
Automatic generation of
CityGML LoD3 building
models from IFC models

December 2013

MSc thesis in Geomacs
by Sjors Donkers

Department of GIS Technology
OTB Research Instute for the Built Environment

On cover:

IfcOpenHouse IFC model

http://blog.ifcopenshell.org/2012/11/say-hi-to-ifcopenhouse.html

Colophon:

This document is created using the LaTeX Thesis Template

by Steven Gunn and Sunil Patel

http://users.ecs.soton.ac.uk/srg/softwaretools/document/templates/

http://www.sunilpatel.co.uk/thesis-template/

Delft University of Technology
Master of Science in Geomatics

Automatic generation of CityGML LoD3
building models from IFC models

by

Sjors Donkers

December 2013

Supervisors Dr. Hugo Ledoux
Dr. Junqiao Zhao

Graduation professor Prof.dr. Jantien E. Stoter
Co-reader Ir. Paul de Ruiter
External examiner Prof.dr. Massimo Menenti

Delft University of Technology

MSc Geomatics

The Netherlands

Abstract

CityGML is a standardized data format used to store the semantic information and ge-

ometries of buildings and other object classes of 3D city models. The Level of Detail of

current state of the art city models (LoD2) is not sufficient for accurate environmental

simulations like noise, the solar potential of windows and other types of analyses. An

LoD3 building model represents the full architectural exterior of a building with bal-

conies, windows and so forth. The generation of these models needs to be automated

as it is otherwise infeasible due to the required high amount of manual labour. In the

architectural world, detailed building models are created in IFC format. This thesis

shows that it is possible to automatically generate valid and semantically rich CityGML

LoD3 building models directly from IFC models. Also an initial investigation is done on

the possibilities for the conversion of IFC models to CityGML LoD4.

For the conversion the semantic and geometric validity requirements are determined

for CityGML. A methodology for the conversion is developed and a prototype imple-

mentation is made to prove the effectiveness of the conversion. The conversion consists

of three parts: 1) The extraction and mapping of IFC semantics to CityGML semantics;

2) A geometric generalization which extracts the exterior shell using a transformation

based on Boolean and morphological operations; 3) Semantic and geometric refinements

which optimize the model for analyses. The developed prototype is able to successfully

convert IFC models to CityGML LoD3. All the resulting models were geometrically

validated according to the ISO19107 standard, and semantics were checked manually.

Few improper semantics occur in the output due to missing semantics in IFC. For ex-

ample, there are no semantics for balconies or dormers in IFC. Recommendations are

given to improve the alignment between the two formats. For IFC additional semantics

are recommended whereas it is important for CityGML to specify how certain aspects

are to be modelled.

The research presented in this thesis can be used as the foundation for future work

on the interoperability between Architecture and Geomatics. The software package is

open source and freely available at https://github.com/tudelft-gist/ifc2citygml.

iii

Acknowledgements

More than a year ago, my supervisor Hugo Ledoux approached me beaming with en-

thusiasm: “I have found the perfect topic for you!” he said. How could I refuse? So I

didn’t refuse and now at the end of my thesis I’m still glad I didn’t. It took a while to

complete, but it was worth the effort and I have learned a lot.

I would like to thank both my supervisors, Hugo Ledoux and Junqiao Zhao, for their

support and guidance and for pushing me to keep improving my work. In particular I

would like to thank Junqiao Zhao for all the great discussions related to this thesis. Also,

I’m very grateful for the feedback I received from Jantien Stoter and Paul de Ruiter. I

found it truly valuable.

I am thankful to all people at OTB and all that are in any way related to the

project. Especially Karl-Heinz Häfele and Roeland Boeters have been very helpful for

providing me feedback throughout the project and for kick starting my project with their

knowledge and experience. Furthermore, I would like to thank the following people for

pointing me in the right direction: Jakob Beetz, Joran Jessurun, Wouter Goedhart, Lars

de Vries, Thomas Krijnen, Léon van Berlo, Ruben de Laat and Liu Liu.

Also I would like to thank my friends for everything and whatever they did to

contribute to the project: Jiebo Qiu, Lie Ping Huang, Moonhee Lee, Vera Liem, Yang

Yue and Jelte van Oostveen. All your contributions are greatly appreciated.

Lastly I would like to say hi to my mom and dad: “Hi!”. Thank you for supporting

me all the way through my education.

