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ABSTRACT: 

 

This paper describes a method to represent a Planar Map (PM) through a Conforming Delaunay Triangulation (CDT) with 

applications in a server-client environment. At the server a CDT of the edges of the PM is determined. As the PM is now embedded 

by the CDT it is sufficient to send to the client the list of coordinates of the CDT nodes and an efficient encoded bitmap of the 

corresponding PM-CDT edges. The client determines a Delaunay Triangulation (DT) of the received list of coordinates of the CDT 

nodes. The DT at the client side is – in principle – equivalent to the CDT at the server side. The edges of the PM are found within 

this DT by the decoding of the bitmap of the corresponding PM-CDT edges.  

  

1. INTRODUCTION 

1.1 Support of Planar Maps by the OGC 

One of the main principles in distributed Geographical 

Information Systems (GIS) is the server-client architecture. 

According to the Open Geospatial Consortium (OGC) a Web 

Map Server (WMS) allows clients to retrieve map portrayals 

(images) of the data features through the Internet. In a similar 

way access to the features is made possible by a Web Feature 

Server (WMS). The requested features from a specified layer 

and within a certain extent are encoded in the Geographical 

Markup Language (GML) at the server. The client has to 

understand the semantics of the GML to process the features, 

i.e. know to handle point, lines and polygon simple feature 

types. The necessary logic is with respect to these simple feature 

geometries not too hard, as the coordinates are part of the 

simple feature definition. The coding and the understanding of 

Planar Maps is however more difficult to achieve.  

 

Planar Maps are fundamental structures in computational 

geometry. They are used to represent the subdivision of the 

plane into regions and have numerous applications. Planar maps 

by themselves can be used to represent geographic maps. They 

also serve as fundamental structures on which more involved 

geometric data structures are constructed (Flato, 2000). A  

 

Within GIS most often each region is paired to an identifier that 

is used to link the geometry to a set of attribute values. Within 

GML Planar Maps do not have their own normative schema yet, 

but they can be considered as special types of polygon 

coverages.  

 

Coverages are described as follows (OGC_03-105r1, par 19.1, 

URL): “Coverages support mapping from a spatio-temporal 

domain to attribute values where attribute types are common to 

all geographic positions within the spatio-temporal domain. A 

spatio-temporal domain consists of a collection of direct 

positions in a coordinate space. Examples of coverages include 

rasters, triangulated irregular networks, point coverages, and 

polygon coverages. Coverages are the prevailing data 

structures in a number of application areas, such as remote 

sensing, meteorology, and bathymetric, elevation, soil, and 

vegetation mapping.” 

 

“The information describing a coverage is represented in one 

of the two ways: a) as a set of discrete location-value pairs, or 

b) as a description of the spatio-temporal domain (multi-

geometry, grid) and a description of the set of values from the 

range, together with a method or rule (which may be implicit) 

that assigns a value from the range set to each position within 

the domain. The first method only applies to domains that are 

portioned into discrete components. This representation may be 

realised in GML as a homogeneous feature collection (i.e. all 

the features have the same set of properties), where the set of 

location from the features compose the domain (as 

gml_location may refer to any geometry, not just points).” 

 

If we restrict the composition of the domain such that it embeds 

the space into non-overlapping adjacent regions, where each 

region has a value (i.e. an identifier) the polygon coverage 

could be used to represent planar maps. There is however a 

draw back regarding to these polygon coverages: for coverages 

whose domain is composed of a large set of locations this 

explicit representation may be bulky. But, more important, the 

GML coverage encoding is at the moment not addressed within 

the implementation of GML. 

 

Instead of using the polygon coverage, GML offers the topology 

primitive face. A planar map is represented by a set of non-

overlapping, adjacent faces, where each face is defined by its 

boundary, which consists of a list of connected and directed 

edges. This option has the disadvantage that the client has to 

validate the received set of faces to be a planar map or not, as 

there is no option to guarantee that the faces represent together 

a planar map. 

