
ENCODING AND DECODING OF PLANAR MAPS

THROUGH CONFORMING DELAUNAY TRIANGULATIONS

Edward Verbree

Delft University of Technology, Research Institute OTB, Section GIS technology, Jaffalaan 9, 2628 BX, Delft,

e.verbree@otb.tudelft.nl

Working Group II/3, II/6

KEY WORDS: Planer Maps, Conforming Delaunay Triangulations

ABSTRACT:

This paper describes a method to represent a Planar Map (PM) through a Conforming Delaunay Triangulation (CDT) with

applications in a server-client environment. At the server a CDT of the edges of the PM is determined. As the PM is now embedded

by the CDT it is sufficient to send to the client the list of coordinates of the CDT nodes and an efficient encoded bitmap of the

corresponding PM-CDT edges. The client determines a Delaunay Triangulation (DT) of the received list of coordinates of the CDT

nodes. The DT at the client side is – in principle – equivalent to the CDT at the server side. The edges of the PM are found within

this DT by the decoding of the bitmap of the corresponding PM-CDT edges.

1. INTRODUCTION

1.1 Support of Planar Maps by the OGC

One of the main principles in distributed Geographical

Information Systems (GIS) is the server-client architecture.

According to the Open Geospatial Consortium (OGC) a Web

Map Server (WMS) allows clients to retrieve map portrayals

(images) of the data features through the Internet. In a similar

way access to the features is made possible by a Web Feature

Server (WMS). The requested features from a specified layer

and within a certain extent are encoded in the Geographical

Markup Language (GML) at the server. The client has to

understand the semantics of the GML to process the features,

i.e. know to handle point, lines and polygon simple feature

types. The necessary logic is with respect to these simple feature

geometries not too hard, as the coordinates are part of the

simple feature definition. The coding and the understanding of

Planar Maps is however more difficult to achieve.

Planar Maps are fundamental structures in computational

geometry. They are used to represent the subdivision of the

plane into regions and have numerous applications. Planar maps

by themselves can be used to represent geographic maps. They

also serve as fundamental structures on which more involved

geometric data structures are constructed (Flato, 2000). A

Within GIS most often each region is paired to an identifier that

is used to link the geometry to a set of attribute values. Within

GML Planar Maps do not have their own normative schema yet,

but they can be considered as special types of polygon

coverages.

Coverages are described as follows (OGC_03-105r1, par 19.1,

URL): “Coverages support mapping from a spatio-temporal

domain to attribute values where attribute types are common to

all geographic positions within the spatio-temporal domain. A

spatio-temporal domain consists of a collection of direct

positions in a coordinate space. Examples of coverages include

rasters, triangulated irregular networks, point coverages, and

polygon coverages. Coverages are the prevailing data

structures in a number of application areas, such as remote

sensing, meteorology, and bathymetric, elevation, soil, and

vegetation mapping.”

“The information describing a coverage is represented in one

of the two ways: a) as a set of discrete location-value pairs, or

b) as a description of the spatio-temporal domain (multi-

geometry, grid) and a description of the set of values from the

range, together with a method or rule (which may be implicit)

that assigns a value from the range set to each position within

the domain. The first method only applies to domains that are

portioned into discrete components. This representation may be

realised in GML as a homogeneous feature collection (i.e. all

the features have the same set of properties), where the set of

location from the features compose the domain (as

gml_location may refer to any geometry, not just points).”

If we restrict the composition of the domain such that it embeds

the space into non-overlapping adjacent regions, where each

region has a value (i.e. an identifier) the polygon coverage

could be used to represent planar maps. There is however a

draw back regarding to these polygon coverages: for coverages

whose domain is composed of a large set of locations this

explicit representation may be bulky. But, more important, the

GML coverage encoding is at the moment not addressed within

the implementation of GML.

Instead of using the polygon coverage, GML offers the topology

primitive face. A planar map is represented by a set of non-

overlapping, adjacent faces, where each face is defined by its

boundary, which consists of a list of connected and directed

edges. This option has the disadvantage that the client has to

validate the received set of faces to be a planar map or not, as

there is no option to guarantee that the faces represent together

a planar map.