v

Contents

Abstract iii

Acknowledgements v

List of Figures ix

List of Tables xiii

Acronyms xv

1 Introduction 1

1.1 Research Questions . 4

1.2 Scope . 6

1.3 Outline . 7

2 Background and Related Work 9

2.1 IFC . 10

2.2 CityGML . 13

2.3 Validity Criteria for CityGML LoD3 . 14

2.3.1 Requirements and Geometric Constraints on Semantics 15

2.3.2 Geometric Validity Requirements 16

2.4 Current Development . 20

3 Methodology for the Conversion 23

3.1 Semantic Filtering and Mapping . 24

3.1.1 Filtering of IFC objects based on semantics 24

3.1.2 Semantic Mapping from IFC to CityGML 25

3.2 Geometric Transformations . 29

3.2.1 Exterior Shell Computation using Boolean and Morphological Op-
erations . 29

3.2.2 Incorporation of BuildingInstallations 34

3.2.3 Concepts for Computing the Exterior Shell Geometry 35

3.3 Producing a CityGML and ISO Conform File 42

3.3.1 Geometric Refinements . 42

3.3.2 Semantic Refinements . 46

4 Implementation and Experimental Results 49

4.1 Development Framework . 49

4.1.1 Spatial Data Structures . 50

vii

viii Contents

4.2 Prototype Implementation . 53

4.2.1 Preprocessing . 54

4.2.2 Geometric Transformation . 55

4.2.3 Reattaching and Assigning Semantics 57

4.2.4 Processing Degenerate and Nearly Degenerate Faces 59

4.2.5 Writing CityGML . 61

4.3 Simple Creation of LoD4 Rooms . 62

4.4 Input Data Requirements . 63

4.5 Experimental Results . 66

4.5.1 Input and LoD3 Model Results . 66

4.5.2 Generated Rooms for LoD4 . 76

4.6 Validation and Evaluation of the Experimental Results 77

4.6.1 Validation and Quality of the Generated LoD3 models 77

4.6.2 Performance of the Conversion to LoD3 81

4.6.3 Evaluation of the Possibilities for the Conversion to LoD4 models . 85

5 Conclusions, Recommendations and Future Work 87

5.1 Conclusions . 87

5.2 Recommendations for IFC . 89

5.3 Recommendations for CityGML . 89

5.4 Future Work . 90

A IFC 2x Platform Architecture 93

B CityGML 2.0.0 Building Module 95

C Conversion Workflow Diagrams 97

Bibliography 103

List of Figures

1.1 Overlap between the fields of Geomatics and Architecture 1

1.2 Building model in LoD1 to LoD4 . 2

1.3 Differences between IFC and CityGML . 3

1.4 General workflow diagram of the prototype 5

2.1 Information on IFC . 10

2.2 UML diagram for IFC entities . 11

2.3 The three possible approaches for representing 3D objects in IFC 11

2.4 Boolean operations between a cube and a sphere 12

2.5 An example of implicit geometry . 13

2.6 CityGML UML for LoD3 . 14

2.7 LoD3 boundary surfaces . 15

2.8 Linking surfaces and solids using ‘XLinks’ 16

2.9 Only visible surfaces in CityGML . 16

2.10 One solid with one exterior shell and one interior shell, a cavity 17

2.11 Four non-manifold cases . 18

2.12 Two types of degeneracies needles and caps 18

2.13 Conversion results by BIMserver . 20

2.14 Conversion results by Safe Software FME 21

3.1 General workflow diagram of the conversion methodology 23

3.2 Workflow diagram for the filtering of IfcObjects 25

3.3 Workflow diagram for the mapping of semantics 26

3.4 An IfcSpace can be used to model the zone of a balcony 27

3.5 Visualisation of the basic steps of the geometric transformation 30

3.6 When two surfaces overlap, the semantics of a 2D surface object is used . 30

3.7 Workflow diagram for extracting the exterior shell using union operation . 30

3.8 Morphological operations using a disk as structuring element 31

3.9 Visualisation of the exterior shell extraction with closing 32

3.10 Two concepts for orienting the structuring element 33

3.11 Workflow diagram for extracting the exterior shell with closing operations 34

3.12 Workflow diagram for processing BuildingInstallations 35

3.13 Heuristic carving a method for repairing geometry 36

3.14 Vertex normal dilation in 2D maintains sharp corners 38

3.15 Vertex normal dilation on individual triangles or tetrahedra 38

3.16 The results of patching compared to morphological closing 40

3.17 Simplified workflow diagram of the geometric refinement process 42

3.18 Regularization is applied to remove dangling geometries 43

ix

x List of Figures

3.19 Rounding of coordinates may split volumes in two 43

3.20 A CompositeSolid with multiple 2-manifold solids 44

3.21 Subtraction of a local element to repair a non-manifold 45

3.22 Methods for removing perfect surface degeneracies 46

3.23 Workflow diagram for determining the semantics for faces without semantics 47

3.24 After the semantic refinement the model can be written to CityGML . . . 48

4.1 The connectivity of a halfedge in the HalfedgeDS 51

4.2 The union of two 2-manifold solids can result is a non-manifold solid . . . 51

4.3 The SNC representation and connectivity of faces and edges 52

4.4 Boolean intersection on two Nef polyhedra 53

4.5 General workflow diagram for the implementation 54

4.6 Flow diagram for the preprocessing stage of the implementation 54

4.7 Geometry is made 2-manifold . 55

4.8 Flow diagram for the geometric transformation stage of the implementation 55

4.9 The Minkowski sum of two convex polyhedra 56

4.10 Minkowski sum of concave polyhedra . 56

4.11 A sphere map of a non-manifold vertex . 57

4.12 Flow diagram for the process to get boundary surface semantics attached 57

4.13 Reattaching semantics . 58

4.14 Mismatched semantics may occur due to the semantics snapping process . 59

4.15 Flow diagram for the final process of the conversion 59

4.16 A coplanar surface before and after detriangulation 60

4.17 Detriangulation (without creating holes) and simplification of the border . 61

4.18 Simplification of the border . 61

4.19 The IfcSpaces for one storey of a building 62

4.20 An IfcSpace can be linked to space boundaries 62

4.21 Connected spaces are union into larges spaces 63

4.22 A solid should be completely enclosed by faces 64

4.23 Buildings where major sections are missing 65

4.24 All doors and windows should be closed in their explicit geometry 65

4.25 Solid geometry should not overlap as it is not physically possible 65

4.26 Legends for both the IFC and the CityGML models 67

4.27 IfcOpenHouse input and conversion result 68

4.28 FZK-House input and conversion result 69

4.29 FJK-House input and conversion result . 69

4.30 Smiley West input and conversion result 70

4.31 Niedriha input and conversion result . 71

4.32 BIEN-ZENKER Jasmin-Sun input and conversion result 72

4.33 Office Building input and conversion result 73

4.34 The gap left open by the door is closed by a ClosureSurface 73

4.35 Haus-G-H input and conversion result . 74

4.36 Model 4351 input and conversion result 74

4.37 1407 Opheusden WoZoCo input and conversion result 75

4.38 Legend for the CityGML LoD4 room models 76

4.39 Automatically generated LoD4 rooms . 77

4.40 Artefacts occur at concave parts of the geometry 78

List of Figures xi

4.41 Percentage of artefact area as a function of the width 79

4.42 The influence of the width of the structuring element on the output . . . 79

4.43 The artefact can then be distinguished manually 80

4.44 Parts of faces may be assigned to the wrong semantics 80

4.45 Several semantics are missing in IFC . 81

4.46 Screenshot of the console during the conversion process 81

4.47 The computation time as a function of the input file size 82

4.48 The computation time as a function of the width of the structuring element 82

4.49 The output file size as functions of the input file size 83

4.50 The Opening surfaces between room should linked 85

5.1 Lower LoDs can be generated from the LoD3 model 91

C.1 Workflow diagram for the filtering and mapping of semantics 98

C.2 Workflow diagram for the geometric transformation 99

C.3 Workflow diagram for the refinement of the geometry 100

C.4 Workflow diagram for the refinement of semantics 101

List of Tables

2.1 Normal vector limitations on semantic surfaces 15

2.2 Evaluation of current IFC to CityGML LoD converters 21

3.1 Semantic mapping from IFC to CityGML LoD3 28

3.2 Qualitative trade-off of all concepts for extracting the exterior shell 41

4.1 Information and statistics for IfcOpenHouse 68

4.2 Information and statistics for FZK-House 69

4.3 Information and statistics for FJK-House 70

4.4 Information and statistics for Smiley West 71

4.5 Information and statistics for Niedriha . 72

4.6 Information and statistics for BIEN-ZENKER Jasmin-Sun 72

4.7 Information and statistics for Office Building 73

4.8 Information and statistics for Haus-G-H 74

4.9 Information and statistics for Model 4351 75

4.10 Information and statistics for 1407 Opheusden WoZoCo 76

4.11 Statistics for all models . 84

xiii

Acronyms

AABB Axis-Aligned Bounding Boxes.

