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Abstract

Vagueness is often present in spatial information. It arises in the presence of
borderline cases. It is difficult to decide, for example, whether the land cover
at a location is forest or grassland. The transition from one class to another
is gradual. Their boundary cannot be represented by a crisp line. Fuzzy sets
allow the representation of gradual transitions.

Geographic information systems (GIS) and spatial databases offer func-
tionality for storing and analysing spatial information. Current GIS’s or spa-
tial databases can only handle objects with crisp boundaries. The objective
of this research is to provide a system of types and operators that can handle
vague spatial objects.

First, we formally define vague types and operators using mathematical
notions, to assure definitions without ambiguity. The data types that we pro-
pose are a set of simple types, a set of general types, and vague partitions.
The simple types represent identifiable objects of a simple structure, i.e.,
not divisible into components. We distinguish between vague points, vague
lines, and vague regions. The general types represent classes of simple type
objects. They are vague multipoint, vague multiline, and vague multiregion.
General types assure closure under set operators. Simple and general types
are defined as fuzzy sets in IR2 satisfying specific properties that are ex-
pressed in terms of topological notions. These properties assure that set
membership values change mostly gradually, allowing stepwise jumps. The
type vague partition is a collection of vague multiregions that might inter-
sect each other only at their transition boundaries. All the vague types that
we propose include crisp objects as special cases.

We propose a set of operators to reason with vague objects. Operators
are defined on general types and vague partitions. They are divided into
three groups: operators returning spatial types, spatial relations, and met-
ric operators. The first group consists of regularized fuzzy set operators:
union, intersection, and difference; two operators from topology: bound-
ary and frontier; and two operators on vague partitions: overlay and fusion.
Spatial relations for vague objects follow the ISO standard model for spatial
relations. They extend the true/false values of the ISO relations to the [0,1]
interval, which means the truth of a relation is a matter of degree. The pro-
posed relations are disjoint, touches, crosses, overlaps, within, and equal.
They have the property that only one relation is certain at a time. The metric
operators that we provide are distance, length, area, diameter, and perimeter.
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Abstract

We propose two different measures, alpha operators and average operators.
An alpha operator on vague objects returns for every α in (0,1] the value of
the analogous crisp operator applied to the α-cuts of the objects. An average
operator produces an average over the returned values of the corresponding
alpha operator for all α values. We provide two other measures on vague
objects, centroid and vagueness degree. All the operators are equivalent to
their crisp analogues when applied to crisp objects.

Then, we implement the proposed types and a subset of the operators
in GRASS, an open source GIS software package, using its functionality for
vector data formats. Points, lines, and triangulations are used to store vague
points, vague lines, and vague regions, respectively. Classes of simple vague
objects are stored in layers. A vague partition is stored as a theme of vague
region layers, which form a soft classification of space. Classes of a theme
are bound together via relations stored in database tables. We offer several
modules to create layers of vague objects from input data points, to visu-
alize vague objects and display information about them, and modules that
perform union, intersection, and difference of vague object layers.

The vague types and operators allow a representation of vagueness in
static spatial information, and reasoning in such a setting. In the final part
of the thesis we consider the possibilities for extending the system of types
and operators to handle dynamic vague information. A dynamic vague type
is defined from each (static) vague type as a function from the time domain
to that static vague type. Consequently, the set of operators is extended
towards dynamic operators. A dynamic operator applied on dynamic vague
objects returns for any moment of their existence the result of the corre-
sponding static operator on the states of the objects. Functionality offered
by spatiotemporal databases can be used for the storage and manipulation
of dynamic vague objects. Dynamic objects are stored in these databases
as a collection of states at discrete moments of time. We propose linear
functions to calculate the state of a vague object between two consecutive
moments of stored object states.

We use real applications to illustrate the main concepts of the research.
Illustrations throughout the thesis are created from data on heavy metal
concentration in the sediments of the Maas river in Belgium. We employ our
operators to monitor land cover change in Shimla district in India, and beach
erosion in Ameland island in the Netherlands.
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Samenvatting

Ruimtelijke informatie heeft vaak een vaag karakter. Vaagheid treedt bij-
voorbeeld op in grensgevallen. Zo is het soms moeilijk om te besluiten of de
landbedekking op een bepaalde locatie ‘bos’ is of ‘grasland’, omdat de over-
gang van de ene naar de andere klasse geleidelijk is. Een scherpe lijn vormt
dan geen realistische grens. Onduidelijke (‘fuzzy’) verzamelingen staan een
representatie toe van geleidelijke overgangen.

Geografische informatie systemen (GIS) en ruimtelijke gegevensbestanden
bieden functionaliteit voor het opslaan en het analyseren van ruimtelijke in-
formatie. De huidige generaties GIS en ruimtelijke gegevensbestanden kun-
nen echter alleen omgaan met objecten met scherpe grenzen. Het doel van
dit onderzoek is het opzetten van een systeem van types en operatoren die
kunnen omgaan met vage ruimtelijke objecten.

We zullen eerst zowel vage types als operatoren hierop formeel definiëren.
Hierbij maken we gebruik van wiskundige begrippen om dubbelzinnigheid te
vermijden. De gegevenstypen die we voorstellen om vage informatie te rep-
resenteren kunnen we verdelen in een verzameling simpele types, algemene
types en vage partities. De simpele types representeren identificeerbare ob-
jecten van een eenvoudige structuur, d.w.z. zodanig dat ze niet in deel-
systemen zijn onder te verdelen. We onderscheiden vage punten, vage li-
jnen en vage gebieden. De algemene types betreffen klassen van simpele
objecten. Het zijn een vaag multipunt, een vage multilijn en een vaag multi-
gebied. Algemene typen zijn gesloten onder verzamelingoperatoren. Sim-
pele en algemene types zijn gedefinieerd als vage verzameling in IR2 met
lidmaatschapfuncties die aan een aantal eigenschappen voldoen; deze eigen-
schappen zijn geformuleerd in termen van topologische begrippen. De lid-
maatschapfuncties zijn veelal continu, met uitzondering van stapsgewijze
toenames van lidmaatschapwaarden. Het type ‘vage partitie’ betreft een
verzameling vage multigebieden die elkaar enkel snijden in de overgangs-
gebieden. Alle gedefinieerde vage types hebben een equivalent hard object
als een speciaal geval.

Vervolgens stellen we een verzameling operatoren voor die geschikt zijn
voor redeneringen met vage objecten. Deze operatoren zijn gedefinieerd op
algemene types of op vage partities. Ze worden in drie grepen verdeeld: op-
eratoren die resulteren in een ruimtelijk type, die een ruimtelijke relatie vast-
stellen en die een metrische relaties vaststellen. De eerste groep beslaat drie
operatoren die geregulariseerd zijn voor vage verzamelingen (vereniging,
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Samenvatting

doorsnede, verschil), twee operatoren uit de topologie (grens en front) en
twee operatoren voor vage partities (bedekking en versmelting). Ruimtelijke
relaties voor vage objecten volgen het ISO standaardmodel voor ruimtelijke
relaties. Ze veralgemeniseren de Waar/Onwaar uitkomsten van de ISO re-
laties naar waarden in het [0,1] interval, waarmee de waarheid van een re-
latie een gradueel karakter krijgt. De voorgestelde relaties zijn ‘disjunct’,
‘raakt’, ‘kruist’, ‘valt samen’, ‘binnen’ en ‘gelijk aan’. Ze hebben de eigen-
schap dat als één relatie Waar is, dat dan alle andere relaties Onwaar zijn.
De metrische operatoren die we voorstellen zijn ‘afstand’, ‘lengte’, ‘opper-
vlak’, ‘diameter’ en ‘omtrek’. We stellen twee maten voor: α-operatoren
en gemiddelde-operatoren. Een α-operator voor een vaag object levert als
uitkomst een waarde voor iedere a in het (0,1] interval op en is analoog aan
de scherpe operator op α-sneden van objecten. Een gemiddelde-operator
levert een gemiddelde op over de uitkomsten van de corresponderende α-
operatoren voor alle waarden van α. Voor vage objecten definiëren we twee
operatoren: de centroide en de mate van vaagheid. Deze operatoren zijn
equivalent aan hun scherpe analogieën bij harde objecten.

De voorgestelde typen en een deelverzameling van de operatoren erop
hebben we vervolgens geïmplementeerd in GRASS, een GIS pakket dat vrije-
lijk beschikbaar is. Hierbij hebben we gebruik gemaakt van de functionaliteit
voor vectoren als gegevensstructuur. We hebben punten, lijnen en triangu-
laties gebruikt om respectievelijk vage punten, vage lijnen en vage gebieden
op te slaan. Klassen van simpele vage objecten van de typen vaag multipunt,
vage multilijn en vaag multigebied worden opgeslagen in aparte lagen. Een
vage partitie is opgeslagen als een thema van vage gebiedsklassen, die geza-
menlijk een zachte classificatie van de ruimte vormen. Thematische klassen
worden gebundeld door middel van relaties die zijn opgeslagen in tabellen
van gegevensbestanden. We presenteren verschillende modules om a) lagen
van vage objecten te genereren uit puntobjecten, b) vage objecten te visualis-
eren en informatie erover weer te geven, en c) een vereniging, doorsnede en
verschil van lagen met vage objecten uit te voeren. De vage typen en oper-
atoren laten zowel een representatie van vaagheid in ruimtelijke informatie
toe als een redeneersysteem hiermee.

In het laatste onderdeel van het proefschrift beschouwen we de moge-
lijkheden om het systeem uit te breiden naar typen en operatoren voor dy-
namische informatie. Een dynamisch vaag type is gedefinieerd op basis van
de individuele (statische) vage types, en wel als een functie vanuit het ti-
jdsdomein naar de verzameling van vage objecten van dat type. Dit leidt
dan tot een uitbreiding van de verzameling operatoren naar de verzamel-
ing van dynamische operatoren. Een dynamische operator toegepast op dy-
namische vage objecten resulteert in de uitkomst van de corresponderende
statische operator op de toestanden van de objecten op ieder moment van
hun bestaan. De functionaliteit van ruimtelijk-temporele gegevensbestanden
kan dan gebruikt worden voor de opslag en de bewerking van dynamische
vage objecten. Dynamische objecten slaan we in zulke databases op als een
verzameling toestanden op discrete momenten in de tijd. We stellen lineaire
functies voor om de toestand van een vaag object tussen twee opeenvolgende
momenten van de opgeslagen toestanden van een object te berekenen.

Er is gebruik gemaakt van reële data om de belangrijkste concepten of
het onderzoek te illustreren. Afbeeldingen in dit proefschrift maken gebruik
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van gegevens over de concentraties zware metalen in de sedimenten van het
Belgische deel van de rivier de Maas. De ontwikkelde operaties zijn toegepast
bij het monitoren van verandering in landgebruik in het Shimla district in
India en stranderosie op Ameland in Nederland.
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Përmbledhje

Informacioni hapësinor është shpesh i vagët, gjë që duket në ekzistencën e
zonave kufitare. Vështirësi hasen kur, për shembull, duhet të përcaktojmë
llojin e mbulimit të tokës (land cover) në një zonë të caktuar, nëse ajo është
një zonë pyjore apo shkure. Kjo vështirësi vjen nga fakti se kalimi nga një
zonë në tjetrën është gradual dhe mungon një vijë qartësisht e dallueshme
që të mund të përfaqësojë kufijtë ndarës ndërmjet tyre. Bashkësitë ‘fuzzy’
lejojnë përfaqësimin e zonave tranzitore me kalime graduale.

Për ruajtjen dhe analizimin e informacionit hapësinor (të kompjuterizuar)
përdoren funksionet e ofruara nga Sistemet e Informacionit Gjeografik (SIGJ)
dhe bazat e të dhënave hapësinore. Në stadin aktual këto teknologji mund të
punojnë vetëm me objekte hapësinore në me kufij ndarës të qartë. Nisur nga
ky status, qëllimi i këtij studimi shkencor është që të dizenjojë një sistem
tipesh te dhënash dhe operatoresh, i cili do të mund të punojë edhe me
objekte hapësinore të vagëta.

Së pari, tipet dhe operatorët për objektet e vagëta janë përkufizuar for-
malisht mbi bazën e nocioneve matematikore, për të përjashtuar ambigui-
tetin. Tipet e të dhënave që propozohen në këtë studim janë grupuar në:‘tipe
të thjeshta’, ‘tipe të përgjithshëm’ dhe ‘ndarje të vagëta’. Grupi i parë për-
faqëson objekte të identifikueshëm me një strukturë të thjeshtë, domethënë
objekte të cilat nuk mund të ndahen në komponentë përbërës. Objektet
që i takojnë këtij grupi janë pika të vagëta, vija të vagëta dhe rajone të
vagëta. Grupi i tipeve të përgjithshëm përfaqëson klasa objektesh e thjeshtë
(të grupit të parë). Objekte të këtij grupi janë multipika të vagëta, mulitil-
inja të vagëta dhe multirajone të vagëta . Tipet e përgjithshëm sigurojnë
mbylljen ndaj operatorëve të bashkësive, domethënë rezultati i këtyre oper-
atorëve është një objekt i një tipi të përgjithshëm. Tipet e thjeshtë dhe të
përgjithshëm janë përcaktuar si ‘fuzzy sets’ në IR2 me funksione antarësie
që plotësojnë veti specifike të shprehura në nocione topologjie. Këto veti
sigurojnë që funksionet të jenë pothuaj kudo të vazhdueshëm duke lejuar
ndryshime të menjëhershme ne vlerat e antarësimit. Ndarjet e vagëta janë
një koleksion multirajonesh të vagëta të cilat mund të priten ndërmjet tyre
vetëm në zonat kufitare. Të gjithë tipet e vagëta të lartpërmendura përfshi-
jnë objektet me kufi të qartë (krisp) si raste të veçanta.

Studimi propozon një bashkësi operatorësh për të punuar me objektet e
vagëta. Operatorët janë ndarë në tri grupe: operatorë që kthejnë tipe hapësi-
norë, relacionet hapësinore dhe operatorë metrikë. Grupi i parë përbëhet
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nga operatorët e bashkësive ‘fuzzy’: bashkimi, prerja dhe diferenca; dy op-
eratorë nga topologjia: zona ndërkufitare dhe kufiri frontal; dhe dy opera-
torë për ndarjet e vagëta: mbivendosja dhe shkrirja. Relacionet hapësinore
për objektet e vagët bazohen në modelin e standarteve ISO për relacionet
hapësinore. Ato e zgjerojnë gamën e vlerave ‘true’/‘false’ të relacioneve të
përcaktuara nga ISO në intervalin [0, 1], që do të thotë se vërtetësia e një
relacioni është çështje shkallëzimi. Relacionet e propozuara janë: të ndarë,
prek, kalon, pritet, brenda, të njejtë. Këto relacione kanë vetinë që vetëm
një prej tyre mund të jetë i sigurtë. Operatorët metrikë që përcaktohen në
këtë studim për objektet e vagëta janë: distanca, gjatësia, sipërfaqja dhe
perimetri. Për secilin prej tyre propozohen dy masa të ndryshme: operatorët
α dhe operatorët e mesëm. Një operator α në objekte të vagëta kthen për
çdo α në (0,1] vlerën e operatorit analog krisp të aplikuar në α-prerjet e ob-
jekteve. Një operator i mesëm krijon një mesatare mbi vlerat e kthyera nga
α operatori korrespondues. Studimi ofron gjithashtu edhe dy masa të tjera
për objektet e vagëta që janë shkalla e paqartësisë dhe e qendra e rëndesës.
Të gjithë operatorët janë equivalentë me analogët e tyre krisp kur aplikohen
në objektet krisp.

Tipet e propozuar dhe disa prej operatorëve janë implementuar më pas
në GRASS, një paketë programi SIGJ, duke përdorur funksionet që ajo ofron
për të dhënat në format vektorial. Pikat, linjat dhe triangulacionet janë për-
dorur për të ruajtur respektivisht informacionin mbi pikat, linjat dhe rajonet
e vagëta. Klasat e objekteve të thjeshta janë ruajtur në shtresa të veçanta
informacioni. Një ndarje e vagët është ruajtur si një tematikë klasash me ra-
jone të vagëta, dhe formon një klasifikim ‘të butë’ të hapësirës. Klasat e një
tematike janë të lidhura së bashku nëpërmjet lidhjeve të ruajtura në tabelat
e bazës së të dhënave. Studimi ofron disa module për të krijuar shtresa ob-
jektesh të vagët nga të dhënat fillestare në format pike, një modul për të
vizualizuar objektet e vagët dhe informacionin e tyre shoqërues, si dhe disa
module të cilët kryejnë bashkimin, prerjen dhe differencen e shtresave që
përmbajnë objekte të vagët.

Tipet dhe operatorët e vagët të lartpërmendur lejojnë përfaqësimin e in-
formacionit hapësinor statik, si dhe mundësojnë analizen e tij. Në pjesën
e fundit të studimit janë shqyrtuar mundësitë për zgjerimin e sistemit të
tipeve dhe operatorëve edhe për trajtimin e informacionit të vagët dinamik.
Një tip dinamik i vagët është përcaktuar prej çdo tipi statik të vagët si një
funksion nga domeni kohor për në bashkësinë e objekteve të vagëta që i
përkasin atij tipi statik. Në vazhdim, bashkësia e operatorëve statikë është
zgjeruar në drejtim të operatorëve dinamikë. Një operator dinamik i aplikuar
në objektet e vagëta dinamike kthen per çdo moment të egzistencës së tyre
rezultatin e operatorit statik korrespondues ne gjendjet e objekteve në atë
moment. Funksionet e ofruara nga bazat e të dhënave hapësinore-kohore
mund të përdoren për ruajtjen dhe manipulimin e objekteve dinamikë të
vagët. Objektet dinamike janë ruajtur në këto baza të dhenash si nje kolek-
sion gjendjesh në një moment të caktuar kohor. Studimi propozon funk-
sionet lineare për të llogaritur gjendjen e objektit të vagët ndërmjet dy mo-
menteve të njëpasnjëshme të objekteve me të cilët po punohet.
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Chapter 1

Introduction

Spatial information is important to earth scientists, like geologists, soil scien-
tists, ecologists, land use specialists. Also, the work of other scientists, special-
ists, and organizations relies on geographic information. Forestry departments,
civil engineers, urban planners, cadastral agencies, utility companies, epidemiol-
ogists, police departments, they all use spatial data to describe and understand
the processes that they are dealing with. They take decisions based on the anal-
ysis of spatial data. The validity of these decisions depends on the quality of the
data, which makes it an important aspect of (spatial) data.

To allow an effective use of the data it is necessary to know its quality. Sev-
eral factors affect quality, and may cause imperfections in the data. There exist
real world entities that cannot be delineated precisely, e.g., ‘forest’ or ‘medium
shrubs’. Limitations of the measuring instruments are reflected in the quality of
the acquired data. The error in the input data propagates by means of compu-
tations that are performed to obtain a required result. Quality degradation can
also arise from inappropriate data representation models.

Deficiencies in data quality lead to different kinds of imperfection. Attempts to
deal with imperfection [69, 89, 90] often propose general taxonomies relating
different kinds and causes of imperfection, e.g., incompleteness, imprecision,
inconsistency. The importance of such taxonomies is not so much that they
accurately characterize the nature of imperfection, but more that they allow dis-
tinctions to be made between different kinds of imperfection [68]. This has led to
the development of different formalisms, each intended to capture a particular
nuance of imperfection.

According to Smets [88, 89], the main aspects of imperfect data are imprecision,
inconsistency, and uncertainty. Imprecision and inconsistency are properties of
the data: either more than one world or no world is compatible with the avail-
able information, respectively. If, on top of imprecision, we attach weights to the
worlds to express our opinion about which might be the actual world, then we are
confronted with uncertainty. Uncertainty concerns the state of our knowledge;
it is a property of the relation between the available information and our knowl-
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edge about the world. Each of these major categories reveals different nuances of
imperfection. For example, incompleteness and vagueness are particular kinds
of imprecision.

Worboys [112] distinguishes different kinds of imperfection based on factors
causing deficiencies in spatial data quality. Imperfection may be inaccuracy and
error : deviation from true values, incompleteness: lack of relevant information,
inconsistency: conflicts arising from the information, imprecision: limitation on
the granularity or resolution at which the observation is made or the information
is represented, and vagueness: imprecision in concepts used to describe the
information [112].

It is a complex problem to consider together all factors that affect data quality.
Different kinds of imperfection are treated separately by different theories. In
this thesis, we deal only with vagueness. It is a kind of imperfection that is
often present in spatial data. We consider vagueness to be a special kind of
imprecision.

1.1 Problem statement

Vagueness is a type of imperfection arising in the presence of borderline cases [92].
A concept is vague if locations exist that cannot be classified unambiguously ei-
ther to the concept or to its complement. When mapping vegetation for example,
it may be difficult to decide whether a certain location belongs to one vegetation
class or to another. The transition from one class to another may be gradual,
as between forest and grassland in African rangelands. Also, geomorphological
units [14, 63], soil types [27, 66], land cover classes [53], and forest types [11],
generally exhibit transition zones instead of sharp boundaries. Other examples
include soil pollution classes in environmental applications [54], or hydrological
studies [9] when spatial objects have to be delineated that cannot be sharply
defined.

Several theories have been proposed to handle vagueness, of which fuzzy the-
ory [113, 115] is the most often used. This is also true in the spatial domain. At-
tention has been given to vagueness, on the one hand by considering spatial ob-
jects to be crisp, and reasoning being vague [104, 105]. On the other hand, mod-
els have been proposed for objects that are vague [13, 22, 41, 79, 80, 97, 116].
There is also work done for the extraction of fuzzy objects from satellite im-
agery [64], and their visualization [55].

Some image processing software allow the extraction of fuzzy objects from im-
agery, or offer tools to do fuzzy reasoning over a continuous space [74]. No
functionality exists, however, for handling vague objects in current geographical
information systems (GIS), or in spatial database systems. These systems focus
on crisp spatial objects. Current GIS’s or spatial databases would therefore ben-
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Chapter 1. Introduction

efit from an extension with data types for vague spatial objects, and operators
for their manipulation.

Theoretical models have been proposed earlier, mainly dedicated to vague re-
gions and their topological relations. These models can be grouped into two
approaches. One approach [13, 41, 79] considers vague regions to have a ho-
mogeneous two-dimensional boundary instead of a one-dimensional boundary.
Locations in the broad boundary all have the same degree of membership to the
region. Models of this approach do not provide means to handle gradual transi-
tion. The other approach [80, 97, 116] takes gradual changes into consideration
and employs fuzzy set theory for modelling purposes. From this group, Schnei-
der’s work [80, 82, 83] is the most complete, covering object types and basic
operators for a spatial system [46].

1.2 Objectives of the research

The aim of this research is to provide a system of types and operators that
allow representation of vagueness in spatial information, and reasoning in its
presence. Fuzzy theory is our choice for dealing with vagueness. We want our
system to be able to represent and analyse vague spatial phenomena at a certain
moment of time. This is the main focus of the research. We then see how this
system can be extended, so that it can handle the dynamics of vague phenomena.

The main objectives of the research are:

• to provide a formal system for vague spatial types and operators,

• to implement the vague types and operators using capabilities of existing
GIS software,

• to extend the vague types and operators in the time domain, so that they
can handle dynamic spatial phenomena.

Before constructing an information system, a precise notion must exist of what
is to be built, and one must specify how the system is expected to function.
Mathematical specifications are useful in this respect. They precisely describe
the required properties of an information system, without unduly constraining
how these properties are achieved in its implementation. This can be done by
means of mathematical data types and functions for modelling the data and
functionality of a system. These types and functions are then not oriented to-
wards computer representation, but obey a rich collection of mathematical laws.
As such, one can reason effectively about the way a specified system will behave.

This is the reasoning behind our first objective. It assures correctness of types
and operators that we propose for handling vague spatial information. To assure
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completeness of our system, we check the list of operators against the ISO stan-
dard for spatial data, SQL/MM spatial [1], and an abstract spatial database model,
the ROSE algebra [50]. We define the vague spatial types and operators in such a
way that they include as special cases the proposed types and operators [23, 50]
for crisp objects.

1.3 Structure of the thesis

The results of the research are presented in the chapters composing this thesis.
Chapter 2 sets the background for this work. It explains what is vagueness, and
lists the main theories proposed to handle it, giving more attention to the fuzzy
theory. It describes the main components of spatial and temporal database sys-
tems, focusing more on types and operators elements of a spatial data model
by taking two examples of such models, the SQL/MM spatial part and the ROSE
algebra. It also summarizes the mathematical concepts from general topology,
fuzzy sets, and fuzzy topology that we need for our formal definitions of types
and operators. Chapter 3 provides for vague spatial types, which are divided
into simple and general types representing simple objects and classes of objects,
respectively. It also provides for operators returning spatial types, e.g., union, in-
tersection. Chapter 4 provides for spatial relations between vague objects, which
are built upon the intuition of SQL/MM spatial relations between crisp objects.
Chapter 5 provides metric operators for vague objects, e.g., length, area, distance.
We implement the vague types and set operators using existing functionality in
GRASS, an open source GIS software package. Chapter 6 is dedicated to this im-
plementation. Chapter 7 explains how the system can be extended with temporal
types and operators. It then performs the analysis of two (dynamic) spatial ap-
plications using operators of the system. Chapter 8 concludes the work of this
thesis.

We use different fonts to distinguish between important notions. LucidaCasual
font is used for the names of crisp types and operators. LucidaCasual-Italic
font is used for names of vague types and operators. LucidaCalligraphy-Italic
is used for dynamic vague types and operators. LucidaFax is used for GRASS
data structures, and LucidaSans-Typewriter is used for GRASS modules, di-
rectories, and files.
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Chapter 2

Setting the scene

This chapter describes the theories that constitute the foundation for this the-
sis work. The discussion is organized in four parts. Section 2.1 explains the
concept of vagueness, and summarizes different theories proposed to handle it,
putting more attention to advantages and disadvantages of fuzzy theory that we
choose for handling vagueness. As the main objective of this work is the design
of a spatial system that can handle vagueness, it is important to know the basic
components of a spatial system. Section 2.3 describes shortly the main compo-
nents of a spatial database system, and focuses on spatial types and operators.
It summarizes SQL/MM Spatial, the ISO standard for spatial systems, as well as
the ROSE algebra, the theoretical model of an implemented spatial database sys-
tem. At the end, it describes the main concepts of a temporal database system.
Formal definitions we provide for vague spatial types and operators are based on
notions from general and fuzzy topology. Notions of general topology are also
needed for the description of spatial systems; they are presented in Section 2.2.
Concepts from fuzzy sets and fuzzy topology are presented in Section 2.4.

2.1 Vagueness and theories to handle it

Vagueness is at the heart of problems known as the Sorites paradox. The name
comes from the old Greek σωρoς (heap), and the problem is originally known
as The Heap puzzle [44, 57]. Is one grain of wheat a heap? The answer is ‘No’.
Are two grains of wheat a heap? No. . . . One must admit the presence of a
heap sooner or later, so where should the line be drawn? “Nowadays the Sorites
paradox identifies a class of paradoxical arguments, also known as little-by-little
arguments, caused by the indeterminacy surrounding the limits of the applica-
tion of the predicates involved” [57].

A current dispute on vagueness concerns its ontological or linguistic nature [102].
Vagueness may either be an inherent property of the phenomenon described by a
vague term, or our language is such that it vaguely describes phenomena. Several
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theories have been proposed to handle vagueness: epistemic theory [91, 110], su-
pervaluationism [31, 43], rough sets [71], and many-valued logics [99, 115]. The
best known of the later are three-valued logic and fuzzy logic. Epistemic the-
ory and supervaluationism suggest that vagueness is linguistic, whereas many-
valued logics suggest that vagueness is ontological [57, 102].

The epistemic theory considers vagueness to be a kind of ignorance [91, 110].
The indeterminacy associated to a vague term comes from our inability to deter-
mine its exact reference (extension) [102]. The vagueness of the term ‘heap’ is a
matter of ignorance — there exists a cut-off value n which defines the boundary
between heap and not heap, except that we do not know it.

The basic idea underlying supervaluationism is that a vague term is one that
admits various alternative ‘sharpenings’ [102]. Supervaluationism says that the
truth value of a statement involving vague terms is a function of its truth values
under the various admissible sharpenings of those terms [102]. If the statement
is true under all such sharpenings, then it is super-true. If it is false under all
the admissible sharpenings it is super-false. If the statement comes true under
some sharpenings and false under some others, then the statement suffers a
truth value gap.

Rough sets have the same view on vagueness as supervaluationism. A rough
set can be thought of as a collection of classical sets, each approximately being
the set that we want. It is represented by a pair of classical sets called the lower
and upper approximation. The lower approximation consists of all elements that
certainly belong to the set, the upper approximation consists of all elements that
possibly belong to the set [70].

Many-valued logic is a term that designates a group of theories proposed to
handle vagueness. A first proposal was three-valued logic, with a truth set equal
to {1 (true), 1/2 (indeterminate), 0 (false)}. A general concern with a three-valued
logic approach to vagueness is its tripartite division of statements. There is
no more ground for supposing the existence of a sharp boundary between true
and indeterminate statements, or between indeterminate and false statements,
than there was for supposing a sharp boundary to exist between true and false
statements [57]. No finite number of divisions seems adequate.

Infinite-valued logic or fuzzy logic overcomes this limitation. It provides a wide
range of degrees between false and true values. The truth of a statement is a
matter of degree. The truth values are from a totally ordered infinite set, i.e.,
there is an order between any two elements of the set. Other problems, however,
exist with the fuzzy approach to vagueness: the assumption of a totally ordered
set of truth-values is problematic. How does the degree to which a certain loca-
tion belongs to a forest compare to the degree to which a certain borderline rock
is part of Mount Everest? Also, a point must exist if one moves from full fledged
truth to partial truth, or from partial truth to full fledged falsehood [102]. These
problems are carried over in our model for spatial vagueness.
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2.2 Basic concepts from general topology

The description of object types and operators of a spatial system needs concepts
like single-component, boundary, adjacent regions. General topology offers for-
mal descriptions (i.e., definitions) of these concepts. This section presents the
topology concepts that are used for the definition of crisp spatial objects and
their operators, as well as concepts needed for our definitions of vague types.
The concepts that are directly used for the definitions of crisp or vague objects
are emphasized in the text. The treatise is not restricted to only these concepts,
as their explanation requires other topology notions. To help the intuition for
each concept provided, we give the definition and important properties. The
latest are sometimes equivalent definitions of a concept.

A general topology can be defined for any set X, e.g., real numbers X = IR, or
functions in reals X =

{
f : IR → IR

}
. Because we work with IR, IR2, and IR3, we

give the definitions in IRn space. Most of the definitions are indeed valid for any
space X, only few are specific to real spaces. We assume that basic notions from
classical set theory are known. We start with metric spaces in IRn, as the topology
we work with is a metric topology. The basic topology notions, open and closed
sets, are first defined in a metric space, because they are easily understandable in
such a setting, and remain the same for the topology we use. Topology operates
on a more abstract level than a metric space, and it offers a richer set of concepts
together with their interrelations. Some of the topology concepts, not being dealt
with in a metric space, are needed for our definitions. Therefore, we provide the
full set of (needed) concepts in a topology setting, including the open and closed
sets.

A metric on IRn is a function ρ : IRn × IRn → IR+, such that for any p,q, r ∈ IRn

1. ρ(p, q) = 0 if and only if p = q,

2. ρ(p, q) = ρ(q,p) (symmetry),

3. ρ(p, q)+ ρ(q, r) ≥ ρ(p, r) (triangle inequality).

The pair (IRn, ρ) is called a metric space. The function dn : IRn×IRn → IR+, defined

as dn
(
(x1, . . . xn), (y1, . . . yn)

)
=
√
(x1 −y1)2 + . . .+ (xn −yn)2 is a metric on

IRn [109]. It is the Euclidean distance, and is called the usual metric on IRn.

Let (IRn, ρ) be a metric space, p a point of IRn, and ε a positive real number. The
set Uρ(p, ε) =

{
q ∈ IRn | ρ(p, q) < ε

}
is called the ε-disk about p. A set G is open

in (IRn, ρ) if for each p ∈ G there is an ε-disk about p contained in G. A set F
is closed if it is the complement of an open set [109]. Figure 2.1(a)–(c) illustrates
an ε-disk about p, an open set G, and a closed set F in (IR2,d2), respectively.
Many sets are neither open nor closed, as, for example, the sets of Figures 2.2(a),
2.3(a), 2.4(a) and 2.4(b).
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(a) (b) (c)

IR

IR

F
IR

IR

G

IR

IR

Figure 2.1: Open and closed sets in (IR2, d2): (a) an ε-disk about p, (b) an open set G, (c) a closed
set F . A dashed line symbolizes that points on the line are not elements of the set enclosed by the
line.

The open sets in a metric space (IRn, ρ) have the following properties: the empty
set ∅ and IRn are both open, any finite intersection of open sets is an open set,
and any union of open sets is an open set [109]. These properties are used to
generalize the notions of open and closed sets without employing a metric. A
topology T for IRn is a collection of subsets of IRn, such that (i) ∅, IRn ∈ T , (ii)
if U,V ∈ T , then U ∩ V ∈ T , (iii) if for an index set J, possibly infinite, a family{
Uj
}
j∈J ⊆ T , then

⋃
j∈J Uj ∈ T [109]. The pair (IRn, T ) is called a topological

space. The elements of T are called open sets. A set F is said to be closed (in the
topology T ) if its complement FC is an open set. Intersection of closed sets is a
closed set, and a finite union of closed sets is also a closed set.

Different topologies can be built for IRn. The trivial topology, containing only the
empty set ∅ and the whole IRn, is an example topology for IRn. Another example
is the discrete topology, which is the family of all subsets of IRn. Any subset of
IRn is an open set for the discrete topology. If (IRn, ρ) is a metric space, its open
sets form a topology for IRn. Such a topology is called a metric topology. The
metric topology formed by the usual metric is called the usual topology on IRn.

A topology is constructed from a base. A base of a topology T is a subfamily
B ⊂ T such that each member of T is the union of members of B. For example,
the family of ε-disks

{
Udn(p, ε) | p ∈ IRn, ε ∈ IR+

}
is a base for the usual topology

in IRn. The family of open intervals {(a, b) | a,b ∈ IR} is the base for the usual
topology for IR. Another topology is constructed for IR from a base consisting of
half-open intervals [a, b) = {x ∈ IR | a ≤ x < b}. Elements of this topology are
both open and closed, called clopen.

We denote by Tn the usual topology for IRn. The usual topologies for IR and
IR2 are the topologies employed for the definitions of spatial objects. From this
point onward we refer to the usual topology for IRn, though definitions are in-
dependent of the chosen topology. Most of the illustrations in this section are
for sets in IR2 with the usual topology T2, except for the continuity illustration,
which is done for functions in IR with the usual topology T1.

10



Chapter 2. Setting the scene

A subset of IRn is also said to be a subset of the topological space (IRn, Tn). A
subset Up of (IRn, Tn) is called neighbourhood of a point p if Up contains an open
set to which p belongs [59]. A subset of a topological space is open if and only
if (iff) it contains a neighbourhood of each of its points. A point p of a subset
A of (IRn, Tn) is called an interior point of A if A is a neighbourhood of p. The
point p in Figure 2.2(a) and its neighbourhood Up are inside the set A, thus p is
an interior point of A. The set A◦ of all interior points of A is called the interior
of A [59]. The interior of A is equal to A◦ =

⋃
{G ⊆ IRn |G ∈ Tn ∧G ⊆ A}. It is

the largest open set contained in A. A set A is open iff it is equal to its interior,
i.e., A = A◦. Figure 2.2(b) shows the interior A◦ of the set A of Figure 2.2(a).

