
Introduction

Data structures supporting variable
scale data sets are still very rare. There
are a number of data structures avail-

able for multi-scale databases based on multiple
representations, that is, the data are used for a
fixed number of scale (or resolution) intervals.
These multiple representation data structures
attempt to explicitly relate objects at differ-
ent scale levels, in order to offer consistency
during the use of the data. The drawbacks of
the multiple representations data structures are
that they do store redundant data (same coor-
dinates, originating from the same source) and
that they support only a limited number of scale
intervals. Most data structures are intended to
be used during the pan and zoom (in and out)
operations, and in that sense multi-scale data

Variable-scale Topological Data Structures
Suitable for Progressive Data Transfer: The GAP-

face Tree and GAP-edge Forest

Peter van Oosterom
ABSTRACT: This paper presents the first data structure for a variable scale representation of an area
partitioning without redundancy of geometry. At the highest level of detail, the areas are represented
using a topological structure based on faces and edges; there is no redundancy of geometry in this
structure as the shared boundaries (edges) between neighbor areas are stored only once. Each edge is
represented by a Binary Line Generalization (BLG)-tree, which enables selection of the proper repre-
sentation for a given scale. Further, there is also no geometry redundancy between the different levels
of detail. An edge at a higher importance level (less detail) does not contain copies of the lower-level
edges or coordinates (more detail), but it is represented by efficiently combining their corresponding
BLG trees. Which edges have to be combined follows from the generalization computation, and this
is stored in a data structure. This data structure turns out to be a set of trees, which will be called the
(Generalized Area Partitioning) GAP-edge forest. With regard to faces, the generalization result can be
captured in a single tree structure for the parent-child relationships—the GAP face-tree. At the client
side there are no geometric computations necessary to compute the polygon representations of the
faces, merely following the topological references is sufficient. Finally, the presented data structure is
also suitable for progressive transfer of vector maps, assuming that the client maintains a local copy
of the GAP-face tree and the GAP-edge forest.

KEYWORDS: Map generalization, topological structure, planar partition, client/server, progressive
data transfer, geo-information system

Cartography and Geographic Information Science, Vol. 32, No. 4, 2005, pp. 331-346

structures are already a serious improvement for
interactive use as they do speed-up interaction
and give reasonable representations for a given
level of detail (scale).

Need for Progressive Data Transfer
Another drawback of multiple representation
data structures is that they are not suitable for
progressive data transfer, because each scale
interval requires its own (independent) graphic
representation be transferred. Good examples
of progressive data transfer are raster images,
which can be presented relatively quickly in
a coarse manner and then refined as the user
waits a little longer. These raster structures
can be based on simple (raster data pyramid)
(Samet 1984) or more advanced (wavelet com-
pression) principles (Lazaridis and Mehrotra
2001; Hildebrandt et al. 2000; Rosenbaum
and Schumann 2004). For example, JPEG2000
(wavelet based) allows both compression and
progressive data transfer from the server to the
end-user. Also, some of the proprietary formats

Peter van Oosterom, Delft University of Technology, Section
GIS-technology, Jaffalaan 9, 2628 BX Delft, The Netherlands.
Tel: +31 15-2786950; Fax +31 15 2782745. Email: <oosterom
@otb.tudelft.nl>.

332 Cartography and Geographic Information Science

such as ECW from ER Mapper and MrSID from
LizardTech are very efficient raster compression
formats based on wavelets and offering multi-
resolution suitable for progressive data trans-
fer. Similar effects are more difficult to obtain
with vector data and require more advanced
data structures, though, recently, a number
of attempts have been made to develop such
structures (Bertolotto and Egenhofer 2001;
Buttenfield 2002; Jones et al. 2000; Zhou et al.
2004).

Multi-scale / Variable-scale Vector Data
Structures
For single (line) objects, a number of multi-
scale/variable-scale data structures have been
proposed: Strip-tree (Ballard 1981), Multi-
Scale Line tree (Jones and Abraham 1986),
Arc-tree (Günter 1988), and the Binary Line
Generalization tree (BLG tree) (van Oosterom
1990). The Strip-tree and the Arc-tree are
intended for arbitrary curves, not for simple
polylines. The Multi-Scale Line tree is intended
for polylines, but it introduces a discrete number
of detail levels and it is a multi-way tree, mean-
ing that a node in the tree can have an arbitrary
number of children. The BLG tree is a binary
tree for a variable scale representation of a poly-
lines, based on the Douglas-Peucker (1973) line
generalization algorithm. The BLG tree will be
explained in more detail in a later section (see
Figure 7). Note that these line data structures
cannot be used for spatial organization (index-
ing, clustering) of multiple objects (as needed
by variable scale or multi-scale map representa-
tions), so they only solve part of the generaliza-
tion and storage problem.

One of the first multi-scale vector data structures
designed to avoid redundancy was the reactive
BSP-tree (van Oosterom 1989), which supports
both spatial organization (indexing) and multiple
level of details. Its main disadvantage, however,
is that it is a static structure. The first dynamic
vector data structure supporting spatial organiza-
tion of all map objects, as well as multiple scales,
was the Reactive tree (van Oosterom 1992; 1994).
The Reactive tree is an R-tree (Guttman 1984)
extension with importance levels for objects: more
important objects are stored higher in the tree
structure, which makes more important object
more accessible. This is similar to the reactive
BSP-tree, but the dynamic structure of the Reactive
tree enables inserts and deletes, functions that the
BSP-tree lacks. The BLG tree and the Reactive

tree are eminently capable of supporting variable-
scale/multi-scale maps composed of individual
polyline or polygon objects.