ADE Application Domain Extension.

AEC Architecture, Engineering and Construction.

AHN Actueel Hoogtebestand Nederland.

B-rep Boundary-representation.

BGT Basisregistratie Grootschalige Topografie.

BIM Building Information Modeling.

BIMserver Building Information Modelserver.

CAD Computer-Aided Design.

CGAL Computational Geometry Algorithms Library.

CityGML City Geography Markup Language.

CSG Constructive Solid Geometry.

FME Feature Manipulation Engine.

GIS Geographic Information System.

GML Geography Markup Language.

GUI Graphical User Interface.

HalfedgeDS Halfedge Data Structure.

IDM Information Delivery Manual.

IFC Industry Foundation Classes.

xv

xvi Acronyms

IFD International Framework for Dictionaries.

IFG IFC for GIS.

IMGeo InformatieModel GEOgrafie.

ISO International Organization for Standardization.

KIT Karlsruhe Institute of Technology.

LOD Level-Of-Development.

LoD Level-of-Detail.

OFF Object File Format.

OGC Open Geospatial Consortium.

SEdge Spherical Edge.

SFace Spherical Face.

SIG3D Special Interest Group 3D.

SNC Selective Nef Complex.

STEP STandard for the Exchange of Product model data.

SVertex Spherical Vertex.

TNO (Nederlandse centrale organisatie voor) Toegepast Natuurwetenschappelijk On-

derzoek.

UBM Unified Building Model.

UML Unified Modeling Language.

XML Extensible Markup Language.

Chapter 1

Introduction

This thesis is within the field of Geomatics, a field which is specialized in, but not limited

to, the usage, analysis and distribution of (geo) data and information (hereafter referred

to as geodata). The value of the geodata depends on a range of factors such as the

availability, accuracy, amount of detail, whether the data is up-to-date and the consis-

tency with which it is stored relative to similar geodatasets. Not only do these factors

contribute to the ease and ability to analyse the geodata, but also to the interoperability

between applications.

Architecture is a field in which a vast amount of high value data is created manually.

By bridging the gap between the fields of Geomatics and Architecture a new data source

can become available for geo-applications with an unprecedented amount of detail. In

this thesis a methodology is developed for an automated conversion of standardized

data formats of the respective fields. While there are other ways to get geodata like

laser scanning, surveying, photogrammetric measurements or manual modelling [1], a

conversion has the benefit of allowing for the reuse of already captured information

without being as time consuming as rebuilding the models manually. Reusing data also

assures consistency of the data used in both fields. Unsurprisingly the interest in such

a conversion is increasing [2–4].

Architecture

Geomatics Large scale
(mm)

Small scale
(km)

World Country City Region Building

Component Room Section Floor Building

Figure 1.1: Overlap between the fields of Geomatics and Architecture (Adapted from:
[5])

1

2 Chapter 1. Introduction

The fields share a common interest (see Figure 1.1) in 3D building models which are

becoming increasingly more important in many applications [6]. Building models can

amongst others be used in cadastral and environmental analysis [7] or for queries like

the solar potential of a roof [8] or the number and distribution of windows [9, 10]. Two

standardised data formats, City Geography Markup Language (CityGML) [11] used by

the field of Geomatics and Industry Foundation Classes (IFC) [12], an open data model

for Building Information Modeling (BIM), by Architecture form the two most prominent

semantic 3D modelling formats for buildings [1].

IFC has been accepted as an open standard by the Dutch ‘Forum en College Stan-

daardisatie’ [13]. This means that governmental organisations are required to use the

IFC data format when working with BIM. As a result, a significant rise in the availabil-

ity can be expected for IFC models. CityGML on the other hand is the standard used

for modelling the 2D Basisregistratie Grootschalige Topografie (BGT) as to facilitate a

future transition to 3D [14].

IFC is more detailed. It models everything between the individual components up

to buildings, while in CityGML, five Levels-of-Detail (LoDs) are defined for building

models where each level describes what geometric and semantic representations are

expected (see Figure 1.2). LoD0 is a 2.5D digital terrain model (DTM). The first level

having volumetric buildings is LoD1, in which they are represented by extruded blocks.

In LoD2 roof structures and larger building installations like balconies are present, but

they are still generalised geometries. LoD3 contains the full exterior of an architectural

model with detailed wall and roof structures, doors and windows. LoD3 is extended in

LoD4 by adding interior structures like rooms, stairs and furniture [15].

Figure 1.2: Building model in LoD1 to LoD4 (Source: [16])

According to Blaauboer et al. [17], the generation of lower LoD building models can

be automated, but LoD3 as well as LoD4 models are usually generated by the conversion

from IFC . However, all current developments on this conversion have certain defects as

is elaborated in Chapter 2. In general, the converters do not transform the geometry

and the semantic mapping is limited. Furthermore, other projects focus on the conver-

sion of IFC to lower CityGML LoDs. Thus the contribution made by defining a valid

and openly accessible conversion method for LoD3 and higher would be significantly

Chapter 1. Introduction 3

more valuable. As a result, the goal of this research project is to generate valid and

semantically rich CityGML geometry at LoD3 from IFC building models and exploring

the possibilities for generating LoD4.

The conversion to CityGML involves geometric calculations as well as mapping of se-

mantics, as is depicted in Figure 1.3. IFC models are built using mostly primitives

and swept solids in combination with Constructive Solid Geometry (CSG) [18] while

CityGML only uses Boundary-representation (B-rep). LoD3 building models represent

the full architectural exterior, thereby the geometric accuracy concerning the exterior

of a building is equivalent between the two formats. This is especially so since details

like the bricks in a wall and other materials are stored as properties in IFC instead of

geometry. However, installations like beams and columns are generalised in CityGML

LoD3. There are several requirements on IFC input models for the conversion, these are

discussed in Section 4.4.

