geospatial features (geometric primitives) which are based
on OGC Abstract Specifications.

According to SFS, a spatial SQL environment should contains the following aspects.

Spatial data type A spatial DBMS should support the following spatial data types :

• Geometry
• Point
• Curve
• LineString, Line, LinearRing
• Polygon
• Surface
• GeometryCollection
• MultiPoint
• MultiCurve
• MultiLineString
• MultiPolygon
• MultiSurface

The difference between Multi type and non-Multi type is that the first type is a geo-
metric collection of the latter type.

Exchange formats The Well-Known Text (WKT) representation and the Well-Known Bi-
nary (WKB) representation are recommended to be used to exchange (import/export)
spatial data. WKT/WKB provides standard textual/binary representations for spatial
reference system information. The nine geometries above, including simple andnon-
simple, closed and non-closed, can be represented accurately using WKT/WKB. For
example:

a Polygon with one exterior ring and one interior ring represented with WKT:

POLYGON((0 0,10 0,10 10,0 10,0 0),(5 5,7 5,7 7,5 7, 5 5))

Spatial operators/functions A spatial database cannot ’manage’ spatial data types with-
out spatial operators/functions. SFS also defines a lot of spatial functions, including
functions for constructing a geometry value given its WKT/WKB, functions that test
spatial relationships, functions for distance relationships, functions that implement spa-
tial operators and spatial functions on each spatial data type. SFS doesn’t define any
validation function. However, validity of spatial data should be checked before insertion.

Metadata Metadata, or in other words, the descriptions of the table columns with spatial
data types, should be stored in a separate metadata table. The required descriptions in-
clude the name of the column, the name of the table containing this column, dimension,
spatial type, Spatial Reference System, etc.

Spatial Reference System A spatial DBMS should also develop its Spatial Reference
System, which identifies the coordinate system for all geometries stored in the geo-
metric columns, and gives meaning to the numeric coordinate values for any geometry
instance stored in the columns.

Although OGC Abstract Specifications also defines standards for complex features
(topological primitives), they are still missing in SFS and other OGC Implementation
Specifications. Freeform shapes like Bézier, B-spline or NURBS curve/surface are not
mentioned in the OGC Implementation Specifications.
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2.2.2 Oracle Spatial

Oracle Spatial is one of the most powerful spatial DBMSs on the market. Oracle series began
to support spatial data in its option Oracle Spatial since Oracle 8i. Partially compliant
with Simple Features Specification for SQL, Oracle Spatial supports several spatial types
specified in SFS. Oracle Spatial is considered partially compliant with OGC specifications but
not completely compliant because in Oracle Spatial there is no separate data types for point,
linestring, polygon, etc., but there is uniform data type: SDO GEOMETRY to represent all
spatial data types. Beside spatial data types, a large number of spatial functions are available
in Oracle Spatial as well.

Spatial types

Unlike other spatial DBMSs in which different spatial types represent different geometries,
there’s only one spatial type: SDO Geometry. Before explaining the geometry types that can
be represented with SDO Geometry, the Entity Relationship diagram in Figure 2.9 would be
helpful to understand how SDO Geometry works.

Figure 2.9: ER diagram for SDO Geometry

Oracle enables users to define new data types (user-defined data types) which are made
up of several attributes. These attributes can be of basic data types such as numbers, var-
char2, date, or other existing user-defined data types. SDO GEOMETRY is created as a
user-defined data type. Several kinds of geometries can be represented by setting attributes
of SDO GEOMETRY. Oracle Spatial defines the object type SDO GEOMETRY as [20]:

CREATE TYPE sdo geometry AS OBJECT (
SDO GTYPE NUMBER,
SDO SRID NUMBER,
SDO POINT SDO POINT TYPE,
SDO ELEM INFO SDO ELEM INFO ARRAY,
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SDO ORDINATES SDO ORDINATE ARRAY);

SDO GTYPE The SDO GTYPE (geometry type) value is 4 digits in the format dltt. d is
the number of dimension (2, 3, or 4); l specifies which dimension (3 or 4) contains the
measure value3; tt represents geometry types, for example, dl01 represents point, dl02
represents line/curve, dl03 represents polygon, etc. Supported geometry types are:

• UNKNOWN GEOMETRY

• POINT

• LINE/CURVE

• POLYGON(with/without holes)

• COLLECTION

• MULTIPOINT

• MULTILINE/MULTICURVE

• MULTIPOLYGON.

SDO SRID This attribute is used to relate a spatial reference system to this geometry.
”null” values means this geometry doesn’t relate to any reference system.

SDO POINT When SDO POINT value is not null, this geometry is just a single point,
otherwise it is one of other geometries. Using SDO POINT is convenient when there’re
only point geometries in a layer.

SDO ELEM INFO This attribute indicates the format of coordinates in SDO ORDINATES
by repeating the following attributes:

SDO STARTING OFFSET This attribute indicates the starting offset of current
element’s first coordinate in SDO ORDINATES;

SDO ETYPE Type of current element, can be simple elements or compound ele-
ments. Especially, geometries which are not supported by Oracle Spatial can be
represented by setting SDO ETYPE to zero. Geometries with type 0 elements
must contain at least one nonzero element, which should be an approximation of
the unsupported geometry.

SDO INTERPRETATION Interpretation for SDO ETYPE. Especially, when this
is a zero type element, the SDO INTERPRETATION value for the type zero
element can be any numeric value, and applications are responsible for determining
the validity and significance of the value [20].

SDO ORDINATES Arrays of coordinates are stored here with the format specified in
SDO ELEM INFO.

The SQL statements below create a spatial table with a spatial column, and then insert
a polygon in into this table.

CREATE TABLE example table(
id NUMBER,
shape SDO GEOMETRY);

INSERT INTO example table VALUES(

3Measure value is used to reflect the relation between world coordinate and local coordinate [20].
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1,
SDO GEOMETRY(
2003, --two-dimensional polygon
NULL,
NULL,
SDO ELEM INFO ARRAY(1,1003,3),

--1003 indicates simple polygon, 1 indicates vertices are connected by
straight line segments

SDO ORDINATE ARRAY(-1,-1, -1,1, 1,1, 1,-1)

--coordinates for four vertices

));

Notice that the SQL statement above is not the only possibility to represent this polygon.
We can also set SDO ETYPE to 1003 and SDO INTERPRETATION to 3, which indicates
a rectangle. In this case, only coordinates of top-right and bottom-left vertices should be
specified in SDO ORDINATE ARRAY.

Spatial operators and functions

Oracle Spatial support a large number of operators and functions for spatial data types. Spa-
tial operators in Oracle Spatial provide optimum performance because they use the spatial
index, which is an R-tree of MBR (minimum bounding rectangle) around geometry shapes4,
on spatial columns. Spatial operators must be used in the WHERE clause of a query. Spatial
functions in Oracle Spatial differ from spatial operators in that they do not require that a
spatial index be defined, and they do not use a spatial index if it is defined. These spa-
tial functions can be used in the WHERE clause or in a subquery. Both spatial operators
and spatial functions are included in the Spatial PL/SQL application programming
interface (API).

Spatial query and operations using the existing operators and functions in Oracle is quite
convenient. These spatial operators and functions can be mainly categorized into:

• Relationship (True/False) between two objects: RELATE, WITHIN DISTANCE

• Validation: VALIDATE GEOMETRY WITH CONTEXT, VALIDATE LAYER WITH
CONTEXT

• Single-object operations: SDO ARC DENSIFY, SDO AREA, SDO BUFFER,
SDO CENTROID, SDO CONVEXHULL, SDO LENGTH, SDO MAX MBR ORDINATE,
SDO MIN MBR ORDINATE, SDO MBR, SDO POINTONSURFACE

• Two-object operations: SDO DISTANCE, SDO DIFFERENCE, SDO INTERSECTION,
SDO UNION, SDO XOR

The following example shows how to get all the geometries which contain a rectangle with
vertices at (-0.5,-0.5),(-0.5,0.5),(0.5,0.5),(0.5,-0.5) using spatial operators.

select a.id from example table a
where SDO CONTAINS(a.shape,
SDO GEOMETRY(2003,NULL,NULL,
SDO ELEM INFO ARRAY(1,1003,3),

4See [20] for more information of spatial index in Oracle Spatial
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SDO ORDINATE ARRAY(-0.5,-0.5, -0.5,0.5, 0.5,0.5, 0.5,-0.5))
)=’TRUE’;

The result is ’1’, which means the spatial column ’shape’ of the row with id ’1’ contains
the rectangle.

The following example shows to how to get the centroid of the geometry with id ’1’ us-
ing spatial function.

select id, SDO GEOM.SDO CENTROID(shape, 0.005)
from example table where id=1;

The result is ’SDO GEOMETRY(2001, NULL, SDO POINT TYPE(0, 0, NULL), NULL, NULL)’,
which means point (0,0) is the centroid of the geometry with id ’1’ (a rectangle with vertices(-
1,-1), (-1,1), (1,1), (1,-1)).

Although these operators and functions are quite powerful and convenient, they cannot
be applied to new geometry types because the algorithms are based on existing geometry
types. In order to make the spatial database fully supporting new geometry types, for exam-
ple freeform curves and surfaces, we have to create the operators and functions by writing
PL/SQL (Procedural Language extensions to SQL) codes, JAVA codes or C codes.

2.2.3 Other spatial DBMSs

There are several spatial DBMSs on the market, such as Ingres, Informix, PostGIS, and Oracle
Spatial. All of them have spatial data types and spatial functions, but the differences in their
spatial functionalities are significant, which can be revealed from the following comparison.
Oracle Spatial is also included in this comparison as a reference spatial DBMS.

• Informix, PostGIS and Oracle Spatial support OGC specifications, whereas Ingres
doesn’t.

• The spatial types can only be 2D in Ingres, but they can be 3D or 4D (with measure
values) in other ones.

• Supported spatial types are different. Oracle Spatial supports most of the data types
specified in SFS, and unknown geometry types can be stored; PostGIS supports the
same spatial data types as Oracle Spatial, but unknown geometries cannot be stored;
Informix doesn’t have Multi-Geometry type, which is a collection of different basic
geometry types; Ingres doesn’t support any Multi- types, like MultiPoint, MultiPolygon,
etc.

• Numbers of spatial functions are different. Oracle Spatial and PostGIS give more useful
spatial functions than Informix and Ingres.

2.2.4 Summary

Current spatial DBMSs are able to support simple geometries like point, line string, polygon,
and etc., Which and how geometries should be supported has been specified in some stan-
dards: OGC specifications. Among the three popular freeform geometries: Bézier, B-spline
and NURBS, only the first two are mentioned in the Abstract Specification. None of the
three is mentioned in the Implementation Specification.

As a spatial DBMS, Oracle Spatial gives support to simple geometries with a uniform
spatial data type: SDO Geometry. Different kinds of simple geometries are stored with



2.3 Concluding remarks 18

SDO Geometry by specifying different attribute values. Freeform geometries are not sup-
ported by Oracle Spatial yet.

2.3 Concluding remarks

After the study in this chapter, the following conclusions can be stated:

• Bezier, B-spline and NURBS can be used to represent freeform curves and surface.
Bezier require the degree and control points as parameters; B-spline require degree,
control points, and knot vector; NURBS require degree, control points, knot vector and
weight values. Freeform surfaces require degree and knot vector in two directions.

• OGC specifications mention Bezier and B-splines curve/surface in Abstract Specifica-
tions. NURBS is still missing, although it is a powerful representation for freeform
curves and surfaces, considering its helpful properties.

• Oracle Spatial is able to store some simple geometry types with a uniform data type:
SDO Geometry, and manipulate them with a number of functions and operators on
SDO Geometry.

• New data types can be created in Oracle by creating user-defined data types. Therefore
creation of data types for freeform curves and surfaces is possible in Oracle.

The study and investigation in this chapter has answered the first sub-question in Chapter
1. In the next chapter, conceptual models based on the background in this chapter will be
designed.