Generalized Area Partitioning
The BLG-tree and Reactive-tree structures are
not well suited for an area partitioning, since
removal of a polygon results in a gap in the map
and independent generalization of the boundar-
ies of two neighbor areas results in small slivers
(overlaps or gaps). Overcoming this deficiency
was the motivation behind the development of
the GAP tree (van Oosterom 1993). The BLG-
tree, Reactive-tree, and GAP-tree data structures
can be used together, while each supports differ-
ent aspects of the related generalization process,
such as selection and simplification, for an area
partitioning (van Oosterom and Schenkelaars
1995).

Following the conceptualization of the GAP
tree, several improvements were published to
resolve limitations of the original data struc-
tures (van Putten and van Oosterom 1998; Ai
and van Oosterom 2002; Vermeij et al. 2003).
This paper introduces the new topological GAP
tree, which combines the use of the BLG tree and
the Reactive tree and avoids the problems of the
original GAP tree—redundant storage and slivers
near the boundary of two neighbor areas. Then
the implementation of the structure is discussed,
followed by an explanation of how to use it for
progressive data transfer. Finally, a summary of
the most important results is provided, together
with suggestions for further research.

GAP Tree Background
The first tree data structure for generalized area
partitioning (GAP tree) was proposed by van
Oosterom (1993). The idea was based on first
drawing the larger and more important poly-
gons (area objects), so as to create a generalized
representation. However, one can continue by
refining the scene through the additional draw-
ing of the smaller and less important polygons
on top of the existing polygons (based on the
Painters algorithm; see Figure 1). This prin-
ciple has been applied to the Digital Land Mass
System – Digital Feature Analysis Data (DLMS-
DFAD) data strurcture (DMA 1986), because it
already had this type of polygons organization.
When tested with the Reactive tree and the BLG
tree, it was possible to zoom in (zoom out) and
obtain map representations with more (less)

Vol. 32, No. 4 333

detail of a smaller (larger) region in constant
time (see Figure 2, left).

Computing the GAP Tree
If one has a normal area partition (and not
DLMS DFAD data) one first has to compute the
proper structure. This is driven by two functions.
First, the importance function (for example:
Importance(a) = Area(a) * WeightClass (a)) is used
to find the least important feature a based on
its size and the relative importance of the class
it belongs to. Then the neighbor b is selected
based on the highest value of Collapse(a,b) =
Length(a,b) * CompatibleClass(a,b), with Length(a,b)
being the length of the common boundary.
Feature a is removed and feature b takes its space
on the map. In the GAP tree this is represented
by linking feature a as the child of parent b (and
enlarging the original feature b). This process is
repeated until only one feature is left covering
the whole domain, forming the root of the GAP
tree. Figure 1 gives a schematic representation
of such a GAP tree.

Work by van Smaalen (1996; 2003) focuses on
finding neighbor patterns, which might in turn be
used for setting up an initial compatibility matrix.
Bregt and Bulens (1996) give area generaliza-
tion examples in the domain of soil maps, based
on the same principles. Both van Smaalen and
Bregt and Bulens use an adapted classification
for the higher (merged) level of objects, instead
of keeping the original classification at all levels
of detail; e.g., deciduous forest and coniferous

forest objects are aggregated into a new object
classified as “forest” or “garden,” while house and
parking place objects form the new object “lot.”
This could also be done in the GAP tree.

Implementations and Improvements of
the GAP Tree
Though the GAP tree may be computed for a
source data set which has a planar partitioning
topology, the GAP tree itself is not a topological
structure. Each node in the GAP tree is a poly-
gon, and this introduces some redundancy as
parents and child may have some parts of their
boundary in common. The first true GAP-tree
construction based on topologically structured
input was implemented by van Putten and van
Oosterom (1998) for two real world data sets:
Top10vector (1:10.000) and GBKN (1:1.000;
see Figure 2 right). It turned out that finding
the proper importance and compatibility func-
tions (which drive the GAP-tree construction) is
far from trivial and depends on the purpose of
the map. In addition, two improvements were
presented in the 1998 paper (at the conceptual
level): 1) adding parallel lines to “linear” area
features, and 2) computing a GAP tree for a
large seamless data set.

Ai and Van Oosterom (2002) presented two other
possible improvements to the GAP tree: One was
that one should not assign the least important
object to only one neighbor, but subdivide this
object along its skeleton and assign the different
parts to different neighbors/parents (the result is

Figure 1. The original GAP tree (van Oosterom 1993).

334 Cartography and Geographic Information Science

not a tree but a directed acyclic graph: GAP-DAG).
The second improvement concerned extending the
neighborhood analysis by considering non-direct

(sharing a common edge) neighbor areas as well.
Both suggestions are based on an analysis using a
Triangular Irregular Network (TIN) structure.

Figure 2. Left: GAP-tree principle applied to DLMS DFAD (add detail when zooming in). Right: GAP tree applied to large-
scale topographic data set (shown at same scale).

Vol. 32, No. 4 335

Topological Version of the GAP Tree
All improvements still result in a non-topological
GAP structure, which means that it contains redun-
dancy. Vermeij et al. (2003) presented a GAP-tree
structure that avoids most redundancy by using a
topological structure for the resulting GAP tree,
not only for the input: thus the edges and the faces
table both have attributes that specify the impor-
tance ranges in which a given instance is valid. The
2D geometry of the edges (and faces) is extended
by the importance value range (on the z-axis) for
which it is valid (see Figure 3). One drawback of this
approach is that it requires considerable geometric
processing at the client side—clipping edges, form-
ing rings, and linking outer and possible inner
rings to a face. A second drawback is that there is
some redundancy introduced via the edges at the
different importance levels: i.e., the coordinates of
detailed edges are again present in the edge at
the higher aggregation level.

Figure 3. Importance levels represented by the third
dimension (at the most detailed level (bottom) there
are several objects, while at the most coarse level (top)
there is only one object). The hatched plane represents
a requested level of detail, and the intersection with the
symbolic 3D volumes then gives the faces.

Figure 4, continued on page 336.

