
3D VISUALISATION OF UNDERGROUND PIPELINES: BEST STRATEGY FOR 3D

SCENE CREATION

J. Guerrero, S. Zlatanova, M. Meijers

GIS Technology, OTB Research Institute for the Built Environment, Delft University of Technology, Jaffalaan 9, 2628

BX, Delft, The Netherlands (josafatisai@gmail.com, s.zlatanova@tudelft.nl, b.m.meijers@tudelft.nl)

Commission II, WG II/2

KEY WORDS: Scene creation, X3D, Web, 3D modelling

ABSTRACT:

Underground pipelines pose numerous challenges to 3D visualization. Pipes and cables are conceptually simple and narrow objects

with clearly defined shapes, spanned over large geographical areas and made of multiple segments. Pipes are usually maintained as

linear objects in the databases. However, the visualization of lines in 3D is difficult to perceive as such lines lack the volumetric

appearance, which introduces depth perception and allows understanding the disposition and relationships between the objects on

the screen. Therefore the lines should be replaced by volumetric shapes, such as parametric shapes (cylinders) or triangular meshes.

The reconstruction of the 3D shape of the pipes has to be done on the fly and therefore it is important to select a 3D representation

which will not degrade the performance. If a reconstruction method provides a good performance, the visualization of pipes and

cables is guaranteed to provide a smooth experience to the final user, enabling richer scenes but also establishing the visualization

requirements in terms of hardware and software to display underground utilities.

This paper presents our investigations on a strategy for creating a 3D pipes for 3D visualisation. It is assumed that the pipelines are

stored in a database and portions of them are retrieved for 3D reconstruction and 3D visualization. Generally, the reconstruction of

underground utilities can be performed in different ways and should lead to realistic appearance, produce visual continuity between

segments, include objects depicting specific connections and even consider buffer volumes displaying the uncertainty and the

security distance between objects. The creation of such visually pleasing reconstructions may require very detailed shapes, which

will increase the complexity of the scene and degrade the performance. This research has identified four criteria to measure the

complexity of the scene and conclude on a 3D reconstruction strategy: number of scene graph nodes, number of triangles and

vertices on the screen, needed transformations and appearance options. On the basis of these criteria a testing framework is

developed. Ten different strategies for 3D reconstruction are defined and tested for X3D, X3DOM and WebGL. The paper analyses

the results of the tests and concludes on the best strategy.

1. INTRODUCTION

Many utility networks are currently managed as 2D/3D line

objects with attributes in databases. This representation is

sufficient for performing a variety of tasks but faces numerous

challenges when these data have to be visualised in 3D

environments. The visualization of 3D lines on the screen is

often unclear as it lacks the volumetric appearance, required to

produce depth perception, which is the key issue to understand

the disposition and relationship of the objects on the screen.

Lines displayed on current graphics hardware cannot be shaded

as do not have any volume or surface, and as consequence

occlusion and relative size are impossible to achieve. Their

portrayal on 2D or even 3D displays cannot provide any depth

information. With lines only, it is impossible to determine the

closest object and the understanding of the scene becomes

difficult if not impossible. Many projects have been initiated to

investigate these issues, e.g. DeepCity3D

(http://www.deepcity3d.eu) or 3DSDI (http://maasvlakte2-

3dsdi.ddss.nl/).

To solve this problem, volume should be added to non-

volumetric 3D lines, i.e. their 3D shape has to be reconstructed

by creating the outer shell of the desired object and making

them suitable to real-time rendering using computers equipped

with Graphics Processing Units (GPUs).

Substantial research has been carried out for working with

underground utilities information on different aspects. Part of it

concerns the computer models and storage solutions for pipes

and cables. Another relevant part for this research deals with the

transformation of GIS data into visual representations, both in

2D or 3D. Research on modelling and visualization of utilities

in 3D has been done by Du and Zlatanova (2006), where

information is transformed into 3D objects and visualized on

the fly as shapes with volumetric appearance and symbols

depicting special pipeline attachments. A corresponding

prototype is presented using a spatial database as storage

solution, implemented with Oracle Spatial built-in spatial types.

