
Introduction

Data structures supporting variable 
scale data sets are still very rare. There 
are a number of data structures avail-

able for multi-scale databases based on multiple 
representations, that is, the data are used for a 
fixed number of scale (or resolution) intervals. 
These multiple representation data structures 
attempt to explicitly relate objects at differ-
ent scale levels, in order to offer consistency 
during the use of the data. The drawbacks of 
the multiple representations data structures are 
that they do store redundant data (same coor-
dinates, originating from the same source) and 
that they support only a limited number of scale 
intervals. Most data structures are intended to 
be used during the pan and zoom (in and out) 
operations, and in that sense multi-scale data 
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structures are already a serious improvement for 
interactive use as they do speed-up interaction 
and give reasonable representations for a given 
level of detail (scale).

Need for Progressive Data Transfer
Another drawback of multiple representation 
data structures is that they are not suitable for 
progressive data transfer, because each scale 
interval requires its own (independent) graphic 
representation be transferred. Good examples 
of progressive data transfer are raster images, 
which can be presented relatively quickly in 
a coarse manner and then refined as the user 
waits a little longer. These raster structures 
can be based on simple (raster data pyramid) 
(Samet 1984) or more advanced (wavelet com-
pression) principles (Lazaridis and Mehrotra 
2001; Hildebrandt et al. 2000; Rosenbaum 
and Schumann 2004). For example, JPEG2000 
(wavelet based) allows both compression and 
progressive data transfer from the server to the 
end-user. Also, some of the proprietary formats 
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such as ECW from ER Mapper and MrSID from 
LizardTech are very efficient raster compression 
formats based on wavelets and offering multi-
resolution suitable for progressive data trans-
fer. Similar effects are more difficult to obtain 
with vector data and require more advanced 
data structures, though, recently, a number 
of attempts have been made to develop such 
structures (Bertolotto and Egenhofer 2001; 
Buttenfield 2002; Jones et al. 2000; Zhou et al. 
2004).

Multi-scale / Variable-scale Vector Data 
Structures
For single (line) objects, a number of multi-
scale/variable-scale data structures have been 
proposed: Strip-tree (Ballard 1981), Multi-
Scale Line tree (Jones and Abraham 1986), 
Arc-tree (Günter 1988), and the Binary Line 
Generalization tree (BLG tree) (van Oosterom 
1990). The Strip-tree and the Arc-tree are 
intended for arbitrary curves, not for simple 
polylines. The Multi-Scale Line tree is intended 
for polylines, but it introduces a discrete number 
of detail levels and it is a multi-way tree, mean-
ing that a node in the tree can have an arbitrary 
number of children. The BLG tree is a binary 
tree for a variable scale representation of a poly-
lines, based on the Douglas-Peucker (1973) line 
generalization algorithm. The BLG tree will be 
explained in more detail in a later section (see 
Figure 7). Note that these line data structures 
cannot be used for spatial organization (index-
ing, clustering) of multiple objects (as needed 
by variable scale or multi-scale map representa-
tions), so they only solve part of the generaliza-
tion and storage problem. 

One of the first multi-scale vector data structures 
designed to avoid redundancy was the reactive 
BSP-tree (van Oosterom 1989), which supports 
both spatial organization (indexing) and multiple 
level of details. Its main disadvantage, however, 
is that it is a static structure. The first dynamic 
vector data structure supporting spatial organiza-
tion of all map objects, as well as multiple scales, 
was the Reactive tree (van Oosterom 1992; 1994). 
The Reactive tree is an R-tree (Guttman 1984) 
extension with importance levels for objects: more 
important objects are stored higher in the tree 
structure, which makes more important object 
more accessible. This is similar to the reactive 
BSP-tree, but the dynamic structure of the Reactive 
tree enables inserts and deletes, functions that the 
BSP-tree lacks. The BLG tree and the Reactive 

tree are eminently capable of supporting variable-
scale/multi-scale maps composed of individual 
polyline or polygon objects. 

Generalized Area Partitioning
The BLG-tree and Reactive-tree structures are 
not well suited for an area partitioning, since 
removal of a polygon results in a gap in the map 
and independent generalization of the boundar-
ies of two neighbor areas results in small slivers 
(overlaps or gaps). Overcoming this deficiency 
was the motivation behind the development of 
the GAP tree (van Oosterom 1993). The BLG-
tree, Reactive-tree, and GAP-tree data structures 
can be used together, while each supports differ-
ent aspects of the related generalization process, 
such as selection and simplification, for an area 
partitioning (van Oosterom and Schenkelaars 
1995). 

Following the conceptualization of the GAP 
tree, several improvements were published to 
resolve limitations of the original data struc-
tures (van Putten and van Oosterom 1998; Ai 
and van Oosterom 2002; Vermeij et al. 2003). 
This paper introduces the new topological GAP 
tree, which combines the use of the BLG tree and 
the Reactive tree and avoids the problems of the 
original GAP tree—redundant storage and slivers 
near the boundary of two neighbor areas. Then 
the implementation of the structure is discussed, 
followed by an explanation of how to use it for 
progressive data transfer. Finally, a summary of 
the most important results is provided, together 
with suggestions for further research. 

