
3D Topography

A Simplicial Complex-based Solution in a Spatial DBMS

Publications on Geodesy 66

NCG Nederlandse Commissie voor Geodesie Netherlands Geodetic Commission

Delft, June 2008

3D Topography

A Simplicial Complex-based Solution in a Spatial DBMS

Friso Penninga

3D Topography. A Simplicial Complex-based Solution in a Spatial DBMS
Friso Penninga
Publications on Geodesy 66
ISBN: 978 90 6132 304 4
ISSN 0165 1706

Published by: NCG, Nederlandse Commissie voor Geodesie, Netherlands Geodetic Commission,
Delft, The Netherlands
Printed by: Optima Grafische Communicatie, Optima Graphic Communication, Rotterdam,
The Netherlands
Cover illustration: Friso Penninga

NCG, Nederlandse Commissie voor Geodesie, Netherlands Geodetic Commission
P.O. Box 5058, 2600 GB Delft, The Netherlands
T: +31 (0)15 278 28 19
F: +31 (0)15 278 17 75
E: info@ncg.knaw.nl
W: www.ncg.knaw.nl

The NCG, Nederlandse Commissie voor Geodesie, Netherlands Geodetic Commission is part of
the Royal Netherlands Academy of Arts and Sciences (KNAW).

Acknowledgements

Each PhD project has its own particular history. My story starts on a Thursday
night, late in 1999, the evening of the ‘oliebollenbar’∗. At that time, I was still a
Geodesy student and, together with many other students, I paid a visit to the bar.
During that year, staff members from each research section were asked to act as
bartenders to stimulate the interrelationships between students and staff members.
The GISt staff members were not only acting as bartenders, but also decided –in
advance of the approaching holiday season– to bake some ‘oliebollen’. A few weeks
earlier it was announced that Peter van Oosterom would become the new professor
of GIS Technology early in 2000. Early in the evening, he arrived to see his future
group in action. It was the first night that I spoke to him, discussing his ideas for
the group. He was wearing a chef’s hat (the one from Tjeu, who was baking the
‘oliebollen’), holding a bottle of beer in his hand and appeared to be a no-nonsense
guy. Later that night I decided to choose GIS as my MSc specialization.

Eight years have past since that particular evening in 1999. In the meantime I
obtained my MSc under Peter’s supervision, and he played an important role in my
search for a job afterwards. While pursuing another job, we agreed on a temporal
position as a researcher, early in 2004. The three month position would cover the
period that my future employer needed to fix a budget problem. However, life is what
happens to you while you’re busy making other plans, so after six weeks Peter offered
me a PhD position that I accepted. That’s how things started.

Today I am at the end of this project. Although only my name is printed on the
cover of this book, I could not have achieved this result without the indispensable
support of many people. First of all I have to thank Peter van Oosterom. Without his
enthusiasm, open communication and down-to-earth attitude this project could not
have been successful. Furthermore I like to thank the 2004 GIS-t group for welcoming
me (Axel, Edward, Elfriede, Henri, Marian, Sisi, Theo, Tjeu, Wilko), with special
thanks to Edward for his involvement in the start of the project, all staff members

∗An ‘oliebol’ is a typical Dutch treat, traditionally eaten on New Year’s Eve, and can be described
roughly as a doughnut ball. The ‘oliebollenbar’ was a theme night at the Snelliusbar (the bar of the
students association Snellius of the faculty of Geodesy, Delft University of Technology), organised
by staff members of the GIS Technology group.

iii

iv Acknowledgements

that joined the group since (Arta, Frank, Hugo, Maarten, Martijn, Safiza, Swati, Wei,
Wiebke, Yahaya) and our guest researchers (Chen, João, Ludvig, Rod). I really enjoy
working with this young, dynamic and enthusiastic group of researchers.

Other OTB colleagues also contributed to the pleasant atmosphere in which I
have worked for four years. Thanks to the 12 o’clock lunch crew, the 20 year OTB
committee, the PhD council and board (I enjoyed both the work and the drinks) and
all other colleagues that I met during joint projects, off-sites, OTBorrels and coffee
breaks. Thanks to Itziar Lasa for the cover design of the dissertation version.

A lot of people outside OTB also contributed in one way or the other. The week Peter
and I spent at Oracle USA was invaluable (thanks to Siva Ravada, Ravi Kothuri, Baris
Kazar, John Herring, Han Wammes), even though the annual ‘A Quilters Gathering’
created the most surreal atmosphere in the Nashua Sheraton. Discussing spatial data
types during the day and being surrounded by hundreds of quilters with humongous
trolleys with sewing kits and machines by night; it’s quite a gap. Furthermore I like
to thank the 3D Topography consortium partners (Garmt Zuidema, George Vossel-
man, Han Wammes, Hans Nobbe, Marc van der Eerden, Nico Bakker, Sander Oude
Elberink, Stefan Flos), the 3D Topography use case interviewees (Bram Verbruggen,
Hans Nobbe, Irwin van Hunen, Nico Bakker, Paul van Asperen, Stefan Flos) and the
3D Topography international top-up partners (Aiden Slingsby, Andrew Frank, Chris
Gold, Farid Karimpour, Hang Si, Jonathan Raper, Klaus Gärtner, Ludvig Emg̊ard,
Pawel Boguslawski, Rod Thompson). A special word of gratitude goes to Hang Si for
his TetGen software, which was used for all tetrahedronisations in my research.

Special thanks to Dave Houben for his work on the DUT campus data set and
Sijmen Wesselingh for his work on a web-based viewer for tetrahedronised data.
Furthermore I have to acknowledge Rien Elling; without his course the writing pro-
cess would have been much more chaotic and less on schedule. John Herring, Hugo
Ledoux, Hang Si and Edward Verbree provided me with very valuable and highly
appreciated suggestions for further improvements of the final dissertation text.

Finally a big thank you to all my friends and family, for providing a life outside
university. A last word of gratitude goes to Brechtje. I started this project without
you, but at the end it is so obvious that your love is more important than a PhD.

Friso Penninga
February 2008

Contents

Acknowledgements iii

1 Introduction 1

1.1 Motivation . 2

1.1.1 A conceptual data model for 3D Topography 2

1.1.2 A data structure for 3D Topography 3

1.2 Objective and main research question 4

1.3 Research scope and limitations . 6

1.4 Contribution of the work . 6

1.5 Outline . 7

2 Research background 9

2.1 Problem domain: Towards 3D topography 9

2.1.1 Demand-driven development: the need for 3D topography . . . 10

2.1.2 Supply-driven development: the increasing availability of 3D data 11

2.2 Defining dimensions in the range 2D-3D 13

2.3 Deriving requirements for the conceptual data model and structure
from the problem . 17

2.3.1 Requirements for the conceptual data model 17

2.3.2 Requirements for the data structure 17

2.4 Managing 3D data: related research on 3D data structures 18

2.4.1 Constructive Solid Geometry 18

2.4.2 3D boundary representation: polyhedrons 19

2.4.3 Simplex-based approaches . 20

2.4.4 Regular polytopes . 21

2.5 Triangular data structures and algorithms 22

2.5.1 2D data triangular structures: triangulations 23

2.5.2 2D triangulation algorithms . 28

2.5.3 3D triangular data structures: tetrahedronisations 30

2.5.4 3D tetrahedronisation algorithms 33

2.6 Relevant database concepts . 36

v

vi CONTENTS

I Conceptual modelling of 3D Topography 39

3 Two triangular data models for 3D topography 41
3.1 Approach 1: an integrated 2.5D/3D model 41

3.1.1 Concepts of the integrated TIN/TEN approach 42
3.1.2 Advantages of the TIN/TEN approach 45
3.1.3 Disadvantages of the TIN/TEN approach 46

3.2 Approach 2: a full 3D data model . 50
3.2.1 Concepts of the TEN approach 50
3.2.2 Advantages of the TEN approach 51
3.2.3 Disadvantages of the TEN approach 53

3.3 The choice for the full 3D approach . 53

II A Data structure for 3D Topography 55

4 Theoretical foundations: Poincaré simplicial homology 57
4.1 Mathematical description of simplexes 58
4.2 Orientation of simplexes . 61
4.3 Combining simplexes: simplicial complexes 63
4.4 Operations on simplexes and simplicial complexes 67

5 A simplicial complex-based solution for 3D topography 71
5.1 Representing topographic features in a TEN 71
5.2 Early ideas: three TEN-based data structures for the full 3D approach 73
5.3 Preferred solution: applying simplicial homology to the TEN 75

5.3.1 A DBMS-based approach for 3D Topography 75
5.3.2 Two variants in simplex encoding 79

5.4 Implementing the data structure in a DBMS environment 81
5.4.1 Creating the data structure . 81
5.4.2 Deriving constraints (i.e. feature boundaries) 84
5.4.3 Deriving topological relationships 85

5.5 Summary . 86

6 Updating features in the Data Structure 87
6.1 Incremental update: feature insertion 88

6.1.1 Motivation . 88
6.1.2 Step 1. Feature boundary triangulation: calculating constraints 89
6.1.3 Step 2. Inserting constrained edges: nine unique cases 89
6.1.4 Step 3. Ensuring presence of constrained triangles 104
6.1.5 Step 4. Modelling the feature’s interior and reclassifying tetra-

hedrons . 105
6.2 Incremental update: feature deletion 106
6.3 Quality improvement of TEN structure 107
6.4 Initial bulk loading and bulk rebuild 109

6.4.1 Bulk loading to create a new data set 109

CONTENTS vii

6.4.2 Bulk rebuilding to optimise the tetrahedronisation 110

III Evaluation and conclusions 111

7 Evaluation and discussion 113
7.1 Evaluation material: three different data sets 113

7.1.1 Initial ‘toy’ data set . 114
7.1.2 Rotterdam buildings data set 115
7.1.3 Delft University of Technology campus data set 115

7.2 Evaluating bulk tetrahedronisation process 117
7.3 Evaluating storage requirements . 124

7.3.1 Coordinate concatenation vs. identifier concatenation 125
7.3.2 Simplicial complex-based storage vs. polyhedrons 127

7.4 Evaluating initial visualisation tools 128
7.5 Discussing requirements for 3D data sets with correct topology 129
7.6 Identifying future developments . 131

7.6.1 Improving performance: spatial clustering and indexing 131
7.6.2 Dealing with storage requirements: storing all coordinates vs.

storing differences . 132
7.6.3 Improving edit functionality: snapping 132

8 Conclusions 135
8.1 Results . 135

8.1.1 A conceptual model for 3D topography 136
8.1.2 A data structure for 3D topography 137

8.2 Main conclusions . 139
8.3 Discussion . 141
8.4 Future research . 142

Bibliography 145

Appendix I – Implementation: Functions and procedures 155

Appendix II – Implementation: Creating the data structure 171

Appendix III – Converting to Oracle Spatial 11g polyhedrons 175

Appendix IV – TetGen files 177

Summary 181

Samenvatting 187

Curriculum Vitae 193

Chapter 1

Introduction

More than 350 years ago, the famous Dutch cartographer Willem Blaeu (1571-1638)
created a beautiful map of the city of Vlissingen (see figure 1.1). In his map, every
house, church and windmill is depicted as a volume with a side-view, which increases
the map’s readability. This early 3D mapping method fits with the human perception
of the world, which is often based on an oblique view. In the following centuries the
orthogonal projection became the new standard and the resulting maps describe the
world in only two dimensions.

With the introduction of geographic information systems (GIS), these comput-
erised 2D maps served no longer only as visualisation tool, but as basis for storage,
calculations and analysis as well. In the last decade several steps towards 3D GIS

Figure 1.1: Detail of the map of Vlissingen with a bird’s eye perspective, by Willem
Blaeu, 1612

2 Chapter 1. Introduction

have been taken, especially from a visualisation point of view. This dissertation is
intended as the next step towards 3D GIS, as it will result in a new data structure
that supports 3D storage, 3D analyses and 3D validation.

Based on the research motivation, section 1.1 elaborates on the need for a con-
ceptual data model and an accompanying data structure for 3D topography. From
this motivation, the research objective and main research question are derived in
section 1.2, while section 1.3 defines the research scope and limitations. Section 1.4
summarises the contribution of this research to the field of 3D GIS and section 1.5
provides the outline of this dissertation.

1.1 Motivation

The dissertation title ‘3D Topography’ implies two important aspects of this research.
First of all, it is a particularisation of 3D GIS. A geographic information system
(GIS) can be defined as ‘a computer-based information system that enables capture,
modelling, storage, retrieval, sharing, manipulation, analysis, and presentation of ge-
ographically referenced data’ (Worboys and Duckham 2004). Second of all, in this
case the ‘geographically referenced data’ dealt with, is topographic data. A suitable
definition of topography in the context of this research is ‘the configuration of a sur-
face and the relations among its man-made and natural features’ (Wordnet 2007).
Since a GIS is often used as a decision support system (Cowen 1988), 3D Topography
is about modelling, storing and analysing more realistic 3D data to support decisions
that concern our daily environment, like designing large infrastructural projects, sus-
tainable urban planning and applications in the field of safety and security (Kwan and
Lee 2005). As a result, the potential impact on society of 3D topography is large. To
fulfil this potential, both an appropriate conceptual data model and an accompanying
data structure are required. This research will deliver both.

1.1.1 A conceptual data model for 3D Topography

Most current topographic products are limited to representing the real world in only
two dimensions. As the real world exists of three dimensional objects that are becom-
ing more and more complex due to increasing multiple land use, accurate topographic
models have to cope with the third dimension. Several true 3D applications can be
recognised for these accurate models. One can think of volume computations, e.g.
for real estate tax applications or excavations, line-of-sight analysis for mobile phone
antenna networks and accurate modelling of noise propagation and air pollution (see
figure 1.2 for an example in which the effects in between buildings are included).
Applications of 3D modelling are not limited to the earth surface, as geological fea-
tures or airplane and communication corridors can be modelled as well. As a last
application simulation of disasters like floodings or earthquakes can be mentioned.

The number of future applications is vast. To further illustrate this, a more com-
prehensive description of the problem field and future applications of 3D Topography
can be found in section 2.1. However, none of these applications will be supported

1.1. Motivation 3

Figure 1.2: 3D blast analysis in an urban area

without an appropriate data model for 3D topography. This research will provide
such a data model in order to facilitate these desirable applications.

1.1.2 A data structure for 3D Topography

Developing a suitable data modelling approach is an important first step, but will
remain useless without an appropriate data structure to support the required func-
tionality. The data structure defines in which way the data is stored and organised
in the database. Aspects like data storage requirements, query response time, data
consistency and the availability of tools for editing and validation will determine the
overall success of such a data structure. The data structure needs a 3D primitive
(a volume) besides points, lines and faces to represent 3D objects accurately. Even
though 3D coordinates can be used in some spatial databases, 3D data types were
missing during the major part of the research (the new 3D data types in Oracle 11g
were released in 2007 (Murray 2007)). Therefore defining a new 3D data type is part
of the research.

4 Chapter 1. Introduction

1.2 Objective and main research question

The objective of the research is to develop a data structure that is capable of handling
large data volumes and offers support for loading, updating, querying, analysing and
especially validating 3D topographic data. To achieve this, a triangular (in general
dimension) approach will be used, due to its advantages in maintaining consistency,
its robustness and editability. A two-step approach will be adopted. First one has to
decide how real-world objects should be modelled into features, secondly one needs
to store these features in such a way that the requirements in terms of querying,
analysis and validation are met. An obvious step in dealing with large volumes of
geographically referenced data, is to use a spatial database.

This objective is expressed in the main research question:

How can a 3D topographic representation be realised
in a feature-based triangular data model?

Several aspects in this question deserve further explanation:

• A 3D topographic representation is a model of both man-made and natural fea-
tures. The addition ‘3D’ indicates that the model allows multiple 3D coordinates
at a specific x,y location, for instance in vertical faces (see section 2.2 for for-
mal definitions of model dimensions). Furthermore the model is not limited to
the earth surface; subsurface features like tunnels, basements and maybe even
geological layers, as well as aerial features like airplane corridors may be part of
the model explicitly. Within this research ‘3D’ will also indicate that a volume
representation will be used to model the topographic features.

• The verb realise covers the process of specifying and developing a modelling
approach. A proof-of-concept implementation in a spatial DBMS (database
management system) is included as well.

• A feature-based data model is a data model that –independent of the actual
storage structure– consists of features: ‘abstractions of real world phenomena’
(ISO 19101:2002 2002). These real world phenomena are the objects that the
average user will recognise: the buildings, roads, hills, tunnels, viaducts, etc.
Update operations will be executed by the user at feature level.

• The term triangular should be read as triangular in general dimension (thus
including tetrahedrons as 3D triangular building block, see figure 1.3 for an ex-
ample of a tetrahedron). A triangular data model is a data model that relies on
triangles or tetrahedrons for its internal structure and storage. These triangles
or tetrahedrons will act as the fundamental building blocks by which the model
is constructed. In other words: all topographic features will be described as

1.2. Objective and main research question 5

Figure 1.3: A tetrahedron shape is a rarely used in daily life. One exception is this
tetrahedron-shaped milk carton from Iran (courtesy of Salomon Kroonenberg, also used
in Kroonenberg (2006))

sets of triangles or tetrahedrons and these features will be connected by tri-
angles or tetrahedrons as well. An average user is not necessarily aware of the
under-water existence of these building blocks. In this research, both Triangular
Irregular Networks (TINs) and Tetrahedronised irregular Networks (TENs) will
be considered as triangular data structure. These structures are selected due
to computational advantages, the flatness of the faces (well defined by three
points) and the presence of well-known topological relationships (Guibas and
Stolfi 1985).

• a data model includes both a conceptual data model and a DBMS data structure,
as introduced in the previous section.

As stated earlier in this section, a two-step approach will be adopted to achieve a
solution to the main research question. In accordance with the two steps, two key
questions can be distinguished:

• How to develop a conceptual model that describes the real world phenomena
(the topographic features), regarding the general purpose-characteristic of topo-
graphic data sets? This will be the central question of Part I of this dissertation.

6 Chapter 1. Introduction

• How to implement this conceptual model, i.e. how to develop a suitable DBMS
data structure? This will be the central question of Part II of this dissertation.

1.3 Research scope and limitations

In order to define the scope of this project as clear as possible, the research is limited
in several ways. The following topics are explicitly included:

• Topographic data at scale level 1:500 – 1:25,000 with related resolution and
accuracy. As a result, large and midscale topographic data, sets such as large
scale base maps, can be subject of research.

• Subsurface features like tunnels, basements and parking garages.

• Both initial model creation as well as incremental updates of the model.

The following topics are explicitly excluded:

• Temporal aspects of modelling topographic features

• Vario-scale and vario-representation/generalisation of topographic features

• Dynamic models (i.e. modelling of moving objects)

• Continuous (field) representations (like for instance oceanographic and atmo-
sphere phenomena)

• Gridded/raster approaches

• Indoor topography, despite its substantial potential in the field of disaster man-
agement

• Optimisation in the field of (realistic) visualisation and/or virtual reality. In
short the main focus of the model is on enabling computations, analyses and
validation (data management) and not on realistic visualisations, texture map-
ping, etc.

• Data collection and creation of models from this data. As a result, models of
volumetric topographic features are supposed to be available.

1.4 Contribution of the work

In retrospect, this work contributes to the general research field of 3D GIS in the
sense that the new 3D data modelling approach will reduce data storage of tetrahe-
dral data structures and will eliminate the need for explicit updates of topological
relationships and most parts of the triangular data structure. These results will be
achieved by specifying a conceptual data model and accompanying data structure,
such that operators and definitions from simplicial homology (see chapter 4), part of

1.5. Outline 7

the mathematical description of topology, can be applied. By doing so, the approach
will tackle common drawbacks as tetrahedronised irregular network (TEN, the 3D
triangular data structure) extensiveness and laboriousness of maintaining topology.
Furthermore, applying operators and definitions from simplicial homology will offer
full control over orientation of all TEN elements, which is a significant advantage,
especially in 3D. In addition to this aspect, the mathematical theory of simplicial
homology will offer a solid theoretical foundation for both the data structure and
data operations. Integrating these concepts with database functionality will result in
a new innovative approach to 3D data modelling.

The research described in this dissertation is one of the main components of the
Bsik Space for Geo-information 3D Topography research project. The overall objec-
tive of this research project is to enforce a major break-through in the application
of 3D Topography in corporate ICT environments, due to structural embedding of
3D methods and techniques (3D Topography 2006). The project consortium con-
sists –besides Delft University of Technology– of ITC Enschede, Topografische Dienst
Kadaster, Rijkswaterstaat, Oracle, NedGraphics and Steering Committee AHN, thus
grouping 3D researchers, 3D data producers and 3D software developers.

1.5 Outline

In order to answer the question how a 3D topographic terrain representation could be
realised in a feature-based triangular data model, a two-step approach is used. The
two accompanying key questions are previously introduced. This two-step approach
is also visible in the dissertation structure in figure 1.4. First the problem domain
of 3D Topography is introduced in chapter 2. Based on its predicted applications,
requirements for both data model and data structure can be derived. This chapter will
also provide an overview of relevant 3D data structures and elaborates on triangular
structures and algorithms. The model requirements act as input in the development
of two conceptual data models in chapter 3 and the most appropriate one is selected.

The next part (chapters 4-6) derives an accompanying data structure. This data
structure applies definitions and operators from simplicial homology, which will be
introduced in chapter 4. Based on this theory, chapter 5 presents the new database
structure for 3D topography. Since update capabilities are an important requirement
for a feasible 3D topography data structure, chapter 6 will focus on edit operations
in the simplicial complex-based data structure.

The last part evaluates and discusses the new approach. Chapter 7 shows results,
based on tests with initial 3D data sets and this dissertation ends with conclusions
and suggestions for future research in chapter 8. Details on the proof-of-concept
implementation can be found in the appendix.

8 Chapter 1. Introduction

1. Introduction

2. Research background

Data model

requirements

3. Two triangular data models
for 3D topography

4. Theoretical foundations:
Poincaré simplicial homology

Data structure

requirements

5. A simplicial complex-based
solution for 3D topography

Mathematical

description

8. Conclusions

7. Evaluation and discussion

Data structure

3D topography

solution

Problem:
‘How can a 3D topographic

representation be realised in a
feature-based triangular

data model?’

Step 1:
‘How should real-world objects

be modelled into features?’

Step 2:
‘How to store these features
such that the requirements
(querying, analysis and
validation) are met?’

Problem statement

PART I: Conceptual modelling of 3D topography

PART II: A data structure for 3D topography

PART III: Evaluation and conclusions

Data model

6. Updating features in
the data structure

Figure 1.4: Outline of the dissertation

Chapter 2

Research background

As stated in the introduction, the development towards 3D topography has a signifi-
cant potential impact on society, since 3D topography is about acquiring, modelling,
storing and analysing data to support decisions that concern our daily environment.
3D topography might enable sustainable urban planning and disaster simulation for
emergency response training. To guide this development, a clear insight in the require-
ments for 3D topography is essential. In order to be able to derive these requirements,
one needs to understand the factors triggering the development of 3D topography.
Section 2.1 will provide insight in these relevant factors. Although concepts like 2D
and 3D seem rather straightforward and unambiguous, the opposite is true. Section
2.2 elaborates on dimension definitions in the range 2D-3D to provide more insight
in the differences between the various types.

To achieve realisation of the intended applications of 3D topography, both an
appropriate conceptual data model and an accompanying DBMS data structure are
required. This problem subdivision will be applied from the requirements section
(section 2.3) onwards. Especially on 3D data structures, relevant research is performed
by others. Section 2.4 will provide an overview of previously proposed approaches to
3D data storage. Since this research will elaborate on a specific type of approach –the
triangular data structures– the current state of research (in the closely related field
of computational geometry) on algorithms to compute these triangular networks will
be presented in section 2.5.

The backgrounds provided in this chapter will function as a basis for the conceptual
modelling of 3D topography (part I of this dissertation), as well as for developing a
data structure for 3D topography (part II of this dissertation).

2.1 Problem domain: Towards 3D topography

Current topographic products are limited to a real world representation in only two
dimensions, with at best some additional point heights and contour lines. The devel-

10 Chapter 2. Research background

opments towards 3D topography are both demand- and supply-driven. This section
shows both limitations of current 2D data sets and expected future 3D applications,
causing for the demand of 3D topography; as well as developments in the field of
sensor techniques, causing increasing availability of 3D topographic data.

2.1.1 Demand-driven development: the need for 3D topogra-
phy

Modelling the real world in two dimensions implies a rather drastic simplification
of three dimensional real world elements. By representing these elements in two
dimensions, loss of information is inevitable. Due to this simplification, accuracy
of analysis results is limited and a meaningful, insightful representation of complex
situations is hard to obtain. In a time with increasing attention for environmental
and sustainability issues, these limitations become real problematic and trigger the
need for 3D topography.

Environmental issues like high concentrations of particulates along highways in
urban areas (Borst 2001), the effects of noise (Rasmussen 1998, Stoter et al. 2008)
and odour propagation (Winther et al. 2006) and risk analysis of liquefied petroleum
gas storage tanks (El-Harbawi et al. 2004) are examples of current issues in which more
sophisticated analyses are required than 2D models can offer. For instance particulate
matter distribution is substantially influenced by the presence of high buildings, as
these buildings may act as a shield between the pollution source and urban areas
behind. However, one might wonder whether these rather rare high-end applications
justify the development of 3D topography, including 3D data collection, modelling and
storage. Before answering, one has to question oneself whether this is a valid question.
In other words, more insight in future applications is required. To provide this insight
a tentative study has been performed (Nobbe et al. 2006) within the 3D topography
project consortium (see section 1.4). The use-cases from this study show a wide range
of possible applications and, compared to the previously introduced high-end analyses,
most of them are relatively simple. An objective like ‘gaining insight in complex
situations’ turned out to be one of the most important applications. Due to an increase
in multiple land use, 2D models are not capable of representing vertically separated
features adequately. One can think of features like viaducts, tunnels, buildings on top
of highways and buildings intersected by (rail)roads. Another future application is
automatic change detection, as comparing the 3D volumes turned out to be useful for
real estate tax purposes and enforcement of building construction permit policy. An
often required analysis is the line-of-sight operation, both for urban planners (‘what
does one see from a specific point; is the space perceived as confined or as open?’)
and telecom operators (‘is there a clear line of sight between these two antennas?’).

A different group of applications has to do with 3D topography as basis for a vir-
tual model. As a low-end application, one can think of 3D models for car navigation
purposes (van Essen 2008), whereas in the field of (serious) gaming, high-end applica-
tions like virtual reality applications for training and simulation are being developed
(Center for Advanced Gaming and Simulation (AGS) 2007). Ongoing training is
essential, especially for emergency response units, as automatisms and smooth coop-

2.1. Problem domain: Towards 3D topography 11

eration might save lives. However, real life training facilities are limited due to budget
or organisational limitations. Large scale exercises in public places have a significant
impact on daily life. Therefore, training in virtual environments enables an increase
in the number of drills, as well as useful training evaluation features like rewinding
crucial events or analysing trainings from a birds eye perspective to show individual
actions within the overall situation. Figure 2.1 shows an example of a fire fighting
drill in a virtual forest, as described by Rossmann and Bücken (2008).

Figure 2.1: Disaster simulation in the Virtual Forest (Rossmann and Bücken 2008,
Figure 8.9)

2.1.2 Supply-driven development: the increasing availability
of 3D data

The current developments in the field of 3D Topography are not only demand-driven.
The increasing availability of high density laser scan data is most certainly a trigger
in this process. Due to this new technique height data becomes available with point
densities that were previously unthinkable with traditional photogrammetric stereo
techniques. Integrating 2D data with height data sets is an obvious objective when
both data sets are available. It started in the Netherlands with the introduction of
the AHN (in Dutch: Actueel Hoogtebestand Nederland), a height data set of the
Netherlands obtained by laser altimetry with a density of at least one point per 16
square meters and in forests at least one point per 36 square meters (Heerd et al.
2000). The final processed AHN contains only earth surface points; information such

12 Chapter 2. Research background

as houses, cars and vegetation has been filtered out. However, by using the unfiltered
data, combining these height data with two dimensional topographic data sets became
possible. Since the introduction of the AHN point density increased rapidly; datasets
with multiple points per square meter are not unusual anymore. From 2008 onwards,
the point density of the AHN-2 will be increased to at least 10 points per square
meter (Coumans 2007). Simultaneously to the process of increasing point density,
the integration process of planar with height data was further automated. Oude
Elberink and Vosselman (2006) describe a fully automated integration of 2D data
with height data in a topographic context (see figure 2.2 for an example of input data
and the result).

Figure 2.2: Integrating height data (left) and topographic data (middle) results in
a 3D model (right) of highway interchange ‘Prins Clausplein’ near The Hague, the
Netherlands (Courtesy of Sander Oude Elberink, ITC Enschede)

Besides integrating 2D data with height data (obtained by airborne laser scan-
ning), direct 3D data acquisition by terrestrial laser scanning is emerging (see figure
2.3). As a result much more details become available, as complete facades can be
measured. Depending on the required level-of-detail, terrestrial laser scanning can
provide measurements varying from top and bottom of facade faces to detailed data
on windows, windowsills and facade ornaments. Another important source of facade
information (which cannot be acquired from traditional airborne techniques as pho-
togrammetry and airborne laser scanning) is measuring in images or videos (Beers
1995, Verbree et al. 2004). Still applicability of terrestrial laserscanning is not lim-
ited to the traditional topographic features, as it also enables data acquisition of
subsurface features like tunnels and even indoor topography.

A last important factor influencing the availability of 3D data, is the data acqui-
sition for navigation purposes. Although the process in itself is more demand-driven,
the resulting data and data acquisition techniques lead to the increasing availability
of 3D data. To derive more accurate and recognisable maps for navigation systems,
data suppliers are switching to 2.5D and 3D models. van Essen (2008) describes the
data acquisition by TeleAtlas, one of the largest map data suppliers for personal nav-

2.2. Defining dimensions in the range 2D-3D 13

Figure 2.3: Terrestrial laser scanning acquires 3D data of complex objects

igation systems. Their 50 acquisition vehicles, equipped with integrated positioning
and (stereo) imaging systems, collect large amounts of 3D data, which is the basis for
the creation of 3D city maps.

2.2 Defining dimensions in the range 2D-3D

In the previous section terms such as ‘3D topography’ and ‘current 2D datasets’
were used without proper definitions of 2D and 3D. Defining the dimension of a
model is not as straightforward as one might expect. Although in day-to-day speak
one discusses the dimension of a model, two different types of dimension need to
be distinguished, i.e. the internal and the external dimension (Pilouk 1996). The
internal dimension indicates the (highest) dimension of the primitives that are being
used to describe objects. For instance, if one describes a building by a set of flat
faces, the internal dimension is two, whereas the internal dimension will be three if
one describes this building by a volume. The external dimension is the dimension of
space in which one models. In mathematics, the term ‘codimension’ is often used to
indicate a difference between the internal and external dimension (as used by Pilouk
(1996)). If a mathematical object (in this case the primitive) is associated to another
object of dimension n (in this case the space in which one models), then it is said
to have codimension k if it has dimension n - k. So, the primitives in the previous
three-dimensional model are said to be of codimension one.

Although concepts like internal and external dimension or dimension and codi-
mension are available to describe a model accurately, usually one still tries to define
‘the’ dimension of a model. Often, this results in a classification of a model that uses

14 Chapter 2. Research background

2D primitives in 3D space as a three-dimensional model. However, this classification
does not acknowledge the difference with a 3D model in which 3D primitives are
used in 3D space. To overcome this drawback, Pilouk (1996) uses both internal and
external dimension in his definitions of model dimension:

• 2D model: modelling with 2D primitives in 2D space (in mathematical terms:

dimension 2, codimension 0)

• 2.5D model: modelling with 2D primitives in 3D space (in mathematical terms:
dimension 3, codimension 1)

• 3D model: modelling with 3D primitives in 3D space (in mathematical terms:

dimension 3, codimension 0)

Despite his attempt, still more model dimensions can be distinguished. The following
types are used in this dissertation:

• A 2D model consists of primitives of dimension two or lower (i.e. points, lines
and polygons) in 2D space. Figure 2.4 shows an example of a 2D parcel map.

Figure 2.4: A 2D cadastral map: points, lines and polygons are used to model parcels
in 2D space

• A 2.5D model consists of primitives of dimension two or lower in 3D space,
with the requirement that at each x,y-location only a single height value can be
present. This criterion applies often to terrain models. As a result vertical faces
and overhangs are not allowed. Sometimes these models are classified as ‘strict
2.5D’, but in this dissertation 2.5D will be used. Figure 2.5 shows an example
of the same parcel map as depicted in figure 2.4, but this time terrain elevation
is included in the objects. Triangulated Irregular Networks (TINs, see section
2.5 for more details) are often applied in elevation models and usually meet the
criterion of a single height value at a x,y-location.

2.2. Defining dimensions in the range 2D-3D 15

Figure 2.5: A 2.5D cadastral map: points, lines and polygons are used to model parcels
and terrain elevation in 3D space

• A multiple 2.5D model uses a layer approach with several 2.5D models. Figure
2.6 shows an example. Layer 1 contains the terrain, layer 2 contains the viaduct.
By combining the layers one can represent 3D situations without using 3D
models. This approach is used by Simonse et al. (2000) in an attempt to create
a ‘3D’ topographic data set.

Figure 2.6: A multiple 2.5D model: two 2.5D layers are used. Left the terrain model
(layer 1), right both the terrain model and the viaduct model (layer 1 + 2)

• A 2.5D+ model consists of primitives of dimension two or lower in 3D space, in
which vertical faces are allowed. In TINs these vertical faces are usually bounded
by stop lines and computed additionally to the triangulation. A simplified
example is shown in figure 2.7 in which the grey faces are vertical. As most
triangulations are computed in 2D (i.e. the projection of the 2.5D situation
on the x,y-plane), these vertical faces are not part of the triangulation. The
GM Tin data type as defined in the ISO 19107:2003(E) (2003) standard is an
example of a 2.5D+ TIN, as it allows the inclusion of stop lines which mark
local discontinuities in the triangulated surface.

16 Chapter 2. Research background

Figure 2.7: A simplified 2.5D+ model: points, lines and polygons are used to model
terrain elevation in 3D space, but in contrast to the 2.5D model this model can incor-
porate vertical faces

• A 2.75D model consists of primitives of dimension two or lower in 3D space, but
without any constraints on vertical faces, overhangs or holes. Section 2.4.3 will
elaborate on this approach by Tse and Gold (2004), of which figure 2.11 shows
an example.

• A 3D model consists of primitives of dimension three or lower in 3D space. A
3D model of a building and its surroundings is depicted in figure 2.8.

Figure 2.8: A 3D model: points, lines, polygons and volumes are used to model a
building in 3D space

2.3. Deriving requirements for the conceptual data model and structure from the problem 17

2.3 Deriving requirements for the conceptual data
model and structure from the problem

2.3.1 Requirements for the conceptual data model

By combining the future 3D topography applications with current widespread usage
of 2D topographic data sets, it is safe to say that topographic datasets serve a wide
range of applications. Topographic data serves as a basis for calculations and analysis,
but also as reference theme for many applications. Not only the type of operations
varies, but there are also different domains using topographic data, each with their
own interests in specific groups of objects. For instance, water boards put emphasis
on other types of objects than urban planners. As a result, different opinions on
the ‘best’ conceptual modelling approach co-exist, and a topographic survey has to
take up the challenge to satisfy all domains. With respect to designing a conceptual
data model for 3D topography, it is now clear that the conceptual data model should
support a wide variety of tasks, thus disabling the possibility of optimising it for
specific purposes.

Serving a wide variety of tasks and abandoning task-specific optimisation are some-
what difficult design criteria for a conceptual data model. More specific requirements
and their relative weights are needed. Since each domain needs its own information,
a topographic data set can only serve the needs of different domains when as much
information as possible is available. Generally speaking the topographic data model
should be as rich (in terms of information) as possible, as this will enable deriving
multiple subsets for domain-specific tasks. However, with an increasing amount of
content, keeping the data up-to-date will become more difficult and expensive. One
has to find the delicate balance between information richness and costs in terms of
acquisition, updating and storage. A possible strategy might be to include data based
on the number of applications that benefit from this data, thus maximising usability
while minimising the required efforts. At the same time, one should try to keep the
model as close to reality as possible, as this will leave open as many options for dif-
ferent representations as possible. These criteria will be adopted in the next chapter,
as two modelling approaches will be compared.

2.3.2 Requirements for the data structure

In order to be able to derive requirements for the data structure, two important
characteristics of 3D topographic data sets need to be acknowledged:

• Switching from 2D to 3D data representation causes a substantial increase in
data volume. Even in the simplest cases the increase is larger than what the
non-expert might expect. For instance, consider a cube-shaped building. In a
2D map, this building will be represented by a single polygon, whereas the 3D
representation already consists of six (four walls, a roof and a floor) polygons. In
real 3D data sets this increase will be larger, as more details will be captured,
like roof shapes and more complex building designs. To complicate matters

18 Chapter 2. Research background

further, one will integrate terrain heights. Due to the increasing point density
of laser scan data, data volumes will further increase.

• Topographic data sets need to be updated on a regular basis. After all, our
daily environment is subject to continuous change, as old buildings are being
demolished and new ones being build, new infrastructure created and nature
reserves extended. Obviously, these new features have to be inserted into the
model correctly. A new building, for instance, should be placed exactly on top
of the existing terrain surface, even in case the new measurements would cause
the building to float slightly above terrain level. Adjusting objects according to
constraints (Louwsma et al. 2006) is therefore required. Due to the expected
data volumes, updating should be possible incrementally.

Based on these two characteristics, specific requirements for the data structure can
be derived. First of all, overall performance (in terms of data storage requirements
and response time) should be acceptable with massive data sets being managed, i.e.
in the same order of magnitude as other approaches in 2.5D or 3D. Secondly, the
data structure should guarantee data consistency. More precisely, the data structure
should enable validation. A third requirement is that the structure should support
computational and analytical operations. As a fourth and last requirement it should
be possible to update the data structure, i.e. features can be added, removed or
altered. Regarding the expected data volume, it is required that the data structure
allows incremental updates, as complete rebuilds will be too time-consuming.

2.4 Managing 3D data: related research on 3D data
structures

Worboys and Duckham (2004, chapter 5) put the importance of data representations
aptly as they state ‘The manner in which spatial data is represented in an information
system is key to the efficiency of the computational processes that will act upon it’.
Their chapter on representations and algorithms is recommended for those interested
in an introductionary exploration of different types of data structures. Research in
the field of 3D GIS is performed for the last 25 years. Zlatanova et al. (2002) give an
overview of the most relevant developments in this period and Zlatanova et al. (2004)
elaborate especially on the topological ones. The focus of this section is limited
to the relevant types of 3D data structures: constructive solid geometry, boundary
representations, simplex-based approaches and regular polytopes. Voxels and other
grid-based representations are outside the scope since this dissertation focuses on
vector representations only.

2.4.1 Constructive Solid Geometry

Constructive Solid Geometry (CSG) is a technique to model complex objects by using
Boolean operators on (usually) simple primitives, like cuboids, cylinders and spheres.
Figure 2.9 illustrates this approach: an apparent complex object can be constructed

2.4. Managing 3D data: related research on 3D data structures 19

from five basic primitives by applying intersection, union and difference operators.
Although this construction is a nice characteristic, the real advantage of CSG is that

Figure 2.9: CSG-tree: Modelling a complex shape by simple primitives (cuboid, sphere
and three cylinders) and the Boolean operators intersection ∩, difference - and union
∪(source: Wikipedia, article on Constructive Solid Geometry)

the basic primitives can be parameterised (thus scaling, translating and rotating the
primitives) and therefore require little storage space. For instance, a cylinder can be
parameterised by its length and diameter, located by a translation and oriented by
rotations. As a result, the curved surface is not explicitly stored. Initially (Requieha
and Voelcker 1980a,b, 1983), CSG was intended for design purposes. Later CSG was
also applied to modelling existing polyhedral objects and, in more recent years, for in-
stance to modelling complex industrial installations using terrestrial photogrammetry
(Tangelder et al. 2003). CSG is very useful for this application, as object reconstruc-
tion breaks down to optimising the parameters to find a best fit through a set of
measurements (often a point cloud).

2.4.2 3D boundary representation: polyhedrons

While in CSG the object boundaries are usually not described explicitly by coordi-
nates, this is the case in most other 3D data structures. The most common approach
is the polyhedron approach, in which solids are described by their boundary. These
boundaries consist of polygonal faces and should form a closed, watertight volume, as
illustrated in figure 2.10. Arens et al. (2005) show a prototype DBMS implementation

20 Chapter 2. Research background

of a polyhedron, including many validation functions. With the recent (2007) launch
of Oracle 11, a polyhedron data type became available within Oracle Spatial (Murray
2007). In applications polyhedrons are often used as 3D primitive (Zlatanova 2000,
Stoter 2004). Polyhedrons also occur frequently in topological approaches, albeit
that most approaches have implicit topology (no explicit storage of relationships).
A well-known example of an implicit topological approach is the 3D Formal Data
Structure (FDS) (Molenaar 1990a,b, 1992), that consists of points, lines, surfaces and
bodies, whereas the Postgres-based implementation described by van Oosterom et al.
(1994) is an example of an explicit topological approach. Topological approaches are
favourable since in 3D data volumes substantially increase, so maintaining and ensur-
ing data integrity becomes of extreme importance (Ellul and Haklay 2006). Validity
checks based on these topological relationships can guarantee that the data set main-
tains valid during edit operations. Kazar et al. (2008) illustrate the large number of
cases that complicate validation significantly.

Figure 2.10: A polyhedron is defined by its bounding faces (Arens 2003, Fig.7)

2.4.3 Simplex-based approaches

Compared to the topological approaches with polyhedrons, simplex-based approaches
take the mathematical approach one step further. A simplex can loosely be defined
(see section 4.1 for a formal definition) as the simplest shape in a dimension, in which
‘simplest’ refers to minimising the number of points required to define such a shape.
In other words, simplex-based approaches describe the world with points, line seg-
ments, triangles and tetrahedrons. Such a network of simplexes is an example of an
irregular tessellation, in which the model of the real world will be decomposed into
smaller building blocks. Simplex-based approaches are popular due to computational
advantages, the flatness of the faces (well defined by three points) and the presence of
well-known topological relationships (Guibas and Stolfi 1985). Section 2.5 will elabo-
rate on both 2D (triangulations) and 3D (tetrahedronisations) simplex-based models,
while chapter 4 will introduce a proper mathematical description of simplex-based

2.4. Managing 3D data: related research on 3D data structures 21

models. With respect to simplex-based modelling, Carlson (1987) can be seen as
the starting point as he applied it to 3D subsurface structures. However, he limited
himself for reasons of simplicity to the use of 0-, 1- and 2-simplexes in 3D space.
Nevertheless, he acknowledged the possibility of extending the simplex approach into
n dimensions (as indicated by Frank and Kuhn (1986)). The possibility of including
3D simplexes is explored by Pigot (1992, 1995), who focussed mainly on the under-
lying topological model. Pilouk (1996) introduces the TEtrahedral irregular Network
(TEN), in which also the 3-simplex is used as 3D building block.

The concept of simplicial complexes (a collection of simplexes connected through
certain rules) and its mathematical description (part of the field of algebraic topology
(Hatcher 2002)) is described by Giblin (1977). It is mentioned by Frank and Kuhn
(1986) as one of the possible cell graph approaches. A topological data model based
on 2D simplicial complexes in 2D space is introduced in Egenhofer et al. (1989) and
implemented in the PANDA system (Egenhofer and Frank 1989), an early object-
oriented database. The mathematical approach of simplexes is also used by Pigot
(1992) and Paoluzzi et al. (1993), but full applications of simplicial homology in three
dimensions in a GIS context are not known to the author.