The closure A of a subset A in (IRn, Tn) is the intersection of all closed sets
containing A: A =

⋂{
F ⊆ IRn | FC ∈ Tn ∧A ⊆ F

}
. It is the smallest closed set

containing A. A point q is called an accumulation point of a subset A of (IRn, Tn)
if every neighbourhood of q contains points of A other than q. The points q and
r in Figure 2.2(a) are accumulation points of the set A: any neighbourhood, Uq
and Ur , contains points of A different from q and r , respectively. The point q is
an element of the set A, the point r is not in A. The closure of A is the union of A
with the set of its accumulation points [59]. A set A is closed iff it is equal to its
closure, A = A. Figure 2.2(c) shows the closure A of the set A of Figure 2.2(a). A
sequence in A ⊂ IRn is a (partial) function from the natural numbers IN to A, and
is denoted by (pi)i∈IN or simply (pi). The sequence (pi) converges to p ∈ IRn

if for each neighbourhood Up ⊂ IRn of p there is mU ∈ IN such that, k ≥ mU
implies pk ∈ Up [5]. A point p belongs to the closure of A iff there is a sequence
(pi) in A converging to p.

(b) (c)(a) (d)

A
IR

IR

Up

IR

IR

A
IR

IR

Up

Uq

Ur

A
IR

IR

Figure 2.2: Interior, closure, and boundary in (IR2, T2): (a) set A in IR2, (b) its interior A◦, (c) its
closure A, (d) its boundary ∂A.

The boundary ∂A of a subset A in (IRn, T ) is the set of all points that are interior
neither to A nor to its complement. Equivalently, p is a point of the boundary
of A iff each neighbourhood of p intersects both A and its complement AC [59].
Figure 2.2(d) shows the boundary ∂A of the set A of Figure 2.2(a). The neigh-
bourhood Up of the point p in the boundary of A intersects both, the set A and

its complement. The boundary of A is ∂A = A∩AC = A−A◦. The boundary of a
set A is closed, and it is equal to the boundary of its complement AC .
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2.2. Basic concepts from general topology

A set A is regularly closed iff it is equal to the closure of its interior, i.e., A = A◦.
The set A of Figure 2.3(a) is not regular closed, while the set of Figure 2.3(d) is
regular closed. The set A has punctures, i.e., removed points, it has a cut, i.e.,
a removed curve, and a dangle curve. The closure A shown in Figure 2.3(b) re-
moves the cut and the punctures. Any neighbourhood Up of a point p in the cut
has points from the set A, and is therefore an accumulation point, which means
it is in the closure A. The same is true for any point that is a puncture. Any
neighbourhood Uq of a point q in the dangle curve has points from the comple-
ment of A. That means there is no neighbourhood Uq that is completely in A,
therefore q is not an interior point of A. Figure 2.3(c) shows the interior A◦ of
the set of Figure 2.3(a). The closure of the interior of A is shown in Figure 2.3(d).

(b) (c)(a) (d)

A

Uq

Up

IR

IR

A
IR

IR

A
IR

IR

A
IR

IR

Figure 2.3: Regular closure for (IR2, T2): (a) a set A in IR2, (b) its closure A, (c) its interior A◦, (d)
the closure of the interior A◦.

Let A be a subset of (IRn, Tn). The family TAn of all intersections of members
of Tn with A forms a topology, which is called the relative topology of Tn to A.
All the concepts defined for a topological space in IRn can be transferred to any
subset of it, associated with the relative topology. That is to say we can define a
concept in (IRn, Tn) or in a subset of it associated with the relative topology.

(b)(a) (d)

p

q

IR

IR

(c)

p

q

IR

IR
q

p

F
IR

IR

p

q

F
IR

IR

Figure 2.4: Connected and disconnected sets for (IR2, T2): (a) a disconnected set (b) a connected
set, (c) a connected closed set F (d) the interior of F is disconnected.

Two subsets A and B of (IRn, Tn) are separated iff A ∩ B and A ∩ B are both
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empty. A topological space is connected iff it is not the union of two non-empty
separated subsets [59]. An equivalent definition for connection is: a set A is
connected if for any two points in the set there is a path connecting the two and
lying completely in the set A. The set of Figure 2.4(a) is disconnected: there is
no path connecting the two points p and q that lies completely in the set. For
any two points of the set of Figure 2.4(b) there is a path connecting them and
lying inside the set. The set of Figure 2.4(b) is connected, as it is also the set F
of Figure 2.4(c). The path connecting the two points p and q of the set F lies
partially inside the set and partially in the boundary of F that is part of F be-
cause the set is closed. The interior of F shown in Figure 2.4(d) is not connected
because there is no path connecting the points p and q, which lies completely
in F◦. A component of a topological space is a maximal connected subset, i.e., a
connected subset that is not properly contained in any other connected subset.
The set of Figure 2.4(d) has two components, one containing the point p and the
other containing the point q. A subset A of (IRn, Tn) is bounded iff there is an
ε-disk about the origin O that contains the set: A ⊆ U(O, ε).

Let X and Y be subsets of IRn and IRm respectively, (X, TXn ) and (Y , TYm) be the
relative topologies for X and Y . A function f from X to Y is said to be continuous
at x0 ∈ X if for each neighbourhood V of f(x0) in Y , there is a neighbourhood
U of x0 in X such that f(U) ⊆ V [109]. The function f is continuous on X if
f is continuous at every x ∈ X. Figure 2.5(a) shows the graph of a continuous
function f : IR → IR. A continuous function preserves proximity, i.e., close points
in the domain are mapped to close points in the range. A homeomorphism, or
topological transformation, is a continuous and bijective function h from the
topological space (X, TXn ) to the topological space (Y , TYm), such that its inverse
function f−1 is also continuous. The two spaces, (X, TXn ) and (Y , TYm), are said to
be homeomorphic or topologically equivalent [59]. A homeomorphism preserves
properties of sets: if X is open, closed, connected, or bounded, the image Y by
the homoeomorphism h has the same properties. Properties preserved by a
homeomorphism are called topological invariants.

A function f : IRn → IR is lower semi-continuous at p with respect to the usual
topologies in IRn and IR, iff for all c < f(p) a neighbourhood Up of p exists
such that for all q ∈ Up, c < f(q). The function f is lower semi-continuous in
IRn iff it is lower semi-continuous at every p ∈ IRn [58]. Figure 2.5(b) shows the
graph of a lower semi-continuous function g : IR → IR. The function is almost
everywhere continuous, except for three points x0, 0, and x1 where it is lower
semi-continuous.

Correspondingly, a function f : IRn → IR is upper semi-continuous at p with
respect to the usual topologies in IRn and IR, iff for all c > f(p) a neighbourhood
Up of p exists such that for all q ∈ Up, c > f(q). A function f is upper semi-
continuous in IRn iff it is upper semi-continuous at every p [58]. Figure 2.5(c)
shows an upper semi-continuous that is the characteristic function of the closed
interval [a, b]. The function χ[a,b] is continuous in IR except for the points a
and b where it is upper semi-continuous. The characteristic function of a closed
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(b)(a) (c)
IR

IR

f

a IR

IR

b

c [a,b]

IR

IR

g

x0 x10

Figure 2.5: Graphs of continuous and semi-continuous functions for the usual topology in IR: (a) a
continuous function, (b) a lower semi-continuous function, (c) an upper semi-continuous function
that is the characteristic function of an interval [a, b]. Empty and filled circles are used to show
the value of a function at discontinuity points; the full circle denotes the value of the function.

set in (IRn, Tn) is an upper semi-continuous function, whereas the characteristic
function of an open set is a lower semi-continuous function. A function f : IRn →
IR is continuous at a point p iff it is both upper and lower semi-continuous at p.

B
A

N  (B)r2

r2
r1

N  (A)r1

Figure 2.6: The smallest neighbourhood Nr1(A) containing the set B, and the smallest neighbour-
hood Nr2(B) containing A.

Hausdorff devised a metric between subsets of a metric space, known as the
Hausdorff distance. Two sets are within Hausdorff distance r from each other if
any point of one set is within distance r from some point of the other set, and
viceversa. Let A be a subset of the metric space (IRn, dn), and r > 0. A neighbour-
hood of A with radius r is defined as Nr (A) =

{
p ∈ IRn | ∃q ∈ A,dn(p, q) < r

}
.

The Hausdorff distance between two sets A and B in IRn is HD(A, B) = inf{r ∈
IR+ |A ⊂ Nr (B) and B ⊂ Nr (A)} [33]. Figure 2.6 shows two sets A and and B in
IR2, together with their neighbourhoods Nr1(A) and Nr2(B). The neighbourhood
Nr1(A) is a buffer around A with the smallest distance r1 such that any point
of B is contained in it. Nr2(B) is built similarly to contain any point of A. The
Hausdorff distance between A and B is the maximum of radiuses r1 and r2. The
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Chapter 2. Setting the scene

Hausdorff distance HD is a metric for the set of bounded and closed subsets of
IRn [33].

2.3 Spatial and spatiotemporal database systems

A database is a large, computerized collection of data, whereas a database man-
agement system (DBMS) is a software package that allows a user to set up, use,
and maintain a database [26]. A DBMS offers a data modelling language, indexing
and join methods, authorization, integrity constraints, concurrency, and trans-
actions. Important elements of a data modelling language are a collection of
types together with their operators (functions). They are used by the data ma-
nipulation and query language, which is offered to applications for the storage
and analysis of their data. Indices are used by the query optimizer for efficient
performance of queries.

Spatial and temporal database systems are both extensions of standard DBMS’s.
A spatial DBMS is extended with data structures and algorithms for computa-
tion over spatial types, together with spatial indexing techniques, and extension
of the optimizer for mapping from the query language to the spatial compo-
nents [51]. A temporal DBMS extends the data modelling language with temporal
concepts that are inserted deeply in the data model, in order to assure efficient
query performance. Spatiotemporal databases are a combination of structures
and techniques from spatial databases and temporal databases.

This thesis works only with data types and operators, therefore this section puts
attention to only these elements of a data model. The ROSE algebra [50], a the-
oretical model of an implemented spatial system [49], and the ISO standard for
spatial data [1] were compared and used to compile the list of types and opera-
tors for vague objects. Section 2.3.1 discusses the types and operators offered by
the ROSE algebra, and Section 2.3.2 discusses the ISO SQL/MM spatial standard
for types and operators. Section 2.3.3 discusses the basic notions of a temporal
database system.

2.3.1 Spatial systems: ROSE algebra

The ROSE algebra is an abstract spatial model for a DBMS with additional capa-
bilities for the representation and management of spatial data [50]. It consists
of formal definitions of spatial data types and their operators fulfilling the fol-
lowing criteria:

(i) closure property, i.e., the return type of any operator is one of the system’s
data types,
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2.3. Spatial and spatiotemporal database systems

(ii) rigour, i.e., unambiguous definitions,

(iii) types are defined in terms of finite representations available on computers,

(iv) geometric consistency for related objects, e.g., adjacent regions have com-
mon boundary.

(a) (b) (c) (d)

Figure 2.7: ROSE algebra spatial object types: (a) MultiPoint, (b)MultiLinearString, (c)
MultiPolygon, (d) Partition.

Data types of the ROSE algebra are a collection of standard data types: boolean,
string, integer, real, as well as spatial types: points, lines, regions, together with
two super-types EXT and GEO. For easy comparison with ISO standard types we
rename the ROSE spatial types to MultiPoint, MultiLinearString, MultiPolygon,
Extension, and Geometry, respectively. A value of the data type MultiPoint rep-
resents a set of disjoint points, illustrated in Figure 2.7(a). A value of the type
MultiLinearString represents a set of piecewise linear curves forming a planar
graph, illustrated in Figure 2.7(b). A value of the type MultiPolygon represents
a set of disjoint regions possibly with holes (Figure 2.7(c)). Standard and spatial
types are the basic data types, and are the leaves of the tree in the complete
type hierarchy [40] given in Figure 2.8. The non-leaf nodes are super-types used
by the operators. A spatial object is a value of type Geometry. Another type,
very important for classifications of space, is the type Partition. A partition is
a collection of MultiPolygon objects that form a disjoint subdivision of space,
illustrated in Figure 2.7(d).

The operators of the ROSE algebra are divided into four groups: (i) spatial pred-
icates, (ii) operators returning spatial types, (iii) operators returning numbers,
and (iv) operators on collections of spatial objects. In the next paragraphs we
use the terms multipoint, multiline, and multipolygon, for an object of type
MultiPoint, MultiLinearString, and MultiPolygon, respectively.

Spatial predicates

Spatial predicates compare two spatial objects with respect to their topologi-
cal relation and return a boolean value. The predicates Disjoint, Equal, and
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Figure 2.8: Hierarchy of types in the ROSE algebra. A triangle shows sub-type relation.

Not_Equal between two spatial objects return true if the point sets of the objects
are disjoint, equal, and not equal, respectively. The predicate Inside between a
Geometry object and a multipolygon is true if the Geometry object is a subset
of the multipolygon. Area_disjoint and Edge_disjoint between two multipoly-
gons occur when object interiors are disjoint, but they have common boundary
lines or points, respectively. Edge_inside and Vertex_inside between two multi-
polygons occur when they are in an Inside relation and their boundaries have
in common at most a non empty finite set of points, or nothing, respectively.
Intersects between two Extension type objects is true if two multilines intersect
at points; a multiline is partially inside the multipolygon; and two multipolygons
share a region part. Meets between two Extension objects is true if two multi-
lines have common end nodes; a multiline has common isolated points with the
boundary of a multipolygon; and boundaries of two multipolygons have common
isolated points. Adjacent between two multipolygons occurs when their interiors
are disjoint, but they share part of the boundary, i.e., a line in common. Encloses
between two multipolygons occurs when the second object is inside a hole of
the first one. On_border_of between a multipoint and an Extension type objects
occurs if the multipoint is an end node of a multiline, or on the boundary of a
multipolygon. Border_in_common between two Extension objects occurs when
boundaries of multipolygons and/or multilines share a common part. The topo-
logical relations corresponding to these operators are not mutually exclusive.
Figure 2.11 shows their interrelations, as well as the correspondence with the
SQL/MM spatial relations.

Operators returning spatial types

The second group consists of operators returning spatial values as results. The
operators Plus, Minus between any two spatial objects, and Intersection between
two spatial objects of the same type (e.g., between two multipolygons) assure
the closure property of the ROSE algebra. They are regularized set operators,
union, difference, and intersection, respectively. The Common_border opera-
tor between two Extension objects returns the common (boundary) multiline.
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The Vertices operator on an Extension object returns multipoint that are vertex
points of a multiline, and vertex points of the boundary of a multipolygon. The
Contour operator on a multipolygon returns its boundary that is a multiline.
The Interior operator is applied on a multiline and returns the multipolygon
enclosed by the multiline.

Operators returning numbers

Operators of the third group return numbers. The No_of_components operator
on a spatial object returns the number of its components, which is an integer
value. The Dist operator calculates the (minimal) distance between any two spa-
tial objects, returning a real value. The Diameter of a spatial object is calculated
as the largest distance between any of its locations. The Length operator calcu-
lates the total length of segments of a multiline. The Area operator computes the
sum of the areas of the components of a multipolygon. The Perimeter operator
calculates the sum of lengths of the boundary lines of a multipolygon.

Operators on collections of spatial objects

Operators of the last group take collections of spatial objects as operands; some
of them create new collections as a result. The Sum operator aggregates over
the values of some spatial attribute of an object set, and computes the geomet-
ric union of all these values. The Closest operator returns that object from a
collection that is the nearest to some reference object. For every composite ob-
ject, the Decompose operator gives the set of its connected components. The
Overlay operator superimposes two partitions of the plane. The result is a new
partition with regions obtained from the intersections of a region of the first
partition with a region of the second partition. The Fusion operator dissolves a
partition (by merging regions) based on the equality of some attribute value of
regions.

2.3.2 Spatial systems: ISO SQL/MM spatial

ISO/IEC 13249-3 SQL/MM Part 3: Spatial [1] is the international standard that
defines how to store, retrieve and process spatial data using SQL. It defines how
spatial data is to be represented as values, and which functions are available to
convert, compare, and process this data in various ways [95]. The standard was
originally derived from the OpenGIS Simple Feature Specification for SQL [23]
by the OpenGIS Consortium (now Open GeoSpatial, OGC). The Simple Feature
Specification defines a geometry model consisting of a class hierarchy shown in
Figure 2.9. The geometry model is an abstract model used to define relation-
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Figure 2.9: OGC Geometry class hierarchy. Diamonds show aggregation, triangles show sub-class.

ships between classes and inheritance rules for methods (functions) working on
instances of classes and subclasses.

The type hierarchy defined in the SQL/MM Spatial standard is adapted from the
OGC class hierarchy. Figure 2.10 shows the SQL/MM type hierarchy; the shaded
types are not instantiable. SQL/MM standard uses the prefix ST_ for all types
and functions. The types ST_Point, ST_Curve, ST_Surface, and their subtypes
represent single component objects. Type ST_GeomCollection and its subtypes
represent multi component objects. ST_Geometry represents a spatial object of
any type.

ST_Point ST_Curve

ST_LineString ST_CircularString ST_CompoundCurve

ST_MultiLineString

ST_Surface ST_GeomCollection

ST_CurvePolygon

ST_Polygon

ST_MultiPointST_MultiCurveST_MultiSurface

ST_MultiPolygon

ST_Geometry

Figure 2.10: SQL/MM Spatial type hierarchy.

The SQL/MM functions (methods) are basically the same functions proposed by
OGC [23]. They can be grouped into one of the following categories [95]: (i) con-
version between geometries and external data formats, (ii) retrieval of properties
or measures from a geometry, (iii) comparison of two geometries with respect to
their spatial relation, (iv) generation of new geometries from others. There are a
few more functions not falling in any of the above categories, e.g., ST_Distance
between two ST_Geometry values. Functions of the first group allow conversions
between three different external data formats defined by the SQL/MM standard.
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Operators returning properties or measures of spatial objects

Functions of the second group ST_Dimension and ST_GeometryType return the
dimension and type of an ST_Geometry object, respectively. ST_IsEmpty func-
tion tests if an ST_Geometry object is an empty set. The function ST_IsClosed
tests if an ST_Curve object is a closed line. Functions returning measures of
ST_Geometry values are ST_Length on ST_Curve or ST_MultiCurve, ST_Area on
ST_Surface or ST_MultiSurface, ST_Perimeter on ST_Surface or ST_MultiSurface.
The function ST_NumGeometries on ST_GeomCollection returns the number of
simple objects in the collection.

Spatial relations

Spatial relations are identified using the 9–intersection model [39] extended by
the dimension of the intersections, a model called DE–9IM [23]. The generic
ST_Relate method defined for this model enables a large number of spatial re-
lations to be tested. However, it is a low level building block and does not have
a corresponding natural language equivalent [1]. For this reason, commonly
used spatial relations have been specified: ST_Disjoint, ST_Touches, ST_Crosses,
ST_Overlaps, ST_Within, ST_Equals, ST_Intersects, and ST_Contains. The last
two relations can be expressed in terms of others: the relation ST_Intersects
is the negation of ST_Disjoint, and the relation ST_Contains is the same with
ST_Within. The first six relations are mutually exclusive, and provide a coarse
but complete covering of all the topological cases. They are binary operators
applied to geometries of either the same or different dimension, and return a
truth value. Each of the relations can be expressed in terms of a corresponding
DE-9IM pattern. Their definitions and illustrations are provided in Section 4.1.1
because we follow this model to define vague spatial relations.

SQL/MM

ROSE 
algebra

ST_Disjoint

Disjoint

ST_Equals

Equal

ST_Within

Inside

ST_Crosses

Intersects

ST_Overlaps ST_Touches
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P-P
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Figure 2.11: The correspondence between SQL/MM and ROSE algebra spatial relations. Labels P,
L, R, denote multipoint, multiline, and multiregion, respectively. A P-P label denotes a multipoint–
multipoint relation. The other labels are to by interpreted similarly. A double arrow shows full
correspondence; a one-side arrow shows inclusion.

Figure 2.11 shows the correspondence between SQL/MM spatial relations and
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ROSE spatial predicates, together with interrelations of ROSE predicates. For ex-
ample, relations Equaland ST_Equals are the same; relations Adjacent and Meets
between regions are covered by ST_Touches; the relation ST_Within between
points and lines and between lines is not expressed by any ROSE algebra rela-
tion; the Encloses relation is not expressed by any of the six spatial SQL/MM
relations.

Operators returning spatial types

Operators of the last group return spatial types. ST_Union, ST_Intersection,
ST_Difference, and ST_SymDifference return a new ST_Geometry object that
is the point set union, intersection, difference, and symmetric difference of two
ST_Geometry objects, respectively. ST_Boundary returns the closure of the com-
binatorial boundary1 of an ST_Geometry value. ST_StartPoint and ST_EndPoint
return the start and end node of an ST_Curve object, respectively. The opera-
tor ST_Centroid returns an ST_Point object that is the mathematical centroid
of an ST_Surface or ST_MultiSurface object. ST_PointOnSurface returns an
ST_Point object that is guaranteed to be on the ST_Surface or ST_MultiSurface
object. ST_Envelope and ST_ConvexHull on ST_Geometry return the bounding
box and the convex hull of the ST_Geometry object, respectively. ST_Buffer re-
turns an ST_Geometry object that represents all points whose distance from a
given ST_Geometry object is less than or equal to a specified distance.

2.3.3 Temporal database systems

The databases managed by standard DBMS normally describe the current state
of the world. A standard DBMS offers data types like date and time that can be
used from the attributes. If an application needs to keep track of the history of
changes, it has to manage time itself by adding it explicitly as attribute(s), and
performing the right kind of computation in the queries [51]. When a join is
done between two tables extended by time attributes, explicit conditions should
be added to the query to assure concurrency in the life time of joined tuples. This
results soon in quite complicated queries, and long execution times. A temporal
DBMS takes care that such conditions are checked automatically, and there is
no need to include them in the query. The objective of a temporal DBMS is the
integration of temporal concepts deeply into its data model and query language,
to achieve efficient execution of queries.

The basic concepts of a temporal DBMS are the time domain and the time di-
mensions [51]. Time can be seen as discrete or continuous. While time is per-
ceived as continuous, for practical reasons temporal databases work with dis-
crete time. We are generally interested in certain instants or periods of time.

1The combinatorial boundary is explained in Section 4.1.1.
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2.4. Concepts from fuzzy theory

The data types instant, period, and periods are used from temporal databases.
The type periods is a set of disjoint periods. Two important time dimensions
are valid time and transaction time. The valid time refers to the real world time
instant when a change occurs, or the period during which a fact is valid. The
transaction time refers to the time when the change is reflected in the database,
or the period during which the database is in a particular state.

Standard databases are called snapshot databases, those dealing with valid time
are called historical databases, while temporal databases are those offering any
kind of time support. Relational and object-oriented data models are extended
with the temporal concepts. Time is added at the tuple (object) level, or at the
attribute level. Several temporal models have been proposed (see [51] for an
overview), some storing change at the instant it occurs, others storing the period
during which a fact or a database state exists. For example, a temporal model
working with valid time at the tuple level may add a new tuple for each change,
timestamping it with the instant it became valid, or timestamping every tuple
with the period they are valid.

2.4 Concepts from fuzzy theory

The term fuzzy theory is best depicted as a triad of branches consisting of fuzzy
logic, fuzzy sets, and fuzzy mathematics [65]. Fuzzy logic is the logic of fuzzy
propositions. Fuzzy propositions are sentences, of which the truth value is not
just ‘true’ or ‘false,’ but a matter of degree. As a logic, it studies the notion of
consequence [52], dealing with sets of propositions related by connectives like
conjunction, disjunction, negation, and implication, and using inference rules
for drawing conclusions. The theory of fuzzy sets is a theory of classes with
unsharp boundaries [52]. It is a generalization of the classical set theory. Fuzzy
mathematics refers to the extension of different branches of mathematics to
fuzzy sets. One of these branches, fuzzy topology, is used in this thesis for
describing the system of vague types and operators. This section describes basic
concepts from fuzzy sets, followed by fuzzy topology concepts. The definitions
are given for real spaces.

2.4.1 Fuzzy sets

For a classical set A on IRn we can crisply answer the question ‘does p ∈ IRn

belong to A?’ In contrast, for a fuzzy set the membership is not a ‘yes/no’
matter, but a matter of degree. A fuzzy set µ associates a membership value
with any element p ∈ IRn, which quantifies to what degree p belongs to µ. We
postulate membership values to fall into the unit interval [0,1] denoted by I. A
fuzzy set µ in IRn is then a (total) function µ : IRn → I. This function is also called
the membership function of the fuzzy set. A classical set A can be represented
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Chapter 2. Setting the scene

by its characteristic function χA : IRn → {0,1}. A characteristic function χ is
called a crisp set. The set of all fuzzy sets in IRn is denoted by F(IRn).

An α-cut of a fuzzy set µ on IRn is the set of elements of IRn with membership
value greater than or equal to α: µα =

{
p ∈ IRn | µ(p) ≥ α

}
. Similarly, a strict

α-cut of µ is defined as: µα =
{
p ∈ IRn | µ(p) > α

}
[61]. Both cuts are classical

sets. For α < β it is true that µβ ⊆ µα. The same holds for strict α-cuts. The
strict 0-cut of a fuzzy set µ0 =

{
p ∈ IRn | µ(p) > 0

}
is called its support set, and is

denoted by supp(µ). The 1-cut of a fuzzy set µ1 =
{
p ∈ IRn | µ(p) = 1

}
is called

the core of µ. A fuzzy set is convex if all its α-cuts are convex.

Two fuzzy sets µ and ν are disjoint if their support sets are disjoint, i.e., supp(µ)∩
supp(ν) = ∅. A fuzzy set µ is a subset of a fuzzy set ν , denoted by µ v ν ,
iff ∀p ∈ IRn, µ(p) ≤ ν(p). The general union and intersection between fuzzy
sets are defined using t-conorm and t-norm, respectively. Both, a t-conorm
and a t-norm are functions t : [0,1] × [0,1] → [0,1] commutative, associa-
tive, monotonic increasing and decreasing, respectively, satisfying a so-called
boundary condition for values 1 and 0, respectively. Continuity is another con-
dition that is often added to a t-conorm and a t-norm function. (See [61] for
commonly used intersection and union operators.) We work with the standard
operators, of which the definitions follow. The union of two fuzzy sets µ and
ν is µ t ν =

{(
p,max

{
µ(p), ν(p)

})
| p ∈ IRn

}
. It is the smallest fuzzy set con-

taining both of them. The intersection of two fuzzy sets µ and ν is µ u ν ={(
p,min

{
µ(p), ν(p)

})
| p ∈ IRn

}
. It is the biggest fuzzy set contained in both of

them. The complement of a fuzzy set µ is 1IRn − µ =
{
(p,1− µ(p)) | p ∈ IRn

}
.
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Figure 2.12: (a) difference and (b) symmetric difference on fuzzy sets in IR.

The difference of two fuzzy sets µ and ν is the intersection of the first with the
complement of the second: µ − ν = µ u (1IRn − ν). The symmetric difference be-
tween two fuzzy sets µ and ν is defined from the difference as µ4ν = (µ−ν)t
(ν−µ). Figures 2.12(a) and 2.12(b) illustrate the difference and symmetric differ-
ence between two fuzzy sets in IR, respectively. The bounded difference between
two fuzzy sets µ and ν is defined by: ∀p,µ∇ ν(p) = max

{
0, µ(p)− ν(p)

}
. The

absolute difference between two fuzzy sets µ and ν is defined by: ∀p,µ|−|ν(p) =
|µ(p) − ν(p)|. Figure 2.13(a) illustrates the bounded difference between two
fuzzy sets in IR, and Figure 2.13(b) illustrates the absolute difference. The fuzzy
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2.4. Concepts from fuzzy theory

difference and the bounded difference are the analogues of the difference oper-
ator on classical sets; both operators give the same result as the set difference
when applied to crisp sets. The fuzzy symmetric difference and the absolute
difference are analogous to the symmetric difference operator on classical sets;
they give the same result as their crisp analogue when applied to crisp sets.
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Figure 2.13: (a) bounded difference and (b) absolute difference on fuzzy sets in IR.

Let X and Y be subsets of IRn and IRm, respectively. A function f : X → Y induces
two functions f̃ : F(X)→ F(Y) and f̃i : F(Y)→ F(X) that produce an image of
a fuzzy set in X as a fuzzy set in Y , and an inverse image of a fuzzy set in Y as
a fuzzy set in X, respectively. This is known as the extension principle [61]. The
image of a fuzzy set µ ∈ F(X) is ν = f̃ (µ) ∈ F(Y) such that

∀y ∈ Y , ν(y) =
{

sup
{
µ(x) | x ∈ X,f(x) = y

}
∃x ∈ X,f(x) = y

0 otherwise

The inverse image of a fuzzy set ν ∈ F(Y) is µ = f̃i(ν) such that∀x ∈ X,µ(x) =
ν(f(x)).

1

a b c IR

IR

Figure 2.14: Graph of a fuzzy number.

A fuzzy number is a fuzzy set µ in IR. Figure 2.14 shows the graph of a fuzzy
number that has a piecewise linear function. There are several definitions for
a fuzzy number [12, 30, 61, 96] which differ very little from each other. The
definition given here originates from Dubois and Prade [30]. A fuzzy number is
a function µ : IR → IR satisfying the conditions:
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(i) there exists only one x0 ∈ IR such that µ(x0) = 1,

(ii) µ is convex, i.e., for any a ∈ [0,1] and x,y ∈ IR it is true that µ
(
a · x + (1−

a) ·y
)
≥ min

{
µ(x), µ(y)

}
,

(iii) µ is upper semi-continuous,

(iv) supp(µ) is bounded.

2.4.2 Fuzzy topology

This section provides various definitions of basic notions from fuzzy topology.
It explains what is a fuzzy topology, open and closed fuzzy sets, interior and
closure, two definitions of boundary, connected and bounded fuzzy sets. Most
of these fuzzy topology notions are described by one of the equivalent defini-
tions of the corresponding notion in general topology, put in a fuzzy setting. We
give two examples of fuzzy topologies for real spaces, a crisp topology and an
induced fuzzy topology. Our definitions of vague objects use the induced fuzzy
topologies from the usual topologies for real spaces. The above mentioned no-
tions are explained for the induced fuzzy topologies, and some of them are
illustrated for fuzzy sets in IR.

Let J be a possibly infinite index set. A family of fuzzy sets {µj}j∈J is a subset of

F(IRn). The union of a family
⊔{
µj
}
j∈J is

{(
x, sup{µj(x)}j∈J

)
| x ∈ IRn

}
. The

intersection of a family of fuzzy sets is
d{
µj
}
j∈J =

{(
x, inf{µj(x)}j∈J

)
| x ∈ IRn

}
.

The two operators are called generalized fuzzy union, and generalized fuzzy in-
tersection, respectively. The crisp set corresponding to the whole IRn is denoted
by 1IRn , and the empty set is denoted by 0IRn . A fuzzy topology for IRn is a collec-
tion T ⊆ F(IRn), such that: (i) 0IRn ,1IRn ∈ T , (ii) if µ, ν ∈ T , then µ u ν ∈ T , and

(iii) if {µj}j∈J ⊆ T , then
⊔{
µj
}
j∈J ∈ T [15]. The pair (IRn,T ) is called a fuzzy

topological space. The elements of T are the open fuzzy sets in (IRn,T ). The
complement of an open set is a closed fuzzy set. The closed fuzzy sets for the
topology T are the elements of the collection {1IRn − µ | µ ∈ T }.

The collection Cn of crisp sets from IRn which (corresponding classical sets) are
open in the usual topology, forms a fuzzy topology for IRn. Closed fuzzy sets
for this topology are the closed crisp sets in the usual topology for IRn. We call
the fuzzy topology Cn the crisp topology built from the usual topology for IRn.

A general topology can give rise to a fuzzy topology, which is then called an
induced fuzzy topology. A set F ⊂ IRn is closed in the usual topology Tn if for
any sequence (pn) ⊂ F converging to a point p, p is contained in F . The con-
tainment relation for a fuzzy set is translated into comparison of membership
values. Hence, a fuzzy set µ would be closed if for any sequence (pn) con-
verging to a point p, p is at least as much in µ as the pn’s ultimately are, i.e.,
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2.4. Concepts from fuzzy theory

µ(p) ≥ lim supn∈IN µ(pn) [108]. This is the condition that the function µ : IRn →
[0,1] is upper semi-continuous. If a function µ is upper semi-continuous, then
its complement 1IRn − µ is lower semi-continuous. The collection Tn of lower
semi-continuous functions in (IRn, Tn) forms a fuzzy topology, which is called
the induced fuzzy topology from the usual topology for IRn [108]. The fuzzy
sets with lower semi-continuous membership function are the open sets in Tn,
and those with upper semi-continuous membership function are the closed sets.
Open and closed fuzzy sets for Tn can be expressed in terms of open and closed
α-cuts, using properties of semi-continuous functions. A function f : IRn → IR
is lower semi-continuous iff, for each r ∈ IR,

{
x ∈ IRn | f(x) > r

}
is open. Cor-

respondingly, f is upper semi-continuous iff
{
x ∈ IRn | f(x) ≥ r

}
is closed. A

fuzzy set µ in (IRn,Tn) is open if all its strict α-cuts are open for Tn. It is closed
for (IRn,Tn) if all its α-cuts are closed for Tn [108]. A fuzzy set that has a con-
tinuous function is open and closed (clopen) fuzzy set, e.g., the fuzzy set in IR
which graph is shown in Figure 2.5(a).

A fuzzy point in (IRn,Tn) is a fuzzy set that has a positive value λ > 0 in just
one point, say p ∈ IRn [67]:

∀q ∈ IRn, µ(q) =
{
λ q = p,
0 q ≠ p.

A fuzzy point is denoted by pλ, where p is the unique location with a positive
membership, and λ is the membership value at p.

A fuzzy point pλ in (IRn,Tn) belongs to a fuzzy set µ, denoted by pλ ∈ µ, iff
λ ≤ µ(p) [67]. A fuzzy set µ in IRn is a neighbourhood of a fuzzy point pλ iff
there exists ν ∈ Tn such that pλ ∈ ν v µ [67]. A familyB ⊆ Tn is a base for Tn iff
for each element µ of Tn there exists Bµ ⊆ B such that µ =

⊔{
ν | ν ∈ Bµ

}
[67]. A

lower semi-continuous function can be taken as the superior of some continuous
functions. The family B = {µ | µ : IRn → [0,1] is continuous} forms a base for
Tn [67].
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Figure 2.15: Interior, closure, and regular closure of fuzzy sets for (IR,T1): (a) a fuzzy set µ, (b) its
interior µ◦, (c) its closure µ, (d) the closure of the interior of µ.