GAP Tree Background
The first tree data structure for generalized area 
partitioning (GAP tree) was proposed by van 
Oosterom (1993). The idea was based on first 
drawing the larger and more important poly-
gons (area objects), so as to create a generalized 
representation. However, one can continue by 
refining the scene through the additional draw-
ing of the smaller and less important polygons 
on top of the existing polygons (based on the 
Painters algorithm; see Figure 1). This prin-
ciple has been applied to the Digital Land Mass 
System – Digital Feature Analysis Data (DLMS-
DFAD) data strurcture (DMA 1986), because it 
already had this type of polygons organization. 
When tested with the Reactive tree and the BLG 
tree, it was possible to zoom in (zoom out) and 
obtain map representations with more (less) 
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detail of a smaller (larger) region in constant 
time (see Figure 2, left).

Computing the GAP Tree
If one has a normal area partition (and not 
DLMS DFAD data) one first has to compute the 
proper structure. This is driven by two functions. 
First, the importance function (for example: 
Importance(a) = Area(a) * WeightClass (a)) is used 
to find the least important feature a based on 
its size and the relative importance of the class 
it belongs to. Then the neighbor b is selected 
based on the highest value of Collapse(a,b) = 
Length(a,b) * CompatibleClass(a,b), with Length(a,b) 
being the length of the common boundary. 
Feature a is removed and feature b takes its space 
on the map. In the GAP tree this is represented 
by linking feature a as the child of parent b (and 
enlarging the original feature b). This process is 
repeated until only one feature is left covering 
the whole domain, forming the root of the GAP 
tree. Figure 1 gives a schematic representation 
of such a GAP tree. 

Work by van Smaalen (1996; 2003) focuses on 
finding neighbor patterns, which might in turn be 
used for setting up an initial compatibility matrix. 
Bregt and Bulens (1996) give area generaliza-
tion examples in the domain of soil maps, based 
on the same principles. Both van Smaalen and 
Bregt and Bulens use an adapted classification 
for the higher (merged) level of objects, instead 
of keeping the original classification at all levels 
of detail; e.g., deciduous forest and coniferous 

forest objects are aggregated into a new object 
classified as “forest” or “garden,” while house and 
parking place objects form the new object “lot.” 
This could also be done in the GAP tree.

Implementations and Improvements of 
the GAP Tree
Though the GAP tree may be computed for a 
source data set which has a planar partitioning 
topology, the GAP tree itself is not a topological 
structure. Each node in the GAP tree is a poly-
gon, and this introduces some redundancy as 
parents and child may have some parts of their 
boundary in common. The first true GAP-tree 
construction based on topologically structured 
input was implemented by van Putten and van 
Oosterom (1998) for two real world data sets: 
Top10vector (1:10.000) and GBKN (1:1.000; 
see Figure 2 right). It turned out that finding 
the proper importance and compatibility func-
tions (which drive the GAP-tree construction) is 
far from trivial and depends on the purpose of 
the map. In addition, two improvements were 
presented in the 1998 paper (at the conceptual 
level): 1) adding parallel lines to “linear” area 
features, and 2) computing a GAP tree for a 
large seamless data set.

Ai and Van Oosterom (2002) presented two other 
possible improvements to the GAP tree: One was 
that one should not assign the least important 
object to only one neighbor, but subdivide this 
object along its skeleton and assign the different 
parts to different neighbors/parents (the result is 

Figure 1. The original GAP tree (van Oosterom 1993).
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not a tree but a directed acyclic graph: GAP-DAG). 
The second improvement concerned extending the 
neighborhood analysis by considering non-direct 

(sharing a common edge) neighbor areas as well. 
Both suggestions are based on an analysis using a 
Triangular Irregular Network (TIN) structure. 

Figure 2. Left: GAP-tree principle applied to DLMS DFAD (add detail when zooming in). Right: GAP tree applied to large-
scale topographic data set (shown at same scale).
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Topological Version of the GAP Tree
All improvements still result in a non-topological 
GAP structure, which means that it contains redun-
dancy. Vermeij et al. (2003) presented a GAP-tree 
structure that avoids most redundancy by using a 
topological structure for the resulting GAP tree, 
not only for the input: thus the edges and the faces 
table both have attributes that specify the impor-
tance ranges in which a given instance is valid. The 
2D geometry of the edges (and faces) is extended 
by the importance value range (on the z-axis) for 
which it is valid (see Figure 3). One drawback of this 
approach is that it requires considerable geometric 
processing at the client side—clipping edges, form-
ing rings, and linking outer and possible inner 
rings to a face. A second drawback is that there is 
some redundancy introduced via the edges at the 
different importance levels: i.e., the coordinates of 
detailed edges are again present in the edge at 
the higher aggregation level.