However, not everybody is convinced that 3D models require the usage of a 3-simplex.
Tse and Gold (2004) describe a simplicial approach that modifies a TIN (Triangu-
lated Irregular Network) in such a way that it can contain vertical faces, holes and
bridges. Their approach applies Euler operations using Quad-Edge structures, which
is an elegant solution for storing both Delaunay and Voronoi cell complexes (Gold
et al. 2005), a concept originally introduced by Guibas and Stolfi (1985). Since Tse
and Gold (2004) extend the characteristics of a TIN (a 2.5D or 2.5D+ approach),
they refer to their approach as 2.75D (Tse and Gold 2004). Figure 2.11 (Gold 2006,
figure 3) illustrates the possibilities of their approach, as a bridge, a hole and several
buildings are being integrated within a terrain model.

2.4.4 Regular polytopes

Another topological approach to 3D data modelling is the regular polytope (Thomp-
son 2007). This concept represents geometric objects in a rigorous representation
without assuming infinite precision arithmetic, as this is not feasible in a finite digital
machine. It uses convex regular polytopes, which are defined as the intersection of
a finite set of half spaces (Thompson 2006). By doing so, one can define the object
boundaries exactly, even when some of the actual coordinates of the boundary can’t
be represented in a finite digital computer. By combining several convex regular
polytopes, one can represent more complex objects. These unions of convex regular
polytopes are the so-called regular polytopes. An example of such a regular polytope
can be found in figure 2.12. It shows a regular polytope consisting of three con-
vex regular polytopes, which are, in turn, defined by intersection of the half spaces.
Thompson and van Oosterom (2006) present a Java-based implementation of regular
polytopes in 2D and 3D.

22 Chapter 2. Research background

Figure 2.11: Integration of bridges, holes and buildings within a terrain model (Gold
2006, fig.3)

Figure 2.12: A regular polytope as union of three convex regular polytopes. (Thompson
and van Oosterom 2006, Fig.2)

2.5 Triangular data structures and algorithms

The previous section presented several approaches to 3D data representation within an
information system. Within this research, one of the basic assumptions is the use of a
triangulation approach. A triangulation can be categorised as an irregular tessellation
(Worboys and Duckham 2004): a partition of the plane (2D) or volume (3D) as the
union of a set of disjoint areal (2D) or volumetric (3D) elements of varying size. In
other words, the space is decomposed in smaller elements without intermediate holes
or overlaps. Such tessellations are also known under the more general term meshes.
Meshing can be defined as the process of breaking up a physical space into smaller sub-
domains (elements) in order to facilitate the numerical solution of a partial differential
equation (Meshing Research Corner 2008). This section limits itself to simplicial
meshes, discretisations consisting of triangles or tetrahedrons. These elements are

2.5. Triangular data structures and algorithms 23

connected such that a node of an element is always also a node of a neighbouring
element, thus excluding configurations in which a node of an element is located on an
edge of the neighbouring element.

This section provides an overview of triangulations and tetrahedronisations with
different properties and describes the state-of-the-art algorithms. In this research
these algorithms are used to create a simplicial mesh of the topographic features. Up
till now the terms ‘triangular’ and ‘triangulated’ were used as generic terms in general
dimension. From now on onwards, a distinction will be made between triangulation,
resulting in a mesh constructed of triangles, and tetrahedronisation, resulting in a
mesh of tetrahedrons. Triangulations and accompanying algorithms will be intro-
duced respectively in sections 2.5.1 and 2.5.2, whereas tetrahedronisations and ac-
companying algorithms will be described in sections 2.5.3 and 2.5.4. The description
of algorithms will limit itself to incremental algorithms, since section 2.3 acknowledges
that edit functionality (without the need for full rebuilds) is crucial for topographic
data sets.

2.5.1 2D data triangular structures: triangulations

Before one can describe specific algorithms, it is necessary to determine the actual
definition of the required triangulation. A triangulation of a set vertices V is a set
of triangles T, whose interiors do not intersect and whose union forms the convex
hull of V. Based on this definition one can see that the criteria are met by multiple
triangulations, i.e. the triangulation is not unique (see also figure 2.13). As a result,

Figure 2.13: Two different triangulations, based on the same input set of vertices

additional requirements are used and based on these requirements different types of
triangulations exist:

• The Delaunay triangulation is the most commonly used triangulation. Delaunay
(1934) introduced the empty circumcircle criterion, stating that the circumcircle
(circle passing through all three triangle vertices) of any triangle t in T is empty,

24 Chapter 2. Research background

i.e. the interior of the circle does not contain any vertex from V. Figure 2.14
illustrates this: the triangulation at the left hand side is a Delaunay triangu-
lation as every circumcircle is empty, while the triangulation at the right hand
side does not meet this criterion. Delaunay triangulations owe their popularity
to the fact that the resulting triangulation is as equilateral as possible, or, in
other words, the minimal angle in the triangulation is maximised (Lawson 1977).
This is a desirable property for numerical approximation using triangulations.
Unfortunately, Delaunay triangulations are not unique if the points are not in
general position, thus enabling multiple triangulations that meet the empty cir-
cumcircle criterion. If a triangle meets the Delaunay criterion, its edges meet

Figure 2.14: Left: a Delaunay triangulation, as every circumcircle is empty. Right: a
non-Delaunay triangulation, as the circumcircle contains multiple other vertices

the Delaunay criterion (an empty circumcircle of the edge exists) and vice versa
(Shewchuk 1999). This characteristic is important since the flipping operation
(see section 2.5.2) selects edges for flipping depending on whether they are lo-
cally Delaunay or not. The fact that a triangle’s edges is locally Delaunay if
the triangle meets the Delaunay criterion, is rather obvious. After all, if the
triangle has an empty circumcircle, its edges lie in an empty circumcircle. To
illustrate this point, the contradictionary situation is illustrated in figure 2.15:
triangle t is not Delaunay, so a vertex v lies inside its circumcircle but outside t
itself (otherwise it wouldn’t be a triangle). Now consider edge e, the edge that
separates vertex v from the inside of triangle t and vertex w, the vertex opposite
this edge. Since it is not possible to find a containing circle of e containing
neither v nor w, the edge is not locally Delaunay either.

• So far, the triangulation is based on a vertex set V. However, if one wants to
represent planar features in a triangulation, their outlines should serve as in-
put as well. This input set is often referred to as a planar straight line graph
(PSLG): a graph embedding of a planar graph (i.e. a graph without graph edge
crossings) in which only straight line segments are used to connect the graph

2.5. Triangular data structures and algorithms 25

v

e

w

t

Figure 2.15: If a triangle is not Delaunay, at least one of its edges is not locally
Delaunay

vertices (MathWorld 2007). The constrained triangulation of a PSLG is a trian-
gulation in which every segment of the PSLG appears as an edge. As one can
imagine that the guaranteed presence of specific edges can interfere with fulfil-
ment of the empty circumcircle condition, the Delaunay criterion definition is
slightly altered. Lee and Lin (1986) and Chew (1989) independently introduce
the constrained Delaunay criterion. A triangle is constrained Delaunay when
two conditions are met. First of all, its vertices are mutually visible, where
visibility is supposed to be blocked by a constrained edge (a segment of the
PSLG). Secondly, the circumcircle contains no points that are visible from the
triangles’ interior. This can also be seen in figure 2.16. The thick black edge is
a constrained edge and therefore its presence in the triangulation is guaranteed.
Due to this presence, the circumcircle of the grey triangle is not empty. Never-
theless, the vertex in the circumcircle is not visible from the triangles interior,
since visibility is blocked by the constrained edge. Since the triangulation meets
the two requirements, it is a constrained Delaunay triangulation.

• Since a constrained Delaunay triangulation is not a Delaunay triangulation
(which can be observed in figure 2.16 when looking at the four points in or on the
circle: if the thick black edge in the circle is replaced by an edge, connecting the
other two vertices, the minimal angle would be larger), constrained Delaunay
triangulations offer less guarantees on numerical stability than regular Delaunay
triangulations. This drawback is tackled by the conforming constrained Delau-
nay triangulation (usually referred to as conforming Delaunay triangulation). A
conforming Delaunay triangulation contains all segments of the PSLG as well,
but this time it is allowed to split PSLG segments into multiple edges by the
insertion of additional nodes, the so-called Steiner points. These Steiner points
are inserted in such a way that the original empty circumcircle criterion always
holds, regardless of visibility of vertices. Figure 2.17 shows such a conforming

26 Chapter 2. Research background

Figure 2.16: A constrained Delaunay triangulation (with the thick black edge indicat-
ing the constrained edge): the vertex within the circumcircle is not visible from the
triangles interior, as visibility is blocked by the constrained edge

Delaunay triangulation. Compared to the constrained Delaunay triangulation
from the previous figure, the constrained edge is split into two parts by the
insertion of a Steiner point. As one can check in the figure, the circumcircles
of the four newly created triangles are all empty again. As a result, the mini-
mal angle is maximised again, but this advantage comes at the expense of an
increase in data volume, as additional points are required. Unfortunately, in
some cases the number of additional points can grow virtually unlimited, see
figure 2.18 (Stoter et al. 2005). Two intersecting near-parallel constrained edges
will generate more and more small triangles towards the intersection point.

• With the drawbacks of the conforming Delaunay triangulation in mind, a lot
of research effort (Chew 1993, Ruppert 1995, Shewchuk 1997b, 2002, Si 2006a)
is put into the refined constrained Delaunay triangulation. The idea is still to
insert Steiner points to obtain better shaped triangles, but in this triangulation
satisfying the empty circumcircle criterion (and thus maximising the minimum
angle) is no longer the goal. Other quality indicators, like the circumradius-to-
shortest edge ratio, are used to guarantee a quality triangulation (i.e. a trian-
gulation with ‘nice’ triangle shapes, such that numerical instability is avoided)
without the need to add as many Steiner points as required to fulfil the empty
circumcircle criterion. As a result, one can consider the refined constrained De-
launay triangulation as a very suitable compromise between quality and data
volume on the one hand and between constrained and conforming Delaunay
triangulations on the other hand.

Delaunay triangulations are very popular methods for digital elevation models. Each
x,y-point has a height value attribute in such models, thus creating a 2.5D elevation
representation. Despite the 2.5D nature of such a model, the triangulation itself is still
computed and optimised in 2D. The problem caused by this is that 2.5D triangles,

2.5. Triangular data structures and algorithms 27

Figure 2.17: A conforming Delaunay triangulation (with the thick black edges indi-
cating the constrained edges): due to the inserted Steiner point the constrained edge
is spit into two segments, and all related triangles have empty circumcircles again

Figure 2.18: Two near-parallel lines cause addition of large numbers of Steiner points
in a conforming Delaunay triangulation (Stoter et al. 2005)

despite the optimised shape of their 2D projections, still might have all unwanted
characteristics like small, sharp angles in 3D. Figure 2.19 illustrates this threat, as it
shows a Delaunay triangulation in 2D (with maximised minimum angles) at the left
and its 2.5D counterpart at the right. The two middle points are shifted vertically
compared to the 2D triangulation, thus introducing sharp angles in 2.5D that are
not that sharp in the 2D projection. Verbree and van Oosterom (2003b,a) address
this problem and introduce a new method that optimises the actual triangles and not
their 2D projections.

28 Chapter 2. Research background

Figure 2.19: Fulfilling the Delaunay criterion in 2D (left) does not guarantee well-
shaped triangles in 2.5D (right). The two middle points in the 2.5D triangulation are
shifted vertically compared to the 2D situation

2.5.2 2D triangulation algorithms

Basically, two major types of incremental Delaunay triangulation algorithms exist: the
Lawson algorithm and the Bowyer/Watson algorithm. The first type, introduced by
Lawson (1977), is based on edge flipping. Figure 2.20 illustrates Lawson’s incremental
insertion algorithm: first a new vertex is inserted. Then the triangle in which the new
vertex is inserted, is detected. The new vertex is then connected with all three vertices
of this triangle. As a next step all edges that are not Delaunay, i.e. all edges with
vertices in their minimum circumcircle, are flipped. Flipping is the process of taking
the two triangles that share a specific edge e, and replace this edge e by edge e’ that
connects the two vertices that not span edge e. So for instance, triangle ABC and
triangle BCD share the non-Delaunay edge BC. This edge BC is than replaced with
edge AD, i.e. the internal edge ‘flips’. Shewchuk (1997b, chapter 2, lemma 4) shows
that for a triangulation with n vertices, the flip algorithm will terminate after O(n2)
edge flips and result in a Delaunay triangulation.

The second type, the Bowyer/Watson algorithm, is presented indepently by both
Bowyer (1981) and Watson (1981), at the same time and in the same journal. Figure
2.21 explains the concept of their approach. It starts with insertion of a new vertex.
As a second step, the triangles whose circumcircles contain the vertex, are removed
from the triangulation. This results in a polygon-shaped gap, the insertion polygon.
As a last step the new vertex is connected with all vertices of the insertion polygon.

The resulting new triangles will always meet the Delaunay criterion. Figure 2.22
illustrates this. Vertex v is the only vertex in the circumcircles of the deleted triangles.
Considering a random vertex w of the deleted triangle t, the containing circle C of the
new edge vw will lie inside the circumcircle of t and thus be empty. Since this holds
for all newly inserted edges, these edges are all Delaunay and thus all new triangles
are Delaunay.

2.5. Triangular data structures and algorithms 29

A

B

C

D

A C

D

B

Figure 2.20: Lawson’s algorithm: a new vertex is inserted and connected to the three
vertices of the triangle in which it is inserted. As a next step non-Delaunay edges (i.e.
edges with non-empty circumcircles) are flipped, so that all edges (and thus triangles)
are Delaunay again

Figure 2.21: Bowyer/Watson algorithm: insert a new vertex, remove triangles with
the new vertex within their circumcircle and connect the new vertex to all vertices on
the resulting gap’s boundary

v

w

t

C

Figure 2.22: Resulting triangles of Bowyer/Watson algorithm are Delaunay (left).
The circumcircles of deleted triangles contain only the new vertex (middle). If v is a
new vertex and w is a vertex of a deleted triangle, edge vw is Delaunay. Since this
holds for all newly inserted edges, all resulting new triangles are Delaunay

30 Chapter 2. Research background

Flip-based algorithms are usually preferred because they are slightly easier to im-
plement (Shewchuk 1997b). Partially this is caused by the fact that Lawson’s al-
gorithm maintains the topological structure, since it remains a triangulation, while
in Bowyer/Watson algorithms the insertion polygons are non-triangular. For more
details on specific algorithm implementations and their performance, the PhD thesis
of Shewchuk (1997b) is strongly recommended.

Algorithms for constrained Delaunay triangulations, conformal Delaunay triangu-
lations and refined constrained Delaunay triangulations are usually based on Lawson’s
algorithm, with the modification that constrained edges can not be removed by flips.
In case of a constrained Delaunay triangulation, the empty circumcircle criterion for
non-Delaunay (and non-constrained) edges is adjusted by taking visibility into ac-
count (Shewchuk 2003). Conformal Delaunay triangulation algorithms do not flip
constrained edges as well, but split them in two equal segments in case the empty
circumcircle criterion is not met. Refined constrained Delaunay triangulation algo-
rithms differ from regular constrained Delaunay triangulation algorithms in the sense
that they also detect ill-shaped triangles and refine the triangulations by adding ad-
ditional points, often at the centrepoint of the circumcircle of the ill-shaped triangle
(Chew 1993, Shewchuk 2002). Implementations of Delaunay triangulation algorithms
are available in a wide range of commercial (GIS) packages. A popular implementa-
tion of a refined constrained Delaunay triangulation algorithm is Triangle (Shewchuk
1996).

2.5.3 3D triangular data structures: tetrahedronisations

Although the term triangulation is sometimes used in general dimension, tetrahedro-
nisation is the more often used term specific for triangulation in 3D. Parallel to the
2D case, several types of 3D tetrahedronisations can be distinguished:

• The Delaunay tetrahedronisation of a set vertices V is a straightforward gen-
eralisation of the previously introduced Delaunay triangulation. A tetrahedro-
nisation is said to be Delaunay if all elements fulfil the empty circumsphere
criterion: the sphere that passes through all tetrahedron vertices should be
empty. Delaunay tetrahedronisation algorithms are the most popular tetrahe-
dronisation algorithms, albeit that the Delaunay criterion in 3D does not lead to
maximisation of the minimal dihedral angle, as can be observed in figure 2.23.

• Besides a vertex set V one can also use a piecewise linear complex (PLC) as
input for tetrahedronisation. A PLC (Miller et al. 1996) is a set of vertices,
segments and facets and each facet can be represented by a planar straight
line graph (PSLG, as defined in section 2.5.1), embedded in 3D. Such an in-
put data set can be used to represent for instance object boundaries within a
tetrahedronisation. The constrained Delaunay tetrahedronisation of a PLC is a
tetrahedronisation in which all the PLC components are represented. Parallel
to the constrained Delaunay triangulation, the empty circumsphere criterion is

2.5. Triangular data structures and algorithms 31

v0

v1

v2

v3

v4

Figure 2.23: A hexahedron (note that v2 and v4 lie above v1 and v3) and its Delaunay
tetrahedronisation (left) and another tetrahedronisation. The lower tetrahedron in the
Delaunay tetrahedronisation has very small dihedral angles, while the non-Delaunay
tetrahedronisation results in two well-shaped tetrahedrons (Shewchuk 1997b).

altered to the constrained Delaunay criterion that the circumsphere of a tetra-
hedron encloses no vertex of V that is visible from the tetrahedrons interior,
where visibility is supposed to be blocked by PLC segments and facets.

A notable difficulty in extending triangulation into 3D is that, whereas in 2D
each polygon can be triangulated, polyhedra exist in 3D that can not be tetra-
hedronised without the insertion of additional vertices. The smallest exam-
ple is shown by Schönhardt (1928) and this example, currently known as the
Schönhardt polyhedron, can be seen in figure 2.24. This polyhedron can be seen
as a prism, of which the top triangle is then rotated over 120 degrees. The result-
ing polyhedron can not be tetrahedronised without additional Steiner points.

As a result different definitions of a constrained (Delaunay) tetrahedronisation
can be found in literature. Shewchuk (1997b) does not allow the addition of
Steiner points in a constrained tetrahedronisation and thus states that a con-
strained tetrahedronisation of a PLC does not always exist. However, others

32 Chapter 2. Research background

Figure 2.24: The Schönhardt polyhedron (Schönhardt 1928) can not be tetrahedronised
without additional Steiner points

(Liu and Baida 2000, Si 2006b) use a less strict definition and include Steiner
points in a constrained tetrahedronisation, although no consensus exists about
the location of these Steiner points. Liu and Baida (2000) allow Steiner points to
be included in a constrained tetrahedronisation, except on constraints. Tetra-
hedronisations in which Steiner points are inserted at constraints are called
conforming tetrahedronisations, whereas Si (2006b) does this exactly the other
way around. In this dissertation Steiner points are allowed in a constrained
tetrahedronisation. The issue of the location of these Steiner points is not fixed
and will be addressed explicitly wherever necessary.

Figure 2.25: Refining a triangulation: detect ill-shaped triangle by a poor radius-
edge ratio, calculate circumcircle, add centrepoint as Steiner point and retriangulate.
Note that this method works also in 3D, but for reasons of clarity the 2D situation is
illustrated.

2.5. Triangular data structures and algorithms 33

• Since the Delaunay criterion offers less guarantees on tetrahedronisation quality,
additional requirements are developed. The resulting refined Delaunay tetra-
hedronisations provide more guarantees in terms of for instance a minimum
radius-edge ratio of minimum angles. A lot of research is performed on re-
finement strategies (Joe 1995, Cavalcanti and Mello 1999, Liu and Baida 2000,
Shewchuk 2004, Si 2006a). Figure 2.25 shows an example of such a refinement
algorithm. Note that for reasons of clarity this example is drawn in 2D, while it
can be performed in 3D as well. It shows the detection of a badly-shaped trian-
gle (3D: tetrahedron). Its circumcircle (3D: circumsphere) is computed and its
centrepoint is added as new vertex. The resulting triangles (3D: tetrahedrons)
have better shapes.

2.5.4 3D tetrahedronisation algorithms

As in 2D, two different types of incremental algorithms can be distinguished in 3D
as well, i.e. the ones based on the Lawson algorithm and the ones based on the
Bowyer/Watson algorithm. The idea of the Lawson algorithm is extended first into
3D and later into general dimension by Joe (1991, 1993). It follows a two-step ap-
proach: first a vertex is inserted and connected to the vertices of the tetrahedron in
which it was inserted, after that the tetrahedronisation is altered by flips to obtain
tetrahedrons that meet the empty circumsphere criterion. These two steps are ba-
sically the same as in 2D, albeit that in 2D one flips edges to obtain better-shaped
triangles, whereas in 3D one flips triangles to obtain better-shaped tetrahedrons. Edge
flipping can be performed in one specific way, whereas four types of triangle flipping
can be distinguished. This is illustrated in figure 2.26. These different flip types are
denoted by a T and the numbers of tetrahedrons before and after the flip:

T23: One of the two most often used flip types in 3D is T23. As illustrated in figure
2.26, T23 flips tetrahedrons < v0, v1, v2, v3 > and < v0, v2, v3, v4 > into tetra-
hedrons < v0, v1, v3, v4 >, < v0, v1, v2, v4 > and < v1, v2, v3, v4 >. Note that
T23 can only be performed if edge < v1, v4 > intersects the interior of triangle
< v0, v2, v3 >.

T32: One of the two most often used flip types in 3D is T32, the reverse operation
from flip T23. T32 flips tetrahedrons < v0, v1, v3, v4 >, < v0, v1, v2, v4 > and
< v1, v2, v3, v4 > into tetrahedrons < v0, v1, v2, v3 > and < v0, v2, v3, v4 >. Flip
T32 can only be performed if edge < v1, v4 > intersects the interior of triangle
< v0, v2, v3 >.

T22: This flip is less frequently used, since this operation requires that triangles
< v1, v2, v3 > and < v1, v2, v4 > are coplanar, or to define the criterion in line
with the one for T23 and T32, it requires that edge < v1, v4 > intersects the
boundary of triangle < v0, v2, v3 >. T22 flips tetrahedrons < v0, v1, v2, v4 > and
< v0, v1, v3, v4 > into tetrahedrons < v0, v1, v2, v3 > and < v0, v2, v3, v4 >.

T44: T44 is basically a combination of two T22 flips. T44 is the more common op-
eration of the two, since a single T22 operation can only be applied if the two

34 Chapter 2. Research background

v0

v1

v2

v3

v0

v1

v2

v3

v4

v0

v1

v2

v3

v4

v0

v1

v2

v3

v4

v5

v0

v1

v2

v3

v0

v1

v2

v3

v4

v0

v1

v2

v3

v4

v0

v1

v2

v3

v4

v5

2D

3D

T23

T32

T22

T44

Condition:
v1, v2, v3 and v4 lie

in the same plane

Condition:
v1, v2, v3 and v4 lie

in the same plane

Condition:
< v1.v4 > intersect the in-

terior of < v0.v2.v3 >

Figure 2.26: In 2D, only one type of edge flip exists. In 3D, four types of triangle
flips exist: T23 flips < v0, v1, v2, v3 > and < v0, v2, v3, v4 > into < v0, v1, v3, v4 >, <

v0, v1, v2, v4 > and < v1, v2, v3, v4 >. T32 is its reverse. T22 flips < v0, v1, v2, v4 > and
< v0, v1, v3, v4 > into < v0, v1, v2, v3 > and < v0, v2, v3, v4 >. T44 is a combination of
two T22 flips.

2.5. Triangular data structures and algorithms 35

coplanar triangles lie on the outer boundary (i.e. the convex hull) of the tetrahe-
dronisation, in all other cases the T22 flips come in pairs. T22 flips tetrahedrons
< v0, v1, v2, v4 >, < v0, v1, v3, v4 >, < v1, v2, v4, v5 > and < v1, v3, v4, v5 >

into tetrahedrons < v0, v1, v2, v3 >, < v0, v2, v3, v4 >, < v1, v2, v3, v5 > and
< v2, v3, v4, v5 >.

v0

v1

v2

v3

v4

Condition violation:
< v1, v4 > does not

intersect < v0, v2, v3 >

Figure 2.27: In this case, no T23 flip can be performed, since < v1, v4 > does not
intersect and < v0, v2, v3 >

So far the applicable flip type is determined by the intersection between edge
< v1, v4 > and triangle < v0, v2, v3 >. If this edge intersects the interior of the tri-
angle, T23 and T32 flips can be performed, and if the edge intersects the boundary of
the triangle, T22 and T44 flips are applicable. Obviously a third category can be dis-
tinguished: if the edge intersects the exterior of the triangle, or in other words, if the
input tetrahedrons form a concave polyhedron. For sets of tetrahedrons in this third
and last category (shown in figure 2.27) no flip can be performed. The concept of
the Bowyer/Watson algorithm can be extended into 3D quite straightforward. After
inserting a new vertex, all tetrahedrons with non-empty circumspheres are deleted
and the resulting polyhedral hole will be tetrahedronised by adding edges from the
new vertex to all polyhedron vertices. This concept is illustrated in figure 2.28: a new
vertex is inserted and the two tetrahedrons in which circumspheres (not drawn) the
new vertex lies, are deleted (the surrounding tetrahedrons with empty circumspheres
are not drawn). The resulting hole is then tetrahedronised, resulting in this case in
five new edges, nine new triangles and six new tetrahedrons.
Although numerous publications on (refined) tetrahedronisation are available, imple-
mentations are still scarce. Shewchuk announced (Shewchuk 2008) Pyramid as 3D
successor of Triangle, but Pyramid is still not available. Another implementation, also
partially based on work of Shewchuk, is TetGen (TetGen 2007, Si 2006c) by Si. For
those interested in more research on algorithms and implementations, the Meshing
Research Corner (2008) by Owen is highly recommended.

36 Chapter 2. Research background

Figure 2.28: Bowson/Watson algorithm in 3D: insert a new vertex, delete tetrahedrons
with non-empty circumcircles and tetrahedronise resulting hole

2.6 Relevant database concepts

As explained in section 1.2, one of the assumptions within this research is the use of a
(spatial) database. A database is a system whose overall purpose is to maintain data
and to make that data available on demand (Date 1986). Creating and maintaining
such a database is controlled by software known as the database management system
(DBMS). Data are stored in tables, consisting of a row of column headings (specifying
amongst others the data type for each column) and zero or more rows of data values
(Date 1986). The data values in a table are physically stored on disk. However, data
are not only accessible in tables, but also in views. Views may be regarded as virtual
tables, where ‘virtual’ indicates that a view contains no physically stored data, but
only queries that dynamically retrieve data when needed (Forta 2004). One exception
is the materialised view, in which the query result is cached as a concrete table. A
view requires no storage space, but may deteriorate performance since the queries
are executed dynamically. For a materialised view the opposite holds: it does require
storage space, but it will increase performance.

A related important concept is indexing. An index is ‘an auxiliary structure that is
specifically designed to speed the retrieval of records’ (Worboys and Duckham 2004).
Indexes in databases are similar to an index in a book: instead of searching a book
from cover to cover in order to find a part on a specific subject, one can browse the
index to find the page number related to the keyword. Such an index (consisting of
an index and a pointer) is an example of a single-level index, whereas more complex
data structures may require an index that is recursively indexed itself, a multi-level
index (Worboys and Duckham 2004). Well-known examples of multi-level indexes are
tree structures, such as the B-tree (Comer 1979) and the R-tree (Guttman 1984). The
obvious advantage of indexing is the increased performance, but its disadvantage are
the increased storage requirements. Especially in case of multi-dimensional indexes,
these storage requirements can become very large (i.e. the same order of magnitude
as the indexed table itself). One way of dealing with this is the use of ordering,
which basically ‘translates’ data into a form of lower dimension in order to be able

2.6. Relevant database concepts 37

to use more compact indexes. Figure 2.29 shows two well-known examples of two-
dimensional orderings: the Peano-Hilbert (Peano 1890, Hilbert 1891) and Morton
(Morton 1966) ordering. These orderings try to ensure that data of locations that are
close by in the real world will also be close by on the disk.

Peano-Hilbert Morton

Figure 2.29: Two well-known examples of 2D ordering: Peano-Hilbert and Morton

Part I

Conceptual modelling of
3D Topography

39

Chapter 3

Two triangular data models
for 3D topography∗

Developing a conceptual model for 3D topography means that one has to decide how
to represent reality in a model. Modelling topography in 2D is so common that
most people are not aware anymore of the underlying modelling decisions, such as
‘a building is represented as a polygon, equivalent to its shape as seen from above’
or ‘roads and rivers are represented by curved lines’. To extrapolate these rules into
3D is a non-trivial task, especially since one of the requirements from the previous
chapter is to deal with complex objects (for instance in case of multiple land use) and
the model should serve many applications.

The first triangular approach explored within this research, is based on a fit-for-
purpose principle: model in 2.5D (as defined in section 2.2) wherever possible and
switch to 3D modelling only in complex (exceptional) cases. Basic idea behind this
approach was to keep the model as simple as possible. Section 3.1 introduces this
approach and discusses both advantages and disadvantages.

Due to limitations of the 2.5D/3D approach, a new full 3D approach was devel-
oped. Although one might expect that this will lead to a more complex modelling
approach, section 3.2 will show the opposite. Since the full 3D model has some
favourable characteristics, it is selected in section 3.3 as modelling approach for 3D
topography. The data structure that will be presented in the next three chapters is
designed with this full 3D modelling approach in mind.

3.1 Approach 1: an integrated 2.5D/3D model

Initially (Verbree 2002, Penninga 2005b) the research presented in this dissertation
aimed at providing a pragmatic solution to the field of 3D topography. This pragmatic
solution was mainly based on the assumption that the need for volumetric objects

∗This chapter is largely based on Penninga (2005a), 3D Topographic Data Modelling: Why Rigid-

ity Is Preferable to Pragmatism. In: Spatial Information Theory, Cosit’05, A.G. Cohn and D.M.
Mark (Eds), Vol.3693 of Lecture Notes on Computer Science (Springer), pp. 409-425

42 Chapter 3. Two triangular data models for 3D topography

remains relatively limited to some specific object categories, of which ‘buildings’ is
the most obvious one. Other relevant topographic features like roads, the earth surface
and land use can be sufficiently represented as (curved) surfaces. In other words: the
initial idea was that only in some specific cases true 3D modelling would be necessary,
whereas in the majority of cases modelling in 2.5D would be sufficient. It assumes
that the earth’s surface can be modelled in 2.5D and that more complex situations
like buildings, viaducts or tunnels can be ‘glued’ on top or below this surface.

3.1.1 Concepts of the integrated TIN/TEN approach

Combining the preference for a triangular data structure (as explained in the previous
chapter) with the pragmatic modelling ideas, leads to the concept of a topographic
terrain representation in an integrated TIN/TEN model. Four types of topographic
features can be determined: point features (0D), line features (1D), area features
(2D) and volume features (3D). For each feature type simplexes of corresponding
dimension are available to represent these features within the TIN/TEN model, i.e.
nodes, (straight) edges, triangles and tetrahedrons. The basic idea of the integrated
TIN/TEN model is to represent 0D-2D objects in a TIN and 3D objects as separate
TENs, that will be placed on top or below the TIN. Note that it is presumed that all
3D features are connected to the earth surface. This principle is illustrated in figure
3.1. Note that the TIN is shown as a 2D TIN for simplicity reasons, but that the
model uses a 2.5D TIN. As both TINs and TENs are using triangles they can be ‘put
together’ by making sure that they both contain the corresponding triangles.

TIN

TEN

Integrated
TIN/TEN
model

Figure 3.1: Principle of modelling in an integrated TIN/TEN model

Similar to the Formal Data Structure (Molenaar 1990a,b) the initial modelling
approach is feature-oriented. The model is able to represent point, line, area and
volume features. In order to integrate TIN and TENs (and thus the 2.5D world
with the 3D worlds) at semantical level as well, the footprints of volume features will
be integrated in the TIN. These footprints are the intersection between the terrain
surface and 3D features such as buildings, tunnels and bridges. As a result, the TIN
can be considered as a topographic representation at terrain level.

3.1. Approach 1: an integrated 2.5D/3D model 43

Figure 3.2 shows the integration of TIN, TENs and features in a UML class di-
agram. In this class diagram, one can see the different types of features (Volume
feature, Area Feature, Line Feature, Point feature) and the different building blocks
of the TIN and TEN (Tetrahedron, Triangle, Edge, Node). While comparing for
instance the TIN Edge and the TEN Edge, one can see that these edges are not
identical, since a TIN and a TEN Edge have different associations, especially in the
multiplicity. A TIN Edge will bound two TIN Triangles (unless it lies on the outer
boundary of the TIN), while a TEN Edge will bound two or more TEN Triangles. As
a result, a directed TIN Edge will have a TIN Triangle on its left and one on its right,
whereas this specific association does not exist for a TEN Edge (but a directed TEN
Triangle will have a tetrahedron on its left and one on its right). In the depicted UML
diagram, only linking at node level between TIN and TEN is shown (the ‘isIdentical’
association). Obviously, the TIN and TEN do not only need to be linked at data
structure level, but also at feature level. Therefore each Volume feature has a Volume
Footprint (an orthogonal projection on the terrain surface), that will be part of the
Terrain level representation. As a result, Volume Footprints and Area features are
represented by TIN Triangles, while Line features are represented by TIN Edges and
Point features by TIN Nodes. The resulting Terrain level representation forms a TIN.
Only Volume features are represented by TEN Tetrahedrons, resulting in separate
TENs.

One might have expected the underlying data structure to be designed quite
straightforwardly, consisting only of nodes, edges, triangles and tetrahedrons (and
thus not of separate TIN and TENs). However, although for instance edges appear
both in TIN and TEN, Penninga (2005a) argues that a TIN edge is not conceptually
the same as a TEN edge. The same holds for TIN triangles and TEN triangles. The
differences are in their mutual topological relationships: within a TIN an edge has
two neighbouring faces (left/right), while the number of associated faces is unbounded
within a TEN. Therefore it is necessary to model the TIN and TEN separately and,
when appropriate, link or even merge its components. Nevertheless, a close rela-
tionship exists between for instance a TIN edge and a TEN edge, as they are both
1-simplexes and their geometries might be identical. Although the connection be-
tween TIN and TEN is only available at node level –and not at edge or triangle level–
in the UML diagram (figure 3.2), one can distinguish in general three types of linking
between TIN and TEN (see also figure 3.3):

• link at triangle level (thus ‘glueing’ the TENs on top of the TIN)

• link at edge level (thus ‘stitching’ the TENs on top of the TIN)

• link at node level (thus ‘nailing’ the TENs on top of the TIN)

Linking at node level is the most fundamental one of this three, as edges and (indi-
rect) triangles are defined by their nodes. However in order to optimise analytical
capabilities one could prefer to model the link at triangle level (which implies also the
relationship on edge and node level). If one would only link at node level, one can
not be sure that the TIN and TEN will contain identical triangles. In the illustrated

44 Chapter 3. Two triangular data models for 3D topography

Figure 3.2: UML class diagram of the conceptual model of the feature-based integrated
TIN/TEN approach (note that current attributes and associations will not necessarily
be stored explicitly in an actual implementation, but are included here for clarification
purposes only)

3.1. Approach 1: an integrated 2.5D/3D model 45

example, the edge dividing the two triangles might be flipped in either the TIN or
TEN, while this would not be the case if one uses edge or triangle linking.

TIN node:id 71 = TEN node:id 32 TIN edge:id 22 = TEN edge:id 13 TIN triangle:id 3 = TEN triangle:id 7

nailing stitching glueing

Figure 3.3: Three options for linking TIN and TENs: nailing, stitching and glueing

3.1.2 Advantages of the TIN/TEN approach

In a way the integrated TIN/TEN approach is the ultimate example of applying
the fit-for-purpose principle. First of all a triangular approach is selected, as its
irregularity enables one to use a lot of points in complex areas, whereas fewer points
will be sufficient in less complex or less important regions. This flexibility provides
the required degree of detail at each location, without causing a substantial increase
in data storage, as a raster-like regular approach would. Applying the integrated
2.5D/3D approach further extends this concept, as it provides a 2.5D TIN model
wherever sufficient and only switches to the more complex and expensive (in terms
of data storage) 3D TEN models when necessary. At the same time this approach
fits with the intended purpose. Within a topographic data set the earth surface
is a unique feature, as most topographic objects are part of or located directly on
top of this surface. This uniqueness can be observed in figure 3.4, in which a 2D
topographic map is draped on top of a height data set, thus approaching the actual
look of a 2.5D/3D topographic data model. This illustration endorses the use of the
2.5D earth surface as a model base.

A second fit-for-purpose aspect is that topographic data sets are very large, as they
usually offer nationwide coverage. Extending these data sets into the third dimension
will increase their size dramatically. Minimising modelling in 3D is certainly a valid
strategy in dealing with this potential increase in data volume.

The third fit-for-purpose aspect is that a lot of analyses do not require 3D models.
Operations like for instance slope analysis and line-of-sight computations in natural
terrain, can be performed on 2.5D surfaces. With the integrated model, in which the
footprints of 3D features are present in the 2.5D TIN, the user still has the option to
ignore the TENs completely and confine oneself to using only the TIN surface for his
application.

46 Chapter 3. Two triangular data models for 3D topography

Figure 3.4: Draping a 2D topographic map onto a height data set shows the plausi-
bility of the assumption that the earth surface is a very important topographic feature
(source: Actueel Hoogtebestand Nederland (2006))

3.1.3 Disadvantages of the TIN/TEN approach

Although the initial 2.5D/3D TIN/TEN modelling approach seems to make sense
from a practical topographical point of view, it has some serious hidden problems.
The problems lie within the integration of the TIN with the TENs. At a conceptual
level the ‘isIdenticalTo’ relationship between a TIN Node and a TEN Node (as used
in the UML class diagram in figure 3.2) is an appropriate way of linking both models.
However, in order to optimise analytical capabilities one would prefer this link to
exist on node as well as on edge and triangle level. In order to do so, one needs an
implementation that takes care of ensuring the 1:1 relationship between TIN surface
and TEN bottom.

If one considers the example of a building placed on top of the terrain (as illus-
trated in figure 3.1), not only the footprint of the building should match in TIN and
TEN, but also the internal edges in the shared face. The building will be represented
as a rectangle in the TIN and this rectangle is identical to the floor boundaries in
the TEN. Furthermore one needs the guarantee that the internal edge, that trian-
gulates this rectangle, is the same diagonal in both data structures. Unfortunately
it is not possible to ensure such a match between the TIN and TEN triangles, as
constrained triangulations and tetrahedronisations are only capable of handling con-
strained edges (Shewchuk 2004). This implies that not only the outer boundaries

3.1. Approach 1: an integrated 2.5D/3D model 47

should be handled as constraints, but also this internal edge. As a result the outcome
of the TIN triangulation can be transferred as input into the TEN triangulation or
vice versa. This dependency wouldn’t be a problem if one could ensure that these
constraints can be triangulated without problems. However additional Steiner points
are often required in order to enable tetrahedronisation (for instance Schönhardts
polyhedron, introduced in section 2.5.3) or to improve the quality of a constrained
Delaunay triangulation (and thus the numerical stability). As Steiner points are in-
serted for instance in the TIN, they need to be transferred into the TEN, accompanied
with the additional edges created by the Steiner points. At the same time the TEN
algorithm might insert additional Steiner points, which should be transferred back to
the TIN, thus resulting in the threat of a significant (but unnecessary) increase in the
number of Steiner points. An alternative approach is described by Verbree (2006).
His approach consists of the addition of adding enough Steiner points such that the
tetrahedronisation becomes a conforming Delaunay tetrahedronisation. In this case
(except for degenerate cases with four points on a circle/sphere) both triangulation
and tetrahedronisation of the extended node set will result in the same triangles.

This problem can partially be solved by handling Steiner points in a different way.
Within algorithms used in GIS, Steiner points are almost always used to split long
edges into smaller ones. In the more general research field of meshing, where amongst
others triangulation and tetrahedronisation are used in order to simplify complex
objects to enable appliance of partial differential equations, Steiner points are also
added in the interior of a triangle or tetrahedron (Shewchuk 1997b). In particular
most refinement algorithms select skinny triangles and add the centrepoint of the
circumcircle as a Steiner point. In TENs the centrepoint of the circumsphere can
be used. Within GIS, adding internal nodes is rather unusual, probably due to the
fact that this data is collected by surveying techniques as GPS or photogrammetry,
which are point measurement techniques. As a result, a node usually represents a
measurement, which is not the case for Steiner points in the interior of an object.
Nevertheless, the question whether every polyhedron can be triangulated or tetrahe-
dronised without adding Steiner points at the boundary of the object is theoretically
not answered yet.

Although the modelling approach is quite straightforward (‘model in 2.5D, switch
to 3D only in exceptional cases’), the questions how to link both models and when to
switch between the two representations are not easy to answer (and thus to implement
in practice). To this important design question two possible solutions exist:

• The first option is that both TIN and TEN should exist in case of more complex
situations, resulting in a TIN+TEN approach. One can imagine a situation in
which a single building is represented in a TEN. At this location it will be quite
easy to include the footprint in the TIN, thus using a TIN+TEN approach. This
approach is illustrated in the UML class diagram in figure 3.2, although it would
require that the ’isIdentical’ association would exist between TIN Triangle and
TEN Triangle (and as a result, also between TIN Edge and TEN Edge and
between TIN Node and TEN Node).

48 Chapter 3. Two triangular data models for 3D topography

• The second option is that only the TEN should be available in these situations
(implying a ‘hole’ in the TIN), resulting in a TIN-TEN approach. As a conse-
quence, a 2.5D representation is created that is not a surface partition. Kolbe
et al. (2005) suggest the use of virtual closure surfaces to obtain a closed surface,
although these surfaces have no relationships with actual features. The need for
the TIN-TEN approach can be illustrated best with the complex situation in
figure 3.5, in which a highway and railroad tracks are planned in tunnels, with
a station and offices build on top. The question arises how to give a meaningful
definition of the ‘earth surface’ and thus what to include in the 2.5D representa-
tion. In such a situation it would make more sense to model the entire complex
situation in one TEN, which shares its borders with the surrounding TIN, thus
using a TIN-TEN approach. Such an approach would require changes in the
UML class diagram in figure 3.2. The Volume Footprint would no longer be
represented by one or more TIN Triangles, but result in a hole. An additional
type ‘Virtual closure surface’ need to be added to obtain a closed surface again.
The TIN-TEN approach also affects the ‘IsIdentical’ relationship between TIN
and TEN elements. Obviously, this association will not exist on triangle level
(as it will in the TIN+TEN approach), but on edge level.

As a result from both options and examples, one cannot select either the TIN+TEN
or the TIN-TEN approach alone. It makes sense to use both approaches, but how to
satisfactory define a general rule when to apply TIN+TEN and when TIN-TEN? This
criterion adds more complexity to the initial simple modelling concept. In order to
contribute to further confusion, let us concentrate at the question which feature types
are modelled in the TIN and which in a TEN. If one considers the simplified viaduct in
figure 3.6, applying the initial modelling approach would imply that only the viaduct
itself will be modelled in 3D and the ascent and descent in 2.5D. Suppose that both on
and under the viaduct a highway exists. In this case the bottom highway is represented
in a TIN and the upper highway in a TEN. As a result the upper highway will have
a thickness, while the bottom highway has not. One can also decide to only label the
top triangles of the TEN as highway, but this will result in a meaningless volume,
acting as a ‘carrier object’ for the highway object. The thickness of the TEN (the
viaduct) can be surveyed. Still, why should one include this thickness or a ‘carrier
object’ for highways on a viaduct and not include such a thickness for the foundation
of the bottom highway? As a result, a highway will sometimes have a thickness, and
sometimes not. This inconsistency is hard to accept.