336 Cartography and Geographic Information Science

The first drawback can be avoided by using
a winged edge topology (Baumgart 1975; van
Oosterom 1997; van Oosterom and Lemmen
2001) together with aboxes for the edges. An
abox (area box) of an edge is the union of the
bboxes (bounding boxes) of the left and right
faces. Note that an edge also has its own bbox

(bounding box), which is always contained in its
abox. Selecting the faces based on their bbox and
the edges based on their abox (both at the appro-
priate importance level) enables the creation of
all polygons by following the topology references
(from face to edge and from edge to edge) without
any geometric computations. This enables easy

Figure 4, continued on page 337.

Vol. 32, No. 4 337

client implementation. In the next section the
structure will be presented which also avoids the
redundant storage of geometry at different levels
of detail (in the edges).

Topological GAP-face Tree
and GAP-edge Forest

Throughout this paper, one example is used
to illustrate the new topological GAP tree.
Different subsections (and different figures)
will explain additional details related to this
structure. Figure 4 shows the scene: the edges
are at the top left, and the faces (each with a
color according to their classification) are at the
top right. The faces are assigned a number id
and a computed importance value (shown in a
smaller font). The edges are assigned a letter id
(for illustration purposes; numbers are used in a
normal implementation). Note that all edges are
directed, as is normally the case in a topologi-
cal structure; i.e., there is a left- and right-hand
side.

Faces in the Topological GAP Tree
In the example above, in every step the least
important object is removed and its area is
assigned to the most compatible neighbor (as in
the normal GAP tree). In the first step of Figure
4 for the least important object, face 6 has been
added to its most compatible neighbor, face
2. This process is continued until there is only
one face left. A slight difference with the origi-

nal GAP tree is that a new id is assigned to the
enlarged, more important face. The enlarged
version of face 2 (augmented by face 6) becomes
face 7, and faces 2 and 6 are not used at this
detail level. However, the enlarged face keeps
its classification as indicated via the color of the
faces. In our example, face 7 has the same classi-
fication as face 6 (and both are shown in yellow),
but the importance of this face is recomputed:
as it becomes larger, the importance increases
from 0.4 to 0.5. In the next step, face 1 (the least
important with importance value 0.3) is added
to face 7 (the most compatible neighbor), and
the result is face 8, with its importance increas-
ing from 0.5 to 0.6. Then face 5 (importance
0.35) is added to face 4 (best neighbor), and the
result is face 9 (with importance increasing from
0.5 to 0.6). This process continues until one big
face is left; in our example this is face 11.

From the conceptual point of view the general-
ization process is the same and the original (face)
GAP tree can easily be rewritten to the “new style”
GAP tree for faces (Figure 5). The advantage of the
new-style tree is that is it a binary tree (the original
tree was n-ary). As in the original GAP tree, every
node in the new-style tree contains an indication
of the importance level of the corresponding face.
This is not shown in the Figure 5, but it will become
clear in Table 1 which gives all the attributes of
the faces (and the edges). Unlike in the original
GAP tree, however, the nodes contain no explicit
polygons; only topological face information is given.
This means that the edges are also stored so that
the faces can refer to them.

Figure 4. Generalization example in five steps, from detailed to course. The left side shows the effect of merging faces,
while the right side shows the effect of also simplifying the boundaries via the BLG tree. Note that nodes are depicted
in green/blue and removed nodes are shown for one next step only in white.

338 Cartography and Geographic Information Science

Edges in the Topological
GAP Tree
Vermeij et al. (2003) described the
set of edges needed by the topo-
logical faces in the GAP tree. These
edges have topological references to
the faces left and right, as proposed
by Vermeij et al. (2003). During the
generalization process, when faces
are merged, three different out-
comes may occur:
• An edge is removed; e.g., edge

‘e’ in step 2;
• Two or three edges are merged

in one edge; e.g., edges ‘a’ and
‘d’ merge into edge ‘m’ in step
2, or edges ‘g’, ‘i’, and ‘j’ merge
into edge ‘n’ in step 3);

• Only edge references are changed;
e.g., the reference to the right face
of edge ‘h’ changes from 7 to 8 in
step 2.
The parent–child relationships

between the different (versions of
the) edges are maintained; because,
as it turns out, these relationship
again form a tree structure (Figure
6). However, there is no single edge
root (but there is a face root in the
GAP-face tree), since some edges
are removed (option 1) and they
form a local root. Just like faces, the
edges have an associated impor-
tance range, indicating when they
are valid. Edge importance ranges
are given in Figure 6 for GAP-edge
trees as well as the GAP-edge forest.
Note that the top edge node (in this
case ‘q’) is not showing an upper
importance value, while all other
nodes have both a lower and a upper
importance value associated with the edge.

BLG Trees in the Topological GAP Tree
When edges are represented via BLG trees, the
structure delivers an appropriate number of
points per scale level, together with the related
tolerance value. Note that the relationship
between the tolerance value and scale is direct,
e.g., at a given scale, one can use the size of a
pixel of the display screen as the tolerance value.
However, the relationship between importance
and scale is less direct; as a rule of thumb,

because “an optimal screen has a constant
information density, one can keep on adding
faces with a lower importance until the speci-
fied number of faces is reached; e.g., 1000. An
alternative could be applying the Radical Law
nf = naC √(Ma/Mf)x, where “nf is the number
of objects shown at the derived scale, na is the
number of objects shown on the source mate-
rial, Ma is the scale denominator of the source
map, and Mf is the scale denominator of the
derived map (Töpfer and Pillewizer 1966). The
exponent x depends on the symbol types (1 for
point symbols, 2 for line symbols and 3 for area
symbols) and C is a constant, frequently with a

Figure 5. The classic GAP tree rewritten as the GAP-face tree (with a new
object Id whenever a face changes and the old object Id appearing in a small
font to the upper right of a node). The class is shown in brackets after the
object Id.

Figure 6. GAP-edge forest (with important ranges). Note that the edges
shown in bold and the underlined letters k, q, e, p, l, and n are the roots of the
different GAP-edge trees.