Aside from how objects are modelled, also what is modelled is different. For gener-

ating an LoD3 building model, extracting the exterior envelope from the IFC geometry

is an essential geometric calculation. A valid exterior shell defines a clear separation

between out- and inside. The validity is necessary to guarantee the correct output for

processing or manipulation operations, like the calculation of the volume, creation of a

buffer or operations such as intersection, touch and contain [19].

Figure 1.3: Differences between IFC (left) and CityGML (right). In IFC solid objects
are represented, while CityGML represents only visible surfaces. The faces of an IFC

object can have multiple different semantics in CityGML (Source: [20])

4 Chapter 1. Introduction

Contributions of this thesis through the implementation of algorithms for the automatic

conversion of IFC to CityGML are:

1. A method for constructing LoD3 CityGML building models from detailed IFC

building models becomes available.

• The new source for CityGML models allows for an increase of the availability

of building models and the ability to keep them up-to date.

• At LoD3, models with a higher accuracy and amount of detail are provided

than the state of the art LoD2 models.

• The models adhere to the CityGML standard and are to a large extent geo-

metrically consistent with the IFC models.

• It will improve the interoperability between Geomatics and Architecture and

the reuse of information, thereby reducing the high costs for the generation

of 3D city models [21].

2. Suggestions for improvement, derived from the conversion practise, are given on

the modelling methodology and standards of IFC and CityGML. Also advice for

conversions to other LoDs is provided, especially for LoD4.

1.1 Research Questions

This thesis aims to develop a methodology for the conversion of architectural building

models modelled in IFC to CityGML LoD3. Three important aspects are the semantics,

the geometry and the validity of the output models. It is possible to model a wide and

diverse range of building models in IFC. As such the methods should be flexible enough

to deal with complex models.

The main research question is:

Is it possible to generate valid and semantically rich CityGML

building models at LoD3 from IFC models, and can this method

be extended to LoD4?

Sub questions have been defined to help answer the main research question:

1. What is a valid CityGML LoD3 geometry and which semantics are needed?

2. How can IFC models be converted to CityGML LoD3?

a) What geometric operations are required for both the geometric and the seman-

tic conversion?

b) What semantic information is required for both the geometric and the semantic

conversion?

Chapter 1. Introduction 5

3. How can the conversion be extended to LoD4?

A conversion method, presented in Chapter 3, is defined and implemented into a proto-

type. The prototype is tested and its output is validated with the goal of answering the

research questions. The implementation and validation of the prototype are described

in Chapter 4.

The conversion methodology and the prototype are built upon three pillars, semantic

mapping, geometric transformation and the geometric and semantic refinement (see

Figure 1.4). In the first stage the useful geometries and semantics from the IFC file are

filtered from the others and the CityGML semantics are determined. The second stage

uses the filtered geometries and transforms them into CityGML compliant geometries

representing the exterior shell. The last stage optimizes the geometry for analytical

computations and resolves semantic issues before the model is written to the output

CityGML file. Although LoD3 is the main target, LoD4 rooms are researched as an

initial investigation of the possibilities and problems of the conversion to LoD4.

Semantic

Mapping

Geometric

Transformation

Geometric &

Semantic

Refinement

IFC CityGML

Figure 1.4: General workflow diagram of the prototype

Models using the IFC2x3 release version are used as input since at the start of this

project it was the latest final release and IFC4 support is still very limited. The output

of the proposed methods fully adheres to the standards imposed by CityGML 2.0.0 and

International Organization for Standardization (ISO)19107. The evaluation of results is

made with these four factors:

1. The syntax must be correct.

2. The geometry must be in line with the CityGML standard and valid according to

definition of the ISO/Open Geospatial Consortium (OGC).

3. The geometry should represent the input model with minimal differences. Differ-

ences are considered significant when the shortest distance from geometry in the

output to the input is larger than 0.01 m.

4. The semantics should be applicable and correctly mapped.

6 Chapter 1. Introduction

1.2 Scope

The methods which are developed during this project are designed to facilitate the use

of IFC data in 3D Geographic Information System (GIS) applications. The focus is

not input-driven by converting IFC, thus attempting to store all its information into

a CityGML model, but output-driven by constructing a proper CityGML model using

only the information that is needed for a successful conversion that keeps as much as

possible of the input information relevant for the CityGML output. An implementation

of a both geometrically and semantically input-driven conversion is presented by Laat

and Berlo [3].

El-Mekawy et al. [22] state that for the semantic mapping, CityGML needs to be

overloaded with additional information to be matched and integrated with IFC. An

example is CityGML not supporting classes for storeys or openings that do not contain

doors or windows [1]. However the conversions envisioned in those cases are input-driven

and aim at a full bidirectional integration of the two formats. No proper geometric

conversion nor a complete semantic mapping previously been published for LoD3 with

an output-driven focus.

LoD3 requires the exterior shell geometry and the CityGML semantics related to the

objects which are part of that exterior. That is, geometric relations like ‘Roof’, ‘Window’

and ‘BuildingInstallation’ will be linked to the geometry, but textures and properties like

for example the thermal transmittance of an object will not be considered. By making

no more use of semantic IFC properties than strictly necessary for extracting informa-

tion that is relevant for CityGML LoD3, the conversion will be applicable to a larger

variety of IFC models. For example, the model may contain an ‘IfcSpace’ which has

external space boundaries that cover the complete exterior shell making the geometric

conversion trivial. However, the model is not required to have such information and

thus no assumptions are made about its presence.

Several aspects are outside the scope of this thesis. The conversion of the terrain or

site around the building is not covered in this thesis. Therefore also no terrain intersec-

tion curves are generated. Furthermore, this research does not intend to enhance the

model by detecting features. If certain semantic properties are not stored in the IFC

file, either the model or the IFC standard should be updated. For example, chimneys

in CityGML should be marked as ‘BuildingInstallation’, but the semantic property ‘Ifc-

Chimney’ is newly introduced in IFC4, thus not available during the project. Developing

feature recognition software is time consuming and will likely be limited with respect to

accuracy and possible ambiguities. An update of the IFC standard which increases the

semantic capabilities of IFC, will provide better results.