The earlier observation that it will be difficult to define a 2.5D terrain surface
everywhere, implies that it is apparently not possible to extend all characteristics of a
2D representation into 2.5D, especially when this 2.5D representation has to fit with
3D TENs. In 2D, a topographic representation can be considered as a topologically
closed surface. This plays an important role in consistency checks of the data. How-
ever, in 2.5D this rule no longer applies, for instance if one thinks of a tunnel entrance.
In 2D the road stops at the tunnel entrance, which is also the border of the terrain
feature lying above the tunnel. In 2.5D there will be a vertical gap between these
two features, resulting in a non-watertight surface. Additional closure surfaces might

3.1. Approach 1: an integrated 2.5D/3D model 49

Figure 3.5: Impression of the plans for the renewal of Amsterdam WTC Station, with
several tunnels, offices and a station build on top of each other

TIN
TIN

TEN

Figure 3.6: Simplified viaduct, partially modelled as TIN and partially as TEN

solve this, thus resulting in a 2.5D+ model, but standard triangulation algorithms
will not create such 2.5D+ models.

So far it is clear that - after solving a number of practical problems as described
above - it will be possible to create a model in which TIN and TENs are combined, thus
enabling a representation in which both surface and volume objects are present. Now
the question arises whether this representation also offers the required functionality.
For instance, figure 3.6 illustrated the possibility to model a viaduct as a combination
of a TIN and a TEN, but does this model enable the user to analyse the clearance

50 Chapter 3. Two triangular data models for 3D topography

under the viaduct? In a geometrical sense a relationship can be discovered between
the TIN triangle of the bottom highway and the TEN lying above, but in a topological
sense these objects are not related. Wouldn’t it be better if the air between the viaduct
and the underlying terrain was also modelled, thus enabling the user to calculate the
height of these ‘air’ tetrahedrons in order to solve his query? The same holds for
a tunnel. In the TIN+TEN case the tunnel TEN is only attached to the TIN at
both tunnel entrances, but would this enable a quick analysis of which buildings are
located on top of the tunnel? If the earth between the tunnel and the buildings is
also modelled, this would simplify the query. Again this raises the question whether
it is possible to satisfactory define a general rule which ‘air’ or ‘earth’ tetrahedrons
should be included and which not.

3.2 Approach 2: a full 3D data model

3.2.1 Concepts of the TEN approach

With respect to modelling 3D topographic data, two fundamental observations are of
great importance (Penninga 2005a):

• Physical objects have by definition a volume. In reality, there are no point, curve
or surface objects, only point, curve or surface representations exist (at a certain
level of abstraction/simplification). The ISO 19101 Geographic information
- Reference model (ISO 19101:2002 2002) defines features as ‘abstractions of
real world phenomena’. In most current modelling approaches the abstraction
(read ‘simplification’) is in the choice for a representation of lower dimension.
However, as the proposed method uses a tetrahedral network (or mesh), the
simplification is already in the subdivision into easy-to-handle parts (i.e. it is a
finite element method!).

• The physical real world can be considered a volume partition: a set of nonover-
lapping volumes that form a closed (i.e. no gaps within the domain) modelled
space. As a consequence, objects like ‘earth’ or ‘air’ are explicitly part of the
real world and thus have to be modelled.

Figure 3.7 shows an UML class diagram of this model. Although the Physical
world consists of VolumeFeatures, some AreaFeatures might still be very useful, as
they mark the boundary (or transition) between two VolumeFeatures. In our mod-
elling approach AreaFeatures can exist, but only as ‘derived features’. This also holds
for LineFeatures and PointFeatures. In UML terms, AreaFeatures are modelled as
association classes. For instance, a ‘wall’ might be the result of the association be-
tween a ‘building’ and the ‘air’. It is important to realise that planar features that
mark borders between volumes might be labelled (for instance as ‘roof’ or ‘wall’ with
additional attributes), but that they do not represent or describe the building. In this
example the building in itself is represented by a volume, with neighbouring volumes
that represent air, earth or perhaps another adjacent building. Labelled features like

3.2. Approach 2: a full 3D data model 51

Figure 3.7: UML class diagram of the conceptual model of the full 3D data model

‘roof’ and ‘wall’ are lifetime dependent from the association between the building and
its exterior.

As a result the actual 3D model will show more resemblance with the real world.
Deriving visualisations from this model might result in more simplified models, as
there is no one standard ‘best’ visualisation for all purposes. However, the choice
which representation to use, should be made in the Digital Cartographic Model (DCM,
a set of cartographic rules) and not in the Digital Landscape Model that contains the
3D physical objects (for DCM and DLM, see Kraak and Ormeling (1996)).

3.2.2 Advantages of the TEN approach

The explicit inclusion of earth and air features is not very common, as these features
are often considered as empty space in between topographic features. However, this
inclusion is not only serving the abstract goal of ‘clean’ modelling, but has actually
some useful applications. Firstly, air and earth features do not just fill up the space
between features of the other types, but are often also subject of analyses. One can
think of applications like modelling noise propagation or air pollution. Secondly, by
introducing earth and air features, future extensions of the model will be enabled.
Space that is currently labelled as air can be subdivided in for instance air traffic or
telecommunication corridors, while earth might be subclassified in geological layers
or polluted regions. Figure 3.8 shows some examples of future extensions.

Another advantage of modelling these ‘empty’ spaces is that it enables very prag-
matic solutions for short term problems. If one thinks again of the viaduct in figure
3.6, the problem was that feature instances of the same type were sometimes repre-
sented in 2.5D and sometimes in 3D, even though the thickness was not known. As
long as no real data is available for the viaduct, one might model both crossing roads
as faces. The upper highway will be represented as a set of flat faces on the border of

52 Chapter 3. Two triangular data models for 3D topography

Figure 3.8: Air traffic corridors towards Schiphol Airport, the Netherlands (left) and
an oil reservoir (right): examples of future extensions (Illustration oil reservoir from
Ford and James (2005))

two volumes, this time both ‘air’ volumes. This might not be a desirable permanent
solution, but until real 3D data of viaducts becomes available, this is a pragmatic
solution.

As a last advantage, the simplicity of the concept in itself can be mentioned: mod-
elling ‘everything’ in a TEN is easier than modelling sometimes in a TIN, sometimes
in a TEN. Immediately it should be mentioned that modelling in a TEN is more com-
plex, both in terms of insightfulness and of the required algorithms, than modelling
in a TIN. Thus the question remains whether modelling everything in a TEN will be
also easier at implementation level.

Another interesting concept that is loosely related to the new modelling approach,
is an idea that still enables a user to work with a 2.5D TIN, even though the topo-
graphic model is stored as an explicit TEN. Up till now, no distinction has been
made between the way in which features are presented to the user and the way these
representations are stored. One of the goals of the 3D Topography research is to
implement the model in a spatial database, as this will improve manageability of the
data. Databases have a rather nice feature and that is that one can work with views
instead of tables. Whereas a table is physically stored in the database, a view can be
seen as some kind of a virtual table. The user has all functionality as if he is working
with a table, but the view is only a certain filter on top of one or more tables. Within
the topography model one can think of node, edge, triangle and tetrahedron tables as
basic storage structure of the 3D TEN. As stated at the beginning of this chapter, the
observation is that large parts of a country can be considered to be 2.5D, thus it still
would simplify some applications if a TIN surface would be available. The idea is to
define a view on top of the triangle table of the TEN, such that this view consists of
TIN triangles representing the earth surface. As seen in the previous section, linking
the TIN with the TENs was very difficult due to several problems, amongst others
with Steiner points. The concept of using a view on a TEN does not try to solve the
integration problem of the TIN and TEN, as it avoids the problem completely.

3.3. The choice for the full 3D approach 53

3.2.3 Disadvantages of the TEN approach

The drawback of TENs, most often mentioned in literature, is the required amount of
storage space. Amongst others, Zlatanova et al. (2004) state that TENs have a much
larger database size in comparison with other 3D approaches. This line of reasoning
is based on a comparison for a single building as shown in table 3.1, in which the
number of tetrahedrons, triangles, edges and nodes is compared to the number of
volumes, faces, edges and points in a polyhedron approach.

Building as polyhedron Building as explicit TEN
(1 volume) 8 tetrahedrons

7 faces 24 triangles
(15 edges) 25 edges
10 points 10 nodes

Table 3.1: Comparing storage requirements of a polyhedron and a TEN approach for
the building in figure 4.7. The brackets indicate implicit presence (as opposite of
explicit storage). In an explicit TEN, all elements are stored explicitly, although more
elements might be modelled implicitly in an actual TEN implementation.

In order to reach acceptable performance, it has to be decided which primitives
and which relationships between TEN elements will be stored explicitly. The perfor-
mance requirements do not tolerate full storage of all possible relationships. Several
approaches exist in 2D to reduce storage requirements of TINs by either working with
an edge or a triangle based approach, in which not both triangles, edges and nodes
are stored explicitly. Unfortunately, in the 3D situation and especially in case of a
constrained TEN this might become very difficult. Nevertheless this drawback should
be tackled at design level.

In addition to the (supposed) drawback of TEN storage requirements, one should
realise that the described TEN approach includes a full tetrahedronisation of 3D
space, thus adding air and earth features to the model. The addition of these features
will influence storage requirements significantly.

Although both factors relate to storage requirements, a clear distinction has to
be made between increasing storage requirements, triggered by the selection of a
triangular data structure and increasing storage requirements, triggered by the full
volumetric modelling approach. Especially the increases caused by the triangular
data structure might be limited by a proper implementation of a TEN structure in a
database. The upcoming chapters will present such an implementation.

3.3 The choice for the full 3D approach

This chapter first introduced a very pragmatic approach to 3D modelling, as it aims
at modelling as much as possible in (less complicated) 2.5D, whereas full 3D mod-
elling will be applied only in exceptional cases. Triangulations were selected (in the

Part II

A Data structure
for 3D Topography

55

Chapter 4

Theoretical foundations:
Poincaré simplicial homology∗

The previous chapter answered the question how to develop a conceptual model de-
scribing topographic features: a full 3D approach based on tetrahedrons is the most
appropriate. As shown in the chapter 3, this network of tetrahedrons consists of tetra-
hedrons, triangles, edges and nodes. These simplexes are constructed recursively: a
tetrahedron is defined by four triangles, a triangle by three edges and an edge by two
nodes. Intuitively, these relationships offer computational advantages in operations
since they are known in advance.

Figure 4.1: Henri Poincaré, founder of simplicial homology research

∗This chapter is partially based on Penninga and van Oosterom (2008a), A Simplicial Complex-

based DBMS Approach To 3D Topographic Data Modelling. Accepted for International Journal of
Geographical Information Science: August 18, 2007. Publication scheduled for 2008.

58 Chapter 4. Theoretical foundations: Poincaré simplicial homology

Although these favourable characteristics are recognised by others (Guibas and
Stolfi 1985, Pilouk 1996, Wei et al. 1998), they are rarely explored in a structured
fashion, except for Frank and Kuhn (1986), Carlson (1987), Egenhofer et al. (1989)
and Paoluzzi et al. (1993) (see section 2.4.3). Nevertheless, in this research the solid
mathematical foundations of simplexes will be applied. Simplexes, their characteris-
tics and their mutual relationships are extensively studied in the late 19th century by
Henri Poincaré (see figure 4.1). His results still form the basis of the field of simplicial
homology.

Applying simplicial homology offers significant advantages. Before introducing
the simplicial homology-based data structure in the next chapter, this chapter will
provide all relevant backgrounds of simplicial homology. Simplicial homology offers
a mathematical description of simplexes and of their mutual relationships (section
4.1). A very important characteristic in handling geometries is orientation, as it is
the basis for determining crucial relationships as left/right and inside/outside. The
new data structure greatly benefits from the fact that simplicial homology enables
full control over simplex orientation in each dimension. The underlying theory will
be introduced in section 4.2. Another important aspect of the new approach is the
representation of topographic features. These features are composed of several tetra-
hedrons. In mathematical terms these combined simplexes are known as simplicial
complexes (section 4.3). The last section (section 4.4) will show how the use of tetra-
hedrons as basic building blocks for features will simplify operations on these features.

In this chapter the following annotations will be used: Sn for a simplex of dimension
n, ∂ for the boundary and vi for a node. In mathematical terms vertex is the appro-
priate term, but in a GIS context node is more often used (especially in TINs and
TENs). As a compromise this chapter will use the term node and the annotation vi.

4.1 Mathematical description of simplexes

Simplexes and the relationships between simplexes of different dimensions were stud-
ied by mathematicians in the late 19th and early 20th century. This field of math-
ematics was known as simplicial homology and is today considered part of the field
of Algebraic Topology (Hatcher 2002). The foundations of simplicial homology are
described by Jules Henri Poincaré (1854-1912) in (Poincaré 1895). Some relevant
corrections and additions can be found in (Poincaré 1899). Simplicial homology is
the part of mathematics that deals with topological constructions of simplexes. Intu-
itively a n-simplex can be described as the simplest geometry of dimension n, where
simplest refers to minimising the number of points required to define such a simplex.
For instance, one needs at least three points to define a 2D shape (a triangle) and
these three points should not lie on the same line (since that would result in a 1D
edge). A simplex can be seen as an elementary building block of its dimension; they
are used to construct simplexes of higher dimension.

The previously introduced volumetric approach uses tetrahedrons to model the
real world. These tetrahedrons in the TEN structure consist of nodes, edges and

4.1. Mathematical description of simplexes 59

triangles. All four data types are simplexes. A formal definition (Hatcher 2002) of a
n-simplex Sn is given below:

Definition 1 A n-simplex Sn is the smallest convex set in Euclidian space (denoted
IRm) with n ≤ m, containing n + 1 points v0, . . . , vn that do not lie in a hyperplane
of dimension less than n. As the n-dimensional simplex is defined by n + 1 nodes, it
has the following notation: Sn =< v0, . . . , vn >.

Equivalent conditions to the hyperplane condition would be that the difference vectors
v1 − v0, . . . , vn − v0 are linearly independent or, if one considers v0, . . . , vn as set of
vectors, that these vectors are affinely independent. Figure 4.2 shows simplexes with
dimension n = 0 . . . 3: respectively a node, an edge, a triangle and a tetrahedron.

Figure 4.2: Simplexes with dimension n = 0 . . . 3: node, edge, triangle, tetrahedron
and their ‘orientation’ by (GIS) convention

Some observations on simplexes:

1. It is assumed that all simplexes are ordered. With any n-simplex, (n + 1)!
distinct ordered simplexes are associated. Within GIScience, this ordering can
be used to orient these simplexes according to specific conventions. Orienta-
tion is not a real mathematical characteristic of simplexes, since the concept
of orientation is based on arbitrary conventions; nevertheless it enables useful
operations within a GIS context, for instance in defining inside and outside of
geometries. As a result, one should interpret the term ‘orientation’ within the
scope of this dissertation according to its common meaning within GIScience.
Within this framework, one can say that all even numbers of permutations of
an arbitrary ordered simplex Sn =< v0, . . . , vn > have similar orientation and
all odd numbers of permutations an opposite one. So for instance the following
four statements are true:

54 Chapter 3. Two triangular data models for 3D topography

previous chapter) as data structure due to their strong computational capabilities.
The triangulation and tetrahedronisations can be integrated at a conceptual level, as
both TIN and TEN use nodes, edges and triangles. However, the actual connection at
design and implementation level appeared to be very difficult. Another consequence
of selecting a hybrid 2.5D/3D approach is inconsistent feature modelling: the viaduct
example illustrated that a highway might be modelled sometimes as a volume and
sometimes as a face. This inconsistency is hard to accept.

To overcome these drawbacks, a more rigid approach was designed. The full vol-
umetric approach models everything in a TEN, including air and earth features, thus
explicitly including space that is usually perceived as ‘empty’. Despite its potential
substantial data storage requirements, the full 3D approach is selected as starting
point for further research. The next part of this thesis (part II) will focus on a data
structure, based on this conceptual model. As data storage is often considered to be
a weakness of a TEN data structure (Zlatanova et al. 2004), this part will also focus
on methods to reduce explicit data storage.

60 Chapter 4. Theoretical foundations: Poincaré simplicial homology

S0 = < v0 >

S1 = < v0, v1 >= − < v1, v0 >

S2 = < v0, v1, v2 >= − < v0, v2, v1 >=< v1, v2, v0 >=
− < v1, v0, v2 >=< v2, v0, v1 >= − < v2, v1, v0 >

S3 = < v0, v1, v2, v3 >= − < v0, v1, v3, v2 >=< v0, v3, v1, v2 >=
− < v0, v3, v2, v1 >=< v0, v2, v3, v1 >= − < v0, v2, v1, v3 >=
< v2, v0, v1, v3 >= − < v2, v0, v3, v1 >=< v2, v3, v0, v1 >=
− < v2, v3, v1, v0 >=< v2, v1, v3, v0 >= − < v2, v1, v0, v3 >=
< v1, v2, v0, v3 >= − < v1, v2, v3, v0 >=< v1, v3, v2, v0 >=
− < v1, v3, v0, v2 >=< v1, v0, v3, v2 >= − < v1, v0, v2, v3 >=
< v3, v0, v2, v1 >= − < v3, v0, v1, v2 >=< v3, v1, v0, v2 >=
− < v3, v1, v2, v0 >=< v3, v2, v1, v0 >= − < v3, v2, v0, v1 >

The second line can be read as ‘an edge directed from point v0 to point v1 has
opposite orientation to the edge directed from point v1 to point v0. This charac-
teristic can be used to change simplex orientation by performing a transposition
(a single permutation), thus eliminating the need of using signed simplex de-
scriptions. Section 4.2 will describe simplex orientation in more detail.

2. A face of Sn is a simplex of lower dimension whose nodes form a non-empty
subset of {v0, . . . , vn}. In other words, a simplex consists of simplexes of lower
dimension and these simplexes are defined by some of the points that define the
original simplex. For instance, a tetrahedron S3 =< v0, v1, v2, v3 > consists of
four triangles < v1, v2, v3 >, < v0, v2, v3 >, < v0, v1, v3 > and < v0, v1, v2 >.
The formula to derive these less dimensional boundaries will be given in defini-
tion 2 below.

3. If the subset is proper (i.e. not the whole of {v0, . . . , vn}), than the face is called
a proper face (Giblin 1977).

4. A n-simplex has in total 2(n+1) − 2 proper faces. For instance a triangle has six
proper faces (three edges and three nodes), while a tetrahedron has 14 proper
faces (four triangles, six edges and four nodes).

5. For the number of faces of a specific dimension the following holds: a n-simplex

has

(

n + 1
p + 1

)

faces of dimension p with (0 ≤ p < n). For instance: a tetrahe-

dron consists of four triangles, six edges and four points.

6. The 0- and 1-dimensional faces (i.e. nodes and edges) of a n-simplex form a
complete graph on n + 1 nodes.

7. The boundary of a n-simplex is defined by the following sum of n−1 dimensional
simplexes (Poincaré 1899) (the hat indicates omitting the specific node):

4.2. Orientation of simplexes 61

Definition 2

∂Sn =
n

∑

i=0

(−1)i < v0, . . . , v̂i, . . . , vn >

This results in (see Figure 4.3) the following boundaries (note that only one
transposition of S3 is shown for compactness reasons):

S0 =< v0 > ∂S0 = ∅

S1 =< v0, v1 > ∂S1 =< v1 > − < v0 >

S1 =< v1, v0 > ∂S1 =< v0 > − < v1 >

S2 =< v0, v1, v2 > ∂S2 =< v1, v2 > − < v0, v2 > + < v0, v1 >

S2 =< v0, v2, v1 > ∂S2 =< v2, v1 > − < v0, v1 > + < v0, v2 >

S2 =< v1, v0, v2 > ∂S2 =< v0, v2 > − < v1, v2 > + < v1, v0 >

S2 =< v1, v2, v0 > ∂S2 =< v2, v0 > − < v1, v0 > + < v1, v2 >

S2 =< v2, v0, v1 > ∂S2 =< v0, v1 > − < v2, v1 > + < v2, v0 >

S2 =< v2, v1, v0 > ∂S2 =< v1, v0 > − < v2, v0 > + < v2, v1 >

S3 =< v0, v1, v2, v3 > ∂S3 =< v1, v2, v3 > − < v0, v2, v3 >

+ < v0, v1, v3 > − < v0, v1, v2 >

An interesting case for the boundary operator is i=0. The boundary operator
will result in an empty collection of simplexes. According to Giblin (1977),
such an empty collection is a simplex whose underlying space (the underlying
space (sometimes called the carrier) of a simplicial complex (see section 4.3) is
the union of its simplexes) is empty. This simplex does not have a dimension,
although assigning dimension -1 by convention is popular. Within the scope
of this research, definition 2 will be implemented with the additional condition
n > 0.

It is important to realise that all previous observations are true in any dimension.
As a result, simplicial homology definitions and operations are not only applicable to
2D and 3D modelling, but a simplicial homology-based modelling approach can also
easily be extended into 4D, thus offering a potential foundation for spatio-temporal
modelling. However, this dissertation will focus only on the 3D modelling approach.

4.2 Orientation of simplexes

Observation 1 introduced the concept of ordering of simplexes. Within GIScience, the
concept of orientation is based on conventions about this ordering. For a 3D simplex
(a tetrahedron) orientation is specified by the direction of the normal vectors of the
boundary faces. Normal vectors pointing outwards are denoted positive and normal
vectors pointing inwards negative. The direction of these normal vectors is a direct
result from the orientation of the triangles, as orientation of 2D simplexes (triangles)

62 Chapter 4. Theoretical foundations: Poincaré simplicial homology

Figure 4.3: Simplexes and their boundaries (Hatcher 2002)

is specified by the order, in which edges are travelled (observed from outside the
tetrahedron). By convention counter clockwise orientation is denoted positive (+)
and clockwise orientation negative (−). The normal vector of a triangle is defined
as the dot product of two directed edges of the triangle. For edges, orientation is
specified in terms of direction: an edge from A to B has opposite orientation to an
edge from B to A.

As a simplex Sn is defined by n + 1 nodes, (n + 1)! permutations exist. So, for
an edge two permutations exist, for a triangle six and for a tetrahedron 24. All
even numbers of permutations of an ordered simplex Sn =< v0, . . . , vn > have the
same orientation, all odd numbers of permutations have opposite orientation. So
edge S1 =< v0, v1 > has boundary ∂S1 =< v1 > − < v0 >. The other permutation
S1 = − < v0, v1 >=< v1, v0 > has boundary ∂S1 =< v0 > − < v1 >, which is the
opposite direction. In a similar way the boundaries of the other five permutations
of S2 and the other 23 permutations of S3 can be given. The six permutations
of S2 are illustrated in figure 4.4. It shows that two groups of three permutations
are equivalent to each other, i.e. the three (1st, 3rd, 5th) with positive and the three
(2nd, 4th, 6th) with negative orientation. As a consequence operators like the opposite
of a simplex (the opposite of a simplex is the simplex with identical geometry and
opposite orientation) become very simple: it only requires a transposition.

This flexibility in handling orientations is a convenient characteristic of simplicial
homology, but it brings another favourable characteristic in 3D. S3 has 24 permuta-
tions, 12 with positive and 12 with negative orientation. It holds for all 24 permuta-
tions that the four bounding triangles have consistent orientation; either all normal
vectors of the triangles point inwards or all normal vectors of the triangles point out-
wards. This is of course a desired characteristic and it requires no effort at all; as it
is a direct result from definition 2. Lemma 3 will prove this consistent orientation by
applying the boundary operator twice:

Lemma 3 Since ∂2Sn=0 (‘the boundary of the boundary equals zero’), all boundary

4.3. Combining simplexes: simplicial complexes 63

Six permutations of S2 Orientation Example: < v2, v0, v1 >

< v0, v1, v2 >

< v0, v2, v1 >

< v2, v0, v1 >

< v2, v1, v0 >

< v1, v2, v0 >

< v1, v0, v2 >

+

+

+

−

−

−

v0

v1

v2

+ < v0, v1 >

+ < v2, v0 >

− < v2, v1 >

∂ < v2, v0, v1 >=
+ < v0, v1 > − < v2, v−1 > + < v2, v0 >

Figure 4.4: The six permutations of simplex S2 and their orientation. Permutation
< v2, v0, v1 > is illustrated in more detail

triangles of S3 have the same orientation.

Proof: First the so-called zero homomorphism (∂2=0) needs to be proven when
applied to any oriented n-simplex. Now:

∂2Sn = ∂
∑n

i=0(−1)i < v0, . . . , v̂i, . . . , vn >=

∑n

i=0(−1)i
∑n

j=i+1(−1)j−1 < v0, . . . , v̂i, . . . , v̂j , . . . , vn > +

∑n

i=0(−1)i
∑i−1

j=0(−1)j < v0, . . . , v̂j , . . . , v̂i, . . . , vn >

All terms in this expression cancel in pairs, since each oriented (n − 1)-simplex <

v0, . . . , v̂i, . . . , v̂j , . . . , vn > appears two times, the first time with sign (−1)i+j−1 and
the second time with the opposite sign (−1)i+j .

Now consider ∂2S3. The boundary of a tetrahedron consist of four triangles, and
the boundaries of these triangles consist of edges. Each of the six edges of S3 appears
two times, as each edge bounds two triangles. The zero homomorphism states that
the sum of these edges equals zero. This is the case if and only if the edges in these
six pairs have opposite signs. The edges of two neighbouring triangles have opposite
signs if and only if the triangles have the same orientation, i.e. either both are oriented
inwards or both are oriented outwards. As this is true for each random combination
of two neighbouring triangles, all triangles have consistent orientation. ⊓⊔

4.3 Combining simplexes: simplicial complexes

As most volume features will be represented by more than one tetrahedron (as can
be observed in figure 4.5), operations on sets of simplexes will be useful. A simplicial
complex is such a combinatorial object of a number of simplexes. A formal definition
(Giblin 1977) is given below:

64 Chapter 4. Theoretical foundations: Poincaré simplicial homology

Definition 4 A simplicial complex C is a finite set of connected simplexes that sat-
isfies the following two conditions:

• Any face of a simplex from C is also in C

• The intersection of any two simplexes from C is either empty or is a face for
both of them (note that ‘face’ refers to a face in general dimension, as introduced
in observation 2 in section 4.1)

The dimension of C is the largest dimension of any simplex in C (Giblin 1977). A
simplicial complex is said to be of homogeneous dimension n if all simplexes of lower
dimension than n in C are proper faces (refer to observation 3 in section 4.1) of
n-simplexes in C.

Figure 4.5: Topographic features will be represented by multiple simplexes: simplicial
complexes. In this example a building is represented by eight tetrahedrons

Up to this point only simplexes and simplicial complexes are discussed. A special
case of simplicial complexes in 3D is the Tetrahedronised Irregular Network (TEN).

Definition 5 A Tetrahedronised Irregular Network (TEN) is a simplicial complex of
homogeneous dimension of three that consists of face-connected 3-simplexes, where
face-connected indicates that two 3-simplexes are connected through a shared 2-
simplex.

Although this definition is short it implies several important characteristics:

• There are no self-intersections in the TEN (due to the second condition for
simplicial complexes in definition 4)

• There are no dangling edges or faces in the TEN (as it is of homogeneous
dimension)

• There are no dangling tetrahedrons in the TEN (since these tetrahedrons would
not be face-connected)

In addition to the requirements following from this definition, a TEN is also supposed
to consist of positively oriented 3-simplexes within the scope of this dissertation. As

4.3. Combining simplexes: simplicial complexes 65

a result, two neighbouring tetrahedrons share a triangle from a geometrical point of
view, but due to the positive orientation of both 3-simplexes, the boundary triangles
will have the same geometry, but opposite orientation. Within this dissertation, a
triangle with the same geometry but opposite orientation will be referred to as an
opposite triangle.

Such a structure contains several topological relationships, thus enabling both
topological querying and, perhaps even more important, validation tools in order to
maintain data integrity. These operations will be discussed in section 4.4. Note that
usually many features (each represented by a set of tetrahedrons, i.e. a simplicial
complex) exist within a single TEN. In other words: the complete TEN can be seen
as a simplicial complex of homogeneous dimension, but smaller subsets of the TEN as
well. An interesting application of the boundary operator, as introduced in definition
2, is joining or merging two simplexes of equal dimension into a simplicial complex.
The boundary of this simplicial complex can be derived by adding the boundaries of
the separate simplexes. Since volume features will be represented by 3D simplicial
complexes, this operation will result in the volume feature boundary when applied to
the topographic data model:

Definition 6 The boundary of simplicial complex Cn, consisting of m+1 simplexes
of dimension n (with m>0), is defined as:

Simplicial complex Cn =< Sn0, . . . , Snm > has boundary ∂Cn =

m
∑

i=0

∂Snm

For example, if we join the two neighbouring triangles S20 =< v0, v1, v2 > and S21 =<

v0, v2, v3 > into a 2D complex C2, adding the boundaries result in (see also figure 4.6)
< v1, v2 > + < v0, v1 > + < v2, v3 > − < v0, v3 >.
Note that the shared boundary < v0, v2 > is removed from the boundary description
as it appeared once with positive and once with negative sign. This appearance
with opposite signs relies on the assumption of consequent orientation of simplexes
in the simplicial complexes. As long as this consequent orientation is ensured, the
zero homomorphism (see lemma 3) will also apply to simplicial complexes: ∂2Cn =
∑m

i=0 ∂2Snm = 0.
As stated earlier, joining simplexes into simplicial complexes and deriving its outer

boundary can be very useful in our modelling approach. If for instance a building
is modelled as a set of eight tetrahedrons (see figure 4.7), the building’s boundary
representation can be obtained by merging the boundaries of all eight tetrahedrons.
The 16 triangles of C3 are the boundary triangulation of this building. This boundary
triangulation might be used in the visualisation process. It is already a polyhedron,
but if one is interested in a polyhedron with a minimal number of faces, merging
boundary triangles with identical (within a tolerance) normal vector direction into
flat polygons will result in seven flat boundary faces for this building.

A related concept with respect to topological relationships in a TEN structure is
the coboundary, although its definition is not limited to TENs. Intuitively a cobound-
ary is the opposite of a boundary:

66 Chapter 4. Theoretical foundations: Poincaré simplicial homology

− < v0, v2 >

− < v0, v3 >
+ < v0, v1 >

+ < v1, v2 >

+ < v0, v2 >

+ < v2, v3 >

v0

v1

v2

v3

= (< v1, v2 > − < v0, v2 > + < v0, v1 >)

+(< v2, v3 > − < v0, v3 > + < v0, v2 >)

=< v1, v2 > + < v0, v1 > + < v2, v3 > − < v0, v3 >

∂C2 = ∂S21 + ∂S22

Figure 4.6: Merging two simplexes into one simplicial complex

v0

v1

v2

v3

v4

v5

v6

v7

v8

v9

S31 =< v0, v1, v3, v4 >

S32 =< v1, v2, v3, v6 >

S33 =< v1, v3, v4, v6 >

S34 =< v1, v4, v5, v6 >

S35 =< v3, v4, v6, v7 >

S36 =< v4, v6, v7, v8 >

S37 =< v4, v5, v6, v8 >

S38 =< v5, v6, v8, v9 >

∂S31 =< v1, v3, v4 > − < v0, v3, v4 > + < v0, v1, v4 > − < v0, v1, v3 >

∂S32 =< v2, v3, v6 > − < v1, v3, v6 > + < v1, v2, v6 > − < v1, v2, v3 >

∂S33 =< v3, v4, v6 > − < v1, v4, v6 > + < v1, v3, v6 > − < v1, v3, v4 >

∂S34 =< v4, v5, v6 > − < v1, v5, v6 > + < v1, v4, v6 > − < v1, v4, v5 >

∂S35 =< v4, v6, v7 > − < v3, v6, v7 > + < v3, v4, v7 > − < v3, v4, v6 >

∂S36 =< v6, v7, v8 > − < v4, v7, v8 > + < v4, v6, v8 > − < v4, v6, v7 >

∂S37 =< v5, v6, v8 > − < v4, v6, v8 > + < v4, v5, v8 > − < v4, v5, v6 >

∂S38 =< v6, v8, v9 > − < v5, v8, v9 > + < v5, v6, v9 > − < v5, v6, v8 >

C3 ∂C3 = − < v0, v3, v4 > + < v0, v1, v4 > − < v0, v1, v3 > + < v2, v3, v6 >

+ < v1, v2, v6 > − < v1, v2, v3 > − < v1, v5, v6 > − < v1, v4, v5 >

− < v3, v6, v7 > + < v3, v4, v7 > + < v6, v7, v8 > − < v4, v7, v8 >

+ < v4, v5, v8 > + < v6, v8, v9 > − < v5, v8, v9 > + < v5, v6, v9 >

+

Figure 4.7: Deriving the boundary triangulation from a simplicial complex

4.4. Operations on simplexes and simplicial complexes 67

Definition 7 The coboundary of a n-dimensional simplex Sn is the set of all (n+1)-
dimensional simplexes Sn+1 that are (partially) bounded by Sn, i.e. it is the set of
which the simplex Sn is part of their boundaries ∂Sn+1.

With respect to orientation of simplexes, this definition can be interpreted in a strict
and in a less strict way. For example, if one ignores orientation, a triangle has three
boundary segments (its edges) and two coboundary segments (the adjacent tetra-
hedrons). But if one applies the concept of orientation strict, a triangle has one
coboundary (a tetrahedron), while the second tetrahedron from the previous example
will be the coboundary of this triangles opposite (the triangle with identical geome-
try, but opposite orientation). Note that this is only the case if all tetrahedrons have
similar orientation, i.e. all positive or all negative. If this is not the case, a triangle
might have one (in case of consistent orientation of two neighbouring tetrahedrons) or
two (in case of opposite orientation of two neighbouring tetrahedrons) coboundaries.
Although these examples all deal with triangles, coboundary relationships exist in all
dimensions, so for instance an edge has two boundary segments (its nodes) and (in a
TEN) an unknown number of coboundary segments (adjacent triangles).

4.4 Operations on simplexes and simplicial com-
plexes

In a simplicial complex-based approach, features will be represented by a set of sim-
plexes. As a result, certain operations on features will translate into operations on
simplexes. For instance, a point-in-polyhedron test at feature level will be performed
in the simplicial complex, as all simplexes are convex. Guaranteed convexity will
enable the use of more efficient point-in-polyhedron algorithms.

Another example is the operation to obtain the volume of a building, which will
be performed as the sum of the volume calculations of the individual tetrahedrons.
The Cayley-Menger determinant (Colins, K.D. 2003) is a determinant that gives the
volume of a n-simplex in m-dimensional space. With simplex Sn =< v0, . . . , vn > the
(n + 1) × (n + 1) matrix B = (βij) is given by βij = |vi − vj |

2, i.e. a symmetrical

matrix with the squares of the lengths of the tetrahedron’s edges. Matrix B̂ is the
(n + 2) × (n + 2) matrix obtained by bordering matrix B with a top row (0, 1, . . . , 1)
and a left column (0, 1, . . . , 1)T .

Definition 8 The volume V of a simplex Sn is given by:

V 2(Sn) =
(−1)n+1

2n(n!)2
det(B̂)

Since matrix B̂ consists of distances between nodes instead of node coordinates, the
formula is dimension independent, meaning that it will produce the volume of a n-
simplex, irrespective of the dimension of the space in which Sn is located. Note that

68 Chapter 4. Theoretical foundations: Poincaré simplicial homology

matrix B̂ is symmetrical! For n = 2 (a triangle) and n = 3 (a tetrahedron) this results
in (with dij as length of edge < vi, vj >):

n = 2 : −16V 2 =

∣

∣

∣

∣

∣

∣

∣

∣

0 1 1 1
1 0 d2

01 d2
02

1 d2
10 0 d2

12

1 d2
20 d2

21 0

∣

∣

∣

∣

∣

∣

∣

∣

n = 3 : 288V 2 =

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

0 1 1 1 1
1 0 d2

01 d2
02 d2

03

1 d2
10 0 d2

12 d2
13

1 d2
20 d2

21 0 d2
23

1 d2
30 d2

31 d2
32 0

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

Simplexes offer not only support for calculations, but also for more complex spatial
operations like buffer (de Vries 2001) and overlay (van der Most 2004). Verbree et al.
(2005) describe the possibilities of executing these classic GIS operators on tetra-
hedrons. Validation is another operation that can be performed on both simplexes
and features. At simplicial complex level the validation of a TEN can performed by
applying the Euler-Poincaré formula: N − E + F − V = 0 with N the number of
nodes, E the number of edges, F the number of faces and V the number of volumes
(including the exterior). This formula holds not only in three dimensions, but can be
generalised into general dimension:

n
∑

i=0

(−1)i−1Ni−1 = 1 − (−1)i

with Ni the number of i-dimensional simplexes and n the dimension of the simplicial
complex plus one. Note that Nn−1 includes the exterior space! In this formula, n

equals the number of different simplex types, as for instance in a 3D simplicial complex
four simplex types occur: 0-simplexes, 1-simplexes, 2-simplexes and 3-simplexes. This
formula leads to the following dimension-specific formulas for the 0D-3D cases:

i = 1 N0 = 2
i = 2 N0 − N1 = 0
i = 3 N0 − N1 + N2 = 2
i = 4 N0 − N1 + N2 − N3 = 0

As illustrated in figure 4.8 with a 2D and a 3D example, the Euler-Poincaré formula
holds for simplicial complexes in general and not only for simplicial complexes of
homogeneous dimension. As a result, dangling edges and faces cannot be detected
with this formula. Combining simplex validation results leads to validation on feature
level. If one is interested in validating a volume feature, three checks need to be
performed:

1. A valid TEN is required, so all criteria implied by definition 5 need to be met
and the tetrahedrons should have consequent positive orientation.

4.4. Operations on simplexes and simplicial complexes 69

2D: n − e + f = 2 3D: n − e + f − v = 0

(12 − 21 + 11 = 2)

(13 − 22 + 11 = 2)

(5 − 9 + 7 − 3 = 0)

(7 − 12 + 8 − 3 = 0)

Figure 4.8: The Euler-Poincaré formula holds for all simplicial complexes; it does
not require homogeneous dimension. As a result, dangling edges and faces cannot be
detected with this formula

2. The boundary of the volume feature (represented by a set of constraints) should
be watertight.

3. The interior of the volume feature is face connected, thus preventing the creation
of two separate volumes that are either disjoint or touch only on edge or node
level.

This support for validation of 3D features is an important characteristic of a simplicial
complex-based approach, since it simplifies validation significantly, compared to the
validation of polyhedrons as described by Kazar et al. (2008).

Chapter 5

A Simplicial Complex-based
Solution for 3D topography

With the introduction of the simplicial complex-based data structure, this chapter
gets down to the very core of the research. Previously the problem field of 3D topo-
graphy was introduced and requirements for both data model and data structure
were derived. At a conceptual level it was decided to model the real world with a
full 3D approach. A solid foundation for working with simplexes was found in the
mathematical field of simplicial homology. This chapter will present a data structure
that takes maximal advantage of the possibilities of simplicial homology, in order to
represent the 3D data model such that it meets the requirements derived earlier.

Although the actual insertion of topographic features in the data structure will
be the subject of the next chapter, section 5.1 will present the representation of
topographic features in the TEN, since this will provide more insight in the presented
data structure. In contrast to what one might expect, TEN structures can be applied
and implemented in multiple ways. Section 5.2 will present three different conceptual
models of a TEN data structure. The third version is based on simplicial homology
as introduced in the previous chapter and will be discussed in more detail in section
5.3. This chapter ends in section 5.4 with the actual proof-of-concept implementation
as this will demonstrate the synergy between the simplicial homology-based approach
and a DBMS implementation.

5.1 Representing topographic features in a TEN

The most important question is how topographic features are represented within the
TEN. The UML class diagrams presented in chapter 3 and the updated versions that
will be presented in the next section, illustrate the use of constrained edges and trian-
gles to ensure the presence of the feature boundaries in a constrained tetrahedronised
irregular network. Section 2.5.1 showed that in the 2D case (a TIN) constrained edges
are used to guarantee that polygon boundaries remain present, regardless of other
point insertion or edge update operations. In the current 3D case one would like to

72 Chapter 5. A simplicial complex-based solution for 3D topography

Figure 5.1: Input data (top), the resulting tetrahedronisation (mid) and as output the
constrained triangles (i.e. the feature boundaries)(bottom)

ensure the presence of boundary faces (section 2.5.3), as they bound the volume fea-
tures, but unfortunately 3D algorithms still work with constrained edges (Shewchuk
2004). As a result using constraints requires a two-step approach: first one needs
to ensure the presence of all constrained edges, second one needs to check whether
the required constrained faces are present (i.e. whether they are intersected by other
edges) and if necessary, to alter the TEN configuration such that the required faces
are present. To further illustrate the concept of representing features in a TEN, the
following four steps are required to insert a volume feature in a TEN (Penninga and
van Oosterom 2006b):

1. Its outer boundary needs to be triangulated and all resulting edges (and faces)
should be treated as constraints

2. The interior needs to be tetrahedronised. This tetrahedronisation can be per-
formed either directly in the complete TEN or separately, after which all re-
sulting edges can be inserted into the TEN. Input in both cases is the set of
constraint edges of the outer boundary

3. Regardless which of the two previous options is used in the previous step, lo-
cal re-tetrahedronisation might be necessary in order to optimise the structure

5.2. Early ideas: three TEN-based data structures for the full 3D approach 73

by creating better-shaped tetrahedrons. Note that constrained edges and con-
strained triangles will be preserved in this process

4. Updating the relevant feature table(s)

The next chapter will elaborate on update operations in the newly proposed data
structure. To illustrate the different steps in the described insertion operation, figure
5.1 shows the input data set, which contains all feature boundaries, the constrained
tetrahedronisation and the resulting model (where only feature boundaries are drawn).

5.2 Early ideas: three TEN-based data structures
for the full 3D approach

Chapter 3 ended with the selection of a full 3D conceptual data model: all topographic
features are considered to be volume features. In this chapter an accompanying data
structure will be presented. Three different conceptual models (UML class diagrams)
have been created and previously published in (Penninga et al. 2006). All three
conceptual models are somewhat similar as they all capture the TEN structure and
the embedded features. However, there are already some remarkable differences in
these conceptual models. At implementation level the impact of these differences can
result in substantial differences in for instance storage requirements and performance.
These three models can be seen as successors to the original conceptual model of the
feature-based TIN/TEN approach as depicted in figure 3.2:

• The first one is given in figure 5.2. VolumeFeatures are represented by a set of
Tetrahedrons, AreaFeatures by a set of Triangles and so on. A Tetrahedron is
specified by (through the SpecifiedBy association) its four bounding Triangles,
a Triangle by its three bounding Edges and an Edge by its two bounding nodes.
These associations are bidirectional, thus specifying both the boundaries and
the coboundaries of a primitive. All primitives are now directed (positive by
convention) and the boundary/coboundary associations are signed. In the UML
class diagram this is indicated by the association class Orientation. An efficient
implementation of this model will not explicitly include the association class
Orientation, but will use signed (+/-) references to encode the orientation. The
association between Tetrahedron (or Triangle) and Node can be derived (and
gives a correct ordering of the nodes within the primitive). Deriving these
nodes is necessary to construct the geometry of a primitive, since geometry is
only stored at node level to avoid redundant storage. Redundancy is avoided
both to save storage space and to eliminate possible data inconsistencies.