Vol. 32, No. 4 339

value of 1. Figure 7 shows three different edges
of our scene with their corresponding BLG tree
depicted below (nodes indicate point number
and error values).

Standard BLG-tree structures are not exactly
new, but they can be used satisfactorily within the
edge GAP-forest structure to represent edges. As
indicated above, due to the removal of edges, it
is possible for some edges to merge into larger
edges. Thus, instead of storing redundant edge
polylines at different scales/importance levels, it
was decided to join the BLG trees of the merging
edges. To merge three edges, for instance, ‘g’, ‘i’
and ‘j’, two steps are required: first ‘i’ and ‘j’ are
merged (see Figure 8), then edge ‘g’ is merged

(see Figure 9). Note that only the top
tolerance value is computed every time
two BLG trees are merged. Also the
worst-case estimation of the new top
tolerance value ‘err_ij’, according to
the formula given in (van Oosterom
1990; 1992) and reformulated in Figure
8 as ‘err_ij = dist(point(ij), line(b_i, e_j) +
max(err_i, err_j)’ only uses the top-level
information of the two participating
trees.

A small improvement, which keeps
the structure of the merged BLG tree
unaffected (i.e., the lower level BLG
tree can be reused), is to compute the
exact tolerance value (‘err_ij_exact’)
of the new approximated line, which
is less than or equal to the estimated
worst case (‘err_ij’). In Figure 8, this
would be the distance from point 5
of edge ‘j’ to the dashed line. This
tolerance value would be 1.1, which
is less than the worst-case estimate of
1.4. The drawback is that one has to
descend to the lower-level BLG tree
to perform the computation (this may
be a recursion), which, even though
done only once during the creation of
the structure may still be time-consum-
ing. The advantage is that during the
use of the structure (which probably
happens more often than creation),
a better estimate becomes available
and a descend to the BLG tree is no
longer needed. For example, assum-
ing we need a tolerance of 1.2, then,
with the worst case estimate, one has
to descend to the two-child BLG tree
(which will not happen with the com-
puted tolerance). Conclusion: stick to
the proposed structure of the simple

merging of BLG trees but consider real computa-
tion of the top-level tolerance value.

Depending on the requested tolerance value, the
(joined) BLG tree is traversed in order to produce
the appropriate detail level. Note that this may
imply that a point, which used to be associated
with a node (at a high detail level, low importance
value) may be also removed. This is needed if one
performs extreme generalization; e.g., the high-
est detail data is at the level of ownership parcels,
but the user would like to see municipalities and
so he or she zoomes out. Supposing all original
nodes had been used (as in Vermeij 2003), the
result would still be too much detail presented

Figure 7. Three example BLG trees with edges g, I, and j. A node in the
BLG tree contains a point (number) and a tolerance value (in brackets).

Figure 8. First step in merging the edges g, i, and j. The BLG trees of i
and j are joined (the worst-case estimation for the new top level tolerance
value is 1.4).

340 Cartography and Geographic Information Science

(which also takes time to transfer
from server to client).

Storage Structure of
the GAP-face Tree and

GAP-edge Forest
Now that the structure and cre-
ation process of the GAP-face
tree and GAP-edge forest have
been explained and illustrated
with an example, the next step
is the actual implementation of
these structures. An important
aspect is the storage structure;
to enable its implementation,
an object-relational model such
as mainstream DBMSs, Oracle,
DB2, Informix, Ingres, MySQL,
PostgreSQL, can be used.

Faces in the Topological
GAP-tree Storage Structure
The storage structure of the GAP-faces is given
in Table 1. Here are some notes:
• The column “step” is not stored. It was added

for illustration purposes (and shown in italics),
so as to link the steps of the creation process
to the rows in the table;

• The column “ace_id” is the primary key in the
table;

• The columns “imp_low” and “imp_high” indi-
cate the importance range for which a given
record is valid, and the column “imp_orig”
indicates the original importance of the face
(note that imp_orig >= imp_high. Take a look
at face 2 with imp_orig=0.40; when merged
with face 6 at the importance level of 0.20, the
resulting face 7 has imp_orig=0.50);

• Where an area has one or more islands, the
column “first_edges” does not only refer to
the edge being part of the outer boundary
(the first in the list of references; see face 2
in Table 1), but also to an edge that’s part of
the inner boundary (i.e., it is a variable length
array of references);

• The edge references are labeled depending on
the direction of the loop; i.e., clockwise loops
designate outer boundaries and anti-clockwise
loops designate inner boundaries. A plus sign
(+) means the edge direction is correct for the
loop, a minus sign (-) means that the edge
direction has to be reversed;

• The polygon of a face can be reconstructed by
following the references from the first_edges
column in the winged edge structure, at the
given importance range;

• The column “bbox” contains only symbolic
values; the actual coordinate values will, of course,
differ for each row in a real-life situation. Instead
of storing the bbox, it could also be computed
using a functions in the database;

• The GAP face-tree can be reconstructed by
linking every child to its parent via the “pid”
column (parent identifier); only the root, face
11, does not have a parent.
The first SQL view definition given below is

for adding polygons to the “tgap_face” table. As
reported by van Oosterom et al. 2002, the add-on
action is based on the return_geometry function,
which uses the edge table “under water.” The
second SQL view definition adds the bbox of
the face (and other attributes, such as area and
perimeter). Note that the results of the views are
normally not explicitly stored (unless it is a mate-
rialized view for performance reasons).
create view tgap_face_v1 as
select f.face_id, f.imp_low, f.imp_high, f.imp_orig,
 f.first_edges, f.class, f.pid,
 return_polygon(f.face_id) shape
from tgap_face f;
create view tgap_face_v2 as
select f.face_id, f.imp_low, f.imp_high, f.imp_orig,
 f.first_edges, f.class, f.pid, f.shape, get_
 bbox(f.shape) bbox,

Figure 9. Second step in merging the edges g, i, and j. The BLG trees of ij
and g are joined. Note that for BLG tree ij the worst-case tolerance value
estimation of 1.4 was used and, therefore, the tolerance band does not touch
the polyline in the middle as might have been expected.