The conversion methodology is limited to building models for which there should be

only one exterior shell (if geometrically possible). If there are multiple buildings in the

Chapter 1. Introduction 7

input, these will not be separated unless they form separate exterior shells, for example

when they are disjoint. An IFC file with multiple buildings can still be converted by

splitting it beforehand and merging it with an appropriate method afterwards. By doing

so the decision is left up to the user to decide whether he wants the buildings to have

either shared or separate geometries. Both options are equally valid according to the

CityGML standard.

Finally, how to construct the explicit geometry from an IFC file is not covered by

this report since this is part of the IFC specification and can be found in the IFC2x3

Model Implementation Guide [23]. It is also assumed that the input is valid according

to the IFC format. Thus no healing is required.

1.3 Outline

Background information on CityGML and IFC is given in Chapter 2 together with defi-

nitions of proper CityGML LoD3 and an evaluation of the current state of development.

Chapter 3 covers the conversion methodology for semantics, geometry, and for creating

and ensuring the validity of the output model. The implementation of the prototype

is described in Chapter 4, while also the evaluation of the results can be found there.

Finally in Chapter 5 provides the conclusions, recommendations for both CityGML and

IFC and future work from this research.

Chapter 2

Background and Related Work

Connecting the BIM with the GIS world is not a new topic and progresses have been

made. For the integration of two data formats there are four conversion strategies:

mapping, alignment, transformation and fusion [24]. Since BIM and GIS are primarily

designed for different purposes, an implementation of the fusion strategy at the system

level is still not feasible according to Wu and Hsieh [25]. An implementation at the data

level is however proposed by El-Mekawy et al. [26], a Unified Building Model (UBM).

IFC semantics are mapped to generalized UBM semantics, making it an incomplete fu-

sion which is believed to be unusable by the BIM world. Efforts of aligning CityGML

and IFC have been made in the form of extensions. For IFC the IFC for GIS (IFG)

extensions was created, for CityGML the GeoBIM extension [3]. The GeoBIM Applica-

tion Domain Extension (ADE) provides for the ability to store IFC type geometries and

semantics in a CityGML file format. Thereby no link is made with the format expected

in the core of CityGML. There are several converters available which do convert IFC

into CityGML without extending the standard. These are: a BIMserver plugin by A.J.

Jessurun, IFCExplorer by Karlsruhe Institute of Technology (KIT) and Feature Manip-

ulation Engine (FME) from Safe Software. As is elaborated in Section 2.4, none of the

converters is able to generate semantics or geometry which fully adheres to the CityGML

standard. In this thesis project different strategies are applied for the conversion of IFC

to CityGML LoD3. In addition, methods for the transformation of the geometry and

the mapping of semantics are developed.

Nagel [21] has implemented and documented the procedures for converting IFC prop-

erly to CityGML LoD1. When doing such a conversion between formats it is prudent to

know their purpose and characteristics. Knowledge of the standards is necessary during

research, but also to be able to verify the validity of output models.

In Section 2.1 and Section 2.2 relevant information on the standards of IFC and

CityGML is provided. The definitions for what is considered valid in CityGML are

9

10 Chapter 2. Background and Related Work

given in Section 2.3. These definitions are then used in Section 2.4 to evaluate converters

which are currently available.

2.1 IFC

IFC is a standardized open data model developed for BIM by the international or-

ganization buildingSMART. IFC depends on two other buildingSMART standards for

BIM, the data dictionary International Framework for Dictionaries (IFD) and the pro-

cess definition Information Delivery Manual (IDM) (see Figure 2.1a). BIM is used in

multidisciplinary building projects (Architecture, Engineering and Construction (AEC)

amongst others, see Figure 2.1b) for managing complex communication and informa-

tion sharing processes throughout the life cycle of the building in a multi-dimensional

model [27]. The IFC data format is based on the EXPRESS language as a part of the

STandard for the Exchange of Product model data (STEP) standard (ISO 103030) for

product data exchange [28]. There is no universally accepted building model for IFC

[29]. As such, the focus of this research is on the IFC core described in the IFC standard

documentation and ISO 16739 standard (see Appendix A).

(a) buildingSMART standards for BIM

HVAC
Engineer

Constr.
Engineer

Building
Owner

Civil
Engineer

Structural
Engineer

Facilities
Manager

Energy
Consultant

Architect

HVAC
Engineer

Constr.
Engineer

Building
Owner

Civil
Engineer

Structural
Engineer

Facilities
Manager

Energy
Consultant

Architect

Shared Data
Model

BIM in een notendop

(b) IFC, a shared data model

Figure 2.1: Information on IFC (Source: [5])

At the start of this project IFC4 had not yet been released. Barely any of the IFC

viewers, creation tools and development libraries support IFC4, therefore the IFC2x3

release is used during this project. IFC2x3 can also be encoded in the Extensible Markup

Language (XML) format, ifcXML2x3, however the STEP physical file encoding is the

preferred file structure [23].

A Unified Modeling Language (UML) diagram with some of the more relevant IFC

semantic properties and relations is shown in Figure 2.2. It is important to note that an

Chapter 2. Background and Related Work 11

‘IfcObject’ and its subclasses can recursively be decomposed by other ‘IfcObjects’. There

are many other relations between objects possible, but there are only two other relations

relevant for CityGML. The ‘IfcRelContainedInSpatialStructure’ is used to determine

whether an object is part of the building or the surrounding site. The ‘IfcRelDefines-

ByType’ relation is used to check whether there is an ‘IfcTypeObject’ which contains

more information on the object.