The interior of a fuzzy set µ is the union of all open sets contained in µ: µ◦ =⊔
{ν ∈ T | ν v µ}. It is the biggest open set contained in µ. A fuzzy point xλ

belongs to the interior µ◦ iff xλ has a neighbourhood contained in µ [67]. The
closure of a fuzzy set µ is the intersection of all closed sets containing µ: µ =
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d
{1− ν ∈ T | µ v ν}. It is the smallest closed set containing µ. Figure 2.15(a)

illustrates a fuzzy set µ in IR that is neither open nor closed. Figure 2.15(c)
illustrates its interior µ◦. The interior changes the value of the function at the
discontinuity points by putting it to the lower value, if the continuity is not to
the lower value. The value of µ at points x0, x1, and x2 is put to the lower value,
while at point x = 0 it is already continuous to the lower value. Figure 2.15(b)
illustrates the closure of µ. The closure changes the value of the function at
discontinuity points putting it at the highest value. The closure of µ has put the
value at µ(0) to the highest value. A fuzzy set µ is regular closed iff it is equal
to the closure of its interior: µ = µ◦. The fuzzy set of Figure 2.15(d) illustrates
the regular closure of the fuzzy set of Figure 2.15(a).
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Figure 2.16: Boundary and frontier of fuzzy sets for (IR,T1): (a) a regular closed fuzzy set µ, (b)
its boundary µb , (c) its frontier µf .

The notion of boundary in general topology satisfies several properties, e.g., the
boundary of any set is closed, the closure of a set is the union of its interior and
its boundary, the boundary of a set is equal to the boundary of its complement.
None of the many equivalent definitions of boundary in a general topology can
be translated into a fuzzy topological setting in such a way that all the proper-
ties will hold [106]. Warren [106] and Cuchillo-Ibáñez and Tarrés [24] give two
different definitions for the boundary of a fuzzy set. We call the first definition
a fuzzy boundary, and the second a fuzzy frontier, keeping to the naming pro-
vided in their papers. The fuzzy boundary µb of a fuzzy set µ is the intersection
of all closed sets ν in F(IRn) such that ν(x) ≥ µ(x) at all x ∈ IRn for which
µ u 1− µ(x) > 0 [106]. This definition of the boundary satisfies the first two
properties mentioned above, but not the third: the boundary of a fuzzy set is
different from the boundary of its complement. The fuzzy boundary of a set µ
in (IRn,Tn) is equal to µ at the uncertain part

{
p ∈ IRn | 0 < µ(p) < 1

}
, has value

1 at the (crisp) boundary of the core, and value 0 everywhere else. Figure 2.16(b)
shows the graph of the fuzzy boundary of the fuzzy set of Figure 2.16(a). The
fuzzy frontier µf of µ is the intersection of all closed sets ν in F(IRn) such that
ν(x) ≥ µ(x) at all x ∈ X for which µ(x) > µ◦(x) [24]. This definition satisfies
all properties of the Warren boundary, and furthermore the property that the
boundary of a clopen fuzzy set is empty 0IRn . The frontier µf of a fuzzy set µ in
(IRn,Tn) has a positive value only at the discontinuity points of µ. It is an empty
fuzzy set if µ is continuous. Figure 2.16(c) shows the graph of the fuzzy frontier
of the fuzzy set of Figure 2.16(a).
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Let µ be a fuzzy set in (IRn,Tn), and X ⊂ IRn. The fuzzy set µ|X on IRn that
has the same membership value as µ for all x ∈ X and value 0 for all x ∈ XC
is a fuzzy set on X. We call the set µ|X on IRn the restriction of µ on X. The

family T X
n =

{
µ|X | µ ∈ Tn

}
is a fuzzy topology in X and is called the relative

fuzzy topology for X. The fuzzy topological space (X,T X
n ) is a subspace of

(IRn,Tn) [67].
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Figure 2.17: Disconnected and connected fuzzy sets for (IR,T1): (a) a disconnected open fuzzy set
µ, (b)–(d) connected fuzzy sets that are the components of µ.

A fuzzy set µ is bounded if every α-cut µα is bounded [67]. The set µ is bounded
in (IRn,Tn) if its support set is bounded. The fuzzy set µ of Figure 2.16(a) is
bounded, and regular closed. A fuzzy set µ is disconnected if there are closed
sets γ and δ in the subspace supp(µ) associated with the relative fuzzy topology,
such that µ u γ ≠ 0IRn , µ u δ ≠ 0IRn , γ u δ = 0IRn , and µ v γ t δ [67]. A fuzzy
set µ is connected if it is not disconnected. We adopt the connectedness notion
proposed by Pu and Liu [67]. Weiss [108] proposes a more strict notion for
connectedness: a fuzzy set is connected if all its α-cuts are connected. A fuzzy
set µ is Pu-Liu connected for (IRn,Tn) if it has a connected support set. Let µ be
a fuzzy set in IRn. The maximal connected fuzzy set contained in µ is called a
component of µ. The fuzzy set µ of Figure 2.16(a) is connected, whereas the set
µ of Figure 2.17(a) is disconnected. Figure 2.17(b)–(d) are the components of the
fuzzy set of Figure 2.17(a).
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2.5 Following up

The two spatial models presented in Section 2.3 are used to compile the list of
types and operators we propose for vague objects. The separation of operators
into groups, reflected in the structure (chapters) of the thesis, follows mainly the
grouping proposed by the ROSE algebra. We join the operators returning spa-
tial objects with operators on collection of spatial objects, from which we define
only two operators on partitions. All the spatial types, including partitions, and
operators returning these spatial types are presented together in Chapter 3. Spa-
tial predicates, which we call spatial relations, and present in Chapter 4, follow
the model of topological relations proposed by the SQL/MM spatial. Operators
returning numbers are, except for the number of components, metric operators
that are presented in Chapter 5.

The description of crisp types and our definitions of vague types use the concept
of regular closure, connectedness, boundedness, from the general and fuzzy
topology, respectively. The usual topologies T1 and T2 are used for definitions
of crisp types. We use the induced fuzzy topologies from usual topologies, T1

and T2, for the definition of vague types.
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Chapter 3

Vague spatial types and operators
returning spatial types

This chapter provides formal definitions of vague spatial types and of operators
returning these types. We distinguish between simple types and general types. A
simple type represents an identifiable object with the simplest structure, i.e., non
divisible into components. The simple types are VPoint, VLine, and VRegion,
representing a vague point, a vague line, and a vague region, respectively. A
general type represents a class of simple objects. The general types are VMPoint,
VMLine, and VMRegion, representing a vague multipoint, a vague multiline, and
a vague multiregion, respectively. The operators are regularized set operators:
union, intersection, and difference, together with two operators from topology:
frontier and boundary. The general types assure closure for the set operators,
and the frontier operator. The return type of a boundary operator is none of the
above types. To cover for this, we propose two other types, VExt and VLDim. A
VExt object is a collection of vague lines and vague regions, a VLDim object is a
collection of vague points and vague lines. To represent a soft classification of
space we propose a type VPartition. Figure 3.1 shows the vague spatial types and
their relations, subclass and aggregation. SVSpatial represents a simple object
of any of the simple types VPoint, VLine, or VRegion. GVSpatial represents an
object of any of the general types VMPoint, VMLine, or VMRegion. VSpatial
represents a (vague) spatial object of any type.

A simple or a general type represents an object which essential property is ex-
pressed in vague terms. Such an object cannot be characterized only by the set
of locations that form its extent. Any location is associated with a degree of
membership to the object extent. An object is thus characterized by a function
that determines the membership degree at each location. The vagueness present
at these objects is thematic, and not locational. The location of the objects is
assumed to be known. Though, this is not always the case for vague regions, for
which the locational vagueness is often the result of thematic vagueness, e.g.,
regions formed by a classification over space.
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VSpatial

VLDimVExt

Figure 3.1: The hierarchy of vague spatial types.

We expect vague objects to have mostly gradual transitions of membership val-
ues. An abrupt change of membership values may also happen at some loca-
tions. Membership values range between 0 and 1, normally covering the whole
range [0,1]. There are however applications that might need a finite set of mem-
berships. It is desirable to define the vague types such that they include crisp
objects as special cases. Semi-continuous functions satisfy all the above, being
mostly continuous functions that allow jumps. All simple and general types are
defined as fuzzy sets in IR2 that satisfy some well-defined properties. To express
these properties we use the fuzzy topologies T1 and T2 of semi-continuous func-
tions in IR and IR2, respectively.

The chapter is organized as follows. Section 3.1 summarizes theoretical models
proposed to handle spatial vagueness. Section 3.2 presents examples of spatial
phenomena that can be described by the object types that we propose. Sec-
tion 3.3 provides definitions of types and operators for vague point objects. Sec-
tion 3.4 provides for types and operators of vague line objects. Section 3.5 pro-
vides types and operators for vague region objects. Vague partitions and their
operators are discussed in Section 3.6. Section 3.7 summarizes the work of this
chapter. It also discusses how the vague point and line types could be changed
to cover for a locational vagueness. For the illustrations of vague objects in this
chapter and the following ones, we use colour saturation to show membership
values. Full saturation indicates the highest membership value, lower saturation
indicates lower membership. Colour hue is used to distinguish different objects,
when it is needed.
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Chapter 3. Vague spatial types and operators returning spatial types

3.1 Existing models for spatial vagueness

Most work on vagueness is dedicated to vague regions and topological rela-
tions between them. A vague region is a region with a broad boundary, i.e.,
its boundary is not necessarily a sharp line, but a zone of transition. Current
work on vague regions either considers the broad boundary as a homogenous
unit [7, 13, 18, 19, 21, 22, 41, 79], or considers gradual transition in the bound-
ary, that is different locations in the broad boundary have different degrees of
membership to the region [80, 81, 82, 83, 84, 85, 97, 116, 117]. The next two
sections list the main proposals of each group.

3.1.1 Broad boundary regions

The Egg-Yolk model [21, 22] describes a vague region as a pair of crisp regions,
one enclosing the other. The inner region, called the yolk, gives the certain part
of the vague region. The outer region, called the white, is the broad boundary
which delineates limits on the range of vagueness. The white and yolk together
form the egg that is the full extent of the vague region. All the regions, the
egg, the yolk, and the white, are RCC regions [20, 72, 73], a theory based on
mereology [103]. The RCC regions cannot be empty, therefore the model cannot
express crisp regions.

The proposal of Clementini and di Felice [18, 19] is basically the same with the
egg-yolk model. The definitions are based on general topology. A vague region
A consists of two sets A1, A2 of IR2 such that A1 ⊆ A2. The broad boundary ∆A
is the closure of their difference: ∆A = A2\A1. Each set, A1 and A2, is a crisp
region, i.e., a bounded, regular closed set in IR2 with connected interior [19]. The
inner region A1 gives the certain part of a vague region, and the broad boundary∆A delineates limits of the vagueness.

Erwig and Schneider [41] define vague regions on the basis of general topology.
A vague region is defined as a pair of disjoint sets: the kernel that is the certain
part of the region, and the boundary that is its uncertain part. Kernel is a crisp
region, whereas the boundary can be a region or a line, the later allowing a crisp
region to be a special case of a vague region. This feature is not supported by
the Egg-Yolk and Clementini and di Felice models. The three models can handle
both ontological and linguistic spatial vagueness.

Rough sets are used to model vague regions in [7, 79]. A vague region is rep-
resented by a pair of RCC regions corresponding to the lower and upper ap-
proximation. When the lower and upper approximation are equal, the region
is crisp. This model is a generalization of the Egg-Yolk model. Three–valued
Łukasiewicz algebras are used as a formal context for vague regions and their
operators in [79]. The model of spatial regions can be used to handle any type
of vagueness, but the operators on regions assume a linguistic vagueness.
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3.1. Existing models for spatial vagueness

3.1.2 Fuzzy spatial objects

The works of this second group take gradual changes into consideration and em-
ploy fuzzy set theory to model spatial objects. Zhan [116, 117] provides math-
ematical definitions of fuzzy regions and topological relations between them.
Fuzzy regions are represented as fuzzy sets in [116]. This allows the existence
of irregularities, e.g., isolated points and lines that are not desirable for regions.
In [117] Zhan redefines fuzzy regions in terms of fuzzy convexity. This excludes
irregularities, but it is unnecessary restrictive.

Schneider’s fundamental work provides formal definitions of fuzzy types [80,
85], and definitions of topological and metric operators on fuzzy objects [82,
83, 84]. In [80] Schneider defines fuzzy points, fuzzy lines and fuzzy regions
as fuzzy sets in IR2. The definitions of fuzzy regions and their operators are
built from a regularization function. This function is expressed as a combi-
nation of interior and closure operators, but without specifically indicating the
employed topology. The regularization function applied to a fuzzy set gives dif-
ferent fuzzy sets for different fuzzy topologies. The function is thus ambiguous,
which in turn leads to ambiguity in the definitions of region types and operators.
In the next paragraph we show the ambiguity of the regularization function by
an example.

IR

IR

2

IR

IR

1

(a) (b) (c)

IR

IR

2

Figure 3.2: Regularization of a fuzzy set for two different fuzzy topologies: (a) a fuzzy set in IR2, (b)
its regularization for T2, (c) its regularization for C2. Stronger tone indicates higher membership
value, lighter tone indicates lower membership.

Let ψ ∈ IR2 be a fuzzy set defined by

∀p ∈ IR2,ψ(p) =


1 d2(p,O) ≤ 1

2− d2(p,O) 1 < d2(p,O) ≤ 2
0 d2(p,O) > 2

Figure 3.2(a) illustrates the fuzzy set ψ using saturation to show membership
values; the boundary of the core is drawn in red. Let us consider two fuzzy
topologies, T2, the induced fuzzy topology from the usual topology T2, and
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Chapter 3. Vague spatial types and operators returning spatial types

C2, the crisp topology built from T2. A frontier notion is used in [80] to build
the regularization function. The frontier of a fuzzy set is its restriction (see
page 28) to the difference of its support set with the support set of its inte-
rior: frontier(ψ) = ψ|supp(ψ)\supp(ψ◦). The regularization function is then defined
as reg(ψ) = ψ◦ t (frontier(ψ) u frontier(ψ◦)). Application of the regulariza-
tion function on ψ for the topology T2 gives the set itself1: regT2

(ψ) = ψ.
Such regularization for the crisp topology gives the crisp closed unit disk2:
regC2

(ψ) = χU(O,1). Regularization yields different results when performed for
different topologies. Therefore, introducing it without specifying a topology
makes the definitions ambiguous.

In [85] Schneider defines fuzzy objects based on a finite collection of elements
from a regular grid, forming a partition of a bounded subspace of IR2. Member-
ship values are assigned to the elements of the grid: points, edges, and cells.
Each fuzzy object is built from the grid elements. The model can be directly im-
plemented in raster data format, but it does not address implementation prob-
lems like efficiency or indexing. The model eliminates anomalies of calculations
on real numbers performed with a finite set of numbers available in computers.
It is a justification for the suitability of the raster format to represent fuzzy spa-
tial data, but it is restricted to this representation. Indeed any other computer
representation used in curve and surface modelling, such as wavelets or TINs,
would be possible as well. We use TIN-like structures in our implementation
(Chapter 6).

Tang [97] provides two different definitions for spatial regions using a crisp
topology and a general fuzzy topology. The vague regions are defined as fuzzy
sets satisfying a list of properties in these topological spaces. The crisp topology
he employs for the definitions is C2. The general fuzzy topology is not speci-
fied, which makes the definitions prone to ambiguity, in the same way ambiguity
arises in Schneider’s definitions [80].

3.2 Examples of spatial vagueness

In ordinary natural language adjectives are commonly attributed to phenomena.
This is certainly the case in the cognition of geography, where characteristics of
spatial phenomena are expressed in ordinary language terms, which are gener-
ally vague.

• When considering densely populated residential centres, we have to iden-

1The function ψ is continuous, therefore the fuzzy set is clopen for T2, and as such it is regular
closed. Its frontier is empty, as well as the frontier of its interior.

2The interior of ψ for C2 is the interior of its core, U(O,1). The regular closure gives the
closed disk U(O,1). The frontier(ψ◦) is the restriction of ψ in the unit circle, and is a subset of
frontier(ψ).
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tify known locations that have different degrees of being densely popu-
lated. We know the location precisely, but the density level itself is vague.

• Considering polluted rivers, we know precisely where the river is. Close
to the source of pollution the river is certainly polluted, but further away
riverine tracks may exist with less severe pollution. Therefore, at different
locations along the river, different degrees of pollution exist that change
gradually.

• A traffic congestion on a road network relates a characteristic — level of
congestion — to a geographic phenomenon — the roads. Part of the road is
completely blocked, and hence certainly belongs to the traffic congestion,
whereas away from the congestion, the car build-up becomes less severe. A
congestion that is dissolving at the end of a rush hour does no longer have
such a certain part. This vague characteristic, however, is still spread on
the roads.

• Agricultural land suitability in [87] is based on farmers’ knowledge on soils,
like soil texture, colour, depth and slope. These parameters are linguistic
variables taking values, e.g., ‘fine’, ‘moderately fine’, and ‘coarse’ for soil
texture. The suitability map is built from a combination of values of these
variables according to specific rules. Suitability derived in this way is also
a linguistic variable with values ‘least suitable’, ‘moderately suitable’, ‘suit-
able’, and ‘most suitable.’ This attribute, suitability, spread over the space,
determines objects which locations have membership values from a finite
set (of four values).

• It may be arbitrary to consider a particular location as part of a vegetated
area, or of a non-vegetated area. Some locations are certainly vegetated,
whereas other locations can be considered vegetated or non-vegetated to
some degree. There are transition zones where vegetation becomes sparse.
In some places the transition is gradual, whereas in other places the change
may be abrupt.

The above examples illustrate thematic vagueness, but not (always) locational
vagueness. Objects describing such spatial phenomena have a crisp location, but
their essential properties can only be expressed in vague terms. The object types
proposed in the next few sections can handle a thematic kind of vagueness. For
regions, thematic vagueness in most instances also covers locational vagueness,
which is the case in the last two examples. There are situations, however, where
locational vagueness is independent of thematic vagueness, as for example a
forest region from which one way or another we know the shape, but not the
precise location.
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3.3 Vague point types and operators

We propose two types of vague point objects: a vague point representing the
simplest identifiable point object, and a vague multipoint representing a class
of simple point objects. Figures 3.3(a) and 3.3(b) illustrate a vague point and a
vague multipoint object, respectively.

(a) (b)

IR2 IR2

Figure 3.3: Vague point objects: (a) a vague point, (b) a vague multipoint.

A vague point is a site with a known location, but with uncertain membership to a
phenomenon of interest. It is defined as a fuzzy point pλ in T2. The membership
value λ represents the degree of belonging of the site p(x,y) to the phenomenon
of interest. The set of vague points is

VPoint ≡
{
µ ∈ F(IR2) | ∃!(x,y) ∈ IR2, µ(x,y) > 0

}
.

The restriction of a fuzzy point µ to its support set is the singleton set
{(
(x,y), λ

)}
.

If the membership value µ(x,y) is equal to 1, then µ is a crisp point.

A vague multipoint is a finite collection of disjoint vague points. It is defined as
a fuzzy set in IR2 that has positive membership values in a finite set of locations.
The set of vague multipoints is

VMPoint ≡

µ ∈ F(IR2) | ∃ {µi}ni=1 ⊂ VPoint, µ =
n⊔
i=1

µi

 .
A vague point is a special case of a vague multipoint, for n = 1. We allow the
empty set 0IR2

to be a special case of a vague multipoint, having n = 0. The re-
striction of a vague multipoint to its support set is a finite set of triples providing
vague point locations and their membership values:

{(
(x1, y1), λ1

)
,
(
(x2, y2), λ2

)
. . . ,

(
(xn, yn), λn

)}
.

The operators union, intersection, and difference, for vague multipoints are the
fuzzy union, fuzzy intersection, and fuzzy difference operators, respectively.
The union between two vague multipoints is a vague multipoint of which the
locations are the union of input point locations. The membership value at each
location of the result is the maximum membership of input points at a common

37



3.3. Vague point types and operators

location, and simply the membership of the input point at any other location.
The operator PUnion is defined as

PUnion : VMPoint× VMPoint→ VMPoint
∀µ, ν ∈ VMPoint , PUnion(µ, ν) = µ t ν.

The intersection between two vague multipoints is a vague multipoint of which
the locations are the common locations of input points. The membership value
at each location of the result is the minimum of memberships of input points at
that location. The operator PIntersection is defined as

PIntersection : VMPoint× VMPoint→ VMPoint
∀µ, ν ∈ VMPoint , PIntersection(µ, ν) = µ u ν.

The difference of two vague multipoints is a vague multipoint of which the lo-
cations are those of the first input object. The membership value at a common
location is the minimum of the membership of the first object and the com-
plemented membership of the second object. At all other locations it is the
membership of the first object. The operator PDifference is defined as

PDifference : VMPoint× VMPoint→ VMPoint
∀µ, ν ∈ VMPoint , Pdifference(µ, ν) = µ − ν.

Figure 3.4 illustrates two vague multipoints in part (a) and (b), and the results of
union, intersection, and difference in Figures 3.4(c)–(e), respectively.

(a) (b)

(c) (d) (e)

IR2 IR2

IR2

1

IR2

1

IR2

11

Figure 3.4: Results of vague multipoint operators: (a) and (b) two vague multipoints, (c)–(e) results
of their union, intersection, and difference, respectively. Vague points with membership value
equal to 1 are labelled with the value 1.

The set of vague multipoints is closed under these operators, i.e., the union, in-
tersection, and difference of two VMPoint objects is a VMPoint object. It can be
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Chapter 3. Vague spatial types and operators returning spatial types

seen that PUnion, PIntersection, and PDifference applied to crisp multipoints
are equivalent to the point set union, intersection, and difference, respectively.
Hence, they give the corresponding crisp operator when applied to crisp multi-
points.

The boundary of a vague multipoint µ is its uncertain part, i.e., the locations with
membership value smaller than 1. It is constructed from the fuzzy boundary µb
for the relative topology T µ

2 . The operator PBoundary is defined as

PBoundary : VMPoint→ VMPoint
∀µ ∈ VMPoint , PBoundary(µ) = µb.

The boundary of a vague multipoint µ is its restriction (see page 28) to locations

(a) (b)

IR2IR2

1

Figure 3.5: Boundary of a vague multipoint: (a) a vague multipoint, and (b) its boundary.

with positive membership smaller than 1: PBoundary(µ) = µ| {(x,y)∈IR2|0<µ(x,y)<1}.

The frontier of vague multipoint µ is its fuzzy frontier µf for the relative topol-
ogy T µ

2 . The frontier PFrontier of a vague multipoint is empty:

PFrontier : VMPoint→ VMPoint
∀µ ∈ VMPoint , PFrontier(µ) = 0IR2 .

The boundary and the frontier of a crisp multipoint are empty. Thus, both oper-
ators give the crisp boundary operator when applied to crisp multipoints.

3.4 Vague line types and operators

We propose two types for representing vague objects of a linear nature. A vague
line represents an identifiable linear object of the simplest structure, and a vague
multiline represents a collection of vague lines that have the same membership
value at their intersection points. Figures 3.6(a) and 3.6(b) illustrate a vague line
and vague multiline, respectively. Section 3.4.1 provides description and defi-
nitions of vague line types, and Section 3.4.2 provides for vague line operators.
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(a) (b)

Figure 3.6: Vague line objects: (a) a vague line, (b) a vague multiline.

3.4.1 Vague line types

A vague line is a linear feature with known position, but with an uncertain extent,
i.e., any point of the line has some certainty degree of belonging to the line. A
vague line is a simple curve (i.e., it is contiguous and non self-intersecting) with
mostly gradual transitions of membership values between neighbour points on
the line. Membership values are positive at every location on the line, except,
perhaps, at the end nodes. Stepwise changes of membership values may occur
along the line, but isolated discontinuities are not permitted. The functions χ[0,1]
and η of Figure 3.7(a) and 3.7(b) are mostly continuous, both having stepwise
changes at points 0 and 1, and at points 0 and x0, respectively. Both functions
have the type of continuity we want for membership functions along vague lines.
The function of Figure 3.7(c) has an isolated discontinuity at x1, and is therefore
not a valid membership function for a vague line.

(a) (b)

10

1

IRx010

1

IR

[0,1]

10

1

x0 IRx1

(c)

Figure 3.7: Membership functions for vague lines: (a) the characteristic function χ[0,1] of the
closed interval [0,1], (b) a function η having stepwise discontinuity at x0, (c) a function θ having
an isolated discontinuity at x1 — this is not a valid membership function.

We want the extension of a vague line to be a simple curve that is continuous,
non-self intersecting curve, but possibly looped. (We call this crisp line from here
onwards). The membership values of the vague line are given by a membership
function defined over its extent. We require this function to be almost every-
where continuous, allowing stepwise changes in a finite number of locations.

A crisp line is topologically equivalent to the unit interval [0,1], i.e., there is a
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Chapter 3. Vague spatial types and operators returning spatial types

homeomorphism h from [0,1] to the line in IR2. We can build a fuzzy set in
[0,1] that satisfies the above mentioned properties for membership functions,
then transfer its membership values to the crisp line via the homeomorphism h.
Figure 3.8(b) illustrates the construction of a vague line µ from the fuzzy set η
of Figure 3.7(b), via the homeomorphism h. The set η is drawn in Figure 3.8(b)
using saturation for displaying membership values. The vague line µ is built
from the extension principle (described in page 24) as the image h̃(η) of the
fuzzy set η ∈ IR.

(a) (b)

h

0

1
IR

2IR

h
1

IR

0

2IR

Figure 3.8: Construction of a crisp and vague line from sets in IR: (a) crisp line built from the
homeomorphism h in (0,1), (b) vague line built by transferring the membership values of a fuzzy
set η via the homeomorphism h.

A crisp line is the image of the [0,1] interval by the homeomorphism h:
{
h(t) =(

x(t),y(t)
)
|t ∈ [0,1]

}
. To allow looped lines, the homeomorphism is restricted

to (0,1), requiring continuity at the end points 0 and 1 [28]. An upper semi-
continuous function satisfies most of the properties we want for the membership
function of a vague line, but allows isolated discontinuities, e.g., the function of
Figure 3.7(c). The regular closure removes such isolated discontinuities. A vague
line can now be built from a regular closed fuzzy set η in [0,1] and the homeo-
morphism h. To assure that the vague line has a continuous extent, we require
the fuzzy set η to have positive membership in [0,1], that is η is connected for
(IR,T1). A vague line is thus built as the image of a homeomorphism of a regu-
lar closed and connected fuzzy set in [0,1]. When the vague line is looped, the
membership values at both end nodes are equal. The set of vague lines is defined
as

VLine ≡
{
µ ∈ F(IR2) | ∃η ∈ F([0,1]), η = η◦, and connected,
∃h : [0,1]→ IR2 homeomorphism in (0,1), continuous in {0,1} ,
µ = h̃(η) and

(
h(0) = h(1)⇒ η(0) = η(1)

)}
.

The homeomorphism h builds the extension of a vague line µ as topologically
equivalent with the interval (0,1) that is a 1–dimensional set. The extension of a
vague line cannot be a finite set of points. Hence, the type vague line is different
from the vague point and vague multipoint types. If the fuzzy set η in [0,1] is a
crisp set, then the vague line is a crisp line.
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A vague multiline is a finite collection of vague lines, of which the extensions
intersect only at their end nodes, and the lines have the same membership value
at the common end nodes (see Figure 3.6(b)). It is constructed from the union of
vague lines from the finite collection. The set of vague lines is

VMLine ≡
{
µ ∈ F(IR2) | ∃

{
µi | µi = h̃i(ηi) ∈ VLine, i ∈ {1 . . . n}

}
, µ =

⊔n
i=1 µi,

∀i, j ∈ {1 . . . n} , i ≠ j ⇒ µi u µj v µ|{hi(0),hi(1)}i t µ|{hj(0),hj(1)}j

}
.

The last condition assures that if the vague line components intersect, they do
so only at their end nodes. A vague line is a special case of a vague multiline,
having n = 1. If n = 0 the vague multiline is the empty set.

A union type VLDim has values that are collections of vague lines and vague
points. The type is defined as

VLDim ≡
{
µ ∈ F(IR2) | ∃ν ∈ VMLine,∃υ ∈ VMPoint, µ = ν t υ

}
.

A VLDim object µ can be a vague multiline if the point component υ is empty,
and it can be a vague multipoint if its line component ν is empty.

3.4.2 Vague line operators

The union, intersection, and difference operators for vague lines are built from
the corresponding fuzzy set operators. The union of two vague multilines is a
vague multiline produced by the fuzzy set union of the input line objects. The
union operator Lunion is defined as

LUnion : VMLine× VMLine→ VMLine
∀µ, ν ∈ VMLine , LUnion(µ, ν) = µ t ν.

The set of vague multilines is closed under union.

The intersection of two vague multilines produces the intersection points of the
two line extensions, associated by the membership values at these points cal-
culated from the fuzzy intersection operator. The (point) intersection of the
extensions of two vague multilines is produced by the intersection operator for
crisp lines. Let µ and ν be two vague multilines. We denote by EIµ,ν the (crisp)
intersection of their extensions: EIµ,ν = Intersection

(
supp(µ), supp(ν)

)
. The in-

tersection operator between vague multilines is defined from the fuzzy restric-
tion to the intersection of their extensions:

LIntersection : VMLine× VMLine→ VMPoint
∀µ, ν ∈ VMLine , LIntersection(µ, ν) = (µ u ν)|EIµ,ν .

The difference operator between two vague multilines produces a multiline taken
from the fuzzy difference of the fuzzy sets. The extension of the result vague
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multiline is the (classical set) difference of the extensions of the input vague
multilines. Membership values along the extension are calculated from the fuzzy
difference. If two vague multilines µ and ν intersect at points, there might be
isolated discontinuity at the result of the fuzzy difference. To correct for this,
we take the regular closure of fuzzy difference (µ − ν)◦ (in the relative topology
T µ−ν

2 ). The difference operator is then defined as

LDifference : VMLine× VMLine→ VMLine
∀µ, ν ∈ VMLine , LDifference(µ, ν) = (µ − ν)◦.

These three operators give the corresponding crisp operators when applied to
crisp multilines.

The boundary of a vague multiline is its uncertain part. It is constructed from the
union of boundaries of its vague line components. For a vague line µ expressed
by a fuzzy set η and a homeomorphism h, the boundary is constructed as the
image by h of the fuzzy boundary of η, h̃(ηb). When the vague line µ is crisp,
its boundary consists of vague points that are the end nodes of the line. When
the membership function along the line is continuous, which means that η is
continuous, the boundary of µ consists of vague line components. In general,
the boundary of a vague line consists of vague points and vague lines. The
boundary of a vague multiline µ =

⊔n
i=1 µi is the union of the boundaries of its

components µi. The boundary operator for vague multilines is defined as

LBoundary : VMLine→ VLDim
∀µ ∈ VMLine, µ =

⊔{
µi | µi = h̃i(ηi) ∈ VLine, i ∈ {1 . . . n}

}
,

LBoundary(µ) =
⊔n
i=1 h̃i(η

b
i ).

Figure 3.9(a) illustrates a vague multiline. The end nodes of its core are indi-
cated in red. Figure 3.9(b) shows its boundary, which consists of vague lines and
vague points. The boundary of a vague multiline µ is the restriction to the set
of locations with positive membership smaller than 1, extended by the boundary
of the core. The last part consists of the end nodes of the cores of vague line
components.

(a) (b) (c)

Figure 3.9: Boundary and frontier of a vague multiline: (a) a vague multiline and the boundary of
its core in red, (b) its boundary, (c) its frontier (the line extension is drawn in light grey).

The frontier of a vague multiline is constructed in a similar way from the fron-
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tiers of its vague line components. The frontier of a vague line µ = h̃(η) is the
image of the fuzzy frontier of η, h̃(ηf ). The frontier of a vague multiline is a
vague multipoint. The operator is defined as

LFrontier : VMLine→ VMPoint
∀µ ∈ VMLine, µ =

⊔{
µi | µi = h̃i(ηi) ∈ VLine, i ∈ {1 . . . n}

}
,

LFrontier(µ) =
⊔n
i=1 h̃i(η

f
i ).

Figure 3.9(c) shows the frontier of the vague multiline of Figure 3.9(a). The fron-
tier of a vague multiline is its restriction to the set of discontinuity locations of
the membership function.

The boundary LBoundary and the frontier LFrontier applied on a crisp multiline
produce the set of end nodes of its line components. Thus, both operators give
the crisp boundary operator when applied to crisp multilines.

3.5 Vague region types and operators

We distinguish two types of vague region objects, vague region representing
the simplest identifiable object, and vague multiregion representing a class of
vague regions. A vague region is a single-component fuzzy set that does not
have irregularities: isolated vague points and vague lines, or punctures and cuts,
i.e., removed vague points and vague lines, respectively. A vague multiregion
is a collection of disjoint vague regions. The fuzzy set of Figure 3.10(a) has a
puncture and a cut, both irregularities that are not allowed for a vague region
object. Figure 3.10(b) illustrates a vague region, and Figure 3.10(c) illustrates a
vague multiregion.

Section 3.5.1 provides definitions for vague regions, vague multiregions and the
type vague extent. Section 3.5.2 provides definitions for vague region operators.
Illustrations for both sections are produced from data on heavy metal concen-
tration in the sediments of the Maas river in Belgium.

3.5.1 Vague region types

A vague region is a broad boundary region, such that points in the broad bound-
ary typically have different positive membership values, which change mostly
gradually between neighbour points in the region. The membership values can
change abruptly along a line, making a stepwise jump. Abrupt changes only at
one location, or membership values along a line changing abruptly from both
sides, are not allowed. Figure 3.11 illustrates different vague regions. The
vague region of Figure 3.11(a) has a connected core and does not have holes.
Its membership function decreases gradually from the boundary of the core to
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(a) (b) (c)

Figure 3.10: Fuzzy sets in IR2: (a) a fuzzy set that is not a vague region, (b) a vague region, (c) a
vague multiregion.

the boundary of the support set. Every α-cut of the region is connected, that
is, the vague region is Weiss-connected (see page 28). The vague region of Fig-
ure 3.11(b) has two cores. It is (Pu-Liu) connected, but not Weiss-connected. The
vague region of Figure 3.11(c) has a single-component core, and it contains holes.
It is Weiss connected. The vague region of Figure 3.11(d) has several cores and
several holes.

(a) (b) (c) (d)

Figure 3.11: Vague region objects.

We want the support set of a vague region to be a crisp region, and the member-
ship function to be almost everywhere continuous in the support set, allowing
stepwise jumps along linear features. A crisp region is bounded, regular closed,
and with connected interior. Figure 2.4(c) illustrates a set that is bounded, reg-
ular closed, and connected, but its interior (Figure 2.4(d)) is not connected. Fig-
ure 2.3(d) illustrates a set that is bounded, regular closed, and has a connected
interior. The set is taken from the regular closure of the set of Figure 2.3(a).

We require the same properties to be satisfied by a vague region in the fuzzy
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topology setting: bounded, regular closed, and have a connected interior for
(IR2,T2). Bounded and connected interior property of the fuzzy set in T2 assure
that the same properties are satisfied by its support set in T2. A regular closed
fuzzy set µ = µ◦ does not have cuts, punctures, isolated lines, or isolated points.
The regular closure assures stronger properties than the upper semi-continuity:
the discontinuities are stepwise jumps along lines; no isolated discontinuities
are allowed, and no discontinuity from both sides of a line occur. It satisfies the
membership function requirement. The set of vague regions is then defined as

VRegion ≡
{
µ ∈ F(IR2)| µ is bounded, µ = µ◦, µ◦ is connected

}
.