Vol. 32, No. 4 341

 get_area(f.shape) area, get_perimeter(f.shape)
 perimeter
from tgap_face_v1 f;

The SQL “create view” statement specifies the
name of the new view (e.g., tgap_face_v1) and then
the SQL select statement which defines the view is
given. In this case nearly all attributes are copied
straight from the original table (tgap_face) and
a new attribute with the name “shape” is added
and computed via the return_geometry function.
Something similar happens with the second view
(tgap_face_v2), which adds the attributes bbox, area,
and perimeter to the first view, tgap_face_v1.

Edges in the Topological GAP Tree
Storage Structure
Table 2 describes the edges and faces of the GAP-
edge forest. Again, a number of notes:
• The columns “edge_id” and “imp_low”

together form the primary key in this table.
The ids of the merged edges are shown in
bold. New importance range versions of edges
that have the same id are in normal fonts. For
example, there are two versions of edge d and
they are identified by the primary key pairs (d,
0.00) and (d, 0.20);

• Again, the column “step” is not stored, but
only added for illustration purpose and shown
in italics;

• The references to faces left and right are given
in the columns “face_left” and “face_right”
(changed references after step 1 for new ver-
sions of existing edges are in bold);

• The winged edge references to edges are given
in the columns “edge_fl” (first left), “edge_fr”
(first right), “edge_ll” (last left), and “edge_lr”
(last right). The changed references are again
shown in bold. The references are signed
according to the direction (same interpreta-
tion as in the GAP-face tree table);

• The GAP-edge trees
(in the forest) can be recon-
structed by linking every
child to its parent via the “pid”
column (“interesting” parents,
i.e., versions created by merg-
ing other edges, are shown in
bold). Note that there are now
several roots —k, l, e, n, p, and
q—i.e., edges that do not have
a parent;
• The column “abox” contains
symbolic values. Actually, this
column does not need to be

physically present and could be implemented as
a view, by computing the union of the bboxes of
the left- and right-hand side faces. This column
is also shown in italics;

• Further, it was decided to store the source
BLG trees (related to the edges at the highest
detail) in a separate table, as the different rows
may refer to same BLG tree (and, therefore,
they are shown in italics).
If one does not change the orientation of the

faces (polygons), then only 2 of the 4 edge-to-
edge references are really needed: edge_lr and
edge_fl (assuming clockwise outer boundary loops).
Removing the other two edge-to-edge references
does not only save storage space, but it may also
save a number of rows. In our example in Table 2
the edge rows (c, 0.30) and (f, 0.35) could be omit-
ted, because the only difference with their parent
version is in the columns edge_fr or edge_ll.

One could consider dropping all edge-to-edge
references. This would result in saving the storage
cost of two more columns (edge_lr and edge_fl)
and that of those rows that only have changes
in these two colums. In our example, the edge
rows (b, 0.30), (b, 0.35), and (m, 0.40) would be
removed in addition to the previous removal of
the edge rows (c, 0.30) and (f, 0.35). The price
one would have to pay for this saving though is
that client will have to do more searching in order
to connect the proper edges after orienting them
in the proper direction, instead of just following
the given references. Note that connecting the
edges can be considered to be a purely non-geo-
metric operation as long as the end/begin points
of the edges that are supposed to meet are exactly
equal (and these can be used as a kind of topology
node/point identifiers).

In the case of multiple loops, one has to find out
which of these loops is the outer loop. This can
be accomplished by using the first_edges column
from the tgap_face table. However, if the edge

Table 1. The ‘tgap_face’ with the topological multi-scale face information representing
the GAP face-tree.

342 Cartography and Geographic Information Science

reference column is also dropped (because of
storage efficiency reasons), a modest geometric
computation may be needed (e.g., to compute the
area enclosed by the loops; the loop with the largest
area is the outer boundary), or the face_left and
face_right references could be explicitly marked
with the minus sign, indicating that the current
edges are part of the inner boundary. Keeping
the first_edges colum in the tgap_face table and
at least two edge references (edge_lr and edge_fl)
in the tgap_edge table may thus be advisable.

The SQL view definition for adding the abox
to the tgap_edge table is given below (note that
this view uses the bboxes of faces computed in
another view, tgap_face_v2):
create view tgap_edge_v1 as
 select e.edge_id, e.imp_low, e.imp_high,
 e.face_left, e.face_right,
 e.edge_fl, e.edge_fr, e.edge_ll, e.edge_lr,
 e.pid, e.blg_id, union(l.bbox, r.bbox) abox

from tgap_edge e, tgap_face_v2 l, tgap_face_v2 r
where e.face_left=l.face_id and e.face_
right=r.face_id;

The structure of the SQL select statement used
in the definition of the view tgap_edge_v1 is now
a little different: instead of just using one table (or
view) and adding something (after computation),
the information is obtained from several tables
or views (tgap_edge and tgap_face_v2). Actually,
the tgap_face_v2 view is used in two different
places, the left and right side (‘l’ and ‘r’ aliase).
The “where” clause specifies the conditions under
which the records from different views have been
combined; e.g., e.face_left=l.face_id. In SQL terms,
this kind of operation is called a join-of-tables
(or views). The view tgap_edge_v1 copies the old
edge attributes and adds the attribute abox based
on the function “union” and the bbox input from
the left and right tgap_face_v2 views.

Table 2. The ‘tgap_edge’ with the topological multi-scale edge information representing the GAP-edge forest.