<<Object>>

IfcProject

<<Object>>

IfcSite

<<Object>>

IfcBuilding

<<Object>>

IfcBuildingStorey

<<Object>>

IfcSpace

<<Object>>

IfcSpatialStructureElement

<<Object>>

IfcProduct

IfcObject

<<Object>>

IfcElement

<<Object>>

IfcOpeningElement

<<Object>>

IfcBuildingElement

1

1

0..*

0..* 1

1..*1

IfcWall

IfcBeamIfcRelDecomposes

IfcCurtainWall

IfcDoor

IfcColumn

IfcCovering

IfcWindow

IfcFooting

IfcPile

IfcPlate

IfcRailing

IfcRamp

IfcRampFlight

IfcStair

IfcStairFlight

IfcRoof

IfcSlab

IfcBuildingElementProxy

IfcMember

<<Geometry>>

IfcShapeRepresentation

<<Geometry>>

IfcLocalPlacement

0..*1

0..1

1

IfcBuildingElement

Component

 IfcRelContainedInSpatialStructure

0..*

1
0..1

1

1 0..*

1

1 0..*

0..* 1
0..*

Figure 2.2: UML diagram for IFC entities, only the most relevant objects and rela-
tions are represented (Sources: [12, 22, 30])

There are many types of modelling representations defined in IFC2x3. The repre-

sentations for solid models can be divided into three main categories (see Figure 2.3).

Figure 2.3: The three possible approaches for representing 3D objects in IFC
(Adapted from: [31])

• B-rep - In a B-rep a solid body is represented by planar faces. The faces are

located only at the boundary of the body and enclose the body completely [25].

Every face marks the border between what is inside and outside the body. B-rep

is used for complex geometry objects such as ‘IfcDoor’ and ‘IfcWindow’.

• Sweep volumes - Sweep volumes define a solid body by a 2D profile and a path

[32]. The explicit geometry of the body can be computed by moving the profile

along the path. The 2D profile may be a primitive shape such as a disk or a

12 Chapter 2. Background and Related Work

rectangle, or a polygon which may contain holes. The sweep can either be a linear

extrusion or a rotational sweep, where the path is defined by an axis and an angle

[21].

• CSG - CSG is used to create solid bodies by one or many Boolean operations on

base solids. A Boolean operation between two geometries generates a new geome-

try which can for example be the union difference or intersection (see Figure 2.4).

The set of operations needed to create the final solid can be represented in a tree

structure. The leafs of the tree are the base solids. The base solids can be defined

by one of the former defined modelling types or by 3D primitives like a sphere,

cube or half-spaces [21].

(a) Boolean union (∪) (b) Boolean difference (−) (c) Boolean intersection (∩)

Figure 2.4: Boolean operations between a cube and a sphere (Source: [33])

The geometry of the later two types are stored implicitly, meaning only the parame-

ters are given to generate the geometry. A IFC viewer/reader has to apply the sweeping

and CSG computations before being able to visualise or use the objects. In Figure 2.5

an example is given for implicit CSG geometry, the figure also depicts how at the same

time the relations between a door and a wall are stored.

Calculating the explicit B-rep geometry does not yield a unique solution. For ex-

ample a disk should be converted to a regular polygon, however the number of sides

of the polygon depends on the converter. For the purpose of creating valid CityGML

geometries, it is sufficient to have the geometry represent the original model correctly.

Although, there are three geometric models, in practice most IFC models are built using

sweep volumes and CSG [18].

There are two possibly confusing differences between IFC and CityGML to note.

The first is that in IFC implicit geometry refers to the geometry that is implied by

the parameters stored in the IFC file and the definitions in the IFC Object Model

specification. In contrast, according to the CityGML standard, implicit geometry is

geometry which is stored once as a template and can be reused multiple times by referring

to it.

The second one is that BIM uses the acronym Level-Of-Development (LOD) (capital

‘o’) which indicates the state of development from conceptual (level 100) to as-build

Chapter 2. Background and Related Work 13

Figure 2.5: An example of implicit geometry: the wall is cut by the opening element
using the Boolean difference. The door is then placed within the gap in the wall

(Adapted from: [5])

(level 500), which is not to be confused with Level-of-Detail in CityGML [34]. To make

matters worse, Level-Of-Development used to be called Level-of-Detail. The LOD has

no influence on whether it is possible to convert the model to CityGML, though models

with higher LODs are recommended as they contain more accurate information.

2.2 CityGML

From the GIS world the CityGML format was created as the standard for 3D modelling

of cities, to be used for analytical purposes. It has since also extended beyond the scope

of cities. As the view of a real city is mostly determined by buildings, building objects

are often the focus of 3D city models [21].

The latest version is CityGML 2.0.0. It is based on a number of standards from the

ISO 191xx family and is implemented as an application schema for Geography Markup

Language (GML 3.1.1) from OGC. CityGML has been developed by the Special Interest

Group 3D (SIG 3D) of the initiative Geodata Infrastructure North-Rhine Westphalia,

Germany [15].

CityGML provides a standard for the meaning and definition of objects. As a result

users can rely on a specific data quality and data creators, like municipalities, can focus

on gathering useful data [35]. The metadata in CityGML file can be interpreted by both

computers and humans, and there are extensive semantics which are directly linked to

the geometries in a spatially aggregated hierarchy. Furthermore, for objects there can

be five LoD representations. In Figure 2.6 the UML diagram for the relevant semantics

of a CityGML LoD3 building module is shown. A complete UML diagram for all LoDs

can be found in Appendix B.

One of the issues with the current state of CityGML is the lack of available creation

and design tools, which would allow for a simplified generation process. Also common

data sources, like Actueel Hoogtebestand Nederland (AHN)-1 and AHN-2, used to cre-

ate models are often acquired only every few years, resulting in models which are already

14 Chapter 2. Background and Related Work

<<Feature>>

_CityObject

<<Feature>>

_Site

<<Geometry>>

gml::_Solid

<<Geometry>>

gml::Multicurve

<<Geometry>>

gml::MultiSurface

<<Geometry>>

gml::_Geometry

<<Feature>>

_AbstractBuiding

<<Feature>>

BuildingInstallation

<<Feature>>

Building

<<Feature>>

BuildingPart

<<Feature>>

_BoundarySurface

<<Feature>>

OuterCeilingSurface

<<Feature>>

OuterFloorSurface

<<Feature>>

RoofSurface

<<Feature>>

WallSurface

<<Feature>>

GroundSurface

<<Feature>>

ClosureSurface

<<Feature>>

_Opening

<<Feature>>

Door

<<Feature>>

Window

0..1*

**
*

*

*
*

*

*

* 0..1 * 0..1

* 0..1
*

0..1

*0..1

0..1
** *

*

0..1

**
*

*

*

*

Figure 2.6: CityGML UML for LoD3 (Adapted from: [11])

outdated when they are created. The room for interpretation that is given in the speci-

fication is an issue when performing analyses on CityGML models. 3D InformatieModel

GEOgrafie (IMGeo) is a Dutch initiative which proposes a more precise specification on

how CityGML files should be modelled. The set of allowed geometries in CityGML are

limited to planar B-rep (see Section 2.1). Arcs, although not disallowed by CityGML,

are not used in this project since planarity can only be achieved if the incident faces

are coplanar. Furthermore, there validity cannot always be determined. A limited set

of geometries is not necessarily bad since a limited set of geometries improves the ease

at which a dataset can be analysed as the geometries are more predictable. Yet it also

decreases the modelling possibilities. For example circular features, which are present

in IFC, have to be approximated by a set of line segments.