Figure 3. Importance levels represented by the third 
dimension (at the most detailed level (bottom) there 
are several objects, while at the most coarse level (top) 
there is only one object). The hatched plane represents 
a requested level of detail, and the intersection with the 
symbolic 3D volumes then gives the faces. 

Figure 4, continued on page 336. 
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The first drawback can be avoided by using 
a winged edge topology (Baumgart 1975; van 
Oosterom 1997; van Oosterom and Lemmen 
2001) together with aboxes for the edges. An 
abox (area box) of an edge is the union of the 
bboxes (bounding boxes) of the left and right 
faces. Note that an edge also has its own bbox 

(bounding box), which is always contained in its 
abox. Selecting the faces based on their bbox and 
the edges based on their abox (both at the appro-
priate importance level) enables the creation of 
all polygons by following the topology references 
(from face to edge and from edge to edge) without 
any geometric computations. This enables easy 

Figure 4, continued on page 337. 
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client implementation. In the next section the 
structure will be presented which also avoids the 
redundant storage of geometry at different levels 
of detail (in the edges).

Topological GAP-face Tree 
and GAP-edge Forest

Throughout this paper, one example is used 
to illustrate the new topological GAP tree. 
Different subsections (and different figures) 
will explain additional details related to this 
structure. Figure 4 shows the scene: the edges 
are at the top left, and the faces (each with a 
color according to their classification) are at the 
top right. The faces are assigned a number id 
and a computed importance value (shown in a 
smaller font). The edges are assigned a letter id 
(for illustration purposes; numbers are used in a 
normal implementation). Note that all edges are 
directed, as is normally the case in a topologi-
cal structure; i.e., there is a left- and right-hand 
side.

Faces in the Topological GAP Tree
In the example above, in every step the least 
important object is removed and its area is 
assigned to the most compatible neighbor (as in 
the normal GAP tree). In the first step of Figure 
4 for the least important object, face 6 has been 
added to its most compatible neighbor, face 
2. This process is continued until there is only 
one face left. A slight difference with the origi-

nal GAP tree is that a new id is assigned to the 
enlarged, more important face. The enlarged 
version of face 2 (augmented by face 6) becomes 
face 7, and faces 2 and 6 are not used at this 
detail level. However, the enlarged face keeps 
its classification as indicated via the color of the 
faces. In our example, face 7 has the same classi-
fication as face 6 (and both are shown in yellow), 
but the importance of this face is recomputed: 
as it becomes larger, the importance increases 
from 0.4 to 0.5. In the next step, face 1 (the least 
important with importance value 0.3) is added 
to face 7 (the most compatible neighbor), and 
the result is face 8, with its importance increas-
ing from 0.5 to 0.6. Then face 5 (importance 
0.35) is added to face 4 (best neighbor), and the 
result is face 9 (with importance increasing from 
0.5 to 0.6). This process continues until one big 
face is left; in our example this is face 11.

From the conceptual point of view the general-
ization process is the same and the original (face) 
GAP tree can easily be rewritten to the “new style” 
GAP tree for faces (Figure 5). The advantage of the 
new-style tree is that is it a binary tree (the original 
tree was n-ary). As in the original GAP tree, every 
node in the new-style tree contains an indication 
of the importance level of the corresponding face. 
This is not shown in the Figure 5, but it will become 
clear in Table 1 which gives all the attributes of 
the faces (and the edges). Unlike in the original 
GAP tree, however, the nodes contain no explicit 
polygons; only topological face information is given. 
This means that the edges are also stored so that 
the faces can refer to them. 

Figure 4. Generalization example in five steps, from detailed to course. The left side shows the effect of merging faces, 
while the right side shows the effect of also simplifying the boundaries via the BLG tree. Note that nodes are depicted 
in green/blue and removed nodes are shown for one next step only in white.



338                                                                                                        Cartography and Geographic Information Science

Edges in the Topological 
GAP Tree
Vermeij et al. (2003) described the 
set of edges needed by the topo-
logical faces in the GAP tree. These 
edges have topological references to 
the faces left and right, as proposed 
by Vermeij et al. (2003). During the 
generalization process, when faces 
are merged, three different out-
comes may occur:
• An edge is removed; e.g., edge 

‘e’ in step 2;
• Two or three edges are merged 

in one edge; e.g., edges ‘a’ and 
‘d’ merge into edge ‘m’ in step 
2, or edges ‘g’, ‘i’, and ‘j’ merge 
into edge ‘n’ in step 3);

• Only edge references are changed; 
e.g., the reference to the right face 
of edge ‘h’ changes from 7 to 8 in 
step 2. 
The parent–child relationships 

between the different (versions of 
the) edges are maintained; because, 
as it turns out, these relationship 
again form a tree structure (Figure 
6). However, there is no single edge 
root (but there is a face root in the 
GAP-face tree), since some edges 
are removed (option 1) and they 
form a local root. Just like faces, the 
edges have an associated impor-
tance range, indicating when they 
are valid. Edge importance ranges 
are given in Figure 6 for GAP-edge 
trees as well as the GAP-edge forest. 
Note that the top edge node (in this 
case ‘q’) is not showing an upper 
importance value, while all other 
nodes have both a lower and a upper 
importance value associated with the edge.