• The second model (figure 5.3) is derived from the first model, but this model dif-
ferentiates between undirected primitives (useful for reconstructing geometries)
and directed primitives (useful for using topology). An undirectedTetrahedron
is bounded by four directed Triangles, an undirectedTriangle by three directed
Edges and so on. An undirected primitive is composed of a primitive with pos-
itive and one with negative orientation. Although this conceptual model may

74 Chapter 5. A simplicial complex-based solution for 3D topography

Figure 5.2: First conceptual model of the feature-based TEN approach

5.3. Preferred solution: applying simplicial homology to the TEN 75

suggest that both positive and negative versions of the directed primitives are
stored, this is not the case in the envisaged implementation: only positively
oriented primitives are stored. Similar to the first model (but not depicted in
figure 5.3 for clarity reasons), the association between Tetrahedron (or Triangle)
and Node can be derived in order to reconstruct geometry and is also ordered.

• Finally, the third model (figure 5.4) is based on definitions and operators from
Poincaré simplicial homology, as described in detail in the previous chapter.
In simplicial homology simplexes are defined by their vertices. Associations
between other simplexes (the boundary/coboundary associations), for instance
between Tetrahedrons and Triangles, can be derived by applying the boundary
operator and as a result, even Triangles and Edges may be derived. Therefore,
triangle and edge data might not be explicitly stored at all, but only derived
when needed. The ordering of the nodes to define the primitives is very impor-
tant as it determines the orientation.

Penninga et al. (2006) observe that this last model will be the least redundant with
respect to references. Nevertheless, the preliminary implementation as described in
their paper is not yet based at the third model, but describes a preliminary version
with all elements explicitly stored. In contrast to this, the remaining part of this
dissertation will be based on the third model. Therefore the next section will elaborate
on this model.

5.3 Preferred solution: applying simplicial homol-
ogy to the TEN

As shown in the previous chapter, simplicial homology offers a solid theoretical foun-
dation for working with simplexes. Applying this mathematical theory to the TEN
approach resulted in a new conceptual model (figure 5.4). Benefits of applying sim-
plicial homology are not limited to providing a sound mathematical base for a data
model. It will enable data storage reduction, especially in a DBMS context, as it
eliminates explicit storage of both boundary/coboundary associations and some of
the simplex types, as these can be derived as well.

5.3.1 A DBMS-based approach for 3D Topography

Due to the utilisation of Poincaré simplicial homology in the TEN structure, substan-
tial parts of the structure can be derived. Explicit storage of tetrahedrons is required,
while other data like simplexes of lower dimension and topological relationships can
be derived. In a DBMS environment this would translate into storing tetrahedrons
in a table, while functions like the boundary operator are used to define views with
triangles, edges and nodes. By doing so, the data structure still appears to be a TEN
with all 0-, 1-, 2- and 3-simplexes at conceptual level, although only tetrahedrons are
stored explicitly.

76 Chapter 5. A simplicial complex-based solution for 3D topography

Figure 5.3: Second conceptual model of the feature-based TEN approach

5.3. Preferred solution: applying simplicial homology to the TEN 77

Figure 5.4: Third conceptual model of the feature-based TEN approach, based on sim-
plicial homology

78 Chapter 5. A simplicial complex-based solution for 3D topography

As stated earlier in chapter 2, features can be stored in TENs by insertion of
constraints. These constraints on edges and triangles ensure the presence of feature
boundaries in the TEN structure, i.e. these elements can not be deleted during retri-
angulation or update processes. Obviously explicit storage of these constraints (the
triangulated feature boundaries) needs to be avoided, as it would introduce a separate
polyhedron-like data storage besides the TEN structure. Section 5.4 will introduce a
technique which enables deriving the constrained triangles and edges. As a result the
DBMS data structure consists of a single (tetrahedron) table and several views (see
figure 5.5). In terms of explicit storage this means that the presented TEN approach

Figure 5.5: Logical model fitting with the conceptual model from figure 5.4

is relatively compact. Consider the case of the building in figure 5.6. In a polyhedron
approach it would be described by its seven faces. Implicitly these seven faces also

5.3. Preferred solution: applying simplicial homology to the TEN 79

define the enclosed volume and the edges and nodes. In a classic TEN approach the
same building would require a lot more components, as both tetrahedrons, triangles,
edges and nodes would be stored. However, in the TEN approach presented in this
dissertation, only eight tetrahedrons are stored explicitly. As a result, a comparison
like the one in section 3.2.3 can be made. Based on such a comparison (see table
5.3.1), one might expect storage requirements to be in the same order of magnitude
as a polyhedron approach since the amount of stored primitives is in the same order
of magnitude.

Building as Building as Building as
polyhedron explicit TEN new TEN
(1 volume) 8 tetrahedrons 8 tetrahedrons

7 faces 24 triangles (24 triangles)
(15 edges) 25 edges (25 edges)
10 points 10 nodes (10 nodes)

Table 5.1: Extending table 3.1: Intuitive comparison of storage requirements of the
polyhedron, explicit TEN and new TEN approach for the building in figure 4.7. The
brackets indicate implicit presence (as opposite of explicit storage). It appears that
the polyhedron and new TEN approach do not differ much.

Notwithstanding the fact that compactness is one of our goals, our approach still
contains some redundancy as the coordinates of a vertex will be encoded in several
tetrahedron codes (the implementation of the simplex notation from simplicial homol-
ogy: S3 =< v0, v1, v2, v3 >. However, the delicate balance between compactness and
manageability needs fine-tuning. Compactness is not the only advantage of deriving
substantial parts of the structure. Another favourable characteristic is that updates
are relatively easy, as only the tetrahedron table needs to be updated. Any changes
in less dimensional simplexes or topological relationships are derived automatically.
Especially these automatic updates in the topological relationships are a significant
advantage, as it implies that one can benefit from the presence of topology without
the need to maintain it. The availability (in views) of for instance neighbour relation-
ships between tetrahedrons or the relationship between triangles and the tetrahedrons
they are part of, enables the user to use these topological relationships as if they were
stored explicitly.

5.3.2 Two variants in simplex encoding

In the Poincaré-TEN approach to 3D topographic data modelling, simplexes are de-
fined by their vertices. Identical to the simplex notation from simplicial homology,
where for instance a tetrahedron is denoted as S3 =< v0, v1, v2, v3 >, simplex iden-
tifiers are constructed by concatenating the vertex identifiers. By doing so, unique
identifiers exist that contain orientation information as well, since the order of vertices
determines the orientation. Two different approaches can be distinguished:

80 Chapter 5. A simplicial complex-based solution for 3D topography

• The coordinate concatenation (Penninga and van Oosterom 2007) uses the con-
catenation of the x, y and z coordinate as node ID. Since geometry is the only
attribute of a vertex, adding a unique identifier to each point and building an
index on top of this table will cause a substantial increase in data storage. The
geometry in itself will be a unique identifier. Concatenating the coordinate
triplets into one long identifier code (by bitwise interleaving, a Morton code-
like approach, see section 7.6.1 for more details) and sorting the resulting list,
will result in a basic clustering and indexing. These promising ideas will be
described in more detail in section 7.6.1. In a way, this approach can be seen
as building and storing an index, while the original table is deleted. As a result
this approach minimises the number of references in the data structure.

(0,3,11)
(0,6,8)

(10,6,8)

(10,3,11)

(10,6,0)

(10,0,0)

(10,0,8)

(0,0,8)

(0,0,0)

(0,6,0)

000000000008000600100000

000008000311000608100608

000008000311000008100608

000600000008000608100608

000008000600100000100608

000008100000100008100608

000311100008100311100608

100000000600100600100608

Figure 5.6: Describing tetrahedrons by their encoded vertices. The shaded tetrahedron
is described by the last row

Figure 5.6 illustrates the coordinate concatenation. A house is tetrahedronised
and the resulting tetrahedrons are coded as concatenation of their four ver-
tices’ coordinates. Each row in the tetrahedron encoding can be interpreted
as x1y1z1x2y2z2x3y3z3x4y4z4. For reasons of simplicity, only two positions are
used for each coordinate element. Therefore the last row should be interpret as
the tetrahedron defined by the vertices (10, 00, 00), (00, 06, 00), (10, 06, 00) and
(10, 06, 08), which is the grey coloured tetrahedron at the bottom right of the
house.

• The identifier concatenation (Penninga and van Oosterom 2008b) is an alterna-
tive approach, developed after questioning whether the coordinate concatena-
tion approach is really reducing storage requirements. Since each node is part of
multiple tetrahedrons (the Rotterdam test data set described in (Penninga and
van Oosterom 2008b) and in chapter 7 shows an average of about fifteen tetra-
hedrons per node), the concatenated coordinate triplet is used multiple times.
As long as a node identifier requires considerably less storage space compared
to this concatenated geometry, switching to a identifier concatenation approach
might be feasible. An additional node table containing a node identifier is re-

5.4. Implementing the data structure in a DBMS environment 81

quired to create shorter simplex codes like nid1nid2nid3nid4.

However, reducing data storage might deteriorate performance, as additional op-
erations are necessary to perform geometrical operations on top of simplexes. If one
thinks for instance of the operation that checks whether a tetrahedrons is oriented
positively or negatively, one needs the node coordinates to calculate a normal vector
on one of the triangles and calculate the angle between this normal vector and a
vector from the triangle to the opposite, fourth node to determine whether the nor-
mal points inwards or outwards. To perform this operation in the tetrahedron-node
implementation, one has to search the node table first to obtain the node geometries.
Another drawback is that applying spatial clustering and indexing based on these
concatenations is not that easy anymore and as a result, an explicit R-tree might
be needed. Storing this additional index might even undo the intended data storage
reduction.

5.4 Implementing the data structure in a DBMS
environment

5.4.1 Creating the data structure

The described implementation here uses coordinate concatenation and, as a result,
only a single table is used (see figure 5.5). The data structure is implemented within
the Oracle DBMS and this section will show SQL and PL/SQL code examples. The
appendices I and II provide more details on respectively the functions and procedures
and the creation of the data structure. Although this implementation uses the Oracle
DBMS, all ideas can be implemented in other DBMSs as well.

In the coordinate concatenation implementation, the tetrahedron table is the base
table. It consists of a single column in which the encoded tetrahedrons are described in
the form x1y1z1x2y2z2x3y3z3x4y4z4oid. Note that –besides the concatenation of the
four encoded vertices– also an unique object identifier is added, which describes which
volume object is (partly) represented by the tetrahedron: S3 =< v0, v1, v2, v3, oid >.

create table tetrahedron(tetcode NVARCHAR2(300));

The previous chapter showed that internal boundaries in a simplicial complex cancel
out in pairs due to their appearance with opposite signs. However, since a tetrahe-
dron is described by its four vertices, there are 4! (equals 24) permutations of this
single tetrahedron. To gain control over which permutation is used, the procedure
sortalltet rewrites each tetrahedron < a, b, c, d, oid > such that a < b < c < d

holds, which is an arbitrary criterion. For two nodes a and b a < b holds if xa < xb.
In case of equal x-coordinates the additional criterion ya < yb will be used. In case
both x- and y-coordinates are equal, za < zb will be the decisive criterion. As each
node in a TEN is unique, these z-coordinates will differ.

Another convention is that each tetrahedron in the tetrahedron table has positive
orientation, i.e. all normal vectors of the bounding triangles are oriented outwards.

82 Chapter 5. A simplicial complex-based solution for 3D topography

The procedure outwardsalltet ensures that the tetrahedrons meet this criterion.
In the checkorientation procedure each tetrahedron’s orientation is checked, as it
compares the direction of the normal vector of one of the boundary triangles with a
vector from this triangle to the fourth (opposite) point of the tetrahedron. In case of
an inward orientation a transposition is carried out by the procedure permutation34,
which permutes the third and fourth vertex: permutation34(− < v0, v1, v2, v3, oid >)
results in < v0, v1, v3, v2, oid >. The ordering now meets the criterion a < b < d < c.

create or replace procedure outwardsalltet

(...)

checkorientation(tetcode,bool);

if (bool = 0) then

permutation34(tetcode,newtetcode);

update tetrahedron set tetcode=newtetcode

where current of tetcur;

(...)

The overall result of sorting and orienting all tetrahedrons as described, is that each
tetrahedron will be described with its smallest positive tetrahedron code. This is
a unique identifier indicating which of the 24 permutations will be used. Storing
tetrahedrons according to these rules, ensures that benefits from simplicial homology
are maximised.

Based on the encoded tetrahedrons, the boundary triangles can be derived by
applying the boundary operator from definition 2 in section 4.1. The procedure to
derive the four boundary triangles of a tetrahedron looks like (for reasons of clarity,
this code is simplified, but the full code is in appendix I):

create or replace procedure deriveboundarytriangles(

(...)

is

node_array narray := narray();

begin

Split(tetcode,’x’,node_array);

a := node_array(1)||node_array(2)||node_array(3);

b := node_array(4)||node_array(5)||node_array(6);

c := node_array(7)||node_array(8)||node_array(9);

d := node_array(10)||node_array(11)||node_array(12);

oid := node_array(13);

ordertriangle(codelength,’+’||b||c||d||oid, tricode1);

ordertriangle(codelength,’-’||a||c||d||oid, tricode2);

ordertriangle(codelength,’+’||a||b||d||oid, tricode3);

ordertriangle(codelength,’-’||a||b||c||oid, tricode4);

(...)

Note that the triangles inherit the object id from the tetrahedron, i.e. each triangle has
a reference to the object which is represented by the tetrahedron of which the triangle

5.4. Implementing the data structure in a DBMS environment 83

is a boundary. In order words, the boundary operator (see definition 2 in section 4.1)
is slightly altered to derive the boundary triangles from S3 =< v0, v1, v2, v3, oid >:

∂S3 =

3
∑

i=0

(−1)i < v0, . . . , v̂i, . . . , v3, oid >

It can also be seen that each boundary triangle is ordered by the ordertriangle

procedure. The objective of this procedure is to gain control over which permutation
is used. A triangle has six (3!) permutations, but it is important that both in positive
and negative orientation the same permutation is used, as they will not cancel out
in pairs otherwise (as described in section 4.3 on simplicial complexes). The proce-
dure ordertriangle rewrites a triangle < a, b, c, oid > such that a < b < c holds
(similar to the ordertetrahedron procedure described before), which is again an ar-
bitrary criterion. For example: ordertriangle(+014035012022035012014035018003)
results in -014035012014035018022035012003, as its input (+ 014035012 022035012
014035018 003) does not satisfy the criterion a < b < c, so the second and third term
are permutated and the odd permutation causes a sign change. One might expect
that this ordering of triangles is not necessary due to the tetrahedron ordering, as
performed earlier. However, this is not the case, as the need for consequent orien-
tation (all tetrahedrons have positive orientation) causes tetrahedron codes that are
not strictly ordered anymore due to the permutation.

Slightly altered versions of the deriveboundarytriangles procedure are used to
create the triangle view. The modified procedures separately derive respectively the
first, second, third and fourth boundary triangle of a tetrahedron. The resulting
view contains all triangles and their coboundaries (see definition 7). In this case, the
coboundary is the tetrahedron of which the triangle is part of the boundary. This
coboundary will prove useful in deriving topological relationships later in this section.
The view is defined as:

create or replace view triangle as

select deriveboundarytriangle1(tetcode) tricode,

tetcode fromtetcode from tetrahedron

UNION ALL

select deriveboundarytriangle2(tetcode) tricode,

tetcode fromtetcode from tetrahedron

UNION ALL

select deriveboundarytriangle3(tetcode) tricode,

tetcode fromtetcode from tetrahedron

UNION ALL

select deriveboundarytriangle4(tetcode) tricode,

tetcode fromtetcode from tetrahedron;

The resulting view will contain four times the number of tetrahedrons, and every
triangle (except for triangles on the outer boundary of the tetrahedronisation) ap-
pears two times: once with positive and once with sign negative sign (and not in
a permutated form, due to the ordertriangle procedure). Although each signed

84 Chapter 5. A simplicial complex-based solution for 3D topography

triangle should be unique, the union all statement is used to enable detection of
non-uniqueness.

In a similar way the views with edges and nodes can be constructed. In the current
implementation edges are undirected and do not inherit object id’s, as no application
for this is identified at the moment. However, strict application of the boundary
operator would result in directed triangles. The edge and node views are defined as:

create or replace view edge as

select distinct deriveabsboundaryedge1(tricode) edcode

from triangle

UNION

select distinct deriveabsboundaryedge2(tricode) edcode

from triangle

UNION

select distinct deriveabsboundaryedge3(tricode) edcode

from triangle;

create or replace view node as

select distinct deriveboundarynode1(edcode) nodecode

from edge

UNION

select distinct deriveboundarynode2(edcode) nodecode

from edge;

In contrast with the triangle view creation, these create statements use select

distinct and union statements, whereas the triangle view was created by a combi-
nation of a select and union all statements. This difference results from the fact
that each signed triangle should be unique, whereas an unsigned edge will bound sev-
eral triangles. Since one cannot predict whether these multiple occurrences happen
within the select statement or within the union statement, both operations need to
filter out these multiple occurrences.

With the tetrahedron table and triangle, edge and node views the data structure
is accessible at different levels. Another characteristic of this approach is that both
geometry and topology are present at every level, so one can determine for each
operation whether a geometrical (i.e. using the simplex coordinates) or a topological
(i.e. using references to boundaries, see section 5.4.3 for more details) approach is the
most appropriate.

5.4.2 Deriving constraints (i.e. feature boundaries)

As mentioned at the end of section 5.1, features in the model are represented by a set
of tetrahedrons. To ensure that these tetrahedrons represent the correct geometry,
the outer boundary is triangulated and these triangles are used as constraints. This
implies that these triangles will remain present as long as the feature is part of the
model (i.e. they are not deleted in an update or quality improvement process). To
achieve this, the incremental tetrahedronisation algorithm needs to keep track of these

5.4. Implementing the data structure in a DBMS environment 85

constrained triangles. Obviously, explicit storage of constraints has to be avoided, as
this would lead to double storage of features. Due to the inherited object identifiers,
these constraints can be derived as well:

create or replace view constrainedtriangle as

select t1.tricode tricode from triangle t1

where not exists (select t2.tricode from triangle t2

where t1.tricode = t2.tricode*-1);

This statement uses the characteristic that although every triangle (in a geometric
sense) appears twice (with opposite orientation) in the triangle view, not every triangle
code appears twice. Boundary triangles are unpaired, since in this case the triangle
code will differ due to the different inherited object ids. In case of internal triangles
(i.e. within an object) the triangle and its opposite (as introduced in section 4.3)
will have (apart form the sign) the exact same triangle code (geometry + object id).
Deriving constrained edges from constrained triangles is easy, as all boundary edges
from constrained triangles are constrained edges.

5.4.3 Deriving topological relationships

In a TEN the number of possible topological relationships between simplexes is lim-
ited. As the TEN can be considered as a decomposition of space, relationships like
overlap, cover or inside do not occur. Only relationships based on the interaction be-
tween tetrahedron boundaries occur. Tetrahedrons (and their boundaries) are either
disjoint or touch. Three different types of the topological relationship touch can be
distinguished:

• neighbouring tetrahedrons touch in only one node

• neighbouring tetrahedrons touch in only one edge

• neighbouring tetrahedrons touch in one triangle

The third case is the definition of a true neighbour relation between two tetrahedrons.
The other two cases are less important. As the neighbour relation is very important
in certain operations and algorithms, two related relationships are derived in views in
the implementation. The first is the relationship between a triangle and its opposite.
This relationship is important in the process of finding neighbours from tetrahedrons.
In this context, one can consider a triangle and its opposite as halftriangles, analo-
gous to halfedges (Mäntylä 1988). Obviously triangles at the outer boundary of the
tetrahedronisation will not have an opposite triangle. The view is created by a select
statement that uses the identical geometric part of the triangle codes:

create or replace view oppositetriangle as

select t1.tricode tricode, t2.tricode oppositetricode

from triangle t1, triangle t2

where removeobjectid(t2.tricode) =

-1 *removeobjectid(t1.tricode);

86 Chapter 5. A simplicial complex-based solution for 3D topography

By combining the triangle view and the oppositetriangle view, neighbouring tetrahe-
drons can be found:

create or replace function getneighbourtet1(

(...)

select fromtetcode into neighbourtet from triangle

where removeobjectid(tricode) = -1 *removeobjectid(tricode);

(...)

and based on functions like this one the view with tetrahedrons and their neighbours
can be created. Analogue to this approach topological relationships at feature level
can be derived.

5.5 Summary

This chapter introduced the simplicial complex-based solution for 3D topography.
Simplicial homology, as introduced in chapter 4, was applied to the full 3D data
model, as selected in chapter 3. The resulting simplicial complex-based data struc-
ture requires only explicit storage of tetrahedrons, while simplexes of lower dimensions
(triangles, edges, nodes), constraints and topological relationships can be derived in
views. The next chapter demonstrates the capabilities for updating of the simpli-
cial complex-based data structure, which is an important prerequisite for the data
structure to be feasible for 3D topography.

Chapter 6

Updating features in
the Data Structure

The previous chapter focussed on the simplicial complex-based data model and its
implementation within a database management system. Applying definitions and op-
erators from the mathematical field of simplicial homology helped creating a compact
data structure with a minimal amount of redundancy. This result is the desired solu-
tion for the first important criterion of 3D topographic data (as introduced in section
2.3.2): switching from 2D to 3D representations of topographic features will lead to
a substantial increase in data volume and thus, the new data structure has to reduce
this volume as much as possible, without compromising the benefits of using a TEN
structure. However, section 2.3.2 also introduced a second important characteristic:
topographic data sets will be updated on a regular basis. Topographic features like
buildings and roads can be build, extended, demolished and sometimes even moved,
thus resulting in the need for updates in the data set. This chapter focuses on the
operators that are required to perform these updates. Two basic operators can be
distinguished: the insertion of features and the deletion of features (as moving fea-
tures can be seen as a combination of deletion and insertion). Since the modelling
approach assumes a full space partition, inserting a feature automatically includes
either feature deletion or feature resizing to make room for the new feature. The
same holds for feature deletion: the space previously occupied by the deleted feature
has to be assigned to another feature.

The emphasis of this chapter is on incremental updates, since repeated rebuilds
of the TEN structure will be time-consuming due to the expected data volume. Be-
sides that, topographic data sets cover a large area and since local changes will (most
likely) cause only local alterations, full rebuilds will be superfluous. Section 6.1 fo-
cuses on the different steps in the process of feature insertion. Its reverse operator,
feature deletion, is described afterwards in section 6.2. Since the described insertion
and deletion operators are designed to act as locally as possible, one cannot always
guarantee optimal TEN quality (which would have been the case if refined Delaunay
tetrahedronisations were used, section 2.5.3). Therefore a set of quality update op-
erations is suggested in section 6.3, which can be used on a regular basis to ensure

88 Chapter 6. Updating features in the Data Structure

well-shaped (i.e. no small angles, thus avoiding numerical instability) tetrahedrons
and acceptable data volume. Although most updates will be handled incrementally,
bulk loading of data is still useful, both for initial creation of a topographic data
set and for quality improvement by TEN optimisation during a periodical rebuild.
Therefore section 6.4 will elaborate on bulk loading of features.

6.1 Incremental update: feature insertion∗

The previous chapter started (in section 5.1) with describing feature representation
in the TEN data structure. The presence of feature boundaries in the TEN is ensured
by inserting them as constraints. The overall incremental feature insertion procedure
can be subdivided into four steps:

1. Triangulating feature boundaries

2. Inserting constrained edges

3. Ensuring presence of constrained faces

4. Modelling feature interiors

This section describes each step into more detail.

6.1.1 Motivation

This section (more specifically, section 6.1.3) will introduce the feature insertion pro-
cess, including a new approach for the insertion of constrained edges in a constrained
TEN. Alternative approaches do not directly insert the constrained edge, but insert
only the nodes and try to perform edge recovery. The process of recovering missing
edges is described by Cavalcanti and Mello (1999) and covers stitching, a process that
is based on adding nodes on midpoints of missing constrained edges. This idea uses
the property of the Delaunay triangulation that each node is connected to the closest
node and by adding nodes on midpoints one tries to make these additional nodes the
closest nodes. Shewchuk (1997b) also uses this approach. However, Cavalcanti and
Mello (1999) state that this process does not always converge, neither in 2D nor in
3D. As a result, no proofs are known to the author that edge recovery will always be
successful.

Another approach to edge recovery is given by Liu and Baida (2000), whose ap-
proach is based on flipping. They use four types of flipping, namely T23, T32, T22

and T44, following the notation of Joe (Joe (1995)). These flips were previously
discussed in chapter 2 and illustrated in figure 2.26. Although these operators are
relatively simple, the overall process might require a lot of time before all edges will be
present and no guarantees that the process will be successful, are known to the author.

∗This section is partially based on Penninga and van Oosterom (2006b) and the accompanying
Technical Report (Penninga and van Oosterom 2006a)

6.1. Incremental update: feature insertion 89

In order to demonstrate the usability of the simplicial complex-based approach for
3D topographic purposes, one need to guarantee successful update operations, since
the frequent updates are a key characteristic of topography. Therefore the described
approach might not excel in terms of a minimised increase in TEN elements, optimal
shapes of the resulting tetrahedrons or speed of the update, but this approach will
provide an alternative method in cases in which edge recovery fails. As a result, it
guarantees the success of feature updates.

6.1.2 Step 1. Feature boundary triangulation: calculating
constraints

If one wants to insert a volume feature, for instance a building, one needs to ensure
correct geometrical representation in the TEN by enforcing the boundary triangles
to be present in the structure. This is not trivial, as the basic input of either tri-
angulation or tetrahedronisation algorithms is a set of nodes. Usually the algorithm
determines –based on certain rules (for instance the well-known Delaunay criterion)–
which nodes will be connected by edges and therefore one cannot be sure that two
specific nodes will be connected by an edge or that three specific nodes will form a
triangle. As a result one cannot represent a specific shape into either a triangulation
or a tetrahedronisation by inserting only its nodes. To overcome this drawback con-
strained edges were introduced. The constraints on these edges safeguard these edges
from being removed by the algorithm in order to meet certain criteria, like the Delau-
nay criterion or other quality parameters. To insert a feature into the TEN structure,
first its boundary has to be triangulated. The resulting triangulation delivers two
input sets for the subsequent steps of the feature insertion procedure. First the re-
sulting edges will serve as input set of constrained edges in the TEN structure. Since
insertion of these edges will prove insufficient to guarantee presence of the feature
boundary in the TEN, the triangles from the boundary triangulation are important
input for step 3 of the procedure.

6.1.3 Step 2. Inserting constrained edges: nine unique cases

As seen in the previous section, the complete boundary of the volume feature needs
to be inserted into the TEN structure. This boundary is translated into a set of
constrained edges and these edges need to be inserted. Edge insertion operators are
more complex than just repeating a node insertion operator twice, as one also needs
to ensure that these start and end node are connected by an edge. First the node
insertion operators will be introduced, followed by the more complex edge insertion
operators.

The following annotations will be used to distinguish the operators: In for node
insertion, with n = 0 . . . 3, indicating whether the newly inserted node lies on an
existing node (n = 0) or in the interior of an edge (n = 1), triangle (n = 2) or
tetrahedron (n = 3). In other words, n equals the dimension of the simplex on which
(in case n = 0) or in which interior (in case n > 0) the new node lies. A similar
annotation is used for the operators to insert an edge in a tetrahedron: Iij , where i

90 Chapter 6. Updating features in the Data Structure

and j represent the location of the first and the second node. For instance I23 inserts
an edge, of which the first node lies in the interior of a triangle and the second one
in the interior of a tetrahedron.

Node insertion operators

The basic node insertion operators are introduced by Penninga et al. (2006). Four
types of node insertion can be distinguished, depending on the exact location of the
inserted node:

I0: The new node lies on a node: in this case the node is already present in the
TEN structure, thus no updates are required.

I1: The new node lies in the interior of an edge: n tetrahedrons are involved and the
TEN grows with +1 node, +(n+1) edges, +2n triangles and +n tetrahedrons,
as illustrated in figure 6.1 for the case n=4.

v0

v1

v2

v3

vnew

v4

v5

Figure 6.1: I1: the new node vnew is inserted in the interior of edge < v1, v2 > (n = 4).
Each tetrahedron is split into two new tetrahedrons

I2: The new node lies in the interior of a triangle: two (adjacent) tetrahedrons are
involved and the TEN grows with +1 node, +5 edges, +8 triangles and +4
tetrahedrons, as illustrated in figure 6.2.

I3: The new node lies in the interior of the tetrahedron: one tetrahedron is involved
and the TEN grows with +1 node, +4 edges, +6 triangles and +3 tetrahedrons,
as illustrated in figure 6.3.

Table 6.1 summarises the results of the node insertion operators. Note that the in-
creased numbers of TEN elements respect the Euler-Poincaré formula N−E+F−V =
0, as described in section 4.4. I0is not a real case, since this node is already present

6.1. Incremental update: feature insertion 91

v0

v1

v2

v3

vnew

v4

Figure 6.2: I2: the new node vnew is inserted in the interior of triangle < v0, v1, v2 >.
The two adjacent tetrahedrons are each replaced by three new tetrahedrons. Triangle
< v0, v1, v2 > is thus replaced by three new triangles.

v0

v1

v2

v3

vnew

Figure 6.3: I3: the new node vnew is inserted in the interior of tetrahedron <

v0, v1, v2, v3 >. This tetrahedron is replaced by four new tetrahedrons.

Node Edge Triangle Tetrahedron
(I0) (+0) (+0) (+0) (+0)
I1 +1 +n+1 +2n +n
I2 +1 +5 +8 +4
I3 +1 +4 +6 +3

Table 6.1: Overview of all node insert operations with the increases in TEN size

in the structure. Each of the three resulting true cases can be described nicely by the
use of Poincaré simplicial homology, as introduced in chapter 4 and applied in the pre-
vious one. Since only tetrahedrons (or tetrahedrons and nodes, depending on which
implementation one prefers) are explicitly stored, updates in edges and triangles are
implicit. For instance in the case of inserting node vnew in the interior of tetrahedron

92 Chapter 6. Updating features in the Data Structure

Node lies on Node Edge Triangle Tetrahedron
Node I00 I01 I02 I03

Edge (I01) I11 I12 I13

Triangle (I02) (I12) I22 I23

Tetrahedron (I03) (I13) (I23) I33

Table 6.2: 4 x 4 = 16 theoretical cases for the insertion of an edge in a tetrahedron,
of which 9 are unique (and I00 is no insertion, since this edge would already exist)

< v0, v1, v2, v3 > this tetrahedron needs to be deleted from the tetrahedron table
and the four newly created tetrahedrons (< v0, v1, v2, vnew >,< v0, v2, v3, vnew >,<

v0, v1, v3, vnew > and < v1, v2, v3, vnew > need to be added to the table. Each of these
four new tetrahedrons can be calculated by replacing one of the original nodes with
vnew. Note that the actual number of new triangles might differ from the numbers
given in table 6.1, since the implementation as described in the previous chapter uses
the concept of triangles and opposite triangles (or ‘halftriangles’, see section 4.3).
However, since these triangles are never explicitly stored, this difference is not really
relevant at this point.

Edge insertion operators

Since four different cases can be distinguished for node insertion, 4×4 = 16 cases can
be distinguished when inserting two (connected) nodes into a tetrahedron. Table 6.2
shows that nine unique cases can be distinguished within these 16 theoretical options.
Since observation 6 in section 4.1 stated that the nodes and edges of a n-simplex form
a complete graph, the edge from I00 is already present in the structure.

Note that the operators in table 6.2 work on tetrahedrons and not on the complete
TEN, since that would result in an infinite number of possible combinations of these
tetrahedron cases. As a result, a constrained edge that crosses several tetrahedrons,
will be split first into parts. For instance, an edge crossing three tetrahedrons will
result in a combination of I23, I22 and I23. This example is illustrated in figure 6.4: in
tetrahedron < v0, v1, v2, v3 > an edge segment from node vstart inside a tetrahedron
to an additional node on triangle < v0, v1, v3 >, in tetrahedron < v0, v1, v3, v5 > from
this node to another additional node in triangle < v0, v3, v5 > and in tetrahedron
< v0, v3, v4, v5 > from this node to the end node vend (in the tetrahedron’s interior).
The concept of this step-by-step approach is illustrated in figure 6.5.

To deal with these cases, nine exhaustive and mutually exclusive operators will be
described (as summarised in table 6.2):

I01: One node is an existing node, the other node lies on an edge. This involves the n
tetrahedrons of which the edge is part of the boundary. In figure 6.6 the case n=4
is illustrated: vstart is an existing node, while vend lies on edge < v3, v4 >. Each
involved tetrahedron is split into two new tetrahedrons, resulting in an increase
of TEN elements: +1 node, +n+1 edges, +2n triangles and +n tetrahedrons.

6.1. Incremental update: feature insertion 93

v0

v1

v2

v3

v4

v5

vstart

vend

vin013

vin035

v0 v0 v0

v3 v3 v3

v5
v5

v4

v2

v1 v1

Figure 6.4: Insertion of a constrained edge in three tetrahedrons: edge will be split
into three separate parts (for clarity reasons the three tetrahedrons are emphasised in
the exploded view). vstart and vend lie in the interior of respectively < v0, v1, v2, v3 >

and < v0, v3, v4, v5 >

Note that this case resembles node insertion operation I1 with the only difference
that one of the new edges is now the constrained edge.

I02: One node is an existing node, the other node lies on a triangle. This involves
the two tetrahedrons that share the triangle. Figure 6.7 illustrates this: vstart

is an existing node, while vend lies on triangle < v0, v2, v3 >. Both tetrahedrons
are split into three new tetrahedrons, resulting in an increase of TEN elements:
+1 node, +5 edges, +8 triangles and +4 tetrahedrons. Note that this case
resembles node insertion operation I2 with the only difference that one of the
new edges is now the constrained edge.

I03: One node is an existing node, the other node lies inside the tetrahedron. This
case is similar to the first operator for a single node insertion. As shown in figure
6.8, the tetrahedron is split into four new tetrahedrons, resulting in an increase
of TEN elements: +1 node, +4 edges, +6 triangles and +3 tetrahedrons. Note
that this case resembles node insertion operation I3 with the only difference
that one of the new edges is now the constrained edge.

I11: Both nodes lie on edges. Depending on which edges the two nodes lie, three
sub-cases can be distinguished:

a. The nodes lie on the same edge. This involves the n tetrahedrons of which

94 Chapter 6. Updating features in the Data Structure

Perform point-in-tetrahedron tests for vstart and vend

Apply appropriate inser-
tion operator

Intersect < vstart, vend > with
tetrahedron containing vstart.
Apply appropriate operator to
< vstart, vintersect >End

vintersect and vend in same tetrahedron?

Apply appropriate inser-
tion operator

End

Intersect < vintersect, vend > with
tetrahedron containing vintersect.
Apply appropriate operator to <

vintersectold, vintersect >.

yes no

yes no

vstart and vend in/on same tetrahedron?

Figure 6.5: Step-by-step insertion of constrained edges: incrementally finding and
applying the appropriate operator for each edge segment

v0

v3

v1

v2

vstart
vend

v4

Figure 6.6: I01: vstart is an existing node, while vend lies on edge < v3, v4 >. Each
tetrahedron is split into two new tetrahedrons (note: case n=4 is illustrated, with n
the number of incident tetrahedrons to the edge)

the edge is part of the boundary. Figure 6.9 illustrates the case n=4: both
vstart and vend lie on edge < v3, v4 >. Each involved tetrahedron is split

6.1. Incremental update: feature insertion 95

v0

v3

v1

v2

vstart
vend

Figure 6.7: I02: vstart is an existing node, while vend lies on triangle < v0, < v2, v3 >.
Both tetrahedrons are split into three new tetrahedrons)

v0

v1

v2

vstart

vend

Figure 6.8: I03: vstart is an existing node, while vend lies in the interior of the
tetrahedron. The tetrahedron is split into four new tetrahedrons

into three new tetrahedrons, resulting in an increase of TEN elements: +2
nodes, +2n+2 edges, +4n triangles, +2n tetrahedrons

b. The nodes lie on different, adjacent edges (two edges in a tetrahedron are
said to be adjacent if they share a node (see figure 6.10: edges < v3, v4 >

and < v4, v5 > share node v4). This involves n+m-2 tetrahedrons, with n
the number of tetrahedrons of which the first edge is part of the boundary
and m the number of tetrahedrons of which the second edge is part of the
boundary. Although in the illustrated case in figure 6.10 both n and m are
4, these numbers are usually not equal. In this example vstart lies on edge
< v4, v5 > and vend lies on edge < v3, v4 >. As a result the constrained
edge < vstart, vend > lies in the plane of triangle < v3, v4, v5 >. Now
each tetrahedron that does not contain this triangle is split into two new
tetrahedrons, while the two tetrahedrons that contain the triangle are split
into three new triangles, resulting in an increase of TEN elements: +2

96 Chapter 6. Updating features in the Data Structure

v0

v3

v1

v2

vstart

vend

v4

v5

Figure 6.9: I11 a: both vstart and vend lie on edge < v3, v4 >. Each involved tetrahe-
dron is split into three new tetrahedrons

nodes, +n+m+2 edges, +2(n+m) triangles and +n+m tetrahedrons.

v0

v3

v1

v2

vstart

vend

v4

v5

v6

Figure 6.10: I11 b: vstart lies on edge < v4, v5 > and vend lies on adjacent edge
< v3, v4 >. Each tetrahedron without triangle < v3, v4, v5 > is split into two new
tetrahedrons, while the two tetrahedrons that include this triangle are split into three
new tetrahedrons

c. The nodes lie on different, opposite edges (two edges in a tetrahedron
are said to be opposite if they do not share a node (see figure 6.11: the
edges < v0, v3 > and < v4, v5 > share no node). This involves n+m-1

6.1. Incremental update: feature insertion 97

tetrahedrons, with n the number of tetrahedrons of which the first edge
is part of the boundary and m the number of tetrahedrons of which the
second edge is part of the boundary. Figure 6.11 shows an example in
which both n and m are 4. As a result of this insertion, each tetrahedron
that does not contain < vstart, vend > is split into two new tetrahedrons,
whereas the one tetrahedron that contains < vstart, vend >, will be split
into four new tetrahedrons. This results in the following increase of TEN
elements: +2 nodes, +n+m+3 edges, +2(n+m)+2 triangles and +n+m+1
tetrahedrons.

v0

v3

v1

v2

vstart

v4

v5

v6

v7

vend

v0

v3

vstart

v4

v5

vend

detail

Figure 6.11: I11 c: vstart lies on edge < v4, v5 > and vend lies on opposite edge
< v0, v3 >. Each tetrahedron without edge < vstart, vend > is split into two new
tetrahedrons, while the tetrahedron that contains < vstart, vend > (see detail at the
right) is split into four new tetrahedrons

I12: One node lies on a triangle, the other node lies on an edge. Depending on
whether this edge is part of the triangle or adjacent to the triangle, two sub-
cases can be distinguished:

a. One node lies on a triangle, the other node lies on an adjacent edge. This
involves n+1 tetrahedrons, with n the number of tetrahedrons of which the
edge is part of the boundary. The n=4 case is illustrated in figure 6.12.
vstart lies on edge < v4, v5 > while vend lies on triangle < v0, v3, v4 >.
By first inserting vstart the TEN will grow (see case 1) with +1 node,
+n+1 edges, +2n triangles and +n tetrahedrons. The tetrahedron in which
< vstart, vend > is also split into two new tetrahedrons. On one of these
new tetrahedrons, < v0, v3, v4, vstart > and tetrahedron < v0, v1, v3, v4 >

I02 applies, thus resulting in a further increase with +1 node, +5 edges,
+8 triangles and +4 tetrahedrons. In total the TEN grows with +2 nodes,
+n+6 edges, +2n+8 triangles and +n+4 tetrahedrons.

98 Chapter 6. Updating features in the Data Structure

v0

v3

v1

v2

vstart

vend

v4

v5

v6

Figure 6.12: I12a.: vstart lies on edge < v4, v5 > while vend lies on triangle
< v0, v3, v4 >. The - 1 tetrahedrons that are influenced by vstart only are each
split into two tetrahedrons. The tetrahedron that is influenced only by vend is split
into three new tetrahedrons, while the tetrahedron with vstart and vend is split into
four tetrahedrons.

b. One node lies on an edge of the boundary triangle, in which the other node
is inserted. Figure 6.13 shows this case. Applying I12 to this situation
results in identical increases in the number of TEN elements: +2 nodes,
+n+6 edges, +2n+8 triangles and +n+4 tetrahedrons.

I13: One node lies on an edge, the other node lies in the interior of one of the n
involved tetrahedrons. First the node on the edge is inserted (vend in figure
6.14). The TEN is extended with +1 node, +n+1 edges, +2n triangles and
+n tetrahedrons. In figure 6.14 the case n=4 is illustrated. As one can see,
each original tetrahedron in split into two new tetrahedrons. Since one knows
in which original tetrahedron the second node would be inserted, two sub-cases
can be distinguished, related to these two new tetrahedrons:

a. The second node lies in the interior of one of the two tetrahedrons, chang-
ing the totals to: +2 nodes, +n+5 edges, +2n+6 triangles and +n+3
tetrahedrons.

b. The second node lies in the triangle between the two tetrahedrons, chang-
ing the totals to: +2 nodes, +n+6 edges, +2n+8 triangles and +n+4
tetrahedrons.

As the second node vstart lies in the interior of the split tetrahedrons and not
on its boundary, it is impossible for this second node to lie on an edge, as this
edge lies in the triangle (on the boundary) of the original tetrahedron.

6.1. Incremental update: feature insertion 99

v0

v3

v1

v2

vstart
vend

v4

v5

Figure 6.13: I12b.: vstart lies on edge < v3, v4 > while vend lies on triangle
< v3, v4, v5 >. This sub-case has the same results as I12a. in figure 6.12. The n-2
tetrahedrons that are only influenced by vstart are split into two tetrahedrons, whereas
the two tetrahedrons that are influenced both by vstart and vend are each split into four
tetrahedrons.

v0

v3

v1

v2

vstart

vend

v4

v5

Figure 6.14: I13a: vend lies on edge < v3, v4 > and vstart in the interior of one of
the newly formed tetrahedrons. Each tetrahedron is split into two new tetrahedrons,
of which the new one with vstart is further split into four new tetrahedrons (note that
I13b is not illustrated)

I22: Both nodes lie on boundary triangles. Again two sub-cases can be distinguished,
depending whether the two nodes lie on the same triangle or not:

100 Chapter 6. Updating features in the Data Structure

a. In case both nodes lie on the same triangle, two tetrahedrons will be in-
volved. Both tetrahedrons are split into five new tetrahedrons, resulting
in an increase of TEN elements: +2 nodes, +10 edges, +16 triangles and
+8 tetrahedrons. Figure 6.15 illustrates this case.

v0

v3

v1

v2

vstart

vend

v4

Figure 6.15: I22a.: vstart and vend lie in the same triangle. Both tetrahedrons are
split into five new tetrahedrons

b. In case the nodes lie on different triangles, three tetrahedrons will be in-
volved. The tetrahedron in which edge < vstart, vend > lies is split into
five new tetrahedrons, while the other two tetrahedrons are split into three
new tetrahedrons. This results in the same increase of TEN elements as
case a.: +2 nodes, +10 edges, +16 triangles and +8 tetrahedrons. Figure
6.16 shows an example of this sub-case.