 

1.2 Representation of Planar Maps 

The Computational Geometry Algorithms Library (CGAL) 

gives a definition of planar maps:  “Planar maps are 

embeddings of topological maps into the plane. A planar map 



 

subdivides the plane into vertices, edges, and faces” (CGAL 

Basic Library Manual – 2D Planar Maps, URL).  

 

This definition deals with topological maps: “A topological 

map is a graph that consists of vertices, edges, faces and an 

incidence relation on them. Each edge is represented by two 

halfedges with opposite orientations. A face of the topological 

map is defined by the ordered circular sequences (inner and 

outer) of halfedges along its boundary”. “For a topological 

map, its Double Connected Edge List (DCEL) representation 

consists of a connected list of halfedges for every Connected 

Component of the Boundary (CCB) of every face in the 

subdivision, with additional incidence information that enables 

us to traverse the subdivision” (CGAL Basic Library Manual – 

Topological Map, URL), see Figure 1. 

 
Figure 1: For each halfedge the DCEL stores a pointer to its 

twin halfedge and to the next halfedge around its incident face 

 

If the non-overlapping adjacent polygons of a Planar Map are 

all triangles, than we deal with a Triangulated Irregular 

Network. A TIN can be regarded as a special case of a 

topological map, according to the definition: “A triangulation is 

a 2-dimensional simplicial complex which is pure connected 

and without singularities. Thus a triangulation can be viewed 

as a collection of triangular faces, such that two faces either 

have an empty intersection or share an edge or a vertex” 

(CGAL Basic Library Manual – 2D Triangulations, URL). For 

both the planar map and the TIN a DCEL representation can be 

used, but in many cases, i.e. in CGAL, as the triangulation is a 

set of triangular faces with constant-size complexity, the 

triangulations are not implemented as a layer on top of a planar 

map. CGAL uses instead a proper internal representation of 

triangulations. The basic elements of the representation are 

vertices and faces. Each triangular face gives access to its three 

incident vertices and to its three adjacent faces. Each vertex 

gives access to one of its incident faces and through that face to 

the circular list of its incident faces. 

 

1.3 Representing Planar Maps through Conforming 

Delaunay Triangulations 

Both a Planer Map (PM) and a Triangulation consist of a 

collection of non-overlapping, adjacent region / faces. In the 

Triangulation however these faces are just simple triangles. It 

should be possible to represent each region of the PM by one or 

more triangles, or the other way around, one or more adjacent 

triangles of the Triangulation represent a face of the PM. 

 

In this encoding process it should be guaranteed that each face 

of the Planar Map has its counterpart in one or more triangles of 

the Triangulation. Applying a Conforming Delaunay 

Triangulation can ensure this requirement. 

 

Most Triangulation implementations take as their input a 

Planar Straight Line Graph (PSLG). A PSLG is a set of 

vertices and segments. A segment is an edge that must be 

represented by a sequence of contiguous edges in the final 

mesh. By definition, a PSLG is required to contain both 

endpoints of every segment it contains, and a segment may 

intersect (touch) vertices and other segments only at its 

endpoints, see Figure 2. 

 

Planar Map partitions the embedding space into non-

overlapping adjacent regions. Such maps are planar subdivision 

induced by planar embeddings of graphs. The embedding of a 

node of the graph is called a vertex, and the embedding of an 

arc is called an edge (de Berg, 2000).  

 

If a Planar Map is restricted to embeddings where every edge is 

a straight-line segment, then a this PM is a special case of a 

PSLG. In this case a PSLG triangulation algorithm could be 

applied to mesh a Planar Map. 

 

There exists a huge amount of references on Delaunay 

Triangulations; here the definitions as given by Jonathan 

Shewchuk are stated (Triangle, URL):  

 

A Delaunay triangulation (DT) of a vertex set is a triangulation 

of the vertex set with the property that no vertex in the vertex 

set falls in the interior of the circumcircle (circle that passes 

through all three vertices) of any triangle in the triangulation. 