BLG Trees in the Topological GAP Tree
When edges are represented via BLG trees, the 
structure delivers an appropriate number of 
points per scale level, together with the related 
tolerance value. Note that the relationship 
between the tolerance value and scale is direct, 
e.g., at a given scale, one can use the size of a 
pixel of the display screen as the tolerance value. 
However, the relationship between importance 
and scale is less direct; as a rule of thumb, 

because “an optimal screen has a constant 
information density, one can keep on adding 
faces with a lower importance until the speci-
fied number of faces is reached; e.g., 1000. An 
alternative could be applying the Radical Law 
nf = naC √(Ma/Mf)x, where “nf is the number 
of objects shown at the derived scale, na is the 
number of objects shown on the source mate-
rial, Ma is the scale denominator of the source 
map, and Mf is the scale denominator of the 
derived map (Töpfer and Pillewizer 1966). The 
exponent x depends on the symbol types (1 for 
point symbols, 2 for line symbols and 3 for area 
symbols) and C is a constant, frequently with a 

Figure 5. The classic GAP tree rewritten as the GAP-face tree (with a new 
object Id whenever a face changes and the old object Id appearing in a small 
font to the upper right of a node). The class is shown in brackets after the 
object Id.

Figure 6. GAP-edge forest (with important ranges). Note that the edges 
shown in bold and the underlined letters k, q, e, p, l, and n are the roots of the 
different GAP-edge trees.
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value of 1. Figure 7 shows three different edges 
of our scene with their corresponding BLG tree 
depicted below (nodes indicate point number 
and error values).

Standard BLG-tree structures are not exactly 
new, but they can be used satisfactorily within the 
edge GAP-forest structure to represent edges. As 
indicated above, due to the removal of edges, it 
is possible for some edges to merge into larger 
edges. Thus, instead of storing redundant edge 
polylines at different scales/importance levels, it 
was decided to join the BLG trees of the merging 
edges. To merge three edges, for instance, ‘g’, ‘i’ 
and ‘j’, two steps are required: first ‘i’ and ‘j’ are 
merged (see Figure 8), then edge ‘g’ is merged 

(see Figure 9). Note that only the top 
tolerance value is computed every time 
two BLG trees are merged. Also the 
worst-case estimation of the new top 
tolerance value ‘err_ij’, according to 
the formula given in (van Oosterom 
1990; 1992) and reformulated in Figure 
8 as ‘err_ij = dist(point(ij), line(b_i, e_j) + 
max(err_i, err_j)’ only uses the top-level 
information of the two participating 
trees. 

A small improvement, which keeps 
the structure of the merged BLG tree 
unaffected (i.e., the lower level BLG 
tree can be reused), is to compute the 
exact tolerance value (‘err_ij_exact’) 
of the new approximated line, which 
is less than or equal to the estimated 
worst case (‘err_ij’). In Figure 8, this 
would be the distance from point 5 
of edge ‘j’ to the dashed line. This 
tolerance value would be 1.1, which 
is less than the worst-case estimate of 
1.4. The drawback is that one has to 
descend to the lower-level BLG tree 
to perform the computation (this may 
be a recursion), which, even though 
done only once during the creation of 
the structure may still be time-consum-
ing. The advantage is that during the 
use of the structure (which probably 
happens more often than creation), 
a better estimate becomes available 
and a descend to the BLG tree is no 
longer needed. For example, assum-
ing we need a tolerance of 1.2, then, 
with the worst case estimate, one has 
to descend to the two-child BLG tree 
(which will not happen with the com-
puted tolerance). Conclusion: stick to 
the proposed structure of the simple 

merging of BLG trees but consider real computa-
tion of the top-level tolerance value. 

Depending on the requested tolerance value, the 
(joined) BLG tree is traversed in order to produce 
the appropriate detail level. Note that this may 
imply that a point, which used to be associated 
with a node (at a high detail level, low importance 
value) may be also removed. This is needed if one 
performs extreme generalization; e.g., the high-
est detail data is at the level of ownership parcels, 
but the user would like to see municipalities and 
so he or she zoomes out. Supposing all original 
nodes had been used (as in Vermeij 2003), the 
result would still be too much detail presented 

Figure 7. Three example BLG trees with edges g, I, and j. A node in the 
BLG tree contains a point (number) and a tolerance value (in brackets).