Results are visualized and transformed using MicroStation and

the Java edition of MicroStation Development environment

(JDML) to convert on the fly the lines into 3D shapes.

This desktop platform can be seen as a limiting factor towards

the seamless distribution of information to different

stakeholders. The benefits of managing centralized utilities

information using DBMS and providing 3D visualization have

been shown of critical importance by Zlatanova et al. (2011),

revealing better relationships between pipes and objects,

making easier the visual inspection while reducing the

misunderstanding to the minimum.

ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences,
Volume II-2/W1, ISPRS 8th 3DGeoInfo Conference & WG II/2 Workshop, 27 – 29 November 2013, Istanbul, Turkey

This contribution has been peer-reviewed. The double-blind peer-review was conducted on the basis of the full paper. 139

The management and registration of utility networks in 4D

(space + time) using a spatial DBMS is presented as a

promising solution to maintain centralized management and a

correct registration of legal rights and obligations, facilitating

the analysis and comparison with the related parcels (Döner et

al., 2011), as some legal aspects can only be solved using 3D

information to determine its spatial relationship with utilities

above or under the ground. Work on overlaying utilities

information over panoramic images has been studied by

Verbree et al. (2004), addressing the problem of understanding

maps while translating their contents into reality and the other

way around, closing the gap between geo-referenced

information and augmented reality.

The process of creating 3D visualizations from 2D geographical

sources on the fly has been elaborated by Schall et al. (2008)

with a transcoding pipeline. This process separates the model

content from the presentation, allowing generating temporary

3D models on demand without storing them. This transcoding

pipeline requires GIS data, rules for the model generation and

styles for visualization, but also a ‘scene graph’ specification to

represent the transcoded model. This process has been applied

by Schall et al. (2010) for modelling underground utilities on

mobile devices for Augmented Reality applications, consuming

geographical information encoded in Geographical Modeling

Language (GML) and converted into ‘scene graphs’.

Standardization efforts towards separating content from

presentation are proposed in (Basanow et al., 2008) and

presented via ‘Styled Layer Descriptors’. A specific description

useful for visualization of underground utilities has been

proposed for lines, reconstructing them based on radius and

colour information.

So far, most of these works have been done on the desktop or

for a web environment using plugins to display 3D content.

With the advances on the Web, WebGL has appeared as a

technology for displaying 3D content without the need of

plugins. Given the novelty of this technology and the

interpreted nature of the JavaScript language, research

performed towards the suitability of this technology has not

been carried out and moreover, the implications on the

transcoding procedures on performance have not been

addressed.

This paper presents a framework for 3D reconstruction of pipes

and cables for visualization on the Web. The framework is

tested for visualization with X3D, X3DOM and WebGL. This

paper is organized as follows: The next section presents the 3D

reconstruction flow, section 3 discusses the implementation and

the tests, Section 4 concludes on the results of the tests.

2. RECONSTRUCTION FLOW

The proposed reconstruction flow is an abstraction created to

understand and implement the reconstruction process of the

studied geometrical features. This flow is basic for

implementing 3D web applications and resembles the proposal

of Schall et al. (2008) to convert the 2D geospatial data into 3D

models and deliver them through 3D scenes. This delivery

mechanism is a concept also used by Altmaier and Kolbe

(2003), Heinen et al. (2005), Basanow et al. (2008), where Web

3D Service (W3DS) and other related Web Services encapsulate

the server side functionality and deliver geographical scenes.

1. The reconstruction flow (Figure 1) starts with the information

stored into a spatial database, from which an arbitrary user

request triggers a query (spatial or not) to the data store,

producing a series of results organized in tables where each row

or record returned corresponds to a feature in the database,

composed of a geometry definition and a set of attributes.