CityGML is often called an exchange format, this gives the impression that it is

meant as an intermediate step between two data formats. However, CityGML is defined

as a common semantic information model for the representation of 3D urban objects

that can be shared over different applications [11]. It is the final product and therefore

creating valid and semantically rich CityGML to be used in GIS applications is of more

importance than retaining all semantic and geometric information stored in IFC files.

2.3 Validity Criteria for CityGML LoD3

In this section the constraints and definitions of proper CityGML LoD3 semantics and

geometry are established. These definitions are later used for defining the conversion

methodology and to verify the validity of the output models generated by the prototype

implementation.

Chapter 2. Background and Related Work 15

2.3.1 Requirements and Geometric Constraints on Semantics

A building model in CityGML can contain three types of objects with volumetric geome-

tries, namely the ‘Building’ itself, ‘BuildingParts’ and ‘BuildingInstallations’. A ‘Build-

ing’ can recursively consist of several ‘BuildingParts’ and can have multiple ‘Buildin-

gInstallations’. The exterior shell of each of these objects can have boundary surfaces.

For LoD3 the following types are defined: ‘WallSurface’, ‘RoofSurface’, ‘ClosureSurface’,

‘GroundSurface’, ‘OuterCeilingSurface’ and ‘OuterFloorSurface’. These boundary sur-

faces can also have ‘Openings’ which are either ‘Doors’ or ‘Windows’. In Figure 2.7 the

boudary surfaces are shown and how they are generally applied. ‘Openings’ and ‘Clo-

sureSurfaces’ imply a connection between the interior and exterior of the shell, however

in contrast to a ‘ClosureSurface’ an ‘Openings’ may be closed, blocking the transit of

people [11].

Figure 2.7: LoD3 boundary surfaces, no ‘Openings’ (Source: [36])

The CityGML standard states that “The polygon defining the ground plate is con-

gruent with the buildings footprint” [11]. In this thesis this statement is interpreted

as: the union of the vertical projections of all ‘GroundSurfaces’ should be equal to the

building’s footprint. There are also constraints on the normal of certain boundary sur-

faces. Not all combination of normal directions and boundary surfaces are allowed. For

example, if a ‘GroundSurface’ face has an upward pointing normal it is invalid, the se-

mantics of the face would be valid if it for instance were a ‘WallSurface’ instead. These

are shown in Table 2.1, where down and up are interpreted as all direction aimed lower

or higher than horizontal respectively.

Table 2.1: Normal vector limitations on semantic surfaces

Surface type Allowed direction(s)

WallSurface All
RoofSurface All

ClosureSurface All
GroundSurface Only down

OuterCeilingSurface Only down
OuterFloorSurface Only up

Opening All

16 Chapter 2. Background and Related Work

Storing the boundary surfaces and the solid geometry separately in a CityGML

file breaks the spatio-semantic coherence of CityGML. However it is necessary as the

standard does not allow for a solid to be bounded by boundary surfaces (see Figure 2.6).

This is done to maintain compatibility with Geography Markup Language (GML). The

separation allows in LoD4 to model ‘Rooms’ with different surface orientation for the

solids and boundary surfaces, normals pointing outward for solids and inward for interior

boundary surfaces. However the inversion of the normals can also be unambiguous

deduced from the object type to which the solid belongs. When separating the solids

and boundary surfaces the geometries should then be stored in the boundary surfaces

and linked via ‘XLinks’ as is shown in Figure 2.8.

Figure 2.8: Linking surfaces and solids using ‘XLinks’ (Source: [36])

2.3.2 Geometric Validity Requirements

Figure 2.9: Only visible surfaces in CityGML (Adapted from: [36])

There is a significant difference between the geometric representation of IFC and

CityGML. In CityGML only the visible (virtual) surfaces are modelled (see Figure 2.9).

Extracting the exterior shell from the solids of IFC is a required operation for the output

to adhere to the standard. For LoD1 to LoD4, the solid of an ‘ AbstractBuilding’ is

comprised of only one such shell. An inner shell, as shown in Figure 2.10, representing

a cavity in the solid is thereby not allowed. The concepts of exterior shell or the solid of

Chapter 2. Background and Related Work 17

an ‘ AbstractBuilding’ are almost interchangeable, however the shell refers only to the

boundary surface of the solid.

exterior shell

interior shell

Figure 1: One solid which respects the international definition. It has one exterior shell and one interior
shell (a cavity).

edge (Mäntylä, 1988), the quad-edge (Guibas and Stolfi, 1985), and the doubly-connected
edge list (DCEL) (Muller and Preparata, 1978); all of these store the edge of a polyhedron as
the atom, with links to its adjacent edges and incident faces.

However, the ISO’s definition of a solid is broader than that of a 2-manifold, and to permit
us to represent all the real-world features. The following three definitions, taken from ISO
(TC211), summarise the main differences5.
Definition 1. A GM Solid is the basis for 3-dimensional geometry. The extent of a solid is defined
by the boundary surfaces. The boundaries of GM Solids shall be represented as GM SolidBoundary.
Definition 2. A GM Shell is used to represent a single connected component of a GM SolidBoundary.
It consists of a number of references to GM OrientableSurfaces connected in a topological cycle (an
object whose boundary is empty). [...] Like GM Rings, GM Shells are simple.
Definition 3. A GM Object is simple if it has no interior point of self-intersection or self-tangency.
In mathematical formalisms, this means that every point in the interior of the object must have a
metric neighbourhood whose intersection with the object is isomorphic to an n-sphere, where n is the
dimension of this GM Object.