The highest membership value may be less than 1. The regular closure property
for T2 excludes the possibility for a vague line or vague multiline to be a vague
region. A crisp region is a specific case of a vague region, when the set µ is a
crisp set.

A vague multiregion represents a class of vague region objects. It is a multi-
component fuzzy set that is bounded and regular closed. Figure 3.10(b) illus-
trates a vague multiregion with only one component, and Figure 3.10(c) illus-
trates a multi-component region. The set of vague multiregions is defined as

VMRegion ≡
{
µ ∈ F(IR2)| µ is bounded, µ = µ◦

}
.

A vague region is a special case of a vague multiregion, being a region with a
single component. A vague multiregion can also be empty.

A vague extension is a collection of vague multiregions and vague multilines.
The set of vague extensions is defined as

VExt ≡
{
µ ∈ F(IR2) | ∃ν ∈ VMRegion,∃υ ∈ VMLine, µ = ν t υ

}
.

A VExt object µ can be a vague multiregion if the line component υ is empty,
and it can be a vague multiline if its region component ν is empty.

3.5.2 Vague region operators

The union, intersection, and difference operators for vague regions are regular-
ized fuzzy set operators. The type VMRegion is closed under these operators,
i.e., the union, intersection or difference of two vague multiregions is a vague
multiregion. The union of two vague multiregions is simply the fuzzy set union.
The union of two bounded fuzzy sets is a bounded set. The union of two regular
closed fuzzy sets is a regular closed fuzzy set. Therefore, the fuzzy set union
of two vague multiregions produces a vague multiregion. The union operator
RUnion is defined as

RUnion : VMRegion× VMRegion→ VMRegion
∀µ, ν ∈ VMRegion , RUnion(µ, ν) = µ t ν.
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(a) (b) (c)

Figure 3.12: Two vague multiregions overlayed: (a) and (b) vague multiregions, (c) overlayed and
displayed by using transparency for the top region.

The intersection of two vague multiregions is the regular closure of their fuzzy
set intersection. Fuzzy intersection of two bounded fuzzy sets is a bounded
fuzzy set. Fuzzy intersection of two regular closed fuzzy sets is not always
regular closed. We obtain a vague multiregion by applying the regular closure on
the result of the fuzzy intersection of two vague multiregions. The interior of a
fuzzy intersection is equal to the fuzzy intersection of the interiors. Therefore,
we can define the intersection operator between regions as

RInterection : VMRegion× VMRegion→ VMRegion
∀µ, ν ∈ VMRegion , RInterection(µ, ν) = µ◦ u ν◦.

(a) (b) (c)

Figure 3.13: Results of operators on vague multiregions of Figure 3.12: (a)–(c) union, intersection,
and difference, respectively.

The difference operator between two vague multiregions µ and ν is built from
the fuzzy difference, which in turn is defined in terms of fuzzy intersection:
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µ u (1IR2 − ν). The fuzzy difference between two vague multiregions produces a
bounded fuzzy set, but not always a regular closed fuzzy set. Again, we apply
the regular closure on the result of the fuzzy operator, in order to get a vague
multiregion. The interior of the fuzzy intersection is equal to the intersection of
the interiors, and the complement of ν is an open set. We can, therefore, define
the difference between vague multiregions as

RDifference : VMRegion× VMRegion→ VMRegion
∀µ, ν ∈ VMRegion , RDifference(µ, ν) = µ◦ u (1IR2 − ν).

The boundary of a vague multiregion µ is its uncertain part, and it is constructed
from the fuzzy boundary µb. The boundary of vague multiregion may consist
of vague regions, vague lines, or both. It is a vague extension. The bound-
ary of a crisp region consists only of lines, whereas the boundary of a vague
multiregion with continuous membership function is a vague multiregion. Fig-
ure 3.14(a) illustrates a vague multiregion with its core boundary drawn in red,
and Figure 3.14(b) shows its boundary, which is a vague extension. The boundary
operator is defined as:

RBoundary : VMRegion→ VExt
∀µ ∈ VMRegion , RBoundary(µ) = µb.

The boundary of a vague multiregion µ is the restriction of µ to locations with
membership values smaller than 1, extended by the boundary of the core:
RBoundary(µ) = µ|{p∈IR2 | 0<µ(p)<1}∪∂µ1

(a) (b) (c)

Figure 3.14: Boundary and frontier of a vague multiregion: (a) a vague region with the core bound-
ary in red, (b) its boundary and (c) its frontier.

The frontier of a vague multiregion µ is calculated as the fuzzy frontier µf . The
frontier operator on vague multiregions returns a vague multiline. If µ has dis-
continuities, the frontier returns all lines of discontinuity. When µ is continuous,
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its frontier is empty. The operator RFrontier is defined as:

RFrontier : VMRegion→ VMLine
∀µ ∈ VMRegion , RFrontier(µ) = µf .

Both operators, the boundary and the frontier, produce the crisp boundary when
applied to crisp multiregions.

3.6 Vague partitions and their operators

In practical applications, vague multiregions may originate from a soft classifica-
tion of space, for example based on remote sensing imagery. Vague multiregions
representing different classes may not be disjoint, as we expect transition zones
to intersect with each other. A soft classification cannot give a crisp partition
of space, but some characteristics of such a partition should be kept to make a
meaningful classification in space. A vague partition serves this purpose. It is a
collection of vague multiregions that may intersect only at their uncertain parts.
The core of one region can intersect with the support set of the other region only
at their boundaries. The set of vague partitions is defined as

VPartition ≡
{
{µi}ni=1 ⊂ VMRegion | ∀i, j ∈ {1 . . . n} , i ≠ j ⇒
µi u µj v RBoundary(µi)u RBoundary(µj)

}
.

To this definition we might add a condition that any location has a positive
membership to at least one vague class: ∀p,∃i, µi(p) > 0.

The operators we define for vague partitions are the overlay and the fusion op-
erator. The overlay operator VPOverlay superimposes two vague partitions, and
creates a new vague partition with vague multiregions obtained from the inter-
sections of a vague multiregion of the first partition with a vague multiregion of
the second partition. It is defined as

VOverlay : VPartition× VPartition→ VPartition
∀P1 = {µi}ni=1,P2 = {νj}mj=1 ∈ VPartition,

VOverlay(P1,P2) =
{
ζi,j | i ∈ {1 . . . n} , j ∈ {1 . . .m} , ζi,j = RInterection(µi, νj)

}
.

It can be shown that the set
{
ζi,j | i ∈ {1 . . . n} , j ∈ {1 . . .m}

}
forms a vague

partition. The overlay operator combines two vague classifications of space, and
creates a new classification that is more refined.

The fusion operator dissolves a vague partition by merging vague multiregions
based on grouping or equality of some attribute value of regions. The operator
assumes an attribute to be associated to vague multiregions of a vague parti-
tion. Let us call such a partition an attribute extended vague partition, and let us
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denote by ADomain the domain of attribute values. The set of such partitions is

AVPartition ≡
{
{(µi, vi)}ni=1 ⊂ VMRegion× ADomain | {µi}ni=1 ∈ VPartition

}
.

For simplicity we consider one attribute attached to the vague regions of a par-
tition. The set ADomain can generally be a Cartesian product of domains of
several attributes. A grouping of attribute values is a function g : ADomain →
ADomain. This function is defined on the assumption that the group values are
in the same domain ADomain. Such a function g is an element of the power set
IP(ADomain × ADomain), the collection of subsets of the Cartesian product of
ADomain with itself. The fusion operator is then defined as

VFusion : AVPartition× IP(ADomain× ADomain)→ AVPartition
∀A = {(µi, vi)}ni=1 ∈ AVPartition, ∀g ∈ IP(ADomain× ADomain),

VFusion(A) =
{{
(ζj ,wj)

}m
j=1

∣∣ {wj}mj=1 = ran(g),
∀j ∈ {1 . . .m} , ζj =

⊔{
µi | g(vi) = wj

}}
.

The generalized fuzzy union of vague multiregions has a vague multiregion as
its output, therefore ζj ’s are VMRegion objects. It can be shown that the set{
ζj
}m

1
forms a vague partition. The fusion operator allows to generalize a vague

partition.

3.7 Discussions and Conclusions

The spatial types introduced in this chapter reflect an ontological view of vague-
ness. They are adequate to represent objects from spatial phenomena where
vagueness is inherent. We assume that vagueness is present in properties of the
objects, and not in their location. The proposed vague region types, however,
can also cover locational vagueness. To present points and lines exhibiting loca-
tional vagueness we could use the vague region types with an additional restric-
tion that the membership value should not reach the value 1. This restriction
is based on the assumption that a location with a membership value equal to 1
gives with certainty the point, or a part of the line extension. The real differenti-
ation between the objects, points, lines, and regions, would then be left to their
operators, which should hold a different semantic for each object type.

This chapter provided the set of vague spatial types that we use throughout this
thesis. The vague types are separated into simple and general ones. The simple
types represent atomic objects, i.e., identifiable entities that are not composed
of others. A simple object is an element of the set

SVSpatial = VPoint∪ VLine∪ VRegion.

To such objects we can assign attribute values, which enrich the geometric data,
and give it the real importance for use in different applications. The general
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types assure closure under operators. They represent classes of simple objects
that have the same value on a specific attribute. A class of simple objects is an
element of the set

GVSpatial = VMPoint∪ VMLine∪ VMRegion.

Vague partitions allow for a soft classification of space. The two other spatial
types, VLDim and VExt assure closure under the boundary operators. The set of
all vague spatial types is

VSpatial = SVSpatial∪ GVSpatial∪ VLDim∪ VExt∪ VPartition.

The vague types proposed are such that they include crisp objects as special
cases.

The vague operators defined in this chapter are the operators returning spatial
types. One group of operators are the regularized fuzzy set operators: union, in-
tersection, and difference. Other operators can be built from those, e.g., symmet-
ric difference. The other group consists of two operators from topology: bound-
ary and frontier. The boundary operator extracts the transition zone, which is
the main characteristic of a vague object. The frontier gives the locations where
abrupt changes occur on the membership values of a vague object. The last
group of operators are the operators on vague partitions. The overlay operator
combines two vague partitions to form a new one more refined, and the fusion
operator allows for generalization of a vague partition. All the operators are
equivalent with their crisp correspondents when applied to crisp objects. The
frontier operator preserves the relation between objects of different dimension,
which is the property of the crisp boundary operator.
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Chapter 4

Spatial relations between vague
objects

Spatial relations between objects are an essential information source for reason-
ing about space. They are mostly binary relations between objects either of the
same type or of different types. Examples of such relations are disjoint, overlap,
or equal. A few models exists for relations between crisp objects, each proposing
a complete set of relations1 and defining them formally. Most of the relations
proposed in different models are intuitively the same, following common under-
standing and named in natural language terms. The objective of this chapter is to
define spatial relations between vague objects, by extending proposed relations
between crisp objects (crisp relations hereafter).

This chapter provides mathematical definitions of spatial relations between vague
multipoints, vague multilines and vague multiregions. The spatial relations pro-
vided take value in the interval [0,1]. A value v between 0 and 1 for a relation
R(µ, ν), means that objects µ and ν are in relation R to the degree v . A value 0
for R(µ, ν) means that µ and ν are certainly not in relation R, whereas a value
1 means the two are certainly in R. Spatial relations are defined from member-
ship values of the objects involved, considering extreme values that support a
relation or disapprove it. Relations are such that only one relation is certain at
a time. They include crisp relations as special cases, meaning, when applied to
crisp objects they return the same result as the corresponding crisp relation.

The chapter is organized as follows. Section 4.1 summarizes the main approaches
on spatial relations between crisp and vague objects: the 4– and 9–intersection
models[37, 39] including SQL/MM [1], the Region Connection Calculus [72, 73]
(RCC model), and their extensions to relations between vague objects. Our set of
relations between vague objects is the same with the SQL/MM set of spatial rela-
tions, and follows the intuition behind them. Therefore, we put more attention
to the description of SQL/MM spatial relations. Section 4.2 provides the defini-
tions of spatial relations between vague objects. Section 4.3 describes properties

1The term complete here means the set of relations is pairwise disjoint and jointly exhaustive.
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of these relations. Section 4.4 discusses another way of defining spatial relations
as a kind of average over membership values of the objects involved. Section 4.5
summarizes the chapter.

4.1 Previous work

Topology and mereology are two main approaches to represent space and reason
about important characteristics of it. Topology [60] takes points as primitives
and builds objects as sets of points having specific properties like being open
or closed, compact, connected, and so forth2. Mereology (from the old Greek
µερoς, ‘part’) is the theory of parthood relations — relations of part to whole
and relations of part to part within a whole [103]. Mereology takes regions as
primitives, and does not consider lower dimension objects, points and lines.

Formal models for representing objects in space and their spatial relations are
provided by both approaches. The 4– and 9–intersection models [35, 36, 37,
38, 39] are based on topology, whereas the RCC model [20, 72, 73, 93] is based
on mereology. Both models deal with relations between crisp objects. Several
models have been proposed subsequently on spatial relations between vague
objects, following one of the crisp models. Most of them [7, 18, 19, 21, 22, 79, 94]
are dedicated to relations between vague regions, considering them as broad
boundary regions. Others [80, 83, 84, 97, 116, 117] employ fuzzy set theory to
model spatial objects, considering gradual transitions in the broad boundary.
Some of these models extend the set of true–false relations to allow for more
configurations [18, 21, 97]. Others keep the same set of relations extending their
values to three, including ‘maybe’ [41, 79] or to the infinite [0,1] interval [83, 84,
116]. The upcoming sections summarize the main models of crisp relations, and
relations between vague objects.

4.1.1 Spatial relations between crisp objects

The 9–intersection model identifies the spatial relations between two objects by
first partitioning the space into interior, boundary, and exterior for each object,
followed by the identification of meaningful configurations from the intersec-
tions of any combination of two parts. Each configuration excludes the other,
and all cover the whole range of possibilities, making the relations pairwise dis-
joint and jointly exhaustive. The model built in that way presents the relations
as independent from each other. The RCC model on the other side, captures
the logical relationship between different spatial relations. It only deals with
region objects, ignoring points and lines. It considers a connection relation as
the basic relation, and expresses all other relations in terms of connection di-

2Section 2.2 gave a short treatment of some basic topological properties.
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rectly or through other relations, via logical formulas. It proposes two sets of
pairwise disjoint and jointly exhaustive relations. The next section discusses
the 9–intersection model together with its derivatives, describing in more detail
the SQL/MM relations. The section after that discusses the RCC model, and the
correspondence between its relations and the 9–intersection model relations.

The 9–intersection model

Egenhofer and Franzosa [37] proposed a 4–intersection model that identifies bi-
nary spatial relations between two regions based on the intersections of their
interiors and boundaries. For two regions A and B, the model determines the
empty/non-empty value of the intersections between the interior A◦ or the bound-
ary ∂A of A, and the interior B◦ or the boundary ∂B of B. From 24 combinations
only eight configurations are possible, giving in turn eight spatial relations. Fig-
ure 4.1 illustrates these relations together with the values of the intersections
between interiors and boundaries.
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Figure 4.1: Spatial relations between regions identified by the 4–intersection model, and the re-
spective empty/non-empty values of the interior and boundary intersections.

The 4–intersection model was refined in [35, 38] with further topological invari-
ants, e.g., dimension of intersection components, type of components, etc., to
account for more detailed spatial relations. In [39], the 4–intersection model
was generalized for n-dimensional spaces, forming a 9–intersection model. The
objects of space are n-cells, defined from combinatorial topology [2]. Spatial
relations between n-cells are defined considering the empty/non-empty intersec-
tions of interiors, boundaries, and exteriors of two n-cells. The 9–intersection
model gives the same set of eight spatial relations when applied to 2-cells (re-
gions).
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The 9–intersection model extended by the dimension of the intersections, DE-
9IM, was used to define SQL/MM spatial relations [1]. In what follows, we denote
the exterior of a region A by A−. The derivation of relations between regions A
and B can be expressed concisely by the matrix:

R(A,B) =

 Dim(A
◦ ∩ B◦) Dim(A◦ ∩ ∂B) Dim(A◦ ∩ B−)

Dim(∂A∩ B◦) Dim(∂A∩ ∂B) Dim(∂A∩ B−)
Dim(A− ∩ B◦) Dim(A− ∩ ∂B) Dim(A− ∩ B−)


Combinatorial topology is used to define the interior, boundary and exterior of
objects. A multipoint is a 0–dimensional object; a multiline is a 1–dimensional
object; a multipolygon3 is a 2-dimensional object. The boundary of a multipoint
is the empty set. The boundary of a multiline is a multipoint, consisting of
the end nodes (at an odd number) of its line components. The boundary of
a multipolygon is a multiline, consisting of the set of linear rings that are the
outer boundary and holes boundaries of each polygon component. The interior
of an object is the difference between the object and its boundary.

The SQL/MM spatial relations, Disjoint, Touches, Crosses, Overlaps, Within, and
Equal, are defined as binary operators on objects of any type. An SQL/MM rela-
tion is undefined for a combination of object types for which it is always false.
In the description of these relations that we give below, we consider them to be
defined for all the types, noting the combination of types for which the relation
is always false. We do not always follow the formal definition of a relation as it
is given in ISO standard, replacing it with a simpler form that is good enough for
our purpose. For the definitions of relations we use A and B to denote objects
of any type. For the illustrations we use different grey levels to show different
objects. The relations are defined as:

• Disjoint(A,B) is true if objects do not intersect: A∩ B = ∅.

• Touches(A,B) is true if objects intersect but their interiors do not: (A∩ B ≠
∅) ∧ (A◦ ∩ B◦ = ∅). A multipoint–multipoint relation would therefore

(a) (b) (c) (d) (e)

Figure 4.2: The Touches relation between objects of different dimension: (a) a point touching a
line, (b) a point touching a region, (c) two touching multilines, (d) a line touching a region, (e) two
touching multiregions.

3A polygon is a computer representation of a region. For consistency with our labelling we use
the term region in the description of the relations.
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always be ‘false’. Figure 4.2 illustrates the relation for all the other com-
binations. The Touches relation between multiregions is equivalent to the
Meet relation of the 4–intersection model.

• Crosses(A,B) is true if object interiors intersect in a lower dimension than
the maximal dimension of the objects, and neither object is subset of the
other :
(−1 < Dim(A◦ ∩ B◦) <max(Dim(A),Dim(B)))∧A 6⊆ B∧ B 6⊆ A.
Dimension more than -1 means the set is not empty. Only multiline–
multiline and multiline–multiregion relations are possible (see Figure 4.3
for illustrations). All the other relations are always ‘false’.

(a) (b)

Figure 4.3: The Crosses relation between multilines and multiregions: (a) two crossing lines, (b) a
line crossing a region.

• Overlaps(A,B) is true if object interiors intersect in the same dimension that
the objects have themselves, but neither object is subset of the other :
(Dim(A◦ ∩ B◦) = Dim(A) = Dim(B))∧A 6⊆ B∧ B 6⊆ A.
Consequently, the relation is ‘false’ for objects of different dimension. Fig-
ure 4.4 illustrates the relation between multilines and multiregions.

(a) (b)

Figure 4.4: The Overlaps relation between multilines and multiregions: (a) two overlapping lines,
(b) two overlapping regions.

• Within(A,B) is true if the first object is a proper subset of the second: A ⊂ B.
Figure 4.5 illustrates the relation for different combination of objects. The
Within multiregion–multiregion relation can be any of the 4–intersection
relations CoveredBy or Inside.

• Equals(A,B) is true if objects are equal (each object is subset of the other):
A = B. The relation is obviously ‘false’ for objects of different dimension.

Figure 4.6 shows the hierarchy of SQL/MM spatial relations. Relations in grey
boxes are the SQL/MM relations. The symbol > (top) shows an arbitrary relation.
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(a) (b) (c) (d) (e)

Figure 4.5: The Within relation between different dimension objects: (a) a point within a line, (b) a
point within a region, (c) a line within a region, (d) two lines one within the other, (e) a multiregion
within a region.

The double arrowed lines show equivalence, and are used for renaming a node of
the tree to the corresponding SQL/MM spatial relation. All the (other) branches
going out of a node form relations that are pairwise disjoint. The SQL/MM spatial
relations are the leaf nodes of the tree, and are therefore pairwise disjoint. They
are the only leaf nodes, therefore their union gives the arbitrary relation >. That
means, the relations are jointly exhaustive.

T

A and B intersect

Disjoint(A,B)

Touches(A,B)

Interiors intersect

Crosses(A,B)

Intersection has dim lower
than max dim of A and B

Overlaps(A,B)

One is a subset of the other

Within(A,B) Within(B,A)

Equal(A,B)

A and B do not intersect

Interiors do not intersect

None is a subset of the other

Intersection has same dim
with dimension of A and B

Figure 4.6: The hierarchy of SQL/MM spatial relations.

Region Connection Calculus

The RCC model captures the dependence between different spatial relations be-
tween regions. A connection relation C is the basic relation. Two regions A,B are
in C relation if they share at least one location, i.e., one common point occurs in
A and B. Other spatial relations are defined from C using first order logic formu-
las. Table 4.1 lists the relations identified by the model and the logical formulas
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connecting them. Relation names are in bold face; non bold face A, B, and C, are
RCC regions.

Relation Interpretation Definition of relation

DC(A,B) A disconnected from B ¬C(A,B)
P(A,B) A is part of B ∀C[C(A,C)⇒ C(C,B)]
PP(A,B) A is proper part of B P(A,B)∧¬P(B,A)
EQ(A,B) A coincides with B P(A,B)∧ P(B,A)
O(A,B) A overlaps B ∃C[P(C,A)∧ P(C,B)]
DR(A,B) A discrete from B ¬O(A,B)
PO(A,B) A partially overlaps B O(A,B)∧¬[P(A,B)∨ P(B,A)]
EC(A,B) A externally C(A,B)∧¬O(A,B)

connected to B
TPP(A,B) A is tangential PP(A,B)∧ ∃C[EC(C,A)∧ EC(C,B)]

proper part of B
NTPP(A,B) A is non-tangential PP(A,B)∧¬∃C[EC(C,A)∧ EC(C,B)]

proper part of B

Table 4.1: Spatial relations definable in terms of connection C (taken from [20]).

T

T

C DR

O

P Pi

PP

PO NTPP TPP EQ NTPPi TPPi EC DC

PPi

RCC8

Figure 4.7: The hierarchy of RCC spatial relations (taken from [20]).

The complete set of RCC relations and their relationships is shown in Figure 4.7.
The relations form a lattice, in which the order models an ‘IS-A’ relationship. For
example, a proper part relation (PP) is a part-of relation (P). The symbol > (top)
shows an arbitrary relation. The symbol ⊥ (bottom) shows an impossible rela-
tion. Two regions are either connected or separated. This means they are either
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in a C or a DR relation. The set of relations C and DR are jointly exhaustive, but
they are not disjoint. The relation EC is a C and a DR relation. Two relations
are pairwise disjoint if one excludes the other. Two models, RCC8 and RCC5,
are built from these relations, each consisting of pairwise disjoint and jointly
exhaustive relations. Relations of the level just above ⊥ form the RCC8 model.
They are pairwise disjoint: any combination or relations is impossible. They are
jointly exhaustive, which can be seen by following up the hierarchy of Figure 4.7.
Relations in grey boxes form the RCC5 model. Following the hierarchy, it can be
seen that they are pairwise disjoint and jointly exhaustive as well.

The RCC8 and the 4–intersection model result intuitively in the same set of re-
lations. Figure 4.8 illustrates RCC5, RCC8, 4–intersection relations, and the rela-
tionships between them.

A
B

A
B

A
B A

B
ABA

B A
B A B

PO(A,B) PP(A,B) PPi(A,B) EQ(A,B)DR(A,B)

DC(A,B) EC(A,B) PO(A,B) TPP(A,B) NTPP(A,B) TPPi(A,B) NTPPi(A,B) EQ(A,B)

Disjoint(A,B) Meet(A,B) Overlap(A,B) CoveredBy(A,B) Inside(A,B) Covers(A,B) Contains(A,B) Equal(A,B)

Figure 4.8: Relations identified by RCC5, RCC8, 4–intersection model, and their correspondence.

A formal correspondence between the two models cannot be established eas-
ily, because they are based on fundamentally different theories. Proofs exist,
though, that point-sets satisfying certain topological properties can be used to
build RCC models [45, 93]. Stell [93] proves that regular closed sets on a con-
nected, regular topological space X can serve as a model for region connection
calculus. Connection relation C is modelled by the connectedness property, as
defined in Section 2.2.

4.1.2 Spatial relations between vague regions

Several models have been proposed to describe spatial relations between vague
or indeterminate regions [18, 19, 21, 41, 79, 83, 84, 85, 94, 97, 112, 116, 117].
Some of these models can handle both indeterminacy and vagueness, whereas
others are appropriate only for one of these characteristics. Vagueness can be
ontological or linguistic. Ontological vagueness means no sharp boundaries
but gradual transition. Linguistic vagueness and indeterminacy, on the other
hand, mean impossibility of determining where the sharp boundary lies. The
impossibility of knowing the sharp boundary for indeterminacy can be seen as
lack of knowledge, which could be obtained in some way. This is typically not
the case for linguistic vagueness. Models of spatial relations extend the num-
ber of known binary relations for crisp regions to allow additional configura-
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tions [18, 19, 21, 97], or they keep the same relations as for crisp regions, but
extend their values from two (true, false) to three [41, 79], to a six-valued lat-
tice [94, 112], or to the [0,1] interval [83, 84, 85, 116, 117].

The Egg-Yolk model [21] builds the spatial relations between egg-yolk regions
from RCC5 relations applied to the eggs and yolks of the regions. Denoting by R
a variable taking a value from the set of RCC5 relations, and by y(A) and e(A)
the yolk and egg of an egg-yolk region A, respectively, the egg-yolk relations
between A and B are identified by considering four different combinations in the
matrix: [

R(y(A),y(B)) R(y(A), e(B))
R(e(A),y(B)) R(e(A), e(B))

]
.

Because yolks and eggs of any egg-yolk region are by definition in a part-of re-
lation, only 46 of the 54 combinations are possible. This gives 46 different two-
valued relations.

Clementini and di Felice [18, 19] define spatial relations between broad boundary
regions using the 9–intersection model, replacing the line boundary with the
broad boundary. Relations are identified by considering the empty/ non-empty
values of the intersections: A◦ ∩ B◦ A◦ ∩4B A◦ ∩ B−

4A∩ B◦ 4A∩4B 4A∩ B−

A− ∩ B◦ A− ∩4B A− ∩ B−

 .
Interior, broad boundary 4, and exterior of any region are related to each other.
Therefore, only 44 of the 29 combinations of empty/non-empty values are pos-
sible. From those, 42 correspond to relations of the egg-yolk calculus. The other
two are divided in two different relations from the egg-yolk calculus [79].

Tang [97] extends the 3× 3 matrix of the 9–intersection model to a 4× 4 matrix,
which is also checked for empty/non-empty values of the intersections. Using
the notation of Clementini and di Felice model, the broad boundary is decom-
posed into its interior, (4A)◦, and its boundary, ∂(4A). The broad boundary is
replaced by these two components forming a 4 × 4 matrix. Figure 4.9 shows a
fuzzy set µ, and the elements extracted from it to define the matrix of topologi-
cal relations: the interior of the core, the interior of supp(µb), and the boundary
of supp(µb). The matrix is formed from these three elements, and the exterior
of supp(µ). Tang identifies 152 topological relations for vague regions. The 9–
intersection model is extended in a similar way for topological relations between
the other object types, vague points and vague lines, and their relations with
vague regions. The number of relations proposed by this model and the previ-
ous two is relatively big, which makes them somehow unpractical for use in real
applications.

Erwig and Schneider [41] extend the values of known spatial predicates for crisp
regions to three–valued predicates — true, maybe, false. They build spatial
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4.2. Spatial relations between vague objects

(a) (b) (c) (d)

Figure 4.9: Elements of the 4× 4 matrix: (a) a fuzzy set µ, and its core boundary drawn in red, (b)
the interior of µ’s core, (c) the interior of the support set of µ’s boundary, (d) the boundary of the
support set of µ’s boundary.

relations between two vague regions from relations between their kernels and
boundaries, coming up with three–valued relations between vague regions.

Vague regions are represented as rough sets in [79, 94, 112]. The RCC model is
used to define spatial relations between vague regions, which extend the values
of RCC relations to three, true, maybe, and false. Roy and Stell [79] propose a
model for indeterminate regions and their spatial relations that is an extension
of the RCC model. Logical formulas expressing the dependencies between RCC
spatial relations, hold in a three–valued Łukasiewicz logic for vague relations
proposed in [79]. These vague relations fall into RCC relations when applied to
crisp regions. The model is appropriate for expressing relations between vague
regions having a linguistic type of vagueness.

The previous two models propose spatial predicates that take three values. They
are appropriate for vague regions which membership values are also in that
range, true, maybe, and false. The membership values of fuzzy regions cover
a wider range, the [0,1] interval. Zhan [116, 117] and Schneider [83, 84, 85] pro-
pose relations that take values in the same range with their membership values,
the [0,1] interval. They define a fuzzy relation for each crisp relation of the
4–intersection model. A fuzzy relation R between two fuzzy regions µ and ν
is calculated from the corresponding crisp relation R using a finite number of
α-cuts, α1 = 1 > α2 > . . . > αn = 0:

R(µ, ν) = Σn−1
i=1 Σn−1

j=1 (αi −αi+1) · (αj −αj+1) · R(µαi , ναj).

The value of the relation R depends on the selected α-cuts, i.e., when the set of
α values changes, the R value will change as well.

4.2 Spatial relations between vague objects

We restrict ourselves to a small set of relations, those proposed by the SQL/MM
spatial. Our relations, Disjoint, Touches, Crosses, Overlaps, Within, and Equal,

62



Chapter 4. Spatial relations between vague objects

follow the intuition behind SQL/MM spatial relations. They are dyadic operators
with arguments that are vague objects of a general type. Their return value is
a number in the unit interval [0,1]. We introduce a new type, TruthDegree ≡
[0,1], to be the return type of spatial relations between vague objects.

Relations are presented below in the order mentioned above. First, the meaning
of a relation is described, followed by its definition. Then, we prove that the cor-
responding crisp relation is a special case of the vague one. In the illustrations
of this section, different colours indicate different objects. When an illustration
uses two vague multiregions, we draw them in 3D using the membership value
as the third coordinate (in the hope that it helps conveying better the idea).

(a) (b) (c)

Figure 4.10: Three different cases of a Disjoint relation: (a) certainly disjoint vague multipoint
and vague multiregion, (b) possibly disjoint vague multiregions, (c) certainly not disjoint vague
multiline and vague region.

Two vague objects are certainly disjoint if their support sets are disjoint. They
are certainly not disjoint if their cores intersect. In all other cases they are dis-
joint to some positive degree, dependent on the membership values of the in-
tersection. Figure 4.10(a) illustrates a vague multiregion and a vague multipoint
that are disjoint. The two vague multiregions of Figure 4.10(b) are possibly dis-
joint. Their cores, with boundaries drawn in red and green, respectively, do not
intersect, but their support sets do. Figure 4.10(c) shows a vague multiline and
a vague region that are certainly not disjoint, because their cores intersect. The
boundary of the core of the vague region is drawn in light green, whereas the
core of the multiline is shown in fully saturated red.

Two vague objects µ and ν are not disjoint if their intersection is not empty,
i.e., µ u ν ≠ 0IR2

. The intersection disproves their disjointness. We consider the
highest membership value of the intersection to be the degree of disapproval.
The degree of the relation Disjoint(µ, ν) is calculated as the substraction of the
degree of disapproval from the full certainty value 1. The relation Disjoint is
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4.2. Spatial relations between vague objects

thus defined as:

Disjoint : GVSpatial×GVSpatial→ TruthDegree
∀µ, ν ∈ GVSpatial , Disjoint(µ, ν) = 1− supp∈IR2

{
(µ u ν)(p)

}
.

If µ and ν are crisp objects, µuν takes only values 0 or 1, as it is the minimum of
two characteristic functions. Disjoint(µ, ν) is equal to 0 iff there is p such that
µ(p) = 1 and ν(p) = 1, that is the two objects share at least one location. It is
equal to 1 if and only if there is no such p, i.e., the two objects have no common
location. This is the behaviour of the crisp relation Disjoint.

The relations Touches, Crosses, and Overlaps, are defined using the notion of
object interior. We first define what is the interior µ? of a vague object µ, for each
type. The interior of a vague multipoint µ is the vague multipoint itself: µ? = µ.
The interior of a vague line µ = h̃(η), is the image by h of the fuzzy interior of η
for (IR,T1): µ? = h̃(η◦). Figure 2.15(d) illustrates the membership function for a
vague line, and Figure 2.15(c) shows its interior. The interior changes the value
of the function only at its discontinuity points, by putting it to the lowest value.
The interior of a vague multiline µ =

⊔n
i=1 µi is µ? =

⊔n
i=1 µ

?
i . The interior of a

vague multiregion µ is its fuzzy interior for (IR2,T2): µ? = µ◦. It changes the
value of the function along discontinuity lines, by putting it to the lowest value.
If µ is a crisp object, µ? is the characteristic function of the crisp interior of the
object.

(a) (c)(b)

Figure 4.11: Three different cases of a Touches relation: (a) certainly touching vague multipoint
and vague line, (b) possibly touching vague line and vague multiregion, (c) certainly not touching
vague line and vague region.

Two vague objects touch if their boundaries intersect, but the interiors of their
cores do not. Figure 4.11 illustrates three cases of Touches relation: certainly
touching objects, possibly touching, and certainly not touching objects. The
vague multipoint of Figure 4.11(a) has a vague point component with member-
ship 1 located at an end node of the vague line, which is in the boundary of the
line because it is the end node of the core. The vague line of Figure 4.11(b) passes
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Chapter 4. Spatial relations between vague objects

through the boundary of the vague multiregion, and their cores do not intersect.
The two objects are possibly touching. The cores of the vague line and the vague
region of Figure 4.11(c) intersect, therefore the objects are not touching.

The degree of the relation is calculated from the intersection of one object with
the boundary of the other, provided that their core interiors do not intersect.
The maximal degree of this intersection is considered to be the degree of the
relation. Let us denote by δµ the boundary of a vague object µ. If µ is a vague
multipoint δµ = PBoundary(µ); if it is a vague multiline δµ = LBoundary(µ);
for a vague multiregion δµ = RBoundary(µ). The relation Touches is defined
as:

Touches : GVSpatial×GVSpatial→ TruthDegree
∀µ, ν ∈ GVSpatial,

Touches(µ, ν) =


0 if µ v ν or ν v µ or

supp
{
(µ? u ν?)(p)

}
= 1,

supp
{(
(µ u δν)t (δµ u ν)

)
(p)

}
otherwise.

The conditions in the right side force a Touches relation to be false when one
object is a subset of the other, or when their cores intersect.