1.2 Representation of Planar Maps

The Computational Geometry Algorithms Library (CGAL)

gives a definition of planar maps: “Planar maps are

embeddings of topological maps into the plane. A planar map

subdivides the plane into vertices, edges, and faces” (CGAL

Basic Library Manual – 2D Planar Maps, URL).

This definition deals with topological maps: “A topological

map is a graph that consists of vertices, edges, faces and an

incidence relation on them. Each edge is represented by two

halfedges with opposite orientations. A face of the topological

map is defined by the ordered circular sequences (inner and

outer) of halfedges along its boundary”. “For a topological

map, its Double Connected Edge List (DCEL) representation

consists of a connected list of halfedges for every Connected

Component of the Boundary (CCB) of every face in the

subdivision, with additional incidence information that enables

us to traverse the subdivision” (CGAL Basic Library Manual –

Topological Map, URL), see Figure 1.

Figure 1: For each halfedge the DCEL stores a pointer to its

twin halfedge and to the next halfedge around its incident face

If the non-overlapping adjacent polygons of a Planar Map are

all triangles, than we deal with a Triangulated Irregular

Network. A TIN can be regarded as a special case of a

topological map, according to the definition: “A triangulation is

a 2-dimensional simplicial complex which is pure connected

and without singularities. Thus a triangulation can be viewed

as a collection of triangular faces, such that two faces either

have an empty intersection or share an edge or a vertex”

(CGAL Basic Library Manual – 2D Triangulations, URL). For

both the planar map and the TIN a DCEL representation can be

used, but in many cases, i.e. in CGAL, as the triangulation is a

set of triangular faces with constant-size complexity, the

triangulations are not implemented as a layer on top of a planar

map. CGAL uses instead a proper internal representation of

triangulations. The basic elements of the representation are

vertices and faces. Each triangular face gives access to its three

incident vertices and to its three adjacent faces. Each vertex

gives access to one of its incident faces and through that face to

the circular list of its incident faces.

1.3 Representing Planar Maps through Conforming

Delaunay Triangulations

Both a Planer Map (PM) and a Triangulation consist of a

collection of non-overlapping, adjacent region / faces. In the

Triangulation however these faces are just simple triangles. It

should be possible to represent each region of the PM by one or

more triangles, or the other way around, one or more adjacent

triangles of the Triangulation represent a face of the PM.

In this encoding process it should be guaranteed that each face

of the Planar Map has its counterpart in one or more triangles of

the Triangulation. Applying a Conforming Delaunay

Triangulation can ensure this requirement.

Most Triangulation implementations take as their input a

Planar Straight Line Graph (PSLG). A PSLG is a set of

vertices and segments. A segment is an edge that must be

represented by a sequence of contiguous edges in the final

mesh. By definition, a PSLG is required to contain both

endpoints of every segment it contains, and a segment may

intersect (touch) vertices and other segments only at its

endpoints, see Figure 2.

Planar Map partitions the embedding space into non-

overlapping adjacent regions. Such maps are planar subdivision

induced by planar embeddings of graphs. The embedding of a

node of the graph is called a vertex, and the embedding of an

arc is called an edge (de Berg, 2000).

If a Planar Map is restricted to embeddings where every edge is

a straight-line segment, then a this PM is a special case of a

PSLG. In this case a PSLG triangulation algorithm could be

applied to mesh a Planar Map.

There exists a huge amount of references on Delaunay

Triangulations; here the definitions as given by Jonathan

Shewchuk are stated (Triangle, URL):

A Delaunay triangulation (DT) of a vertex set is a triangulation

of the vertex set with the property that no vertex in the vertex

set falls in the interior of the circumcircle (circle that passes

through all three vertices) of any triangle in the triangulation.

A Conforming Delaunay triangulation (CDT) of a PSLG is a

true Delaunay triangulation in which each PSLG segment may

have been subdivided into several subsegments by the insertion

of additional vertices, called Steiner points. Steiner points are

necessary to allow the segments to exist in the mesh while

maintaining the Delaunay property, see Figure 3.

Figure 2: PSLG Figure 3: CDT

Where and how to add the Steiner points is the focus of

extensive research with respect to refinement algorithms for

triangular mesh generation (Shewchuk, 2001).