Figure 1: 3D reconstruction flow for pipe lines and cables

2. Given the geometry, the attributes and appearance mapping,

the actual creation of the 3D objects starts by choosing a

reconstruction approach. The chosen approach transforms the

geometric object with lower dimensionality into a 3D object

based on its own conversion rules. Depending on the method

used, graphical primitives or custom 3D meshes can be used in

replacement to construct the objects and reused along the

procedure.

3. After all the pipes and cables are reconstructed; the scene is

assembled by linking the produced 3D shapes to their

appearance, including identifiers, actions and names for object

picking (e.g. highlighting their attributes by hovering over with

a pointer device).

4. When a scene is finally assembled, it is made available to the

3D engine which parses the information to produce an internal

representation suitable for rendering. In this step, the declared

objects, materials, identifiers, names and additional information

are converted into a scene graph.

5. After creating the scene graph, the objects are displayed to

the user as sequences of two-dimensional images producing the

illusion of movement. If the user interacts with the scene this

requires different elements from those present on the scene, the

3D application redirects that request into a database query,

starting a new reconstruction flow and displaying the new

elements to the user.

3. THE FRAMEWORK FOR RECONSTRUCTION

The reconstruction flow described before requires the choice of

a reconstruction method to convert the 2D linear underground

objects into 3D volumetric shapes suitable for visualization and

interaction. The reconstruction methods set high level rules and

procedures for interpreting the 2D data, but also define low

level procedures to create a set of scene graph nodes

representing the objects.

The high level modelling considers two approaches: the first

considers that an underground object is modelled with simple

independent objects, producing multiple scene graph nodes.

The second approach considers that the smaller parts composing

underground utilities are dependent on each other and should

ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences,
Volume II-2/W1, ISPRS 8th 3DGeoInfo Conference & WG II/2 Workshop, 27 – 29 November 2013, Istanbul, Turkey

This contribution has been peer-reviewed. The double-blind peer-review was conducted on the basis of the full paper. 140

produce a bigger single entity. Reconstruction approaches

following the first category are termed here as Split methods

while the others are termed Non-split methods.

In the low level, specific decisions for creating the scene graph

are taken and the basic scene graph nodes considered for this

purpose are adapted from (Strauss and Carey, 1992) and

include:

Shape Nodes represent geometric or physical objects. The

Shape nodes are leafs on the graph and are associated to low-

level representations of triangulated models. Examples of those

include Indexed Face Sets, Triangle Strips, Triangle Fans,

Indexed Triangle Meshes, Line Sets, among many others. These

nodes can also include definitions for common objects like

Cone, Sphere, Cylinder, etc. For the reconstruction purposes,

only indexed representations are considered but specifically, the

Indexed Triangle Meshes, which holds a list of vertices, their

normals and list of triangles representing the 3D object.

Group Nodes are to connect other nodes into graphs or sub-

graphs. Examples include the Switch node, useful to implement

libraries of objects and materials. The Group node is also useful

to aggregate multiple nodes and share common attributes.

Property Nodes describe attributes of the objects related to the

appearance of the objects, necessary to provide distinctive

appearance. Examples of the used classes include BaseColor,

Material, Normal, Texture, Transform (for affine

transformation), among many more.

With these elements in consideration, four basic decisions are

taken towards reconstructing the objects:

1. Geometry The first choice corresponds to the geometry used

to encode the objects, which in this case can be based on

primitives like the Sphere or Cylinder or arbitrarily defined

using Indexed Triangle Meshes.

2. Transformations are a property node and one of the basic

operations used to scale, rotate or translate siblings of that node.

Geometric primitives and templates need to be transformed

every time to place them on the desired positions.

3. Object Reuse Scene graphs allow creating objects and

reusing their definitions, acting as templates for the creation of

other similar objects. Such objects should be defined on local

coordinates so transformations parameters, can be provided to

transform them during runtime. An example of template could

be a traffic sign used, which can be further reused by providing

only its transformations parameters.