Chapter 3

Conceptual design

From Section 2.2 we know that geometries can be managed in spatial DBMSs with spatial data
types and spatial functions, as specified in OGC Abstract and Implementation Specifications.
OGC Abstract Specification: Spatial Schema specified a number of geometries which should
be supported in a spatial DBMSs, and some simple geometries are chosen and specified in
OGC Implementation Specification: SFS. Most of the simple geometries specified in SFS have
been implemented in current spatial DBMSs. A lot of spatial functions on these geometries,
for example, translation, rotation and intersection, are also available in Oracle Spatial.

This chapter discusses the conceptual design for each DBMS module in Figure 3.2, i.e.
freeform data types and functions. In each section, motivations and possibilities are discussed
first, then the determined conceptual models are given and explained. Section 3.1 discusses
the conceptual models of freeform data types. Section 3.2 discusses the potential functions
on freeform data types.

3.1 Freeform data types

From Section 2.1 we know that freeform curves and surfaces can be represented with three
powerful mathematical models: Bézier, B-spline and NURBS.

For freeform curves, there are two possibilities for the conceptual model. The first is
to create data types for all of Bézier curve, B-spline curve and NURBS curve. An alternative
approach is to just create a data type for NURBS curves, and represent Bézier curves and
B-spline curves by leaving some parameters of NURBS curve empty, because NURBS curve
is actually the generalization of Bézier curve and B-spline curve. I didn’t adopt the second
approach mainly because:

• Leaving the empty values for some parameters will decrease system efficiency, as many
unnecessary empty values should be specified and stored.

• OGC specification: Spatial Schema recommends different data types for different
shapes.

• Some geometry algorithms are different for Bézier curve, B-spline curve and NURBS
curve.

Similar to freeform curves, conceptual models for freeform surface can be a model for
generalized NURBS surface, or models for all of Bézier surface, B-spline surface and NURBS
surface. I decided to only create data type for NURBS surface instead of for all three kinds
of surfaces. This is mainly because the whole procedure of creating Bézier surface, B-spline
surface and NURBS surface will be very similar, and Bézier surface, B-spline surface can be
represented in NURBS form by leaving knots parameter or weight parameter empty. In the
research stage, it is wise and more representative to only implement the most complex type:

19
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NURBS surface, instead of repeating the similar procedure for all three, hence time can be
saved for more creative research.

The mathematical background in Chapter 1 summarized that:

• A Bézier curve is defined by several control points.

• A B-Spline curve is defined by several control points and a sequence of knots.

• A NURBS curve is defined by several control points and a sequence of knots; each
control point has a weight value; sometimes trim values are required to represent part
of a whole NURBS curve.

• A NURBS surface is defined by a control points net and knots in both u and v
directions. Each control point has a weight value; trim values in both u and v directions
are optional.

• Degree is an important factor for freeform curves and surfaces.

• B-Spline is generalization of Bézier, and NURBS is generalization of B-Spline. Bézier
curve, B-Spline curve and NURBS curve are all Spline curves.

All the parameters mentioned above are also included in the specification of freeform
geometries in Spatial Schema, except that NURBS is still absent in Spatial Schema.
However, Spatial Schema defines more parameters for each data type than the basic re-
quired parameters.

According to Figure 2.8, the GM BSplineCurve in Spatial Schema requires three more
parameters:

• curveForm. The curveForm attribute is used to identify particular types of curve which
this spline is being used to approximate, for example: circular arc, elliptic arc, parabolic
arc, etc. curveForm is an optional attribute of GM BSplineCurve package, and it will
not be included in my conceptual models for freeform curve. This is mainly because
different CAD/GIS applications have different classifications for the curve forms, and
fixed curve form classification inside spatial DBMS should be avoided. My conceptual
model should include the common parameters of all front-ends. Additional and optional
parameters like curveForm can be stored outside the instance of conceptual models, for
example, other columns besides the column of freeform data type.

• knotSpec. knotSpec is another optional attribute which is used to identify particular
types of knot vector, for example: uniform, quasiUniform, and etc. This attribute will
not be included in my conceptual models either. This is because a knot vector is just a
sequence of values, and whether this sequence is uniform or not can be easily checked
by simple algorithms. Storage of such a parameter is a unnecessary data redundancy.

• isPolynomial. isPolynomial is an obligatory attribute which is used to identify whether
this is a polynomial spline or a normal spline, according to [7]. In other words, isPoly-
nomial is used to identify whether the spline interpolates or approximates the control
points. isPolynomial will be included in my conceptual model. This is because, first,
it is an obligatory attribute in Spatial Schema, and second, some CAD applications
(AutoCAD and MicroStation) do have splines in both forms, and there are translation
tools to convert one to another. isPolynomial attribute will be used in most cases
instead of being assigned with the empty value.

The GM Knot package in Spatial Schema is also different from common definition of
knot vector. Actually, Spatial Schema defines a knot vector with a sequence of GM Knot.
Each GM Knot requires the following parameters:
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• value. This is the value of the knot.

• multiplicity. How many times this knot is repeated.

• weight. The “importance” of this knot in the whole knot vector. Spatial Schema
doesn’t give much mathematical explanation to this parameter, and there’re a few pub-
lications which mention knot weight. According to [10], the knot weight is a temporary
parameter which is used in a knot removal algorithm, where the knot weight values give
an importance rank to all knots, and the least important knot will be removed.

The usage of multiplicity can save storage when most knots are repeated. For example, a
knot vector {0,0,0,0,1,1,1,1} can be considered as only two GM Knot : one with value 0 and
multiplicity 4 and another one with value 1 and multiplicity 4. However, the disadvantage of
this model is significant when some knot are not multiplied. For example, a knot vector {0,
0.2, 0.4, 0.6, 0.8, 1}, will have to store five GM Knot, all of which have the multiplicity 1.
This obviously results in data redundancy. In practice, the latter situation is more common,
so therefore the GM Knot package in Spatial Schema will not be adopted as the conceptual
model. Instead, a model (as in Figure 3.1) of knot vector, which contains a value sequence
attribute and a weight sequence attribute, would be more efficient than the GM Knot package
in Spatial Schema. In this approach, a knot vector is defined by a GM KnotVector model.
The knot values are listed in the knots attribute, and the weight values are listed in the
weights attribute. Multiplicity of knots can be easily checked with algorithms. Normally a
knot vector is not very long, therefore such checking should not be heavy.

Based on the mathematical definitions, the specifications in OGC specifications, consid-
erations on practical purpose, and discussions above, conceptual models for Bézier curve,
B-spline curve, NURBS curve and NURBS surface can be created as in Figure 3.1.

Following are some explanations for Figure 3.1.

• GM SplineCurve is the basic class for GM BezierCurve, GM BSplineCurve and
GM NURBSCurve; control points, knots and degree are the parameters of
GM SplineCurve, and they are inherited by the other three curves.

• GM NURBSSurface is a freeform surface class using NURBS surface representation;

• GM Knot is the class for knot vector, which is used in GM BSplineCurve,
GM NURBSCurve and GM NURBSSurface as parameters;

• GM PointArray and GM WeightArray are simple Array types which enumerate real
values, and they are used to represent control points and weight values in all the freeform
curves and surface types;

• GM Trim represents the trim values for GM NURBSCurve and GM NURBSSurface.

3.2 Functions on freeform data types

As this is the first attempt of managing freeform data types in a DBMS, there is no standard
of which functions should be implemented for these types. OGC specifications didn’t mention
anything about the spatial function on freeform data types, either. In this case, standards
and implementations of existing spatial types can be referenced. On the other hand, there
should also be spatial functions which are special for freeform data types. Generally, three
main factors are considered for the determination:

• Standards of spatial functions on existing spatial data types in OGC Implementation
Specifications.
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Figure 3.1: Conceptual models of freeform curves and surfaces
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• Implemented spatial functions on existing spatial data types in current spatial DBMSs.

• Potential functions that would be useful for CAD applications.

SFS defines a number of spatial functions on existing spatial data types: constructor
functions, functions that test spatial relationships, functions for distance relationships and
functions on each spatial data type:

• The functions that test spatial relationships include “Equals, Disjoint, Touches, Within,
Overlaps, Crosses, Intersects, Contains, Relate”.

• The functions for distance relationships include “Distance”.

• The functions that implement spatial operators include “Intersection, Difference, Union,
SymDifference, Buffer, ConvexHull ”.

• There should also be spatial functions for each spatial data type. For example, the
spatial functions for ’curve’ include “StartPoint, EndPoint, IsClosed, IsRing, Length”.

Beside SFS, two mainstream spatial DBMSs: Oracle Spatial and PostGIS have been
analyzed for their implemented spatial functions on existing spatial types. Besides the ones
already mentioned in SFS, they both give several extra functions, including:

• Centroid(g1 Geometry) : Double
Returns the geometry center of this geometry.

• Buffer(g1 Geometry, d Double): Geometry
Returns a geometry that represents all points whose distance from this geometry is less
than or equal to d.

• GeomUnion(g1 Geometry, g2 Geometry): Double
Returns a geometry that represents the point set union of this geometry with another
geometry.

• MBR(g1 Geometry): Geometry
Returns the minimum bounding rectangle of this geometry.

• Etc.

From the above functions, the ones which are also meaningful to freeform curves and
surface, have been chosen to be implemented for freeform data types.

Another consideration is whether certain functions should be available at DBMS level.
DBMSs are famous for the speed and efficiency of data storage and processing, but they
are not good at complex and heavy computation. On the other hand, a number of complex
computation functions are already available in CAD/GIS applications. It would be convenient
to have some basic function in DBMS, but it would be more logical to not include any complex
geometry computation at DBMS level. For example, the curve evaluation functions are not
considered because the algorithms are reasonably complex and are available in nearly all
CAD/GIS APIs (AutoCAD, MicroStation). Furthermore, some access functions are required
to return the basic geometry information, too. Considering the nice invariance property (See
section 2.1) of Bézier, B-spline and NURBS, the basic geometry transformation functions
(translation, rotation, scaling) should also be implemented. Conversion functions between
Bézier curve, B-spline curve, and NURBS curve will be useful and required because different
CAD/GIS applications give different levels of support to freeform data types.

From the considerations above, the functions required by freeform curves types include:
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• N(c Curve): Integer
Returns the number of control points

• ConvexHull(c Curve) : Polyhedron
Returns the convex hull of this curve.

• IsClosed(c Curve) : Boolean
Returns whether this curve is closed or open.

• Centroid(c Curve): Point
Returns the geometry center of this curve.

• cPolygon(c Curve): Polygon
Returns the control polygon

• BoundingCube(c Curve): Cube
Returns the minimum bounding cube of this curve.

• RotateX(c Curve, a Double): Curve
Returns a rotated curve by rotating the curve c along x axis by degree a.

• RotateY(c Curve, a Double): Curve
Returns a rotated curve by rotating the curve c along y axis by degree a.

• RotateZ(c Curve, a Double): Curve
Returns a rotated curve by rotating the curve c along y axis by degree a.

• Translation(c Curve, x Double, y Double, z Double): Curve
Returns a translated curve by translating the curve c with (x,y,z).

• Scale(c Curve, x Double, y Double, z Double): Curve
Returns a scaled curve by scaling the curve c with (x,y,z).

• Distance(c1 Curve, c2 Curve): Double
Returns the approximated distance between two curves.

• AnyIntersect(c1 Curve, c2 Curve): Boolean
Checks whether two curves intersect with each other.

Considering from the mathematical analogous between freeform curves and freeform sur-
faces, the functions required by freeform surface types are considered analogous to curve
types, too.

Besides freeform curve and surface types, there should also be a few functions on the
supplementary type: GM KnotVector, because a knot vector contains much mathematical
meaning, which can be returned and manipulated by functions. These functions are:

• N(k KnotVector): Integer
Returns the number of knots

• regulation(k KnotVector): KnotVector
Reconstruct the knot vector by recomputing all the value within [0..1].