Each original, but now split, edge of the PSLG is then

represented by one or more edges of the CDT. The original

nodes of the PSLG plus the added Steiner points are input for

the Delaunay triangulation algorithm of both the encoding and

the decoding process.

1.4 Outline of this paper

Section 2 addresses the encoding of a Planar Map through a

Conforming Delaunay Triangulation. Section 3 describes the

decoding process to restore the Planar Map. Section 4 shows

some experimental results. Section 5 concludes with some

conclusions and recommendations.

2. ENCODING THE PLANAR MAP THROUGH

CONFORMING DELAUNAY TRIANGULATION

2.1 Encoding of the Planar Map

A possible way of encoding a Planar Map (PM) through a

Conforming Delaunay Triangulation (CDT) will be explained

by some figures.

Figure 4 shows an example of a Planar Map. Six faces are

embedded in the space bounded by the bordered rectangle: the

faces “M”, “A”, and “P” and the ‘inner-faces’ “A-”, “P-”. The

remaining sixth face around “M”, “A”, and “P” is denoted with

“O-”. Each face is defined by the ordered circular sequences

(inner and outer) of straight edges along its boundary.

Figure 4: Planer Map at the server

In Figure 5 the Conforming Delaunay Triangulation (CDT) of

this Planar Map (PM) is shown. Note that the PM edges are

split by Steiner points if this is necessary to obey the Delaunay

circum circle criterion. See also the explanation of the Triangle

algorithm of Jonathan Shewshuk (Triangle, URL).

Each face of the PM is now represented by one or more of the

triangles of the CDT.

Figure 5: Conforming Delaunay Triangulation at the server

Figure 6 shows in more detail “A-”, or PM_F(32,31,70), which

is represented by CDT triangles CDT_F(32,31,72),

CDT_F(72,21,76), CDT_F(72,76,75), CDT_F(75,76,73), and

CDT_F(73,70,75).

2.2 Relating the edges of the Planar Map and the edges of

the Conforming Delaunay Triangulation

Each edge of the PM is represented by one or more of edges of

the CDT.

Figure 6: Relation between the edges of the Planar Map and the

Conforming Delaunay Triangulation

Figure 6 shows the PM edges of “A-”: PM_E(31,32),

PM_E(31,70), and PM_E(32,70). PM_E(31,32) is represented

by the edge CDT_E(31,32); PM_E(31,70) is represented by

edges CDT_E(31,76), CDT_E(73,76), and CDT_E(70,73);

PM_E(32,70) is represented by edges CDT_E(70,75),

CDT_E(72,75) and CDT_E(32,72).

The dashed CDT edges are non PM edges.

The nodes CDT_N(76), CDT_N(73), CDT_N(75), and

CDT_N(72) are the Steiner points to obey the Conforming

Delaunay criterion.

2.3 Encoding the PM_Edges

The encoding relates the edges of the CDT with the edges of the

PM. The CDT_edges are sorted according to their from_node

and then to their to_node, where to_node > from_node. So only

half of the CDT_Edges are stored. If a CDT_Edge represents (a

part of) a PM_Edge it is marked as “True”, else as “False”.

For example the CDT_Edges from CDT_N(1) are CDT_E(1,3),

CDT_E(1,11), CDT_E(1,56), and CDT_E(1,57). CDT_E(1,3)

represents PM_E(1,3) and is thus marked as “True”.

CDT_E(1,11) has no representing PM edge, so it is marked as

“False”. CDT_E(1,56) is also marked as “False”, and as

CDT_E(1,57) is part of MP_E(1,2) it is marked as “True”.

As the CDT_Edges are sorted, these edges are stored more

efficient as a kind of a selection edge bitmap. CDT_E(1,3) is set

to “1”, CDT_E(1,11) is set to “0”, CDT_E(1,56) is set to “0”,

and CDT_E(1,57) is set to “1”.

The full coding bitmap that can be compressed in a very

efficient way, of the CDT_Edges of the example Planar Map

“MAP” is:

1001101000010100100001010100010001110010001

1100100100010101000010101001010000011000000

0010010100010100100010000010000010011110000

1101101000100010001000100010001000000010000

0100011000110101110110110011001000100011001

000100

For each face one identification point has to be determined.