For crisp objects µ and ν , the Touches relation can only take values 0 and 1,
because all the functions involved are characteristic functions. The relation
may be true, i.e., its value is equal to 1, only if supp(µ? u ν?)(p) < 1 that
means the object interiors do not intersect. The boundaries δµ and δν are
the crisp boundaries ∂

(
supp(µ)

)
and ∂

(
supp(ν)

)
, respectively. The expression

supp
{(
(µ u δν)t (δµ u ν)

)
(p)

}
translates to

(
supp(µ)∩∂supp(ν)

)
∪
(
∂supp(µ)∩

supp(ν)
)

is empty or not empty. Therefore, the relation Touches(µ, ν) is equal
to 1 iff

(
supp(µ)∩ ∂supp(ν)

)
∪
(
∂supp(µ)∩ supp(ν)

)
≠∅, given that their inte-

riors do not intersect. Thus, Touches(µ, ν) is true iff µ and ν intersect but their
interiors do not, which is the behaviour of the crisp relation Touches.

Two vague objects cross each other to a positive degree if their support sets
cross each other. The relation is possible only between vague multilines, or a
vague multiline and a vague multiregion. It is always false for any other combi-
nation of object types. Two vague multilines possibly cross if their extensions
intersect in a finite number of points. A vague multiline possibly crosses a vague
multiregion if the line extension intersects the support set of the region without
being fully inside it. Figure 4.12 illustrates different cases of the Crosses rela-
tion. It shows two vague lines that are certainly crossing, because their cores
intersect. This is also the case for the vague line and the vague region of Fig-
ure 4.11(c). Figure 4.12(b) shows a possibly crossing vague line and vague re-
gion. The vague multiline and vague multiregion of Figure 4.12(c) are certainly
not crossing, because their support sets are disjoint.

For two vague objects µ and ν , we take the highest value of the intersection of
their interiors to be the degree of Crosses(µ, ν) relation. The Crosses relation
is defined in terms of crisp Crosses relation between the support sets of the

65



4.2. Spatial relations between vague objects

(a) (b) (c)

Figure 4.12: Three different cases of a Crosses relation: (a) certainly crossing vague lines, (b)
possibly crossing vague line and vague region, (c) certainly not crossing vague multiline and vague
multiregion.

objects:

Crosses : GVSpatial×GVSpatial→ TruthDegree
∀µ, ν ∈ GVSpatial,

Crosses(µ, ν) =
{

supp
{
(µ? u ν?)(p)

}
if Crosses(supp(µ), supp(ν)),

0 otherwise.

If µ and ν are crisp objects, the expression supp(µ?uν?)(p) can only have values
0 or 1, and so does the Crosses relation. From the definition it can be seen that
Crosses(supp(µ), supp(ν)) is false implies that Crosses(µ, ν) is equal to 0. Also,
if Crosses(µ, ν) is equal to 1, then Crosses(supp(µ), supp(ν)) is true. There are
two more implications that prove the equivalence: the relation Crosses is true
implies that Crosses is equal to 1, and Crosses is equal to 0 implies that Crosses
is false. Indeed, Crosses(supp(µ), supp(ν)) is true implies that the interiors of
µ and ν intersect, which in turn implies that supp(µ? u ν?)(p) = 1. Thus,
Crosses(µ, ν) is equal to 1. It can be shown similarly that if Crosses(µ, ν) is
equal to 0, then Crosses(supp(µ), supp(ν)) is false.

Two vague objects overlap to a positive degree if their support sets overlap. They
certainly do not overlap if their support sets do not intersect. They certainly
overlap if the interiors of their cores intersect. The relation is possible only
between objects of the same type, vague multipoints, vague multilines, or vague
multiregions. It is always false for the other combinations of vague objects.
Figure 4.13(a) shows two vague lines that share some part of their cores, and
are therefore certainly overlapping. The two vague regions of Figure 4.10(b)
are possibly overlapping. The degree of overlap is the highest value of their
intersection, which is shown by the grey line. The two vague multipoints of
Figure 4.13(c) have disjoint support sets, therefore they certainly do not overlap.
The Overlaps relation is also defined in terms of the crisp Overlaps between the
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(a) (b) (c)

Figure 4.13: Different cases of an Overlaps relation: (a) certainly overlapping vague lines, (b)
possibly overlapping vague regions, (c) certainly not overlapping vague points.

support sets of the objects:

Overlaps : GVSpatial×GVSpatial→ TruthDegree
∀µ, ν ∈ GVSpatial,

Overlaps(µ, ν) =
{

supp
{
(µ? u ν?)(p)

}
if Overlaps(supp(µ), supp(ν)),

0 otherwise.

For crisp objects µ and ν , Overlaps(µ, ν) can only have values 0 or 1. From the
definition, Overlaps(supp(µ), supp(ν)) is false implies that Overlaps(µ, ν) = 0,
and Overlaps(µ, ν) = 1 implies that Overlaps(supp(µ), supp(ν)) is true. In-
versely, the relation Overlaps(supp(µ), supp(ν)) is true means that

(
supp(µ)

)◦∩(
supp(ν)

)◦ ≠ ∅, which in turn implies supp(µ? u ν?(p) = 1. It can be shown
similarly that if Overlaps(µ, ν) = 0, then Overlaps(supp(µ), supp(ν)) is false.

(a) (b) (c)

Figure 4.14: Three different cases of a Within relation: (a) vague regions one within the other, (b)
multi vague regions possibly one within the other, (c) a vague multiline certainly not within the
vague multiregion.

A vague object µ is certainly within another object ν if µ is a subset of ν , i.e.,
∀p,µ(p) ≤ ν(p). If the core of µ is not fully inside the support set of ν , we con-
sider that the two objects are certainly not in a Within relation. Otherwise, the
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4.2. Spatial relations between vague objects

objects are in a Within relation to some positive degree. Figure 4.14 illustrates
different cases of the within relation. The vague region in red in Figure 4.14(a)
is fully within the region shown in transparent green. The vague region in red in
Figure 4.14(b) is mostly within the region in green. There are location where the
membership of the red region is higher than the membership of the green re-
gion: the peaks in saturated red that come out of the green surface. The Within
relation is possible for the vague multiregions, but not certain. The vague line of
Figure 4.14(c) is certainly not within the vague multiregion because a part of its
core is outside the support set of the region.

line extension
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Figure 4.15: The membership function η at locations for a vague line. Vague points pλ and qλ lie
at different locations in the vague line. The membership value of the vague line at p’s location is
higher than λ, its membership at q’s location is lower than λ.

Figure 4.15 illustrates membership functions of two vague points pλ and qλ, and
the membership function η of a vague line. Points pλ and qλ have the same
membership value and their locations lie on the line extension. The value λ is
lower than the membership value of the line at location p, but it is higher than
the membership value of the line at location q. The vague point pλ is certainly
within the vague line. The vague point qλ is possibly within the vague line.
The value λ− η(q) weakens the within relation. We consider this value to be the
degree of disapproval of the within relation, and define the degree of the relation
Within(qλ, η) to be 1−

(
λ− η(q)

)
.

For any two vague objects µ and ν , if there are locations where µ(p) > ν(p), then
µ is within ν to some degree smaller than 1. A positive difference µ(p) − ν(p)
weakens (disapproves) the Within(µ, ν) relation. The relation is the most dis-
proved at the location(s) where this positive difference reaches the maximum.
We are therefore interested in the positive difference. The bounded difference
operator, (µ ∇ ν)(p) = max

{
0, µ(p)− ν(p)

}
, provides what we need. We con-

sider the maximum difference as the degree of disapproval of the Within rela-
tion, and calculate the value of the relation as the substraction of the disapproval
degree from the truth value 1. The relation Within is defined as:

Within : GVSpatial×GVSpatial→ TruthDegree
∀µ, ν ∈ GVSpatial,

Within(µ, ν) =


0 if µ u ν = 0IR2

or µ = ν or ν v µ or
supp

{
(µ u ν)(p)

}
= 1 and µ 6v ν,

1− supp
{
(µ∇ ν)(p)

}
otherwise.
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The conditions in the right side force the Within relation between µ and ν to be
false when objects are disjoint, or they are equal. Also, the relation is false if ν is
a subset of µ, or the cores of µ and ν intersect (that means, one of the previous
relations might be certain) but µ is not a subset of ν .

For crisp objects µ and ν , the bounded difference µ∇ ν takes only values 0 or 1,
therefore Within(µ, ν) can only take these values. The relation Within(µ, ν) is
equal to 1 means that supp(µ ∇ ν)(p) = 0. That means there is no location
p such that µ(p) = 1 and ν(p) = 0. That is to say that all locations of µ
are also in ν . Thus, the relation Within(supp(µ), supp(ν)) is true. The inverse,
Within(supp(µ), supp(ν)) is true implies that Within(µ, ν) = 1, can be shown
similarly. Within(µ, ν) = 0 implies supp(µ∇ ν)(p) = 1, which means there is at
least one location p such that µ(p) = 1 and ν(p) = 0. That is, there are locations
from µ that are not in ν , therefore the Within(supp(µ), supp(ν)) relation is false.
The inverse can be shown similarly.

(a) (c)(b)

Figure 4.16: Two vague regions that are similar: (a) and (b) vague regions with their cores drawn
in red, (c) the two regions shown in different colours, drawn in 3D.

Two vague objects are certainly equal if their membership functions are equal.
If the core of one object lies partially outside the other object, the two objects
are certainly not equal. Otherwise they are equal to some positive degree. Fig-
ure 4.16 shows two vague regions that are possibly equal. Part (a) and (b) show
the two vague regions separately, in 2D. Part (c) shows the two vague regions
as surfaces in 3D with their membership values as z coordinate. It can be seen
that the surfaces are similar. The equality of the surfaces is violated from the
locations where the difference between them is different from 0. The larger the
absolute difference between memberships at the same locations, the lower the
degree of being equal. A relation Equal(µ, ν) is disapproved the most at the loca-
tion(s) where

∣∣µ(p)− ν(p)∣∣ reaches the maximum. We consider the maximum
value of the absolute difference to be the degree of disapproval of the Equal re-
lation. The value of the relation is then calculated by subtracting the disapproval
degree from the truth value 1. The relation Equal is defined using the absolute
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difference operator:

Equal : GVSpatial×GVSpatial→ TruthDegree
∀µ, ν ∈ GVSpatial,

Equal(µ, ν) =


0 if µ u ν = 0IR2

or µ ≠ ν and(
µ v ν or ν v µ or

supp
{
(µ u ν)(p)

}
= 1

)
,

1− supp
{
(µ |−| ν)(p)

}
otherwise.

The conditions force the Equal relation between µ and ν to be false if they are
disjoint, or one is a subset of the other but the two are not equal. It is also false
if µ and ν are not equal but their cores intersect, that means one of the relations
Touches, Crosses, or Overlaps might be certain.

The absolute difference results in the symmetric difference when applied to the
(characteristics functions of) classical sets. For crisp objects µ and ν ,
supp(µ |−| ν)(p) = 0 iff their symmetric difference is empty. This means that
Equal is equal to 1 if and only if the two objects are equal.

4.3 Some properties of spatial relations

The formulas for the spatial relations, as defined in Section 4.2, show that all
relations, except Within, are symmetric, i.e., R(µ, ν) = R(ν, µ). The relations
Disjoint, Crosses, Overlaps, and Within, are anti-reflexive, that is ∀µ, R(µ, µ) =
0. The Equal relation is reflexive, that is Equal(µ, µ) = 1. Being symmetric and
reflexive, the Equal relation is a tolerance relation [61].

The relations are such that the total certainty of one relation excludes the total
certainty of others. For some cases this property is stronger: if one relation is
certain, all the others are false.

• The Disjoint relation between two object is certain, i.e., its value is 1, iff
the intersection of the two objects is empty. All the other relations require
a non-empty intersection to have a positive degree. Therefore a certain
Disjoint relation forces all the others to be false.

• The Touches relation between µ and ν is positive if supp(µ?uν?)(p) < 1,
which means both Crosses and Overlaps relations return a value less than
1. Total certainty of Touches relation implies that Crosses and Overlaps
cannot be certain. The relation Touches(µ, ν) is positive only if µ is not
a subset of ν , or viceversa. Therefore, if Touches is certain, none of the
relations Within and Equal can be certain.

• The relation Crosses(µ, ν) is certain if supp(µ?uν?)(p) = 1, which implies
the relations Touches, Within and Equal are equal to 0. A positive Crosses
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relation requires a true Crosses relation between support sets, which ex-
cludes the Overlaps of support sets that is a requirement for a positive
Overlaps relation. Therefore, if Crosses(µ, ν) is positive, Overlaps(µ, ν) is
equal to 0.

• The Overlaps relation between µ and ν is certain if supp(µ? u ν?)(p) = 1,
which forces Touches, Within and Equal relations to be equal to 0. Con-
dition Overlaps on support sets excludes Crosses between support sets,
which means if Overlaps(µ, ν) has positive value, then Crosses(µ, ν) is
equal to 0.

• The conditions for the Within and Equal relations are defined such that if
one is certain the other is equal to 0. Both relations are positive (smaller
than 1) only if supp

{
(µ u ν)(p)

}
is smaller than 1. Therefore, if Within or

Equal are certain, then Touches, Overlaps, and Crosses cannot be certain.

4.4 Discussions

A spatial relation between vague objects was defined in Section 4.2 from extreme
values that support or disapprove it. The continuity of membership functions
of objects justifies this decision. The relations could also be defined from some
averaging over membership values, instead of using the extreme values. An
integration can perform the averaging process.

Using integrals instead of the superior, notations like supp
{
(µ u ν)(p)

}
will be

replaced by
∫
(µuν)(p)dp. Because we want the relation values to be in the inter-

val [0,1], we normalize an integral with the size of the support set. The superior
supp

{
(µ u ν)(p)

}
would then be replaced by the ratio

∫
(µuν)(p)dp/

∫
supp(µuν) dp.

For example, the Disjoint relation between two vague multiregions µ and ν will
be calculated as

Disjoint(µ, ν) = 1−
∫∫
(µ u ν)(x,y)dx dy∫∫

supp(µuν) dx dy
.

The Equal relation between µ and ν will be calculated as

Equal(µ, ν) =


0 if µ u ν = 0IR2

or µ ≠ ν and(
µ v ν or ν v µ or supp(µ u ν)(p) = 1

)
,

1−
∫∫
(µ |−| ν)(x,y)dx dy∫∫

supp(µ |−| ν) dx dy
otherwise.

These example formulas can be modified in order to cover all different object
types. The membership function µ of a vague object can be seen as a mass
distribution over points, lines, or regions in space. The integrals in the above
formulas calculate the mass of a vague multiregion object. The above formulas
can be written for all object types by replacing the integrals with the mass of
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the objects. The notion of mass and its calculation for vague multipoints, vague
multilines, and vague multiregions is provided in Chapter 5.

The change of the formulas brings a change in the behaviour of the relations. The
behaviour of the relations Disjoint, Touches, Crosses, and Overlaps changes
similarly for the extreme value 1: the relation is certain only if the involved
objects are crisp. The behaviour of Within and Equal remains the same for the
extreme value 1, but it changes for the extreme value 0. The core of an object µ
can be outside the support set of an object ν , but the objects can still be within
the other, or be equal to a positive degree.

4.5 Summary

In this chapter we provided definitions of spatial relations between general vague
objects. The provided relations, Disjoint, Touches, Crosses, Overlaps, Within,
and Equal, follow the intuition behind the SQL/MM spatial relations. They ex-
tended the true/false set of truth values of the SQL/MM relations to the [0,1]
interval. That means that the truth of a relation is a matter of degree.

The relations Disjoint, Touches, Crosses, and Overlaps were defined so that a
relation is certain if the corresponding crisp relation is true for their cores; a
relation is certainly false if the corresponding crisp relation is false for their
support sets. The total certainty of the other two relations, Within, and Equal,
was modelled by the subset and equality relation for fuzzy sets, respectively.
A Within(µ, ν) relation is certainly false if the corresponding crisp relation be-
tween the core of µ and the support set of ν is false. Similarly, an Equal relation
is certainly false if the corresponding crisp relation between the core of one ob-
ject and the support set of the other is false

The relations have the property that only one relation can be certain at a time,
i.e., if one relation is certain, all the others have a degree smaller than 1. For some
of the relations this property is stronger: if the relation is certain, all the others
are false. Each relation gives the corresponding crisp relation when applied to
crisp objects.
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Chapter 5

Metric operators for vague objects

Metric operators offer measures for spatial objects. They include operators like
distance between two objects, length of a line, area of a region. The objective of
this chapter is to provide a basic set of metric operators for vague objects. We
aim at operators that generalize metric operators on crisp objects (called crisp
operators hereafter), meaning when applied to crisp objects they obtain the same
results as the crisp operators.

This chapter provides mathematical definitions of metric operators for vague ob-
jects of a general type. The operators we provide are distance between two vague
objects of any type, length of a vague multiline, area, diameter, and perimeter
of a vague multiregion. An operator on vague objects is such that for every α in
(0,1] it returns the value of the analogous crisp operator applied to the α-cut of
the vague objects. For example, the area operator returns for every α in (0,1]
the area of the α-cut of the vague multiregion. We call these alpha operators.
An alpha operator takes as argument one or two vague objects, and returns a
function from an interval in (0,1] to the non-negative real numbers IR+. The
returned function by an alpha operator is upper or lower semi-continuous. To
provide the definition of an alpha operator we need a new type, vague measure:

VMeasure ≡
{
f : (0, σ]→ IR+ | σ ∈ (0,1] and f is semi-continuous

}
.

For each alpha operator we provide a corresponding operator that produces an
average over all values of the return function of the alpha operator. We call the
operators of this second group average operators. The integration performs an
averaging process on functions [56]. We define an average operator as the inte-
gral over [0,1] of the return function of the corresponding alpha operator. Such
an integral exists, because the return function of an alpha operator is lower or
upper semi-continuous. An average operator returns a non-negative real num-
ber that is a value of the type Measure ≡ IR+. In addition to the two groups of
operators, we provide two other operators: the centroid of a vague object, and a
measure for the vagueness of an object. These last operators consider a vague
object as a body with variable density, which is its membership degree, and use
the concept of mass for the calculation.
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5.1. Previous work

The chapter is organized as follows. Section 5.1 summarizes previous work
about metric operators for fuzzy objects. Section 5.2 provides the definitions
of the distance operators on vague objects. Distance is the only diadic opera-
tor. Section 5.3 provides the definition of the unary operators: length for vague
multilines, area, perimeter and diameter operators for vague multiregions. The
centroid and the vagueness measure are presented together in Section 5.4. Sec-
tion 5.5 compares our approach with existing measures for fuzzy objects, and
discusses the choice of our operators. Section 5.6 summarizes the results of the
chapter.

5.1 Previous work

There are several works in fuzzy image processing dealing with geometric mea-
sures for fuzzy sets. On the other hand, there exist fuzzy measures offered by
the (general) fuzzy theory. We present first the geometric measures for being the
main topic of this chapter, and close the section with two fuzziness measures
offered by fuzzy theory.

Bloch [8] provides an overview of fuzzy distances proposed in the literature. The
proposals can be separated into two groups. One group calculates a distance
between two fuzzy sets by comparing their membership functions – mainly pro-
posals from the fuzzy theory. The other group considers the spatial domain,
by including the Euclidean distance d2 in the distance measures they propose
– mainly proposal from fuzzy image processing. The proposals of this second
group are of our interest, and are discussed in the next paragraph.

A distance measure between fuzzy sets was proposed by Dubois and Prade [29],
and modified by Rosenfeld [77]. They propose a distance between two fuzzy sets
µ and ν that is a fuzzy number Dist : IR+ → [0,1], such that for any r ∈ IR+:

Distµ,ν(r) = sup
{
min

{
µ(p), ν(q)

}
| p,q ∈ IR2,d2(p, q) ≤ r

}
.

Other proposals consider the distance between fuzzy sets to be a (positive) num-
ber. One way of building a distance between two fuzzy sets µ and ν is by ap-
plying a distance measure dist between α-cuts of the fuzzy sets, and averaging
the values via an integral [8]: dist(µ, ν) =

∫ 1
0 dist(µα, να)dα. For fuzzy sets with

membership values from a finite set, e.g., fuzzy sets in digital images, the inte-
gral is replaced by a finite sum. Chaudhuri and Rosenfeld [16, 17] also propose
averaging of α-cuts, employing a weighted average instead of the simple average,
and the Hausdorff distance HD (see page 14) as the distance between the α-cuts.
The distance between two fuzzy sets µ and ν is

HD(µ, ν) =
∫ 1
0αHD(µα, να)dα∫ 1

0αdα
.
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Chapter 5. Metric operators for vague objects

Their distance HD is a metric (as defined in Section 2.2), and it can be used as
a measure for the similarity of fuzzy sets. Another proposal defines a distance
dist by weighting an arbitrary distance d between points, with weights provided
by their membership values:

dist(µ, ν) =
∑
p
∑
q d(p, q) min

{
µ(p), ν(q)

}∑
p
∑
qmin

{
µ(p), ν(q)

} .

The geometric measures proposed by Rosenfeld and Haber in [76, 78] are area,
height, width, intrinsic and extrinsic diameter, and perimeter of a fuzzy set.
Each measure returns a non-negative real number, and produces a meaning-
ful crisp measure when applied to a crisp set. It is calculated from an inte-
gral over the membership function of the fuzzy set. The area of a fuzzy set
µ was defined as the volume between the surface of the function µ(x,y) and
the x, y plane: A(µ) =

∫ ∫
µ(x,y)dx dy . The height of µ was calculated as

h(µ) =
∫
maxx

{
µ(x,y)

}
dy . This is the area of the projection of µ’s surface on

the y, z plane. The width was calculated as w(µ) =
∫
maxy

{
µ(x,y)

}
dx. It is

the area under µ’s projection on the x, z plane. These three measures are in a
relation A(µ2) ≤ h(µ) · w(µ). The extrinsic diameter is a kind of generalization
of height and width. It was calculated as E(µ) = maxu

{∫
maxv {µ(u,v)} du

}
,

where u and v denote any pair of orthogonal directions. The function under the
integral is the projection of µ to a plane perpendicular to the x, y plane and
the direction v . The integral produces the area of the projection. The extrinsic
diameter is then taken from the projection with the maximal area. The intrinsic
diameter was defined for fuzzy sets with connected α-cuts (Weiss connected). It
is calculated from the shortest path %pq connecting any two locations p and q
in the support set, for paths such that the membership value of any location s
in the path is higher than the memberships of p and q. The intrinsic diameter
of a fuzzy set µ is given by I(µ) = maxp,q{min%pq

∫
%pqµ}. The perimeter of a

smooth1 fuzzy set µ was defined as the double integral of the magnitude of its
gradient:

p(µ) =
∫∫√√√√( ∂µ

∂x
(x,y)

)2

+
(
∂µ
∂y
(x,y)

)2

dx dy.

The perimeter of a piecewise constant fuzzy set is defined by a double summa-
tion, and it is shown that the above formula is the limit case for the piecewise
constant set.

Bogomolny [10] modified the above definitions of height, width, diameter, and
perimeter, so that they satisfy known interrelations for the crisp sets. One re-
lation between the geometric measures is that area is smaller than the product
of height and width. Another useful relation is the isoperimetric inequality: the
squared perimeter is greater than the area multiplied by 4π . The isoperimet-
ric property is utilized for the index p2/4π A, characterizing the shape of a set.

1A function µ(x,y) is smooth if its first partial derivatives exist.
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5.2. Distance operators for vague objects

These two relations do not hold for Rosenfeld’s measures. Bogomolny modified
the height of a fuzzy set µ to h(µ) =

∫
maxx{

(
µ(x,y)

)1/2}dy . The width and
the diameter were modified in a similar way. The definition of perimeter was
modified to

p(µ) =
∫∫√√√√(∂µ1/2

∂x
(x,y)

)2

+
(
∂µ1/2

∂y
(x,y)

)2

dx dy.

Schneider [82] proposed geometric measures for fuzzy regions and fuzzy lines:
area, height, width, outer and inner diameter, perimeter, elongatedness, and
roundedness for fuzzy regions, and length and strength for fuzzy lines. The
roundedness of a fuzzy region µ is calculated as:

r(µ) =
minx

{∫
maxy{

(
µ(x,y)

)1/2}dx
}

maxx
{∫

maxy{
(
µ(x,y)

)1/2}dx
} .

The elongatedness of µ is calculated as 1 − r(µ). The other measures for fuzzy
regions coincide with those proposed by Bogomolny [10]. The outer and inner
diameter correspond to extrinsic and intrinsic diameter. The length of a fuzzy
line was calculated from the same integral as the perimeter. The integration is
performed over the support set of the line, instead of the whole IR2. The strength
of a fuzzy line was defined to be its minimum membership value. Schneider pro-
posed another group of fuzzy–valued operators: area, height, width, diameter,
perimeter, and length, which return fuzzy numbers. These operators apply the
same principle, e.g., the fuzzy–valued area of a fuzzy region µ associates the
area of an α-cut µα with the value α.

Bandemer and Gottwald [4] discussed two fuzziness measures for fuzzy sets in
a finite space X, entropy and energy, summarizing definitions given by different
authors. The entropy evaluates the deviation of a fuzzy set from a crisp set. The
entropy for a crisp set is 0, whereas a maximum entropy is reached from a fuzzy
set µ in which every location has a value µ(x) = 0.5. Three entropy measures
were presented. A first measure was F1(µ) = max {(µ u (1− µ))(x) | x ∈ X}.
The second measure was founded on the cardinal of a fuzzy set, card(µ) =∑
x∈X µ(x). The entropy was calculated as F2(µ) = 2 card

(
µ u (1− µ)

)
/card(X),

where card(X) is the cardinal of X (i.e., number of its elements), and the factor
2 normalizes the values of F2. The third measure is an analogue of the Shanon
entropy: F3(µ) = −c

∑
x∈X

(
µ(x) ln µ(x)+ (1−µ(x)) ln (1−µ(x))

)
. Two energy

measures were presented: E1(µ) = card(µ), and E1(µ) = max {µ(x) | x ∈ X}.

5.2 Distance operators for vague objects

We define two distance operators, an alpha distance Distance and an average
distance AvDistance, both taking as arguments two vague objects of a general
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type. The alpha distance produces for every α ∈ [0,1] the nearest point distance
between the α-cuts of the two objects. The average distance produces an average
of distances between the α-cuts of the two objects, calculated as the integral of
Distance values over all α values. We start by explaining the Distance operator,
provide its definition, illustrate Distance(µ, ν) for a vague point and a vague re-
gion, and show the properties of the Distance return function. Then we explain
how the AvDistance is constructed as an average of values of Distance return
function, and provide its definition.

Several measures exists for the distance between two sets in IR2. We consider
the nearest point distance to be the distance measure between two sets A,B ⊂
IR2. It is based on the Euclidean distance between the elements of the sets:
Distance(A,B) = inf

{
d2(p, q) | p ∈ A, q ∈ B

}
. We define the alpha distance be-

tween two vague objects of a general type, GVSpatial, from the Distance between
their α-cuts:

Distance : GVSpatial× GVSpatial→ VMeasure
∀µ, ν ∈ GVSpatial,

Distance(µ, ν) =
{(
α,Distance(µα, να)

)
| 0 < α ≤ min

{
maxp µ(p),maxq ν(q)

}}

IR

IR

1

2

3

4 4Distance(      ,    )4

1 1 1

0

0x 1x 2x 4x

Figure 5.1: Distances between the α-cuts of two fuzzy sets µ and ν in IR. The nearest points
between the α-cuts are shown in red. The α-cuts, µα1 and να1 , are drawn in IR with a thick grey
line.

Figure 5.1 illustrates the distances between α-cuts of two fuzzy sets µ and ν in
IR, both valid membership functions for vague lines. The nearest points between
the α-cuts are shown in red. Location x4 is a global maximum for ν : the value
α4 at this location is the maximum value of ν . For any α > α4, να is empty. The
distance between α-cuts is undefined for such α values. The function ν has a
local maximum at x2: the value α2 at this location is smaller than α4. Location
x2 is the nearest location of να2 to the α2-cut of µ. The value α3 is higher than α2

with a small difference. The nearest point for the α3-cut of ν has jumped further
away. Both functions µ and ν , have a discontinuity at x0 and x1, respectively.
Interval [α0, α1] is in the discontinuity gap of both functions. Locations x0 and
x1 are the nearest locations for the α-cuts of µ and ν for all α values in [α0, α1].
The distance between these α-cuts is constant.

To illustrate the distance between vague objects, let us consider the vague point
and the vague region of Figure 5.2. The vague point, shown in black, has a
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276
723

992

Figure 5.2: A vague point (in black) and a vague region (in green shades). Closest location of every
α-cut to the point is shown in red. The left picture shows α levels at every 0.05 value, the right
picture shows a selected subset of α levels.

membership value equal to 1. The core boundary of the vague region is drawn in
white. For every α-cut of the region, the nearest location to the point is shown in
red. The left picture shows the α levels of the vague region for every multiple of
0.05. The right picture shows α levels for α in {0,0.75,0.8,0.9,1}. The distance
between the point and each α level was calculated using ArcGIS, and these values
were used to build the graph in Figure 5.3. It is the graph of the alpha distance
between the point and the region. The function has two discontinuities, near α =
0.75 and α = 0.9, both local maxima of the µ function. When a local maximum is
the nearest location to the other object, for α values higher than its membership
value, the nearest location jumps to another position. That happens twice for
the vague region of Figure 5.2.

An increasing α value leads to an increasing distance between α-cuts: α1 < α2

implies that µα2 ⊆ µα1 and να2 ⊆ να1 , which in turn implies Distance(µα1 , να1) ≤
Distance(µα2 , να2). The function Distance(µ, ν) may be constant if there is dis-
continuity in the objects membership functions, i.e., a vertical cliff for a region
surface, or a vertical jump for a line graphic. The function Distance(µ, ν) is
a non-decreasing function. A local maximum of an object that is the near-
est location to the respective α-cut of the other object, causes discontinuity
in the distance function. An α-cut includes the locations with value α: µα ={
p ∈ IR2 | µ(p) ≥ α

}
. For a local maximum value α0, Distance[µ, ν](α0) is the

distance to the local maximum location. For α values higher than that α0, yet
very close to it, the nearest location is displaced further away, and the dis-
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Figure 5.3: The graph of the Distance function between the vague point and the vague region of
Figure 5.2.

tance value makes an upward jump. The distance function is thus lower semi-
continuous. The distance Distance(µ, ν) is a function from a semi-interval (0, σ]
to IR+, with σ = min

{
maxp µ(p),maxq ν(q)

}
∈ (0,1]. The function is non-

decreasing and lower semi-continuous. The distance function between two crisp
objects is constant.
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Figure 5.4: The Distance function and its integral in [0,1] that gives an averaging of its values.

For an integrable function f : IR → IR, the average value of y = f(x) in [a, b]
is y =

∫ b
a f(x)dx [34]. This property is used to define the average distance, as

well as the other average operators. Figure 5.4 illustrates this property for the
Distance(µ, ν) function of Figure 5.3. The area drawn in grey in Figure 5.4(b) is
the integral of the function Distance[µ, ν](α), and it is the limit of the sum of
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vertical bars in Figure 5.4(a),
∑n

1 Distance[µ, ν](αi)/n. The function Distance(µ, ν)
is integrable because it is lower semi-continuous. The average distance operator
AvDistance is defined as:

AvDistance : GVSpatial× GVSpatial→Measure
∀µ, ν ∈ GVSpatial, σ = min

{
maxp µ(p),maxq ν(q)

}
,

AvDistance(µ, ν) =
∫ σ
0 Distance[µ, ν](α)dα/σ.

The distance operator AvDistance is reflexive, and AvDistance(µ, ν) = 0 if µ =
ν . Both properties are properties of a metric distance. The operator is not a
metric though, because AvDistance(µ, ν) could be equal to 0 even if µ ≠ ν . The
triangle inequality is not satisfied either.

The average distance between two crisp objects is the integral in [0,1] of a con-
stant function. The integral returns the constant, which is indeed the nearest
distance between the objects. Thus, the average distance AvDistance applied to
crisp objects returns the Distance value between the two objects.

5.3 Length, area, diameter, and perimeter

In this section we define geometric measures, length of a vague multiline, area,
diameter, and perimeter of a vague multiregion. Two groups of corresponding
operators are presented: alpha operators Length, Area, Diameter, and Perimeter
that produce for every α ∈ (0,1] the value of the analogous crisp operator on the
α-cut of the argument, and average operators AvLength, AvArea, AvDiameter,
and AvPerimeter that produce an average over the values of the corresponding
alpha operator. The operators are presented here as follows. First, an alpha op-
erator is explained and defined, followed by the properties of its return function.
Then the corresponding average operator is defined, sometimes together with an
equivalent formula for the operator.

The Length of a vague multiline µ is calculated from the lengths of its α-cuts.
An α-cut is a crisp multiline, composed of several lines that might intersect at
their end nodes. The length of a simple line given by a parametric equation

l =
{
(x(t),y(t)|t ∈ [0,1]

}
, is length(l) =

∫ 1
0

√(
x′(t)

)2 +
(
y ′(t)

)2 dt. The length
of a multiline L =

⋃
i li is the sum of lengths of its simple line components:

Length(L) =
∑
i length(li). The length operator Length for vague lines is defined

from Length by:

Length : VMLine→ VMeasure

∀µ ∈ VMLine , Length[µ](α) =
{

Length(µα) 0 < α ≤ maxp µ(p),
0 maxp µ(p) < α ≤ 1.

The α-cuts of µ are empty for α values higher than the maximum membership
value of µ. The alpha length of µ is taken to be 0 for such α’s.
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An increasing α leads to decreasing values of Length(µ). For α1 < α2 the re-
spective α-cuts satisfy µα2 ⊆ µα1 , therefore Length(µα2) ≤ Length(µα1). The
function may remain constant if the membership function along the line has dis-
continuities. Function Length(µ) is thus a non-increasing function. Figure 5.5(a)
shows the graph of the membership function of the vague line of Figure 3.8(b),
and Figure 5.5(a) shows the graph of the Length function for this line. A discon-
tinuity in the membership function of the line results in a constant value of the
Length function for all α’s in the discontinuity gap. The membership function
in Figure 5.5(a) has a discontinuity at location l0. The membership value at l0
jumps from α0 to 1. The Length function in 5.5(b) is constant for α’s in (α0,1].
A local maximum value reached on a piece of the line, not just in one location,
will decrease abruptly the value of Length(µ) at α’s smaller than this maximum.
The function is discontinuous at such local maxima. Because an α-cut is closed,
the alpha length for the local maximum α includes the line piece with member-
ship value α. The value α0 is a local maximum for the membership function
of Figure 5.5(a). The Length of the line shown in Figure 5.5(b) is upper semi-
continuous at α0 (and continuous everywhere else). The function Length(µ) is
non-increasing and upper semi-continuous.
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Figure 5.5: Calculation of the average length from the alpha length function.

The average length AvLength of a vague multiline µ is determined as the average
of all Length(µ) values over the [0,1] interval, and is calculated as the integral
of Length(µ) in [0,1]. The integral exists because the function Length(µ) is
upper semi-continuous. The operator AvLength is defined as:

AvLength : VMLine→Measure

∀µ ∈ VMLine , AvLength(µ) =
∫ 1
0 Length[µ](α)dα.

The function Length(µ) is constant if µ is a crisp line. The average length
AvLength(µ) is the integral in [0,1] of this constant that is the Length of the
crisp line µ. Thus, the AvLength operator returns the same value with the crisp
operator Length when applied to a crisp line.
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The areas shown in grey in Figure 5.5(a) and 5.5(b) are the integral of η(l)dl
over the line extension, and the integral of Length(µ) over [0,1], respectively.
The two integrals present two different ways of calculating the same area. This
gives another way to calculate the average length of a vague line µ, independent
from the Length(µ) function:

AvLength(µ) =
∫ 1

0
η(t)

√(
x′(t)

)2 +
(
y ′(t)

)2 dt.