I23: One node lies on a triangle, the other node lies in the interior of the tetrahe-
dron. This involves two tetrahedrons, as illustrated in figure 6.17. First vstart,
the node in the interior, is inserted into the tetrahedron, thus splitting this
tetrahedron into four new tetrahedrons. Now the second node is inserted in the
triangle. As a result, both the other tetrahedron and one of the newly formed
tetrahedrons are split into three new tetrahedrons, changing the totals to: +2
nodes, +9 edges, +14 triangles and +7 tetrahedrons.

I33: Both nodes lie in the interior of the tetrahedron, so only one tetrahedron is
involved. First the start node vstart is inserted, by which the tetrahedron is
split in four new tetrahedrons. Depending on the location of the end node vend,
three sub-cases can be distinguished:

a. vend lies within newly formed tetrahedron < v1, v2, v3, vstart >, see figure
6.18. This tetrahedron is again split into four new tetrahedrons, resulting
in a total growth of +2 nodes, +8 edges, +12 triangles and +6 tetrahedrons

b. vend lies on one of the six newly formed triangles. In the example in figure
6.19 vend lies in triangle < v0, v3, vstart >, thus splitting both adjacent

6.1. Incremental update: feature insertion 101

v0

v3

v1

v2

vstart

vend

v4

v5

Figure 6.16: I22b.: vstart and vend lie in different triangles. The tetrahedron in which
the constrained edge is inserted is split into five new tetrahedrons, while the other two
tetrahedrons are split into three new tetrahedrons

v0

v3

v1

v2

vstart

vend

v4

Figure 6.17: I23: vstart lies in the interior of newly formed tetrahedron <

v0, v1, v2, v3 >, vend lies on triangle < v0, v2, v3 >. The left tetrahedron is split into
three parts, the right tetrahedron is split into six new tetrahedrons (vstart creates for
new tetrahedrons, of which one is split into three by vend)

tetrahedrons into three new tetrahedrons. This results in a TEN increase
of +2 nodes, +9 edges, +14 triangles, +7 tetrahedrons

c. vend lies on one of the four newly formed edges. In the illustration in figure
6.20 vend lies on edge < vstart, v2 >. As a result the three tetrahedrons that
contain this edge are each split into two new tetrahedrons, thus resulting
in an increase in TEN elements of +2 nodes, +8 edges, +12 triangles and
+6 tetrahedrons

102 Chapter 6. Updating features in the Data Structure

v0

v3

v1

v2

vstart
vend

Figure 6.18: I33a.: insertion of vstart splits tetrahedron < v0, v1, v2, v3 > into four
tetrahedrons, of which tetrahedron < v1, v2, v3, vstart > is split into four new tetrahe-
drons by the insertion of vend

v0

v3

v1

v2vend

vstart

Figure 6.19: I33b.: insertion of vstart splits tetrahedron < v0, v1, v2, v3 > into four
tetrahedrons, tetrahedrons < v0, v2, v3, vstart > and < v0, v1, v3, vstart > are both split
into three new tetrahedrons by the insertion of vend in triangle < v0, v3, vstart >

Although the described cases are exhaustive and mutually exclusive, the solution
for each case is not unique. This can be observed for instance in case I23, as shown in
figure 6.17. An alternative approach can be followed, see figure 6.21. In this case, both
tetrahedrons are first split into three parts, of which the one with vend is split into
four new tetrahedrons. Note that with this approach several sub-cases are needed,
since vend may fall in the interior of a newly created tetrahedron, but also in the
interior of a newly created triangle or edge!

By applying these insertion operators according to the previously introduced prin-
ciple (see figure 6.5), constrained edges can be inserted in a TEN as a set of segments.
By traversing the constrained edge and inserting each segment, these operators guar-

6.1. Incremental update: feature insertion 103

v0

v3

v1

v2vend

vstart

Figure 6.20: I33c.: vend lies on edge < vstart, v2 >, thus splitting the three neighbour-
ing tetrahedrons each into two new tetrahedrons

Node Edge Triangle Tetrahedron
(I00) (+0) (+0) (+0) (+0)
I01 +1 +n+1 +2n +n
I02 +1 +5 +8 +4
I03 +1 +4 +6 +3
I11a. +2 +2n+2 +4n +2n
I11b. +2 +n+m+2 +2(n+m) +n+m
I11c. +2 +n+m+3 +2(n+m)+2 +n+m+1
I12a. +2 +n+6 +2n+8 +n+4
I12b. +2 +n+6 +2n+8 +n+4
I13a. +2 +n+5 +2n+6 +n+3
I13b. +2 +n+6 +2n+8 +n+4
I22a. +2 +10 +16 +8
I22b. +2 +10 +16 +8
I23 +2 +9 +14 +7
I33a. +2 +8 +12 +6
I33b. +2 +9 +14 +7
I33c. +2 +8 +12 +6

Table 6.3: Overview of all edge insert operations with the increases in TEN size

antee the (splitted) constrained edge’s presence in the structure. Common operators
–inserting two nodes and finding the constrained edge by edge recovery using flips–
might fail in case flips are not allowed due to other nearby constrained edges. This
would typically happen in TEN structure with many features (and thus many con-
straints), of which topographic data sets are an excellent example. By minimising the
impact of the operators on the TEN structure, conflicts with nearby constraints are

104 Chapter 6. Updating features in the Data Structure

v0

v3

v1

v2

vstart

vend

v4

v0

v3

v1

v2

vstart

vend

v4

Figure 6.21: Alternative to I23 (compare with figure 6.17): This time (right), vend lies
in the interior of newly formed tetrahedron < v0, v1, v2, v3 > and vstart lies on triangle
< v0, v2, v3 >. Now both tetrahedrons are split into three parts, of which the one with
vend is split into four new tetrahedrons. Note that with this approach several sub-cases
are needed, since vend may fall in the interior of a newly created tetrahedron, but also
in the interior of a newly created triangle or edge!

avoided. This advantage comes at the price of a resulting tetrahedronisation that will
not meet the Delaunay empty-circumcircle criterion. Obviously this might lead to
decreasing quality of the TEN network in terms of quality criteria like the shortest-
to-longest edge ratio, as introduced in section 2.5.3. To overcome this drawback,
additional quality improvements are required. These improvement operators will be
introduced in section 6.3.

6.1.4 Step 3. Ensuring presence of constrained triangles

With this set of operations, all constraint edges can be inserted. In case constraint
edges are longer, i.e. the edges are crossing multiple tetrahedrons, the constraint edges
can be split at the intersection points with the tetrahedron boundaries. These seg-
ments can be treated separately by one of the previous operations. However ensuring
the presence of all constraint edges is not sufficient, since one has no guarantee that
the corresponding triangles are also present. This is illustrated in figure 6.22.

In this illustration, constrained triangle < v0, v1, v2 > lies more or less horizontal
and edge < v3, v4 > more or less vertical. In this example, the grey edges < v0, v1 >,<

v1, v2 > and < v2, v0 > are constrained edges, but since the tetrahedrons are defined
(in the middle figure) as < v0, v1, v3, v4 >, < v0, v2, v3, v4 > and < v1, v2, v3, v4 >, the
required constrained triangle < v0, v1, v2 > is missing. Therefore an additional test is
required that checks whether each constraint triangle from the boundary triangulation
is also present in the TEN, a task that is quite straightforward due to the node-based
notation of all simplexes. A prerequisite of this testing method is that the TEN
structure is valid, see chapter 4 for more details. To obtain the constrained triangle,
a flip T32 has to be performed, which result is shown in the right figure. This flip
can be performed as long as (see also figure 2.27)< v3, v4 > intersects < v0, v1, v2 >,
but if this is not the case, constrained triangle < v0, v1, v2 > would have been present

6.1. Incremental update: feature insertion 105

v0

v1

v2

v3

v4

v0

v1

v2

v3

v4

v0

v1

v2

v3

v4

Figure 6.22: With constrained edges < v0, v1 >, < v1, v2 > and < v2, v0 > inserted,
the tetrahedronisation might still look like the one in the middle. Performing flip
T32 (see section 2.5.4) will result in the creation of the wanted constrained triangle
< v0, v1, v2 > .

already in the structure.

However, one should not only test for 1:1 relations between triangles in the TEN
and triangles in the previously calculated boundary triangulation. The edge insertion
operators might have separated the constrained edges into multiple segments and thus
the initial constrained triangles might be split into several parts as well. Therefore
one has to test for 1:m relationships as well, since several constrained triangles in the
TEN might form one constrained triangle from the boundary triangulation. Here an
additional test is required, to see whether the m triangles lie in the same plane, most
likely performed by comparing the triangle’s normal vectors.

6.1.5 Step 4. Modelling the feature’s interior and reclassifying
tetrahedrons

Two approaches can be followed in modelling the feature interior:

• The first option is the most straight forward approach of enforcing the pres-
ence of the complete outer boundary triangulation and detect and reclassify the
resulting internal tetrahedrons. The reclassification is required since the new
feature replaces (part of) an existing feature. If one thinks of inserting a new
building, the interior tetrahedrons will be reclassified from the previous fea-
ture (most likely an ‘air’ feature) into the new feature (a specific building ID).
Reclassification will always be involved, since the topographic data model is a
full 3D decomposition of space. Note that by reclassifying its outer boundary
will automatically appear in the view with constrained triangles, since this view
is specified by a function that detects different object identifiers at either side
of a triangle (see section 5.4.2 for more details on deriving constraints). The

106 Chapter 6. Updating features in the Data Structure

boundary edges will appear in the view with constrained edges, since this view
contains all edges from constrained triangles.

• The second option is to delete the existing tetrahedral structure within the
boundary triangulation and replace it with a separately calculated tetrahedro-
nisation. To do so one needs to keep record of all segmentation of the prior
boundary triangulation (since the inserted constrained edges might be split
into separate parts) and use this refined boundary triangulation as input for
a separate tetrahedronisation. This process will result in an optimal (in terms
of number and shape of tetrahedrons) internal tetrahedronisation. To each of
these tetrahedrons the relevant object identifier will be added, similar to the
first approach.

Both approaches require detection of the tetrahedrons within the newly inserted
boundary (either for reclassification or deletion). The second option also contains
a tetrahedronisation step, thus increasing overall runtime, but this additional step
will result in an optimal tetrahedronisation of the interior. However, since regular
quality checks and improvements (see section 6.3 for more details) are required due
to the non-optimal edge insertion operators, this advantage exists only temporarily.

6.2 Incremental update: feature deletion

Deleting features might be arranged by a very pragmatic operation that does not
influence the TEN structure itself. If for instance a building needs to be removed
the tetrahedrons that represent this building have to be reclassified, most likely with
the ‘air’ object. By changing the object identifier that is added to the tetrahedron
codes the constrained triangles and constrained edges from the feature boundary will
disappear from their views, since these triangles and edges do not longer bound two
tetrahedrons with different object identifiers. Effectively this operation removes the
constraints from these former boundary triangles and edges.

v0

v1

v2

v3

v4

v0

v1

v2

v3

insertion

deletion

Figure 6.23: A ‘flip41’ operation (Edelsbrunner and Shah 1996) will modify the four
initial tetrahedrons < v0, v1, v2, v4 >, < v0, v1, v3, v4 >, < v0, v2, v3, v4 > and <

v1, v2, v3, v4 > into a single tetrahedron < v0, v1, v2, v3 >, thus deleting node v4.

6.3. Quality improvement of TEN structure 107

Although the feature would be deleted by this operation, the structure does not
decrease in size, since no TEN elements are deleted. However from the beginning
of this research managing data volume is regarded as one of the key elements in
obtaining a feasible new data modelling approach. Therefore an operator that deletes
unnecessary nodes (and thus edges, triangles and tetrahedrons) is required. In case
of feature deletion, all nodes that were part of the deleted feature, are candidates for
deletion. First a check is needed whether these nodes are part of any other boundary
(i.e. whether they are still part of a constrained edge). Each resulting node can be
deleted by the robust operator described by Ledoux et al. (2005). This approach,
which is described in more detail by Ledoux (2006, paragraph 4.4), uses flips to
modify the TEN configuration until a situation as shown at the left in figure 6.23 is
reached. In this situation Ledoux et al. (2005) apply a so-called ‘flip41’ to remove the
node from the TEN.

Although this deletion operator is referred to as a bistellar flip, within this disser-
tation the term flips (see section 2.5.4) is reserved for operations that affect only a
tetrahedronisation T, whereas the set of input vertices V remains unchanged. Such
deletion operators will be annotated as D. The ‘flip41’ will therefore be annotated as
D3, which is the inverse operator of I3.

6.3 Quality improvement of TEN structure

As the model will grow over time due to ongoing refinements and incremental updates,
a set of tools for quality maintenance of the data structure is necessary. Due to series
of delete and insert operations ill-shaped triangles and tetrahedrons might appear, as
well as unneeded TEN elements. To reduce data storage and ensure numerical stability
these triangles and tetrahedrons should be repaired. Several different approaches
might be used complementary. Three categories of quality improvement operators
can be distinguished (in practice a mixture of operators of all three types will be
used):

I: Operators that add nodes to the TEN. A good example is the method for
TEN improvement proposed by Shewchuk (1997b). His method is based on
the circumradius-to-shortest edge ratio of triangles or tetrahedrons. The cir-
cumsphere is a sphere through the nodes of a tetrahedron, the circumradius the
radius of this circumsphere. The ratio between the circumradius and the short-
est edge is (in most cases) a good indicator for how evenly the tetrahedron is
shaped. This concept is illustrated in figure 6.24. It shows an unevenly shaped
tetrahedron at the left. The shortest edge in this tetrahedron (edge < v1, v2 >)
is far shorter than the circumradius Rcirc. In a more evenly shaped tetrahedron
(shown at the right side) the shortest edge (edge < v1, v3 >) is more or less
comparable to the circumradius Rcirc.

In case ill-shaped tetrahedrons are detected, adding a node to the TEN in the
circumcentre (the centre of the circumsphere) is an adequate cure in most cases.
This approach is described in section 2.5.3 and illustrated (in 2D) in figure 2.25.

108 Chapter 6. Updating features in the Data Structure

v0

v1

v2

v3

v0

v1

v2

v3

Rcirc Rcirc

Figure 6.24: The circumradius-to-shortest edge ratio used by Shewchuk (1997b) is a
useful measure for how evenly a tetrahedron is shaped

Most sliver tetrahedrons will be removed by this procedure. In case of an ill-
shaped tetrahedron that can not be improved by adding the circumcentre as
node (for instance due to the presence of constraint edges), using Steiner points
to partition constrained edges might be very useful.

D: Operators that remove nodes from the TEN. Obviously the deletion of unnec-
essary nodes from the TEN is very welcome from a data volume point of view,
as this will increase overall performance. Less obvious is its influence on the
overall quality of the TEN. Vertex deletion can also be seen as a precaution
operation: if one thinks of a house that is being demolished and replaced by a
new house at almost the same location, omitting vertex deletion might result
in near-parallel edges (from the old and the new building), causing situations
as illustrated in figure 2.18. These near-parallel lines can cause the creation of
numerous very small tetrahedrons. Removing nodes (and thus edges, triangles
and tetrahedrons) helps decreasing the risk of such unwanted configurations.
The robust vertex deletion algorithm as described in the previous section can
be used to achieve this.

T: Operators that modify the TEN configuration. A good example of modifying
a TEN structure is flipping. Flipping (as described in chapter 2) uses the fact
that there are two ways to tetrahedronise a convex set of five points (assuming
this is not prevented by constraints): one with two tetrahedrons and one with
three tetrahedrons. One of these two tetrahedronisations must be the Delaunay
tetrahedronisation of five points (Cavalcanti and Mello 1999). Therefore flipping
from 2 to 3 tetrahedrons (T23) or vice versa (T32) can improve the quality of
the data structure. In special cases (more points need to be co-planar) also T22

6.4. Initial bulk loading and bulk rebuild 109

or T44 operations can improve the quality.

6.4 Initial bulk loading and bulk rebuild

6.4.1 Bulk loading to create a new data set

Although it is possible to create a complete tetrahedronised 3D topography data set
with incremental algorithms, initial bulk loading speeds up the process. Although
the basic data structure is implemented in the Oracle DBMS, the required tetra-
hedronisation algorithms are currently not implemented within the DBMS due to
practical limitations. As a temporary work around TetGen (TetGen 2007) is used
to externally perform a tetrahedronisation. The input is a Piecewise Linear Com-
plex (PLC), see figure 6.25 and section 2.5.3. A PLC (Miller et al. 1996) is a set of
vertices, segments and facets, where a facet is a polygonal region. Each facet may
be non-convex and have holes, segments and vertices in it, but it should not be a
curved surface. A facet can represent any planar straight line graph (PSLG), which
is a popular input model used by many two-dimensional mesh algorithms. A PSLG
is (MathWorld 2007) a graph embedding of a planar graph (i.e. a graph without
graph edge crossings) in which only straight line segments are used to connect the
graph vertices (as introduced in section 2.5.1). Compared to a polyhedron, a PLC is

Figure 6.25: A Piecewise Linear Complex (PLC), input for the tetrahedronisation
algorithm (from (Si 2006c))

a more flexible format. If one looks at the shaded facet in figure 6.25, one can see
that this facet cannot be described by a polygon because there are loose and dangling
line segments. However, in our application situations like these will be rare or not
appearing at all. Nevertheless TetGen creates a constrained Delaunay tetrahedroni-
sation based on an input PLC. A PLC may consist of several disjoint volumes. As a
result, all topographic features are represented in one PLC in bulk tetrahedronisation.

TetGen requires an *.poly file as input data. Such a file represents a piecewise

110 Chapter 6. Updating features in the Data Structure

linear complex (PLC) as well as some additional information. This input file contains
four types of information, which are a list of points, a list of facets, a list of (volume)
hole points and (optionally) a list of region attributes (see appendix IV for a short
example). The list of points consists of x, y and z coordinate and a point identifier.
The facets are described by a list of these point identifiers. Hole points are used to
identify holes, but since TetGen does not tetrahedronise holes, this feature is not
useful for the new approach. Regions are separate (3D) parts of the PLC, each with
their own identifier. Region attributes (identifiers) are assigned to the volume that
contains the given point in the file. These region attributes are used in bulk loading
to assign feature identifiers.

Running TetGen results in a *.ele file, a text file containing all tetrahedrons and
a *.node file with all nodes (see appendix IV for examples). The *.ele file consists
for each tetrahedron of its four nodes and the relevant region attribute. Note that this
output format is really close to the identifier concatenation as introduced in section
5.3.2, since concatenating the four node identifiers and the volume attribute will result
in the desired tetrahedron code.

By loading the *.node file into the node table and the concatenated codes into the
tetrahedron table the tetrahedronisation is converted into the Poincaré-TEN model.
If one prefers coordinate concatenation (also introduced in section 5.3.2), one needs to
replace the node identifiers in the tetrahedron codes by their concatenated coordinates
and load these altered tetrahedron codes into the tetrahedron table.

6.4.2 Bulk rebuilding to optimise the tetrahedronisation

Besides the regularly performed quality updates as suggested in the previous sec-
tion, one might consider rebuilding the updated data set every now and then. This
operation might fix some problems that are difficult to overcome by the use of the
previously introduced quality update operations. To do so, one needs to create an
input data set first. When using TetGen, this means converting all feature boundaries
into a PLC in a *.poly file. The constrained triangle view contains all required PLC
facets. Note that the number of facets will be larger compared to an initial PLC with
the same features, since facets derived from the view are already split up in triangular
parts. By selecting all nodes, used in the constrained triangle view, one can create
the required list of nodes in the input file. Note that by selecting the nodes from
the constrained triangle view one ignores all other nodes that might be part of the
tetrahedronisation, thus ‘nominating’ these nodes for elimination in order to minimise
the number of elements in the TEN. The results from the tetrahedronisation process
can be loaded similar to the bulk loading procedures. An advantage of bulk rebuilds
outside the database is that one can easily benefit from the most recent improvements
in the field of computational geometry with respect to tetrahedronisation, for instance
regarding TEN quality or performance. If for instance Pyramid (see section 2.5.4)
proves to be faster or to obtain better tetrahedron shapes one can easily adopt these
new techniques without the need to modify the actual data modelling approach.

Part III

Evaluation and conclusions

111

Chapter 7

Evaluation and discussion

The previous part – consisting of chapters 4-6 – of this dissertation introduced a
simplicial complex-based data structure for 3D topography. It was shown that this
approach has several theoretical favourable characteristics, both due to the TEN
approach and due to the application of operators from simplicial homology. A proof-
of-concept implementation is needed to determine feasibility. Although a full imple-
mentation (in terms of the most time-efficient or storage-efficient implementation)
is out of scope of this research, proof-of-concept implementations of the coordinate
and identifier concatenation approaches (as introduced in section 5.3.2) were created.
This chapter presents the valuable experiences gathered by these implementations.

In order to be able to test the data structure, tetrahedronised data is needed.
Several data sets have been created by extrusion and were loaded into the database.
One data set was further extended with 3D features, such as a viaduct and a geo-
logical layer. Section 7.1 describes these data sets, after which section 7.2 continues
with the tetrahedronisation of this data in TetGen. The different data sets are used
in section 7.3 to evaluate storage requirements, by comparing the coordinate con-
catenation approach with the identifier concatenation approach and comparing these
approaches with storage as polyhedrons in Oracle Spatial 11g. Section 7.4 evaluates
some visualisation approaches for tetrahedronised data sets in databases. Based on
the experiences with three data sets, section 7.5 elaborates on requirements for new,
proper 3D data, that should already be taken into account during the data acquisition
phase. The chapter ends with identifying several future developments in section 7.6.

7.1 Evaluation material: three different data sets

Proper testing of a 3D volumetric data structure requires 3D volumetric data sets.
Unfortunately 3D volumetric topographic data sets –especially good quality, error
free ones– are hard to find. Originally it was planned to use data developed within
the larger 3D topography project consortium (van Oosterom 2005a,b). However, due

114 Chapter 7. Evaluation and discussion

to an asynchronous start of the separate parts of this larger research project, the
data is not yet available. As a work-around several data sets have been created,
usually by extrusion of buildings from existing 2D data sets, sometimes extended
with data from other sources. This section will describe three data sets: the first one
is completely made-up and was even tetrahedronised by hand at first. The second
one consists of almost 1800 buildings in Rotterdam, extruded from the TOP10 data
set (a topographic data set which paper predecessor had scale 1:10,000 and is now
used at a scale range of 1:5,000 - 1:25,000 (Kadaster 2007)). The third one contains
about 300 buildings on the campus of Delft University of Technology and is based on
extrusion of the GBKN, the large scale base map with scale 1:1,000, combined with
additional geological data and a terrain including viaducts, thus introducing real 3D
situations in this data set. The extrusion of buildings in both the second and third
data set is based on AHN heights (as introduced in section 2.1.2).

7.1.1 Initial ‘toy’ data set

A small ‘toy’ data set is created by hand. It consists of an earth surface with a road
surface feature on top and a single building with a saddle roof. This dataset was
tetrahedronised by hand to get more insight in a tetrahedron-based structure. In
order to get ‘air’ and ‘earth’ tetrahedrons two extreme points were added, one on top
and one at the far bottom. Figure 7.1 shows the tetrahedronisation of the small data
set, with the building and the road in front of it (see figure 7.12 for an impression
of the data set). This small data set, consisting of three volume features (building,
air, earth), is composed by 56 tetrahedrons, 120 triangles (no opposites included), 83
edges and 20 nodes.

The very first experiences, as presented by Penninga et al. (2006), were based on
this model. In a later stage TetGen (with its default settings) is also used to generate
a tetrahedronisation of this very basic data set. This constrained tetrahedronisation
results (TetGen output) in 117 tetrahedrons and 31 nodes. This second version of the
‘toy’ data set is loaded into the database structure (which includes triangle opposites),
thus resulting in a set of 117 tetrahedrons, 468 (of which 140 constrained) triangles,
155 edges and 31 nodes. The increase in the number of nodes is caused by Steiner
points that were added to improve tetrahedron shapes, see figure 7.2 for the eleven
Steiner points.

Depending on the chosen concatenation method (see section 5.3.2) only the tetra-
hedrons or the tetrahedrons and nodes are stored explicitly, all other elements will be
derived in views. The significant increase in the number of elements (compared to the
first hand-made version) is due to the Delaunay tetrahedronisation (standard TetGen
settings were used), whereas the first set was just a valid tetrahedronisation, with-
out any guarantees on empty circumspheres or quality parameters like a minimised
radius-to-edge ratio.

7.1. Evaluation material: three different data sets 115

Figure 7.1: First tetrahedronisation of the ‘toy’ dataset, created by hand.

7.1.2 Rotterdam buildings data set

The first real world data set covers a part of Rotterdam. It contains 1,796 buildings
in the north-western part of the city, see figures 7.3. As described by Penninga and
van Oosterom (2008b), it covers an area of about seven square kilometres. Other
topographic features like a realistic earth surface, roads, tunnels etc. are still missing
due to a lack of appropriate 3D data. Complex situations like multiple land use and
highway interchanges lack as well. However, this dataset will provide more insight
into the number of elements of a TEN and into the resulting storage requirements.
The data set is created by extruding polygons from a topographic data set. Since this
topographic data set is originally created for usage with scale of about 1:10,000, the
buildings do not contain much detail.

7.1.3 Delft University of Technology campus data set

Within the 3D topography research project, a test data set of the campus of Delft
University of Technology is created (see figure 7.4 for the first version of this data
set) to compare different approaches to 3D data modelling. Although the campus
data set contains less buildings than the Rotterdam data set, this set is particularly
interesting because the inclusion of real 3D features, such as viaducts and geological

116 Chapter 7. Evaluation and discussion

Figure 7.2: Eleven Steiner points are added (circled), see also figure 5.1 for another
view of this data set

Figure 7.3: Aerial picture of the two neighbourhoods of the Rotterdam data set

7.2. Evaluating bulk tetrahedronisation process 117

layers. Beside that, the source data for building extrusion is of larger scale, since
the GBKN (Dutch large scale base map, 1:1,000) is used, compared to TOP10 (scale
1:10,000) data for the Rotterdam data set. As a result the building polygons contain
more detail. At the same time this data set contains also several unwanted points,
since apparently each surveyed point is part of building’s footprint, regardless whether
this inclusion contributes to the overall shape of this footprint or not. Furthermore,
the original version of the DUT campus data set contained numerous topological
errors (mainly intersections) and thus failed to tetrahedronise in TetGen. As a result
only 306 of the original 550 buildings are present in the data set used in this chapter.
However, this data set is still very useful in the context of this evaluation, since it
does include real 3D situations and many details in the building geometries.

Figure 7.4: DUT campus data set as *.kml file, displayed in Google Earth

Table 7.1 compares the different input data sets. The average numbers of input
nodes and input faces per building can be seen as a measure for the amount of detail
in the data set.

7.2 Evaluating bulk tetrahedronisation process

During this research TetGen software is used to tetrahedronise the data sets. As
described in section 6.4, TetGen requires a *.poly file as input data, containing a
list of points, a list of facets, a list of volume holes (not applicable for this approach
since a full tetrahedronisation of space is required) and a list of region attributes (see
appendix IV for example). Since the facets are described by point identifiers, prepar-

118 Chapter 7. Evaluation and discussion

‘Toy’ data set Rotterdam DUT campus
data set data set

No. of buildings 1 1796 306
No. of input nodes 10 26,650 8,034
(buildings)
No. of input nodes 10 6 38
(terrain)
No. of input nodes - - 110
(geology)
No. of input faces 7 16,928 4,251
(buildings)
No. of input faces 1 1 36
(terrain)
No. of input faces - - 216
(geology)
Average no. of 10 14.8 23.7
nodes per building
Average no. of 7 9.4 12.5
faces per building

Table 7.1: Comparison of input data set characteristics. Note that the small number
of input terrain nodes indicates that the terrain is simplified: apart from the viaduct
in the DUT campus data set, the terrain is flat. All input faces of the buildings and
most input faces of the terrain are polygons, the geology faces and terrain faces near
the viaduct are triangles

ing such an input file is non-trivial in case the available data sets lack such explicit
topological relationships. TetGen is selected since it is the only available tetrahe-
dronisation software capable of constrained (Delaunay) tetrahedronisation. Pyramid,
the long-awaited 3D successor of the popular 2D mesh generator Triangle, is still not
released (Shewchuk 2008). However, TetGen incorporates many of the ideas pub-
lished by Shewchuk (TetGen 2007), including Shewchuk’s fast and robust predicates
(Shewchuk 1997a). Table 7.2 provides more insight in the performance of TetGen.
Note the large number of flips (section 2.5.4) that are required to obtain a tetrahe-
dronisation that meets the constrained Delaunay and minimal angle criteria.

Table 7.3 contains some characteristics of the tetrahedronised data sets. Due to the
incompleteness of these sample data sets, they can not be seen as a fully representative
sample for topographic data sets. As a result, one should be careful with drawing final
conclusions from these results, although the data sets do provide some useful insights.
One can see that the average number of tetrahedrons per building is very high in the
DUT campus data set. This is mainly caused by the presence of surveyed points in the
building footprints. Figure 7.5 illustrates such a case. The depicted building footprint
contains additional points (that do not really contribute to the overall shape) near

7.2. Evaluating bulk tetrahedronisation process 119

‘Toy’ data set Rotterdam DUT campus
data set data set

Input Points: 20 Points: 26,656 Points: 8,182
Facets: 27 Facets: 16,928 Facets: 4,503
Regions: 3 Regions: 1,796 Regions: 309

Running time 0.063 sec. 16.641 sec. 248.392 sec.
Flips T23: 37 T23: 243,589 T23: 55,380

T32: 26 T32: 178,680 T32: 39,106
T22: 0 T22: 2 T22: 65
T44: 5 T44: 616 T44: 18,382

Output Points: 31 Points: 30,877 Points: 23,260
Constr. tr: 70 Constr. tr: 54,566 Constr. tr: 87,316
Tetra: 117 Tetra: 167,598 Tetra: 131,437

Table 7.2: TetGen tetrahedronisation results

the centre of the dotted circle. These additional points are located close to another,
thus resulting in very small wall facets in the automatic extrusion. The presence of
these parallel lines trigger the creation of vast numbers of tetrahedrons.

Figure 7.5: The results of improper data cleaning: unnecessary points result in close
parallel lines after extrusion, thus triggering the creation of many unwanted tetrahe-
drons. The unnecessary points lie on the edge in the circle, but are not visible in the
top view (left: top view, mid: bird’s eye view, right: detail)

Another observation is that, by comparing the number of input nodes with the
number of TEN nodes, the number of Steiner points is quite limited, unlike the
potential threat of virtually unlimited addition of Steiner points as described in section

120 Chapter 7. Evaluation and discussion

2.5. In this observation the increase in Steiner points of the DUT campus data set
is partially ignored, since the creation of a lot of these points is unnecessary, as
previously described and shown in figure 7.5.

The third observation is that the percentage of air and earth tetrahedrons is
very large (over 70%). It appears that the price of following a full volume partition
approach lies in an increase in data volume by a factor of four. Of course this number
might vary for other data sets, but nevertheless it is a significant cost to obtain a
fully connected network and the possibility for future extensions with more subtypes
of air and earth features.

The fourth observation is that a node is part of a lot of tetrahedrons. The average
for the ‘toy’ data set is strongly influenced by the fact that a lot of tetrahedrons
have faces on the convex hull of the tetrahedronisation, thus decreasing the average
number of tetrahedrons spanned by a node. The 15 tetrahedrons per node is thus a
lower bound of the range one could expect. Okabe et al. (2000, table 5.11.2) report a
theoretical number of slightly over 27 tetrahedrons per node for a tetrahedronisation
of an evenly distributed set of points (a Poisson Delaunay diagram in IR3). Most
likely this number acts as an upper bound in most cases. This number is especially
interesting in section 7.3, since this number is a first indication of the number of
geometry repetitions in the tetrahedron table, since tetrahedrons are encoded by
their nodes.

‘Toy’ data set Rotterdam DUT campus
data set data set

No. of buildings 1 1,796 306
No. of tetrahedrons 117 167,598 131,457
No. of constrained 70 54,566 87,316
triangles
No. of input faces 27 16,928 4,503
No. of TEN nodes 31 30,877 23,260
No. of input nodes 20 26,656 8,182
% air / earth 83.8% 77.7% 70.9%
tetrahedrons
Average no. of 19 20.8 125.1
tetrahedrons
per building
Average no. of 15 21.7 22.6
tetrahedrons
a node is part of

Table 7.3: Comparison of tetrahedronised data sets

One should note that the tetrahedronisation results in one network, i.e. the space
in between the buildings is tetrahedronised as well. The increase in the number
of nodes is caused by the addition of Steiner points; additional points required to

7.2. Evaluating bulk tetrahedronisation process 121

either enable tetrahedronisation or to improve tetrahedronisation quality (in terms
of altering ill-shaped triangles and tetrahedrons to avoid numerical instability). The
results for the ‘toy’ data set were already illustrated in figure 5.1, since it shows the
original input (the facets), the resulting tetrahedronisation and a derived visualisation
of all feature boundaries (i.e. constrained triangles). The results of the Rotterdam
data set tetrahedronisation are illustrated in figure 7.6. Due to the large number of
tetrahedrons, illustrating all tetrahedrons will result in one big black spot. As an
alternative only the constrained triangles are drawn. Note that this figure clearly
underlines the advantage of using an irregular data structure: the big apartment
buildings in the upper part of the figure are modelled with a few large tetrahedrons
(and thus large triangles can be seen in the facades), while smaller and more complex
houses are modelled with much more smaller tetrahedrons.

Figure 7.6: Tetrahedronisation of the Rotterdam data set (only constrained triangles
are drawn)

Figure 7.7 shows a small selection of buildings with more complex shapes compared
to the big apartment buildings. Tetrahedrons can also be used to approximately
model circular buildings and buildings with small extensions. Note that this figure

122 Chapter 7. Evaluation and discussion

is an enlargement of the foreground of figure 7.6, seen from the opposite site. To
illustrate the concept of the full volume partition, figure 7.8 shows a small part of
the TEN network. The outlines of the four circular buildings, that can be seen in
the background of figure 7.7, are marked in grey in figure 7.8. Note that despite its
already apparent complexity this figure still is only a view from above, thus obscuring
all edges in vertical planes. For instance, one can recognise only the roof of the circular
buildings, all edges in its walls and the floor outline are not visible.

Figure 7.7: Tetrahedronisation results for more complex shapes: circular buildings and
buildings with small extensions

Figures 7.9 and 7.10 show the results of the tetrahedronisation of the Delft campus
data set. Only constrained triangles are shown in these figures, since the full tetrahe-
dronisation including all earth and air tetrahedrons would be hard to interpret. Both
illustrations demonstrate that the tetrahedronisation can deal with real 3D situations.
The geological feature is visible in both illustrations (the sub-surface feature), and
figure 7.10 shows also the viaduct (for Delft locals: the Kruithuiswegviaduct crossing
the Mekelweg).

After tetrahedronisation the results are loaded into the simplicial complex-based
structure. First the two output files from TetGen (*.ele file: a text file describing all

7.2. Evaluating bulk tetrahedronisation process 123

Figure 7.8: Impression of TEN complexity: top view of TEN network. The four
circular buildings from figure 7.7 are marked in grey

Figure 7.9: Tetrahedronisation results of the Delft campus: view from the north-west

tetrahedrons by their node id’s and object id’s and *.node file: a file with all nodes)
are loaded into temporary tables with SQL*Loader. Depending on the selected con-
catenation method the appropriate tetrahedron codes have to be constructed and
loaded into the tetrahedron table. In case of identifier concatenation the nodes are
loaded into the node table. For instance in case of the Rotterdam data set the tetra-

124 Chapter 7. Evaluation and discussion

Figure 7.10: Tetrahedronisation results of the Delft campus: view from the south-east.
Note that the viaduct is visible in the centre of the image.

hedron table consists of 167.598 tetrahedrons. For each tetrahedron < a, b, c, d, oid >

in this table it is ensured (as described in section 5.4) that it is sorted according to the
arbitrary criterion a < b < c < d and that it has positive orientation (i.e. all normal
vectors of boundary triangles point outwards, achieved if necessary by swapping c and
d). After that, views are created with triangles, constrained triangles, edges and, in
case of coordinate concatenation, nodes by repeatedly applying the boundary opera-
tor. Since the simplicial complex-based structure contains opposites of all triangles,
the numbers of TEN elements differ from the initial tetrahedronisation. From the
167,598 tetrahedrons 670,392 (4 × number of tetrahedrons) triangles are derived, of
which 109,120 are constrained triangles. This number of constrained triangles slightly
differs from multiplying the original 54.566 constrained triangles by two (because of
inclusion of the opposite), since the outer boundary of the TEN consists of twelve tri-
angles without a opposite. The edge view provides information for the 198,480 edges.
Note that edges are described by their nodes alone, so without inherited object id,
opposite or sign, otherwise this number would have been significantly higher.

7.3 Evaluating storage requirements

As stated before, the current implementation is very straightforward: obtaining a
working implementation was strongly favoured over minimising storage requirements
or optimising performance. Nevertheless, two major comparisons of storage require-
ments need to be made: first the coordinate concatenation vs. identifier concatenation
(the two variants of the simplicial complex-based approach) and second the simplicial

7.3. Evaluating storage requirements 125

complex-based approach vs. the polyhedron approach. This section will make these
two comparisons. For the polyhedron comparison, features are converted to Oracle
Spatial 11g polyhedrons (see appendix III for the conversion to polyhedrons) based
on their boundary triangulations. Polyhedrons in Oracle Spatial 11g are described as
a set of polygonal faces (in this case only triangular faces are used), each described
by their vertices. Since the air and earth tetrahedrons are not exported into polyhe-
drons, polyhedron storage is also compared to an estimation of the storage space that
the identifier concatenation approach would take if air and earth are not explicitly
modelled (and the model would thus consist of separate TENs). Table 7.4 provides
a small overview of storage requirements and will act as a basis for comparison. It
contains only the required tables, since views do not take any storage space.

‘Toy’ data set Rotterdam DUT campus
data set data set

Oracle 11 0.20301 MB 3.90 MB 0.95 MB
polyhedrons
Coordinate 0.0234 MB 87.30 MB 58.04 MB
concatenation
Identifier 0.0234 MB 20.73 MB 16.17 MB
concatenation node: 0.0078 MB node: 1.46 MB node: 0.95 MB

tetr.: 0.0156 MB tetr.: 19.27 MB tetr.: 15.22 MB
Estimation id 0.0105 MB 5.76 MB 5.34 MB
concatenation 17.2 % 22.3 % 29.1 %
without air/earth

Table 7.4: Comparison of storage requirements. Note that the estimation of storage
requirements of identifier concatenation without air and earth is only a rough calcula-
tion, based on the percentage of air/earth tetrahedrons (as reported in table 7.3). The
percentage of non air/earth tetrahedrons is applied to the storage requirements for the
tetrahedron table and this is added to the node table storage requirement.

7.3.1 Coordinate concatenation vs. identifier concatenation

The storage requirements for the Rotterdam data set, stored using identifier concate-
nation, were previously published by Penninga and van Oosterom (2008b). In that
publication the assumption was made that coordinate concatenation would require
more storage capacity. Table 7.4 clearly confirms this assumption for the Rotter-
dam data set, since coordinate concatenation requires about four times more storage
space. The explanation for this difference lies in the coordinate repetition within the
data structure. All tetrahedrons, regardless the selected concatenation method, are
described by their nodes. However, since each node is part of multiple tetrahedrons,
this node will appear multiple times in the tetrahedron table. Repeating the node
coordinates several times requires more storage space than repeating the node identi-
fier. Table 7.3 provided an indication of how often these coordinates or identifier are

126 Chapter 7. Evaluation and discussion

repeated. For the ‘toy’ data set this was on average 15 times, while the Rotterdam
and DUT campus data set show an average of around 22. As mentioned before, the
number of 15 is likely to be too low to be representative, due to the large amount
of tetrahedrons that lie on the outer boundary of the TEN. The theoretical number
of (slightly more than) 27 tetrahedrons per node, as reported by Okabe et al. (2000,
table 5.11.2) for a tetrahedronisation of an evenly distributed set of points, might act
as an upper bound.

Although the repetition explains the significant differences in storage requirements
for the Rotterdam data set, one can not generalise these outcomes. Table 7.4 reports
equal storage requirements for both concatenation methods for the ‘toy’ data set.
This is caused by the unrealistic coordinates used in this data set. Since it is a fake
data set, all coordinates are small integers. Obviously redundant storage of these
concatenated coordinate integers does not differ from redundant storage of concate-
nated identifier integers. The Rotterdam buildings are described by their coordinates
in the Dutch national grid and thus require more storage space than the identifiers.
However, if one extends this to a national data set at the same level of detail, a
tetrahedron in coordinate concatenation form will still require the same amount of
storage space, whereas the identifier concatenation storage requirements will increase
with the increase in the TEN size, due to the required very large node identifiers. This
will lead to differences that are less than the factor four reported for the Rotterdam
and the DUT campus data set. Furthermore, switching to a binary representation
(see section 7.6) or adapting a coordinate difference approach for three of the four
tetrahedron nodes (see section 7.6.2) will reduce data storage requirements for the
coordinate concatenation approach. Nevertheless, for ‘local’ data sets one might pre-
fer (from a storage requirements point of view) identifier concatenation.

However, reducing data storage might deteriorate performance, as additional op-
erations are necessary to perform geometrical operations on top of simplexes. If one
thinks for instance of the operation that checks whether a tetrahedron is oriented
positively or negatively, one needs the node coordinates to calculate a normal vector
on one of the triangles and calculate the angle between this normal vector and a vec-
tor from the triangle to the opposite, fourth node to determine whether the normal
points inwards or outwards. To perform this operation in the identifier concatenation
approach, one has to search the node table first to obtain the node geometries. It
should be noted that this effect is probably smaller that the currently required ASCII
to binary conversions. Furthermore, coordinate concatenation might offer possibilities
for spatial clustering (Penninga and van Oosterom 2008b). In order to enable efficient
implementation of spatial queries such as the rectangle (or box) selections, large real
world data sets will require spatial organisation of the data. Spatial organisation
includes spatial clustering (things close in reality are also close in computer memory,
which is tricky given the one dimensional nature of computer memory) and spatial
indexing (given the spatial selection predicate, the addresses of the relevant objects
can be found efficiently). If the current coding of the tetrahedrons (first x, then y,
then z) is replaced by bitwise interleaving, the tetrahedron code itself may be used
for spatial clustering (similar to the Morton code) and also be used (together with

7.3. Evaluating storage requirements 127

the TEN structure) for spatial indexing without using additional structures, such
as quad-trees or r-trees (see section 7.6.1 for more details). Only the coboundary
references of the triangles might need functional indexes to improve performance.

7.3.2 Simplicial complex-based storage vs. polyhedrons

Table 7.4 shows storage requirements for the different data sets in different formats.
Apparently the polyhedron approach is significantly smaller. However, to perform
a fair comparison, one should take into account that the polyhedron approach only
covers the ‘classical’ topographic features, thus omitting the air and earth. In the
previous section, table 7.3 showed that the percentage of air and earth tetrahedrons
can be higher than 75%. In order to make a fair comparison between the tetrahedro-
nised data sets and the polyhedron storage, one has to take this factor into account.
When these tetrahedrons are ignored, the comparison shows some interesting results.
The Rotterdam data set in identifier concatenation form requires 20.73 MB of storage
space (19.27 Mb for the tetrahedron table and 1.46 MB for the node table). It turned
out that about 77.7% of the tetrahedrons represent either air or earth. As a result
the tetrahedronised buildings require about 5.76 MB (22,3% of 19.27 MB plus 1.46
MB). This estimation shows storage requirements of about the same order of magni-
tude as the polyhedron approach. Unfortunately this conclusion does not hold for the
DUT campus data set. Based on closer visual inspection of the tetrahedronisation
results of this data set, it is assumed that this different outcome is mainly caused
by the unnecessary insertion of large number of tetrahedrons due to uncleaned data
as described earlier. Figure 7.5 illustrated the case with two close parallel lines in a
facade, which triggered the creation of a lot of additional tetrahedrons. The presence
of small details will not necessarily trigger these additional tetrahedrons, as can be
seen in figure 7.11. The difference between the two situations (figure 7.5 and figure
7.11) is that in the latter case the small details are not coplanar, whereas in the former
case these small faces are coplanar. Nevertheless, generally speaking an increase in
scale will increase the number of tetrahedrons, thus decreasing the compactness of
the simplicial complex-based approach.