This seed point has to be inside the face and will be used to

restore the PM_Faces within the decoding process. These seed

points are not shown in the figures.

The server sent the CDT_Nodes, the selection edge bitmap, the

list of seed points at request to the client.

3. DECODING TO THE PLANAR MAP THROUGH

DELAUNAY TRIANGULATION

3.1 Reconstructing the Conforming Delaunay

Triangulation

The CDT_Nodes, the selection edge bitmap and the list of seed

points is received and processed by the client to reproduce the

original Planar Map. The first step in the decoding is the

creation of an identical Triangulation as created within the

encoding step.

We will use the following, neat, property: as the encoded

Conforming Delaunay Triangulation obeys the Delaunay

criterion, any Delaunay Triangulator at the client side will

produce, in principle, the identical result, see Figure 7:

Figure 7: Delaunay Triangulation at the client

There are, however, some considerations to the choice of the

applied Delaunay Triangulator to make. First off all, the Node

identifiers of the reproduced DT should be identical to the

original CDT. Otherwise the sorted list of DT_Edges at the

client does not correspondent with the sorted list of CDT_Edges

at the server.

But, more important, if four or more nodes are at the same

circum circle, the Delaunay criterion is free to choose which

nodes to connect and a different set of DT_Edges is produced.

One way to deal with that problem is to apply the same

triangulation algorithm at the client side as use at the server

side. A more fundamental approach is however to apply a kind

of a unique Delaunay Triangulation in the sense that the same

set of DT_Edges is produced at both sides.

3.2 Decoding the PM_Edges

Once the sorted list of DT_Edges is determined, the coding

bitmap is set at all DT_Edges to indicate the PM_Edges, see

Figure 8.

Figure 8: Decoded PM_Edges at the client

3.3 Decoding the PM_Faces

Once all PM_Edges are detected the PM_Faces are restored by

the Seed_Points. Each Seed_Point is located inside a DT_Face.

This DT_Face is given the identification value of the

corresponding face of the PM. The DT_Edges of this DT_Face

are checked whether or not to be set by the coding bitmap. If

not, the adjacent DT_Face will get the same identification. This

flood fill algorithm repeats until all DT_Faces do have their

identification values.

Figure 9: Decoded PM_faces at the client

The union of the DT_Faces with the same identification value

will be the original PM_Face, see Figure 9.

4. EXPERIMENTAL RESULTS

The approach of encoding and decoding of a Planar Map, or

any Planar Straight Line Graph, is proven to work through a

test-implementation with two kinds of Conforming Delaunay

Triangulators. The first triangulation is part of ESRI ArcView

3D Analyst (ESRI - 3D Analyst, URL), the second

implementation makes use of ‘Triangle’ provided by Jonathan

Shewshuk (Triangle, URL).

4.1 Test-case “the Netherlands”

The method as described in the previous sections is used to

encode and decode the edges of the Planar Map of the

Netherlands through a Conforming Delaunay Triangulation, see

Figure 10.

As shown in the detail, see Figure 11, only a few Steiner Points

(i.e. nodes 1314, 1315, 1317 and 1318) had to be added to

allow the edges of the Planer Map to exist as edges in the

Triangulation while maintaining the Delaunay property.

The detail of the island of “Ameland”, Figure 12, shows the

conforming TIN edges, representing the PM edges in bold. The

remaining TIN edges are dashed.

With respect to the first two nodes this representation is as

follows:

1 2 true PM-edge

1 3 true PM-edge

1 4 false PM-edge

1 26 false PM-edge

1 1496 false PM-edge

2 26 false PM-edge

2 33 true PM-edge

2 1496 false PM-edge

2 1497 false PM-edge

Or more short the coding bitmap or the first two nodes reads:

110000100.

The full coding bitmap is sent in a compressed format together

with the coordinate list of the nodes of the Conformal Delaunay

Triangulation to the client.

The client performs a “standard” Delaunay Triangulation on

these nodes and set the coding bitmap on the TIN edges. As the

result all (sub)segments of the original Planar Map are found.