Figure 8. First step in merging the edges g, i, and j. The BLG trees of i 
and j are joined (the worst-case estimation for the new top level tolerance 
value is 1.4).
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(which also takes time to transfer 
from server to client). 

Storage Structure of 
the GAP-face Tree and 

GAP-edge Forest
Now that the structure and cre-
ation process of the GAP-face 
tree and GAP-edge forest have 
been explained and illustrated 
with an example, the next step 
is the actual implementation of 
these structures. An important 
aspect is the storage structure; 
to enable its implementation, 
an object-relational model such 
as mainstream DBMSs, Oracle, 
DB2, Informix, Ingres, MySQL, 
PostgreSQL, can be used. 

Faces in the Topological 
GAP-tree Storage Structure
The storage structure of the GAP-faces is given 
in Table 1. Here are some notes: 
• The column “step” is not stored. It was added 

for illustration purposes (and shown in italics), 
so as to link the steps of the creation process 
to the rows in the table; 

• The column “ace_id” is the primary key in the 
table;

• The columns “imp_low” and “imp_high” indi-
cate the importance range for which a given 
record is valid, and the column “imp_orig” 
indicates the original importance of the face 
(note that  imp_orig >= imp_high. Take a look 
at face 2 with imp_orig=0.40; when merged 
with face 6 at the importance level of 0.20, the 
resulting face 7 has imp_orig=0.50);

• Where an area has one or more islands, the 
column “first_edges” does not only refer to 
the edge being part of the outer boundary 
(the first in the list of references; see face 2 
in Table 1), but also to an edge that’s part of 
the inner boundary (i.e., it is a variable length 
array of references);

• The edge references are labeled depending on 
the direction of the loop; i.e., clockwise loops 
designate outer boundaries and anti-clockwise 
loops designate inner boundaries. A plus sign 
(+) means the edge direction is correct for the 
loop,  a minus sign (-) means that the edge 
direction has to be reversed;

• The polygon of a face can be reconstructed by 
following the references from the first_edges 
column in the winged edge structure, at the 
given importance range;

• The column “bbox” contains only symbolic 
values; the actual coordinate values will, of course, 
differ for each row in a real-life situation. Instead 
of storing the bbox, it could also be computed 
using a functions in the database; 

• The GAP face-tree can be reconstructed by 
linking every child to its parent via the “pid” 
column (parent identifier); only the root, face 
11, does not have a parent.
The first SQL view definition given below is 

for adding polygons to the “tgap_face” table. As 
reported by van Oosterom et al. 2002, the add-on 
action is based on the return_geometry function, 
which uses the edge table “under water.” The 
second SQL view definition adds the bbox of 
the face (and other attributes, such as area and 
perimeter). Note that the results of the views are 
normally not explicitly stored (unless it is a mate-
rialized view for performance reasons). 
create view tgap_face_v1 as
select f.face_id, f.imp_low, f.imp_high, f.imp_orig, 
     f.first_edges, f.class, f.pid,
     return_polygon(f.face_id) shape
from tgap_face f;
create view tgap_face_v2 as
select f.face_id, f.imp_low, f.imp_high, f.imp_orig, 
     f.first_edges, f.class, f.pid, f.shape, get_
      bbox(f.shape) bbox,

Figure 9. Second step in merging the edges g, i, and j. The BLG trees of ij 
and g are joined. Note that for BLG tree ij the worst-case tolerance value 
estimation of 1.4 was used and, therefore, the tolerance band does not touch 
the polyline in the middle as might have been expected.
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     get_area(f.shape) area, get_perimeter(f.shape)
     perimeter
from tgap_face_v1 f;

The SQL “create view” statement specifies the 
name of the new view (e.g., tgap_face_v1) and then 
the SQL select statement which defines the view is 
given. In this case nearly all attributes are copied 
straight from the original table (tgap_face) and 
a new attribute with the name “shape” is added 
and computed via the return_geometry function. 
Something similar happens with the second view 
(tgap_face_v2), which adds the attributes bbox, area, 
and perimeter to the first view, tgap_face_v1.

Edges in the Topological GAP Tree 
Storage Structure
Table 2 describes the edges and faces of the GAP-
edge forest. Again, a number of notes: 
• The columns “edge_id” and “imp_low” 

together form the primary key in this table. 
The ids of the merged edges are shown in 
bold. New importance range versions of edges 
that have the same id are in normal fonts. For 
example, there are two versions of edge d and 
they are identified by the primary key pairs (d, 
0.00) and (d, 0.20);

• Again, the column “step” is not stored, but 
only added for illustration purpose and shown 
in italics;

• The references to faces left and right are given 
in the columns “face_left” and “face_right” 
(changed references after step 1 for new ver-
sions of existing edges are in bold);

• The winged edge references to edges are given 
in the columns “edge_fl” (first left), “edge_fr” 
(first right), “edge_ll” (last left), and “edge_lr” 
(last right). The changed references are again 
shown in bold. The references are signed 
according to the direction (same interpreta-
tion as in the GAP-face tree table);