The average length AvLength of a vague multiline is the sum of AvLength values
of its simple line components.

1 mv

IR2

Figure 5.6: A vague line µ drawn in 3D using membership values as the third coordinate, and its
projection l on the plane. The surface created from the projection is shown with vertical dashed
lines.

This equivalent formula of the average length is the area of the surface delin-
eated by the line µ put in 3D space, with membership values as z coordinate,
and its projection on the plane, which is the line extension (see Figure 5.6). This
gives a more practical way to calculate the average length of a vague line.

The alpha area of a vague multiregion µ is calculated from the areas of its α-cuts:
Area(µα) =

∫ ∫
µαdx dy . If the global maximum of µ is lower than 1, we consider

the area Area(µ) to be 0 for all α values higher than the maximum. The Area
operator is defined as:

Area : VMRegion→ VMeasure

∀µ ∈ VMRegion , Area[µ](α) =
{

Area(µα) 0 < α ≤ maxp µ(p),
0 maxp µ(p) < α ≤ 1.

For α1 < α2, the respective α-cuts satisfy µα2 ⊆ µα1 , therefore Area(µ)(α2) ≤
Area(µ)(α2). A local maximum of µ reached at a region will cause discontinu-
ity in the Area(µ) function. The alpha area of a vague multiregion is a non-
increasing and upper semi-continuous function. The function Area(µ) is inte-
grable. The average area of a region µ is calculated from the integral of Area(µ)
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over [0,1]. The operator AvArea is defined as:

AvArea : VMRegion→Measure

∀µ ∈ VMRegion , AvArea(µ) =
∫ 1
0 Area[µ](α)dα.

If µ is a crisp region, Area(µ) is a constant function with value Area(supp(µ)).
The operator AvArea is the integral of a constant value over [0,1], and it is equal
to that constant. Therefore, AvArea returns the same value as Area when applied
to a crisp region.

Figure 5.7: A vague region shown in 3D with membership values as the third coordinate. Member-
ship values are also used for colour saturation. The boundary of the core is shown in white.

Figure 5.7 shows the same region of Figure 5.2, using membership values as
the third coordinate to build the surface in 3D. Memberships are also used for
colouring: low saturation indicates low membership value. The average area
calculated from the integral Area[µ](α)dα provides the volume under the µ
function (see Figure 5.7). Therefore, the average area is equal to

AvArea(µ) =
∫∫
µ(x,y)dx dy.

The integral exists because the function µ is upper semi-continuous.

The alpha diameter of a vague multiregion µ can be calculated from the diame-
ters of its α-cuts. An α-cut may consist of several components. We consider the
diameter of a component A to be diam(A) = max

{
d2(p, q) | p,q ∈ A

}
, and the

diameter of an α-cut consisting of components {Ai}n1 , to be the sum of diame-
ters of its components: Diameter(µα) =

∑n
1 diam(Ai). This is used to define the

diameter operator for vague regions:

Diameter : VMRegion→ VMeasure

∀µ ∈ VMRegion , Diameter[µ](α) =
{

Diameter(µα) 0 < α ≤ maxp µ(p),
0 maxp µ(p) < α ≤ 1.
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If a vague multiregion µ has a local maximum reached in an area, the value
of the diameter function jumps down for α higher than that local maximum.
The function Diameter(µ) is upper semi-continuous. The average diameter of µ
is calculated from the integral of Diameter(µ) in [0,1]. The average diameter
operator AvDiameter is defined as:

AvDiameter : VMRegion→Measure

∀µ ∈ VMRegion , AvDiameter(µ) =
∫ 1
0 Diameter[µ](α)dα.

Similarly to the other operators, the average diameter AvDiameter is equivalent
to the crisp Diameter when applied to a crisp region.

The alpha perimeter of a vague multiregion is calculated from the perimeters of
its α-cuts. The perimeter of an α-cut Perimeter(µα) is the length of the α-cut
boundary Length(∂µα). If a vague multiregion µ has a continuous function, the
boundary of the α-cut is the α level. It is a curve in IR2 determined by the the
equation µ(x,y) − α = 0. If µ is continuous all its α levels are closed (looped),
otherwise some α levels might not be closed. In such cases the boundary of the
α-cut is completed by the intersection of the vertical cliff of µ with the horizontal
plane z = α. The alpha perimeter operator is defined as:

Perimeter : VMRegion→ VMeasure

∀µ ∈ VMRegion,Perimeter[µ](α) =
{

Perimeter(µα) 0 < α ≤ maxP∈IR2 µ(p),
0 maxP∈IR2 µ(p) < α ≤ 1.

Local maxima of a vague multiregion µ, reached in an area, cause discontinu-
ities to its perimeter function, for the same reason as for the area and diameter
function. The function Perimeter(µ) is upper semi-continuous.

Figure 5.8 shows the α levels of vague region displayed in 3D space. The average
perimeter of a vague region µ is calculated from the integral over Perimeter(µ)
in [0,1]. The average perimeter operator AvPerimeter is defined as:

AvPerimeter : VMRegion→Measure

∀µ ∈ VMRegion , AvPerimeter(µ) =
∫ 1
0 Perimeter[µ](α)dα.

From the formula it can be seen easily that when µ is a crisp multiregion, the
average perimeter AvPerimeter is equivalent to the crisp operator Perimeter.

5.4 Centroid and vagueness degree

The membership function µ of a vague object can be seen as a mass distribu-
tion. A crisp object is a body with constant density, whereas a vague object has
a variable density. The total mass of a body consisting of a finite set of locations
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Figure 5.8: A vague region drawn in 3D, together with its α levels at every multiple of 0.05, drawn
in different colours.

is calculated from the sum of masses at every location. A total mass distributed
over a line and over an area is calculated from the integral of the density func-
tion, µ(x,y)dl and µ(x,y)dA, respectively [3]. The notion of mass allows us
to define the centroid of an object that is its centre of mass.

Let us first define the mass for each type of a vague object. The mass of a vague
multipoint µ is

Mass(µ) =
∑

p∈supp(µ)
µ(p).

This is the cardinal of µ card(µ) as defined in [4]. If µ is crisp, its mass is
the cardinal of the point set constituting µ. The mass of a vague multiline µ is
Mass(µ) =

∫
supp(µ)µ(x,y)dl. Suppose the vague multiline is composed of vague

lines
{
µi = h̃i(ηi)

}n
1

, the mass of µ =
⊔n
i=i µi is

Mass(µ) =
n∑
i=i

∫ 1

0
ηi(t)

√(
x′i(t)

)2 +
(
y ′i(t)

)2 dt.

This is the average length of the vague multiline µ. The mass of a crisp multiline
is its length. The mass of a vague multiregion is

Mass(µ) =
∫∫
µ(x,y)dx dy.

It is the average area of the vague multiregion. The mass of a crisp multiregion
is its area.
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The coordinates of the centroid of a body are calculated from its mass, and its
moments Mx and My . The moments, Mx and My , are the sum or integral of
yp µ(p) and xp µ(p), respectively. The moments of a vague multipoint µ are

Mx(µ) =
∑

(x,y)∈supp(µ)
y µ(x,y), and My(µ) =

∑
(x,y)∈supp(µ)

x µ(x,y).

The moments of a vague multiline µ =
⊔{
µi = h̃i(ηi)

}n
1

are

Mx(µ) =
n∑
i=i

∫ 1

0
yi(t)ηi(t)

√(
x′i(t)

)2 +
(
y ′i(t)

)2 dt,

and

Mx(µ) =
n∑
i=i

∫ 1

0
xi(t)ηi(t)

√(
x′i(t)

)2 +
(
y ′i(t)

)2 dt.

The moments of a vague multiregion are

Mx(µ) =
∫∫
y µ(x,y)dx dy and My(µ) =

∫∫
x µ(x,y)dx dy.

The centroid of a vague object is a vague point. Its coordinates are calculated
from its mass and moments. Its membership degree is the ratio between the
mass of the object and the mass of its support set. The Mass of a support set
is its cardinal if the object is a multipoint, its length if it is a multipoint, and its
area if it is a multiregion. Centroid operator is then defined as:

Centroid : GVSpatial→ VPoint
∀µ ∈ GVSpatial,

Centroid(µ) =
(
My(µ)/Mass(µ),Mx(µ)/Mass(µ),Mass(µ)/Mass(supp(µ))

)
.

Centroid operator returns a crisp point when applied to a crisp object.

We propose an operator Vagueness to measure the vagueness of an object. It
takes a value in the unit interval [0,1]. A low value shows low vagueness. The
value 0 is reached when the object is crisp. A maximal value is reached when the
object does not have a core or the core has a lower dimension than the object.
The measure is derived from the ratio of masses of the vague object with the
mass of its support set. Vagueness operator is defined as:

Vagueness : GVSpatial→ [0,1]
∀µ ∈ GVSpatial , Vagueness[µ] = 1−Mass(µ)/Mass(supp(µ)).

For the three general vague types the vagueness measure is calculated as follows.
If µ is a vague multipoint then Vagueness(µ) = 1 − card(µ)/card(supp(µ)). If
µ is a vague multiline then Vagueness(µ) = 1− AvLength(µ)/Length(supp(µ)).
For a vague multiregion Vagueness(µ) = 1− AvArea(µ)/Area(supp(µ)).
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Chapter 5. Metric operators for vague objects

5.5 Discussions

The alpha operators proposed follow the same idea of the distance operator of
Rosenfeld [77], and the fuzzy-valued operators of Schneider [82]. Their operators
return fuzzy numbers, i.e., functions f : IR → [0,1], whereas our operators are
functions f : (0,1] → IR+. A function returned by an alpha operator is the
inverse of the function returned by the corresponding fuzzy-valued operator of
Schneider [82].

The most commonly used distances between crisp sets are the nearest point
distance and the Hausdorff distance. We chose the nearest point distance as the
distance between α-cuts. It is commonly used as the distance between spatial
objects in GIS packages and applications. The nearest point distance is not a
metric (as defined in Section sec:topology), whereas the Hausdorff distance is a
metric. The Hausdorff distance can be used to describe spatial distances, and at
the same time it is a good measure for similarity. On the other hand, the nearest
point distance is computationally less expensive than the Hausdorff distance [8].

The average operators we proposed give a similar or equivalent formula to Rosen-
feld’s measures. The area operator is equivalent to Rosenfeld’s area. The diame-
ter is bigger than Rosenfeld’s extrinsic diameter. We could add height and width
measures, following the same way of constructing the alpha and average opera-
tors. Both measures are similar to the diameter. The maximum distance between
locations of an α-cut component, would be replaced by the height and width of
the component bounding box. The average operators for height and width con-
structed in this way, would be equivalent with Rosenfeld’s measures.

An average operator is defined in terms of the corresponding alpha operator.
This makes explicit the relation between the two corresponding operators. Such
a definition is not handy in the implementation stage: the execution of an aver-
age operator would require first the execution of its corresponding alpha oper-
ator. The independence of the operators is thus a desirable property. For this
reason we proposed equivalent formulas for the calculation of average opera-
tors. We provided an equivalent formula for the average length and the average
area. The average perimeter seems to be equivalent with Rosenfeld’s perimeter.
The proof is still to be provided. Two other remaining issues to be solved are
equivalent formulas for the average distance and the average diameter.

The vagueness measure we define takes into account the membership values
and their distribution. Rough set theory offers a measure for roughness of a
set, which could also be used for fuzzy sets. Translated to vague objects, the
roughness measure of an object µ would be the ratio between the size of the
object core and the size of its support set: Mass(µ1)/Mass(supp(µ)). As µ1 and
supp(µ) are (classical) sets, the measure Mass is the mass of a crisp object. This
measure is coarser than the Vagueness measure we propose.
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5.6. Summary

5.6 Summary

In this chapter we provided definitions of metric operators for vague objects
of a general type. The operators were distance between two vague objects of
any type, length of a vague multiline, area, diameter, and perimeter of a vague
multiregion, centroid and vagueness degree of a vague object.

We proposed two different measures for distance, length, area, diameter, and
perimeter, given by the alpha operators and the average operators. An alpha
operator takes as argument one or two vague objects, and returns a function
f : (0,1] → IR+. For every α in (0,1] the function yields the value of the anal-
ogous crisp operator applied to the α-cuts of the vague objects. An average
operator was calculated as the integral over [0,1] of the return function f of the
corresponding alpha operator. It produces an average over the returned values
by the function f of the alpha operator. We provided equivalent formulas for
the average length and the average area operators, which allow to perform their
calculation independently from the corresponding alpha operator. An average
operator gives its crisp analogue when applied to a crisp object.

The centroid operator calculates the centre of mass for a vague object. The
vagueness operator provides a measure for the degree of vagueness of an object.
The vagueness degree of a crisp object is equal to 0. The vagueness degree of a
vague object is maximal when the object is equal to its boundary, i.e., it consists
only of an uncertain part.
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Chapter 6

Implementation of types and
operators

This chapter provides an implementation of vague types and operators defined
formally in the previous chapters. We use GRASS, an open source GIS software
package, as the platform for our implementation. This allows the use of existing
GIS functionality for the storage an manipulation of spatial objects. The struc-
tures we build to store the data about our vague objects make use of GRASS
data structures. In addition, we use GRASS modules and vector functions for the
manipulation of vague objects.

We assume that data for vague objects comes from point measurements or pro-
cessed remote sensing images. The recognition and extraction of a vague object
from such input data is a required preliminary step to their storage and manip-
ulation. This pre-process is of different complexity for different object types.
Extraction of vague regions is the more complex, and it is given more attention.
It is followed by the storage process, and the modules for the manipulation and
analysis of data.

The presentation of the work is organized as follows: Section 6.1 is dedicated
to the creation of vague objects from input data points, and to their storage.
Section 6.2 describes the visualization techniques used to display vague objects
and their information. Section 6.3 discusses the modules that implement set op-
erators on vague objects. Sections 6.4 and 6.5 close the chapter with discussions
and conclusions.
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6.1 Storage of vague objects

The GRASS vector format1 is used to store vague objects. Feature types sup-
ported by GRASS are point, line, boundary, area (without holes), and centroid.
All data is stored using line representations. A line is a sequence of (x,y) coor-
dinates forming types point, line, boundary, or centroid. A point or a centroid
is constructed as a sequence of two identical elements. A line or a boundary
is constructed as a sequence with at least two elements. A line type is used to
store linear features, whereas a boundary type is used to store areal features. An
area is formed by a set of lines of type boundary, which constitute its bound-
ary. GRASS allows the storage of three dimensional (3D) features, i.e., a line can
be a series of (x,y, z) coordinates. It can only build the complete topology for
2D features. It builds connectivity of 3D linear features, but ignores the third
coordinate when creating (and building the topology of) areal features.

GRASS data is stored in layers. These contain objects conceptually belonging to a
theme, e.g. road lines, vegetation classes. A theme generally consists of several
classes. A data layer is physically stored as a directory that contains several
files, coor, topo, sidx, etc., each containing specific information. For example,
vegetation data is stored in a directory vegetation. Location information is
stored in the coor file in that directory, while topology information is stored in
the topo file. One or more attributes can be attached to objects of a data layer.

Objects of a simple vague type are the basic objects that we need to store. An
identifier is given to such an object and used to compile the complete informa-
tion at any time the object is needed. We can only collect and store a finite set
of point data, while a vague line and a vague region represent infinite point sets.
An interpolation method is used in both cases to complete (approximate) infor-
mation about objects. A class of vague objects, represented by a general type, is
a collection of simple objects, and it is stored as a data layer. Layers of vague
classes belonging to a theme are bound together. The separation of a theme data
into several layers, one for each class, is needed for a correct storage of topology
data.

We use the third coordinate to store membership values. A vague point is im-
plemented in GRASS by a VPoint that is a triple (x,y,mv), where (x,y) ∈ IR2

provides the location and mv ∈ (0,1] provides the membership value. A vague
line is implemented by a VLine that is a sequence of triples 〈(x1, y1,mv1), . . . ,
(xn, yn,mvn)〉 each triple providing the x,y location of a point in the line, as-
sociated by the membership value of that point to the line. An approximation of
the vague line is achieved by linear interpolation between consecutive points. A
vague region is a surface embedded in IR2. It is implemented by a VRegion that
is a triangulation. An approximation of the vague region is achieved by a linear
interpolation within each triangle of VRegion.

1We used GRASS 6.0 that was the latest stable version at the moment.
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Chapter 6. Implementation of types and operators

A vague multipoint is implemented as a VMPoint layer. It is a set of triples
(x,y,mv)with different locations. A vague multiline is implemented as a VMLine
layer. It is a collection of VLine objects intersecting only at end points. A vague
multiregion is implemented as a VMRegion layer, which is a set of triangulations
that do not overlap each other. We call such layers vague data layers, for con-
taining vague information. For example, all VRegion objects belonging to the
class ‘forest’ of a vegetation theme are stored in a vague layer forest of type
VMRegion.

A vague layer is created by input containing membership information, or such
information is derived from attributes in input data by applying membership
functions. We provide a module v.vague.membership that applies trapezoidal
membership functions to a numerical attribute of a data layer. A VMPoint layer
may derive from any point data containing membership information, or an at-
tribute to which we could apply membership functions. Each input point associ-
ated with the membership value creates a VPoint object in the vague point layer.
A VMLine layer is derived from measurements along linear features, e.g., level
of congestion at locations along roads in a road network data layer. Such mea-
surements can be either direct membership values, or we may apply functions
on the measurements to derive membership values. A VLine object is created in
the vague layer for each line object in the input data.

We assume that data about a vague region layer VMregion either comes from
points associated with membership values, or from points with an attribute to
which we apply a membership function. These points may be irregularly dis-
tributed, e.g., coming from field measurements. They may also be regularly dis-
tributed, e.g., coming from processed images. The only information we can get
from such input is a membership value to a certain vague class, which may be
indeed composed of several VRegion objects. The input needs to be interpreted
to create the simple objects. We cluster input points, and consider that each
cluster establishes a separate object. Points of each cluster are then used to
create a triangulation for each simple object identified.

The next two sections, Section 6.1.1 and Section 6.1.2, are dedicated to clustering
the input to form separate VRegion objects, and creating objects from triangu-
lation of clusters, respectively. Up to here, we have covered the creation and
storage of a vague layer that is the implementation of a vague class. It is conve-
nient to bind together all classes belonging to the same theme. This is discussed
in Section 6.1.3.

6.1.1 Clustering input and delineating boundaries

Several techniques exist that can be used for clustering points in space: K-
means (K-median) clustering, self organizing maps, hierarchical clustering, alpha
shapes (see [6] for an overview). All the techniques are based on a distance mea-
sure between points. The first two techniques require the number of clusters to
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Figure 6.1: Positive α-hull in the left, negative α-hull in the right (taken from [32]).

be determined beforehand. This is usually not known for our case. Hierarchical
clustering with Euclidean distance could be used for clustering the input. The
technique is used for different inputs, not just points in Euclidean space, by em-
ploying different distance measures or different group (linkage) distances. It is a
quite general, but slow technique. Alpha shapes (α-shapes from here onwards)
work only with points in Euclidean space. They detect separate clusters from
a given point set and delineate boundaries of the detected point clusters. The
technique is faster than hierarchical clustering, and its output is richer as it con-
tains a boundary for each cluster. We use α-shapes to cluster the input data and
delineate the boundary of each cluster.

The α-shapes are a generalization of convex hulls. The convex hull of a point
set S is the intersection of all closed half-planes that contain all points of S.
This notion is generalized to α-hulls in [32]. For positive (yet sufficiently small)
α, the α-hull of S is the intersection of all closed discs with radius 1/α that
contain all points of S. Large α produce a curved hull of which the boundary
consists of parts of circles (with radius 1/α) that pass through extreme points
of S. As α approaches zero, the curved hull converges to the convex hull. An
α-hull is smoother than the convex hull, but its approximation of the intuitive
shape of points is coarser than that of the convex hull. The shape of the hull can
be refined by considering negative α values. For negative α, the α-hull of S is
taken to be the intersection of all closed complements of discs with radius −1/α
that contain all points of S. Figure 6.1 shows the positive α-hull (left) and the
negative α-hull (right) of a point set resembling the letter ‘A’.

The α-hull can be defined more concisely using the notion of a generalized disc.
A generalized disc of radius 1/α is a disc of radius 1/α for α > 0, it is the
complement of a disc of radius −1/α for α < 0, and a half-plane for α = 0. For
a point set S and a real value α, the α-hull of S is the intersection of all closed
generalized discs of radius 1/α that contain all points of S. Two other concepts,
α-extreme and α-neighbour, are used in [32] to construct α-shapes. A point p
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of a set S is termed an α-extreme in S if there exists a closed generalized disc
of radius 1/α such that p lies on its boundary, and it contains all points of S.
Two α-extremes p and q are said to be α-neighbours if there exists a closed
generalized disc of radius 1/α with both points on its boundary, and which
contains all points of S. An α-shape of S is then the straight line graph whose
vertices are the α-extremes and whose edges connect the α-neighbours [32]. The
assumption is that no four points of S are cocircular and no three points are
collinear.

(a) (b) (c) (d)

Figure 6.2: The effect of the α value on the alpha-shape: (a) input points, (b) α-shape for a positive
α, (c) α-shape for α equal to 0, (d) α-shape for a negative α.

Figure 6.2(b)–(d) illustrate α-shapes produced for decreasing α values on the
point set of Figure 6.2(a). A decreasing α value results in a finer shape. Depend-
ing on the α value, a single point can be a cluster (and its own boundary at the
same time), as is the case in Figure 6.2(c) for four points. The set of α-extremes
becomes larger when α decreases: the set of α1-extreme points of a point set S
is a subset of α2-extreme points of S if α1 > α2 [32]. We are interested in shapes
finer than the convex hull, therefore we work only with negative α values. This
simplifies the checks for α-extremes and α-neighbours, and also the complete
algorithm for building the α-shape.

A point is an α-extreme of a point set if and only if a circle with radius −1/α
(α-circle hereafter) can be constructed such that the point is on the circle and no
other point of the set lies inside it. Figure 6.3 illustrates α-extremes in a point
set A. Point m from A is an α-extreme. Point n is not an α-extreme, because any
α-circle passing through n contains at least another point of A. We use the same
set A for illustrations 6.3–6.7 in this section. The set is chosen such that it covers
all cases treated by the α-shape algorithm.

Two points are α-neighbours, if and only if an α-circle can be constructed through
them, with no other points of the set within that circle. Figure 6.4 illustrates
α-neighbours in A. Points v and w are α-neighbours: there is a circle passing
through v and w that does not contain any other point of A. Points s and v are

93



6.1. Storage of vague objects

m n

Figure 6.3: Examples of α-extreme in a set A: point m is an α-extreme, point n is not.

not α-neighbours: there are only two circles with radius −1/α passing through
both of them, and both circles contain point t.

s

t v

w

Figure 6.4: Examples of α-neighbours: v and w are α-neighbours, s and v are not.

The tests for building the α-shape of a point set are based on the Delaunay trian-
gulation of the set, its dual (in the graph theoretical sense), the Voronoi diagram,
and relations between the two. A Delaunay triangulation is a triangulation that
maximizes the minimum angle [25]. A Voronoi diagram of a point set is a parti-
tion of the plane into convex polygons, one for each point of the set, such that
each polygon contains only one point from the set that is its central point, and
every point in a polygon is closer to its central point than to any other point
of the set. Figure 6.5 shows the Delaunay triangulation (in light grey) and the
Voronoi diagram (in thick light grey lines) of the point set A.

The α-shape of a point set S is a subset of the Delaunay triangulation of S [32].
It is built by first constructing the Delaunay triangulation of S, then testing the
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Delaunay edges whether they are in the α-shape. The complete algorithm is:

create a Delaunay triangulation DT of S
create Shape as an empty set of edges
for every edge (p, q) in DT

if p is α-extreme and q is α-extreme and p and q are α-neighbours
add (p, q) to Shape

fi
rof

To build the Delaunay triangulation we use TRIANGLE, an open source tool cre-
ated by Shewchuk [86]. Testing for α-extremes and α-neighbours of S, based on
relations between the Delaunay triangulation and the Voronoi diagram of S, is
explained in the next few paragraphs. Tests are translated into properties of the
Delaunay triangulation and its convex hull, therefore this is the only structure
needed for constructing the α-shape.

t

V t

m

Vm

c t
max

Figure 6.5: Test for α-extremes: unbounded Voronoi polygon Vm and an α-circle (in grey) passing
through m; bounded Voronoi polygon Vt, an α-circle passing through t, and the maximal circle of
t (with dashed line).

An α-extreme of a point set is a point on the boundary of the convex hull of
the set, or a point which maximal circumradius2 of triangles of which the point
is a vertex, is bigger than the radius −1/α. These properties are used to test
for α-extremes. We explain them using Figure 6.5. Points on the boundary of
the convex hull of a point set have unbounded Voronoi polygons. Any other

2The circumradius is the radius of the triangle’s circumscribed circle, i.e., the unique circle that
passes through each of the triangles vertices. The circumscribed circle is called circumcircle of the
triangle.
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point has a bounded Voronoi polygon. The point m is on the boundary of the
convex hull of A: its Voronoi polygon Vm is unbounded. Any α-circle centred
inside Vm that passes through m, does not contain any other point of A. Point t
is inside the convex hull of A: it has a bounded Voronoi polygon Vt. The Voronoi
polygon Vt of t contains all points that are closer to t than to any other point of
A. This means that any circle passing through t and centred at a point inside Vt

does not contain any other point of A. The maximal circle having this property
(shown with dashed line) is the one centred at the furthest Voronoi vertex cmax

t

from t. An α-circle passing through t, and lying inside the maximal circle of t,
does not contain other points of A. Vertices of the Voronoi polygon Vt are the
circumcentres of Delaunay triangles of which t is a vertex. The maximal circle of t
is one of the circumcircles of triangles of which t is a vertex. It is the circumcircle
with the maximum radius.

m n

r

u

g

vg

Figure 6.6: Delaunay triangles sharing edge g and their circumcircles (in light grey), the corre-
sponding Voronoi edges, and circles centred inside and outside edge vg passing through end points
of g (with dashed and dotted line, respectively).

The test for α-neighbours is based on the relation between Delaunay edges (D-
edge) and Voronoi edges (V-edge). Figure 6.6 shows a partial Delaunay triangu-
lation and Voronoi diagram of A. D-edges are drawn in light grey, V-edges are
drawn with thick light grey lines. Every D-edge has a corresponding V-edge, e.g.
D-edge g has its corresponding V-edge vg . V-edge vg joins the centres of the
circumcircles of the two Delaunay triangles of which g is an edge. Circumcircles
of Delaunay triangles are drawn in light grey. Any circle passing through the end
points r and u of g has the centre in l, the perpendicular line to g at its midpoint
(the dashed grey line). The V-edge vg lies on this line. A Delaunay triangle has
the property that its circumcircle does not contain any other point of the set.
The two circumcircles of triangles sharing edge g have their centres at the end
points of edge vg . Any circle passing through end points of g and centred inside
vg has no other point from A, e.g., the circle in dashed line. Moving the centre of
the circle along line l, outside vg , produces a circle that encloses m or n, and pos-
sibly other points from A, e.g., the circle with dotted line in Figure 6.6 encloses
point m.

Two α-neighbours are connected through a D-edge, and the centre of one of the
α-circles passing through them is on the corresponding V-edge. No other point
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g
vg

f

vf

d

vd

Figure 6.7: Testing Delaunay edges for being in the α-shape by using min and max circles (with
dotted and dashed lines, respectively), and α-circles passing through end points of D-edges (in
grey).

of the set lies inside the α-circle that has its centre in the V-edge. This property
is used to test a D-edge whether its end points are α-neighbours, that is the
D-edge is in the α-shape. The centre of an α-circle passing through end points
of a D-edge is on the corresponding V-edge, if the radius −1/α is between the
minimum and maximum distance from any of these points to the V-edge. If a
D-edge is in the boundary of the convex hull, its corresponding V-edge is a half
line, in which case the maximum distance is infinite. The test reduces to checking
whether the radius −1/α is bigger than the minimum distance. Figure 6.7 shows
three different cases for calculating the minimum and maximum distance for a
D-edge. Edge d is in the boundary of the convex hull A; its corresponding V-
edge vd is a half line. The minimum distance of an endpoint of d to the V-edge
vd is the circumradius of the triangle of which d is an edge. The circumcircle
of this triangle is shown with dotted line. D-edge g intersects with its V-edge
vg . The minimum distance of a g endpoint to vg is the half length of g (vg is
perpendicular with g at its midpoint). The minimum circle is shown with dotted
line. The maximum distance is the distance from an endpoint of g to one of vg
endpoints. Endpoints of vg are circumcentres of triangles of which g is an edge.
The maximum distance is the maximum circumradius of the two triangles. The
maximum (circum)circle is shown with dashed line. D-edge f does not intersect
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with its V-edge vf . The minimum and maximum distance for f are respectively,
the minimum and maximum circumradius of the two triangles of which f is an
edge. The minimum and maximum (circum)circles of triangles sharing edge f are
drawn with dotted and dashed line, respectively. The α-circles and their centres
are shown in grey. Only D-edge f is in the α-shape.

(a) (b)

Figure 6.8: (a) α-shape for the initial α-value, (b) α-shape for decreased α-value.

The value of α defines the level of detail of the α-shape. The criterion we use
to set an initial α value is that every point is at least vertex of one triangle in
the α-shape interior. Figure 6.8(a) shows the α-shape taken from such α value,
and 6.8(b) shows the shape after decreasing the α value. In Figure 6.8(b) we see
that there are loose points, not part of any shaped object. A triangle is part of
the α-shape if and only if the radius of its circumscribed circle is smaller than
or equal to −1/α [32]. To set an initial α value for a point set S, we calculate for
every point s ∈ S the minimum radius rs of circumscribed circles of all Delaunay
triangles that have s as a vertex. The radius −1/α is set to the maximum of rs
values for all points of S. The α value calculated from that is used to estimate
the shape. This initial value can be further adjusted by the user, if needed.

The α-shape of regularly distributed point data (grid data) resulting from the use
of the initial α-value is shown in Figure 6.9. Grid points with membership value
equal to zero have been excluded from the input.
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(a) (b)

Figure 6.9: The α-shape of a regularly distributed point set: (a) input point set, (b) object bound-
aries detected with the initial α-value.

6.1.2 Creating and storing triangulations

The output of α-shapes consists of boundary lines together with the input data
points. The lines constitute boundaries of the support sets of vague regions.
They are processed to identify objects by their boundary. An identifier is as-
signed to every region object detected. Each region is then built from the con-
strained Delaunay triangulation performed on boundaries of the region and
points inside the boundary. Its triangulation data is stored together with the
identifier. Module v.vague.triangle performs the whole procedure. Each step
of the procedure is explained in more detail in the following paragraphs.

Vague regions are identified from cluster boundaries. Each region may contain
holes. Because GRASS does not support areas with holes, we have to check for
them. A hole inside a vague region may contain other regions. Therefore, from
cluster boundaries we have to detect which boundary is an outer boundary of a
region and which is a hole boundary. We check for every area boundary if it lies
inside other areas. It is the outer boundary of a vague region if it lies inside an
even number of areas. It is the boundary of a hole if it lies inside an odd number
of areas. Figure 6.10 shows two different configurations of outer boundaries and
holes: area A is inside area B and it is a hole. Area C is inside area D which in turn
is inside area E. The boundary of E and the boundary of D form (the boundaries
of) a vague region. The boundary of C gives another vague region.

After identifying all vague regions, we perform a constrained Delaunay triangu-
lation for every region. A triangulation is the division of a surface or a polygon
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Figure 6.10: Identifying vague regions (shown in grey) from areal boundaries: one vague region in
the left; two vague regions in the right, one enclosing the other.

into a set of triangles, such that each triangle edge is shared by two adjacent tri-
angles. A constrained Delaunay triangulation is a triangulation of vertices with
predefined edges. It consists of four steps [86]:

1. creating a Delaunay triangulation from the input vertices;

2. inserting missing line segments from the boundary and deleting the Delau-
nay edges that overlap with them;

3. removing triangles at concavities and holes;

4. adding more points in order to improve the quality of the triangulation.

Figure 6.11 illustrates the first three steps of the constrained Delaunay triangu-
lation. Part (a) shows boundaries of a vague region. For simplicity of illustration
we consider a constrained Delaunay triangulation with only line boundaries as
input. Figures 6.11(b)–(d) show the results from the first, second and third step,
respectively. To visualize change in different steps, the boundary edges are al-
ways drawn in black. In the two intermediate steps, the other edges are shown
in grey, and the edges to be removed are shown with dashed grey lines.

We use TRIANGLE by Shewchuk [86] to perform the constrained Delaunay tri-
angulation. GRASS data is transformed into the TRIANGLE data format. The
program is run on the transformed data, and its output is transformed back
to GRASS vector format. The program cannot handle holes when the input is
big (i.e., more than 50,000 points). We use TRIANGLE to perform the triangula-
tion constrained only on the outer boundaries. Then we remove all edges inside
holes. We expect the core of a region to have many input points, therefore many
flat triangles will be created. We remove the redundant core triangles, by first
constructing the boundary of the core from all flat triangles of value 1, then
performing the constrained Delaunay on the boundary. Figure 6.12 shows trian-
gulation of a vague region after the simplification of its core triangulation. Points
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(a) (b)

(d)(c)

Figure 6.11: Results of three steps constrained Delaunay triangulation for a vague region: (a)
region boundaries, (b) Delaunay triangulation, (c) insertion of missing boundary lines, (d) removal
of triangles outside the boundary and inside holes.

are very dense outside the core, which makes the triangulation very dense. Core
triangles are visible after the simplification phase.

Figure 6.12: The triangulation of a vague region after reducing core triangles. Triangulation is very
dense outside the core; only core triangles are distinguishable.
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For each vague region, triangulation edges are stored as boundary lines with
(x,y, z) coordinates in the coor file. An attribute is used to store the identifier
of the vague region to which the edge belongs. Topology data of triangles and
holes, e.g., indices of line boundaries, is stored in the topo file.

The output of module v.vague.triangle is a data layer that contains informa-
tion about a vague class. The algorithm of the module is presented below:

create a list VR of vague regions from cluster boundaries
for every region r in VR

find all points that are inside its boundary
build constrained Delaunay triangulation from r ’s boundary and points
if r has holes

remove edges inside every hole
store triangulation edges together with r index in VR
store topology for triangles and holes

rof

Every time a layer of vague regions is used, its information is compiled from
stored data, and put in memory in a list Vague_region of vague regions. Each
element of Vague_region contains a list of triangles and a list of holes. Informa-
tion about triangles and holes is built using several GRASS data structures that
are inside a main structure, Map_info [62]. Every time a vector layer is used, data
from coor and topo files is read and put into these structures. The indexed lists
Area and Line inside a Map_info structure contain topology information of areas
and lines, respectively. Each element of Area contains a list of indices of lines
that constitute its boundary. The index of the Line list is used to connect each
element with the corresponding element in another list that contains attribute
values. Figure 6.13 shows relations between these data structures.