4. Material Reuse Finally, every scene graph node requires the

definition of appearance in order to be rendered. The

hierarchical structure of the scene graphs allows sharing

appearance definitions among its siblings, but some 3D engines

also allow sharing definitions across different nodes. Similarly

to the object reuse, sharing material definitions reduce

representation space but also can trigger optimizations in the

rendering engine to avoid state changes and improve rendering

performance.

Figure 2 shows all the possible reconstruction paths obtained

when considering all the decisions, adding up to 12

possibilities. Paths reaching the right side are considered

possible and depicted with continuous lines, otherwise denoted

with dotted lines.

Figure 2: Possible reconstruction paths

3.1 Split reconstruction methods

Split method 1: Primitive based. This method involves the use

and reuse of the Sphere and Cylinder primitives and the

definition of their transformation parameters to model each

element of the pipe with a primitive. The transformation

parameters take the geometry of the primitives and transform

them on its final configuration.

Split method 2: Custom Primitive based. The difference with

the first one is the replacement of the built-in primitive with a

custom geometry to control the appearance quality of the

objects. Besides the use of different primitives based on the

same definition, the rest of the procedures are identical to the

previous method so no further details are provided to compute

the transformation parameters; however the details of the actual

reconstruction of the objects are important to understand the

differences on final performance and the size of the objects.

Split method 3: World based primitives. In this case, each

cylinder or sphere or created in their final position, i.e.

expressed in world coordinates instead of local coordinates. The

reason to follow this approach is to skip transformations during

runtime in order to save processing time. A drawback of this

method is the increase in storage to define each unique object

instead of reusing primitives along the scene.

3.2 Non-split reconstruction methods

The second main branch of the reconstruction taxonomy

corresponds to approaches where the reconstructed objects are

modelled visually and logically as a single scene graph node.

The difference imposes a stricter control on the modelling of

objects involving more restrictions in order to reduce the

number of scene graph nodes representing the object. A first

simple and naive approach just appends all the objects modelled

with triangles into a single mesh before rendering, reducing the

final object count but not the triangle and vertex count. A

further refinement referred here as ‘stitching’, requires

computing the actual intersection points between the composing

objects, avoiding invisible triangles, allowing vertex recycling

and storage savings.

ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences,
Volume II-2/W1, ISPRS 8th 3DGeoInfo Conference & WG II/2 Workshop, 27 – 29 November 2013, Istanbul, Turkey

This contribution has been peer-reviewed. The double-blind peer-review was conducted on the basis of the full paper. 141

Non-Split method 1: Appending world based geometries

One of the main drawbacks of the ‘split’ methods is the increase

of the number of scene graph nodes, leading to additional

render calls or batches per modelled object. To deal with this

situation, an important fact about the scene graphs can be used:

every node is an explicit list of independent triangles. These

independent triangle lists can be ‘appended’ at the end of each

other and drawn instead within a single render call or ‘batch’, as

long as they belong to the same administrative object and share

appearance options.

Non Split method 2: Stitching world based geometries

The final approach is an improvement over previous methods

aimed to reduce the vertex count, triangle count and scene

graph node count by sharing vertices, avoiding spheres and

modelling the pipe as a single object without breaks and

ruptures. The basis of this method is the removal of the spheres

placed between consecutive cylinders and adjusting their length

so they can match in both ends. To accomplish this, the pipes

are extended and cut at the bisecting plane between two

consecutive centrelines.

The reconstruction methods can follow more than one path due

to variations in the appearance reuse policy and if possible in

the object reuse policy. Split Methods 1 and 2 follow 4 paths

each, Split Method 3 follow only 2 paths, while Non Split

Methods 1 and 2 follow 2 paths each one. All the possibilities

add up to 14 paths to test and cover the five methods and their

variations.