• validation(k KnotVector): number

Other important functions are the validation functions. The spatial data is checked when
it is inserted into the DBMS or when it is changed in the DBMS; this check on the geometry of
the spatial objects is called validation. It is important because valid objects are necessary to
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make sure the objects can be manipulated in a correct way, e.g. it is impossible to construct a
freeform curves with degree -1. Validation functions need a set of rules to check the columns
with freeform data types.

Currently there are no existing geometry validity rules for a freeform geometry, therefore
I formulated several rules for valid freeform geometry from the mathematical background of
freeform geometry and validation rules for simple geometries.

A freeform geometry is valid when:

• It is storage valid, which means there’re enough parameters to construct this shape.

• It is geometry valid, which means it is possible to construct a freeform shape with
the stored parameters. A geometry valid freeform geometry has to be a storage valid
freeform geometry first.

Storage validity

Validation rules of storage validity varies for different freeform types. However, they
mainly ensure that the parameters are enough to construct the geometry.

For example, a NURBS curve is storage valid when it satisfies the conditions:

• Coordinates for control points are not missing.

• Degree value is not missing.

• Weight values are not missing.

• Knot vector is not missing.

The storage validity rules for NURBS surface are analogous:

• Control points are not missing.

• Degree value in u direction is not missing.

• Degree value in v direction is not missing.

• Number of control points in u direction is not missing.

• Number of control points in v direction is not missing.

• Weight values are not missing.

• Knot vector in u direction is not missing.

• Knot vector in v direction is not missing.

Geometry validity

If a freeform geometry satisfies all the storage validation rules, it will be checked with
several geometry validation rules, to ensure that this is a completely valid freeform geometry.
The geometry validation rules are more complex than the storage validation rules, and these
geometry validation rules mainly come from the mathematical definition of geometries. For
example, the mathematical definition of a knot vector is: a nondecreasing sequence.

We can derive two geometry validation rules from this definition:

1. Any knot (except the first one) value should be larger or equal to the previous knot
value.
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2. The length of this knot vector should be larger or equal to 2, otherwise it is not a
sequence.

Analogously, we are able to derive geometry validation rules for all freeform geometries
from their definitions. Here we list the rules for NURBS curves:

1. degree > 1;

2. number of control points ≥ 3;

3. Degree = Number of knots - Number of control points - 1;

4. The number of weight values is equal to the number of control points.

5. Each weight value > 0;

6. Knot vector is non-decreasing and has more than 1 knot;

7. upper trimming value > lower trimming values.

Validation functions on freeform data types can be created by checking the validity rules
above one by one, and return different values for storage invalid, geometry invalid and valid
freeform data.

3.3 Concluding remarks

After the discussion in this chapter, conceptual models for freeform data types and functions
are designed. The overall architecture for managing freeform data types in a spatial DBMS
can be drawn in Figure 3.2. As illustrated, several freeform data types and functions on
freeform data types need be designed in a spatial DBMS. Freeform spatial data can be
retrieved or stored by users via either CAD front ends or SQL Plus. CAD front ends can be
used to visualize the freeform spatial data from DBMS, or model freeform geometries and
store them into DBMS. An alternative method to access freeform spatial data in DBMS is to
use SQL Plus, where users store or retrieve freeform spatial data by writing SQL statements
manually. Functions on freeform data types can be invoked by either SQL Plus or CAD front
ends to return requested information.

Considered from mathematical background of freeform geometry and OGC specifications,
the freeform data types to be created include:

• Three curve types: GM BezierCurve, GM BSplineCurve and GM NURBSCurve.

• One surface type: GM NURBSSurface.

• Four supplementary types: GM PointArray, GM WeightArray, GM KnotVector and
GM Trim.

Considered from OGC specifications and functions on existing spatial data types in cur-
rent spatial DBMSs, the functions to be created on freeform data types include:

• Access functions. For example, the function to check whether a freeform curve is closed
or not.

• Geometry relationship functions. For example, the function to check whether two
freeform geometry may intersect with each other.
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Figure 3.2: Overall architecture for conceptual design. Green blocks are DBMS modules;
purple blocks are interface modules between user and DBMS; blue block represents user.

• Geometry transformation functions. For example, the function to rotate a freeform
geometry.

• Conversion functions. For example, the function to convert a B-spline curve to a
NURBS curve.

• Validation functions. For example, the function to check whether a record stores a valid
freeform curve.



Chapter 4

Freeform data types

This chapter gives a detailed explanation of how freeform data types are implemented from
the designed conceptual models in Chapter 3, and explains how freeform curves and surfaces
can be stored in a spatial DBMS. Oracle Spatial is chosen to build the freeform data types
on, instead of other spatial DBMSs, because:

• Oracle enables creating user-defined data types, which is convenient for creating new
data types.

• I’m familiar with Oracle more than other spatial DBMSs.

• Oracle gives very detailed technical support. Nearly all aspects of Oracle and Oracle
Spatial have been well documented, and these documentation can be easily accessed
from Internet.

Section 4.1 discusses the possible implementation approaches, makes a choice, and then
explains how to create freeform data types with this approach. Sections 4.2 gives the im-
plementation of freeform curve data types. Section 4.3 gives the implementation of freeform
surface data types. Section 4.4 shows some examples of how to manipulate the freeform data
types.

4.1 Implementation approach

Conceptual models can be implemented in Oracle Spatial by different approaches. This
section gives and compares the possible approaches, makes a choice, and then explains how
this approach practically works in Oracle Spatial.

4.1.1 Possible approaches

From Section 3.2 we know that geometries are stored using SDO Geometry by setting at-
tribute values. Different kinds of geometries can be represented with this uniform data
type, and their differences are reflected in the different combinations of attribute values. For
example, the combination of SDO ETYPE 2 and SDO INTERPRETATION 1 indicate a
linestring whose vertices are connected by straight line segments; while the combination of
SDO ETYPE 2 and SDO INTERPRETATION 2 indicates a line string made up of a con-
nected sequence of circular arcs. Storage of vertex coordinates and other relevant information
should be according to certain rules determined by each combination. These rules can be
found in [20].

Similarly, freeform geometries can be stored with SDO GEOMETRY, too. The attribute
SDO GTYPE of SDO GEOMETRY indicates the type of this geometry, for example: dl01
represents point, dl02 represents line/curve, dl03 represents polygon, etc. Currently number

28



4.1 Implementation approach 29

00 to 07 have been used by some geometries, while 08 to 99 are still reserved for future use,
which means they be can used by the freeform geometry types as well.

A possible implementation of the NURBS curve using SDO Geometry is as follows:

SDO GEOMETRY(
3009, --9 is GTYPE value for NURBS type

NULL, NULL,
SDO ELEM INFO ARRAY(

1,
9, –ETYPE value for NURBS curve type

d), – SDO INTERPRETATION: degree value

SDO ORDINATE ARRAY(
n, – number of control points

m, – number of knots

cpoints, – coordinates of n weighted control points (x,y,z,w)

knots, – m knot vector values, for example (0, 0.2, 0.4, 0.6, 0.8, 1)

s0, s1, – trimming values

));

The advantages of using SDO Geometry to represent freeform data types include:

• Easy to integrate with existing supported geometry types. Because both freeform types
and other geometry types are stored with the same data type, they can be stored in the
same column of tables. This is sometimes rather convenient for data insertion, spatial
queries, spatial index and other operations.

• Easy to implement. The required steps just include specifying type number (for ex-
ample, 09 for NURBS curve, 10 for B-Spline curve, and etc.), and set up rules for
SDO ELEM INFO.

However, there’re also several significant disadvantages, including:

• The storage rules are quite complex. Unlike simple feature such as points, line strings
which have very simple data structures, Bézier, B-spline and NURBS curves/surfaces
have rather complex structures. Each record requires 3-5 parameters, and some of these
parameters are an enumeration of point coordinates or real values. Manual input of
freeform shapes is very difficult and confusion can be easily made in both insertion and
retrieval, because it is hard to remember all the complex storage rules.

• Much redundant information is stored. SDO Geometry requires that formats of data
are specified in the parameter SDO ELEM INFO first by recording a pointer to the
head of each data segment. This pointer information are redundant information, and
the amounts are quite considerable.

• All the existing spatial functions on SDO Geometry cannot be used for freeform data.
This is mainly due to: 1. mathematical algorithms (intersection, convexHull, length,
etc.) for simple features are completely different from the ones for freeform geometries;
2. all these functions are 2D functions, while we require 3D freeform geometries to be
stored.

An alterative solution is to represent each geometry type with a separate data type in Oracle.
For example, data type NURBSCurve for NURBS curve geometry, data type BsplineCurve
for B-spline curve geometry, and so on. This approach is quite popular in other spatial
DBMSs, including PostGIS, Informix, etc. The following example shows how to insert a
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polygon into PostGIS:

INSERT INTO example table(id, shape) VALUES
(1, GeometryFromText(’POLYGON(-1 -1, -1 1, 1 1, 1 -1)’, 128));

Note that “POLYGON” is the data type for polygon geometry. The advantages of creating
several freeform data types include:

• Data structures are very clear. Types of freeform geometry are explicit, and the pa-
rameters can be accessed directly. This differs from SDO GEOMETRY where certain
analysis and traversal through SDO ORDINATE ARRAY is required.

• Few redundant information is stored. No reference information is required.

• Freeform data types can be extended and adapted to other applications easily. The
structures of user-defined data types in Oracle are object-oriented. The data struc-
tures of freeform shapes and required parameters are various in different applications.
Adapted data types can be easily inherited from existing prototypes, and functions
on prototype types will be also operational for inherited types. This object-orient
mechanism is rather important for practical purposes. More explanation about the
user-defined data type in Oracle is given in the next section.

Disadvantages of this method include:

• Different kinds of geometries have to be stored in different table columns. This may lead
to inconvenience for practical purposes, where a model normally consists of different
geometry types, and all information of a model is preferably stored in the same column.

• Certain programming codes are required to create new data types. For example, Java or
C or PL/SQL codes are required in Oracle Spatial for user-defined data types. Detailed
explanations can be found in the next section.

From the comparison above we know that there are more advantages of the latter method:
creating several freeform data types. Although different kinds of geometries cannot be stored
in the same table column which leads to certain inconvenience, this problem can be solved
by storing different kinds of geometries in different tables. Then a meta-data table which
acts as an interface between DBMS and CAD/GIS applications, is used to record all the
table names, spatial column names, dimension information, etc. Furthermore, the method of
creating several freeform data types is recommended in the OGC specifications. Therefore
this method is adopted for the implementation. The next section will zoom into the procedure
of creating user-defined data types in Oracle.

4.1.2 Implementation by creating several user-defined data types

User-defined data types in Oracle use Oracle built-in data types and other user-defined data
types as the building blocks of object types that model the structure and behavior of data in
applications. Four kinds of data types: Object types, REFs, VARRAYs, and Nested tables
can be created [18]. Here we are only interested in object types and VARRAYs.

Object types Object types are abstractions of real-world entities, such as purchase orders,
that application programs deal with. An object type is a schema object with three
kinds of components:

• A name, which identifies the object type uniquely within that schema

• Attributes, which are built-in types or other user-defined types. Attributes model
the structure of the real-world entity.
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• Methods, which are functions or procedures written in PL/SQL and stored in the
database, or written in a language like C or Java and stored externally. Methods
implement operations the application can perform on the real-world entity.

Oracle’s object type is object-oriented, which means new object types (subtype)
can be created by inheriting from another object type (supertype). Derived subtypes
inherit the features of the parent object type but extend the parent type definition.
The specialized types can add new attributes or methods, or redefine methods inherited
from the parent. The resulting type hierarchy provides a higher level of abstraction for
managing the complexity of a model [23].

VARRAY An array is an ordered set of data elements. All elements of a given array are of
the same data type. Each element has an index, which is a number corresponding to
the position of the element in the array. The number of elements in an array is the size
of the array. Oracle arrays are of variable size, which is why they are called varrays. A
maximum size is required when declaring the varray.

User-defined data types in Oracle can be declared using the SQL statement “CREATE
TYPE”. The implementation of the declaration can be:

• PL/SQL code. The implementation codes are written with PL/SQL language codes
under another SQL statement “CREATE TYPE BODY ”.