Figure 10: Conforming Delaunay Triangulation of "the

Netherlands"

Figure 11: Detail of Conforming Delaunay Triangulation

Figure 12: Detail on island "Ameland"

Figure 13: Decoded Edges of Planar Map of “the Netherlands”

5. CONCLUSIONS AND RECOMMENDATIONS

This paper presents a method to encode and decode a Planar

Map (PM) by a Conforming Delaunay Triangulation (CDT).

The geometry and topology of the CDT could be encoded and

sent to a client. The client needs access to some basic

Computation Geometry logic, like a standard Delaunay

Triangulation to decode the Planar Map.

During the implementation phase it is shown that although a

Delaunay Triangulation is unique in respect to the empty circum

circle criterion, not each Delaunay Triangulator produces the

same unique triangulation given the same point dataset. This

‘failure’ is due to the fact that if four or more points are co-

circular they can be triangulated in several ways, all according

the Delaunay criterion. As the representation of Planar Maps by

Conforming Delaunay Triangulation relies heavily upon the

uniqueness of a Delaunay Triangulator more research is

necessary with respect to Unique Delaunay Triangulators.

The node numbers of the CDT should be according to the

ordering of the list of coordinates of the CDT list as sent by the

server. If not, the implicit linkage to the edge bitmap is lost. The

decoding of the Delaunay Triangulation to a Planar Map relies

also on the coding schema of the edge bitmap of the

corresponding CDT-PM edges. As the slightest

misinterpretation will cause the setting of the wrong PM edges

within the triangulation, most case should be taken to avoid a

misread or misinterpretation of this edge bitmap.

To avoid all these problems, it is an option to send the CDT

itself to the client. To avoid heavy network load, an efficient

compression algorithms, like Edgebreaker (Rossignac, 1999)

could be applied.

One could argue about the aim of this method. It is clear that

the Planar Map itself can be sent to the client by i.e. its winged

edge datastructure. But if we want to support multi-scale

representation of spatial data seamless, like progressive web

transfer, self-adaptable visualisation and other applications, the

TIN datastructure itself promises some fine characteristics.

Despite all these considerations, the encoding of Planar Maps

by Conforming Delaunay Triangulations could be extended to

the third dimension. Polyhedron boundary representations could

be encoded and decoded through a conforming

tetrahedronization.

6. ACKNOWLEDGEMENTS

The author wants to acknowledge Peter van Oosterom, Friso

Penninga, Sander Oude Elberink and Elfriede Fendel for their

contribution to this paper. Their remarks and considerations are

highly appreciated, as are the suggestions for improvement of

the reviewers of this paper. Remaining errors and other

indistinctness are mine.

References:

Berg, de M, M. van Kreveld, M. Overmars, O. Schwarzkopf,

2000. Computational Geometry: Algorithms and Applications,

second edition. Springer.

CGAL Basic Library Manuals - 2D Planar Maps,

http://www.cgal.org/Manual/doc_html/cgal_manual/Planar_ma

p_ref/Chapter_intro.html

CGAL Basic Library Manuals - Topological Maps,

http://www.cs.tau.ac.il/CGAL/Manuals/doc_html/basic_lib/Top

ological_map/Chapter_main.html

CGAL Basic Library Manuals - 2D Triangulations,

http://www.cs.tau.ac.il/CGAL/Manuals/doc_html/basic_lib/Tria

ngulation_2/Chapter_main.html

ESRI - 3D Analyst,

http://www.esri.com/software/arcview/extensions/3danalyst/

Flato, Eyal, Dan Halperin, Iddo Hanniel and Oren Nechushtan,

2000. The design and Implementation of Planar Maps in

CGAL, The ACM Journal of Experimental Algorithmics,

Volume 5, Article 13.

OGC_03-065r6, Web Coverage Service (WCS), Version 1.0.0

OGC_03-105r1, OpenGIS® Geography Markup Language

(GML) Encoding Specification

Rossignac, Jarek, 1999. Edgebreaker: Connectivity compression

for triangle meshes, IEEE Transactions on Visualization and

Computer Graphics, Vol. 5, No. 1, January - March 1999

Shewchuk, Jonathan Richard. 2002. Delaunay Refinement

Algorithms for Triangular Mesh Generation, Computational

Geometry: Theory and Applications 22(1-3): 21-74.

Triangle, http://www.cs.cmu.edu/~quake/triangle.html