4. IMPLEMENTATION AND TESTS

Based on the presented decision structure, the performance of

each reconstruction method can be directly evaluated. However,

due to the dependency on the input objects, varying in length,

span area, and other details affecting the scene complexity and

the rendering performance, the high level decisions are ignored,

keeping only the low level decisions for the tests.

With only four parameters, abstract tests are created and only

low-level decisions are tested instead of the full reconstruction

methods. With the remaining parameters, only 10 combinations

are left. In practise 9 are tested since the last one, i.e. no

primitives, no transformations, no object reuse and no material

reuse, is not expected to bring advantages over the previous

ones.

4.1 Abstract tests

The abstract tests replace specific objects, pipes in this case,

with spheres, which are geometrical objects with high triangle

count capable of represent objects with less or equal triangle

count. GPU’s do not differentiate the rendered objects; they

only process triangles and their corresponding vertices (Figure

3). In addition, the sphere is a scene graph primitive available in

various frameworks, making it suitable for testing the primitive

cases and their optimizations.

For every test, a specific number of unitary spheres are

randomly placed within a 100 x100 x 100 cube to reduce the

number of occlusions while making them mostly visible within

the camera viewport. Rotating the camera around the cube

simulates user interaction.

For each decision path, an increasing number of nodes (50, 300,

… , 2050) with an increasing triangle count per object is used

(128,512,1152), running the tests for 30 seconds and collecting

the number of displayed frames per second.

Figure 3: The spheres used for the abstract test

4.2 Tests implementation

The testing framework is implemented in a web environment

using WebGL and X3D/X3DOM as the underlying technology

stack. Tests are automated via custom code, simulating both the

workload and user interaction. On the server side a Web server

is used for dispatching files and a Servlet Container for storing

results in a database (PostgreSQL). Figure 4 depicts the system

architecture used for the tests.

Figure 4: System architecture

Results obtained are shown in Figures 5: a) Frames per second

(FPS), b) Batches per second (BPS) and c) Triangles per second

(TPS).

a) Frames per second for the different strategies

From the results, it was found that within the tested range an

increase in triangle count, does not introduce a performance hit.

ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences,
Volume II-2/W1, ISPRS 8th 3DGeoInfo Conference & WG II/2 Workshop, 27 – 29 November 2013, Istanbul, Turkey

This contribution has been peer-reviewed. The double-blind peer-review was conducted on the basis of the full paper. 142

Indeed, from the TPS graph it is clear that the more triangles are

given to the system, the more triangles are processed.

b) Batches per second

c) Triangles per second

Figure 5: Results of the tests

From the BPS graph, a bottleneck is found, limiting the number

of batches per second and as consequence, the number of

instructions that can be submitted per second. In this regard, the

use of transformations and material changes require additional

operations reflected as additional processing time. As

consequence, it is possible to render a larger number of

triangles per node without a significant performance hit, leading

to the main strategy proposed in this paper: the stitching method

(i.e. the Non-split method 2).

This strategy overcomes the bottleneck in number of batches

per second of the system by reducing the number of nodes in

the scene graph, grouping several geometries within the same

node and avoiding transformations. This strategy can group as

many geometries as possible within the limitations of the system

in number of triangles, material changes and the object picking

implementation.

4.3 Real datasets

To show the applicability of the abstract tests, for every

reconstruction approach, a set of pipelines are reconstructed

within an X3DOM scene graph, and their performance tested

based on the number of frames per second (FPS). For each

created scene, the complexity is also indicated by the quality of

the objects, the number of nodes, the triangle count and

encoding size.

The tested scene consists of 162 pipes and cables initially

encoded as polylines, with an average length of 18.7 segments.

Each pipe its appearance is set accordingly to the pipe category,

requiring 11 different materials.