• Java class. Each user-defined data type is mapped to a Java class, with each attribute
of the user-defined type corresponding to a variable of the Java class, and each method
of the user-defined type corresponding to a function of the Java class, as illustrated in
Figure 4.1.

• C file. Each user-defined data type is mapped to a C language file, with each attribute
of the user-defined type corresponding to a variable of the C file, and each method of
the user-defined type corresponding to a function of the C file.

Figure 4.1: Mapping between user-defined data types and Java classes in Oracle

In this research, the Java approach is chosen because of the good support of Java by
Oracle and familiarity of Java-SQL operations. PL/SQL is also well supported, but it is not
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chosen because of the complexity and low efficiency of PL/SQL in geometry processing (see
[27] p 32).

The overall procedure of creating user-defined data types (with the Java approach) can
be divided into three main steps: a Java class which implements the conceptual model is
created first; then this class will be loaded to the Oracle server; finally the type in Oracle is
declared with “CREATE TYPE” statement.

Create Java class

There are two requirements for the Java class to be mapped with the user-defined SQL type.
The first requirement is that the Java class must implement either interface

java.sql.SQLData or interface oracle.sql.ORAData. java.sql.SQLData supports methods (read-
SQL() and writeSQL()) to automatically convert Java types to standard SQL types, and the
other way around. oracle.sql.ORAData extends java.sql.SQLData in the way that Oracle
extended SQL types can also be converted to/from Java types.

The second requirement is that type mapping must follow several mapping rules, some of
which are listed in the table below. The Java data types are different from SQL data types
in Oracle, therefore mapping rules are required. For example, Java type String corresponds
to SQL type Varchar2 ; Java type int corresponds to SQL type number ; etc.

Java Type Oracle SQL Datatype
boolean NUMBER
byte NUMBER
short NUMBER
int NUMBER
float NUMBER
double NUMBER
java.lang.String CHAR VARCHAR2 LONG
java.sql.Struct object types
java.sql.Ref reference types
java.sql.Array collection types
custom object classes implementing object types
java.sql.SQLData

Below is an example for a Java class implementing java.sql.SQLData interface.

public class GM_SplineCurve implements SQLData
//SQL Data is the interface to mapping between SQL Data and Java Data

{
public String sql_type = "GM_SplineCurve";
public ARRAY cpt; //mapping attribute "controlpoints"
public GM_KnotVector knots; //mapping attribute "knots"
public int degree; //mapping attribute degree
public GM_SplineCurve()
{}
public void readSQL(SQLInput stream, String typeName) throws SQLException

//output from Java to SQL
{

sql_type = typeName;
degree=stream.readInt();
cpt=(ARRAY)stream.readArray();
knots=(GM_KnotVector)stream.readObject();

}
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public void writeSQL(SQLOutput stream) throws SQLException //input from SQL to Java
{
stream.writeInt(degree);
stream.writeArray(cpt);
stream.writeObject(knots);
}
}

Load Java class

After a Java file is complied using javac compiler, the .class file is still in the local machine,
and it needs to be loaded to the Oracle server using the loadjava tool. The loadjava tool
is an operating system command-line utility that is able to uploads Java related files (.java,
.class, .jar, etc.) into the database.

Here is the syntax:

loadjava {-user | -u} username/password[database] [-option name
[-option name] ...] filename [filename ]...

An important option is -resolve. Specifying this option will compile a Java source file,
resolve class dependencies, and then load it to the Oracle server if everything is all right. If
this option is not specified, files are loaded but not compiled or resolved until runtime.

The following example shows how to load a Java .jar package geometry.jar to an Oracle
server called myserver with username usr and password pwd.

loadjava -user usr/pwd@myserver geometry.jar

The following example shows how to load a Java source file GM SplineCurve.java to the
Oracle server.

loadjava -user usr/pwd@myserver -resolve GM SplineCurve.java

Create type

After Java class files are loaded in Oracle server, finally user-defined data type can be declared
using the CREATE TYPE statement. The CREATE TYPE statement specifies the name
of the user-defined type, its attributes, methods and other properties. Figure 4.2 and Figure
4.3 show a simplified syntax of CREATE TYPE statement.

Following are explanations of some clauses of Figure 4.2 and Figure 4.3. Clauses that are
not relevant to this research will not be explained, but they can be obtained from [22].

type name Specify the name of an object type, or a varray type.

UNDER Specify UNDER supertype to create a subtype of an existing object type. The
subtype inherits the attributes and methods of its supertype. It must either override
some of those attributes/methods, or add new attributes/methods to distinguish it from
the supertype.

sqlj object type Specify information of the mapped Java class.

attribute Specify the name of an attribute for this user-defined type. If this is a subtype,
then the attribute name cannot be the same as any attribute or method declared in the
supertype chain.

datatype Specify data type of this attribute. The allowed data type includes Oracle built-in
datatypes (VARCHAR2, NUMBER, DATE, etc.) or another user-defined type.
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Figure 4.2: Syntax of CREATE TYPE. Clauses in main lines are required, while those in
branches are optional; strings in rectangles are constant, while those in rounded rectangles
are user-specified. [22]

Figure 4.3: sqlj object type [22]

NOT FINAL Specify FINAL if no further subtypes can be created for this type; specify
NOT FINAL if further subtypes can be created under this type.

SQLData, OraData Specify the mapping strategy. Use SQLData to map standard SQL
data types; use OraData to map Oracle extended data types.

Following is an example of creating a user-defined data type GM SplineCurve which maps
Java class GM SplineCurve.class. As shown in Figure 3.1, GM SplineCurve is the super type
of GM BezierCurve, GM BSplineCurve and GM NURBSCurve.

SQL> CREATE or REPLACE type GM_SplineCurve as object
external name ’GM_SplineCurve’ language java using SQLData(
degree number external name ’degree’,
controlPoints GM_PointArray external name ’cpt’,
knots GM_KnotVector external name ’knots’
);

SQL> /

Type created.
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4.2 Freeform curve types

Following the procedures explained in the previous section, the four freeform curve types
in the conceptual model are implemented. They are GM SplineCurve, GM BezierCurve,
GM BSplineCurve and GM NURBSCurve. GM SplineCurve is the super type of the other
three. Although GM SplineCurve itself is just an abstract geometry class, it is created for
several important reasons:

1. Because of the object-oriented structure of Oracle objects, common attributes and
methods of GM BezierCurve, GM BSplineCurve and GM NURBSCurve can be speci-
fied as GM SplineCurve’s attributes and methods, which will be easy for creation and
modification;

2. GM SplineCurve package is mentioned in OGC Abstract specifications.

Following are the descriptions of implemented freeform data types in Oracle.

GM SplineCurve

SQL> desc GM_SplineCurve
GM_SplineCurve is NOT FINAL
Name Type
----------------------------------------- ---------------------
DEGREE NUMBER
CONTROLPOINTS GM_POINTARRAY
KNOTS GM_KNOTVECTOR

Explanations for the parameters:
DEGREE The degree value of this curve.

CONTROLPOINTS x,y and z coordinates of the control points.

KNOTS Knot vector of this curve.

GM BezierCurve

SQL> desc GM_BezierCurve
GM_BezierCurve extends GM_SPLINECURVE
Name Type
----------------------------------------- ----------------------------
DEGREE NUMBER
CONTROLPOINTS GM_POINTARRAY
KNOTS GM_KNOTVECTOR

Explanations for the parameters:
DEGREE The degree value of this Bézier curve.

CONTROLPOINTS x,y and z coordinates of the control points.

KNOTS Knot vector should be specified ’NULL’ for Bézier curve.

GM BSplineCurve
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SQL> desc GM_BSplineCurve
GM_BSplineCurve extends GM_SPLINECURVE
Name Type
----------------------------------------- ----------------------------
DEGREE NUMBER
CONTROLPOINTS GM_POINTARRAY
KNOTS GM_KNOTVECTOR
ISPOLYNOMIAL NUMBER

Explanations for the parameters:
DEGREE The degree value of this B-spline curve.

CONTROLPOINTS x,y and z coordinates of the control points.

KNOTS Knot vector of this B-spline curve.

ISPOLYNOMIAL If ’True’, then this is a polynomial B-spline, otherwise this is a normal B-spline curve.
The major difference between the polynomial B-splines and normal B-splines is that polynomial B-
splines pass through their control points.

GM NURBSCurve

SQL> desc GM_NURBSCurve
GM_NURBSCurve extends GM_SPLINECURVE
Name Type
----------------------------------------- ----------------------------
DEGREE NUMBER
CONTROLPOINTS GM_POINTARRAY
KNOTS GM_KNOTVECTOR
WEIGHTS GM_WEIGHTARRAY
TRIM GM_TRIM

Explanations for the parameters:
DEGREE The degree value of this NURBS curve.

CONTROLPOINTS x,y and z coordinates of the control points.

KNOTS Knot vector of this NURBS curve.

WEIGHTS Weight values of the control points. The length of WEIGHTS must be equal to 1/3 of the length
of CONTROLPOINTS.

TRIM Trimming values of this NURBS curve. Specify ’NULL’ if no trimming.

Besides the freeform curves data types, several supplementary data types are also created
according to the conceptual model. The freeform data types require some parameters such
as knot vector, weight values, etc. Different from the simple attributes such as degree which
can be represented with existing data types in Oracle, these complex parameters can only
be represented with separate user-defined data types. GM PointArray, GM WeightArray,
GM Trim and VECTOR are Varray types, which are enumerations of basic data type (num-
ber) in Oracle. GM KnotVector is an object type with two attributes: knots and weights.
Following are description of these types:

GM PointArray:

GM_PointArray VARRAY(1048576) OF NUMBER

VECTOR VARRAY(1048576) OF NUMBER
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GM WeightArray:

GM_WeightArray VARRAY(1048576) OF NUMBER

GM Trim:

GM_Trim VARRAY(2) OF NUMBER

VECTOR:

GM KnotVector:

Name Type
----------------------------------------- ----------------------------
KNOTS VECTOR
WEIGHTS GM_WEIGHTARRAY

Explanations for the parameters of GM KnotVector:
KNOTS Non-decreasing knot values.

WEIGHTS The value of the averaging weight used for this knot of the spline.

4.3 Freeform surface type

Only one freeform surface type: GM NURBSSurface is created, instead of implementing all
of Bézier surface, B-spline surface and NURBS surface. This is mainly because:

• B-spline surfaces can be represented with GM NURBSSurface by specifying NULL
value to weights attribute; Bézier surfaces can be represented with GM NURBSSurface
by specifying NULL value to weights attribute and knot attribute.

• NURBS surfaces are more popular in CAD/GIS applications than B-spline surfaces or
Bézier surfaces.

• The implementation of Bézier surface, B-spline surface and NURBS surface will be
very similar. Therefore as a research topic, the most complex and generalized surface
geometry: NURBS surface, is chosen to be implemented, instead of repeating the similar
procedure for all three.

GM NURBSSurface:

Name Type
----------------------------------------- -----------------------
NUMU NUMBER
NUMV NUMBER
DEGREEU NUMBER
DEGREEV NUMBER
CONTROLPOINTS GM_POINTARRAY
WEIGHTS GM_WEIGHTARRAY
KNOTU GM_KNOTVECTOR
KNOTV GM_KNOTVECTOR
TRIMU GM_TRIM
TRIMV GM_TRIM
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Explanations for the parameters of GM NURBSSurface.

NUMU The number of control points in u direction.

NUMV The number of control points in v direction.

DEGREEU Degree value in u direction.

DEGREEV Degree value in v direction.

CONTROLPOINTS x,y and z coordinate of the control points.

WEIGHTS Weight values of the control points. The length of WEIGHTS must be equal
to 1/3 of the length of CONTROLPOINTS.

KNOTU Knot vector in u direction.

KNOTV Knot vector in v direction.

TRIMU Trimming values in u direction.

TRIMV Trimming values in v direction.