Vol. 32, No. 4 343

The Role of the BLG Tree in the
Topological GAP-tree Storage Structure
The model uses DBMSs spatial extensions and
follows OGC’s Simple Feature Specification for
SQL (OGC 1999) for spatial data types, such
as the bbox and the abox. Because the BLG-
tree data type for variable-scale polylines is
not available, one has to implement this data
type. This has been done in the Postgres context
(Oosterom and Schenkelaars 1995) and in the
Oracle special context (Vermeij 2003). Assume
for the time being that we have a BLG-tree
data type for our implementation. The table

“tgap_blg” stores all the sources of BLG trees
(tree structure, tolerance values, point coordi-
nates) related to the edges at the most detailed
level and, symbolically, also all the merged BLG
trees. The merged BLG trees can be rewritten
to merge pairs of BLG trees (see Figures 8 and
9) and, therefore, we only need two columns
with references “child1” and “child2” and the
tolerance value. Table 3 shows the header of the
table with some sample rows (rows 1 and 2 con-
tain two-source BLG trees, and row 10 cotains a
merged BLG tree).

The SQL view definition that hides the differ-
ences between the source BLG trees and merged
BLG trees is given below:

create view tgap_blg_v1 as (
 select b.blg_id, b.BLG_tree_source BLG_tree
 from tgap_blg b
 where b.top_tolerance = -1)
union all (
 select b.blg_id, merge_BLG(b.top_tolerance,
 b.child1,b.child2) BLG_tree
 from tgap_blg b
 where b.top_tolerance <> -1);

The view “tgap_blg_v1” has a different structure
than the previously presented view, as it is not based
on one SQL select statement but two. The first SQL
select statement selects the source (or leaf) BLG trees
(based on the condition b.top_tolerance = -1 in the

“where” clause) and simply copies all attributes. The
second SQL statement in this view takes care of

Table 3. The ‘tgap_blg’ with the BLG trees of the edges in the GAP-edge forest.

merged, non-leaf, BLG trees. The result of the two
SQL select statements is glued together with the
SQL “union all” operation. The SQL view defini-
tion to combine edges and their corresponding
BLG trees is:

create view tgap_edge_v2 as
select e.edge_id, e.imp_low, e.imp_high, e.face_
 left, e.face_right, e.edge_fl, e.edge_fr,
 e.edge_ll, e.edge_lr, e.pid, e.abox, b.BLG_tree
from tgap_edge_v1 e, tgap_blg_v1 b
where e.blg_id=b.blg_id;

The view “tgap_edge_v2” adds the BLG tree to
the edge information via a join of the previously
defined views tgap_edge_v1 and tgap_blg_v1.

The Role of the Reactive Tree in the
Topological GAP-tree Storage Structure
Available spatial indexing (and clustering) should
be used to efficiently select the relevant rows
from the tables; i.e., via a query search rectangle
and specified importance value. The Reactive
tree is designed for indexing spatial objects with
importance values, but it is not generally avail-
able. Although in an extensible DBMS, one can

add its own implementation
of new index structures, this
operation is far from trivial.
This notwithstanding, it has
been done for the Reactive tree
in Postgres (van Oosterom and
Schenkelaars 1995). In prac-
tice, a pseudo Reactive tree
could be used, which is based
on the 3D R-tree in which the

third dimension is used for the valid importance
range (and the first two dimensions are from
the bbox and abox in the face and edge table,
respectively). The advantage is that one does not
have to implement an own indexing structure
and can simply reuse the standard 3D R-tree for
2D objects with their corresponding importance
ranges. So, the 3D block to be indexed becomes
(xl,yl,imp_low,xh,yh,imp_high). The 3D block
does not have to be physically present; as long
as it can be returned by a function with the
box and importance range as inputs, then the
computed 3D block can be used in a functional
index, such as available in Oracle 9i and higher
(van Oosterom et al. 2002). This applies to both
the face and edge table. For example, the func-
tional index on the face table is:
create index tgap_face_idx on
 tgap_face(compute_3D_block(get_bbox(return_

344 Cartography and Geographic Information Science

 polygon(face_id)), get_imp_range(imp_low,
 imp_high)))
indextype is 3D_rtree;

Note that the edge table is joined with the table
containing the BLG trees, and, as a result, one
can use views for easy access. The result of the
two queries: 1) give all faces in importance range
Y and with bbox overlapping, given rectangle X’
and 2) give all edges (with points up to tolerance
value) in importance range Y and abox overlap-
ping, given rectangle X’ can, due to indexing
(and clustering of the 3D R-tree), be obtained
very quickly and sent to the (web) client. The web
client has all the edges—at the required level of
detail—needed for forming the GAP-tree polygons
corresponding to faces (partially) overlapping the
given search rectangle X (probably related to the
current window on the screen of the user).

Server–client Set-up and
Progressive Refinement

Data received by a client could be progressively
refined as follows. The server starts by sending
the most important nodes in GAP face-tree/
edge-forest (including top levels of associated
edge BLG trees) in a certain search rectangle.
The client builds a partial copy of GAP/BLG-
structure, which can then be used to display
the coarse impression of the data. Every (x)
second(s) this structure is displayed, and the
polygons are shown at the then available resolu-
tion on the screen. The server keeps on sending
more data and the GAP/BLG-structure at the
client side is growing, such that the next time it
is displayed with more detail. The possible crite-
ria for ending this refinement could be:
• 1000 objects (meaningful information density);
• Required importance level has been reached

(with associated error tolerance value); or
• The user interrupts the client.

Conclusion

Summary of Main Results
This is the first time ever that a non-redundant
geometry, variable-scale data structure has been
presented. The previous versions of the GAP
tree had some geometry redundancy, primar-
ily between the polygons at a given scale and/or
between the scales. The key to the solution pre-
sented in this paper was applying a full topological
structure, though this is (far) more complicated

than topological structures designed for the tra-
ditional single-scale data sets. The topological
GAP tree is very well suited for a web environ-
ment—client requirements are relatively low (no
geometric processing of the data at the client side)
and progressive refinement of vector data is sup-
ported (allowing quick feedback to the user).