• The GAP-edge trees 
(in the forest) can be recon-
structed by linking every 
child to its parent via the “pid” 
column (“interesting” parents, 
i.e., versions created by merg-
ing other edges, are shown in 
bold). Note that there are now 
several roots —k, l, e, n, p, and 
q—i.e., edges that do not have 
a parent;
• The column “abox” contains 
symbolic values. Actually, this 
column does not need to be 

physically present and could be implemented as 
a view, by computing the union of the bboxes of 
the left- and right-hand side faces. This column 
is also shown in italics;

• Further, it was decided to store the source 
BLG trees (related to the edges at the highest 
detail) in a separate table, as the different rows 
may refer to same BLG tree (and, therefore, 
they are shown in italics).
If one does not change the orientation of the 

faces (polygons), then only 2 of the 4 edge-to-
edge references are really needed: edge_lr and 
edge_fl (assuming clockwise outer boundary loops). 
Removing the other two edge-to-edge references 
does not only save storage space, but it may also 
save a number of rows. In our example in Table 2 
the edge rows (c, 0.30) and (f, 0.35) could be omit-
ted, because the only difference with their parent 
version is in the columns edge_fr or edge_ll.

One could consider dropping all edge-to-edge 
references. This would result in saving the storage 
cost of two more columns (edge_lr and edge_fl) 
and that of those rows that only have changes 
in these two colums. In our example, the edge 
rows (b, 0.30), (b, 0.35), and (m, 0.40) would be 
removed in addition to the previous removal of 
the edge rows (c, 0.30) and (f, 0.35). The price 
one would have to pay for this saving though is 
that client will have to do more searching in order 
to connect the proper edges after orienting them 
in the proper direction, instead of just following 
the given references. Note that connecting the 
edges can be considered to be a purely non-geo-
metric operation as long as the end/begin points 
of the edges that are supposed to meet are exactly 
equal (and these can be used as a kind of topology 
node/point identifiers). 

In the case of multiple loops, one has to find out 
which of these loops is the outer loop. This can 
be accomplished by using the first_edges column 
from the tgap_face table. However, if the edge 

Table 1. The ‘tgap_face’ with the topological multi-scale face information representing 
the GAP face-tree.
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reference column is also dropped (because of 
storage efficiency reasons), a modest geometric 
computation may be needed (e.g., to compute the 
area enclosed by the loops; the loop with the largest 
area is the outer boundary), or the face_left and 
face_right references could be explicitly marked 
with the minus sign, indicating that the current 
edges are part of the inner boundary. Keeping 
the first_edges colum in the tgap_face table and 
at least two edge references (edge_lr and edge_fl) 
in the tgap_edge table may thus be advisable.

The SQL view definition for adding the abox 
to the tgap_edge table is given below (note that 
this view uses the bboxes of faces computed in 
another view, tgap_face_v2):
create view tgap_edge_v1 as
   select e.edge_id, e.imp_low, e.imp_high,
   e.face_left, e.face_right, 
      e.edge_fl, e.edge_fr, e.edge_ll, e.edge_lr, 
      e.pid, e.blg_id, union(l.bbox, r.bbox) abox

from tgap_edge e, tgap_face_v2 l, tgap_face_v2 r
where e.face_left=l.face_id and e.face_
right=r.face_id; 

The structure of the SQL select statement used 
in the definition of the view tgap_edge_v1 is now 
a little different: instead of just using one table (or 
view) and adding something (after computation), 
the information is obtained from several tables 
or views (tgap_edge and tgap_face_v2). Actually, 
the tgap_face_v2 view is used in two different 
places, the left and right side (‘l’ and ‘r’ aliase). 
The “where” clause specifies the conditions under 
which the records from different views have been 
combined; e.g., e.face_left=l.face_id. In SQL terms, 
this kind of operation is called a join-of-tables 
(or views). The view tgap_edge_v1 copies the old 
edge attributes and adds the attribute abox based 
on the function “union” and the bbox input from 
the left and right tgap_face_v2 views.

Table 2. The ‘tgap_edge’ with the topological multi-scale edge information representing the GAP-edge forest. 
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The Role of the BLG Tree in the 
Topological GAP-tree Storage Structure
The model uses DBMSs spatial extensions and 
follows OGC’s Simple Feature Specification for 
SQL (OGC 1999) for spatial data types, such 
as the bbox and the abox. Because the BLG-
tree data type for variable-scale polylines is 
not available, one has to implement this data 
type. This has been done in the Postgres context 
(Oosterom and Schenkelaars 1995) and in the 
Oracle special context (Vermeij 2003). Assume 
for the time being that we have a BLG-tree 
data type for our implementation. The table 

“tgap_blg” stores all the sources of BLG trees 
(tree structure, tolerance values, point coordi-
nates) related to the edges at the most detailed 
level and, symbolically, also all the merged BLG 
trees. The merged BLG trees can be rewritten 
to merge pairs of BLG trees (see Figures 8 and 
9) and, therefore, we only need two columns 
with references “child1” and “child2” and the 
tolerance value. Table 3 shows the header of the 
table with some sample rows (rows 1 and 2 con-
tain two-source BLG trees, and row 10 cotains a 
merged BLG tree).