4.4 Examples

The following examples show basic SQL operations with the created freeform type: GM BSplineCurve.
A table test with a GM BSplineCurve will be created, then 2 B-spline curves will be inserted,
and finally these curves are queried.

The following SQL statement creates a table test with 2 columns. The column col is of
the freeform data type: GM BSplineCurve.

SQL> create table test(id number,col GM_BSplineCurve);

Table created.

The following SQL statement inserts a normal (not polynomial) B-spline curve (as in
Figure 4.4) with parameters:

• degree 2;

• 5 control points;

• equally spaced (uniform) knot vector;

Figure 4.4: A B-spline curve
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SQL> insert into test
values(2,GM_BSplineCurve(2,GM_PointArray(135,225,346,127,256,336,945,20,30,504
,70,698,434,40,4),GM_KnotVector(Vector(-0.5,0,0.5,1.5,2,2.5,3,3.5),NULL),NULL));

1 row created.

The following SQL statement inserts another B-spline curve (as in Figure 4.5) into table
test.

Figure 4.5: A B-spline curve

SQL> insert into test
values(3,GM_BSplineCurve(4,GM_PointArray(1,2,10,1,2,3,9,2,3,5,7,6,4,4,4,9,0,4)
,GM_KnotVector(Vector(0,0,0,0,0,0.5,1,1,1,1,1),NULL),NULL));

1 row created.

The following SQL statement selects all B-spline curve(s) from table test.

SQL> select * from test;

ID
----------
COL(DEGREE, CONTROLPOINTS, KNOTS(KNOTS, WEIGHTS), ISPOLYNOMIAL)
----------------------------------------------------------------------

2
GM_BSPLINECURVE(2, GM_POINTARRAY(135, 225, 346, 127, 256, 336, 945,
20, 30, 504, 70, 698, 434, 40, 4),
GM_KNOTVECTOR(VECTOR(-0.5,0,0.5,1.5,2,2.5,3,3.5), NULL), N ULL)

3
GM_BSPLINECURVE(4, GM_POINTARRAY(1, 2, 10, 1, 2, 3, 9, 2, 3, 5, 7,
6, 4, 4, 4, 9 , 0, 4), GM_KNOTVECTOR(VECTOR(0, 0, 0, 0, 0, .5, 1, 1,
1, 1, 1), NULL), NULL)

The following SQL statement selects all B-spline curve(s) with degree 4 from table test.

SQL> select * from test a where a.col.degree=4;

ID
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----------
COL(DEGREE, CONTROLPOINTS, KNOTS(KNOTS, WEIGHTS), ISPOLYNOMIAL)
-----------------------------------------------------------------------

3
GM_BSPLINECURVE(4, GM_POINTARRAY(1, 2, 10, 1, 2, 3, 9, 2, 3, 5, 7,
6, 4, 4, 4, 9 , 0, 4), GM_KNOTVECTOR(VECTOR(0, 0, 0, 0, 0, .5, 1, 1,
1, 1, 1), NULL), NULL)

The following SQL statement selects the knot vector of the B-spline curve with row id 3.

SQL> select a.col.knots from test a where a.id=3;

COL.KNOTS(KNOTS, WEIGHTS)
-----------------------------------------------------------------------
GM_KNOTVECTOR(VECTOR(0, 0, 0, 0, 0, .5, 1, 1, 1, 1, 1), NULL)

More examples can be found in Chapter 7.
The following examples show basic SQL operations with the created freeform surface type:

GM NURBSSurface. A table test2 will be created, then one NURBS surface is inserted, and
this surface is finally queried.

The following SQL statement creates a table test2 with 2 columns. The column col is of
the freeform surface type: GM NURBSSurface.

SQL> create table test2(id number, col GM_NURBSSurface);

Table created.

The following SQL statement inserts a NURBS surface (as in Figure 4.6) with parameter:

• 3 control points in u direction; 5 control points in v direction; 3*5 control points in
total.

• Degree 2 in u direction; degree 2 in v direction.

• Knot vector in both u and v directions.

• 15 weight values.

• No trimming value.

Figure 4.6: A NURBS surface

SQL> insert into test2 values(1, GM_NURBSSURFACE(3, 5, 2, 2,
GM_POINTARRAY(5.1469375, 1.83903125, 1. 744375, 5.14721875,
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2.24558333, 1.722375, 5.1475, 2.421, 1.98245833, 5.40390625,
1.83903125,1.744375 , 5.371125, 2.2166875, 1.759125, 5.33834375,
2.421, 1.9854375, 5.660875,1.83903125, 1.744375, 5.5950 3125,
2.18780208, 1.795875, 5.5291875, 2.421, 1.98841667, 5.910875,
1.83903125, 1.744375, 5.81545833 , 2.15890625, 1.832625,
5.72003125, 2.421, 1.99139583, 5.910875, 1.83903125, 1.994375,
5.910875, 2.1 3002083, 1.994375, 5.910875, 2.421, 1.994375),
GM_WEIGHTARRAY(1, 1, 1, 1, 1, 1, 1, 1, 1, .707106781, .853553391,
1, 1, 1, 1), GM_KNOTVECTOR(VECTOR(0, 0, 0, 1, 1, 1), NULL),
GM_KNOTVECTOR(VECTOR(0, 0, 0, .5, .5, 1, 1, 1), NULL),NULL,NULL));

1 row created.

The following SQL statement selects the number of control points in u directions of all
NURBS surface(s) from table test2.

SQL> select a.col.NumU from test2 a;

COL.NUMU
----------

3

The following SQL statement selects the NURBS surface(s) with degree 2 in v directions
from table test2.

SQL> select a.id from test2 a where a.col.degreeV=2;

ID
----------

1

More examples can be found in Chapter 7.

4.5 Concluding remarks

In this chapter, the freeform data types are implemented by creating user-defined data types
in Oracle. Parameters required by a freeform geometry are represented with the attributes
of a user-defined date type. An alternative approach is to store freeform geometries with
SDO Geometry, however, this approach is not adopted mainly because of the complex storage
rules and storage redundancy.

User-defined types in Oracle can be declared using SQL statement: “CREATE TYPE”.
The implementation of the declaration can be written in PL/SQL, Java or C. In Java ap-
proach, each user-defined data type maps a Java class, with each attribute of the data type
mapping a variable of the Java class, and each method of the data type mapping a function
of the Java class.

All the freeform data types, which are defined in the conceptual model in Chapter 3, have
been implemented in Oracle. They are GM BezierCurve, GM BSplineCurve, GM NURBSCurve,
GM NURBSSurface, and some supplementary data types.



Chapter 5

Functions on freeform data types

A data type cannot be “managed” by a spatial DBMS without functions on this data type.
Based on the created freeform data types in the previous chapter, this chapter will explain
the implementation of functions on freeform data types.

Section 5.1 introduces the approaches of how conceptual models can be implemented.
Sections 5.2-5.6 present the implemented functions by categories. Section 5.7 gives some
examples of how these functions work in practice.

5.1 Implementation approach

As was explained in Section 2.2.2, two kinds of functions can be distinguished in Oracle:
Standalone functions which are called by name. The parameters and return data can

be any data type. A standalone function is called as function(p1, ..., pn).
Methods which are called along with its object type. These functions are created along

with a certain object type, and they are only operational within this object type. The param-
eters and return data can be any data type, too. A method is called as dataType.method1
(p1, ...pn).

The conceptual functions can be implemented with either standalone functions or meth-
ods. The main difference is only in the way of usage. Generally speaking, there is no
strict rule of whether a function should be implemented as standalone function or method.
They don’t conflict with each other, and a function can be both implemented as stan-
dalone function and as method. However, considering from practical usage, it is more
appropriate to implement functions which take only one parameter as methods. This is
because the name of a standalone function should be unique in the DBMS environment,
and hence if a conceptual function can be applied to more than one data type, the imple-
mented standalone functions have to use different names. For example, conceptual func-
tion ’isClosed()’ need to be implemented for all of GM BezierCurve, GM BSplineCurve and
GM NURBSCurve. If ’isClosed()’ is implemented as standalone function, there have to be
three different functions such as ’isClosed(GM BezierCurve)’, ’isClosed1(GM BSplineCurve)’
and ’isClosed2(GM NURBSCurve)’, which will cause significant inconvenience to users. If ’is-
Closed()’ is implemented as a method, then it can be invoked as ’GM BezierCurve.isClosed()’,
’GM BSplineCurve.isClosed()’ and ’GM NURBSCurve.isClosed()’.

However, implementation for these two kinds of functions is somewhat different. This is
explained below:

5.1.1 Standalone functions

Standalone functions are declared using the CREATE FUNCTION statement, which has a
similar procedure as CREATE TYPE. The implementation of the declaration can also be

42
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PL/SQL codes, Java class or C file. To be consistent with data type implementation, the
Java approach will also be used to create standalone functions. Figure 5.1 shows a simplified
syntax of CREATE FUNCTION.

Figure 5.1: Syntax of CREATE FUNCTION

Following is an example of creating a standalone function: Translation, which maps the
Java function translation within functions.class. Translation takes 4 parameters: the column
of GM SplineCurve data type, and the translation distances in x, y and z directions.

SQL> CREATE FUNCTION translation
(s IN GM_SplineCurve,x IN number,y IN number,z IN number)
RETURN GM_SplineCurve AS LANGUAGE JAVA NAME
’functions.translation(GM_SplineCurve,float,float,float)
return GM_SplineCurve’;

Function created.

5.1.2 Methods

Methods are declared along with object types. As mentioned in the previous chapter, the
object types are declared using CREATE TYPE. The MEMBER FUNCTION parameter of
CREATE TYPE is the part to declare methods of this type. Each member function maps
to a function within a Java class, as illustrated in Figure 4.1.

Following is an example of creating a user-defined type: GM BSplineCurve, under an
existing user-defined type: GM SplineCurve. GM BSplineCurve has one more attribute:
isPolynomial, and two more methods toNURBS and validation than GM SplineCurve. Note
that the method validation in this user-defined data type maps the function validation within
GM BSplineCurve.class:

SQL> CREATE OR REPLACE TYPE GM_BSplineCurve under GM_SplineCurve
external name ’GM_BSplineCurve’ language java using SQLDATA(
isPolynomial number external name ’isPolynomial’,
member function toNURBS return GM_NURBSCurve external name
’toNURBS() return GM_NURBSCurve’,
member function validation return number external name ’validation()
return int’)

Type created.
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According to their functionalities, we categorize all the implemented functions in five
groups: access functions, geometry relationship functions, geometric transformation func-
tions, conversion functions and validation functions.

5.2 Access functions

The access functions return geometric information of a freeform curve or surface.

N

Figure 5.2: Spatial function: N()

This function returns the number of control points or the number of knots.

Type Method
Format N() RETURN NUMBER
Parameters None
Returns The number of control points; the number of knots.
Member of GM KnotVecotor, GM SplineCurve, GM BezierCurve,

GM BSplineCurve, GM NURBSCurve,
GM NURBSSurface

Example SELECT a.col.N() FROM table a;

ISCLOSED
This function returns whether this curve is closed.

Type Method
Format ISCLOSED() RETURN NUMBER
Parameters None
Returns Whether this curve is closed.
Member of GM SplineCurve, GM BezierCurve, GM BSplineCurve,

GM NURBSCurve
Example SELECT a.col.ISCLOSED() FROM table a;

CENTROID
This function returns the approximated centroid of a curve/surface with the center point

of its control polygon, which is the polygon defined by the control points.
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Figure 5.3: Spatial function: Centroid()

Type Method
Format CENTROID() RETURN SDO Geometry
Parameters None
Returns The center point of this curve/surface.
Member of GM SplineCurve, GM BezierCurve, GM BSplineCurve,

GM NURBSCurve, GM NURBSSurface
Example SELECT a.col.CENTROID() FROM table a;

CPOLYGON
This function returns the control polygon/polyhedron of this curve/surface.