The values that remain crucial for the quality of
GAP-tree generalization are the importance value
of the involved feature classes (and importance
function) and the compatibility values between
two different feature classes (and compatibility
function). More research is needed in this area to
automatically obtain good generalization results
for real-world data.

Implementation, Tuning, and
Performance Testing
Future work will include the actual implementa-
tion of the presented concept and further testing
with large data sets (millions of rows). Of course,
both the data loading/creation of the GAP-face
tree and GAP-edge forest (with their BLG trees)
and the use of the information must be tested;
perhaps even with a varying number of edge-
edge references—0, 2 (edge_lr and edge_fl),
or 4 (edge_fl, edge_fr, edge_ll, and edge_lr), as
mentioned earlier on. Next, the performance of
this solution has to be compared to an alterna-
tive multi-scale representation (which has less
freedom in scale than our true variable scale
structure) in a desktop GIS environment (i.e.,
GIS front-end relatively close to the geo-DBMS
server). The second set of performance tests
would be within a distributed set-up, with the
server and web-based clients taking advantage
of progressive refinement. The Douglas-Peucker
algorithm used in the BLG tree could in theory
generate topological errors such as (self) inter-
secting lines. The GAP-face tree and GAP-edge
forest structures would not have a problem with
these (self) intersections, but, if possible, these
(self) intersections should be avoided. However,
as de Berg et al. (1998) mention avoiding such
intersections is not easy.

Possible Further Enhancements of the
Topological GAP Tree
Future research aimed at further improving the
functionality of the GAP tree could include the
following:
• Data editing (at the most detailed level),

dynamic structures, only local updates, and

Vol. 32, No. 4 345

some propagation of the changes to the
higher importance values;

• Removing the last piece of geometric redun-
dancy by introducing a “tgap_node” table.
Geometric redundancy between neighbor
faces (and also between different generalized
representations) was removed by introducing
the tgap_edge table; however, the start and
the end points of edges are still redundantly
stored in all the touching edges (in their cor-
responding BLG trees). If the start and end
points are removed and replaced by two refer-
ences in the tgap_edge table (or even better,
in the tgap_blg table in order to avoid storage
of redundant references)—start_node and
end_node—then the last piece of geometric
redundancy will be removed. Additionally,
the removal would fit well with the concept
of the BLG tree (see Figure 7). The start and
end points are treated differently from the
intermediate points, which are all stored in
the normal nodes of the BLG tree. It does
not seam to be useful to have references from
the nodes back to the edges (or faces). The
tgap_node table would have the following
attributes: node_id, imp_low, imp_high, and
location. The primary key will be node_id
(without imp_low), since for every node there
will only be one version. The drawback of the
solution, besides the introduction of a new
table, is the introduction of additional refer-
ences, which do take some space. Via a func-
tion (which can be used in a view), the start
and end points of an edge can be “glued” to
the intermediate points and the return value
could again be a normal polyline.

• Including such non-area objects as point and
line objects. A point object can be stored (quite
independent of the other structures) in its own
table where every row has also an importance
value range (the Reactive tree can be used for
spatial/importance indexing). A line object
with reference to its BLG tree can be stored in
its own table and indexed with a Reactive tree
(based on importance range and location).
Perhaps it may also be useful to combine two
less important lines into one more important
line. The question is how to detect that this
extension is needed. Once combined, the
lines can be merged similar to joins of merged
area boundaries, and a BLG tree is computed.
It should be noted here that the point and line
objects are independent, not related to the
area object and the tables used to represent
them, which simplifies this extension. It gets

more complicated when the different feature
types have to be related to each other and the
topological relationships between point, line,
and area objects have to be maintained. Such
an extension requires further investigation.

• Changing from area to line or point representa-
tion for a given object. This step is similar to that
of the normal GAP tree when removing an area,
except that it introduces line or point features
which are then related/linked to the previous area
representation. For roads this may be better than
enlarging with strips as suggested by van Putten
and van Oosterom 1998.

ACKNOWLEDGEMENTS
This paper is the result of the research program

“Sustainable Urban Areas” carried out by Delft
University of Technology. Thanks to Wilko
Quak, Edward Verbree, Maarten Vermeij, and
Rod Thompson for a critical review of the draft
version of this paper. Further, the constructive
comments of the CaGIS reviewers are greatly
appreciated. Their comments were of great
help, but all (remaining) errors are the sole fault
of the author.

REFERENCES
Ai, T., and P. van Oosterom. 2002. GAP-tree extensions

based on skeletons. In: D. Richardson and P. van
Oosterom (eds), Advances in Spatial Data Handling,
10th International Symposium on Spatial Data
Handling, Ottawa, Canada, 9-12 July 2002. Berlin,
Germany: Springer-Verlag. pp. 501–13.

Ballard, D. 1981. Strip trees: A hierarchical
representation for curves. Communication of the
Association for Computing Machinery 14: 310-21.

Bertolotto, M., and M.J. Egenhofer. 2001. Progressive
transmission of vector map data over the World
Wide Web. GeoInformatica 5(4): 345-73.

Bregt, A., and J. Bulens. 1996. Application-oriented
generalization of area objects. In: Methods for
the Generalization of Geo-Databases. Netherlands
Geodetic Commission, Delft, The Netherlands. pp.
57-64.

Baumgart, B.G. 1975. A polyhedron representation
for computer vision. In: Proc. AFIPS National
Computer Conference, Vol. 44, pp. 589-96.

Buttenfield, B.P. 2002. Transmitting vector geospatial
data across the Internet. In: M. J. Egenhofer, and
D. M. Mark (eds), Proceedings, GIScience 2002.
Lecture Notes in Computer Science 2478: 51-64. Berlin,
Germany: Springer Verlag.

de Berg, M.T., van M. J. Kreveld, M.J., and S.
Schirra. 1998. Topologically correct subdivision
simplification using the bandwidth criterion.
Cartography and Geographic Information Systems
25(4): 243-57.