Table 1: Performance results using real datasets

Method Quality Node

count

Triangle

Count

Encoding

Size (MB)

FPS

1 24 5 902 3 676 544 1.5 2.3

1 8 5 902 571 776 1.5 2.3

2 24 5 902 4 064 640 1.5 2.3

2 8 5 902 4 064 640 1.5 2.3

3 24 5 902 3 630 524 148 0.3

3 8 5 902 434 016 16.5 2.7

4 24 682 3 630 624 148 20

4 8 189 434 016 18.4 30

5 24 162 137 760 4.9 50

5 8 162 45 920 1.6 50

Results in Table 1 confirm that the same scene built using the

Non-split strategies (Method 5), and in particular the stitching

approach, increases the number of FPS, reduces the triangle and

node count, and as a consequence the encoding size.

5. CONCLUSION

The different reconstruction approaches presented and their

mapping into the corresponding scene graph showed a clear

distinction between its produced complexity and the rendering

performance. This difference showed that reconstruction

methods with an efficient encoding not necessarily translate into

an efficient rendering. It also shows that common techniques for

improving the rendering performance not necessarily deliver the

desired results in WebGL. In order to assemble the desired

scenes and achieve real-time visualization using WebGL, the

following conclusions should be considered when

reconstructing underground objects:

The CPU is a critical factor. As visible from the results,

applying some common optimizations like reducing the triangle

count do not bring tangible benefits on the rendering speed. The

reason behind it is another factor minimizing the advantages. In

the studied case based on WebGL, the CPU is a bottleneck

limiting the number of rendered nodes per frame and vanishing

the benefits of other improvements. Therefore, improving the

performance with significant margins can be achieved first by

reducing the number of nodes in the resulting scene graph.

Aggregating nodes is not only a good solution but also a

requirement. The reconstructed pipes are composed of multiple

pieces sharing identical appearance, identifiers and

administrative information, making them suitable for being

aggregated or packed into a single node. Indeed, not every

reconstruction approach allows packing geometries and

reducing the number of nodes. Fortunately, the described family

of ‘non-split’ methods allows such packing and in particular,

the ‘stitch’ approach shines by reducing the triangle count

while, discarding most of the spheres, reducing the number of

faces per cylinder, removing the duplicated vertices on the

shared boundaries, but also keeping the visual quality.

‘Stitching’ is an optimization over the other approaches for 3D

pipes. The ‘split’ method’ is considered an optimization

compared to other approaches, reducing the size of the declared

scene and increasing the performance at the rendering stage. In

addition, the introduced optimizations are independent of

specific scene graph implementations and rendering pipelines,

being able to run on both programmable and fixed pipelines,

guaranteeing its applicability on different platforms.

WebGL weakness is the performance of JavaScript. WebGL has

proven to be an interesting technology to display 3D graphics

ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences,
Volume II-2/W1, ISPRS 8th 3DGeoInfo Conference & WG II/2 Workshop, 27 – 29 November 2013, Istanbul, Turkey

This contribution has been peer-reviewed. The double-blind peer-review was conducted on the basis of the full paper. 143

embedded in the browser. However, the inherent characteristics

of reconstructed underground objects produce scenes which

show one of the weaknesses of the technology: the speed at

which the instructions can be submitted to the GPU. This

weakness originates from the JavaScript language, which is an

interpreted language producing additional overhead on the CPU

and therefore reducing the processing power to submit work to

the GPU. In comparison, X3D web plugins and standalone X3D

players are usually developed using compiled languages and

have a closer integration with the underlying hardware and

graphic drivers. If X3D/X3DOM were implemented into the

browser, it could produce twice to ten times more frames per

second than its JavaScript counterpart. However, since this

requires introducing an interface to interact with the scene

(Scene Access Interface), the performance gain would remove

the benefits of having direct access to the 3D scene via WebGL.

In this research the 3D shapes for the pipes needed to be

reconstructed on the fly after the pipes are fetched from a

DBMS, where they are managed as 3D lines. Therefore mesh

optimisation approaches were not considered at all. The mesh

optimisation will be very suitable if the 3DX files are stored on

the server. Limper et al 2013 and Lavoue et al 2013 have shown

that the performance can be significantly improved also in case

of WebGL-based rendering when mesh optimisations are

applied.