Figure 5.4: Spatial function: CPolygon()

Type Method
Format CPOLYGON() RETURN SDO Geometry
Parameters None
Returns The control polygon/polyhedron of this curve/surface.
Member of GM SplineCurve, GM BezierCurve, GM BSplineCurve,

GM NURBSCurve, GM NURBSSurface
Example SELECT a.col.CPOLYGON() FROM table a;

CONVEXHULL
This function returns the convex hull of this curve/surface. The convex hull of a spline

curve/surface is defined by its control points [3].
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Figure 5.5: Spatial function: ConvexHull()

Type Method
Format CONVEXHULL() RETURN SDO Geometry
Parameters None
Returns The convex hull of this curve/surface.
Member of GM SplineCurve, GM BezierCurve, GM BSplineCurve,

GM NURBSCurve, GM NURBSSurface
Example SELECT a.col.CONVEXHULL() FROM table a;

BOUNDING BOX
This function returns a bounding box of this curve/surface. This bounding box is defined

by the maximum and minimum x, y and z coordinates of all control points.

Type Method
Format BOUNDING BOX() RETURN SDO Geometry
Parameters None
Returns A bounding box of this curve/surface.
Member of GM SplineCurve, GM BezierCurve, GM BSplineCurve,

GM NURBSCurve, GM NURBSSurface
Example SELECT a.col.BOUNDING BOX() FROM table a;

5.3 Geometry relationship functions

Geometry relationship functions return a relationship between freeform curves, freeform sur-
faces and simple geometries in SDO Geometry.

DISTANCE
This function returns the approximated distance between two freeform curves. The dis-

tance between the centroids of two freeform curves is calculated and returned. This differs
from distance functions of points, linestrings and polygons that return the shortest distance
between two geometries, because shortest distance computations between freeform curves are
rather complex, and accurate geometry computation is better done in CAD/GIS front ends,
not at DBMS level.
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Figure 5.6: Spatial function: Distance()

Type Standalone function
Format DISTANCE(G1 GM SplineCurve, G2 GM SplineCurve)

RETURN NUMBER
Parameters G1: The first Bézier/B-spline/NURBS curve.

G2: The second Bézier/B-spline/NURBS curve.
Returns The distance between two freeform curves.
Example SELECT DISTANCE(a.col, b.col) FROM table1 a,

table2 b;

DISTANCE C2S
This function returns the distance between a freeform curve and a freeform surface. Cen-

troids of the curve and surface are used to compute the distance.

Type Standalone function
Format DISTANCE C2S

(G1 GM SplineCurve, G2 GM NURBSSurface)
RETURN NUMBER

Parameters G1: A Bézier/B-spline/NURBS curve.
G2: A NURBS surface.

Returns The distance between a Beizer/B-spline/NURBS curve
and a NURBS surface.

Example SELECT DISTANCE C2S(a.col, b.col) FROM
table1 a, table2 b;

DISTANCE C2G
This function returns the distance between the centroid of a freeform curve and the cen-

troid of a simple geometry defined with SDO Geometry. The centroid of the simple geometry
in SDO Geometry can be obtained with Oracle Spatial built in function:
SDO GEOM.SDO CENTROID.
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Type Standalone function
Format DISTANCE C2G

(G1 GM SplineCurve, G2 SDO Geometry)
RETURN NUMBER

Parameters G1: A Bézier/B-spline/NURBS curve.
G2: A simple geometry.

Returns The distance between a Bezier/B-spline/NURBS curve
and a simple geometry in SDO Geometry.

Example SELECT DISTANCE C2G(a.col, b.col) FROM
table1 a, table2 b;

ANYINTERSECT

Figure 5.7: Spatial function: AnyIntersect()

This function returns whether two freeform curve may intersect each other. This is actu-
ally done by checking the intersection between their convex hulls, which are approximation
polygons/polyhedrons of freeform curves.

Type Standalone function
Format ANYINTERSECT

(G1 GM SplineCurve, G2 GM SplineCurve)
RETURN NUMBER

Parameters G1: The first Bézier/B-spline/NURBS curve.
G2: The second Bézier/B-spline/NURBS curve.

Returns Whether two freeform curves may intersect with
each other.

Example SELECT ANYINTERSECT(a.col, b.col)
FROM table1 a, table2 b;

5.4 Geometry transformation functions

Geometry processing functions apply basic geometric transformations such as translation,
rotation and scaling to freeform curve and surface types.

TRANSLATION
This standalone function returns the translated freeform curve by (X,Y,Z).



5.4 Geometry transformation functions 49

Type Standalone function
Format TRANSLATION

(G GM SplineCurve, X NUMBER, Y NUMBER,
Z NUMBER)
RETURN GM SplineCurve

Parameters G: The Bézier/B-spline/NURBS curve to be translated.
X: The translation distance in x direction.
Y: The translation distance in y direction.
Z: The translation distance in z direction.

Returns The translated Bézier/B-spline/NURBS curve.
Example SELECT TRANSLATION(a.col, 1, 2, 3)

FROM table a;

TRANSLATION
This method returns the translated freeform curve/surface by (X,Y,Z).

Type Method
Format TRANSLATION

(X NUMBER, Y NUMBER, Z NUMBER)
RETURN GM SplineCurve/GM BezierCurve/
GM NURBSCurve/GM NURBSSurface

Parameters X: The translation distance in x direction.
Y: The translation distance in y direction.
Z: The translation distance in z direction.

Returns The translated Bézier/B-spline/NURBS curve or
NURBS surface.

Member of GM SplineCurve, GM BezierCurve, GM BSplineCurve,
GM NURBSCurve, GM NURBSSurface

Example SELECT a.col.TRANSLATION(1, 2, 3)
FROM table a;

TRANSLATION S
Standalone function to translate a GM NURBSSurface, analogous to TRANSLATION,

which translates freeform curves.

SCALE
This standalone function returns the scaled freeform curve by (x,y,z).

Type Standalone function
Format SCALE

(G GM SplineCurve, X NUMBER, Y NUMBER,
Z NUMBER)
RETURN GM SplineCurve

Parameters G: The Bézier/B-spline/NURBS curve to be scaled.
X: The scale extent in x direction.
Y: The scale extent in y direction.
Z: The scale extent in z direction.

Returns The scaled Bézier/B-spline/NURBS curve.
Example SELECT SCALE(a.col, 1, 2, 3)

FROM table a;
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SCALE
This method returns the scaled freeform curve/surface by (x,y,z).

Type Method
Format SCALE

(X NUMBER, Y NUMBER, Z NUMBER)
RETURN GM SplineCurve / GM BezierCurve /
GM BSplineCurve / GM NURBSCurve /
GM NURBSSurface

Parameters X: The scale extent in x direction.
Y: The scale extent in y direction.
Z: The scale extent in z direction.

Returns The scaled Bézier/B-spline/NURBS curve or NURBS
surface.

Member of GM SplineCurve, GM BezierCurve, GM BSplineCurve,
GM NURBSCurve, GM NURBSSurface

Example SELECT a.col.SCALE(1, 2, 3)
FROM table a;

SCALE2 S
Standalone function to scale GM NURBSSurface, analogous to SCALE.

ROTATEX
This standalone function returns the rotated freeform curve along x axis by A.

Type Standalone function
Format ROTATEX

(G GM SplineCurve, A NUMBER)
RETURN GM SplineCurve

Parameters G: The Bézier/B-spline/NURBS curve to be rotated.
A: The angle to be rotated.

Returns The rotated Bézier/B-spline/NURBS curve along X
axis by A.

Example SELECT ROTATEX(a.col, 3.1415926)
FROM table a;

ROTATEX
This method returns the rotated freeform curve/surface along x axis by A.

Type Method
Format ROTATEX

(A NUMBER)
RETURN GM SplineCurve / GM BezierCurve /
GM BSplineCurve / GM NURBSCurve /
GM NURBSSurface

Parameters A: The angle to be rotated.
Returns The rotated Bézier/B-spline/NURBS curve or NURBS

surface.
Member of GM SplineCurve, GM BezierCurve, GM BSplineCurve,

GM NURBSCurve, GM NURBSSurface
Example SELECT a.col.ROTATEX(3.1415926)

FROM table a;
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ROTATEX S
Standalone function to rotate GM NURBSSurface along X axis, analogous to ROTA-

TEX.

ROTATEY
Standalone function and method to rotate GM SplineCurve, GM BezierCurve,

GM BSplineCurve, and GM NURBSCurve along Y axis, analogous to ROTATEX.

ROTATEY S
Standalone function to rotate GM NURBSSurface along Y axis, analogous to ROTATEY.

ROTATEZ
Standalone function and method to rotate GM SplineCurve, GM BezierCurve,

GM BSplineCurve, and GM NURBSCurve along Z axis, analogous to ROTATEX.

ROTATEZ S
Standalone function to rotate GM NURBSSurface along Z axis, analogous to ROTATEZ.

REGULATION
This functions returns a ’stretched’ knot vector, in which the minimum knot value is 0

and the maximum knot value is 1, of the original knot vector. The original knots are linearly
recomputed to a new value within 0 and 1.

Type Method
Format Regulation() RETURN GM KnotVector
Parameters None.
Returns The regulated knot vector. All knot values are within

0 to 1.
Member of GM KnotVector
Example SELECT a.col.knots.REGULATION()

FROM table a;

5.5 Conversion functions

The conversion functions make conversions between freeform curves.

TOBSPLINE
This function converts a Bezier curve into B-Spline form. This is done by giving the

Bezier curve a knot parameter, which starts with degree+1 zeros and ends with degree+1
ones.

Type Method
Format TOBSPLINE() RETURN GM BSplineCurve
Parameters None
Returns The BSpline form of a Bézier curve.
Member of GM BezierCurve
Example SELECT a.col.TOBSPLINE() FROM table a;

TONURBS



5.6 Validation functions 52

This function converts a B-spline curve into NURBS form. This is done by giving the
B-spline curve a weight parameter, which has a length equal to 1/3 of the controlPoint and
all elements with equal value one.

Type Method
Format TONURBS() RETURN GM NURBSCurve
Parameters None
Returns The NURBS form of a BSpline curve.
Member of GM BSplineCurve
Example SELECT a.col.TONURBS() FROM table a;

5.6 Validation functions

Based on the conceptual validation function in Section 3.2, the validation functions in Oracle
are all implemented as method of each freeform types. For example, validation of NURBS
curve is dones by NURBSCurve COLUMN.validation(), validation of NURBS surface is done
by NURBSSurface COLUMN.validation(), etc. The validation functions are implemented as
methods, and they return -1 for a storage invalid geometry, return 0 for a geometry invalid
geometry, and return 1 when found a valid freeform geometry. The storage validity and
geometry validity rules are defined in Section 3.2.

VALIDATION

Type Method
Format VALIDATION() RETURN NUMBER
Parameters None
Returns The validity information of this geometry.
Member of GM SplineCurve, GM BezierCurve, GM BSplineCurve

GM NURBSCurve, GM NURBSSurface,
GM KnotVector

Example SELECT a.col.VALIDATION() FROM table a;

5.7 Examples

The following SQL statements show how to use the functions explained in this chapter on
freeform data types.

Let’s create a table with GM NURBSCurve column first.

SQL> create table test(id number,col GM_NURBSCurve);

Table created.

Insert two NURBS curves; they actually have the same shape as the B-spline curves in
Figure 4.4 and Figure 4.5.

SQL> insert into test
values(3,GM_NURBSCurve(4,GM_PointArray(1,2,10,1,2,3,9,2,3,5,7,6,4,4,4,9,0,4),G
M_KnotVector(Vector(0,0,0,0,0,0.5,1,1,1,1,1),NULL),GM_WeightArray(1,1,1,1,1,1),
NULL));

1 row created.
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SQL> insert into test
values(5,GM_NURBSCurve(2,GM_PointArray(135,225,346,127,256,336,945,20,30,504,7
0,698,434,40,4),GM_KnotVector(Vector(-0.5,0,0.5,1,2,3,4,5),NULL),GM_WeightArray
(1,1,1,1,1),NULL));

1 row created.