6.1.3 Creating themes from several layers

A data layer keeps information about one class. For example, a layer forest
keeps data about vague regions that belong to a class ‘forest’ of a ‘vegetation’
theme. The vegetation theme consists of several classes: forest, grassland,
shrubs, etc. Vague classes could overlap with each other, e.g., forest and shrubs,
in which case triangulations representing them will overlap. Overlapping lines
or areas are not allowed (handled) by the topology, which we need for compiling
object information. Therefore we cannot store all classes together. However,
we often need to have all classes of a theme together, to operate with all or a
selected subset of them.

We create two tables to store the relation class and theme it belongs to. Fig-
ure 6.14 shows their schemas. Tables are stored in DBF format, which is a for-
mat integrated in GRASS, meaning that no connection to an external database is
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Figure 6.13: The GRASS structures (inside Map_info) used to store information about vague re-
gions.

needed. Table Themes.dbf stores theme name and description, respectively in

Themes

Name Description

Name Description

Classes

Theme GRASSfolder

Figure 6.14: Tables storing the relation between a vague theme and its vague classes.

Name and Description. Name is the identifier. The table Classes.dbf stores
class name, the name of the theme it belongs to, the name of the GRASS folder
where (layer) data is stored, and class description, respectively in Name, Theme,
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GRASSfolder, Description. The combination Name, Theme is the identifier of
the table. Theme refers to Themes.dbf table.

Module v.vague.combine binds several layers in a theme. The created theme is
added to the Themes.dbf table and its list of layers is added to the Classes.dbf
table (each layer as a new record in the table). The module allows users to add
or remove layers from an existing theme, or to delete a theme. Changes are then
reflected in Classes.dbf and Themes.dbf table.

A theme of vague region layers forms a vague partition. Objects in a layer do
not overlap with each other. This is assured by the triangulation process. When
adding layers to a theme with the v.vague.combine we check if objects from
different layers overlap only in their uncertain part. We give a warning when this
criterion is violated, and store a report for the violating cases (object identifiers,
layers they belong to, and the theme).

6.2 Visualizing objects and displaying information

Visualization of objects in a layer is done using colour brightness to display lev-
els of membership values, e.g., using grey scales. Different layers are displayed
using different colour hue for each layer, and brightness for membership value
on each layer. Objects can be selected by clicking. Selected objects are shown
in a separate colour, not used for displaying layers. Figure 6.15 shows a theme
of vague regions having two classes. Different colour hue is used for each class.
Darker colour shows higher membership value. An object is selected and shown
in yellow colour.

Module v.vague.what performs visualization of layers. It allows to select ob-
jects from a layer, and displays information for a given location in a layer. A
theme (created by v.vague.combine module) is the input for this module. Vague
regions can be displayed by drawing only triangle edges of their triangulations.
The set of triangles is drawn with a different colour for each layer. The interpo-
lated values inside triangles can be used to colour the full extent of objects in a
layer, as it is shown in Figure 6.15. Section 6.2.1 explains more thoroughly the
techniques used for this visualization.

The interface of v.vague.what uses two windows: the control window that con-
tains the list of layers, one layer in a separate tab, and the display window for
drawing the layers. Layers are first drawn in the order in which they are stored
in the theme. The selected layer (tab) in the control window becomes the top
layer in the display window. An object of the top layer can be selected by click-
ing at a location inside the object. The triangle containing the given location is
found first, then the object the triangle belongs to. The object is highlighted.
The information of the given location is displayed in the control window. This
information contains the membership value of the location, the directory stor-

104



Chapter 6. Implementation of types and operators

Figure 6.15: The visualization of several layers, each drawn in separate colour hue. A selected
object is shown in yellow.

ing the layer data, and the identifier of the object (it falls in). The membership
value is calculated by using linear interpolation inside the triangle containing the
location. The user can select several objects and output them to a new layer.

6.2.1 Visualization techniques

A GRASS module, d.vect, is used to draw vague region layers with triangle
edges. Each layer is drawn in a different colour. A new module, d.vague, is
created to fill triangles with interpolated values and draw them. The module
uses a scanline rendering algorithm [107]. The rest of the section describes how
this module works.

GRASS functions are used to map the coordinates of triangle vertices to screen
coordinates. A screen is a raster map consisting of pixels. Every pixel has a red,
green, and blue value, specifying its colour. Scanline rendering fills a triangle
by drawing a line at a time, starting at the top of the triangle. All pixels of a
line are drawn, which are part of this triangle. The line is then moved down and
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the drawing is repeated until the bottom of the triangle is reached. Figure 6.16
illustrates how the algorithm draws a triangle. Linear interpolation is used to
calculate the membership value at each location. Every triangle lies on a plane
defined by the three triangle vertices. Any point (x,y, z) of the plane satisfies
the equation z = ax + by + c. The a, b, and c values are calculated from the
coordinates of the three triangle vertices. The membership value for any point in
the triangle is calculated by replacing its (x,y) location in the above equation.

Scanline

Figure 6.16: Scan-line visualization technique.

A different colour is used for each layer, selecting only colours that have the
same saturation, so no colour draws more attention than others. The brightest
colour is specified for every layer. The saturation and hue are kept constant for
a layer. The brightest colour is used for the lowest membership value of the
layer. The colour with brightness equal to 0 is used for the membership value
equal to 1. The corresponding brightness value for any other membership value
is calculated by first inverting the [0,1] interval (of membership values) then
stretching it linearly to the range of brightness values. Because the monitors
work with RGB colours, we use a function that applies that idea in an RGB model.
The function that maps memberships value to RGB colours is

f : [0,1]→ IR3 such that for every λ ∈ [0,1]
f (λ) = (1− λ)× (Rmax, Gmax, Bmax),

where (Rmax, Gmax, Bmax) is the specified brightest colour of the layer.

If multiple layers overlap, transparency is used to draw them together. This is
calculated with alpha-blending [107]. The colour (R,G, B)new at every location in
the overlapping part is calculated as

(R,G, B)new = 0.5× (R,G, B)S1 + 0.5× (R,G, B)S2 ,

where (R,G, B)S1 and (R,G, B)S2 are the colours at that location for the top and
bottom layer respectively. When more than two layers are to be drawn, first
the two bottom layers are calculated. Then for every layer to be added on top
of them, the above formula is reused, replacing (R,G, B)S2 with the calculated
colour for the previous layers, and (R,G, B)S1 the colour of the new layer.
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6.3 Operators on vague objects

The operators we implemented are union, intersection, and difference. This sec-
tion describes shortly these operators for vague points and vague lines, for being
simple, and concentrates more on the operators for vague regions.

The operators for vague points take two VMPoint layers as input, and output a
new VMPoint layer. The three operators check first for simple point objects in
the two input layers that have identical location. Union operator selects from
each pair (of identical location points) the point with the higher membership
value, and puts it in the result layer. It also adds all other (unmatched) points
from both layers to the result layer. The intersection operator selects the point
with the lower membership from each pair of matched objects, and inserts them
in the result layer. For each pair of matched points, the difference operator
calculates a new membership value as their fuzzy difference, and inserts in the
result layer a point with the common location and the calculated membership
value. It also adds to the result layer all unmatched points from the first layer.

L1
L2

L3

L5

L4 L6

Figure 6.17: Union of two vague lines.

The union operator for vague lines takes two VMLine layers as input, and outputs
a new VMLine layer. It first checks for simple lines that intersect. The operator
splits the intersecting lines at the intersection point, which becomes common
node for the newly created lines. The membership value at the common node is
the maximum value of the memberships at this location in the two initial lines.
The new lines are inserted in the result layer. Lines that do not intersect are
directly added to the result layer. Figure 6.17 illustrates union of vague lines:
lines L1 and L2 from input layers are intersecting; lines L3, L4, L5, L6 are created
and added in the result layer. The intersect operator for vague lines takes two
VMLine layers as input, and outputs a VMPoint layer. It checks for intersecting
lines, creates a point at the intersection location with membership value the
minimum of the two lines at this location, and inserts these points in the result
layer.

Operators for vague regions take two VMRegion layers as input, and output a
VMRegion layer. A VMRegion layer is a surface that consists of several non-
overlapping triangulations. Triangulations belonging to different surfaces might
overlap. The overlapping zone between two surfaces is important for the opera-
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tors, because they treat differently triangles inside and outside the overlapping
zone. The overlapping zone may consist of several separate areas. Operators
start by detecting the intersection line between triangulations. The line sepa-
rates the input triangulations into parts that are used to construct the output
surface. Union is built by taking the higher triangulation inside an overlapping
area, and adding unchanged triangulation parts that are outside the overlapping
zone. Intersection is built by taking the lower triangulation inside any overlap-
ping area. The difference operator re-calculates values at triangulations inside
an overlapping area, and adds unchanged triangulations of the first surface that
are outside the overlapping zone. The basic steps for the operators are:

1. Add vertical faces along boundaries of triangulations on both surfaces;

2. Detect the intersection line;

3. Re-triangulate both surfaces with this intersection line;

4. Select the right triangles from the re-triangulated surfaces to build the re-
sult.

The first three steps are the same for union and intersection operators. The forth
step, selecting triangles for the output, is different. We explain the first three
steps, and give the algorithm of the forth step for union. This algorithm can
be used for the intersection with only few changes, which are described shortly.
Difference operator requires specific treatment in most of the steps, therefore
we explain it separately.

To add vertical faces along a triangulation boundary we consider every edge of
the boundary. Two vertical triangles are created for each edge and added to
the triangulation. Suppose the edge is defined by points p1 = (x1, y1, z1) and
p2 = (x2, y2, z2). The face determined by p1, p2 and their projections in plane,
p3 = (x1, y1,0) and p4 = (x2, y2,0) is split into two triangles, and these are
added to the triangulation.

Detection of the intersection line is performed using the GNU triangulated sur-
face library (http://gts.sourceforge.net). It produces the set of looped lines
where the two surfaces intersect. The intersection between two triangles can be
a line segment, or a polygon if the triangles lie in the same plane. Therefore, the
intersection line between two surfaces consists only of straight-line segments.

The intersection line is added as constraint to the triangulations of both sur-
faces. On each surface, only triangulations containing a part of the intersection
line are to be re-triangulated. For every triangulation (to be changed), the tri-
angles containing a line segment from the intersection are split into several new
triangles. The other triangles are added unchanged to the new triangulation. The
splitting of triangles is done by greedy triangulation, as described in [111]. Fig-
ure 6.18 illustrates the splitting of three triangles. The algorithm below explains
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(a) (b)

Figure 6.18: Re-triangulation: (a) old triangles and intersection line in grey, (b) new triangles after
re-triangulation.

how splitting is done. Let Vi be the set of vertices of the triangle i, and Li the
set of line segments of the intersection line passing through the triangle i. Let
us denote by Ei the set of edges of the new triangulation in triangle i, and Pi the
union of Vi with the end nodes of Li.

set Ei = Li
for all points p from Pi

create Dp as edges from p to any other point in Pi
sorted in ascending order on length

for every edge d = (p,q) in Dp
if d ∉ Ei and no edge e ∈ Ei intersects with d

and no point r ∈ Pi −
{
p,q

}
lies on d

add d to Ei
fi

rof
rof

After the re-triangulation, the relation of a triangle from one surface to any tri-
angle in the other surface is one of the three cases:

• The three vertices of the triangle are on the other triangle: the triangle is
part of an area that is contained in both surfaces.

• One or two vertices are on the other triangle: the triangle intersects the
other surface only at a point or along a line (the edge joining the two ver-
tices). The rest of the triangle is above or below the other surface.

• No vertex of the triangle is on the other surface: The triangle does not
intersect with the other surface. It is completely above or below the other
surface.

A point is above a surface when its z coordinate is higher than the z value of
the surface at the point location. A point in the interior of a triangle from one
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surface determines the relation of this triangle with the other surface. When
an interior point is above, on, or below the other surface, the whole triangle is
above, on, or below the other surface, respectively. The centre of the incircle3

of a triangle is always in the interior the triangle, and can therefore be used for
such testing.

The intersection line consist of several looped lines. Triangles of one surface
that are inside a looped line are all above the other surface, or all below the other
surface. So the union of two surfaces is formed by groups of triangles bounded
by these looped lines. The algorithm that performs union of two re-triangulated
surfaces S1 and S2 and outputs a surface S is given below:

set S to an empty surface
for any triangle t from surface S1

generate a point p(x,y, z) in the interior of t
if S2 exist in location (x,y)

if p is on or above S2

add t to S
else

add t to S
fi

rof
for any triangle t from surface S2

generate a point p(x,y, z) in the interior of t
if S1 exist in location (x,y)

if p is above S1

add t to S
else

add t to S
fi

rof

After the output surface is created, separate triangulations are detected and
given an object identifier. They are the VRegion objects of the result layer.

The algorithm for calculating the intersection is quite similar. The difference is
that a triangle in one surface is discarded if the other surface does not exist at
the interior location of the triangle. Also, the testing for the z value of a point
and a surface is reversed: the point should be on or below the surface.

Difference between surfaces S1 and S2 is the intersection of S1 with the com-
plement of S2. Outside S2 its complement is equal to 1. The values of S1 are
everywhere smaller or equal to 1, therefore the intersection outside S2 is equal
to S1. Thus, we only need to build the complement of S2 inside its boundaries.

3The incircle is the inscribed circle of a triangle, i.e. the unique circle that is tangent to each of
the triangle’s edges.
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Surface S′2 is built from S2 triangulation by inverting the values of each triangle
vertex. The core of S2 will be a hole for S′2, therefore core triangles are not put in
S′2. Holes of S2 constitute the core of S′2. Boundary of each hole is triangulated
and included in S′2, all as flat triangles with value 1.

To build the result surface we pass through the same steps of union and in-
tersection. First vertical faces are added along boundaries of S1 and S′2. For
S1 faces are added from the boundary line to its projection in the horizontal
plane, that is down to membership value 0. For S′2 vertical faces are built along
the boundary up to membership value 1. The intersection line between the two
surfaces (extended by the vertical faces) is detected, and both surfaces are re-
triangulated with this line. The forth step, selecting the right triangles, is quite
similar with the intersection operator, except that every triangle of the first sur-
face is included in the output if the second surface does not exist at its loca-
tion(s). We keep to notations S1 and S′2 to denote now the surfaces taken after
re-triangulation. The algorithm for the last step, selecting the right triangles for
the output surface, is

set S to an empty surface
for any triangle t from surface S1

generate a point p(x,y, z) in the interior of t
if S′2 exist in location (x,y)

if p is on or below S′2
add t to S

else
add t to S

fi
rof
for any triangle t from surface S′2

generate a point p(x,y, z) in the interior of t
if S1 exist in location (x,y)

if p is below S1

add t to S
rof

As for the other operators, after the output surface is created, separate trian-
gulations are detected and given an object identifier. Triangle edges of every
triangulation are stored together with this identifier in the new layer.

6.4 Discussions

The current implementation of α-shapes gives good results for data sets with
more or less regular sample density. If the sample density changes too much,
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the α-shapes do not work very well. Density-scaled α-shapes [98] provide a
solution to this. Implementation of their algorithm would make the clustering
process more robust. On the other hand, density-based clustering algorithms,
e.g., DBSCAN, OPTICS, would be another possible solution to clustering of data
points. It seems though that the technique aims at clustering of points, and does
not provide for delineation of cluster boundaries.

The only input type we consider for vague regions is data points. Data about
vague regions could also be (vague) lines, e.g., lines having the same membership
value (α levels). A part of the procedure to create vague regions from line input
would be the same as for point input. They both need the constrained Delaunay
triangulation. The identification of objects would need another technique.

The operators we implemented are only part of the set of operators we defined in
the previous chapters. Some of the other operators will be built upon these im-
plemented basic operators. For example, overlay and fusion of vague partitions
will make use of the modules for the intersection and union of vague regions,
respectively. The implementation of boundary operator is straightforward, iden-
tification and then removal of the core. Frontier operator is also straightforward
for vague points and lines. Frontier of vague regions extracts their disconti-
nuity lines, of which we have not taken care in this implementation. The next
paragraph discusses this issue. Some of the spatial relations are based on the
intersection of vague objects. Other spatial relations are based on operators like
bounded difference, and absolute difference. They would therefore need an ex-
tension of these basic operators for their implementation. Metric operators are
independent of the above operators. They would, though, make use of existing
GIS functions for geometric measures. For example, the average area will use the
functions for the calculation of volumes.

The membership function of a vague region can have discontinuities along lines.
These discontinuities result in vertical faces in triangulations. The work pre-
sented in the chapter does not consider discontinuity lines. We build and store
the topology of triangulations using GRASS topology, which ignores vertical faces
and areas adjacent to them. We do not need to store vertical faces, but we do
need triangles adjacent to them. To allow discontinuity lines we could build
separate functions for the topology of triangulations from GRASS topology func-
tions, modifying the last. GRASS topology builds the connectivity of 3D lines
(through their nodes) correctly, but considers only their x,y coordinates when
building areas from lines. We can use line connectivity to build the adjacent
triangles to vertical faces, changing the existing functions to consider the spe-
cial cases we need. Operators on vague regions are to be modified in order to
consider discontinuities.
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6.5 Summary

The chapter showed how vague spatial objects can be stored and manipulated
using existing GIS functionality for vector data format. GRASS spatial features
and data structures were employed for storing information about vague objects.
Points, lines, and triangulations were used to store vague points, vague lines,
and vague regions, respectively. These simple types represent identifiable ob-
jects. Classes of simple objects were stored in separate vague layers. Classes of
a theme were bound together via relations stored on database tables. A theme
of vague region classes forms a vague partition, which allows for a soft classifi-
cation of space that is important for many spatial applications.

A few modules were offered to handle vague objects: a module that creates layers
of vague objects from input data points; a module that visualizes vague layers
in the screen, and allows to retrieve and display information about their objects;
some modules that perform different operations on vague layers. Union, inter-
section, and difference operators were implemented for vague objects. These are
basic operators, on which other spatial operators can be built.
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Introducing time in the system

This chapter considers vague objects describing natural phenomena that are
changing over time. The change can be continuous, or abrupt at discrete mo-
ments of time. A forest is well described as a vague object, because of the tran-
sition zones to other land uses resulting from the vagueness of the defining
concepts. In time, forest is subject to continuous change. To the contrary, a state
or a province has well defined boundaries by some legal agreement. The change
to these objects happens at discrete times, e.g., due to wars or legal agreements.
We expect continuous changes to be the most frequent ones for vague objects.
We are often interested to know the history of change, and not just only the cur-
rent state of a phenomenon. The history of change of a phenomenon might then
help to predict the future.

The system of vague spatial types and operators introduced in the previous chap-
ters can only handle the current state of a vague spatial phenomenon, i.e., a static
phenomenon. In this chapter, we describe how this system can be extended in
order to handle dynamic vague objects. The objective is to show the possibilities
for extending the system of vague types and operators with the time dimension.
We do not aim at providing a complete and fully formal system of temporal
types and operators. Looking at what is offered by spatiotemporal databases, we
discuss a possible implementation of dynamic objects. Considering two applica-
tions, we show the use of the proposed types and operators for monitoring and
analysis of dynamic vague phenomena.

The material of the chapter is presented in three parts. Section 7.1 looks at how
time can conceptually affect the proposed object types. It suggests several dy-
namic types and operators constructed from the previously defined vague types
and operators. Section 7.2 is dedicated to the implementation issues. It describes
how a spatiotemporal system can be used to handle vague objects changing over
time. Section 7.3 describes two spatial applications, and their analysis performed
by our operators. Section 7.4 summarizes the results of this chapter.
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7.1 Types and operators for dynamic vague objects

The system we proposed for describing spatial phenomena under vagueness,
takes an object view of space. This means that we are interested in distinct enti-
ties in space. The proposed object types categorize the different spatial entities
that one may encounter. These object types were defined to describe entities at
one moment in time. Including time in this object view of space, we distinguish
two approaches towards modelling vague spatial phenomena. The first approach
considers vagueness as spatial, and we are interested how a vague spatial phe-
nomenon changes in time. The second approach generalizes towards vagueness
in space and time. This occurs when the properties defining the objects are in
the space–time domain, and they are described in vague terms. For example, a
riparian area has a vague extent that depends on the season, dry or rainy. The
concept of a ‘season’ is vague in the time domain.

In this section we introduce dynamic vague object types, and several operators
on these types. We emphasize types and operators for vague objects chang-
ing over time, i.e., objects exhibiting spatial vagueness, as we believe there are
more applications needing such objects. Types and operators proposed for spa-
tiotemporal databases provide a basis for this. We follow the system of types
and operators proposed by Güting et al. [47, 48] for moving objects, adjusting it
to our vague objects changing over time. At the end of the section, we introduce
shortly objects exhibiting vagueness in space and time.

A vague object of a simple or general type is represented by a fuzzy set in IR2. To
describe a vague object changing over time we need to know for any moment in
time the fuzzy set representing the object. In general, a changing vague object
can be represented as a partial function from the time domain to the set of
fuzzy sets in IR2, ch : IR 3 F(IR2), satisfying semi-continuity conditions. To
formally define the continuity, we need a metric in a function space. We will
not elaborate on this, except for noting that the conditions allow continuous and
discrete change in time. For any vague type introduced in Chapter 3, we build
a new type to represent the change over time. For example, a changing vague
object of a general type is an element of the set chGVSpatial, defined as

chGVSpatial ≡
{
o : IR 3 GVSpatial | o is semi-continuous

}
.

The naming for each changing object type follows the same rule as above, ch
proceeding the name of the corresponding spatial type. In this fashion, the type
of vague regions changing in time is chVRegion.

A collection of operators can be defined over the general chGVSpatial type, or
over specific types. These operators should be able to express the most common
questions one may ask about changing objects in time. We present two groups
of operators: one that performs questions in the time domain, and a group of
operators that extend with time the (static) operators proposed in Chapters 3, 4,
and 5. Operators of the first group are a subset of those proposed in [47, 48].
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We select one operator from each group of static operators, and show how they
can be extended in the time domain. The other operators can be constructed
similarly. The operators that are presented here are chosen such that they pro-
vide an understanding of the analysis that can be performed on changing vague
objects.

The operator DefTime returns the time intervals during which a chGVSpatial
object exists. This is the domain of the function representing the chGVSpatial
object. The DefTime operator is defined as

DefTime : chGVSpatial→ IP(IR)

∀o ∈ chGVSpatial , DefTime(o) = dom(o).

The operator DefTime provides the lifetime of a changing vague object.

The operator AtInstant returns the state of a chGVSpatial object at a given
instant. It is defined as

AtInstant : chGVSpatial× IR → GVSpatial× IR

∀(o, t) ∈ chGVSpatial× IR , AtInstant(o, t) =
(
o(t), t

)
.

The AtInstant operator provides snapshots of a changing object as a pair of
(static) object state and instant of time.

The operators Initial and Final return, respectively, the state of a chGVSpatial
object at the first and last instant of its existence, respectively. The Initial
operator is defined as

Initial : chGVSpatial→ GVSpatial× IR

∀o ∈ chGVSpatial , t0 = min DefTime(o), Initial(o) =
(
o(t0), t0

)
.

The Final operator is defined in a similar way.

The operator Val extracts the object from a pair of object state and time. It is
defined as

Val : GVSpatial× IR → GVSpatial

∀(µ, t) ∈ GVSpatial , Val(µ, t) = µ.

The operator Present returns true if a chGVSpatial object exists at a given time
instant, and returns false otherwise. It is defined as

Present : chGVSpatial× IR → Boolean

∀(o, t) ∈ chGVSpatial× IR , Present(o, t) =
{

true if t ∈DefTime(o),
false otherwise.

We might be interested if a specific object exists at a particular moment. Present
operator provides for this.
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A collection of static (spatial) operators can be extended in the time domain
through a process called lifting [47, 48]. The idea is to allow any argument of
a spatial operator to be made spatiotemporal, i.e., to become a changing object,
and to return a temporal type [47]. For example, we can perform the inter-
section between two changing vague multiregions chVMRegion, or between a
chVMRegion object and a VMRegion object, both returning a chVMRegion
object. A VMRegion object is constant and exists all the time. It can thus be
presented as a chVMRegion object that is a constant total function. All lifted
operators are defined for changing objects, or a combination of changing objects
with static objects. Considering the above interpretation of a static object as a
changing object, we can use the same definition of a time-dependent operator
for changing and static object arguments. Under this remark, the intersection
operator between changing or static vague regions is defined as

RIntersection : chVMRegion× chVMRegion→ chVMRegion
∀o1, o2 ∈ chVMRegion,

∀t ∈ dom(RIntersection(o1, o2)) =DefTime(o1)∩DefTime(o2),
(RIntersection(o1, o2))(t) = RIntersection(o1(t), o2(t)).

The result object from the RIntersection operator is defined in the periods of
existence of both input objects. At any instant of its existence, the result object
is calculated from the intersection between the states of the two input objects
at that instant. All the other operators returning spatial types can be extended
similarly to the time domain.

To perform lifting of spatial relations we need a changing truth degree that is
a partial function f : IR 3 TruthDegree. The type of changing truth degrees

is chTruthDegree ≡
{
f : IR 3 TruthDegree

}
. Each of the spatial relations is

extended to a time-dependent relation between two chGVSpatial objects that
returns a chTruthDegree value. For example, a Disjoint relation is defined as

Disjoint : chGVSpatial× chGVSpatial→ chTruthDegree
∀o1, o2 ∈ chGVSpatial,dom

(
Disjoint(o1, o2)

)
=DefTime(o1)∩DefTime(o2),

∀t ∈ dom
(
Disjoint(o1, o2)

)
,
(
Disjoint(o1, o2)

)
(t) = Disjoint

(
o1(t), o2(t)

)
.

It produces for any instant of the concurrent existence of the two objects, the
degree of the Disjoint relation between the states of the two objects at that
instant.

The lifting of metric operators requires two new types for changing vague mea-
sures: chVMeasure ≡

{
f : IR 3 VMeasure

}
for time-dependent alpha operators,

and chMeasure ≡
{
f : IR 3Measure

}
for time-dependent average operators.

The time-dependent distance Distance between two chGVSpatial objects is de-
fined as

AvDistance : chGVSpatial× chGVSpatial→ chMeasure
∀o1, o2 ∈ chGVSpatial,dom

(
Distance(o1, o2)

)
=DefTime(o1)∩DefTime(o2),

∀t ∈ dom
(
Distance(o1, o2)

)
,
(
Distance(o1, o2)

)
(t) = Distance

(
o1(t), o2(t)

)
.
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The changing measure function is defined for the periods of concurrent exis-
tence of the two objects.

The time-dependent average area AvArea of a changing vague multiregion,
returns a changing vague measure defined in the periods of existence of the
chVMRegion object. For any instant in the lifetime of the object, it gives the
AvArea of the state of the chVMRegion object at that instant. The operator is
defined as

AvArea : chVMRegion→ chVMeasure
∀o ∈ chVMRegion,dom

(
AvArea(o)

)
=DefTime(o),

∀t ∈ dom
(
AvArea(o)

)
,
(
AvArea(o)

)
(t) = AvArea

(
o(t)

)
.

Objects characterized from space-time properties expressed in vague terms, can
be represented as fuzzy sets in the space-time domain, ξ : IR2 × IR → [0,1].
The vague object types, points, lines, and regions, will be defined using semi-
continuity of function in the IR3 space. Set operators are regularized fuzzy sets
operators for (IR3,T3). Spatial relations Disjoint, Touches, Within, and Equal
can be used for these objects without change in their formulas. The Crosses
and Overlaps will need change, as they are founded on (crisp) relations between
2D objects. Metric operators might require more fundamental change, being
measures defined over space and time, while the two generally have different
measures, not comparable to each other.

7.2 Implementation of dynamic vague objects

To store vague spatial phenomena that change over time, we can use the solu-
tions offered by the spatiotemporal databases. Spatiotemporal data can be seen
as objects embedded in a three-dimensional space, the cross product of (2D)
space and time, considering only the valid time dimension. Figure 7.1 illustrates
discrete and continuous change of (crisp) spatial objects. The point and the
region in Figure 7.1(a) change at discrete moments of time, whereas the point
and region of Figure 7.1(b) change continuously. A historical DBMS with tuple
timestamping (see Section 2.3.3), and extended with spatial types, can be used
for storing changing vague objects at discrete moments of time.

A vague object that changes continuously is presented by a function from (the
continuous) time to a spatial object type, for the period of existence of that ob-
ject. This assumes that the changing process is fully known and modelled, which
however is generally not the case. Spatial objects are extracted from acquired
data. This is often done at discrete moments of time. A more realistic solu-
tion is to store an object at various discrete moments of validity, together with
functions that model the change (transformation) from a stored instant to the
consecutive one. Modelling change between short periods of time is less prone
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26 Chapter 1 Introduction

6. Region events in space and time—(region, instant). For example, a forest fire at
large scale.

7. Regions valid for some period of time—(region, period). Example: an area closed
for a certain time after a traffic accident.

8. Set of region events—sequence of (region, instant). Example: the Olympic games
viewed collectively, at a large scale.

9. Stepwise constant regions—sequence of (region, period). Examples are: countries,
real estate (changes of shape only through legal acts), agricultural land use, and
so on.

10. Moving entities with extent—moving region. Examples are: forests (growth); for-
est fires at small scale (i.e., we describe the development); people in history; see
Table 1.8. 

These classes of data will be useful to characterize the scope of two approaches to
spatio-temporal modeling that are described next.

1.4.5 Temporal Databases with Spatial Data Types

A straightforward idea to deal with spatio-temporal applications is the following:
Use any temporal DBMS with its system-maintained tuple timestamps and enhance
it by spatial data types. For example, assuming the TSQL syntax from Section 1.3.5
and the spatial data types from Section 1.2.2, we might create a table for real estate:

CREATE TABLE real_estate (
owner char(30),
area region)

AS VALID STATE DAY

Figure 1.11 Discretely changing point and region (a); continuously changing point and
region (b).
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y
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(a) (b)

Figure 7.1: Spatial objects changing over time (taken from [51]): (a) discretely changing point and
region, (b) continuously changing point and region.

to errors, and can be accepted as a better approximation of the real change. A
changing vague object can thus be represented by a sequence of vague objects
at discrete moments of valid time, together with a function for each of these
moments, giving the change from that moment to the next one. In the com-
ing paragraphs we propose general interpolation functions that assume a linear
change through time. The change functions can also be built from knowledge
about the change process.

The objects to be stored are simple type objects, that is objects of type chVPoint,
chVLine, or chVRegion. A changing object is to be stored as a sequence of the
corresponding static simple objects. The complete (approximate) information
about a changing object is then compiled from a linear interpolation method.

A chVPoint object is a (time) sequence of VPoint objects, each associated with
a time stamp, i.e.,

〈(
(x1, y1,mv1), t1

)
, . . . ,

(
(xn, yn,mvn), tn

)〉
. Linear interpo-

lation should be performed between two consecutive elements of the sequence
in order to get the state of the chVPoint object at any moment of time. A
chVPoint object is thus a piecewise linear feature in a four-dimensional space.

A chVLine object is a (time) sequence of VLine objects, each associated with a
time stamp. A VLine object itself is a sequence of vague points. To perform
interpolation between two consecutive VLine objects, the vague point sequences
representing them should have the same length, i.e., the same number of ele-
ments. If this is not the case, vertices are added in both lines in such a way
they they divide each line in proportional parts. Linear interpolation is then
performed between corresponding vague points elements of the VLine objects.
This is the same interpolation as the one for a chVPoint object. Figure 7.2
illustrates the stored states of a changing line o at two consecutive moments
ti and ti+1. The vague line o(ti) is stored as a sequence of three elements,
〈(p1, v

p
1 ), (p3, v

p
3 ), (p5, v

p
5 )〉. Any location pj is composed of x and y coordi-

nates. The value vpj is the membership value of the line at that location. The

vague line o(ti+1) is stored as a sequence 〈(q1, v
q
1 ), (q2, v

q
2 ), (q4, v

q
4 ), (q5, v

q
5 )〉.

Vertices p
′
2 and p

′
4 are added to the vague line o(ti). Their locations divide the

line o(ti) in the same proportion as the vertices q2 and q4 divide o(ti+1). The
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ti

ti+1
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q1

q3
,q2 q4

q5

Figure 7.2: Two consecutive stored states of a changing vague line. Black triangles are stored
vertices for each vague line state. Grey hexagons are vertices added in each line, dividing them in
proportional parts.

membership values at p
′
2 and p

′
4 are calculated from linear interpolation along

the line o(ti). The vertex q
′
3 is added to the vague line o(ti+1) in a similar way.

For any moment t ∈ (ti, ti+1), the state of the changing vague line o(t) is pre-
sented by a sequence 〈(r1, vr1 ), (r2, vr2 ), (r3, vr3 ), (r4, vr4 ), (r5, vr5 )〉. Locations rj
and their membership values vrj are calculated from linear interpolation between
the jth elements of the vague lines o(ti) and o(ti+1).

A chVRegion object is a (time) sequence of VRegion objects, each associated
with a time stamp. A Vregion object itself is a triangulation, stored as a set of
triangle nodes. To have the state of chVRegion object at any moment of time
t, an interpolation is to be performed between the two consecutive stored states
at ti, ti+1, such that t ∈ (ti, ti+1). The state of chVRegion object at time t is a
triangulation derived from the interpolation between the nodes of the stored tri-
angulations presenting the states of chVRegion object at moments ti and ti+1.
To perform the interpolation, the triangulations of time ti and ti+1 should have
the same set of triangle nodes. When this is not the case, other nodes are added
to both triangulations to form a corresponding set of nodes. Re-triangulation is
performed for both objects, and these are used for the interpolation. The state
of the chVRegion object at time t is then determined as a set of triangle nodes
calculated from the interpolation between the corresponding nodes of the two
re-triangulated Vregion objects of times ti and ti+1.

The construction of a corresponding set of triangulation nodes is more complex
than the construction of corresponding vertices between two lines (presenting
states of a changing vague line). The addition of line vertices was done from
scaling on line extensions. For triangulations, scaling should be done in two
dimensions. Boundaries of the triangulations can be compared to find a trans-
formation that brings them to a strong similarity. A correspondence is thus to
be found first between nodes of the boundary. Parameters of an affine transfor-
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ti

ti+1

Figure 7.3: Correspondence between boundaries of vague region triangulations. Boundary edges
are drawn in black, other triangulation edges are drawn in grey.

mation can be calculated from the best1 correspondence. The transformation
parameters can then be used to calculate missing nodes (within a threshold)
from both triangulations. Figure 7.3 illustrates the stored states of a changing
vague region o at two consecutive moments ti and ti+1. Boundaries of the stored
triangulations for region states at ti and ti+1 are to be be used for finding the
best transformation.

The AtInstant operator extracts the state of a changing object for a given time.
The interpolation is performed from this operator, then used by all the lifted op-
erators. All the lifted operators can indeed be expressed in terms of AtInstant
operator.

Vague objects in space and time are functions of three arguments, µ(x,y, t),
with x,y providing location in space, and t location in time. Structures used for
curves, surfaces, and solid bodies in a three-dimensional (3D) space would be a
solution for the storage of these objects.

7.3 Monitoring and analysis of dynamic phenomena

We consider two applications, land cover change as discussed in [53], and beach
erosion as discussed in [101]. Both applications deal with dynamic phenomena
that are of a vague nature. The land cover application is interested in discrete
changes happening in a period of a few years, whereas the beach erosion applica-
tion is interested in the process of sand movement that is a continuous change.