ACKNOWLEDGEMENTS

The authors express they gratitude to the ‘3DSDI’ project

funded by the programme Next Generation Infrastructures,

Maasvlakte2, which made this research possible.

REFERENCES

Altmaier, A. and T.H. Kolbe, 2003 Applications and solutions for

interoperable 3D geo-visualization, Proceedings of the

PhotogrammetricWeek.

Apteker, R.T. J.A. Fisher, V.S. Kisimov, and H.Neishlos, 1995 Video

acceptability and frame rate. MultiMedia, IEEE, 2(3):32–40

Basanow, J., P. Neis, S. Neubauer, A. Schilling, and A Zipf, 2008,

Towards 3D Spatial Data Infrastructures (3D-SDI) based on open

standards – experiences , results and future issues. Advances in 3D

Geoinformation Systems, pages 65–86, 2008.

Behr, J., Y. Jung, T. Drevensek, and A. Aderhold, 2011 Dynamic and

interactive aspects of X3DOM. Proceedings of the 16th International

Conference on 3D Web Technology, Web3D ’11, pages 81–87

Bertin, J., 1983, Semiology of graphics: diagrams, networks, maps.

Wisconsin PressWisconsin PressWisconsin Press.

Brutzman, D. and L. Daly. X3D: Extensible 3D Graphics for Web

Authors. Morgan Kaufmann Series in Interactive 3D Technology.

Elsevier/Morgan Kaufmann, 2007. ISBN 9780120885008. URL

http://books. google.nl/books?id=yfkW80XUNqUC.

Cutting, J.E. and P.M. Vishton, 1995, Perceiving layout and knowing

distances: The integration, relative potency, and contextual use of

different information about depth. Perception of space and motion,

5:69–117

Döner, F., R. Thompson, J. Stoter, C. Lemmen, H. Ploeger, P. van

Oosterom, and S. Zlatanova, 2011, Solutions for 4D cadastre – with a

case study on utility networks. International Journal of Geographical

Information Science, 25(7):1173–1189, 2011.

Du, Y. and S. Zlatanova, 2006, An approach for 3D Visualization of

Pipelines. in 3D Geo Information Systems, Lecture Notes in

Geoinformation and Cartography, pages 501–517. Springer Berlin

Heidelberg, 2006.

Environmental Systems Research Institute ESRI. Esri shapefile

technical description, July 1998. URL

http://www.esri.com/library/whitepapers/pdfs/shapefile.pdf.

Fernando, E. 2004, GPU Gems: Programming Techniques, Tips and

Tricks for Real-Time Graphics. Pearson Higher Education

Heinen, T., M. May, and B. Schmidt, 2005, 3D Visualisation in Spatial

Data Infrastructures. Smart Graphics Lecture Notes in Computer

Science, 3638(3):222–229

Kadaster, 2008, IMKL Informatie model voor Kabels en Leidingen

(Information model for cables and pipes). Technical Report

1.1,Ministerie van Economishe Zaken,May 2008. (in Dutch)

Kokkevis. V., 2012, GPU Accelerated Compositing in Chrome, May

2012, org/developers/design-documents/gpu-accelerated-compositing-

in-chrome.

KronosGroup.WebGL Specification Version 1.0, 2011.

https://www.khronos.org/registry/webgl/specs/1.0/.

Kronos Group. OpenGL OpenGL ES - The Standard for Embedded

Accelerated 3D Graphics, 2012. URL

http://www.khronos.org/opengles/.

Lavoue, G., L. Chevalier and F. Dupont, 2013, Streaming compressed

3D data on the Web using JavaScript and WebGL, Web3D 2013, June

20 – 22, 2013, San Sebastian, Spain, 9p.