Still one needs to take into account that the current implementation of identi-
fier concatenation uses character strings, whereas bit strings would be more storage
efficient. Using binary representations in the test implementation will save storage
space (estimated between a factor 2 to 3). Furthermore switching to binary format
will increase performance and ASCII to binary conversions will become obsolete.

Although significant differences exist in the ratio between a polyhedron and a sim-
plicial complex-based approach, the overall result is still interesting. It is plausible
that this difference will be smaller as soon as the negative influence of unwanted
artefacts in the DUT campus data set on the storage requirements is excluded. So,
if the volume partition approach is ignored, optimising the simplicial complex-based
approach (in terms of switching to binary format, similar to the polyhedron format)
may lead to a comparable or, in some cases, even more compact representation than
polyhedrons. This result contradicts with the prevailing view that tetrahedrons are

128 Chapter 7. Evaluation and discussion

Figure 7.11: Small details such as the building extensions (less than one metre) cause
less problems in case the parallel lines are not all coplanar (compared with figure 7.5)

more expensive in terms of storage than polyhedrons, as expressed for instance by
Zlatanova et al. (2004, p. 424): ‘An additional disadvantage of TEN is its much
larger database size compared with other representations’. Obviously this outcome
is also influenced by the rather redundant implementation of polyhedrons in Oracle
Spatial 11g, since nodes are repeated for each face. An alternative implementation,
for instance the one suggested by Arens et al. (2005), that eliminates this redundant
storage of nodes, might be smaller.

7.4 Evaluating initial visualisation tools

Some basic visualisation tools have been developed to visualise the tetrahedronised
topographic features. Penninga et al. (2006) describe a realisation of a simple 3D
viewer, based on an available 2D viewer (i.e. Oracle AS MapViewer (Kothuri et al.
2004)) and the implementation of one 3D rotation function rotate geom (suitable for
any type of Oracle spatial geometry). This rotation will result in a new 2D view that
effectively looks like a bird’s-eye view of a 3D data set. Figure 7.12 shows the first
version of the ‘toy’ data set as described in section 7.1.1, with a house and a road in
front of it. Note that the SQL select statement, that selects and rotates edges from
view full edge, is visible in the bottom of this screendump. The queries resulting in
the coloured road and roof top triangles are not visible. Penninga et al. (2006) suggest
further improvements, such as implementing hidden line/hidden surface removal by
depth sorting after rotation, adding semi-transparency and developing a GUI that
defines several views with different rotation angles, thus enabling viewing from differ-
ent viewpoints. This additional functionality will transform existing 2D viewers into
useful ‘3D’ viewers.

True 3D visualisation of tetrahedronised data sets, using formats such as X3D,

7.5. Discussing requirements for 3D data sets with correct topology 129

Figure 7.12: Combining Oracle AS MapViewer (a 2D viewer) and a 3D rotation
function results in an initial ‘3D’ viewer

CityGML and KML, is described by Wesselingh (2007). In this research a web-based
viewer is developed (Webviewer Wesselingh 2007), capable of visualising data directly
from the database. Depending on the preferred visualisation either the tetrahedron
table or the constrained triangle view are used to collect all required data. An example
of a visualisation derived from the constrained triangle view is shown in figure 7.13.
In this visualisation only the buildings were selected, thus showing no earth surface.
Such visualisations can become more realistic by the addition of textures. Since the
data model uses opposites one can even use different textures for different sides of
for instance a wall, thus enabling more realistic exterior and interior modelling of
buildings.

7.5 Discussing requirements for 3D data sets with
correct topology

The previously described tests with data sets did not only result in insights on the
capabilities of the new method, but also in insights on additional requirements for 3D

130 Chapter 7. Evaluation and discussion

Figure 7.13: Visualisation in X3D of part of the Rotterdam data set, with differ-
ent colours for buildings taller than 10 meters. Note that the data set is shown in
its rotated form, as described in section 7.2 (source: Webviewer Wesselingh (2007),
Wesselingh (2007))

data sets. As mentioned in the beginning of this chapter, most test data sets were
created (partially) by extrusion. The extrusion algorithms are supposed to result
in valid PLC’s in order to be able to be used as input in the tetrahedronisation
software. However, just extruding a 2D map polygon-by-polygon will usually result
in a topologically incorrect PLC. Figure 7.14 shows some potential errors in extrusion
algorithms. At the left the 2D map is displayed. Two adjacent buildings (polygons
described as list of boundary points) share boundary < v1, v2 >. First this adjacency
has to be detected to make sure that the shared points in both buildings refer to
the same node (thus preventing the existence of multiple nodes at the location of v1

and v2). Now each building can be extracted (figure 7.14: middle). Extruding the
first building (with h=5) results in the creation of nodes v7, v8, v9 and v10. During
extraction of the second building one should not only create nodes v11, v12, v13, v14

and v15 and the connecting walls, but also detect that the newly created nodes v7 and
v8 intersect these newly created walls. In this case three separate faces are needed to
correctly describe the wall between the two buildings (figure 7.14: right).

Another important requirement is that the polygons are closed and do not inter-
sect other polygons. The same criteria are also important in case a 3D data set in

7.6. Identifying future developments 131

v0

v1

v2

v3

v4

v5

v6

v0

v1

v2

v3

v4

v5

v6

v7

v8

v9

v10

v11

v12

v1

v4

v7

v13

h=5

h=7

v14

v15
v14

v15

v11

v8

v2

Figure 7.14: Possible topological errors introduced by feature-by-feature extrusion: the
shared boundary < v1, v2 > has to be detected to avoid the creation of multiple nodes
on the locations of v1 and v2 and the intersecting planes in the shared wall have to be
detected and split to create a topologically correct description.

geometric form needs to be transformed into a correct topological description of the
same data set. Furthermore, when transforming for instance a polyhedron data set
into a topological format, not only each individual polyhedron has to be valid, but
also the resulting set of polyhedrons. For instance, two watertight polyhedrons might
still intersect each other (beyond tolerance values) and this needs to be avoided.

Although not topologically incorrect, situations as described in section 7.2 (where
multiple unnecessary points were located on a line) will also have a negative impact
on the usability of a data set in the simplicial complex-based data structure. Another
requirement might be that for instance the earth surface, including building footprints,
forms a planar partition.

7.6 Identifying future developments∗

Within this research not all ideas have been implemented and some of the ideas were
triggered by the evaluation tests. This section will present some of these ideas to
illustrate the possibilities of the simplicial complex-based approach.

7.6.1 Improving performance: spatial clustering and indexing

Section 7.3 already mentioned the possibility to utilise the tetrahedron codes (based
on coordinate concatenation) for spatial clustering. This idea is based on continuing
a line of argument from the observation in section 5.3.2 that a node geometry in itself
is already an unique identifier. Since node identifiers might be obsolete, no additional

∗This section is based on the open issues 0, 2 and 4, as described in Penninga and van Oosterom
(2008b). These open issues were identified after initial tests (presented in the same paper). Therefore
this section is included within this chapter.

132 Chapter 7. Evaluation and discussion

index on top of these indexes is required either, as long as some sort of sorting is
possible. Bitwise interleaving of node coordinates will result in such a sortable code.
The concept is to represent geometry (for instance node (4,1,5)) in binary format
(x=100, y=001, z=101) and then interleave these binary representations into a single
code (101000011). With this sortable node code, the concatenation of nodes can
be sorted as well. This will result in a 3D Morton code-like spatial clustering of
tetrahedrons. This tetrahedron encoding within a TEN structure can also be used
for spatial indexing without additional structures, such as quad-tree or r-trees. Since
these structures require a significant amount of storage space and maintenance during
updates (van Oosterom and Vijlbrief 1996), this will be a big advantage, especially
since one saves also the storage space for meaningless unique identifiers.

7.6.2 Dealing with storage requirements: storing all coordi-
nates vs. storing differences

Assuming that one opts for the coordinate concatenation approach, storage require-
ments can be reduced by avoiding storage of the full coordinates. Since the four nodes
are relatively close to each other, one might choose to store the coordinates of one node
and only give difference vectors to the other three nodes: x1y1z1x2y2z2x3y3z3x4y4z4

would change into xyzδx1δy1δz1δx2δy2δz2δx3δy3δz3. Switching to coordinate differ-
ence may lead to an estimated storage reduction with factor two or three. As with the
choice between coordinate concatenation and identifier concatenation, reducing data
storage will come at a price. Again additional operators are required to reconstruct
the four node geometries when necessary. However, if these can be implemented ef-
ficiently (and there is no reason why this can not be done), these could be used in a
view translating the compact physical storage representation in the more verbose full
representation. Also the bitwise interleaving approach may still work well with this
approach, as it is sufficient to apply bitwise interleaving only to the first coordinate.

7.6.3 Improving edit functionality: snapping

The current implementation requires 3D data sets to load into the database. Although
research efforts are made to increase availability of such datasets (Oude Elberink and
Vosselman 2006), dependence of the availability of such data sets seriously limits ap-
plicability of the data structure at this time. Therefore additional functionality is
required to switch from importing 3D data sets into importing 3D data from differ-
ent sources. One can imagine that creation of a 3D topographic model starts with
the creation of the earth surface, followed by inclusion of 3D buildings. In general,
buildings are build on top of the earth surface. As the earth surface and building
data originates from different sources, these objects are not likely to fit together per-
fectly. To cope with such situation, one needs a snap-to-earth-surface operator. Such
an operator will project the buildings footprint onto the terrain and determine the
distance between terrain and building undersides. If this distance is smaller than a
certain pre-set tolerance, the building will be placed on the terrain by applying a
vertical displacement, thus ensuring a tight fit. Two options exist for this, as one

7.6. Identifying future developments 133

can either adjust the buildings underside to fit the terrain or adjust the terrain to
fit the (usually flat) underside of the building. The snapping operator can also be
utilised for inclusion of for instance infrastructural objects and land coverage objects.
Although snapping to the earth surface is probably the most obvious snapping target,
usability of such an operator is not limited to the earth surface. For instance, one
can also think of snapping a building to another building, thus ensuring the presence
of a shared wall.

Chapter 8

Conclusions

The objective of this research was to develop a data model (i.e. both a conceptual
model and a data structure) for 3D topography, capable of handling large data vol-
umes, that offers support for loading, updating, querying, analysis, and validation.
The reasons for the development of such a 3D model are twofold: on the one hand
it is demand-driven due to increasing importance of sustainability and environmental
issues, thus requiring more accurate 3D analysis, on the other hand it is supply-driven
since recent sensor technology developments resulted in both increasing availability
and increasing point density of 3D data. The results of this research are summarised
in section 8.1. Section 8.2 draws conclusions from these results and these results
are discussed in section 8.3. The chapter ends with an outlook of future research in
section 8.4.

8.1 Results

The main objective of this research is expressed in the main research question:

How can a 3D topographic representation be realised
in a feature-based triangular data model?

Within this main research question, two key questions were distinguished. The first
one is how to develop a conceptual model that describes the real world phenomena (the
topographic features), regarding the general purpose-characteristic of topographic
data sets. This question is answered in section 8.1.1. The second one is how to
implement this conceptual model within a DBMS environment, in other words, how
to develop a suitable data structure? Section 8.1.2 presents such a suitable data
structure.

136 Chapter 8. Conclusions

8.1.1 A conceptual model for 3D topography

One of the basic assumptions within this research is the use of triangular data models.
These structures are selected due to computational advantages, the flatness of the
faces (well defined by three points) and the presence of well-known topological rela-
tionships. As a result, topographic features will be described as sets of triangles and
these features will be connected by triangles as well, thus creating a fully connected
triangular network. Chapter 3 introduced two different approaches to triangular
modelling of 3D topography. The first one is a very pragmatic hybrid approach that
combines a 2.5D surface with 3D objects for those cases where 2.5D modelling is not
sufficient. In terms of triangular data structures, this approach combines a TIN with
several TENs. This irregular data structure not only allows varying point density
(depending on local model complexity), but extends this irregularity into varying even
model dimensionality, thus offering the ultimate fit-for-purpose approach. Unfortu-
nately, connecting TIN and TEN networks appeared to be very difficult at design
level. The second approach avoids these problems, since it is a full 3D approach using
only a TEN.

With respect to the selected full 3D modelling approach, two fundamental obser-
vations are of great importance:

• Physical objects have by definition a volume. In reality, there are no point,
line or polygon objects; only point, line or polygon representations exist (at a
certain level of abstraction/simplification).

• The real world can be considered a volume partition (within one theme): a set
of nonoverlapping volumes that form a closed (i.e. no gaps within the domain)
modelled space. Objects like ‘earth’ or ‘air’ are thus explicitly included in the
model.

In topographic data models, planar features like walls or roofs are obviously very
useful. They can be part of the volumetric data model as ‘derived features’, i.e. these
features depend on the relationship between volume features. For example, the earth
surface is the boundary between earth and non-earth features, while a wall or a roof
are the result of adjacent building an air features. In terms of UML, these surface
features are modelled as association classes. As a result, surface features are lifetime
dependent from the association between two volume features.

A number of advantages of a full volumetric modelling approach can be identified.
First of all, explicit inclusion of air and earth extends the analytical capabilities of
the model, since the air and earth are often subject of analysis. In case of the air,
one can think of modelling noise propagation, air pollution or particulate matter
distribution. Second, these general air and earth types might be subclassified into
air traffic or telecommunication corridors, geological layers or oil and gas reservoirs,
thus increasing the data richness of topographic data sets. Integrating more types of
information extends the number of possible applications and analyses, since all these
different sources can be related to each other. The third and last advantage is that all
features are well-connected within the volumetric data set, thus enabling topological

8.1. Results 137

approaches to analysis and validation (although the actual benefits will depend on
the implementation of the accompanying data structure).

As a result, topographic features will be modelled in a TEN. Each feature will
be represented by a set of tetrahedrons. The presence of correct feature boundaries
is ensured by the use of constrained edges and triangles. Constrained edges and
triangles are preserved under edit or refinement operations on the TEN. Since the
real world is considered as a volume partition, each tetrahedron will represent one
(part of a) feature. In other words, this representation is a 3D single valued vector
map. Less dimensional features, such as the earth surface, can be modelled as de-
rived features and are defined by the neighbour relation between volume features, for
instance between earth and air. Database views might be defined to provide access
to such special features, thus resulting in a TEN subset that is basically a TIN.

8.1.2 A data structure for 3D topography

A solid mathematical foundation

One of the key characteristics of the presented TEN data structure is that it is based
on Poincaré simplicial homology. The operators and definitions from this field, as
presented in chapter 4, offer a solid mathematical foundation for the data structure.
Simplexes are well defined, ordered and constructed of simplexes of lower dimension.
The boundary operator can be used to derive these less dimensional simplexes. Based
on the ordering of simplexes one can determine orientation. One might consider ori-
entation as not a real mathematical characteristic of simplexes, since the concept of
orientation is based on arbitrary conventions; nevertheless it enables useful operations
within a GIS context, for instance in defining inside and outside. Within this context,
simplicial homology offers some favourable characteristics. First, the zero homomor-
phism results in consistent orientation of faces of a simplex. For instance, the normal
vectors of the four boundary triangles of a tetrahedron will either all point inwards
or all point outwards. Second, obtaining a simplex with opposite orientation requires
only a transposition of its nodes.

A very important concept from simplicial homology is the simplicial complex, since
such a set of connected simplexes will be used to model 3D topography. In terms of
simplicial homology, a TEN can be defined as a simplicial complex of homogeneous
dimension of three that consists of face-connected 3-simplexes. In addition to the
requirements following from this definition (no self-intersections, no dangling edges,
faces or tetrahedrons), a TEN is also supposed to consist of positively oriented 3-
simplexes within the scope of this dissertation. In other words, the normal vectors
of the boundary faces of each 3-simplex point outwards, which is common practice
in computer graphics and GIS. Since topographic features will be represented as set
of tetrahedrons, it is important that the boundary operator can also be applied to
simplicial complexes, thus able to derive feature boundaries.

138 Chapter 8. Conclusions

A DBMS data structure

Applying definitions and operators from simplicial homology enables one to store a
constrained TEN in a relatively compact way. The new simplicial complex-based
method (as introduced in chapter 5) requires only explicit storage of tetrahedrons,
while simplexes of lower dimensions (triangles, edges, nodes), constraints and topo-
logical relationships can be derived in views. In this implementation, simplexes are
encoded by their vertices. The boundary operator is used to derive views with the
simplexes of lower dimension. In order to avoid explicit storage of constrained trian-
gles and edges, simplex encoding is extended with a feature identifier. In other words,
a tetrahedron is encoded as S3 =< v0, v1, v2, v3, fid >. The boundary operator is
implemented such that oriented triangles inherit the feature id from the tetrahedron
they partially bound. Since the implementation uses triangles and opposite triangles
(‘halftriangles’), neighbouring tetrahedrons are separated by a triangle and its op-
posite. In case both tetrahedrons represent the same topographic feature, both the
triangle and its opposite have the same inherited feature id. However, if the triangle is
a constrained triangle, the tetrahedrons will represent different features and thus the
triangle and its opposite will have different inherited feature identifiers. As a result,
non-constrained triangles cancel out in pairs (since the triangle and its opposite will
have identical triangle codes apart from the sign), while constrained triangles remain
present. Topological relationships can also be derived, both at feature and at TEN
level, for instance the neighbour relationship between tetrahedrons. This is achieved
by creating a view with triangle opposites and defining the triangle view such that
the coboundary is known. Neighbouring tetrahedrons can be identified by deriving
the boundary triangles and querying their opposites first and their coboundaries af-
terwards, thus resulting in the four neighbouring tetrahedrons.

Two variants in simplex encoding have been developed. The coordinate concate-
nation is the most rigorous attempt to eliminate redundancy. By concatenating the
x, y and z coordinate as node identifier, the node geometry in itself becomes an unique
identifier. Simplexes of higher dimension are described by a concatenation of node
codes. The alternative approach, identifier concatenation, requires an additional
node table. Separate (meaningless) node identifiers are used to encode simplexes.
This approach reduces the number of coordinate repetitions, since the coordinates of
a specific node will be repeated in multiple tetrahedrons. Despite the substantially
reduced storage requirements of identifier concatenation, this is not automatically the
best solution. Applying coordinate concatenation yields the potential to sort bitwise-
interleaved tetrahedron codes, such that this ordering acts as a spatial location code,
thus eliminating the need for additional spatial index creation. Not only would this
affect the overall storage requirements, but it will also affect performance. A clean
comparison, based on multiple realistic data sets, is needed to determine the most
suitable concatenation approach.

Validation can be performed at TEN level as well as at feature level. To validate
a volume feature, three checks need to be performed. First of all a valid TEN is

8.2. Main conclusions 139

required. A valid TEN meets the criteria described in the definition of a TEN as
a simplicial complex (as given earlier), including the positive orientation. Secondly,
the volume feature boundary should be watertight (which is the case if the zero
homomorphism holds). The last check is to see whether the interior of the volume
feature is face-connected. An overall validation of topographic features in a simplicial
complex-based structure requires therefore three steps: first the TEN has to be valid,
second all individual features have to be valid and third and last the set of all features
has to be consistent, meaning that there are no gaps or overlays between features.

An editable data structure

A critical factor in the creation of data structure feasible for topographic data sets, is
the possibility to perform incremental updates. Complete rebuilds of the TEN struc-
ture will be time-consuming due to the expected data volume and should therefore
be avoided. Furthermore, edits are usually related to local changes, so edit opera-
tions are required that affect the TEN structure as locally as possible, thus trying to
avoid ‘domino’ effects of alterations. Four steps can be distinguished in the feature
insertion process: first a surface boundary triangulation of the feature is created.
The resulting edges are then inserted as constrained edges into the TEN. Next one
has to ensure the presence of constrained faces and as the fourth and last step the
feature’s interior is modelled, including reclassifying the tetrahedrons involved. In
order to demonstrate the usability of the simplicial complex-based approach for 3D
topographic purposes, one need to guarantee successful update operations, since the
frequent updates are a key characteristic of topography. Chapter 6 presented a new
approach to the insertion of feature edges that guarantees successful insertion of these
edges. Nine exhaustive and mutually exclusive cases were distinguished, depending
on the type of intersection between the two nodes of a feature edge and the existing
TEN structure. The following annotation is used: Iij , where i and j indicate the
dimension of the simplexes in which interior the two nodes of the constrained edge
lie. As a result, the nine cases I01, I02, I03, I11, I12, I13, I22, I23 and I33 should be
interpret as (in case of I01) inserting an edge of which one node is already present
and the other lies on an existing edge, as (in case of I02) inserting an edge of which
one node is already present and the other lies on an existing triangle and so on. In
each case the edge is inserted with a pure local impact on the TEN structure.

8.2 Main conclusions

The previous section summarised the main results of this research. Based on these
results, the following conclusions can be drawn:

• This dissertation presents a new topological approach for 3D topography, based
on a tetrahedral network. Operators and definitions from the field of simplicial
homology are used to define and handle this structure of tetrahedrons. Ap-
plying simplicial homology offers full control over orientation of simplexes and

140 Chapter 8. Conclusions

enables one to derive substantial parts of the TEN structure efficiently, instead
of explicitly storing all primitives.

• Operators and definitions from simplicial homology provide a solid mathemati-
cal foundation for the data structure.

• The simplicial complex-based approach and the vertex encoding including fea-
ture identifiers eliminate the need for explicit storage of triangles, edges, nodes
(in case of coordinate concatenation), constrained triangles, and constrained
edges. As a result, it is a relatively compact data structure.

• The prevailing view that tetrahedrons, compared to polyhedrons, are more ex-
pensive in terms of storage, proved to be outdated. Storage requirements for 3D
objects in tetrahedronised form (excluding the space in between these objects)
and 3D objects stored as polyhedrons, are in the same order of magnitude.
Switching to a binary representation and storing coordinate differences instead
of coordinates will lead to a significant storage reduction (about factor six) for
the coordinate concatenation approach (including air and earth), thus justifying
the full decomposition approach.

• A TEN has favourable characteristics from a computational point of view. All
elements of the tetrahedral network consist of flat faces (important for clear
inside/outside decisions), all elements are convex and they are well defined,
thus allowing relatively easy implementation of operations, such as validation
of 3D objects.

• DBMS characteristics as the usage of views, functions and function-based in-
dexes are extensively used and contribute to the compactness and versatility of
the data structure. Furthermore a database is capable of managing large data
volumes, which is an essential characteristic in handling large scale 3D data.

• A full volumetric approach contributes not only to improved analytical and val-
idation capabilities, but also enables future integration of topography and other
3D data within the same volume partition, like geological layers, polluted regions
or air traffic and telecommunication corridors. Although the price of this ap-
proach in terms of storage space is high (about 75% of the tetrahedrons models
air or earth), this approach is likely to become justifiable due to current devel-
opments like the trend towards sustainable urban development and increased
focus on environmental issues. The impact of these factors on GI-developments
is significant, as illustrated by for instance the environmentally-driven INSPIRE
project (INSPIRE 2007).

• Constrained tetrahedronisation algorithm implementations are scarce and usu-
ally not developed with GI or DBMS applications in mind. TetGen is used
in this research and the TetGen website (2007) defines TetGen’s main goal as
‘to generate suitable meshes for solving partial differential equations by finite
element or finite volume methods’. As a result these algorithms are usually not
tested with large numbers of features and large numbers of incremental changes.

8.3. Discussion 141

• The simplicial complex-based approach is not limited to 3D applications, since
the underlying mathematical definitions and operators apply in general dimen-
sion. For instance, 4D simplexes can be used for spatio-temporal modelling.
Although it is hard to imagine or visualise a 4D simplex, simplicial homology
shows that five 4D nodes define a 4D simplex, 120 permutations of this sim-
plex code exist (of which 60 will have an orientation opposite to the other 60
permutations), the boundary operator can be used to derive its five bound-
ary tetrahedrons in 4D and the Cayley-Menger determinant may be used to
calculate its volume (although it might not be a meaningful).

• Nine exhaustive and mutually exclusive cases can be distinguished in constrained
edge insertion (I01, I02, I03, I11, I12, I13, I22, I23 and I33), based on the type
of intersection between the two nodes of the constrained edge and the existing
TEN structure. In each case the edge is inserted with a pure local impact
on the TEN, thus enabling incremental updates that affect the TEN structure
very locally. These operators guarantee successful update operations, a crucial
prerequisite for 3D topography.

• Since the edit operations act as locally as possible, the resulting tetrahedronisa-
tion is not necessarily of the best quality. To overcome this drawback, periodical
quality improvements need to be made. Three types are distinguished: opera-
tors that add vertices, operators that remove vertices and operators that modify
the TEN configuration through flips. Every now and then a complete TEN re-
build might be feasible to optimise TEN quality.

8.3 Discussion

The first important discussion topic is to identify the innovative aspects of the pro-
posed method. As discussed in section 2.4.3, neither the idea to use a TEN data
structure for 3D data nor the idea to use simplexes (in terms of simplicial homology)
in a DBMS implementation is new. However, the proposed approach reduces data
storage and eliminates the need for explicit updates of both topology and simplexes
of lower dimension. By doing so, the approach tackles common drawbacks as TEN
extensiveness and laboriousness of maintaining topology. Furthermore, applying sim-
plicial homology offers full control over orientation of simplexes, which is a significant
advantage especially in 3D. In addition to this aspect, the mathematical theory of
simplicial homology offers a solid theoretical foundation for both the data structure
and data operations. Integrating these concepts with database functionality results
in a new innovative approach to 3D data modelling.

Second, the often raised objection of complexity of a TEN approach can be ques-
tioned. Obviously, a 1:n relation exists between features and their representations,
which might confuse the user as the link between tetrahedrons and the real world
features can be hard to recognise. However, one can think of a setup in which the user
handles only features (as polyhedrons), while the implemented algorithms translate

142 Chapter 8. Conclusions

these polyhedrons into constrained triangles and use these to construct or update
the constrained tetrahedronisation. In other words, the user interface determines the
perceived complexity, not the internal representation.

This separation between the internal data representation and a data representa-
tion used in the user interface, can easily be extended to the next level: since a TEN
structure requires about the same amount of storage space as a polyhedron data type,
one might argue that a polyhedron data type in a DBMS should be represented in-
ternally as set of tetrahedrons. In this case each individual polyhedron is represented
as a TEN, so no full space partition will exist. By doing so, one can benefit from the
well-defined character of the TEN and simplify –amongst others– object validation
significantly.

The most important issue is to analyse whether the proposed method is feasible.
The plea for provable correct modelling methods goes back for two decades (Frank
and Kuhn 1986), but is still valid (Frank 2008, Requirement 1). The simplicial
complex-based modelling approach provides such a method. This is not only shown
by this research, but also by independent research by Hui et al. (2006), whose Double-
Level Decomposition (DLD) data structure stores a decomposition of a 3D complex
as a collection of tetrahedrons, dangling triangles and wire edges. Another important
result is that the prevailing view that tetrahedrons are always much more expensive
in terms of storage than polyhedrons has been falsified in this research. Obviously,
including air and earth within the model comes at a price (approximately 75% of tetra-
hedrons model air or earth), but –as stated earlier in the conclusions– this approach is
likely to become justifiable, due to current sustainability and environmentally-driven
developments. The decision to develop the data structure as a database structure
contributes to the overall feasibility, since a database will become indispensable due
to the expected data volumes.

8.4 Future research

At this point the simplicial complex-based data structure is available in its basic form.
Several future extensions of this approach look very promising and deserve further
investigation, as well as some improvements of the current implementation:

• Within this research vario-scale representations or generalisation on top of the
TEN were out of scope, but this is a very interesting field of research. General-
isation algorithms for TIN structures are well-known and often used to reduce
the vast amount of height data points obtained by LIDAR. Also for generalising
integrated terrain and 2D object models algorithms are available, for instance
the one described by Stoter et al. (2005). In general these kind of generalisation
algorithms try to detect characteristic points or break lines in a triangulation,
followed by a point removal operation that preserves these characteristic fea-
tures. One can think of similar approaches in 3D, where break lines or charac-
teristic faces have to be detected and preserved. Currently no examples of such
3D TEN generalisation algorithms are known to the author.

8.4. Future research 143

• An topic that was briefly mentioned, but out of scope of this research, is tem-
poral modelling with simplicial complexes. Since all underlying mathematical
theory applies in general dimension, the possibility of spatio-temporal modelling
with 4D simplexes has to be explored. A 4D spatio-temporal partition of space
enables consistency checks. Some may argue that 4D is not the way to go given
the completely different nature of space and time, which leads to different units
along the axis of the 4D space. Nevertheless, interesting spatio-temporal rela-
tionships can be detected in such a 4D space. Answering questions like ‘where
were you when JFK was shot’ or ‘yesterday I went to this pub, have you ever
been there?’ boils down to detecting intersecting 4D simplicial complexes. Dis-
tance calculations in 4D might be meaningless due to the different units, but
become relevant when projected in space (distance) or time (time difference).
Both possibilities and limitations of such an approach have to be investigated.

• Closely related to temporal modelling is dynamic modelling in TEN structures.
Ledoux (2008) describes a kinetic 3D Voronoi diagram, but all calculations on a
moving point are performed within a tetrahedronisation. Based on this part of
the algorithm, algorithms capable of handling moving lines, faces and volumes
might be developed.

• The modelling of continuous fields (continuous in space, not in time) is also very
interesting. One way to go might be an approach similar to the one described by
Ledoux and Gold (2007), who argue that one should use both Voronoi diagrams
(the primal) and Delaunay tetrahedronisation (the dual) in 3D. In this case the
simplicial complex-based structure might be seen as the primal, whereas specific
continuous phenomena can be represented in the dual, the Voronoi diagram.
Another nice characteristic of applying this primal-dual approach is that the
Voronoi diagram will contain information on proximity of topographic features.

• Indoor topography is also a very interesting extension for 3D topography, es-
pecially due to the possible applications, for instance in the field of disaster
management. Adding indoor features will require a change in the conceptual
model, but the data structure is likely to be feasible. Since triangle opposites
(halftriangles) are available, separate information can be linked to these two
triangles, thus enabling for instance a distinction between the inner and the
outer side of a wall.

• Although more applied research, further integration with the subsurface world is
recommended. Whereas tetrahedrons are still rather unusual in the GIS world,
they are more common in the field of geological modelling, where tetrahedrons
are often used as the irregular counterpart of voxels, see for instance (Pouliot
et al. 2008). Integrating topography with subsurface date might lead to the
integration of object and field data, in which subsurface nodes can be seen as
sample (i.e. measured) data.

• To edit features within the simplicial complex-based data structure, a set of
tetrahedron-based edit operations is required. Snapping functionality is already

144 Chapter 8. Conclusions

described in section 7.6, but other operators are useful as well. One can think
of cleaning operators, that remove unnecessary nodes from lines (thus avoiding
situations as illustrated in figure 7.5), union operators (that union two separate
features), split operators (reverse of union operators) and move operators, that
adjust geometrical attributes of features, but not necessarily the topological
structure, for instance in case a new, more accurate survey cause small shifts in
the location of features. All these operators should work directly on the TEN
structure and preserve the Euler-Poincaré characteristic. A nice example of
using only Euler operators to update a data structure is presented by Tse et al.
(2004).

• Several techniques that can reduce storage requirements have to be implemented
and tested, such as the switch to binary form including spatial clustering through
bitwise interleaving, and the switch to coordinate difference for three of the four
nodes of a tetrahedron. Both ideas are described in section 7.6.

• As mentioned in section 8.1.1, the current conceptual model is a single valued
vector map. The option to store multi valued vector maps (for instance for the
integration of 3D topography and cadastral data) has to be explored.

Bibliography

3D Topography, 2006, website: http://www.rgi-otb.nl/3dtopo.

Actueel Hoogtebestand Nederland, 2006, website: http://www.ahn.nl.

Arens, C., 2003, “Maintaining Reality; Modelling 3D spatial objects in a Geo-DBMS using
a 3D primitive”, Master’s thesis, Delft University of Technology.

Arens, C., Stoter, J. and van Oosterom, P., 2005, Modelling 3D spatial objects in a
geo-DBMS using a 3D primitive. Computers & Geosciences, 31, 165–177.

Beers, B.J., 1995, FRANK - the design of a new landsurveying system using panoramic
images. PhD thesis, Delft University of Technology.

Borst, H., 2001, The role of Urbis noise and noise effects maps in local policy. In: 2001
International Congress and Exhibition on Noise Control Engineering.

Bowyer, A., 1981, Computing Dirichlet Tesselations. Computer Journal, 24, 162–166.

Carlson, E., 1987, Three-dimensional conceptual modeling of subsurface structures. In:
Auto-Carto 8, pp. 336–345.

Cavalcanti, P.R. and Mello, U., 1999, Three-dimensional Constrained Delaunay Trian-
gulation: a Minimalist Approach. In: 8th International Meshing Roundtable, pp. 119–129.

Center for Advanced Gaming and Simulation (AGS), 2007, website:
http://www.gameresearch.nl/research.html.

Chew, L.P., 1993, Guaranteed-Quality Mesh generation for Curved Surfaces. In: Ninth
Annual Symposium on Computational Geometry (Association for Computing Machinery),
pp. 274–280.

Chew, P.L., 1989, Constrained Delaunay Triangulation. Algorithmica, 4, 97–108.

Colins, K.D., 2003, Cayley-Menger Determinant. From Mathworld – A Wolfram Web Re-
source. website: http://mathworld.wolfram.com/Cayley-MengerDeterminant.html.

Comer, D., 1979, The ubiquitous B-tree. ACM Computing Surveys, 11, 121–137.

Coumans, F., 2007, Actueel Hoogtebestand Nederlnad wordt veel gedetailleerder (in Dutch).
VI Matrix, 15, 24–27.

145

146 Bibliography

Cowen, D., 1988, GIS versus CAD versus DBMS: what are the differences. Photogrammetric
Engineering and Remote Sensing, 54, 1551–1555.

Date, C.J., 1986, An Introduction to Database Systems, Fourth Edition , Vol. I (Addison-
Wesley Publishing Company).

de Vries, J., 2001, “Three dimensional buffering based on Tetrahedron Networks, storage
and analysis in a 3D GIS (in Dutch)”, Master’s thesis, Delft University of Technology.

Delaunay, B., 1934, Sur la sphère vide. Izvestia Akademia Nauk SSSR, Otdelenie Matem-
aticheskii i Estestvennyka Nauk, 7, 793–800.

Edelsbrunner, H. and Shah, N., 1996, Incremental topological flipping works for regular
triangulations. Algorithmica, 15, 223–241.

Egenhofer, M. and Frank, A., 1989, PANDA: An Extensible DBMS Supporting Object-
Oriented Software Techniques. In: Datenbanksysteme in Büro, Technik und Wissenschaft.
Proceedings of GI/SI Fachtagung, Zürich, 1989, Informatik Fachberichten (Springer-
Verlag), pp. 74–79.

Egenhofer, M., Frank, A. and Jackson, J., 1989, A Topological Data Model for Spatial
Databases. In: Design and Implementation of Large Spatial Databases: First Symposium
SSD’89, 409 of Lecture Notes on Computer Science (Springer), pp. 271–286.

El-Harbawi, M., Mustapha, S., Rashid, S.A., Choong, T.S. and AL-Shalabi, M.,
2004, Using geographic information systems in assessment of major hazards of liquefied
petroleum gas. Disaster Prevention and Management, 13, 117–129.

Ellul, C. and Haklay, M., 2006, Requirements for Topology in 3D GIS. Transactions in
GIS, 10, 157–175.

Ford, A. and James, P., 2005, Integration of 3D petroleum datasets in commercial GIS. In:
AGILE 2005, 8th Conference on Geographic Information Science. Conference Proceedings.
Estoril, Portugal, May 26-28, F. Toppen and M. Painho (Eds), pp. 411–418.

Forta, B., 2004, SQL in 10 Minutes, Third Edition (Sams Publishing).

Frank, A.U., 2008, Requirements for 3D in Geographic Information Systems Applications.
In: Advances in 3D Geoinformation Systems, P. van Oosterom, S. Zlatanova, F. Penninga
and E.M. Fendel (Eds), Lecture Notes in Geoinformation and Cartography (Springer),
pp. 419–423.

Frank, A.U. and Kuhn, W., 1986, Cell Graphs: A provable Correct Method for the
Storage of Geometry. In: Proceedings of the 2nd International Symposium on Spatial
Data Handling, Seattle, Washington.

Giblin, P., 1977, Graphs, Surfaces and Homology, An Introduction to Algebraic Topology
(Chapman and Hall).

Gold, C.M., 2006, What is GIS and what is not. Transactions in GIS, 10, 505–519.

Bibliography 147

Gold, C.M., Ledoux, H. and Dzieszko, M., 2005, A data structure for the construction
and navigation of 3D Voronoi and Delaunay cell complexes. In: 13th International Con-
ference in Central Europe on Computer Graphics, Visualization and Computer Vision,
pp. 21–22.

Guibas, L. and Stolfi, J., 1985, Primitives for the Manipulation of General Subdivisions
and the Computation of Voronoi Diagrams. ACM Transactions on Graphics, 4, 74–123.

Guttman, A., 1984, R-trees: A dynamic index structure for spatial searching. In: Proceed-
ings of 13th ACM SIGMOD Conference, pp. 47–57.

Hatcher, A., 2002, Algebraic Topology (Cambridge University Press) (Available at
http://www.math.cornell.edu/∼hatcher).

Heerd, R., Kuijlaars, E., Teeuw, M. and van t Zand, R., 2000, Productspecificatie
AHN 2000 (in Dutch). Meetkundige Dienst, Rijkswaterstaat.

Hilbert, D., 1891, Über die stetige Abbildung einer Linie auf ein Flächenstück. Mathema-
tische Annalen, 38, 459–460.

Hui, A., Vaczlavik, L. and Floriani, L.D., 2006, A decomposition-based representa-
tion for 3D simplicial complexes. In: SGP ’06: Proceedings of the fourth Eurographics
symposium on Geometry processing (Eurographics Association), pp. 101–110.

INSPIRE, 2007, Directive 2007/2/EC of the European Parliament and of the Council of
14 March 2007 establishing an Infrastructure for Spatial Information in the European
Community (INSPIRE). In: Official Journal, April 25, 2007. Entered into force: May 15,
2007. Available at http://www.ec-gis.org/inspire/.

ISO 19101:2002, 2002, Geographic Information – Reference Model. International Organiza-
tion for Standardization.

ISO 19107:2003(E), 2003, Geographic Information - Spatial Schema. International Organi-
zation for Standardization.

Joe, B., 1991, Construction of Three-dimensional Triangulations using Local Transforma-
tions. Computer Aided Geometric Design, 8, 123–142.

Joe, B., 1993, Construction of k-dimensional Delaunay Triangulations using Local Trans-
formations. SIAM Journal on Scientific Computing, 14, 1415–1436.

Joe, B., 1995, Construction of three-dimensional improved-quality triangulations using local
transformations. SIAM Journal on Scientific Computing, 16, 1292–1307.

Kadaster, 2007, Product leaflet TOP10vecotr. Kadaster Available at
http://www.kadaster.nl/pdf/TOP10vector.pdf.

Kazar, B.M., Kothuri, R., van Oosterom, P. and Ravada, S., 2008, On Valid and In-
valid Three-Dimensional Geometries. In: Advances in 3D Geoinformation Systems, P. van
Oosterom, S. Zlatanova, F. Penninga and E.M. Fendel (Eds), Lecture Notes in Geoinfor-
mation and Cartography (Springer), pp. 19–46.

Kolbe, T., Gröger, G. and Plümer, L., 2005, CityGML: Interoperable Access to 3D City
Models. In: Geo-information for Disaster Management (GI4DM) (Springer), pp. 884–899.

148 Bibliography

Kothuri, R., Godfrind, A. and Beinat, E., 2004, Pro Oracle Spatial: The essential guide
to developing spatially enabled business applications (Apress).

Kraak, M. and Ormeling, F., 1996, Cartography, Visualization of spatial data (Longman).

Kroonenberg, S., 2006, De menselijke maat – de aarde over tienduizend jaar (Amstel
Uitgevers) (In Dutch).

Kwan, M.P. and Lee, J., 2005, Emergency response after 9/11: The potential of real-
time 3D GIS for quick emergency response in micro-spatial environments. Computers,
Environment and Urban Systems, 29, 93–113.

Lawson, C., 1977, Software for C1 Surface Interpolation. In: Mathematical Software III,
J. Rice (Ed.), pp. 161–194.

Ledoux, H., 2006, Modelling Three-dimensional Fields in Geoscience with the Voronoi
Diagram and its Dual. PhD thesis, University of Glamorgan/Prifysgol Morgannwg.

Ledoux, H., 2008, The Kinetic 3D Voronoi Diagram: A Tool for Simulating Environmental
Processes. In: Advances in 3D Geoinformation Systems, P. van Oosterom, S. Zlatanova,
F. Penninga and E.M. Fendel (Eds), Lecture Notes in Geoinformation and Cartography
(Springer), pp. 361–380.

Ledoux, H. and Gold, C.M., 2007, Simultaneous storage of primal and dual three-
dimensional subdivisions. Computers, Environment and Urban Systems, 31, 393–408.

Ledoux, H., Gold, C.M. and Baciu, G., 2005, Flipping to robustly delete a vertex in a
Delaunay tetrahedralization. In: Proceedings International Conference on Computational
Science and its Applications-ICCSA 2005, 3480 of Lecture Notes on Computer Science
(Springer), pp. 737–747.

Lee, D.T. and Lin, A.K., 1986, Generalized Delaunay triangulations for planar graphs.
Discrete and Computational Geometry, 1, 201–217.

Liu, A. and Baida, M., 2000, How far flipping can go towards 3D conforming/constrained
triangulation. In: Proceedings of the 9th International Meshing Roundtable (Sandia Na-
tional Laboratories), pp. 307–313.

Louwsma, J., Zlatanova, S., Lammeren, R. and van Oosterom, P., 2006, Specifying
and Implementing Constraints in GIS - with Examples from a Geo-Virtual Reality System.
GeoInformatica, 10, 531–550.

Mäntylä, M., 1988, An Introduction to Solid Modeling (Computer Science Press).

MathWorld, 2007, website: http://mathworld.wolfram.com/PlanarStraightLineGraph.html.

Meshing Research Corner, 2008, website: www.andrew.cmu.edu/user/sowen/mintro.html.

Miller, G.L., Talmor, D., Teng, S.H., Walkington, N. and Wang, H., 1996, Control
Volume Meshes using Sphere Packing: Generation, Refinement and Coarsening. In: 5th
International Meshing Roundtable (Sandia National Laboratories), pp. 47–62.

Bibliography 149

Molenaar, M., 1990a, A Formal Data Structure for Three Dimensional Vector Maps. In:
4th International Symposium on Spatial Data Handling, Zürich, July (Columbus, OH:
International Geographical Union IGU), pp. 830–843.

Molenaar, M., 1990b, A Formal Data Structure for Three Dimensional Vector Maps. In:
Proceedings First European Conference on GIS (EGIS’90), Volume 2, Amsterdam, pp.
770–781.