Check their validity.

SQL> select a.col.validation() from test a;

A.COL.VALIDATION()
------------------

1
1

This means they are all valid NURBS curve.
The following SQL statement returns the centroid of the first NURBS curve.

SQL> select a.col.centroid() from test a where a.id=3;

A.COL.CENTOID()(SDO_GTYPE, SDO_SRID, SDO_POINT(X, Y, Z),
SDO_ELEM_INFO, SDO_ORDI
--------------------------------------------------------------------------------
SDO_GEOMETRY(3001, NULL, SDO_POINT_TYPE(4.4212963, 2.76851852,
5.36111111), NULL , NULL)

The following SQL statement returns the distance between the two NURBS curves.

SQL> select distance(a.col, b.col) from test a, test b where
a.id=3 and b.id=5;

DISTANCE(A.COL,B.COL)
---------------------

558.859116

Translate the first NURBS curve by (2,2,2):

SQL> update test a set
a.col.controlpoints=translation(a.col,2,2,2).controlpoints where
a.id=3;

1 row updated.

SQL> select * from test where id=3;

ID
----------
COL(DEGREE, CONTROLPOINTS, KNOTS(KNOTS, WEIGHTS), WEIGHTS, TRIM)
--------------------------------------------------------------------------------

3
GM_NURBSCURVE(4, GM_POINTARRAY(3, 4, 12, 3, 4, 5, 11, 4, 5, 7, 9,
8, 6, 6, 6, 11 , 2, 6), GM_KNOTVECTOR(VECTOR(0, 0, 0, 0, 0, .5, 1,
1, 1, 1, 1), NULL), GM_WEIGH TARRAY(1, 1, 1, 1, 1, 1), NULL)
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Regulate all NURBS curves’ knots.

SQL> update test a set a.col.knots=a.col.knots.regulation();

2 rows updated.

SQL> select a.col.knots from test a;

COL.KNOTS(KNOTS, WEIGHTS)
--------------------------------------------------------------------------------
GM_KNOTVECTOR(VECTOR(0, 0, 0, 0, 0, .5, 1, 1, 1, 1, 1), NULL)
GM_KNOTVECTOR(VECTOR(0, .090909091, .181818182, .272727273,
.454545455, .6363636 36, .818181818, 1), NULL)

The following example shows how a validation function checks the storage validity of some
GM NURBSCurve rows.

SQL> insert into test
values(4,GM_NURBSCurve(6,Null,Null,Null,NULL));

1 row created.

SQL> insert into test
values(1,GM_NURBSCurve(4,GM_PointArray(1,2,3,1,2,3,9,2,3,5,7,6,4,4,4,9,0,4),
GM_KnotVector(Vector(0,1),NULL),GM_WeightArray(1,1,1,1),NULL));

1 row created.

SQL> select id, a.col.validation() from test a;

ID A.COL.VALIDATION()
---------- ------------------

4 -1
3 -1

The first NURBS curve is storage invalid because not enough parameters are stored; the
second is storage invalid because the number of weights is not equal to the number of control
points ((length of GM PointArray)/3).

The following example shows how a validation function checks the geometry validity of
some GM NURBSCurve rows.

SQL> insert into test values(1,GM_NURBSCURVE(3,
GM_POINTARRAY(-1.5043915, 1.89224826, 0, -.91495325, 2.91036891, 0,
-.14332497, 1.86009708, 0, .59615213, 2.51383771, 0, 1.42136571,
1.86009708 , 0, 2.3215987, 3.31761717, 0, 2.88960285, 1.92439944,
0), GM_KNOTVECTOR(VECTOR( 0, 0, 0, 0, .25, .5, .75, 1, 1, 1, 1),
NULL), GM_WEIGHTARRAY(1, 1, 1, 1, 1, 1, 1 ), NULL));

1 row created.

SQL> insert into test
values(3,GM_NURBSCurve(3,GM_PointArray(1,2,10,1,2,3,9,2,3,5,7,6,4,4,4,9,0,4),G
M_KnotVector(Vector(0,0,0,0,0,0.5,1,1,1,1,1),NULL),GM_WeightArray(1,1,1,1,1,1)
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,NULL));

1 row created.

SQL> select id,a.col.validation() from test a;

ID A.COL.VALIDATION()
---------- ------------------

1 1
3 0

The first NURBS curve is valid. The second is a geometry invalid NURBS curve, because
it violates the third geometry validation rule for NURBS curve.

5.8 Concluding remarks

In this chapter, functions on freeform data types are implemented in Oracle. These func-
tions can be either implemented as standalone functions or as methods of user-defined data
types. Standalone functions are created using “CREATE FUNCTION ” SQL statement, and
methods is created when creating user-defined data types.

All these functions are implementations of the conceptual models in Chapter 3. According
to difference of functionalities, they can be categorized into five groups: access functions,
geometry relationship functions, geometry transformation functions, conversion functions,
and validation functions, which follows the same categorization with conceptual model.



Chapter 6

Freeform data exchange

There are several CAD applications which are able to visualize and model freeform geome-
tries. Normally the freeform geometries are stored/retrieved in/from files, but nowadays some
applications already implemented interfaces to exchange geometry data with spatial DBMSs.
For example, MicroStation GeoSpatial supports a small program: SpatialViewer, which is
able to query simple geometries from SDO Geometry columns in Oracle Spatial to MicroSta-
tion. These simple geometries can be visualized, modified, and stored back to Oracle Spatial.
Due to the absence of freeform geometries in spatial DBMSs, no interface exists which is able
to exchange freeform geometries between CAD/GIS applications and spatial DBMS.

In order to show the possibility of exchanging freeform geometries between spatial DBMS
and CAD/GIS applications, freeform data exchange between Oracle Spatial and CAD ap-
plications (MicroStation and AutoCAD) has been explored. Section 7.1 presents how to
exchange freeform geometries between Oracle and MicroStation. Section 7.2 presents the
similar procedure between Oracle and AutoCAD.

6.1 MicroStation

In MicroStation, there are two possibilities to exchange freeform geometries with Oracle.
The first possibility is to convert freeform geometries to line strings or polygon patches.

This operation can be done inside Oracle with certain conversion functions, and store the
line strings/polygon patches in another table, then visualize them using SpatialViewer. The
disadvantages of this approach are significant, including:

• Visualization is approximated, and the more accurate the approximation, the heavier
the computation.

• Modeling of freeform shapes becomes nearly impossible. The output geometries from
DBMS to Microstation are not freeform curves or surfaces any more, but a large number
of linestrings or polygons. Therefore the modeling methods for freeform shapes cannot
be applied.

• Data exchange is one-way instead of two-way. After the freeform shapes are converted
into linestrings or polygons, they can hardly be stored back to DBMS in freeform
geometry form. Although freeform fitting algorithms can be applied, the results will
probably be different freeform geometries, with different degree, control points, knot
vector, and weights.

Therefore this approximation approach will not be adopted.
Another possibility is to write an interface manually with MicroStation programming

environments. MicroStation includes several programming environments, such as MDL (Mi-
croStation Development Language), JMDL (MDL’s Java version), VBA (Visual Basic for
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Applications). Programs can be written and embedded inside MicroStation with these envi-
ronments.

Figure 6.1 illustrates the procedure of how we managed to exchange freeform geometries
between MicroStation and Oracle using JMDL.

Figure 6.1: Freeform data exchange with JMDL

The storage procedure includes the following steps:

1. Create freeform shapes using MicroStation.

2. There’re freeform classes in JMDL, such as BsplineCurveElement, and BsplineSur-
faceElement. JMDL codes will check all the objects in current model, then construct
an instance of the corresponding freeform class if a freeform geometry is found, and
then finally insert this instance into an Array.

3. Instances of freeform classes in JMDL are reorganized according to the format of
freeform types in Oracle, and they are inserted into Oracle using JDBC (Java Database
Connectivity) bridge. JDBC is an API included in the Java related environment that
provides cross-DBMS connectivity to a wide range of SQL databases, including Oracle.
SQL statements can be executed with JDBC funtions, and then both SQL return values
and SQL statements can be translated from/to Java variables. Detailed explanation of
JDBC can be found in [25].

The retrieval procedure is just the other way around:

1. Freeform rows are selected from Oracle by JDBC.

2. Instances of freeform classes will be constructed from the selected information by JDBC.

3. Constructed instances of freeform classes are rendered in the view windows in Micro-
Station, using rendering functions of JDML.
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During both storage and retrieval procedures, the compatibility between the freeform
data types in Oracle and JMDL should be taken care of. The freeform data types in Oracle
require the most basic parameters for freeform geometries, while JMDL also require some
extra parameters for visualization. For example, JMDL’s BsplineSurfaceElement also requires
parameters such as number of rule lines in both direction, boundary points, etc. The extra
parameters can be stored in Oracle in the same table, but additional columns than the
column of freeform data type. All applications, which support freeform geometries, can store
the freeform geometries in Oracle by storing the basic geometric information in one column
with freeform data type, and storing the extra parameters in additional columns of the same
table.

The following texts are description of table test NURBSSurface, which is used to store
NURBS surfaces from MicroStation. Note that the first column is of type GM NURBSSurface,
and the basic geometric information for NURBS surfaces is stored here. The other columns
store the extra parameters returned by JMDL. They will be used to reconstruct the NURBS
surfaces in MicroStation.

SQL> desc test_NURBSSurface;
Name Null? Type
----------------------------------------- -------- ----------------------------
COL GM_NURBSSURFACE
URULES NUMBER
VRULES NUMBER
OBOUNDARYPOINTS GM_POINTARRAY
NUMBOUNDARY NUMBER
ISCLOSEDU NUMBER
ISCLOSEDV NUMBER
BOUNDARYOUT NUMBER

Figure 6.2 shows 3 B-spline curves created in MicroStation. They can be stored into Oracle
and retrieved back without data loss. More complex examples can be found in Chapter 7.

Figure 6.2: 3 B-spline curves created in MicroStation

6.2 AutoCAD

Similar to MicroStation, there is no direct tool which is able to exchange freeform geometries
between AutoCAD and Oracle either. AutoCAD supports several runtime extension pro-
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gramming languages, such as AutoLISP, Visual LISP, VBA, ObjectARX, ObjectDBX, which
can be used to develop AutoCAD applications.

ObjectARX is a C++ based programming language. An application programmed with
ObjectARX is a dynamic link library (DLL) that shares the address space of AutoCAD and
makes direct function calls to AutoCAD. The development of an ObjectARX application
contains the following steps [29]:

1. The ObjectARX application needs to be programmed in Visual C++ environment first.
After installing the ObjectARX add-on to Visual C++, an ObjectARX project can be
created with wizards easily, as shown in Figure 6.3. This add-on supports many helpful
tools for ObjectARX developers, such as function dictionary, realtime debugger, etc.
The complied ObjectARX application will be a .ARX file and some configuration files.

Figure 6.3: Create an ObjectARX project in Visual C++

2. The .ARX file is loaded and registered in AutoCAD. This can be done with a tool called
’Load Application’ in AutoCAD. All developer needs to do is just locate the .ARX file
and click ’OK’.

3. The loaded ObjectARX application is finally executed by inputting commands (Figure
6.4). The command’s name doesn’t need to be the same as the .ARX file name. The
relationship between a .ARX file and its command name is specified in the configuration
files.

Figure 6.4: Execute an ObjectARX application in AutoCAD

Figure 6.5 illustrates the procedure of visualizing freeform spatial data from Oracle in
AutoCAD.
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Figure 6.5: The procedure of visualizing freeform spatial data from Oracle in AutoCAD

This is mainly done in the following steps:

1. Retrieve freeform spatial data from Oracle using ODBC (Open Database Connectiv-
ity) bridge. ODBC is able to make connections to DBMS with some functions, and
connection information such as database name, user name and password are specified
as parameters of these functions. Then database data can be retrieved by calling func-
tions which take SQL statements as parameters. The return value will be in the formats
of local variables, and hence database data are translated to local formats, i.e. C++
variables. Detailed explanation of ODBC can be found in [26].