 

A Conforming Delaunay triangulation (CDT) of a PSLG is a 

true Delaunay triangulation in which each PSLG segment may 

have been subdivided into several subsegments by the insertion 

of additional vertices, called Steiner points. Steiner points are 

necessary to allow the segments to exist in the mesh while 

maintaining the Delaunay property, see Figure 3. 

 

 
 

 

Figure 2: PSLG Figure 3: CDT 

 

Where and how to add the Steiner points is the focus of 

extensive research with respect to refinement algorithms for 

triangular mesh generation (Shewchuk, 2001).  

 

Each original, but now split, edge of the PSLG is then 

represented by one or more edges of the CDT. The original 

nodes of the PSLG plus the added Steiner points are input for 

the Delaunay triangulation algorithm of both the encoding and 

the decoding process. 

 

1.4 Outline of this paper 

Section 2 addresses the encoding of a Planar Map through a 

Conforming Delaunay Triangulation. Section 3 describes the 



 

decoding process to restore the Planar Map. Section 4 shows 

some experimental results. Section 5 concludes with some 

conclusions and recommendations. 

 

2. ENCODING THE PLANAR MAP THROUGH 

CONFORMING DELAUNAY TRIANGULATION 

2.1 Encoding of the Planar Map 

A possible way of encoding a Planar Map (PM) through a 

Conforming Delaunay Triangulation (CDT) will be explained 

by some figures. 

 

Figure 4 shows an example of a Planar Map. Six faces are 

embedded in the space bounded by the bordered rectangle: the 

faces “M”, “A”, and “P” and the ‘inner-faces’ “A-”, “P-”. The 

remaining sixth face around “M”, “A”, and “P” is denoted with 

“O-”. Each face is defined by the ordered circular sequences 

(inner and outer) of straight edges along its boundary.  

 

 
Figure 4: Planer Map at the server 

 

In Figure 5 the Conforming Delaunay Triangulation (CDT) of 

this Planar Map (PM) is shown. Note that the PM edges are 

split by Steiner points if this is necessary to obey the Delaunay 

circum circle criterion. See also the explanation of the Triangle 

algorithm of Jonathan Shewshuk (Triangle, URL). 

 

Each face of the PM is now represented by one or more of the 

triangles of the CDT.  

 

 
Figure 5: Conforming Delaunay Triangulation at the server 

 

Figure 6 shows in more detail “A-”, or PM_F(32,31,70), which 

is represented by CDT triangles CDT_F(32,31,72), 

CDT_F(72,21,76), CDT_F(72,76,75), CDT_F(75,76,73), and 

CDT_F(73,70,75).  

 

2.2 Relating the edges of the Planar Map and the edges of 

the Conforming Delaunay Triangulation 

Each edge of the PM is represented by one or more of edges of 

the CDT.  

 

 
Figure 6: Relation between the edges of the Planar Map and the 

Conforming Delaunay Triangulation 

 

Figure 6 shows the PM edges of “A-”: PM_E(31,32), 

PM_E(31,70), and PM_E(32,70). PM_E(31,32) is represented 

by the edge CDT_E(31,32); PM_E(31,70) is represented by 

edges CDT_E(31,76), CDT_E(73,76), and CDT_E(70,73); 

PM_E(32,70) is represented by edges CDT_E(70,75), 

CDT_E(72,75) and CDT_E(32,72).  

 

The dashed CDT edges are non PM edges. 

 

The nodes CDT_N(76), CDT_N(73), CDT_N(75), and 

CDT_N(72) are the Steiner points to obey the Conforming 

Delaunay criterion. 

 

2.3 Encoding the PM_Edges  

The encoding relates the edges of the CDT with the edges of the 

PM. The CDT_edges are sorted according to their from_node 

and then to their to_node, where to_node > from_node. So only 

half of the CDT_Edges are stored. If a CDT_Edge represents (a 

part of) a PM_Edge it is marked as “True”, else as “False”. 