Molenaar, M., 1992, A topology for 3D vector maps. ITC Journal, 2, 25–33.

Morton, G.M., 1966, A computer oriented geodetic data base and a new technique in file
sequencing. IBM Ltd.

Murray, C., 2007, Oracle Spatial Developer’s Guide 11g Release 1 (11.1) B28400-02. Oracle
corporation.

Nobbe, H., Elberink, S.O., Penninga, F., Verbee, E. and Zuidema, G., 2006,
Gebruikerswensen 3D Topografie (in Dutch). 3D Topography consortium. Available at
http://www.gdmc.nl/3dtopo.

Okabe, A., Boots, B., Sugihara, K. and Chiu, S.N., 2000, Spatial tessellations: Concepts
and applications of Voronoi diagrams, Second (John Wiley and Sons).

Oude Elberink, S. and Vosselman, G., 2006, Adding the Third Dimension to a Topo-
graphic Database Using Airborne Laser Scanner Data. In: Photogrammetric Computer
Vision 2006. IAPRS, Bonn, Germany, pp. 92–97.

Paoluzzi, A., Bernardini, F., Cattani, C. and Ferrucci, V., 1993, Dimension-
independent modeling with simplicial complexes. ACM Trans. Graph., 12, 56–102.

Peano, G., 1890, Sur une courbe, qui remplit toute une aire plane. Mathematische Annalen,
36, 157–160.

Penninga, 2008, website: http://www.frisopenninga.nl.

Penninga, F., 2005a, 3D Topographic Data Modelling: Why Rigidity Is Preferable to
Pragmatism. In: Spatial Information Theory, Cosit’05, A.G. Cohn and D.M. Mark (Eds),
3693 of Lecture Notes on Computer Science (Springer), pp. 409–425.

Penninga, F., 2005b, Towards 3D Topography using a Feature-based Integrated TIN/TEN
Model. In: AGILE 2005, 8th Conference on Geographic Information Science. Conference
Proceedings. Estoril, Portugal, May 26-28, F. Toppen and M. Painho (Eds), pp. 373–381.

Penninga, F. and van Oosterom, P., 2006a, Editing Features in a TEN-based DBMS
approach for 3D Topographic Data Modelling. Delft University of Technology Available
at http://www.gdmc.nl/publications/reports/GISt43.pdf.

Penninga, F. and van Oosterom, P., 2006b, Updating Features in a TEN-based DBMS
approach for 3D Topographic Data Modelling. In: Geographic Information Science, Fourth
International Conference, GIScience 2006, Münster, Germany, September 2006, Extended
Abstracts, M. Raubal, H.J. Miller, A.U. Frank and M.F. Goodchild (Eds), 28 of IfGI
prints, pp. 147–152.

150 Bibliography

Penninga, F. and van Oosterom, P., 2007, A Compact Topological DBMS Data Structure
For 3D Topography. In: Geographic Information Science and Systems in Europe, Agile
Conference 2007, S. Fabrikant and M. Wachowicz (Eds), Lecture Notes in Geoinformation
and Cartography (Springer), pp. 455–471.

Penninga, F. and van Oosterom, P., 2008a, A Simplicial Complex-based DBMS Ap-
proach To 3D Topographic Data Modelling. Accepted for publication in the International
Journal of Geographical Information Science Date of acceptance: August 18, 2007. Pub-
lication scheduled for 2008.

Penninga, F. and van Oosterom, P., 2008b, First implementation results and open is-
sues on the Poincaré-TEN data structure. In: Advances in 3D Geoinformation Systems,
P. van Oosterom, S. Zlatanova, F. Penninga and E.M. Fendel (Eds), Lecture Notes in
Geoinformation and Cartography (Springer), pp. 177–198.

Penninga, F., van Oosterom, P. and Kazar, B.M., 2006, A TEN-based DBMS approach
for 3D Topographic Data Modelling. In: Progress in Spatial Data Handling, 12th Inter-
national Symposium on spatial Data Handling, A. Riedl, W. Kainz and G. Elmes (Eds)
(Springer), pp. 581–598.

Pigot, S., 1995, A topological model for a 3-dimensional Spatial Information System. PhD
thesis, University of Tasmania, Australia.

Pigot, S., 1992, A Topological Model for a 3D Spatial Information System. In: Proceedings
of the 5th International Symposium on Spatial Data Handling, pp. 344–360.

Pilouk, M., 1996, Integrated Modelling for 3D GIS. PhD thesis, ITC Enschede, Netherlands.

Poincaré, H., 1895, Analysis Situs. Journal de l’Ecole Polytechnique, 1, 1–123.

Poincaré, H., 1899, Complément á l’Analysis Situs. Rendiconti del Circolo Matematico di
Palermo, 13, 285–343.

Pouliot, J., Badard, T., Desgagné, E., Bédard, K. and Thomas, V., 2008, Develop-
ment of a Web Geological Feature Server (WGFS) for sharing and querying 3D objects.
In: Advances in 3D Geoinformation Systems, P. van Oosterom, S. Zlatanova, F. Penninga
and E.M. Fendel (Eds), Lecture Notes in Geoinformation and Cartography (Springer),
pp. 115–130.

Rasmussen, K.B., 1998, On the development of approximate models for outdoor sound
propagation. In: Eighth International Symposium on Long Range Sound Propagation at
Penn State.

Requieha, A. and Voelcker, H., 1980a, Construcvive Solid Geometry. .

Requieha, A. and Voelcker, H., 1980b, Mathematical Foundations of Constructive Solid
Geometry: General Topology of Closed Regular Sets. .

Requieha, A. and Voelcker, H., 1983, Solid Modeling: Current Status and Research
Directions. IEEE Computer Graphics and Applications, 3.

Bibliography 151

Rossmann and Bücken, 2008, Using 3D Laser Scanners and Image Recognition for Vol-
ume Based Single Tree-Delineation and -Parameterization for 3D-GIS-Applications. In:
Advances in 3D Geoinformation Systems, P. van Oosterom, S. Zlatanova, F. Penninga
and E.M. Fendel (Eds), Lecture Notes in Geoinformation and Cartography (Springer),
pp. 131–145.

Ruppert, J., 1995, A Delaunay Refinement Algorithm for Quality 2-Dimensional Mesh
Generation. Journal of Algorithms, 18, 548–585.

Schönhardt, 1928, Über die Zerlegung von Dreieckspolyedern in Tetraeder. Mathematische
Annalen, 98, 309–312.

Shewchuk, 2008, website: http://www.cs.berkeley.edu/∼jrs/.

Shewchuk, J.R., 1996, Triangle: Engineering a 2D Quality Mesh Generator and Delau-
nay Triangulator. In: Applied Computational Geometry: Towards Geometric Engineering,
M.C. Lin and D. Manocha (Eds), 1148 of Lecture Notes in Computer Science (Springer-
Verlag), pp. 203–222.

Shewchuk, J.R., 1997a, Adaptive Precision Floating-Point Arithmetic and Fast Robust
Geometric Predicates. Discrete & Computational Geometry, 18, 305–363.

Shewchuk, J.R., 1997b, Delaunay refinement mesh generation. PhD thesis, Carnegie Mellon
University.

Shewchuk, J.R., 1999, Lecture Notes on Delaunay Mesh Generation. Department of Elec-
trical Engineering and Computer Science, University of California at Berkeley. Available
at http://www.cis.upenn.edu/∼cis610/shewchuk1999.pdf.

Shewchuk, J.R., 2002, Delaunay Refinement Algorithms for Triangular Mesh Generation.
Computational Geometry: Theory and Applications, 22, 21–74.

Shewchuk, J.R., 2003, Updating and Constructing Constrained Delaunay and constrained
Regular Triangulations by Flips. In: Proceedings of the 19th Annual Symposium on Com-
putational Geometry, San Diego, pp. 181–190.

Shewchuk, J.R., 2004, General-Dimensional Constrained Delaunay and Constrained Reg-
ular Triangulations I: Combinatorial Properties. To appear in: Discrete & Computational
Geometry Available at http://www-2.cs.cmu.edu/∼jrs.

Si, H., 2006a, On Refinement of Constrained Delaunay Tetrahedralizations. In: 15th Inter-
national Meshing Roundtable, Birmingham, USA.

Si, H., 2006b, TetGen - A Quality Tetrahedral Mesh Generator and Three-Dimensional
Delaunay Triangulator. Version 1.4 Users Manual. Wias Berlin.

Si, H., 2006c, TetGen, A Quality Tetrahedral Mesh Generator and Three-Dimensional
Delaunay Triangulator. User’s Manual. Weierstrass Institute for Applied Analysis
and Stochastics, Berlin, Germany Available at http://tetgen.berlios.de/files/tetgen-
manual.pdf.

152 Bibliography

Simonse, M., Verbree, E., van Asperen, P. and van der Vegt, J.W., 2000, Construc-
tion of the 3DTOP10 - Integration of Countrywide Planimetric Data and Laseraltimetry
Data to Support 3D-Visualisation and Analysis. In: XIXth Congress ISPRS 2000, Am-
sterdam, M. Molenaar and K.J. Beek (Eds), XXXIII of International Archives of Pho-
togrammetry and Remote Sensing, pp. 995–1002.

Stoter, J., 2004, 3D Cadastre. PhD thesis, Delft University of Technology.

Stoter, J., de Kluijver, H. and Kurakula, V., 2008, Towards 3D environmental impact
studies: example of noise. In: Advances in 3D Geoinformation Systems, P. van Oosterom,
S. Zlatanova, F. Penninga and E.M. Fendel (Eds), Lecture Notes in Geoinformation and
Cartography (Springer), pp. 341–360.

Stoter, J., Penninga, F. and van Oosterom, P., 2005, Generalization of integrated
terrain elevation and 2D object models. In: 11th International Symposium on Spatial
Data Handling: Developments in spatial data handling, P.F. Fisher (Ed.) (Springer), pp.
527–546.

Tangelder, J., Ermes, P., Vosselman, G. and van den Heuvel, F., 2003, CAD-
Based Photogrammetry for Reverse Engineering of Industrial Installation. IEEE Computer
Graphics and Applications, 18, 264–274.

TetGen, 2007, website: http://tetgen.berlios.de/.

Thompson, R., 2007, Towards a rigorous logic for spatial data representation. PhD thesis,
Delft University of Technology.

Thompson, R.J., 2006, 3D Framework for Robust Digital Spatial Models. (Taylor & Francis
CRC Press), pp. 177–209.

Thompson, R.J. and van Oosterom, P., 2006, Implementation issues in the storage of
spatial data as regular polytopes. In: UDMS’06 Aalborg, Denmark May 15-17, 2006,
E. Fendel and M. Rumor (Eds), pp. 2.33–2.46.

Tse, R.O. and Gold, C., 2004, TIN Meets CAD - Extending the TIN Concept in GIS.
Future Generation Computer systems (Geocomputation), 20, 1171–11849.

Tse, R., Gold, C. and Kidner, D., 2004, An original way of building a TIN with complex
urban structuress. In: Proceedings of ISPRS 2004 - XXth Congress, Istanbul, Turkey.

van der Most, A., 2004, “An algorithm for overlaying 3D features using a tetrahedral
network”, Master’s thesis, Delft University of Technology.

van Essen, R., 2008, Maps Get Real: Digital Maps evolving from mathematical line graphs
to virtual reality models. In: Advances in 3D Geoinformation Systems, P. van Oosterom,
S. Zlatanova, F. Penninga and E.M. Fendel (Eds), Lecture Notes in Geoinformation and
Cartography (Springer), pp. 3–18.

van Oosterom, P., 2005a, Space for geo-information - 3D Topography - project pro-
posal fase 1 RGI - 011. Delft University of Technology. Available at http://www.rgi-
otb.nl/3dtopo.

Bibliography 153

van Oosterom, P., 2005b, Space for geo-information - 3D Topography - project pro-
posal fase 2 RGI - 011. Delft University of Technology. Available at http://www.rgi-
otb.nl/3dtopo.

van Oosterom, P., Vertegaal, W., van Hekken, M. and Vijlbrief, T., 1994, Inte-
grated 3D Modelling within a GIS. In: International GIS workshop AGDM’94, pp. 80–95.

van Oosterom, P. and Vijlbrief, T., 1996, The Spatial Location Code. In: Advances
in GIS research II; proceedings of the seventh International Symposium on Spatial Data
Handling - SDH’96, M.J. Kraak and M. Molenaar (Eds) (Taylor and Francis).

Verbree, E., 2002, Driedimensionale Topografische Terreinmodellering op basis van
Tetrader Netwerken: Top10-3D (in Dutch). Delft University of Technology. Available at
http://www.gdmc.nl/publications/reports/GISt16.pdf.

Verbree, E. and van Oosterom, P., 2003a, Better surface representations by Delaunay
Tetrahedronized Irregular Networks. In: ESRI International User Conference, San Diego.

Verbree, E. and van Oosterom, P., 2003b, STIN Method: Surface TIN Representation
by Delaunay TENs constrained by observation lines. In: 6th AGILE Conference, Lyon,
April 24-26 2003, pp. 409–419.

Verbree, E., 2006, Piecewise Linear Complex Representations through Conforming De-
launay Tetrahedronization. In: Geographic Information Science, Fourth International
Conference, GIScience 2006, Münster, Germany, September 2006, Extended Abstracts,
M. Raubal, H.J. Miller, A.U. Frank and M.F. Goodchild (Eds), 28 of IfGI prints, pp.
385–387.

Verbree, E., van der Most, A., Quak, W. and van Oosterom, P., 2005, Towards a 3D
Feature Overlay through a Tetrahedral Mesh Data Structure. Cartography and Geographic
Information Science, 32, 303–314.

Verbree, E., Zlatanova, S. and Smit, K., 2004, Interactive navigation services through
value-added CycloMedia panoramic images. In: ICEC ’04: 6th international conference
on Electronic commerce (ACM Press), pp. 591–595.

Watson, D.F., 1981, Computing the n-dimensional Delaunay Tesselation with Application
to Voronoi Polytopes. Computer Journal, 24, 167–172.

Webviewer Wesselingh, 2007, website: http://www.3dwebgis.nl.

Wei, G., Ping, Z. and Jun, C., 1998, Topological Data Modelling for 3D GIS. In: IS-
PRS Commission IV Symposium on GIS Between Visions and Applications, D. Fritsch,
M. Englich and M. Sester (Eds), 32 of The International Archives of Photogrammetry
and Remote Sensing, pp. 657–661.

Wesselingh, S., 2007, “Visualization of a TEN (Tetrahedral Irregular Network) in a web
client”, Geographical Information Management and Applications (GIMA), Utrecht Uni-
versity.

Winther, M., Kousgaarda, U. and Oxbølb, A., 2006, Calculation of odour emissions
from aircraft engines at Copenhagen Airport. Science of the Total Environment, 366,
218–232.

154 Bibliography

Worboys, M. and Duckham, M., 2004, GIS: A Computing Perspective, Second Edition
(CRC Press).

Wordnet, 2007, website: http://wordnet.princeton.edu.

Zlatanova, S., Abdul Rahman, A. and Shi, W., 2004, Topological models and frameworks
for 3D spatial objects. Computers & Geosciences, 30, 419–428.

Zlatanova, S., 2000, 3D GIS for urban development. PhD thesis, Graz University of Tech-
nology.

Zlatanova, S., Abdul Rahman, A. and Pilouk, M., 2002, 3D GIS: Current Status and
Perspectives. In: Proceedings of Joint Conference on Geo-Spatial Theory, Processing and
Applications, Ottawa, Canada.

Appendix I
Implementation:

Functions and procedures

This appendix contains most Oracle PL/SQL functions and procedures that are used
in the proof-of-concept implementation of the simplicial complex-based DBMS data
structure, as described in chapter 5. Note that some procedures are simplified to im-
prove readability and that the declaration section might be reformatted to reduce the
length of this appendix. The full code is available online through the 3D Topography
(2006) and Penninga (2008).

The functions and procedures in this appendix are used in the coordinate con-
catenation implementation. Slightly altered versions were used in the identifier con-
catenation implementation. The figure below illustrates the relationships between the
functions and procedures.

getnode1-3oftriangle

getcenterpoint

checkorientation

permutation34

ordertetrahedron

gettetrahedronMBB

simplexvolume

getobjectid

removetetoibjectid

getneighbourtet

deriveboundarytriangles

tetedgelengthsquare

tetrahedron

triangle

calculatenormal

deriveboundaryedges

gettriangleMBB

triedgelengthsquare

getobjectid

removetriobjectid

outwardsalltet

sortalltet

validatestructure

tokenizer

split

cayleymenger4x4

cayleymenger5x5

simplexvolume

anglebetweenvectors

deriveboundarynodes

edge

node

Act on table(s) General functions

156 Appendix I – Implementation: Functions and procedures

-- The narray type will be used frequently in the following functions and procedures

CREATE OR REPLACE TYPE narray IS VARRAY(13) OF NVARCHAR2(1000);

/

/*

==

Procedure name : tokenizer

Description : procedure used in procedure Split to derive tokens (in this case

individual coordinate values from the simplex codes)

==

*/

CREATE OR REPLACE PROCEDURE tokenizer(iStart IN NUMBER, sPattern IN NVARCHAR2,

sBuffer IN NVARCHAR2, sResult OUT NVARCHAR2, iNextPos OUT NUMBER)

AS

nPos1 NUMBER;

nPos2 NUMBER;

BEGIN

nPos1 := Instr (sBuffer ,sPattern ,iStart);

IF nPos1 = 0 THEN

sResult := NULL ;

ELSE

nPos2 := Instr (sBuffer ,sPattern ,nPos1 + 1);

IF nPos2 = 0 THEN

sResult := Rtrim(Ltrim(Substr(sBuffer ,nPos1+1)));

iNextPos := nPos2;

ELSE

sResult := Substr(sBuffer ,nPos1 + 1 , nPos2 - nPos1 - 1);

iNextPos := nPos2;

END IF;

END IF;

END;

/

/*

==

Procedure name : Split

Description : procedure used to split the simplex code (nvarchar2) in separatate

coordinate values (v_array)

==

*/

CREATE OR REPLACE PROCEDURE Split(sbuf IN NVARCHAR2, sepr IN NVARCHAR2,

node_array OUT NARRAY)

AS

sres NVARCHAR2(500);

sbuf2 NVARCHAR2(500);

pos NUMBER;

istart NUMBER;

i NUMBER;

BEGIN

sbuf2 := ’x’||sbuf;

node_array := narray(’0’,’0’,’0’,’0’,’0’,’0’,’0’,’0’,’0’,’0’,’0’,’0’,’0’);

istart := 1;

Appendix I – Implementation: Functions and procedures 157

i := 0;

tokenizer(istart,sepr,sbuf2,sres,pos);

IF (pos <> 0) THEN

i := node_array.first;

node_array(i) := sres;

END IF;

WHILE (pos <> 0)

LOOP

istart := pos;

i := i+1;

tokenizer (istart,sepr,sbuf2,sres,pos);

node_array(i) := sres;

END LOOP;

END;

/

/*

==

Function name : cayleymengerdeterminant5x5 / 4x4

Description : wrapper for an existing Java function to calculate the determinant of a

5x5/4x4 matrix. The Cayley-Menger determinant calculates the volume of a

tetrahedron or a triangle, based on the lengths of their edges (and is

thus independent of the dimension of space)

==

*/

CREATE OR REPLACE FUNCTION cayleymengerdeterminant5x5(input1 NUMBER, input2 NUMBER,

input3 NUMBER, input4 NUMBER, input5 NUMBER, input6 NUMBER)

RETURN NUMBER

AS LANGUAGE JAVA

NAME ’Friso.cayleymengerdeterminant5x5(double, double, double,

double, double, double) return double’;

/

CREATE OR REPLACE FUNCTION cayleymengerdeterminant4x4(input1 NUMBER, input2 NUMBER,

input3 NUMBER)

RETURN NUMBER

AS LANGUAGE JAVA

NAME ’Friso.cayleymengerdeterminant4x4(double, double, double) return double’;

/

/*

==

Procedure name : filltettable

Description : uses temporary tables (in which TetGen results (nodes and tetrahedrons)

were loaded) to create the tetrahedron table of the simplicial complex-

based data structure. It uses coordinate concatenation. Separate

functions will later check orientation and ordering of these codes

==

*/

CREATE OR REPLACE PROCEDURE filltettable(empty IN NUMBER)

IS

CURSOR tetcur IS

SELECT tid FROM temp;

158 Appendix I – Implementation: Functions and procedures

temptid INTEGER;

tetcode NVARCHAR2(500);

tempn1, tempn2, tempn3, tempn4, tempoid INTEGER;

x1, y1, z1, x2, y2, z2, x3, y3, z3, x4, y4, z4 NUMBER;

t1, t2, t3, t4, toid NVARCHAR2(500);

BEGIN

OPEN tetcur;

LOOP

FETCH tetcur INTO temptid;

EXIT WHEN tetcur%notfound;

SELECT n1,n2,n3,n4,oid INTO tempn1,tempn2,tempn3,tempn4,tempoid FROM temp

WHERE (tid=temptid);

SELECT xcoord,ycoord,zcoord INTO x1,y1,z1 FROM tempnode WHERE (nid=tempn1);

SELECT xcoord,ycoord,zcoord INTO x2,y2,z2 FROM tempnode WHERE (nid=tempn2);

SELECT xcoord,ycoord,zcoord INTO x3,y3,z3 FROM tempnode WHERE (nid=tempn3);

SELECT xcoord,ycoord,zcoord INTO x4,y4,z4 FROM tempnode WHERE (nid=tempn4);

INSERT INTO tetrahedron VALUES (

to_char(x1)||’x’||to_char(y1)||’x’||to_char(z1)||’x’||to_char(x2)||’x’||

to_char(y2)||’x’||to_char(z2)||’x’||to_char(x3)||’x’||to_char(y3)||’x’||

to_char(z3)||’x’||to_char(x4)||’x’||to_char(y4)||’x’||to_char(z4)||’x’||

to_char(tempoid));

END LOOP;

CLOSE tetcur;

END;

/

/*

==

Function name : getnode 1-3 oftriangle

Description : returns respectively the 1st, 2nd or 3rd node of a triangle

==

*/

CREATE OR REPLACE FUNCTION getnode1oftriangle(tricode IN NVARCHAR2)

RETURN NVARCHAR2 DETERMINISTIC

IS

node NVARCHAR2(500);

node_array narray := narray();

BEGIN

Split(tricode,’x’,node_array);

node := node_array(2)||’x’||node_array(3)||’x’||node_array(4);

RETURN node;

END;

/

-- Similar to getnode1oftriangle, functions getnode2oftriangle and getnode3oftriangle

-- are created

/*

==

Procedure name : getcenterpoint

Description : calculates centrepoint of tetrahedron (centrepoint is later used in

orientation determinination)

==

*/

Appendix I – Implementation: Functions and procedures 159

CREATE OR REPLACE PROCEDURE getcenterpoint(tetcode IN NVARCHAR2, x OUT NUMBER,

y OUT NUMBER, z OUT NUMBER)

IS

node_array narray := narray();

BEGIN

Split(tetcode,’x’,node_array);

x := (node_array(1)+node_array(4)+node_array(7)+node_array(10))/4;

y := (node_array(2)+node_array(5)+node_array(8)+node_array(11))/4;

z := (node_array(3)+node_array(6)+node_array(9)+node_array(12))/4;

END;

/

/*

==

Procedure name : calculatenormal

Description : calculates normal vector of signed triangle

==

*/

CREATE OR REPLACE PROCEDURE calculatenormal(tricode IN NVARCHAR2, vx OUT NUMBER,

vy OUT NUMBER, vz OUT NUMBER)

IS

node_array narray := narray();

sign NVARCHAR2(500);

BEGIN

Split(tricode,’x’,node_array);

sign := node_array(1);

vx := (node_array(6)-node_array(3))*(node_array(10)-node_array(4))-

(node_array(7)-node_array(4))*(node_array(9)-node_array(3));

vy := (node_array(7)-node_array(4))*(node_array(8)-node_array(2))-

(node_array(5)-node_array(2))*(node_array(10)-node_array(4));

vz := (node_array(5)-node_array(2))*(node_array(9)-node_array(3))-

(node_array(4)-node_array(3))*(node_array(8)-node_array(2));

IF (vx<0) THEN

IF (sign=’-’) THEN

vx := -1*vx;

END IF;

ELSE

IF (sign=’-’) THEN

vx := -1*vx;

END IF;

END IF;

IF (vy<0) THEN

IF (sign=’-’) THEN

vy := -1*vy;

END IF;

ELSE

IF (sign=’-’) THEN

vy := -1*vy;

END IF;

END IF;

IF (vz<0) THEN

IF (sign=’-’) THEN

vz := -1*vz;

160 Appendix I – Implementation: Functions and procedures

END IF;

ELSE

IF (sign=’-’) THEN

vz := -1*vz;

END IF;

END IF;

END;

/

/*

==

Procedure name : anglebetweenvectors

Description : calculates the angle between two 3D vectors. The resulting angle is in

radians! Used in orientation determination

==

*/

CREATE OR REPLACE PROCEDURE anglebetweenvectors(normx IN NUMBER, normy IN NUMBER,

normz IN NUMBER, vecx IN NUMBER, vecy IN NUMBER, vecz IN NUMBER, angle OUT NUMBER)

IS

dotproduct NUMBER;

length1 NUMBER;

length2 NUMBER;

BEGIN

dotproduct := normx*vecx + normy*vecy + normz*vecz;

length1 := power(normx,2) + power(normy,2) + power(normz,2);

length2 := power(vecx,2) + power(vecy,2) + power(vecz,2);

angle := ACOS(dotproduct/((SQRT(length1))*(SQRT(length2))));

END;

/

/*

==

Procedure name : checkorientation

Description : supposes poincare tetrahedron, so orientation of all four boundary

triangles is identical (either all inwards or all outwards). From tetrahedron

<v0,v1,v2,v3> it takes boundary <v1,v2,v3> (orientation is positive). The normal

vector of this triangle is calculated. A second vector is constructed, from <v0>

to <v1>. The angle between these two vectors is calculated. if it is smaller

than 90 degrees (0.5*PI), the orientation is inwards, otherwise outwards.

==

*/

CREATE OR REPLACE PROCEDURE checkorientation(tetcode IN NVARCHAR2,

isoutwards IN OUT NUMBER)

IS

node_array narray := narray();

angle NUMBER;

tricode NVARCHAR2(500);

difx, dify, difz NUMBER;

normx, normy, norm NUMBER;

BEGIN

Split(tetcode,’x’,node_array);

difx := node_array(1) - node_array(4);

Appendix I – Implementation: Functions and procedures 161

dify := node_array(2) - node_array(5);

difz := node_array(3) - node_array(6);

tricode := ’+x’||node_array(4)||’x’||node_array(5)||’x’||node_array(6)||’x’||

node_array(7)||’x’||node_array(8)||’x’||node_array(9)||’x’||

node_array(10)||’x’||node_array(11)||’x’||node_array(12);

calculatenormal(tricode,normx,normy,normz);

anglebetweenvectors(normx,normy,normz,difx,dify,difz,angle);

IF (angle>(3.1415926535897932384626433832795/2)) THEN

isoutwards := 1;

ELSE

isoutwards := 0;

END IF;

END;

/

/*

==

Procedure name : permutation34

Description : Performs a permutation of the last two vertices in the tetrahedron code.

This single permutation causes a chance of orientation (i.e. inwards instead of

outwards or vice versa) of the tetrahedron. For simplexes of dimension < 3,

usage of signed and ordered encodings is preferred above permutations

==

*/

CREATE OR REPLACE PROCEDURE permutation34(tetcode IN NVARCHAR2,

tetcodeperm OUT NVARCHAR2)

IS

node_array narray := narray();

BEGIN

Split(tetcode,’x’,node_array);

tetcodeperm := node_array(1)||’x’||node_array(2)||’x’||node_array(3)||’x’||

node_array(4)||’x’||node_array(5)||’x’||node_array(6)||’x’||

node_array(10)||’x’||node_array(11)||’x’||node_array(12)||’x’||

node_array(7)||’x’||node_array(8)||’x’||node_array(9)||’x’||

node_array(13);

END;

/

/*

==

Procedure name : ordertriangle

Description : Orders a triangle, based on the coordinate code of each vertex, from

small to large, in order to ensure that each triangle and its opposite have the

same code (apart from the sign) and not one of their equivalent permutations

==

*/

CREATE OR REPLACE PROCEDURE ordertriangle(tricode IN NVARCHAR2,

orderedtricode OUT NVARCHAR2)

IS

node_array narray := narray();

sign NVARCHAR2(500);

test1, test2, test3 INTEGER;

BEGIN

162 Appendix I – Implementation: Functions and procedures

Split(tricode,’x’,node_array);

IF (node_array(2) < node_array(5)) THEN

test1 := 1;

ELSE

IF (node_array(2) = node_array(5)) THEN

IF (node_array(3) < node_array(6)) THEN

test1 := 1;

ELSE

(...)

-- The rest of the code is omitted since it is is long and full of repetitions. It

-- determines the current order and rewrites triangle < a, b, c> such that (a < b < c)

-- holds. For two nodes a and b, a<b holds if x_{a} < x_{b}. In case of equal

-- x-coordinates the test is performed on y- or z-coordinates.

/*

==

Procedure name : ordertetrahedron

Description : Orders a tetrahedron based on the coordinate code of each vertex, from

small to large, in order to ensure that each triangle and its opposite have the

same code (apart from the sign) and not one of thheir equivalent permutations

==

*/

-- This code is omitted, since it is is long and full of repetitions. It acts similar

-- to the ordertriangle procedure, desecribed above

/*

==

Procedure name : deriveboundarytriangles

Description : Derives the four boundary triangles of a tetrahedron by applying the

boundary operator of the simplical complex homology. All resulting triangles

are ordered (v0<v1<v2) and signed(+/-)

==

*/

CREATE OR REPLACE PROCEDURE deriveboundarytriangles(tetcode IN NVARCHAR2,

tricode1 OUT NVARCHAR2, tricode2 OUT NVARCHAR2,

tricode3 OUT NVARCHAR2, tricode4 OUT NVARCHAR2)

IS

node_array narray := narray();

BEGIN

Split(tetcode,’x’,node_array);

ordertriangle(’+’||’x’||node_array(4)||’x’||node_array(5)||’x’||node_array(6)||

’x’|| node_array(7)||’x’||node_array(8)||’x’||node_array(9)||’x’||node_array(10)

||’x’||node_array(11)||’x’||node_array(12)||’x’||node_array(13), tricode1);

ordertriangle(’-’||’x’||node_array(1)||’x’||node_array(2)||’x’||node_array(3)||

’x’||node_array(7)||’x’||node_array(8)||’x’||node_array(9)||’x’||node_array(10)

||’x’||node_array(11)||’x’||node_array(12)||’x’||node_array(13), tricode2);

ordertriangle(’+’||’x’||node_array(1)||’x’||node_array(2)||’x’||node_array(3)||

’x’||node_array(4)||’x’||node_array(5)||’x’||node_array(6)||’x’||node_array(10)

||’x’||node_array(11)||’x’||node_array(12)||’x’||node_array(13), tricode3);

ordertriangle(’-’||’x’||node_array(1)||’x’||node_array(2)||’x’||node_array(3)||

’x’||node_array(4)||’x’||node_array(5)||’x’||node_array(6)||’x’||node_array(7)||

Appendix I – Implementation: Functions and procedures 163

’x’||node_array(8)||’x’||node_array(9)||’x’||node_array(13), tricode4);

END;

/

-- Functions deriveboundarytriangle1, deriveboundarytriangle2, deriveboundarytriangle3

-- and deriveboundarytriangle4, result in 1 of the 4 boundary triangles, as described

-- in procedure deriveboundarytriangles

/*

==

Procedure name : deriveboundaryedges

Description : Derives the three boundary edges of a signed triangle by applying the

boundary operator of the simplical complex homology. All resulting edges are

ordered (v0<v1, as the triangles are ordered) and signed(+/-)

==

*/

CREATE OR REPLACE PROCEDURE deriveboundaryedges(tricode IN NVARCHAR2,

edcode1 OUT NVARCHAR2, edcode2 OUT NVARCHAR2, edcode3 OUT NVARCHAR2)

IS

sign NVARCHAR2(500);

node_array narray := narray();

BEGIN

Split(tricode,’x’,node_array);

sign := node_array(0);

IF (sign=’+’) THEN

edcode1 := ’+’||’x’||node_array(5)||’x’||node_array(6)||’x’||node_array(7)

||’x’||node_array(8)||’x’||node_array(9)||’x’||node_array(10);

edcode2 := ’-’||’x’||node_array(2)||’x’||node_array(3)||’x’||node_array(4)

||’x’||node_array(8)||’x’||node_array(9)||’x’||node_array(10);

edcode3 := ’+’||’x’||node_array(2)||’x’||node_array(3)||’x’||node_array(4)

||’x’||node_array(5)||’x’||node_array(6)||’x’||node_array(7);

ELSE

edcode1 := ’-’||’x’||node_array(5)||’x’||node_array(6)||’x’||node_array(7)

||’x’||node_array(8)||’x’||node_array(9)||’x’||node_array(10);

edcode2 := ’+’||’x’||node_array(2)||’x’||node_array(3)||’x’||node_array(4)

||’x’||node_array(8)||’x’||node_array(9)||’x’||node_array(10);

edcode3 := ’-’||’x’||node_array(2)||’x’||node_array(3)||’x’||node_array(4)

||’x’||node_array(5)||’x’||node_array(6)||’x’||node_array(7);

END IF;

END;

/

-- The functions deriveabsboundaryedge1, deriveabsboundaryedge2 and

-- deriveabsboundaryedge3 each result in 1 of the 3 edge codes, as described in

-- procedure deriveboundaryedgese.

/*

==

Procedure name : deriveboundarynodes

Description : Derives the two boundary nodes of a signed (or not) edge by applying the

boundary operator of the simplical complex homology.

==

164 Appendix I – Implementation: Functions and procedures

*/

CREATE OR REPLACE PROCEDURE deriveboundarynodes(edcode IN NVARCHAR2,

odecode1 OUT NVARCHAR2, nodecode2 OUT NVARCHAR2)

IS

node_array narray := narray();

BEGIN

Split(edcode,’x’,node_array);

IF (node_array(1)=’+’) OR (node_array(1)=’-’) THEN

nodecode1 := node_array(2)||’x’||node_array(3)||’x’||node_array(4);

nodecode2 := node_array(5)||’x’||node_array(6)||’x’||node_array(7);

ELSE

nodecode1 := node_array(1)||’x’||node_array(2)||’x’||node_array(3);

nodecode2 := node_array(4)||’x’||node_array(5)||’x’||node_array(6);

END IF;

END;

/

-- The functions deriveboundarynode1 and deriveboundarynode2 result in 1 of the 2

-- node codes, as described in procedure deriveboundarynodes above.

/*

==

Procedure name : gettetrahedronmbb

Description : Derives the minimum bounding box of a tetrahedron by selecting the min

x, y, z and max x, y, z.

==

*/

CREATE OR REPLACE PROCEDURE gettetrahedronmbb(tetcode IN NVARCHAR2, minx OUT NUMBER,

miny OUT NUMBER, minz OUT NUMBER, maxx OUT NUMBER,

maxy OUT NUMBER, maxz OUT NUMBER)

IS

node_array narray := narray();

BEGIN

Split(tetcode,’x’,node_array);

minx := node_array(1);

maxx := node_array(1);

miny := node_array(2);

maxy := node_array(2);

minz := node_array(3);

maxz := node_array(3);

FOR i IN 1..3

LOOP

IF (node_array(3*i+1)<minx) THEN

minx := node_array(3*i+1);

END IF;

IF (node_array(3*i+1)>maxx) THEN

maxx := node_array(3*i+1);

END IF;

IF (node_array(3*i+2)<miny) THEN

Appendix I – Implementation: Functions and procedures 165

miny := node_array(3*i+2);

END IF;

IF (node_array(3*i+2)>maxy) THEN

maxy := node_array(3*i+2);

END IF;

IF (node_array(3*i+3)<minz) THEN

minz := node_array(3*i+3);

END IF;

IF (node_array(3*i+3)>maxz) THEN

maxz := node_array(3*i+3);

END IF;

END LOOP;

END;

/

/*

==

Procedure name : gettrianglembb

Description : Derives the minimum bounding box of a tetrahedron by selecting the min

x, y, z and max x, y, z.

==

*/

-- Function similar to procedure gettetrahedronmbb, as described above

/*

==

Procedure name : tetedgelengthsquare

Description : Calculates the square of the lengths of the six edges of a tetrahedron.

Used as input for Cayley-Menger determinant

==

*/

CREATE OR REPLACE PROCEDURE tetedgelengthsquare(tetcode IN NVARCHAR2, a OUT NUMBER,

b OUT NUMBER, c OUT NUMBER, d OUT NUMBER, e OUT NUMBER, f OUT NUMBER)

IS

node_array narray := narray();

BEGIN

Split(tetcode,’x’,node_array);

a := power((node_array(4)-node_array(1)),2)+power((node_array(5)-node_array(2)),2)

+power((node_array(6)-node_array(3)),2);

b := power((node_array(7)-node_array(1)),2)+power((node_array(8)-node_array(2)),2)

+power((node_array(9)-node_array(3)),2);

c := power((node_array(10)-node_array(1)),2)+power((node_array(11)-node_array(2)),2)

+power((node_array(12)-node_array(3)),2);

d := power((node_array(7)-node_array(4)),2)+power((node_array(8)-node_array(5)),2)

+power((node_array(9)-node_array(6)),2);

e := power((node_array(10)-node_array(4)),2)+power((node_array(11)-node_array(5)),2)

+power((node_array(12)-node_array(6)),2);

f := power((node_array(10)-node_array(7)),2)+power((node_array(11)-node_array(8)),2)

+power((node_array(12)-node_array(9)),2);

END;

/

166 Appendix I – Implementation: Functions and procedures

/*

==

Procedure name : triedgelengthsquare

Description : Calculates the square of the lengths of the three edges of a triangle.

Used as input for Cayley-Menger determinant

==

*/

-- Function similar to procedure tetedgelengthsquare, as described above

/*

==

Procedure name : simplexvolume

Description : Calculates the volume of a 3- or 2-simplex, using the Cayley-Menger

determinant

==

*/

CREATE OR REPLACE PROCEDURE simplexvolume(simplexcode IN NVARCHAR2,

simplexvolume OUT NUMBER)

IS

a, b, c, d, e, f, det NUMBER;

BEGIN

IF (((SUBSTR(simplexcode,1,1)) = ’+’) OR ((SUBSTR(simplexcode,1,1)) = ’-’)) THEN

triedgelengthsquare(simplexcode,a,b,c);

det := cayleymengerdeterminant4x4(a,b,c);

simplexvolume := SQRT(det/-16);

ELSE

tetedgelengthsquare(simplexcode,a,b,c,d,e,f);

det := cayleymengerdeterminant5x5(a,b,c,d,e,f);

simplexvolume := SQRT(det/288);

END IF;

END;

/

/*

==

Procedure name : outwardsalltet

Description : ckecks for all tetrahedrons in the tetrahedron table whether they are

oriented outwards. if not, the tetrahedrons are replaced by an outwards

oriented permutation (permutation of v2 and v3)

==

*/

CREATE OR REPLACE PROCEDURE outwardsalltet(changes OUT NUMBER, nochanges OUT NUMBER)

IS

CURSOR tetcur IS

SELECT tetcode FROM tetrahedron FOR UPDATE;

tetcode tetrahedron.tetcode%type;

currenttetcode NVARCHAR2(500);

newtetcode NVARCHAR2(500);

bool NUMBER;

a NUMBER;

Appendix I – Implementation: Functions and procedures 167

BEGIN

a := 0;

changes := 0;

nochanges := 0;

OPEN tetcur;

LOOP

FETCH tetcur INTO tetcode;

EXIT WHEN tetcur%notfound;

checkorientation(tetcode,bool);

a:= a+1;

IF (bool = 0) THEN

permutation34(tetcode,newtetcode);

UPDATE tetrahedron SET tetcode=newtetcode WHERE CURRENT OF tetcur;

changes := changes+1;

ELSE

nochanges := nochanges+1;

END IF;

END LOOP;

CLOSE tetcur;

END;

/

/*

==

Procedure name : sortalltet

Description : ckecks for all tetrahedrons in the tetrahedron table whether they are

properly ordered: a<b<c<d. if not, the ordering is altered

==

*/

CREATE OR REPLACE PROCEDURE sortalltet(changes OUT NUMBER, nochanges OUT NUMBER)

IS

CURSOR tetcur1 IS

SELECT tetcode FROM tetrahedron FOR UPDATE;

tetcode tetrahedron.tetcode%type;

newtetcode NVARCHAR2(500);

bool NUMBER;

a NUMBER;

BEGIN

a := 0;

changes := 0;

nochanges := 0;

OPEN tetcur1;

LOOP

FETCH tetcur1 INTO tetcode;

EXIT WHEN tetcur1%notfound;

ordertetrahedron(tetcode,newtetcode);

UPDATE tetrahedron SET tetcode=newtetcode WHERE CURRENT OF tetcur1;

changes := changes+1;

END LOOP;

CLOSE tetcur1;

END;

168 Appendix I – Implementation: Functions and procedures

/

/*

==

Function name : get tet/tri objectid

Description : Returns object ID, to be used in SQL select statements, for instance for

finding all tetrahedrons or triangles of a specific object.

==

*/

CREATE OR REPLACE FUNCTION gettetobjectid(simplexcode NVARCHAR2)

RETURN NVARCHAR2 DETERMINISTIC

IS

node_array narray := narray();

BEGIN

Split(simplexcode,’x’,node_array);

RETURN node_array(13);

END;

/

CREATE OR REPLACE FUNCTION gettriobjectid(simplexcode NVARCHAR2)

RETURN NVARCHAR2 DETERMINISTIC

IS

node_array narray := narray();

BEGIN

Split(simplexcode,’x’,node_array);

RETURN node_array(11);

END;

/

/*

==

Function name : remove tet/tri objectid

Description : Returns simplexcode without object ID (so only geometrical part)

==

*/

CREATE OR REPLACE FUNCTION removetetobjectid(simplexcode NVARCHAR2)

RETURN NVARCHAR2 DETERMINISTIC

IS

node_array narray := narray();

BEGIN

Split(simplexcode,’x’,node_array);

RETURN node_array(1)||’x’||node_array(2)||’x’||node_array(3)||’x’||

node_array(4)||’x’||node_array(5)||’x’||node_array(6)||’x’||

node_array(7)||’x’||node_array(8)||’x’||node_array(9)||’x’||

node_array(10)||’x’||node_array(11)||’x’||node_array(12);

END;

/

CREATE OR REPLACE FUNCTION removetriobjectid(simplexcode NVARCHAR2)

RETURN NVARCHAR2 DETERMINISTIC

IS

node_array narray := narray();

Appendix I – Implementation: Functions and procedures 169

BEGIN

Split(simplexcode,’x’,node_array);

RETURN node_array(1)||’x’||node_array(2)||’x’||node_array(3)||’x’||

node_array(4)||’x’||node_array(5)||’x’||node_array(6)||’x’||

node_array(7)||’x’||node_array(8)||’x’||node_array(9)||’x’||

node_array(10);

END;

/

/*

==

Procedure name : validatestructure

Description : Performs several checks:

check1: Euler count (num of nodes - num of edges + num of triangles - (num of

tetrahedrons + external volume)

check2: number of triangles equals number of unique triangles

check3: number of triangles equals four times number of tetrahedrons

==

*/

CREATE OR REPLACE PROCEDURE validatestructure(result OUT NVARCHAR2)

IS

numnode, numedge, numtri, numtri1, numtri2, numtet, check1, check2, check3 NUMBER;

BEGIN

SELECT COUNT(*) INTO numnode FROM node;

SELECT COUNT(*) INTO numedge FROM edge;

SELECT COUNT(DISTINCT ABS(removetriobjectid(tricode))) INTO numtri FROM triangle;

SELECT COUNT(*) INTO numtet FROM tetrahedron;

check1 := numnode - numedge + numtri - (numtet+1);

SELECT COUNT(*) INTO numtri1 FROM triangle;

SELECT COUNT(DISTINCT tricode) INTO numtri2 FROM triangle;

check2 := numtri1 - numtri2;

check3 := numtri1 - 4*numtet;

IF (check1+check2+check3 = 0) THEN

result := ’Validation result: OK’;

ELSE

IF (check1 <> 0) THEN

result := ’Euler condition not satisfied’;

END IF;

IF (check2 <> 0) THEN

result := result||’-’||’Triangles not unique’;

END IF;

IF (check3 <> 0) THEN

result := result||’-’||’Error in deriving boundary triangles’;

END IF;

END IF;

END;

/

/*

170 Appendix I – Implementation: Functions and procedures

==

Function name : getneighnourtet1-4

Description : Returns neighbouring tetrahderon by using the triangle and

oppositetriangle view

==

*/

CREATE OR REPLACE FUNCTION getneighbourtet1(tetcode NVARCHAR2)

RETURN NVARCHAR2 DETERMINISTIC

IS

neighbourtet NVARCHAR2(100);

BEGIN

SELECT fromtetcode INTO neighbourtet FROM triangle

WHERE tricode=(SELECt dt.oppositetricode FROM oppositetriangle dt

WHERE dt.tricode=deriveboundarytriangle1(tetcode));

RETURN neighbourtet;

END;

/

-- Functions getneighnourtet2-4 are similar, but use deriveboundarytriangle2-4

Appendix II
Implementation:

Creating the data structure

This appendix contains the procedures used for the creation of the simplicial complex-
based data structure, as described in chapter 5. The procedures used in this appendix
are from the coordinate concatenation implementation and differ slightly from the
identifier concatenation implementation.