2. There are freeform classes in ObjectARX, such as AcGeNurbSurface, AcGeNurbCurve3d,
AcGeNurbCurve2d. Objects of these classes can be constructed from the translated
database data in the first step.

3. Objects of the freeform classes in ObjectARX are then visualized on an AutoCAD
window using function ’acedRedraw()’ [29].

Due to time limit, the storage procedure from AutoCAD to Oracle hasn’t been researched.
Considering the visualization procedure of AutoCAD and storage procedure of MicroStation,
it might be done by analyzing the current model with ObjectARX code, extracting freeform
geometries, and then inserting these to Oracle using ODBC.

An example of visualizing freeform spatial data from Oracle in AutoCAD will be in Figure
7.6.

6.3 Conclusion remarks

In this chapter, freeform data exchange between two CAD applications (AutoCAD, Micro-
Station) and Oracle is achieved.
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For storage procedure from MicroStation to Oracle, first, freeform shapes in MicroSta-
tion are extracted to instances of Java classes with JMDL codes, and then parameters are
retrieved from these instances to construct SQL statements which insert freeform geometries
into Oracle. The SQL statements are executed with JDBC bridge. The retrieval procedure
is just the other way around from storage procedure.

For retrieval procedure from Oracle to AutoCAD, first, freeform spatial data is retrieved
from Oracle using ODBC, then objects of freeform classes in ObjectARX are constructed
using these freeform spatial data, and then they are visualized in AutoCAD using ObjectARX
visualization function.



Chapter 7

Test cases

In this chapter, three freeform curves examples and a freeform surface example will be illus-
trated. They are all created in MicroStation, and can be transferred between MicroStation
and Oracle without data loss.

Section 7.1 gives the freeform curve examples. Section 7.2 gives the freeform surface
example.

7.1 Freeform curves (MicroStation)

Three NURBS curves: a circle, an ellipse and a normal NURBS curve are created in Micro-
Station, as shown in Figure 7.1.

Figure 7.1: 3 NURBS curves

They can be inserted into Oracle with a pre-defined JMDL program: SelectionTest2. Exe-
cution of SelectionTest2 can simply be done by typing command: java example.dgn.Seletio
nTest2, in the key-in window of MicroStation, as shown in Figure 7.2.

In Oracle they are stored as:

SQL> select col from test_NURBS;
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Figure 7.2: JMDL program to insert freeform curves

COL(DEGREE, CONTROLPOINTS, KNOTS(KNOTS, WEIGHTS), WEIGHTS, TRIM)
--------------------------------------------------------------------------------
GM_NURBSCURVE(2, GM_POINTARRAY(.885744519, 0, 3.12600375,
-.07769652, 0, 3.81417 592, -.19195058, 0, 2.63572543, -.30620464,
0, 1.45727493, .771490457, 0, 1.9475 5326, 1.84918556, 0,
2.43783158, .885744519, 0, 3.12600375), GM_KNOTVECTOR(VECTO R(0, 0,
0, .333333333, .333333333, .666666667, .666666667, 1, 1, 1), NULL),
GM_WEIGHTARRAY(1, .5, 1, .5, 1, .5, 1), NULL)

GM_NURBSCURVE(2, GM_POINTARRAY(2.90828926, 0, 2.70598357,
2.90828926, 0, 4.39692 09, 1.90078572, 0, 3.55145224, .893282179, 0,
2.70598357, 1.90078572, 0, 1.86051 491, 2.90828926, 0, 1.01504624,
2.90828926, 0, 2.70598357), GM_KNOTVECTOR(VECTOR (0, 0, 0,
.333333333, .333333333, .666666667, .666666667, 1, 1, 1), NULL),
GM_WEIGHTARRAY(1, .5, 1, .5, 1, .5, 1), NULL)

COL(DEGREE, CONTROLPOINTS, KNOTS(KNOTS, WEIGHTS), WEIGHTS, TRIM)
--------------------------------------------------------------------------------

GM_NURBSCURVE(3, GM_POINTARRAY(3.80318199, 0, 2.64922409,
4.01886803, 0, 3.23952 272, 5.23352098, 0, 3.09194806, 5.39401765,
0, 2.12896805, 3.99616423, 0, 2.1289 6805, 3.09930089, 0,
2.51461793), GM_KNOTVECTOR(VECTOR(0, 0, 0, 0, .333333333, .
666666667, 1, 1, 1, 1), NULL), GM_WEIGHTARRAY(1, 1, 1, 1, 1, 1),
NULL)

Now let’s check their validity:

SQL> select a.col.validation() from test_NURBS a;

A.COL.VALIDATION()
------------------

1
1
1

This means they are all geometry valid.
Now let’s rotate all the NURBS curves by 180 degrees along Y axis.

SQL> update test_NURBS a set a.col=a.col.rotateY(3.1415926);

3 rows updated.
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Now let’s retrieve them back to MicroStation and visualize as Figure 7.3.

Figure 7.3: Rotated NURBS curves

The visualization is done by executing another JMDL program: NURBSCurveCommand,
in the key-in window of MicroStation, as shown in Figure 7.4.

Figure 7.4: JMDL program to visualize freeform curves

7.2 Freeform surface (MicroStation and AutoCAD)

In order to show that spatial DBMS can be a good intermediate system between CAD appli-
cations, freeform data exchange between MicroStation and AutoCAD via Oracle, and direct
exchange between them two, are tested in the following examples.

First let’s test the first case: freeform data exchange via Oracle. The sport car in Figure
7.5 is made up of 306 NURBS surfaces. This example will show how to store this sport car
from MicroStation to Oracle, then retrieve from Oracle to AutoCAD, and then visualize in
AutoCAD (as in Figure 7.6).

The storage from MicroStation to Oracle is done by executing key-in command: jmdl
examples.dgn.NURBSSurfaceCommand, in MicroStation.

The visualization in AutoCAD is done by executing ObjectARX command: NURBS LOAD,
in AutoCAD.

From comparison between Figure 7.5 and Figure 7.6, it is clear that the sport car is
maintained perfect.

Now let’s test the second case: direct freeform data exchange between MicroStation and
AutoCAD. Different CAD applications have their own file formats: the .dgn format is a
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standard MicroStation file format, and the .dxf format is a standard AutoCAD file format.
The definitions for CAD models are different in the two file formats. The sport car in Figure
7.5 is originally in .dgn format. Using MicroStation’s exporting tool, we can convert the
car from .dgn file to .dxf format. The converted car in .dxf format looks as Figure 7.7 in
MicroStation and Figure 7.8 in AutoCAD.

It is clear from Figure 7.7 and Figure 7.8 that the converted model lost many shapes,
probably due to the difference between .dgn and .dxf formats.

7.3 Concluding remarks

From the test cases in this chapter, the following conclusions can be stated:

• Freeform geometries can be exchanged between Oracle and CAD applications (Micro-
Station and AutoCAD).

• Freeform geometries can be geometric transformed in Oracle first, then visualized in
CAD applications.

• DBMS can be a good intermediate system between CAD applications. Models in differ-
ent CAD applications are in different formats. If all follow the same formats in DBMS
and stored in DBMS, they can be exchanged between CAD applications without data
loss.
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Figure 7.5: A sport car with 306 NURBS surfaces in Microstation v8.

Figure 7.6: The same sport car in AutoCAD 2004
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Figure 7.7: The converted sport car visualized in MicroStation v8

Figure 7.8: The converted sport car visualized in AutoCAD 2004



Chapter 8

Conclusions and recommendations

8.1 Conclusions

This research is, as far as we know, the first attempt of managing freeform geometry types in a
spatial DBMS. Three popular mathematical representation of freeform geometries: Bézier, B-
spline and NURBS curve/surface have been used to design the conceptual models of freeform
data types, then user-defined data types, which are based on conceptual models, have been
created in Oracle, and finally several useful spatial functions have been created on these
data types. Two CAD applications: MicroStation and AutoCAD, are able to visualize/store
freeform data from/to Oracle using the implemented freeform data types.

The following conclusions can be drawn from:

• Spatial DBMS is able to manage complex geometries like freeform curves and surfaces.
Freeform geometries can be implemented as user-defined data types in Oracle. An
alternative approach is to use the existing spatial type: SDO Geometry. This approach
was not adopted because of the complexity and data redundancy compared to the
user-defined data type approach.

• Spatial functions are very helpful to manage the freeform data types. They can be used
to return geometric information of the stored freeform geometries, do basic geometric
transformations, maintain geometry validity, etc.

• Some simple geometric operations can be done in DBMS level with spatial functions,
especially when the target data sets are huge. Current CAD/GIS applications usually
store geometries in files. DBMSs have extraordinary abilities in data storage efficiency
and fast data processing, and it would be faster to retrieve/store the spatial data
from/to DBMS than files. But we also need to be aware that a DBMS is not good at
heavy computations. Therefore complex geometry operations are still better to be done
in CAD/GIS applications.

• Validation functions are required to maintain the validity of freeform geometries. Cur-
rently storage validity and geometric validity are checked by the validation function.

• Since the conceptual models for freeform data types are generic and OGC Abstract
Specifications are considered, they can be readily implemented in any other DBMSs as
well.

• CAD/GIS applications which support Bézier, B-spline or NURBS curve/surface can
store/retrieve the freeform geometries in/from Oracle using the implemented freeform
data types.
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• Incompatibility between applications’ freeform type definition and DBMS’ freeform type
definition can be solved by storing extra attributes of the first definition in additional
columns of the same table with the freeform geometry column in DBMS.

• Spatial DBMS can be a good central system system between CAD/GIS applications,
because format incompatibility can be well solved by following the same format in the
central DBMS system, as proven in Figure 7.5, Figure 7.6 and Figure 7.7.

8.2 Recommendations

Since this research is the first attempt to manage freeform data types in a spatial DBMS,
recommendations for future research are given:

• OGC implementation specifications and mainstream spatial DBMSs should consider
involving freeform data types. Several simple geometries have been standardized in
OGC implementation specifications and implemented in mainstream spatial DBMSs,
but freeform data types are still absent. Bézier, B-spline and NURBS curve/surface
can represent freeform geometries well, because of their nice mathematical and geo-
metric properties, therefore they are recommended to be involved in the future OGC
specifications.

• Validation rules for freeform curves and surfaces can be further investigated, and spec-
ified in relevant standards.

• Because freeform geometries are stored in other data types than SDO Geometry, they
cannot be stored in the same column with simple geometries. This can lead to inconve-
nience under certain circumstances. Two approaches can be attempted to implement.
The first approach is to store different kinds of geometries in different tables, and use
a meta-data table to organize and manage all these tables. Another approach is to
implement a super data type for all user-defined data types. Which approach is more
suitable and efficient should be analyzed in future research.

• A spatial index can make spatial queries much more efficient. Now the spatial index
in Oracle Spatial works only on existing simple geometries. A spatial index which also
works on freeform data types should be researched to implement in the future.

• Data types for more geometry types can be made in Oracle. The currently supported
geometry types in Oracle Spatial are still limited. Following the procedure of creating
data type for freeform geometries, data types of more geometry types, such as cone,
cylinder and sphere, can be implemented.

• Some tests would be necessary to determine which functions should stay in DBMS
level and which ones should be in CAD/GIS level. Comparing to CAD/GIS front
ends, DBMSs are good at data processing, but lack in the ability of heavy computa-
tion. Therefore the time spent on the same geometric operation in both DBMSs and
CAD/GIS fronts end should be compared. The size of target data sets should also be
considered as an important factor, because some geometric operations may be faster
in DBMSs for small amounts of spatial data, but may be slower for huge amounts of
spatial data.

• A separate data type for error messages would be of great help after more geometry data
types are created. At least an error number attribute and an error message attribute
should be included in this type.
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• It would be interesting to implement data types for freeform curves and surface in other
spatial DBMSs than Oracle Spatial.

• It would also be interesting to know how to exchange freeform geometries between
Oracle and other CAD/GIS applications than MicroStation and AutoCAD.
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