The SQL view definition that hides the differ-
ences between the source BLG trees and merged 
BLG trees is given below: 

create view tgap_blg_v1 as (
     select b.blg_id, b.BLG_tree_source BLG_tree
     from tgap_blg b
     where b.top_tolerance = -1)
union all (
     select b.blg_id, merge_BLG(b.top_tolerance,
     b.child1,b.child2) BLG_tree
     from tgap_blg b
     where b.top_tolerance <> -1);

The view “tgap_blg_v1” has a different structure 
than the previously presented view, as it is not based 
on one SQL select statement but two. The first SQL 
select statement selects the source (or leaf) BLG trees 
(based on the condition b.top_tolerance = -1 in the 

“where” clause) and simply copies all attributes. The 
second SQL statement in this view takes care of 

Table 3. The ‘tgap_blg’ with the BLG trees of the edges in the GAP-edge forest.

merged, non-leaf, BLG trees. The result of the two 
SQL select statements is glued together with the 
SQL “union all” operation. The SQL view defini-
tion to combine edges and their corresponding 
BLG trees is:

create view tgap_edge_v2 as
select e.edge_id, e.imp_low, e.imp_high, e.face_
    left, e.face_right, e.edge_fl, e.edge_fr, 
    e.edge_ll, e.edge_lr, e.pid, e.abox, b.BLG_tree
from tgap_edge_v1 e, tgap_blg_v1 b
where e.blg_id=b.blg_id;

The view “tgap_edge_v2” adds the BLG tree to 
the edge information via a join of the previously 
defined views tgap_edge_v1 and tgap_blg_v1. 

The Role of the Reactive Tree in the 
Topological GAP-tree Storage Structure
Available spatial indexing (and clustering) should 
be used to efficiently select the relevant rows 
from the tables; i.e., via a query search rectangle 
and specified importance value. The Reactive 
tree is designed for indexing spatial objects with 
importance values, but it is not generally avail-
able. Although in an extensible DBMS, one can 

add its own implementation 
of new index structures, this 
operation is far from trivial. 
This notwithstanding, it has 
been done for the Reactive tree 
in Postgres (van Oosterom and 
Schenkelaars 1995). In prac-
tice, a pseudo Reactive tree 
could be used, which is based 
on the 3D R-tree in which the 

third dimension is used for the valid importance 
range (and the first two dimensions are from 
the bbox and abox in the face and edge table, 
respectively). The advantage is that one does not 
have to implement an own indexing structure 
and can simply reuse the standard 3D R-tree for 
2D objects with their corresponding importance 
ranges. So, the 3D block to be indexed becomes 
(xl,yl,imp_low,xh,yh,imp_high). The 3D block 
does not have to be physically present; as long 
as it can be returned by a function with the 
box and importance range as inputs, then the 
computed 3D block can be used in a functional 
index, such as available in Oracle 9i and higher 
(van Oosterom et al. 2002). This applies to both 
the face and edge table. For example, the func-
tional index on the face table is:
create index tgap_face_idx on
    tgap_face(compute_3D_block(get_bbox(return_
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    polygon(face_id)), get_imp_range(imp_low, 
    imp_high)))
indextype is 3D_rtree;

Note that the edge table is joined with the table 
containing the BLG trees, and, as a result, one 
can use views for easy access. The result of the 
two queries: 1) give all faces in importance range 
Y and with bbox overlapping, given rectangle X’ 
and 2) give all edges (with points up to tolerance 
value) in importance range Y and abox overlap-
ping, given rectangle X’ can, due to indexing 
(and clustering of the 3D R-tree), be obtained 
very quickly and sent to the (web) client. The web 
client has all the edges—at the required level of 
detail—needed for forming the GAP-tree polygons 
corresponding to faces (partially) overlapping the 
given search rectangle X (probably related to the 
current window on the screen of the user). 

Server–client Set-up and 
Progressive Refinement

Data received by a client could be progressively 
refined as follows. The server starts by sending 
the most important nodes in GAP face-tree/
edge-forest (including top levels of associated 
edge BLG trees) in a certain search rectangle. 
The client builds a partial copy of GAP/BLG-
structure, which can then be used to display 
the coarse impression of the data. Every (x) 
second(s) this structure is displayed, and the 
polygons are shown at the then available resolu-
tion on the screen. The server keeps on sending 
more data and the GAP/BLG-structure at the 
client side is growing, such that the next time it 
is displayed with more detail. The possible crite-
ria for ending this refinement could be: 
• 1000 objects (meaningful information density); 
• Required importance level has been reached 

(with associated error tolerance value); or 
• The user interrupts the client.