Limper, M., S. Wagner, C. Stein, Y. Jung and A. Stork, 2013, Fast

delivery of 3D Web content: A case study, Web3D 2013, June 20 – 22,

2013, San Sebastian, Spain, ACM proceedings, pp. 11-18.

Meier, J.D., C, Farre, P. Bansode, S. Barber, and D. Rea, 2007

Performance Testing Guidance for Web Applications, patterns

practices. Microsoft Corporation.

Open GIS Consortium Inc. OpenGIS Simple Features Specification for

SQL, Revision 1. 1. OpenGIS Project Document, pages 99–049, 1999.

OpenGL.org. 2.1 OpenGL fundamentals. URL

http://www.opengl.org/documentation/specs/version1.1/glspec1.1/node

10.html.

OpenGL Programming/OpenGL ES Overview, January 2011. URL

http://en.wikibooks.org/wiki/OpenGL_Programming/OpenGL_ES_Ove

rview.

Ramsey, P., 2005, PostGIS 2.0 manual. Refractions Research Inc, URL

http://postgis.net/stuff/postgis-2.0.pdf

Reiners, D., 2002 Scene graph rendering, March 2002. URL

http://cfile25.uf.tistory.com/attach/112B9D184C51392902C354.

Schall, G., S. Junghanns, and D. Schmalstieg, 2008, The transcoding

pipeline: Automatic generation of 3D models, from geospatial data

sources. Proceedings of the 1st InternationalWorkshop on Trends in

Pervasive and Ubiquitous Geotechnology and Geoinformation

(TIPUGG 2008), volume 23, 2008.

Schall, G., D. Schmalstieg, and S. Junghanns, 2010 VIDENTE-3D

Visualization of Underground Infrastructure using Handheld

Augmented Reality, Geohydroinformatics-Integrating GIS and Water

Engineering CRC Press/Taylor and Francis Publisher: CRC, 1, 2010.

Shilling, A. and T. H.. Kolbe, 2010, Draft for Candidate OpenGISWeb

3D Service Interface Standard, 2010. URL

http://portal.opengeospatial.org/files/?artifact_id=36390.

ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences,
Volume II-2/W1, ISPRS 8th 3DGeoInfo Conference & WG II/2 Workshop, 27 – 29 November 2013, Istanbul, Turkey

This contribution has been peer-reviewed. The double-blind peer-review was conducted on the basis of the full paper. 144

Strauss, P.S. and R. Carey, 1992, An object-oriented 3d graphics

toolkit. SIGGRAPH Comput. Graph., 26(2): 341–349

Verbree, E., S. Zlatanova, and K. Smit, 2004, Interactive navigation

services through value-added CycloMedia panoramic images.

Proceedings of the 6th international conference on Electronic

commerce, ICEC ’04, pages 591–595.

Wei, L., 2005, A crash course on programmable graphics hardware.

Paper, Microsoft Research Asia, 2005. URL

http://graphics.stanford.edu/~liyiwei/courses/GPU/paper/paper.pdf.

Wolka, M., 2003, Batch, batch, batch: What does it really mean?, 2003.

URL http://developer.nvidia.com/docs/IO/8230/BatchBatchBatch.pdf.

Zlatanova, S., F. Doner, and P. van Oosterom, 2011 Management and

visualization of utility networks for local authorities: a 3D approach.

Electronic Government and Electronic Participation, Schriftenreihe

Informatik 37, pages 459–474.

Zlatanova, S. Y. Du and X. Liu Management and 3D visualization of

pipeline networks using DBMS and AEC software. Proceedings of the

ISPRS Commission IV Symposium on Geospatial Databases for

Sustainable Development. 34:395–400, 2006.

ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences,
Volume II-2/W1, ISPRS 8th 3DGeoInfo Conference & WG II/2 Workshop, 27 – 29 November 2013, Istanbul, Turkey

This contribution has been peer-reviewed. The double-blind peer-review was conducted on the basis of the full paper. 145