 

For example the CDT_Edges from CDT_N(1) are CDT_E(1,3), 

CDT_E(1,11), CDT_E(1,56), and CDT_E(1,57). CDT_E(1,3) 

represents PM_E(1,3) and is thus marked as “True”. 

CDT_E(1,11) has no representing PM edge, so it is marked as 

“False”. CDT_E(1,56) is also marked as “False”, and as 

CDT_E(1,57) is part of MP_E(1,2) it is marked as “True”. 

 

As the CDT_Edges are sorted, these edges are stored more 

efficient as a kind of a selection edge bitmap. CDT_E(1,3) is set 

to “1”, CDT_E(1,11) is set to “0”, CDT_E(1,56) is set to “0”, 

and CDT_E(1,57) is set to “1”. 

 

The full coding bitmap that can be compressed in a very 

efficient way, of the CDT_Edges of the example Planar Map 

“MAP” is: 

 
1001101000010100100001010100010001110010001

1100100100010101000010101001010000011000000

0010010100010100100010000010000010011110000

1101101000100010001000100010001000000010000

0100011000110101110110110011001000100011001

000100 

 



 

For each face one identification point has to be determined. 

This seed point has to be inside the face and will be used to 

restore the PM_Faces within the decoding process. These seed 

points are not shown in the figures. 

 

The server sent the CDT_Nodes, the selection edge bitmap, the 

list of seed points at request to the client. 

 

3. DECODING TO THE PLANAR MAP THROUGH 

DELAUNAY TRIANGULATION 

3.1 Reconstructing the Conforming Delaunay 

Triangulation 

The CDT_Nodes, the selection edge bitmap and the list of seed 

points is received and processed by the client to reproduce the 

original Planar Map. The first step in the decoding is the 

creation of an identical Triangulation as created within the 

encoding step.  

 

We will use the following, neat, property: as the encoded 

Conforming Delaunay Triangulation obeys the Delaunay 

criterion, any Delaunay Triangulator at the client side will 

produce, in principle, the identical result, see Figure 7: 

 
Figure 7: Delaunay Triangulation at the client 

 

There are, however, some considerations to the choice of the 

applied Delaunay Triangulator to make. First off all, the Node 

identifiers of the reproduced DT should be identical to the 

original CDT. Otherwise the sorted list of DT_Edges at the 

client does not correspondent with the sorted list of CDT_Edges 

at the server.  

 

But, more important, if four or more nodes are at the same 

circum circle, the Delaunay criterion is free to choose which 

nodes to connect and a different set of DT_Edges is produced. 

One way to deal with that problem is to apply the same 

triangulation algorithm at the client side as use at the server 

side. A more fundamental approach is however to apply a kind 

of a unique Delaunay Triangulation in the sense that the same 

set of DT_Edges is produced at both sides.  

 

3.2 Decoding the PM_Edges 

Once the sorted list of DT_Edges is determined, the coding 

bitmap is set at all DT_Edges to indicate the PM_Edges, see 

Figure 8. 

 

 
Figure 8: Decoded PM_Edges at the client 

3.3 Decoding the PM_Faces 

Once all PM_Edges are detected the PM_Faces are restored by 

the Seed_Points. Each Seed_Point is located inside a DT_Face. 

This DT_Face is given the identification value of the 

corresponding face of the PM. The DT_Edges of this DT_Face 

are checked whether or not to be set by the coding bitmap. If 

not, the adjacent DT_Face will get the same identification. This 

flood fill algorithm repeats until all DT_Faces do have their 

identification values. 

 
 

Figure 9: Decoded PM_faces at the client 

 

The union of the DT_Faces with the same identification value 

will be the original PM_Face, see Figure 9. 

 

4. EXPERIMENTAL RESULTS 

The approach of encoding and decoding of a Planar Map, or 

any Planar Straight Line Graph, is proven to work through a 

test-implementation with two kinds of Conforming Delaunay 

Triangulators. The first triangulation is part of ESRI ArcView 

3D Analyst (ESRI - 3D Analyst, URL), the second 

implementation makes use of ‘Triangle’ provided by Jonathan 

Shewshuk (Triangle, URL).  