1Different conditions can be put to define what is the best correspondence.
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7.3.1 Application: land cover change

The study area of the land cover application is Shimla district of Himachal Pradesh
in India. The land cover is composed of six classes: forest, agriculture, barren
land, water, settlements, and snow cover. The area is quite hilly, and even classes
like agriculture are vague, while in flat areas agricultural fields normally have
crisp boundaries. The changes in the area are slow, and images of around 10
years difference have been chosen for change detection. A fuzzy classification
is performed on satellite images from years 1987 and 1999, using membership
functions defined from field knowledge. The result of the classification for each
year is a vague partition, consisting of six vague land cover classes. The intersec-
tion of any pair of classes in two different years is used for the change detection.
The change for each class can be measured by comparing the unchanged area of
the class, with the area that has moved to another class.

Let us denote by P1 =
{
C1
i

}6

1
, and P2 =

{
C2
i

}6

1
, the vague partitions present-

ing the land cover of the first and second year, respectively. The overlay of
the two partitions produces the intersection of any pair of classes in two dif-

ferent years. Let P =
{
Ai,j

}6

i,j=1
be the result of the overlay, in which a vague

class Ai,j is the intersection of the class Ci in the first year with the class Cj
in the second year. The change of a class Ci is measured by the ratio R(Ci) =∑
j≠i AvArea(Ai,j)/AvArea(Ai,i). A high value of this ratio demonstrates a big

change for the class.

The two classes with the highest ratio R were the forest and the agriculture. Con-
sidering areas of the overlay classes, we can conclude which is the direction of
change. It was seen that the biggest changes happened from forest to agricul-
ture, and viceversa. Therefore, in an overall view, there was no considerable loss
in any of these classes.

7.3.2 Application: beach erosion

The beach erosion application has its study area in the island of Ameland, in
the north of the Netherlands (see Figure 7.4). Strong tidal currents cause the
movement of sand around the island. Subsequent erosion and sedimentation in
turn cause major changes along the shore. Figure 7.5 shows the digital elevation
models (DEM) of the northern part of Ameland in the years 1989–1995, in a grey
scale picture. The dark part is the sea, the greyish part is the beach, and the white
part are the dunes. The Ministry of Public Works of The Netherlands is interested
in stabilizing the process of change in the Ameland shore. To neutralize the
erosion, they carry out beach nourishment. A model describing the process of
changes would help to decide where the interaction is needed.

Changes along the shore can be described as transformation from and to fore-
shore, beach, and foredune. Studying these transformations can help under-
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Figure 7.4: The study area: the north-west part of the Ameland island, northern of The Netherlands
(taken from [100]).

standing the movement of sand. Transition zones occur between foreshore,
beach, and foredune, hence justifying an approach by vague objects. These three
classes are defined from the elevation values applying the membership functions
shown in figure 7.6. The red bars show the elevation values for the crisp classifi-
cation of the zone performed in the methodology of the Dutch National Institute
for Coastal and Marine Management (RIKZ) for the preservation of the coast [75]
(a short description is provided in [101]).

1990 1991 1992 1993 1994 1995

Figure 7.5: DEM of the northern part of Ameland for years 1990–1995. Low elevation values are
shown in black colour, high elevation values in white. The dark part is the sea, the grey part is the
beach, and the white part are the dunes.

The coastline position on 1st January 1990 is considered the basal coastline, and
the state of the beach on that day is taken as a reference for the calculations.
Figure 7.7 shows the results of the crisp and fuzzy classifications for the year
1990. Part (a) is a map of elevations in the study area, part (b) shows the result
of the crisp classification of elevations, and parts (d)–(e) are the vague objects
created from the membership functions of Figure 7.6. The three objects, vague
shore, vague beach, and vague dune, form a vague partition of the zone (in each
year), assured from the choice of their membership functions.

The decision for executing beach nourishment is based on detection of structural
erosion in the beach area in a period of 10 years, reference to the basal coastline,
and the volume of sand that is to be deposited. The calculation for this last
condition is performed on compartments that are division of the beach by the
profile lines shown in Figure 7.7(b). In the next paragraphs we show how our
operators can be used for monitoring beach erosion and perform analysis on the
data, without going to the detailed level of compartments.
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Figure 7.6: Membership functions for shore, beach, and dune, drawn in green. The red bars show
the boundaries for a crisp classification of elevations.

In the Ameland data (see Figure 7.5) we notice a lake that emerges at the north-
eastern side of the area, as a consequence of sedimentation. Following tidal
movements, it starts existing around the year 1995, and may disappear in the
future, becoming either beach or open sea. The Deftime operator will provide
us with the time period of its existence.

(a) (b) (c) (d) (e)

Figure 7.7: (a) DEM of Ameland for the year 1990, and (b)–(e) objects created from crisp and fuzzy
classification; (b) crisp classification of elevations, and profile lines along the beach; (c) vague shore,
(d) vague beach, (e) vague dune. Saturated colour shows high membership for vague objects.

A beach plain has to obey specific elevation requirements that are characterized
by a membership function. Its position and shape at a certain moment of time is
given by the AtInstant operator. The operator provides, indeed, the member-
ship function for that particular object, as well as the time.

An object might be selected in the screen, using an interface like the the one of
Figure 6.15. Tracking the object to prior or later moments is done by the object
identifier. Applying the Initial operator to a selected object gives the state of the
object at the first moment of its existence in the database. The Initial operator
provides also the time of the first occurrence in the database. The Final operator
similarly provides the characteristics of an object at its final occurrence in the
database.

The Present operator provides a ‘yes’ or ‘no’ answer about the presence of an
object at a given moment in time. It gives, for example, a ’no’ when the lake on
the north-eastern part of the area does not exist, if e.g., asked for its existence
in 1990.

The RIntersection operator describes the co-existence between two objects. We
know that the Ameland beach can be vegetated by small, salt resisting plants,
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thus creating patches of vegetation that grow after some period of the existence
of a beach object only. The coexistence of the beachplain with vegetation patches
is given by the RIntersection operator. It is an object ’vegetated beachplain’
taken as the intersection of the beach object with a vegetated object extracted
from an image of NDVI2 values.

The Disjoint operator provides the ‘disjointness’ degree for any moment of the
existence of two objects. Shore and dune are certainly disjoint at all times,
whereas the two combinations shore and beach and beach and dune both have a
‘disjointness’ degree smaller than 1 (Figure 7.6). The lowest value that may occur
equals 0.5.

The Distance operator gives a function that is changing in time. The distance
between the vague dune and the vague shore may change in time. The Distance
operator then provides for every year the distance between the α-cuts of the two
objects.
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1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000

Shore Beach Dune

Figure 7.8: Graphs of average areas of vague objects in Ameland for years 1990–2000.

The AvArea operator provides for each of the years the average area of a vague
object, derived from the averaging of its α areas over all the α values. Figure 7.8
shows graphs of the average areas of vague shore, vague beach, and vague dune
for years 1990–2000. This graph is used to check one of the conditions for the
detection of beach erosion.

The zone is said to have structural erosion if there is a negative trend-line for
the beach areas through ten consecutive years. From the graph of Figure 7.8 it

2The NDVI index is a vegetation index calculated from different bands of satellite imagery.
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can be seen that beach areas have a negative trend-line. The areas are compared
with the beach area of the reference year, Area[beach90]. This value determines
the lower limit for a beach area. Figure 7.9 shows vague beach objects in years
1990–1995 under a transparent layer of crisp objects in the reference year 1990.
It can be seen how the beach area is shrinking towards a south-easterly direction.

1990 1991 1992 1993 1994 1995

Figure 7.9: The vague beach in the Ameland island for years 1990–1995. The crisp classification
of the year 1990, Figure fig:fuzzy-class(b), is overlayed to all beach images.

The last condition for beach nourishment is the volume of sand to be deposited.
This cannot be expressed directly by our operators. It can, however, be calcu-
lated after some modifications. Appendix A describes fuzzy Markov chains as a
possible model for the change process of vague objects. It uses sand volumes
to build the model, and it can as result help to predict the possible loss on sand
volumes.

7.4 Summary

The system of vague types and operators provided in the previous chapters was
sketchily extended in this chapter with temporal types and operators. A tempo-
ral type is a changing object defined as a function from the time domain to any of
the object types proposed in Chapter 3. A set of temporal operators was defined
to answer simple questions related to time, e.g., the period of existence of an ob-
ject, if the object exists at a given moment, its state at the first or last moment of
existence. All spatial operators defined in the previous chapters were extended
to temporal operators. For example, the relation disjoint between changing ob-
jects compares the objects at any moment of their existence towards the static
disjoint relation.

Functionality of existing spatiotemporal databases can be used to store informa-
tion about dynamic vague objects at discrete moments of time. We proposed
linear function to interpolate between two consecutive stored states of a dy-
namic vague object. That provides the complete (approximate) information of a
dynamic object. At the end, we considered two dynamic vague applications, and
performed their analysis using our operators.
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Chapter 8

Conclusions

This thesis provides a system of types and operators that can handle vague
spatial information. Research concentrates on objects in IR2. We distinguish
between vague point, line, and region objects. The proposed types are formal
representations of spatial objects that exhibit thematic vagueness. Regions of-
ten result from a classification of space. The vagueness of concepts defining the
classes makes vague the extent of regions. This means that locational vague-
ness results from thematic vagueness. Therefore, the proposed region types are
appropriate for representing locational vagueness as well. The operators allow
reasoning with the proposed vague object types. These operators correspond to
the analysis procedures that are commonly performed with spatial data.

The thesis can be divided into three parts: formal definitions of vague types and
operators for static spatial objects, presented in Chapters 3, 4, and 5; imple-
mentation of these types and operators in a GIS software package, presented in
Chapter 6; extension of types and operators with the time domain to allow repre-
sentation of and reasoning with dynamic vague objects, presented in Chapter 7.
The coming sections summarize the results of each part.

8.1 Definitions of static vague types and operators

In the first part of the thesis we consider static objects and operators to han-
dle those. The objects are separated into simple and general types. A simple
type represents an identifiable object that is not divisible into individual compo-
nents. Attribute values can be attached to these objects, enriching the geome-
try by giving importance for use in applications. We distinguish between vague
points, vague lines, and vague regions that are objects of type VPoint, VLine, and
VRegion, respectively. A vague point is a site with a known location, but with an
uncertain belonging to a phenomenon of interest. A vague line is a linear feature
with known position, but with an uncertain extent, i.e., any point belongs to the
line to some degree. A vague region is a broad boundary region, such that loca-
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tions in the broad boundary typically have different degree of belonging to the
region. The general type objects assure closure under operators. A general ob-
ject is a class of simple objects that have the same value on a particular attribute.
We distinguish between vague multipoints, vague multilines, and vague multire-
gions that are objects of type VMPoint, VMLine, and VMRegion, respectively. A
vague multipoint is a finite collection of disjoint vague points. A vague multiline
is a finite collection of vague lines that intersect only at their end nodes, and
have the same membership value at the common end nodes. A vague multire-
gion is a finite collection of disjoint vague regions. Two other types were needed
to assure closure under operators: VLDim, which values are collection of vague
points and vague lines, and VExt, which values are collection of vague lines and
vague regions. A vague partition allows for a soft classification of space. It is a
collection of vague multiregions that might intersect each other only at their un-
certain parts. The vague types proposed are such that they include crisp objects
as special cases. Figure 8.1 shows the hierarchy of these spatial types, together
with a few other data types that are the return types of operators.

VData

Integer

Number

Real

TruthDegree

VMeasure

Measure VPoint VLine VRegionVMPointVMLineVMRegion

VPartition SVSpatialGVSpatial

VSpatial

VLDimVExt

Boolean

Figure 8.1: Hierarchy of types for static vague spatial data. VSpatial is the super-type of all spatial
types. The left branch of the hierarchy consists of numerical types that are returned from spatial
operators.

Provided operators are a standard set of operators that allow spatial analysis
and reasoning. They are divided into three groups: operators returning spatial
types, spatial relations, and metric operators.

Operators returning spatial types are regularized fuzzy set operators, boundary
operators, and operators on partitions. The regularized set operators are union,
intersection, and difference between objects of the same general type. They be-
have in the same way with their crisp correspondents when applied to crisp
objects. Other operators can be built from those, such as the symmetric dif-
ference. Two boundary operators are proposed for objects of a general type:
boundary and frontier. The boundary operator extracts the transition zone of
a vague object. The frontier extracts the locations where abrupt changes occur
on the membership values of vague objects. Both the boundary and the frontier
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give the crisp boundary operator when applied to crisp objects. The operators
on vague partitions are overlay and fusion. The overlay operator combines two
vague partitions to form a new, more refined, vague partition. The fusion opera-
tor allows for generalization of a vague partition.

Spatial relations are diadic operators between general vague objects. The pro-
posed relations, disjoint, touches, crosses, overlaps, within, and equal, follow the
intuition behind the SQL/MM spatial relations. They extend the true/false set
of truth values of the SQL/MM relations to the [0,1] interval. Hence, the truth
of a relation is a matter of degree (a value of type TruthDegree). The relations
have the property that only one can be certain at a time. Again, they give the
corresponding crisp relations when applied to crisp objects. Relations disjoint,
touches, crosses, and overlaps between vague objects are defined such that the
relation is certain if the corresponding crisp relation is true for the object cores.
It is certainly false if the corresponding crisp relation is false for the support sets
of the objects. The total certainty of the other two relations, within and equal,
is modelled by the subset and equality relation for fuzzy sets, respectively. The
within relation between two vague objects is certainly false if the corresponding
crisp relation between the core of the first object and the support set of the sec-
ond is false. Similarly, the equal relation between two vague objects is certainly
false if the corresponding crisp relation between the core of one object and the
support set of the other is false

Metric operators provided in this thesis are distance, length, area, diameter,
perimeter, centroid, and vagueness degree, all defined for vague objects of a
general type. We provided two groups of corresponding operators for distance,
length, area, diameter, and perimeter measures: alpha operators and average op-
erators. An alpha operator takes as argument one or two vague objects, and re-
turns a function f : (0,1] → IR+ (a value of type VMeasure). For every α ∈ (0,1]
the function yields the value of the analogous crisp operator applied to the α-
cuts of the vague objects. An average operator is calculated as the integral over
[0,1] of the return function f of the corresponding alpha operator, hence pro-
ducing an average over the returned values by the function f of the alpha opera-
tor. We provide equivalent formulas for the average length and the average area
operators. This allows one to perform their calculation independently from the
corresponding alpha operator. An average operator gives the analogous crisp
operator when applied to a crisp object. The centroid operator calculates the
centre of mass for a vague object. The vagueness operator provides a measure
for the vagueness degree of an object. As a special case, the degree of vagueness
of a crisp object is equal to 0. It reaches the maximal value if a vague object
consists only of an uncertain part.
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8.2 Implementation of static types and operators

We implemented the proposed types and the set operators in GRASS, using its
functionality for vector data format. GRASS spatial features and data structures
have been employed for storing information about vague objects. Points, lines,
and triangulations have been used to store vague points, vague lines, and vague
regions, respectively. An identifier is attached to an object of a simple type.
Classes of simple objects are stored in separate vague layers. A vague partition
is stored as a collection of vague region layers that form a theme. Classes of a
theme were bound together via relations saved on database tables.

Several modules were developed to handle vague objects. A layer of vague re-
gions is created from input data points via module v.vague.triangle. Mod-
ule v.vague.what visualizes vague layers in the screen, and allows to retrieve
and display information about their objects. Module v.vague.combine binds
together layers of a theme. Other implemented modules perform union, inter-
section, and difference between layers of vague points, vague lines, and vague
regions. These are basic operators, on which other spatial operators can be built.

8.3 Types and operators for dynamic vague information

The third part of the thesis addresses dynamic vague information. We distin-
guish two approaches. We first consider spatial vagueness, where interest fo-
cuses on changes of vague spatial phenomena over time. Second, we generalize
towards vagueness in space and time. This second approach becomes relevant
when objects are defined by properties in the space–time domain that are de-
scribed by vague terms.

This part mainly considers the first approach. Each type and operator defined
for static objects has been extended with time. A changing vague object type
is defined as a function from the time domain to the set of static objects of a
particular type. A time-dependent operator is constructed from a static operator
by replacing its static argument(s) with changing object(s) of the corresponding
type. The time-dependent operator returns for each moment of existence of
its argument(s) the value of the static operator on the states of the changing
object(s).

As concerns implementation, functionality offered by spatiotemporal databases
is adequate to store discrete states of a changing vague object. The state of
an object between two consecutive states can then be calculated from functions
describing the change.

Finally, we considered two dynamic spatial applications to show how their mon-
itoring and analysis can be performed with our system of types and operators.
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Vague region and vague partition types were employed to describe objects of
both applications. The detection of change was performed by overlaying the
vague partitions, and estimation of change was calculated by the average area
operator. The other temporal operators were used for monitoring changes, e.g.,
time of appearance, or the whole existence of an object. The analysis performed
with such operators can help understanding the process of change, and fine tune
parameters of dynamic models describing vague spatial phenomena.
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Appendix A

Fuzzy Markov chains to model
beach erosion

Markov chains are used to model the dynamics of processes with short memory:
the future state of the system depends only on the current state. However, they
assume that the states the system is passing through are crisp. In Section A.1
we introduce fuzzy Markov chains to model systems with fuzzy states. The
transition law between fuzzy states is given by fuzzy conditional probability.
Section A.2 applies the fuzzy Markov chains to the beach erosion application.

A.1 Fuzzy Markov chains

Markov processes are processes where the future development is completely
determined by the present state, and is independent of the way in which the
present state has developed [42]. This is called Markovian property. We call a
process a fuzzy Markov process1 if it has fuzzy states and satisfies the Marko-
vian property. A fuzzy Markov chain is modelled by the set of possible states
and the transition law of passing from one state to another, in the same way as
a (classical) Markov chain. We use fuzzy conditional probabilities to build the
transition law.

Let us define what is a fuzzy state and a fuzzy conditional probability. As we
are working with real spaces, we provide definitions for the IRn space. Let P be
a probability measure in IRn. A fuzzy event in IRn is a fuzzy set µ in IRn, which
is Borel measurable [114]. We identify a fuzzy state with a fuzzy event. The
probability of a fuzzy event µ is defined [114] by the integral

P(µ) =
∫

IRn
µ(q)dP, (A.1)

1The terms fuzzy Markov process and fuzzy Markov chain are used interchangeably.
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and is called fuzzy probability. It gives the expectation of the membership func-
tion of the fuzzy event. The conditional probability of two fuzzy events µ and ν
is defined from their algebraic product [113]: µ · ν =

{(
q, µ(q) · ν(q)

)
| q ∈ IRn

}
.

It is defined as [114]

P(µ | ν) = P(µ · ν)
P(ν)

(A.2)

provided that P(ν) > 0. The conditional probability on fuzzy events is called
fuzzy conditional probability.

A (discrete-time) fuzzy Markov process is a set of random variables, {Xt}t∈N (t
showing time), from the same probability space of fuzzy events, satisfying the
criteria

P(Xt = xt|Xt−1 = xt−1, . . . , X1 = x1) = P(Xt = xt|Xt−1 = xt−1).

Transition law from fuzzy state i to j is given by the fuzzy conditional probabil-
ity of having j in the coming step knowing that the current state is i. Assuming
stationarity, this value is independent of the time this transition happens. This
is called transition probability, and it is given by the formula

p(i, j) = P(Xk+1 = j|Xk = i) for all k ≥ 0, (A.3)

for every two fuzzy states i and j.

Transition probabilities of a process with finite number of states n, are put in a
matrix notation, such that p(i, j) is the element on the ith row and jth column
of the matrix, called the transition matrix:

T =


p(1,1) p(1,2) · · · p(1, n)
p(2,1) p(2,2) · · · p(2, n)

· · ·
p(n,1) p(n,2) · · · p(n,n)


A fuzzy probability measure defined on fuzzy states (of the process) and the
transition matrix completely describe a fuzzy Markov process.

A.2 Modelling beach erosion

The changes happening along the shore are described as transformation from
and to foreshore, beach and fore dune. We consider these three classes: fore-
shore, beach and fore dune, to be the states of a fuzzy Markov chain. We cal-
culate conditional probabilities in two consecutive years, then use these values to
calculate transition probabilities. Let Cti be class i ∈ {foreshore,beach, foredune}
in year t. The conditional probability that we will have class j on year t+1, know-
ing that we had class i on year t, is calculated as ratio of areas:

pt,t+1(i, j) =
AvArea(Cti · Ct+1

j )

AvArea(Cti )
. (A.4)
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We calculate the transition probability as the average of the conditional proba-
bilities in consecutive years for the period 1990–2000:

p(i, j) = p
90,91(i, j)+ p91,92(i, j)+ · · · + p99,00(i, j)

10
. (A.5)

The transition matrix T is a 3× 3 matrix, which elements are the p(i, j)s. Initial
probabilities can be defined from the ratio of areas of the 1990 classes

P(Ci) =
AvArea(C90

i )∑3
j=1 AvArea(C90

j )
. (A.6)

Initial probabilities and the transition matrix T, model the process of sand move-
ment as a fuzzy Markov chain.

The conditional probability pt,t+1(i, j) is

pt,t+1(i, j) =
∫∫
Cti (x,y) · Ct+1

j (x,y)dx dy∫∫
Cti (x,y)dx dy

. (A.7)

Instead of using areas to calculate probabilities, we might use volumes. This
is immediately related to volumes of sand needed for beach nourishment. To
perform calculations in raster data format, we apply the formula

pt,t+1(i, j) =
∑
pixelDEMt(pixel) · Cti (pixel) · Ct+1

j (pixel)∑
pixelDEMt(pixel) · Cti (pixel)

. (A.8)

Table A.1 shows the calculated values for the conditional probabilities of changes
between shore, beach, and dune, for any two consecutive years in the period
1990–2000. The probabilities are calculated using the formula A.8.

Years p(1,1) p(1,2) p(1,3) p(2,1) p(2,2) p(2,3) p(3,1) p(3,3) p(3,3)
90–91 0.83 0.15 0.0 0.07 0.81 0.12 0.0 0.11 0.89
91–92 0.81 0.16 0.0 0.09 0.80 0.11 0.0 0.10 0.90
92–93 0.79 0.14 0.0 0.09 0.80 0.11 0.0 0.11 0.89
93–94 0.89 0.08 0.0 0.08 0.78 0.14 0.0 0.10 0.90
94–95 0.88 0.05 0.0 0.11 0.75 0.15 0.0 0.11 0.89
95–96 0.94 0.02 0.0 0.07 0.78 0.15 0.0 0.13 0.87
96–97 0.93 0.03 0.0 0.06 0.76 0.18 0.0 0.12 0.88
97–98 0.90 0.05 0.0 0.05 0.76 0.19 0.0 0.10 0.90
98–99 0.88 0.05 0.0 0.12 0.70 0.18 0.0 0.09 0.91
99–00 0.87 0.04 0.0 0.11 0.70 0.19 0.0 0.07 0.93

Table A.1: Conditional probabilities for changing between shore, beach, and dune, for any two
consecutive years during the period 1990–2000.

The transition matrix with probabilities calculated via the formula A.5 is

T =

 0.87 0.08 0.0
0.08 0.77 0.15
0.0 0.10 0.90


137



A.2. Modelling beach erosion

These transition probabilities can be used to predict the volume of sand for the
next year.

138



Bibliography

[1] ISO/IEC 13249-3:1999(E). Information technology – database languages –
sql multimedia and application packages – part 3: Spatial. Working Draft
Text 1.32.04.02.03.00, International Organization for Standardization, Oc-
tober 2000.

[2] Pavel Sergeevich Alexandrov. Combinatorial Topology, volume 1,2, and 3.
Dover Publications, June 1998.

[3] Frank Jr. Ayres. Theory and Problems of Differential and Integral Calculus.
Schaum Publishing Co., New York, 2nd edition, 1964.

[4] Hans Bandemer and Siegfried Gottwald. Fuzzy Sets, Fuzzy Logic, Fuzzy
Methods: with Applications. John Wiley & Sons, 1995.

[5] Robert G. Bartle. The Elements of Real Analysis. Number (Library of
Congress) 64–20061. John Wiley & Sons, Inc., 1964.

[6] Pavel Berkhin. Survey of clustering data mining techniques. Technical
report, Accrue Software, Inc., San Jose, 2002.

[7] Thomas Bittner and John G. Stell. Rough sets in approximate spatial rea-
soning. In Second International Conference on Rough Sets and Current
Trends in Computing, volume 2005 of Lecture Notes in Computer Science
(LNCS), pages 445–453. Springer-Verlag, 2000.

[8] Isabelle Bloch. On fuzzy distances and their use in image processing under
imprecision. Pattern Recognition, 32:1873–1895, 1999.

[9] I. Bogàrdi, A. Bárdossy, and L. Duckstein. Optimizing the Resources for
Water Management, chapter Risk Management for Groundwater Contami-
nation: Fuzzy Set Approach, pages 442–448. ASCE, New York, 1990.

[10] A. Bogomolny. On the perimeter and area of fuzzy sets. Fuzzy Sets and
Systems, 23:257–269, 1987.

[11] D. G. Brown. Mapping historical forest types in Baraga County Michigan,
USA as fuzzy sets. Plant Ecology, 134(1):97–111, 1998.

139



Bibliography

[12] James J. Buckley and Esfandiar Eslami. An Introduction to Fuzzy Logic and
Fuzzy Sets. Advances in Soft Computing. Physica-Verlag, 2002.

[13] Peter A. Burrough and Andrew U. Frank. Geographic objects with inde-
terminate boundaries. Number 2 in GISDATA. Taylor & Francis, London,
1996.

[14] Peter A. Burrough, Pauline F. M. van Gaans, and R. A. MacMillan. High-
resolution landform classification using fuzzy k-means. Fuzzy Sets and
Systems, 113(1):37–52, July 2000.

[15] C. L. Chang. Fuzzy topological spaces. Journal of Mathematical Analysis
and Applications, 24:182–190, 1968.

[16] Bidyut Baran Chaudhuri and Azriel Rosenfeld. On a metric distance be-
tween fuzzy set. Pattern Recognition Letters, 17:1157–1160, 1996.

[17] Bidyut Baran Chaudhuri and Azriel Rosenfeld. A modified hausdorff dis-
tance between fuzzy set. Information Sciences, 118:159–171, 1999.

[18] Eliseo Clementini and Paolino di Felice. Geographic objects with indeter-
minate boundaries, chapter An Algebraic Model for Spatial Objects with
Indeterminate Boundaries, pages 171–187. In GISDATA [13], 1996.

[19] Eliseo Clementini and Paolino di Felice. A spatial model for complex ob-
jects with a broad boundary supporting queries on uncertain data. Data &
Knowledge Engineering, 37(3):285–305, June 2001.

[20] Anthony G. Cohn, Brandon Bennett, John Gooday, and Nicholas Mark
Gotts. Qualitative Spatial Representation and Reasoning with the Region
Connection Calculus. GeoInformatica, 1(3):275–316, 1997.

[21] Anthony G. Cohn and Nicholas Mark Gotts. Geographic objects with in-
determinate boundaries, chapter The ‘egg-yolk’ representation of regions
with indeterminate boundaries, pages 171–187. In GISDATA [13], 1996.

[22] Anthony G. Cohn and Nicholas Mark Gotts. Representing Spatial Vague-
ness: A Mereological Approach. In Luigia Carlucci Aiello, Jon Doyle, and
Stuart Shapiro, editors, Principles of Knowledge Representation and Rea-
soning (KR’96), pages 230–241. Morgan Kaufmann, 1996.

[23] OpenGIS Consortium. Opengis simple features specification for sql. Revi-
sion 1.1, Open GIS Consortium, Inc., 1999.

[24] E. Cuchillo-Ibáñez and Juan Tarrés. On the boundary of fuzzy sets. Fuzzy
Sets and Systems, 89:113–119, 1997.

[25] M. de Berg, M. van Kreveld, M. Overmars, and O. Schwarzkopf. Computa-
tional Geometry-Algorithms and Applications. Springer, Berlin, 2nd edition,
1997.

140



Bibliography

[26] Rolf A. de By. Principles of Geographical Information Systems. ITC Ed-
ucational Textbook series; 1. International Institute for Geo-Information
Science and Earth Observation (ITC), Hengelosestraat 99, P.O. Box 6, 7500
AA Enschede, The Netherlands, third edition, 2005.

[27] J.J. de Gruijter, D.J.J. Walvoort, and P.F.M. van Gaans. Continuous soil maps
— a fuzzy set approach to bridge the gap between aggregation levels of
process and distribution models. Geoderma, 77:169–195, 1997.

[28] Arta Dilo. Mapping an extended ER model to a spatial relational model.
Master’s thesis, International Institute for Geo-Information Science and
Earth Observation (ITC), June 2000.

[29] Didier Dubois and Henri Prade. Fuzzy Sets and Systems: Theory and Appli-
cations. Academic Press, New York, 1980. pp. 38–40.

[30] Didier Dubois and Henri Prade. Fundamentals of Fuzzy Sets, volume 1 of
Handbook of Fuzzy Sets, chapter Fuzzy interval analysis, pages 483–581.
Kluwer Academic Publisher, 2000.

[31] Michael Dummett. Wang’s paradox. Synthese, 30:301–324, 1975.

[32] H Edelsbrunner, D. G. Kirkpatrick, and Seidel R. On the shape of a set of
points in the plane. IEEE Transactions on Information Theory, IT-29(4):551–
559, July 1983.

[33] Gerald A. Edgar. Measure, topology, and fractal geometry. Undergraduate
texts in mathematics. Springer-Verlag, Berlin, 1990.

[34] Charles Henry Jr. Edwards and David E. Penney. Calculus and Analytic
Geometry. Prentice Hall, Inc., 1982.

[35] Max J. Egenhofer. A model for detailed binary topological relationships.
Geomatica, 47(3&4):261–273, 1993.

[36] Max J. Egenhofer, Eliseo Clementini, and Paolino Di Felice. Topological re-
lations between regions with holes. International Journal of Geographical
Information Systems, 8(2):129–142, 1994.

[37] Max J. Egenhofer and Robert D. Franzosa. Point-set topological spatial rela-
tions. International Journal of Geographical Information Systems, 5(2):161–
174, 1991.

[38] Max J. Egenhofer and Robert D. Franzosa. On the equivalence of topolog-
ical relations. International Journal of Geographical Information Systems,
8(6):133–152, 1994.

[39] Max J. Egenhofer and John Herring. Categorizing binary topological re-
lationships between regions, lines, and points in geographic databases.
Technical report, University of Maine, Department of Surveying Engineer-
ing, 1991.

141



Bibliography

[40] Martin Erwig and Ralf Hartmut Güting. Explicit graphs in a functional
model for spatial databases. IEEE Transactions on Knowledge and Data
Engineering, 6(5):787–804, October 1994.

[41] Martin Erwig and Markus Schneider. Vague regions. In 5th International
Symposium on Advances in Spatial Databases (SSD’97), volume LNCS 1262,
pages 298–320, 1997.

[42] William Feller. An Introduction to Probability Theory and Its Applications.
Wiley series in probability and mathematical statistics. John Wiley & Sons
Ltd., England, third edition, 1968.

[43] Kit Fine. Vagueness, truth and logic. Synthese, 30:265–300, 1975.

[44] Peter Fisher. Sorites paradox and vague geographies. Fuzzy Sets and Sys-
tems, 113(1):7–18, July 2000.

[45] Nicholas Mark Gotts. An axiomatic approach to topology for spatial infor-
mation systems. Research report series 96.25, University of Leeds. School
of Computer Studies, August 1996.

[46] Ralf Hartmut Güting. An introduction to spatial database systems. VLDB
Journal, 3(4):357–399, 1994.

[47] Ralf Hartmut Güting, Michael H. Böhlen, Martin Erwig, Christian S.
Jensen, Nikos Lorentzos, Enrico Nardelli, Markus Schneider, and Jose R.R.
Viqueira. Spatio-Temporal Databses: The CHOROCHRONOS Approach,
chapter Spatio-temporal Models and Languages: An Approach Based on
Data Types, pages 117–176. Lecture Notes in Computer Science. Springer,
September 2003.

[48] Ralf Hartmut Güting, Michael H. Böhlen, Martin Erwig, Christian S. Jensen,
Nikos Lorentzos, Markus Schneider, and Michalis Vazirgiannis. A founda-
tion for representing and querying moving objects. ACM Transactions on
Databases Systems, 25(1):1–42, March 2000.

[49] Ralf Hartmut Güting, Thomas de Ridder, and Markus Schneider. Imple-
mentation of the rose algebra: Efficient algorithms for realm-based spatial
data types. In SSD, pages 216–239, 1995.

[50] Ralf Hartmut Güting and Markus Schneider. Realm-based spatial data
types: The ROSE algebra. VLDB Journal, 4(2):243–286, 1995.

[51] Ralf Hartmut Güting and Markus Schneider. Moving Objects Databases.
Data Management Systems. Morgan Kaufmann, August 2005.

[52] Petr Hájek. Metamathematics of Fuzzy Logic, volume 4 of Trends in Logic.
Kluwer Academic Publishers, 1998.

[53] Santosh Hedge. Modelling Land Cover Change using Fuzzy Based
Geo-spatial Approach. Master’s thesis, International Institute for Geo-
Information Science and Earth Observation, December 2003.

142



Bibliography

[54] H.J.W.M. Hendricks Franssen, A.C. van Eijnsbergen, and Alfred Stein. Use
of spatial prediction techniques and fuzzy classification for mapping soil
pollutants. Geoderma, 77:243–262, 1997.

[55] Tomislav Hengl, Dennis J. J. Walvoort, Allan Brown, and David G. Rossiter.
A double continuous approach to visualization and analysis of categor-
ical maps. International Journal of Geographical Information Science,
18(2):183–202, March 2004.

[56] Edwin Hewitt and Karl Stromber. Real and Abstract Analysis. Springer-
Verlag, 1969.

[57] Dominic Hyde. The Stanford Encyclopedia of Philosophy, chapter Sorites
Paradox. The Metaphysics Research Lab CSLI, fall 2002 edition, 2002.

[58] Jürgen Jost. Postmodern analysis. Universitext. Springer, Berlin, 1998.

[59] John L. Kelley. General topology. Number (Library of Congress) 55–6495 in
The University series in Higher Mathematics. D. Van Nostrand Company,
Inc., March 1955.

[60] John L. Kelley. General topology. Number (Library of Congress) 75–14364
in Graduate texts in mathematics. Springer, New York, 1975.

[61] George J. Klir and Bo Yuan. Fuzzy Sets and Fuzzy logic: Theory and Appli-
cation. Prentice-Hall, New Jersey, 1995.

[62] Pawalai Kraipeerapun. Implementation of vague spatial objects. Master’s
thesis, International Institute for Geo-information Science and Earth Ob-
servation (ITC), March 2004.

[63] Arko Lucieer, Peter Fisher, and Alfred Stein. GeoDynamics, chapter
Texture-based Segmentation of Remotely Sensed Imagery to Identify Fuzzy
Coastal Objects. CRC Press LLC, 2004.

[64] Arko Lucieer, Alfred Stein, and Peter Fisher. Texture-based segmentation
of high-resolution remotely sensed imagery for identification of fuzzy ob-
jects. In Proceedings of GeoComputation, Southampton, UK, 2003.

[65] Chris Meyer, Abraham Kandel, and Dewey Rundus. The triad of fuzzy
theory. ACM SIGAPP Applied Computing Review, 1(2):12–15, September
1993.

[66] I.O.A. Odeh, A.B. McBratney, and Chittleborough D.J. Soil pattern recogni-
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