Conclusion

Summary of Main Results
This is the first time ever that a non-redundant 
geometry, variable-scale data structure has been 
presented. The previous versions of the GAP 
tree had some geometry redundancy, primar-
ily between the polygons at a given scale and/or 
between the scales. The key to the solution pre-
sented in this paper was applying a full topological 
structure, though this is (far) more complicated 

than topological structures designed for the tra-
ditional single-scale data sets. The topological 
GAP tree is very well suited for a web environ-
ment—client requirements are relatively low (no 
geometric processing of the data at the client side) 
and progressive refinement of vector data is sup-
ported (allowing quick feedback to the user).

The values that remain crucial for the quality of 
GAP-tree generalization are the importance value 
of the involved feature classes (and importance 
function) and the compatibility values between 
two different feature classes (and compatibility 
function). More research is needed in this area to 
automatically obtain good generalization results 
for real-world data.

Implementation, Tuning, and 
Performance Testing
Future work will include the actual implementa-
tion of the presented concept and further testing 
with large data sets (millions of rows). Of course, 
both the data loading/creation of the GAP-face 
tree and GAP-edge forest (with their BLG trees) 
and the use of the information must be tested; 
perhaps even with a varying number of edge-
edge references—0, 2 (edge_lr and edge_fl), 
or 4 (edge_fl, edge_fr, edge_ll, and edge_lr), as 
mentioned earlier on. Next, the performance of 
this solution has to be compared to an alterna-
tive multi-scale representation (which has less 
freedom in scale than our true variable scale 
structure) in a desktop GIS environment (i.e., 
GIS front-end relatively close to the geo-DBMS 
server). The second set of performance tests 
would be within a distributed set-up, with the 
server and web-based clients taking advantage 
of progressive refinement. The Douglas-Peucker 
algorithm used in the BLG tree could in theory 
generate topological errors such as (self) inter-
secting lines. The GAP-face tree and GAP-edge 
forest structures would not have a problem with 
these (self) intersections, but, if possible, these 
(self) intersections should be avoided. However, 
as de Berg et al. (1998) mention avoiding such 
intersections is not easy.

Possible Further Enhancements of the 
Topological GAP Tree
Future research aimed at further improving the 
functionality of the GAP tree could include the 
following:
• Data editing (at the most detailed level), 

dynamic structures, only local updates, and 
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some propagation of the changes to the 
higher importance values;

• Removing the last piece of geometric redun-
dancy by introducing a “tgap_node” table. 
Geometric redundancy between neighbor 
faces (and also between different generalized 
representations) was removed by introducing 
the tgap_edge table; however, the start and 
the end points of edges are still redundantly 
stored in all the touching edges (in their cor-
responding BLG trees). If the start and end 
points are removed and replaced by two refer-
ences in the tgap_edge table (or even better, 
in the tgap_blg table in order to avoid storage 
of redundant references)—start_node and 
end_node—then the last piece of geometric 
redundancy will be removed. Additionally, 
the removal would fit well with the concept 
of the BLG tree (see Figure 7). The start and 
end points are treated differently from the 
intermediate points, which are all stored in 
the normal nodes of the BLG tree. It does 
not seam to be useful to have references from 
the nodes back to the edges (or faces). The 
tgap_node table would have the following 
attributes: node_id, imp_low, imp_high, and 
location. The primary key will be node_id 
(without imp_low), since for every node there 
will only be one version. The drawback of the 
solution, besides the introduction of a new 
table, is the introduction of additional refer-
ences, which do take some space. Via a func-
tion (which can be used in a view), the start 
and end points of an edge can be “glued” to 
the intermediate points and the return value 
could again be a normal polyline.

• Including such non-area objects as point and 
line objects. A point object can be stored (quite 
independent of the other structures) in its own 
table where every row has also an importance 
value range (the Reactive tree can be used for 
spatial/importance indexing). A line object 
with reference to its BLG tree can be stored in 
its own table and indexed with a Reactive tree 
(based on importance range and location). 
Perhaps it may also be useful to combine two 
less important lines into one more important 
line. The question is how to detect that this 
extension is needed. Once combined, the 
lines can be merged similar to joins of merged 
area boundaries, and a BLG tree is computed. 
It should be noted here that the point and line 
objects are independent, not related to the 
area object and the tables used to represent 
them, which simplifies this extension. It gets 

more complicated when the different feature 
types have to be related to each other and the 
topological relationships between point, line, 
and area objects have to be maintained. Such 
an extension requires further investigation.

• Changing from area to line or point representa-
tion for a given object. This step is similar to that 
of the normal GAP tree when removing an area, 
except that it introduces line or point features 
which are then related/linked to the previous area 
representation. For roads this may be better than 
enlarging with strips as suggested by van Putten 
and van Oosterom 1998.
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