346 Cartography and Geographic Information Science

DMA (Defense Mapping Agency). 1986. Product
specifications for digital feature analysis data
(DFAD): Level 1 and level 2. Technical report, DM,
Aerospace Center, St. Louis, Mo.

Douglas, D.H., and T. K. Peucker. 1973. Algorithms
for the reduction of the number of points required
to represent a line or its caricature. The Canadian
Cartographer 10(2): 112–22.

Günther, O. 1988. Efficient structures for geometric data
management. Number 337 in Lecture Notes in
Computer Science. Springer-Verlag, Berlin.

Guttman, A. 1984. R-trees: A dynamic index structure
for spatial searching. ACM SIGMOD 13:47-57.

Hildebrandt, J., M. Owen, and R. Hollamby. 2000.
CLUSTER RAPTOR: Dynamic geospatial imagery
visualisation using backend repositories. In:
Proceedings of the 5th International Command and
Control Research and Technology Symposium (ICCRTS).

Jones, C.B. and Abraham, I.M. 1986. Design
considerations for a scale-independent cartographic
database. In Proceedings 2nd International Symposium
on Spatial Data Handling, Seattle, 348-398.

Jones, C. B., A. I. Abdelmoty, M.E. Lonergan, P. M.
van der Poorten, and S. Zhou. 2000. Multi-scale
spatial database design for online generalisation.
In: Proceedings, 9th International Symposium on Spatial
Data Handling, Beijing, China, Sec. 7b, 34-44.

Lazaridis, I., and S. Mehrotra. 2001. Progressive
approximate aggregate queries with a multi-
resolution tree structure. In: International Conference
on Management of Data Archive, Proceedings of the
2001 ACM SIGMOD International Conference on
Management of Data, Santa Barbara, California,
United States. pp. 401–12.

OGC (OpenGIS). 1999. OpenGIS Simple Features
Specification for SQL, Revision 1.1. OpenGIS
Project Document 99-049.

van Oosterom, P. 1989. A reactive data structure for
geographic information systems. In: Auto-Carto 9,
Baltimore, Maryland. pp. 665-74.

van Oosterom, P. 1990. Reactive data structures
for geographic information systems. PhD thesis,
Department of Computer Science, Leiden
University, The Netherlands.

van Oosterom, P. 1992. A storage structure for a multi-
scale Database: The Reactive-tree. International
Journal, Computers, Environment and Urban Systems
16(3): 239-47.

van Oosterom, P. 1993. The GAP-tree, an approach
to “on-the-fly” map generalization of an area
partitioning. In: J.C. Müller, J.P. Lagrange, and
R. Weibel (eds), GIS and Generalization, Methodology
and Practice. London, U.K.: Taylor & Francis. ch. 9,
pp. 120-32. Presented at the GISDATA Specialist
Meeting on Generalization, Compienge, France,
15-19 December 1993.

van Oosterom, P. 1994. Reactive data structures for
geographic information systems. Oxford, U.K.: Oxford
University Press.

van Oosterom, P., and V. Schenkelaars. 1995. The
development of an interactive multi-scale GIS.
International Journal of Geographical Information
Systems 9(5): 489-507.

van Oosterom, P. 1997. Maintaining consistent
topology including historical data in a large spatial
database. In: Auto-Carto 13, Seattle WA, 8-10 April
1997. pp. 327-36.

van Oosterom, P., and C. Lemmen. 2001. Spatial data-
management on a very large cadastral database.
Computers Environment and Urban Systems 25(4-5):
509-28.

van Oosterom, P., J. Stoter, W. Quak, and S. Zlatanova.
2002. The balance between geometry and
topology. In: Advances in Spatial Data Handling, 10th
International Symposium on Spatial Data Handling,
Berlin, Germany, 2002. pp. 209-24.

van Putten, J., and P. van Oosterom. 1998. New results
with generalised area partitionings. In: 8th International
Symposium on Spatial Data Handling, Vancouver,
International Geographical Union. pp. 485-95.

Rosenbaum, R., and H. Schumann. 2004. Remote
raster image browsing based on fast content
reduction for mobile environments. In: T. Chambel,
N. Correia, J. Jorge, and Z. Pan (eds), Eurographics
Multimedia Workshop, Nanjing, China. pp 13-9.

Samet, H. 1984. The quadtree and related hierarchical
data structures. ACM Computing Surveys archive
16(2): 187–260.

van Smaalen, J.W.N. 1996. A hierarchic rule model for
geographic information abstraction. In: Proceedings,
SDH’96, Delft, The Netherlands. pp. 4b.31.

van Smaalen, J.W.M. 2003. Automated aggregation of
geographic objects—A new approach to the conceptual
generalisation of geographic databases. PhD thesis,
Wageningen University, The Netherlands.

Töpfer, F., and W. Pillewizer. 1966. The principles of
selection. Cartographic Journal 3: 10-16.

Vermeij, M.J. 2003. Development of a topological
data structure for on-the-fly map generalization.
Geodetic Engineering, MSc thesis, Delft University
of Technology, June 2003, Delft, The Netherlands.

Vermeij, M., P. van Oosterom, W. Quak, and T. Tijssen.
2003. Storing and using scale-less topological data
efficiently in a client-server DBMS environment.
In: Proceedings of the 7th International Conference
on GeoComputation, University of Southampton,
Southampton, UK, 8-10 September 2003.

Zhou, X., S. Prasher, S. Sun, and K. Xu. 2004.
Multiresolution spatial databases: Making web-based
spatial applications faster. In: Jeffrey Xu Yu, Xuemin
Lin, Hongjun Lu, et al., Proceedings, The Sixth Asia
Pacific Web Conference (APWeb’04), 14-17 April, 2004,
Hangzhou, China. Lecture Notes in Computer Science
3007: 36-47.