==

Initial table creation and data loading

==

-- Create and fill temporary tables with tetrahedronisation results from TetGen

CREATE TABLE tempnode(nid INTEGER, xcoord NUMBER, ycoord NUMBER, zcoord NUMBER);

LOAD DATA

INFILE ’data/rotterdam_b.node’

APPEND

INTO TABLE tempnode

fields terminated by ’\t’

(nid integer external,

xcoord float external,

ycoord float external,

zcoord float external)

CREATE TABLE temp(tid INTEGER, n1 INTEGER, n2 INTEGER, n3 INTEGER, n4 INTEGER,

oid INTEGER);

LOAD DATA

INFILE ’data/rotterdam_b.ele’

APPEND

INTO TABLE temp

fields terminated by ’\t’

(tid,n1,n2,n3,n4,oid)

-- Create empty table with tetrahedrons

CREATE TABLE tetrahedron(tetcode NVARCHAR2(300));

172 Appendix II – Implementation: Creating the data structure

==

Loading tetrahedron table and deriving views

==

-- Load data into tetrahedron table (tetrahedron codes are created)

EXEC filltettable(10);

-- Rewrite tetrahedron table to achieve correct ordering and outwards orientation

VAR a NUMBER;

VAR b NUMBER;

EXEC sortalltet(:a,:b);

COMMIT;

VAR c NUMBER;

VAR d NUMBER;

EXEC tettableoutwards(:c,:d);

COMMIT;

-- Creating function based indexes to support view triangle

CREATE INDEX deriveboundarytriangle1_idx ON

tetrahedron(deriveboundarytriangle1(tetcode));

CREATE INDEX deriveboundarytriangle2_idx ON

tetrahedron(deriveboundarytriangle2(tetcode));

CREATE INDEX deriveboundarytriangle3_idx ON

tetrahedron(deriveboundarytriangle3(tetcode));

CREATE INDEX deriveboundarytriangle4_idx ON

tetrahedron(deriveboundarytriangle4(tetcode));

-- Creating view triangle with fields tricode and tetcode

-- (tetrahedron of which the triangle is one of the boundary triangles)

CREATE OR REPLACE VIEW triangle AS

SELECT deriveboundarytriangle1(tetcode) tricode, tetcode fromtetcode

FROM tetrahedron

UNION ALL

SELECT deriveboundarytriangle2(tetcode) tricode, tetcode fromtetcode

FROM tetrahedron

UNION ALL

SELECT deriveboundarytriangle3(tetcode) tricode, tetcode fromtetcode

FROM tetrahedron

UNION ALL

SELECT deriveboundarytriangle4(tetcode) tricode, tetcode fromtetcode

FROM tetrahedron

;

-- Creating view oppositetriangle (two columns: triangle and its opposite,

-- both encoded, including an inherited objectid

CREATE OR REPLACE VIEW oppositetriangle AS

Appendix II – Implementation: Creating the data structure 173

SELECT t1.tricode tricode, t2.tricode oppositetricode

FROM triangle t1, triangle t2

WHERE removetriobjectid(t2.tricode) = -1 *removetriobjectid(t1.tricode)

;

-- Creating view constrainedtriangle (with inherited object id’s)

CREATE OR REPLACE VIEW constrainedtriangle AS

SELECT t1.tricode tricode FROM triangle t1

WHERE NOT EXISTS (SELECT t2.tricode FROM triangle t2

WHERE t1.tricode = t2.tricode*-1)

;

-- Creating view edge (without inherited object id’s and orientation)

CREATE OR REPLACE VIEW edge AS

SELECT DISTINCT deriveabsboundaryedge1(tricode) edcode FROM triangle

UNION

SELECT DISTINCT deriveabsboundaryedge2(tricode) edcode FROM triangle

UNION

SELECT DISTINCT deriveabsboundaryedge3(tricode) edcode FROM triangle

;

-- Creating view constrainededge (without inherited object id’s and orientation)

CREATE OR REPLACE VIEW constrainededge AS

SELECT DISTINCT deriveabsboundaryedge1(tricode) edcode FROM constrainedtriangle

UNION

SELECT DISTINCT deriveabsboundaryedge2(tricode) edcode FROM constrainedtriangle

UNION

SELECT DISTINCT deriveabsboundaryedge3(tricode) edcode FROM constrainedtriangle

;

-- Creating view node (without inherited object id’s)

CREATE OR REPLACE VIEW node AS

SELECT DISTINCT deriveboundarynode1(edcode) nodecode FROM edge

UNION

SELECT DISTINCT deriveboundarynode2(edcode) nodecode FROM edge

;

-- Creating view tetrahedronneighbours

CREATE OR REPLACE VIEW tetrahedronneighbours AS

SELECT tetcode tetcode, getneighbourtet1(tetcode) ntet1,

getneighbourtet2(tetcode) ntet2,

getneighbourtet3(tetcode) ntet3,

getneighbourtet4(tetcode) ntet4

FROM tetrahedron

;

Appendix III
Converting to

Oracle Spatial 11g polyhedrons

This appendix contains the script for converting objects into Oracle Spatial 11g poly-
hedrons. It exports the constrained triangles into polyhedrons with triangular faces.
Note that this is not the optimal solution: this would require merging triangles that
are coplanar (within a tolerance). This polyhedron representation is used in chapter
7 to compare storage requirements.

DROP TABLE solids PURGE;

CREATE OR REPLACE VIEW vistemp AS

SELECT tricode, to_number(getobjectid_tt(10,tricode)) oid

FROM constrainedtriangle_tt

WHERE getobjectid_tt(10,tricode)<>0

;

==

Creating table with solids

==

CREATE TABLE solids (oid number, geom mdsys.sdo_geometry);

DECLARE

tmp_geom mdsys.sdo_geometry;

x1 number;

y1 number;

z1 number;

x2 number;

y2 number;

z2 number;

x3 number;

y3 number;

z3 number;

ni number; -- ni is element number of elem_info array

pos number; -- pos is position in ordinate array

tricode vistemp.tricode%TYPE;

type object_list is varray(100000) of vistemp.tricode%TYPE;

tmp_objects object_list;

t number;

176 Appendix III – Converting to Oracle Spatial 11g polyhedrons

BEGIN

FOR a IN (SELECT DISTINCT oid FROM vistemp)

LOOP

ni := 1;

pos := 1;

tmp_geom := mdsys.sdo_geometry(3008,null,null,mdsys.sdo_elem_info_array(),

mdsys.sdo_ordinate_array());

SELECT tricode BULK COLLECT INTO tmp_objects FROM vistemp c WHERE c.oid=a.oid;

FOR b IN tmp_objects.first..tmp_objects.last

LOOP

tmp_geom.sdo_elem_info.extend(3);

tmp_geom.sdo_elem_info(ni) := pos;

tmp_geom.sdo_elem_info(ni+1) := 1007;

tmp_geom.sdo_elem_info(ni+2) := 1;

ni := ni + 3;

tmp_geom.sdo_ordinates.extend(9);

getnodecoords_tt(getnode1oftriangle_tt(10,tmp_objects(b)),x1,y1,z1);

getnodecoords_tt(getnode2oftriangle_tt(10,tmp_objects(b)),x2,y2,z2);

getnodecoords_tt(getnode3oftriangle_tt(10,tmp_objects(b)),x3,y3,z3);

tmp_geom.sdo_ordinates(pos) := x1;

tmp_geom.sdo_ordinates(pos+1) := y1;

tmp_geom.sdo_ordinates(pos+2) := z1;

tmp_geom.sdo_ordinates(pos+3) := x2;

tmp_geom.sdo_ordinates(pos+4) := y2;

tmp_geom.sdo_ordinates(pos+5) := z2;

tmp_geom.sdo_ordinates(pos+6) := x3;

tmp_geom.sdo_ordinates(pos+7) := y3;

tmp_geom.sdo_ordinates(pos+8) := z3;

pos := pos + 9;

END LOOP;

INSERT INTO SOLIDS VALUES (a.oid,tmp_geom);

COMMIT;

END LOOP;

END;

/

Appendix IV
TetGen files

This appendix contains example TetGen files. It shows the input *.poly file of the
‘toy’ data set (see chapter 7) and the resulting *.node (including Steiner points) and
*.ele files (note that for reasons of compactness a part of this file is omitted) with
respectively the nodes and the tetrahedrons.

Input file: *.poly

node list

First line: <# of points> <dimension (3)> <# of attributes><boundary markers)>

Remaining lines list # of points: <point #> <x> <y> <z>

20 3 0 0

1 0 0 0

2 0 10 1

3 0 16 1

4 0 50 2

5 40 50 3

6 40 16 0

7 40 10 0

8 40 0 0

9 14 25 2

10 14 35 2

11 22 35 2

12 22 25 2

13 14 25 8

14 14 35 8

15 18 35 11

16 22 35 8

17 22 25 8

18 18 25 11

19 20 25 -10

20 20 25 25

#facet list

One line: <# of facets> <boundary markers (0 or 1)>

Following lines list # of facets: <facet #>

Format for facets:

One line: <# of polygons> [# of holes]

Following lines list # of polygons:

<# of corners> <corner 1> <corner 2> ... <corner #>

178 Appendix IV – TetGen files

...

Following lines list # of holes:

<hole #>

#

#(note that in this example facets have no holes and exist of one polygon)

27 0

1 0

3 1 2 7

1 0

3 1 7 8

1 0

3 2 3 6

1 0

3 2 6 7

1 0

3 3 12 6

1 0

3 3 9 12

1 0

3 3 4 10

1 0

3 3 9 10

1 0

3 4 10 11

1 0

3 4 11 5

1 0

3 5 11 6

1 0

3 11 12 6

1 0

4 12 11 10 9

1 0

4 9 10 14 13

1 0

5 10 11 16 15 14

1 0

4 11 12 17 16

1 0

5 9 13 18 17 12

1 0

4 14 15 18 13

1 0

4 15 16 17 18

1 0

5 4 3 2 1 19

1 0

5 8 7 6 5 19

1 0

3 5 4 19

1 0

3 1 8 19

1 0

5 1 2 3 4 20

1 0

Appendix IV – TetGen files 179

5 5 6 7 8 20

1 0

3 4 5 20

1 0

3 8 1 20

list of volume holes

0

list of region attributes

One line: <# of region>

Following lines list # of region attributes:

<region #> <x> <y> <z> <region number>

3

1 20 25 70 1

2 20 25 -8 2

3 20 30 5 3

Output file: *.node

31 3 0 0

1 0 0 0

2 0 10 1

3 0 16 1

4 0 50 2

5 40 50 3

6 40 16 0

7 40 10 0

8 40 0 0

9 14 25 2

10 14 35 2

11 22 35 2

12 22 25 2

13 14 25 8

14 14 35 8

15 18 35 11

16 22 35 8

17 22 25 8

18 18 25 11

19 20 25 -10

20 20 25 25

21 20.014135583320211 10 0.49964661041699471

22 20.015935021083745 16 0.49960162447290635

23 14 30.004904 2

24 22 29.995671000000002 2

25 18.001438 35 2

26 18.003170000000001 25 2

27 14 29.997526000000001 8

28 18 29.999835999999998 11

29 20.599983760302624 5.1499959400756561 0

30 18.304005323787162 23.488002177912929 1.8320002419903254

31 15.418360166248526 22.307510977101668 1.7008345530112963

Generated by tetgen -pAV miniset_tetgen.poly

180 Appendix IV – TetGen files

Output file: *.ele

117 4 1

1 23 10 14 25 3

2 26 13 27 9 3

3 18 22 17 21 1

4 25 27 24 16 3

5 27 9 3 23 1

6 20 17 18 28 1

7 25 27 16 14 3

8 2 31 3 13 1

9 26 31 13 9 1

10 27 25 24 23 3

11 27 20 28 14 1

12 10 14 3 23 1

13 18 22 21 13 1

14 16 4 15 5 1

15 19 30 12 26 2

16 21 20 7 17 1

17 16 20 5 15 1

18 4 15 5 20 1

19 20 6 7 17 1

20 19 31 9 3 2

21 6 11 5 19 2

22 23 19 10 25 2

23 7 22 17 6 1

24 7 29 20 21 1

25 10 19 3 4 2

26 29 2 19 1 2

27 18 31 22 13 1

28 2 29 19 21 2

29 6 22 12 19 2

30 3 21 2 19 2

31 6 11 19 24 2

32 10 3 14 4 1

33 4 27 14 20 1

34 4 27 20 3 1

35 4 16 15 14 1

36 4 14 10 25 1

37 25 11 16 24 3

38 29 7 20 8 1

39 15 20 28 16 1

40 20 3 13 2 1

41 25 11 24 19 2

.

..

111 21 31 13 22 1

112 17 31 18 30 1

113 19 31 3 22 2

114 2 31 21 3 1

115 2 31 13 21 1

116 26 31 9 19 2

117 17 31 22 18 1

Generated by tetgen -pAV miniset_tetgen.poly

Summary

3D Topography

A Simplicial Complex-based
Solution in a Spatial DBMS

Current topographic products are limited to a real world representation in only two
dimensions, with at best some additional point heights and contour lines. Modelling
the real world in two dimensions implies a rather drastic simplification of three di-
mensional real world elements. By representing these elements in two dimensions, loss
of information is inevitable. Due to this simplification, accuracy of analysis results
is limited and a meaningful, insightful representation of complex situations is hard
to obtain. Environmental issues like high concentrations of particulate matter along
highways in urban areas, the effects of noise and odour propagation and risk analysis
of liquefied petroleum gas storage tanks are random examples of current issues in 3D
urban planning in which more precision is required than 2D analyses can offer. In
a time with increasing attention for these kind of environmental and sustainability
issues, limitations of 2D models become real problematic and trigger the demand for
3D topography.

The development of 3D topography is also supply-driven, especially by the in-
creasing availability of high density laser scan data. Height data becomes available
with point densities –multiple height points per square meter– that were previously
unthinkable with traditional photogrammetric stereo techniques. Direct 3D data ac-
quisition by terrestrial laser scanning is emerging, thus providing detailed measure-
ments of facades, tunnels and even indoor topography. The fast developments in this
field are partly triggered by the emerging popularity of personal navigation devices,
which will use 3D models in the future to simplify user interpretation of the (map)
display.

182 Summary

Objective and research question

The objective of this research is to develop a data structure that is capable of han-
dling large data volumes and offers support for loading, updating, querying, analysis
and especially validation. To achieve this, a triangular approach will be used, due
to its advantages in maintaining consistency, its robustness and editability. This tri-
angular approach creates a network of triangles (in 2D) or tetrahedrons (in 3D), in
which topographic features are represented by sets of triangles or tetrahedrons. Such
a network is an example of an irregular tessellation, in which the real world is de-
composed into smaller (triangle/tetrahedron-shaped) building blocks. The resulting
networks are called TINs (Triangular Irregular Networks) or TENs (TEtrahedronised
irregular Networks). The presence of boundaries of topographic features are ensured
by the use of constraints, preventing the deletion of crucial boundary edges and trian-
gles. Algorithms exist to calculate these constrained triangulations and constrained
tetrahedronisations of topographic data.

In this research a two-step approach will be adopted. First one has to decide
how real-world objects should be modelled into features, secondly one needs to store
these features in such a way that the requirements in terms of querying, analysis and
validation are met. An obvious step in dealing with large volumes of geographically
referenced data, is to use a spatial database.

This objective is expressed in the main research question:

How can a 3D topographic representation be realised
in a feature-based triangular data model?

Note that the term ‘triangular’ is used here in general dimension, so both triangle-
and tetrahedron-based models will be considered. As mentioned before, a two-step
approach will be adopted to achieve a solution to the main research question. In
accordance with the two steps, two key questions can be distinguished:

• How to develop a conceptual model that describes the real world phenomena
(the topographic features), regarding the general purpose-characteristic of to-
pographic data sets?

• How to implement this conceptual model, i.e. how to develop a suitable DBMS
data structure?

The results of this research will be summarised according to this two-step approach.

A conceptual data model for 3D topography

One of the basic assumptions within this research is the use of triangular data models.
As a result, topographic features will be described as sets of triangles and these fea-
tures will be connected by triangles as well, thus creating one triangular network. This
research explored two different approaches to triangular modelling of 3D topography.

Summary 183

• The first one is a very pragmatic hybrid approach that combines a 2.5D∗ sur-
face with 3D objects for those cases where 2.5D modelling is not sufficient. In
terms of triangular data structures, this approach combines a TIN with several
TENs. These irregular data structures not only allow varying point density (de-
pending on local model complexity), but extend this irregularity into varying
even model dimensionality, thus offering the ultimate fit-for-purpose approach.
Unfortunately, connecting TIN and TEN networks appeared to be very difficult
at design level and during prototype implementation.

• The second approach avoids these problems, since it is a full 3D approach using
only a TEN. Two fundamental observations are of great importance:

– Physical objects have by definition a volume. In reality, there are no point,
line or polygon objects; only point, line or polygon representations exist
(at a certain level of abstraction/generalisation).

– The real world can be considered a volume partition: a set of nonoverlap-
ping volumes that form a closed (i.e. no gaps within the domain) modelled
space. Objects like ‘earth’ or ‘air’ are thus explicitly included in the model.

In topographic data models, planar features like walls or roofs are obviously very
useful. They can be part of the volumetric data model as ‘derived features’, i.e.
these features depend on the relationship between volume features. For example,
the earth surface is the boundary between air and earth features, while a wall or
a roof are the result of adjacent building and air features. In terms of UML, these
planar features are modelled as association classes. As a result, planar features
are lifetime dependent from the association between two volume features.

Among the advantages of the full volumetric approach are its explicit inclusion
of air and earth (often subject of analysis), its extensibility (geology, air traf-
fic/telecommunication corridors, etc.) and its strong mathematical definition (full
connectivity enables the use of topology for query, analysis and validation). As a re-
sult, topographic features will be modelled in a TEN. Each feature will be represented
by a set of tetrahedrons.

A data structure for 3D topography

The newly developed data structure has three important characteristics:

• It has a solid mathematical foundation. Operators and definitions from the
mathematical field of Poincaré simplicial homology (part of algebraic topology)
are used to handle simplexes†, the basic elements in a triangular data structure.
Simplexes are well defined, ordered and constructed of simplexes of lower di-
mension. The boundary operator can be used to derive these less dimensional

∗See section 2.2 for an overview of often-used dimension indicators
†A simplex can loosely be defined as the simplest shape in a dimension, in which simplest refers

to minimising the number of points required to define such a shape, for instance a point, a line, a
triangle and a tetrahedron. See section 4.1 for a proper mathematical definition

184 Summary

simplexes. Based on the ordering of simplexes, one can determine orientation,
a useful concept in GIS. Another important concept from simplicial homology
is the simplicial complex, since such a set of connected simplexes will be used
to model 3D topographic features.

• It is developed as a spatial database data structure. Applying definitions and
operators from simplicial homology enables one to store a TEN in a relatively
compact way. The new simplicial complex-based method requires only explicit
storage of tetrahedrons, while simplexes of lower dimensions (triangles, edges,
nodes), constraints (which guarantee feature boundary presence) and topologi-
cal relationships can be derived in views. Using functions to derive views from a
table is typical database functionality. In this implementation, simplexes are en-
coded by their vertices, similar to the annotation in simplicial homology. These
simplex encodings are extended with a feature identifier, indicating which to-
pographic feature is (partly) represented by this simplex. So, a tetrahedron is
encoded as S3 =< v0, v1, v2, v3, fid >. Two variants in simplex encoding have
been developed: coordinate concatenation and identifier concatenation. The
concept of coordinate concatenation is to concatenate x, y and z coordinates as
node identifiers and to concatenate the resulting unique node codes to describe
simplexes of higher dimension. The alternative approach, identifier concatena-
tion, uses separate (meaningless) node identifiers to encode simplexes to reduce
the number of coordinate repetitions, since a specific node will be part of multi-
ple tetrahedrons. This approach requires an additional node table to store node
geometries.

• It is an editable data structure, which is a crucial prerequisite to be a feasible
approach for topographic data storage. Incremental updates are required, since
complete rebuilds of the TEN structure will be time-consuming due to the ex-
pected data volumes. Whereas most existing update algorithms for constrained
tetrahedronisations use node insertions, followed by edge reconstruction, this
research presents edge insertion operators. Nine exhaustive and mutually ex-
clusive cases are distinguished, based on the location in the TEN of the inserted
edge’s nodes. These operators guarantee the constrained edge’s presence in the
structure. Existing operators might fail to recover these edges, due to the pres-
ence of nearby constrained edges, which would typically happen in topographic
data sets.

Conclusions

This dissertation presents a new topological approach to data modelling, based on a
tetrahedral network. Operators and definitions from the field of simplicial homology
are used to define and handle this structure of tetrahedrons. Simplicial homology
provides a solid mathematical foundation for the data structure and offers full control
over orientation of simplexes and enables one to derive substantial parts of the TEN
structure efficiently, instead of explicitly storing all primitives. DBMS characteristics
as the usage of views, functions and function-based indexes are extensively used to

Summary 185

realise this potential data reduction. A proof-of-concept implementation was created
and tests with several data sets show that the prevailing view that tetrahedrons are
more expensive in terms of storage when compared to polyhedrons, is not correct
when using the proposed approach. Storage requirements for 3D objects in tetrahe-
dronised form (excluding the space in between these objects) and 3D objects stored
as polyhedrons, are in the same order of magnitude.

A TEN has favourable characteristics from a computational point of view. All
elements of the tetrahedral network consist by definition of flat faces, all elements
are convex and they are well defined. Validation of 3D objects is also simplified by
tetrahedronisation. Furthermore, a full volumetric approach enables future integra-
tion of topography with other 3D data like geological layers, polluted regions or air
traffic and telecommunication corridors. The price of this full volumetric approach in
terms of storage space is high (about 75% of the tetrahedrons models air or earth);
nevertheless this approach is likely to become justifiable due to current developments
towards sustainable urban development and increased focus on environmental issues.

Now the innovative aspects of the proposed method has to be identified. Neither
the idea to use a TEN data structure for 3D data nor the idea to use simplexes
(in terms of simplicial homology) in a DBMS implementation is new. However, the
proposed approach reduces data storage and eliminates the need for explicit updates
of both topology and simplexes of lower dimension. By doing so, the approach tackles
common drawbacks as TEN extensiveness and laboriousness of maintaining topology.
Furthermore, applying simplicial homology offers full control over orientation of sim-
plexes, which is a significant advantage, especially in 3D. In addition to this aspect,
the mathematical theory of simplicial homology offers a solid theoretical foundation
for both the data structure and data operations. Integrating these concepts with
database functionality results in a new innovative approach to 3D data modelling.

An often raised objection to a TEN approach is its presumed complexity. Obvi-
ously, a 1:n relation exists between features and their tetrahedron representations.
However, as long as a user handles only features (as polyhedrons) and implemented
algorithms translate these polyhedrons into operations on the TEN, one can over-
come the perceived complexity. Furthermore, the prevailing view that tetrahedrons
are more expensive in terms of storage than polyhedrons has been falsified in this
research.

Overall, the simplicial complex-based modelling approach provides a provable correct
modelling method. The use of tetrahedrons is justified by the mathematical benefits
and the acceptable storage requirements. Obviously, including air and earth within
the model comes at a price, but –as stated earlier– this approach is likely to become
justifiable, due to current sustainability and environmentally-driven developments.
The decision to develop the data structure as a database structure contributes to the
overall feasibility, since a database will become indispensable due to the expected
data volumes.

Samenvatting

3D Topography

A Simplicial Complex-based
Solution in a Spatial DBMS

De representatie van topografische objecten beperkt zich in de huidige generatie
topografische producten meestal tot twee dimensies, hooguit aangevuld met een
aantal hoogtepunten of -lijnen. Het modelleren van de werkelijkheid in twee di-
mensies impliceert een behoorlijk drastische simplificatie van de werkelijkheid, die
zelf driedimensionaal is. Door deze werkelijkheid in 2D te representeren, is verlies
aan (detail)informatie onvermijdelijk. Door deze simplificaties wordt niet alleen de
nauwkeurigheid van analyses op deze data beperkt, maar wordt een inzichtelijke re-
presentatie van complexe 3D situaties ook zo goed als onmogelijk. Het modelleren van
concentraties fijn stof langs snelwegen in stedelijke gebieden, geluids- en stankanalyses
en risicoanalyses van LPG opslagtanks zijn een aantal willekeurige voorbeelden van
3D planning waarin de nauwkeurigheden van 2D analyses niet toereikend zijn. Met de
huidige aandacht voor milieu- en duurzaamheidgerelateerde vraagstukken komen de
beperkingen van 2D modellen steeds nadrukkelijker aan het licht. Deze beperkingen
zijn een belangrijke aanleiding voor de groeiende vraag naar 3D topografie.

Tegelijkertijd kunnen de ontwikkelingen richting 3D topografie ook worden ver-
klaard door het groeiende aanbod van laserscan datasets met zeer hoge puntdichthe-
den. Hoogtebestanden komen op de markt met puntdichtheden –meerdere punten per
vierkante meter– die ondenkbaar waren met traditionele inwintechnieken zoals stereo-
fotogrammetrie. Daarnaast maakt ook de directe 3D inwinning met terrestrische
laserscanning een stormachtige ontwikkeling door, waarmee gedetailleerde modellen
van gevels, tunnels of indoor topografie beschikbaar komen. De snelle ontwikkelingen
op het gebied van data-acquisitie worden deels veroorzaakt door de snel groeiende
populariteit van navigatiesystemen, die in de toekomst steeds vaker 3D modellen
zullen gebruiken om zo een makkelijker te interpreteren ‘kaart’beeld te bieden.

188 Samenvatting

Doel en onderzoeksvraag

Het doel van dit onderzoek is om een datastructuur te ontwikkelen die om kan
gaan met grote hoeveelheden data en die ondersteuning biedt voor het laden, bij-
houden, bevragen, analyseren en nadrukkelijk ook valideren van de data. Hiertoe
zal een triangulatiemethode gebruikt worden, met name vanwege de voordelen op
het gebied van consistentie bewaking, robuustheid en behoudbaarheid. Deze trian-
gulatiemethode resulteert in een netwerk van driehoeken (in 2D) of tetraëders (in
3D), waarin de topografische objecten worden gerepresenteerd door een verzameling
driehoeken of tetraëders. Dergelijke netwerken zijn een voorbeeld van een onregel-
matige ruimteverdeling (mozäıek), waarin de werkelijkheid wordt opgedeeld in een
verzameling (driehoekige/tetraëdervormige) bouwstenen. De op deze wijze verkregen
netwerken staan bekend als TINs (Triangulated Irregular Networks) of TEN (TEtra-
hedronised irregular Networks). De aanwezigheid van begrenzingen van topografische
objecten in deze netwerken wordt gegarandeerd door zogenaamde constraints (condi-
ties), die voorkomen dat cruciale grenszijdes of -driehoeken worden verwijderd uit de
netwerken. Deze constrained triangulaties en tetraëdrisaties kunnen berekend worden
met speciale algoritmes.

In dit onderzoek wordt een tweestaps aanpak gehanteerd. Eerst wordt bepaald op
welke wijze fysieke objecten moeten worden gemodelleerd en vervolgens moet worden
bepaald hoe deze objecten opgeslagen worden, zodat aan de eisen op het gebied van
bevragen, analyse en valideren wordt voldaan. Aangezien er met grote hoeveelhe-
den geografische gegevens moet worden omgegaan, is het gebruik van een ruimtelijk
database management systeem een voor de hand liggende keuze.

Deze doelstelling van het onderzoek komt tot uitdrukking is de onderzoeksvraag:

Hoe kan een 3D topografische representatie worden gerealiseerd
in een objectgericht, triangulatie-gebaseerd data model?

Merk op dat de term ‘triangulatie’ hier in algemene zin wordt gebruikt, dus zowel
driehoeks- als tetraeder-gebaseerde aanpakken komen in aanmerking. Zoals eerder
opgemerkt, zal een tweestaps aanpak gehanteerd worden om de onderzoeksvraag te
kunnen beantwoorden. Voor elk van deze twee stappen kan een deelvraag worden
geformuleerd:

• Hoe kan een conceptueel data model worden ontwikkeld voor fysieke objecten
(de topografie), gezien het feit dat topografische bestanden voor een breed scala
aan toepassingen wordt gebruikt?

• Hoe kan dit conceptuele model worden gëımplementeerd of, met andere woor-
den, hoe ziet een bijpassende DBMS datastructuur eruit?

De resultaten van dit onderzoek zullen aan de hand van deze twee stappen worden
samengevat.

Samenvatting 189

Een conceptueel datamodel voor 3D topografie

Eén van de uitgangspunten van dit onderzoek is het gebruik van triangulaties. Dit
houdt in dat topografische objecten gerepresenteerd zullen worden door verzamelingen
driehoeken en dat ook de tussenliggende ruimte bestaat uit driehoeken, wat samen
resulteert in een netwerk van driehoeken. In dit onderzoek zijn twee verschillende
aanpakken voor een dergelijke modellering van 3D topografie onderzocht.

• Eerst is gekeken naar een pragmatische hybride aanpak, waarin een 2,5D‡ ter-
reinoppervlak wordt gecombineerd met afzonderlijke 3D modellen in die gevallen
dat een 2,5D representatie niet voldoet. In termen van triangulaties bestaat
deze aanpak uit het combineren van een TIN met diverse TENs. Deze aanpak
wordt niet alleen gekenmerkt door de wisselende puntdichtheden (afhankelijk
van de lokale complexiteit van het model), maar ook door de uitbreiding naar
wisselende modeldimensies, waarmee maatwerk geleverd wordt. Helaas bleek
de daadwerkelijke verbinding tussen het TIN en de TENs op ontwerpniveau
uitermate lastig.

• De tweede aanpak vermijdt dit probleem, doordat het een volledig 3D model is,
waarin alleen een TEN gebruikt wordt. Twee fundamentele uitspraken zijn in
dit kader van groot belang:

– Fysieke objecten hebben per definitie een volume. In de werkelijkheid
bestaan geen punt-, lijn- of vlakobjecten; alleen punt-, lijn- of vlakweer-
gaves bestaan (afhankelijk van de mate van abstractie/generalisatie).

– De fysieke werkelijkheid kan beschouwd worden als een volume partitie:
een set van niet-overlappende volumes die samen de gehele ruimte vullen
(gaten komen dus niet voor binnen het model). Objecten zoals ‘lucht’ of
‘aarde’ maken dan ook expliciet deel uit van het model.

In topografische modellen zijn vlakobjecten zoals muren en daken natuurlijk
uitermate bruikbaar. Dergelijke vlakobjecten kunnen in een volumemodel
voorkomen als ‘afgeleide objecten’, d.w.z. dat deze objecten afhankelijk zijn
van een relatie tussen twee volumeobjecten. Zo kan het aardoppervlak bijvoor-
beeld gedefinieerd worden aan de hand van de buurrelaties tussen ‘aarde’ en
‘lucht’ objecten, terwijl muren en daken het resultaat zijn van de buurrelatie
tussen een gebouw en de lucht. In UML termen worden vlakobjecten gemo-
delleerd als ‘association classes’, waarmee het bestaan van elk vlakobject dus
volledig afhangt van het bestaan van de relatie tussen twee volumeobjecten.

Voordelen van het volledig 3D model zijn o.a. de expliciete aanwezigheid van lucht en
aarde (vaak onderwerp van analyse), de uitbreidbaarheid (in de toekomst met geolo-
gie, luchtvaartroutes, straalpaden, enz.) en de sterke wiskundige onderbouwing (de
volledige connectiviteit in de volumepartitie maakt topologische bevragingen, analy-
ses en validatie mogelijk). Hierom is er voor gekozen om 3D topografie te modelleren
in een TEN. Elk object wordt gerepresenteerd door een verzameling tetraëders.

‡Zie sectie 2.2 voor een overzicht van veelgebruikte dimensie-aanduidingen

190 Samenvatting

Een datastructuur voor 3D topografie

De nieuw ontwikkelde datastructuur heeft drie kenmerkende eigenschappen:

• De datastructuur heeft een solide wiskundige onderbouwing. Operatoren en
definities uit het wiskundige deelgebied van de Poincaré simpliciale homolo-
gie (onderdeel van de algebräısche topologie) worden gebruikt om simplexen§

te hanteren, de bouwstenen in een tetraëderstructuur. Simplexen zijn goed
gedefinieerd, geordend en bestaan uit simplexen van lagere dimensies. De grens-
operator kan gebruikt worden om deze simplexen van lagere dimensies af te
leiden. Op basis van de ordening van simplexen kan de oriëntatie bepaald wor-
den; een bruikbaar concept in GIS toepassingen. Een ander belangrijk concept
uit de simpliciale homologie is het simpliciale complex, aangezien zo’n verzame-
ling van verbonden simplexen gebruikt zal worden voor het modelleren van 3D
topografische objecten.

• Het is een ruimtelijke database datastructuur. Het gebruik van operatoren en
definities uit de simpliciale homologie maakt het mogelijk om een TEN relatief
compact op te slaan. De nieuwe simpliciale complex-gebaseerde methode vergt
alleen expliciete opslag van tetraëders, terwijl simplexen van lagere dimensies
(driehoeken, zijden, punten), constraints (die de aanwezigheid van de object-
grenzen garanderen) en topologische relaties kunnen worden afgeleid in views
(virtuele tabellen). Het gebruik van functies om views af te leiden uit een
tabel is typische database functionaliteit. In de implementatie zijn simplexen
gecodeerd aan de hand van hun punten, vergelijkbaar met de notatie die in
de simpliciale homologie wordt gebruikt. Aan de simplexcode wordt nog een
objectnummer toegevoegd, die aangeeft welk topografisch object (gedeeltelijk)
wordt gerepresenteerd door deze simplex. Een tetraëder wordt dus als volgt
gecodeerd: S3 =< v0, v1, v2, v3, oid >. Binnen deze codering zijn twee varianten
ontwikkeld: coördinaat concatenatie en objectnummer concatenatie. Het idee
achter coördinaat concatenatie is om elk punt te coderen aan de hand van het x,
y en z coördinaat en vervolgens deze unieke puntnummers te concateneren om
zo simplexen van hogere dimensie te coderen. Het alternatief, puntnummer con-
catenatie, gebruikt betekenisloze puntnummers om simplexen mee te coderen
om zo herhaling van coördinaten te vermijden. Deze herhaling wordt veroor-
zaakt door het gegeven dat elk punt deel uitmaakt van meerdere tetraëders.
Dit alternatief vereist wel een aanvullende punttabel waarin voor elk punt het
puntnummer en de geometrie wordt opgeslagen.

• Het is een bijhoudbare datastructuur, een cruciale vereiste voor een datastructuur
voor topografie. Het incrementeel bijhouden van de structuur is noodzakelijk,
aangezien het volledig herbouwen van de TEN structuur te veel tijd zal kosten

§Een simplex kan losjes gedefinieerd worden als de eenvoudigste geometrie in een dimensie, waarbij
eenvoudigst slaat op het minimaliseren van het aantal punten dat nodig is om die geometrie te
definiëren, bijvoorbeeld een punt, een lijn, een driehoek en een tetraëder. Zie sectie 4.1 voor de
zuiver wiskundige definitie

Samenvatting 191

gezien de te verwachten hoeveelheden data. Alhoewel de meeste bestaande bij-
houdoperaties voor constrained tetraëdrisatie gebruik maken van het invoegen
van punten, waarna zijdes worden gereconstrueerd, gaan de bijhoudoperaties in
dit onderzoek uit van het invoegen van zijdes. Afhankelijk van de locatie van
begin- en eindpunt van de zijde, kunnen negen uitputtende en niet overlappende
gevallen worden onderscheiden. Deze set operatoren garandeert de aanwezigheid
van de ingevoegde zijde in de datastructuur. Bestaande operatoren bieden deze
garantie niet altijd, aangezien het reconstrueren van zijdes kan mislukken door
de nabije aanwezigheid van andere ‘constrained’ zijdes, iets wat typisch het geval
zal zijn in topografische bestanden.

Conclusies

Dit proefschrift beschrijft een nieuwe topologische aanpak van datamodellering die
uitgaat van tetraëdernetwerken. Operatoren en definities uit de simpliciale homologie
worden toegepast in het definiëren en bewerken van deze structuur van tetraëders. De
simpliciale homologie biedt een solide wiskundige onderbouwing van de datastructuur,
volledige controle over oriëntatie van simplexen en maakt het mogelijk om grote delen
van de datastructuur af te leiden in plaats van expliciet op te slaan. Databasefunc-
tionaliteit zoals het gebruik van views, functies en functiegebaseerde indexen worden
toegepast om het potentieel van de datastructuur te realiseren. Een experimentele
implementatie is ontwikkeld en tests met verschillende datasets tonen aan dat de
heersende opvatting dat tetraëders meer opslagruimte vergen dan polyëders, achter-
haald is. De vereiste opslagruimte voor 3D objecten in getetraëdriseerde vorm (het
modelleren van tussenliggende ruimtes niet meegerekend) en voor 3D objecten in
polyëderformaat, liggen in dezelfde orde van grootte.

Het gebruik van een TEN biedt een aantal rekenkundige voordelen. Elk element in
een TEN bestaat uit platte vlakken, elk element is convex en alle elementen zijn goed
gedefinieerd. Validatie van 3D objecten wordt ook eenvoudiger wanneer er gebruik
gemaakt wordt van tetraëdernetwerken. Daarnaast biedt de volledig 3D modellering
ruimte voor toekomstige integratie van topografie met andere 3D data zoals geolo-
gie, vervuilde aardlagen en straalpaden. De prijs van het volledig in 3D modelleren
is hoog (ongeveer 75% van de tetraëders beschrijft lucht of aarde); toch kan deze
aanpak gerechtvaardigd worden, gezien de huidige ontwikkelingen richting duurzame
stedelijke ontwikkeling en toegenomen aandacht voor milieukwesties.

Nu kunnen ook de vernieuwende aspecten van de voorgestelde methode worden
bepaald. Noch het idee om een TEN structuur te gebruiken voor 3D data, noch
het idee om simplexen (zoals in de simpliciale homologie) in een database struc-
tuur te gebruiken, is nieuw. Desondanks brengt de voorgestelde methode de vereiste
opslagruimte terug en maakt het expliciete bijhouding van zowel topologie als van
simplexen van lagere dimensie overbodig. Hiermee ondervangt de nieuwe methode
de ‘klassieke’ nadelen van een tetraëderstructuur. Daarnaast biedt het toepassen
van simpliciale homologie volledige controle over oriëntatie van simplexen, wat met
name in 3D een enorm voordeel is. Bovendien biedt simpliciale homologie een solide

192 Samenvatting

wiskundige onderbouwing voor zowel de datastructuur als voor de operaties erop. Het
integreren van deze concepten in een databaseomgeving resulteert in een vernieuwende
aanpak van 3D datamodellering.

Een vaakgenoemd nadeel van een TEN aanpak is de veronderstelde complexiteit.
Immers, er bestaat een 1:n relatie tussen objecten en hun tetraëderrepresentatie. Hoe
dan ook, zolang een gebruiker alleen objecten manipuleert en algoritmes zorgdragen
voor de bijbehorende wijzigingen in de datastructuur, wordt dit nadeel volledig onder-
vangen. Daarnaast is aangetoond dat een TEN aanpak niet meer opslagruimte vergt
dan een polyëderaanpak, waarmee omvang dus niet meer bijdraagt aan eventuele
complexiteit.

Afsluitend kan gesteld worden dat de simpliciale complex-gebaseerde aanpak een
bewijsbaar correcte modelleermethode is. Het gebruik van tetraëders wordt gelegi-
timeerd door wiskundige voordelen en acceptabele opslagvereisten. Natuurlijk leidt
het expliciet opnemen van lucht en aarde tot een aanzienlijke toename in datavolume,
maar –zoals eerder reeds opgemerkt– toch kan deze aanpak gerechtvaardigd worden,
gezien de huidige ontwikkelingen op duurzaamheid- en milieugebied. De keuze om
de datastructuur in een ruimtelijke database te implementeren draagt bij aan de
algehele bruikbaarheid, aangezien het gebruik van een database onvermijdelijk zal
worden gezien de verwachte datavolumes.

Curriculum Vitae

Friso Penninga was born at August 5, 1978 in Zevenhuizen. In 1996 he obtained his
high school diploma (in Dutch: atheneum) from Coenecoop College in Waddinxveen,
after which he started his study Geodesy at Delft University of Technology. He
obtained his MSc degree in 2003 with a thesis called ’Generating a 6-position Postal
Code Map based on the Cadastral Registration’. The main results of this research
were published in GeoInformatica¶.

In 2004 he joined the Section GIS Technology of the OTB Research Institute at the
same university. First he worked on a temporary basis, after which he switched to a
PhD-position in April 2004. He was awarded the Geo-Info prize 2005 for Best Article
in April 2006 for an article describing his PhD research. The 3D Topography research
project, of which this PhD research is one of the key components, was awarded the
Dutch Geo-Innovation Award 2007 in the category Science. In 2007 he was one of
the organisers of the 3D GeoInfo ’07 Workshop, held at the Conference Centre of
Delft University of Technology (December 12-14, 2007). In April 2008 he started as
an assistant professor within the Section GIS Technology. A more comprehensive
overview of his professional activities can be found at http://www.frisopenninga.nl.

¶Friso Penninga, Edward Verbree, Wilko Quak and Peter van Oosterom. Construction of the

Planar Partition Postal Code Map Based on Cadastral Registration In: GeoInformatica, Volume 9,
2, 2005, pp. 181-204