 

4.1 Test-case “the Netherlands” 

The method as described in the previous sections is used to 

encode and decode the edges of the Planar Map of the 

Netherlands through a Conforming Delaunay Triangulation, see 

Figure 10.  

 

As shown in the detail, see Figure 11, only a few Steiner Points 

(i.e. nodes 1314, 1315, 1317 and 1318) had to be added to 

allow the edges of the Planer Map to exist as edges in the 

Triangulation while maintaining the Delaunay property.  

 

The detail of the island of “Ameland”, Figure 12, shows the 

conforming TIN edges, representing the PM edges in bold. The 

remaining TIN edges are dashed.  

 

With respect to the first two nodes this representation is as 

follows: 

 

1 2  true PM-edge 

1 3 true PM-edge 



 

1 4 false PM-edge 

1 26 false PM-edge 

1 1496 false PM-edge 

2 26 false PM-edge 

2 33 true PM-edge 

2 1496 false PM-edge 

2 1497 false PM-edge 

 

Or more short the coding bitmap or the first two nodes reads: 

110000100. 

 

The full coding bitmap is sent in a compressed format together 

with the coordinate list of the nodes of the Conformal Delaunay 

Triangulation to the client.  

 

The client performs a “standard” Delaunay Triangulation on 

these nodes and set the coding bitmap on the TIN edges. As the 

result all (sub)segments of the original Planar Map are found.  

 

 
Figure 10: Conforming Delaunay Triangulation of "the 

Netherlands" 

 
Figure 11: Detail of Conforming Delaunay Triangulation 

 
 

Figure 12: Detail on island "Ameland" 

 

 
Figure 13: Decoded Edges of Planar Map of “the Netherlands” 

 

 

5. CONCLUSIONS AND RECOMMENDATIONS 

This paper presents a method to encode and decode a Planar 

Map (PM) by a Conforming Delaunay Triangulation (CDT). 

The geometry and topology of the CDT could be encoded and 

sent to a client. The client needs access to some basic 

Computation Geometry logic, like a standard Delaunay 

Triangulation to decode the Planar Map.  

 

During the implementation phase it is shown that although a 

Delaunay Triangulation is unique in respect to the empty circum 

circle criterion, not each Delaunay Triangulator produces the 

same unique triangulation given the same point dataset. This 

‘failure’ is due to the fact that if four or more points are co-

circular they can be triangulated in several ways, all according 

the Delaunay criterion. As the representation of Planar Maps by 

Conforming Delaunay Triangulation relies heavily upon the 

uniqueness of a Delaunay Triangulator more research is 

necessary with respect to Unique Delaunay Triangulators.  

 



 

The node numbers of the CDT should be according to the 

ordering of the list of coordinates of the CDT list as sent by the 

server. If not, the implicit linkage to the edge bitmap is lost. The 

decoding of the Delaunay Triangulation to a Planar Map relies 

also on the coding schema of the edge bitmap of the 

corresponding CDT-PM edges. As the slightest 

misinterpretation will cause the setting of the wrong PM edges 

within the triangulation, most case should be taken to avoid a 

misread or misinterpretation of this edge bitmap. 

 

To avoid all these problems, it is an option to send the CDT 

itself to the client. To avoid heavy network load, an efficient 

compression algorithms, like Edgebreaker (Rossignac, 1999) 

could be applied. 

 

One could argue about the aim of this method. It is clear that 

the Planar Map itself can be sent to the client by i.e. its winged 

edge datastructure. But if we want to support multi-scale 

representation of spatial data seamless, like progressive web 

transfer, self-adaptable visualisation and other applications, the 

TIN datastructure itself promises some fine characteristics.  

 

Despite all these considerations, the encoding of Planar Maps 

by Conforming Delaunay Triangulations could be extended to 

the third dimension. Polyhedron boundary representations could 

be encoded and decoded through a conforming 

tetrahedronization.  
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