Since shells are simple, they are in fact 2-manifold objects.
Figure 1 shows a solid that respects that definition. First observe that the solid is com-

posed of two shells (its boundaries), one being the exterior and one being the interior shell.
The exterior shell has eleven planar surfaces, and the interior one six. An interior shell cre-
ates a cavity in the solid—cavities are also referred to as “voids” or holes in a solid. A solid
can have no inner shells, or several. Observe that a cavity is not the same as the hole in a
torus—a torus is represented with one exterior shell having a genus of 1 and has no interior
shell. The boundary of each shell of a solid is a representation of a 2-manifold, but it should
be noticed here that since shells are formed of planar surfaces, the ISO definition of a sur-
face is used and this states that a polygon can have inner boundaries. The boundaries of a
polygon are defined as rings, thus a hole in a face is referred to as an interior ring. Observe
that the top face of the solid in Figure 1 has one inner ring, but that other surfaces “fill” that
hole so that the exterior shell is “watertight”. Several disciplines ignore holes because they
are not necessarily needed, and because they complicate the representation of a 2-manifold:
if a graph-based data structure is used, then the graph becomes unconnected.

From a point-set topology point-of-view, a solid is a set of points S ⊆ R3. A boundary of
S, denoted ∂S, is a shell. It should be observed here that while a shell is used to represent a
surface embedded in R3, when referring to a shell from a point-set topology point-of-view,
we refer to the volume that the boundary contains. That is, let H ⊆ R3 be a shell, ∂H refers
to the boundary of the shell, and Ho to its interior. H′ refers to the complement of the shell
(its exterior).

According to the ISO abstract specifications, the different boundaries of a solid are al-
lowed to interact with each other, but only under certain circumstances. To understand
these, we have to generalise to 3D the implementation specifications defined in 2D by the
OGC (since they do not exist yet in 3D). Figure 2 shows the six assertions that have to be true
for a 2D polygon to be valid. Observe that all of them, except the third one, generalise di-

5All the geometric objects have the prefix ‘GM ’

3

Figure 2.10: One solid with one exterior shell and one interior shell, a cavity (Source:
[19])

Unlike ‘Buildings’, the geometry for ‘(Int)BuildingInstallations’ is completely unre-

stricted, and may therefore also have inner shells. Inner shells at LoD3 are however

believed to be undesirable. For LoD4, having no inner shells means that the ‘Room’

solids overlap the ‘Building’ solid. The solids in CityGML represent a virtual boundary

or a division of space. A point which is within a ‘Room’, is also geometrically within

the ‘Building’. Overlapping solids at LoD4 are therefore a necessity. For example, when

the exterior shell has a ‘ClosureSurface’, which is also shared by a ‘Room’. If one would

want to model this case using a ‘Building’ solid having inner shells which are filled by

the ‘Room’ solid, the result would be an invalid solid. The invalidity is due to the

requirement that the intersection between shells of a solid may only be 2D or higher.

Conversely, at LoD3 the solids should not overlap, and in case two solids touch, the

intersecting surfaces should be linked using ‘XLinks’.

The ISO19107 standard defines the criteria for a solid to be valid. An important

criteria is that the shells of a solid are 2-manifold which is beneficial for analytical

computation. A manifold shell has the property that, around every location on the

shell, the neighbourhood is homeomorphic to a disk [37]. For a ring to be 1-manifold

this neighbourhood should be a line. A frequently occurring special case of a non-2-

manifold situation is when there are more than two faces incident to an edge. Due to

the constraints on the geometries in this project only four types of non-manifold cases

need to be distinguished for solids/shells (see Figure 2.11). The interior of the two solids

on the left are however disconnected and the solids can therefore both be stored as two

separate manifold solids without any changes to the shape. When present in the solid

of a ‘Building’, the smallest solid is stored as a ‘BuildingPart’. The methodology for

handling the other non-manifolds is given in Section 3.3.1.

Degeneracies are another form of unwanted geometries. An example of a degeneracy

is when two sequential edges of a face (partially) lay on top of each other. When present

in a triangle its area would be zero. In Figure 2.12 two cases of surface degeneracies are

18 Chapter 2. Background and Related Work

(a) (b)

(c) (d)

Figure 2.11: Four non-manifold cases: two volumes on the left, single volumes on the
right, edge non-manifolds at the top, vertex non-manifolds below

distinguished. Based on their shapes in a triangular mesh they are called needles and

caps [38]. In the case of a needle two vertices have the same coordinates, whereas those

of the vertices of a cap are all distinct. Degeneracies according to ISO do not make a

geometry invalid, however as indicated by van Oosterom et al. [39], when using floating-

point arithmetic, parts of polygons can collapse and become invalid. Those situations

can occur even when the distance ‘d’ between a vertex and an edge or another vertex is

almost zero. To optimize the geometry for analysis and since a CityGML file should be

prepared for the usage in many applications, degeneracies are avoided if possible. Fully

degenerates can be fixed, however nearly degenerates cannot always be removed without

changing the shape as is described in Section 3.3.1.

d d

Figure 2.12: Two types of degeneracies if distance d=0, left a needle, right a cap

The validation of solids according to ISO19107 was researched by Ledoux [19]. Based

on his work and some interpretations by Boeters [40] the following list of invalid geome-

tries has been created.

• Ring level:

Chapter 2. Background and Related Work 19

– Not valid 1-manifold

∗ Ring not closed - The last vertex of a ring must be the same as the first.

∗ Dangling edges - Vertices may not be connected to only one edge.

∗ Ring self intersect - Edges should not intersect each other.

– Free geometries - All edges and vertices must be connected to the ring.

– Inconsistent edge orientation - An edge in a ring should start with the last

vertex of the previous edge.

• Face level:

– Non planar face - The vertices of a face must be in one plane.

– Inner ring wrong orientation - Inner rings must have an opposite orientation

with respect to the outer ring.

– Inner ring intersects at more than one point - An inner ring may only touch

other rings at one point each.

– Inner ring outside outer - An inner ring must be inside the outer ring.

– Interior is not connected - The interior of a face must be connected.

• Shell level:

– Not valid 2-manifold

∗ Shell not closed - The shell must be watertight and thus not contain

holes.

∗ Dangling edges or faces - Vertices may not be connected to only one edge

and edges may not be connected to only one face.

∗ Shell self intersects - Faces should not intersect each other.

– Free geometries - All faces, edges and vertices must be connected to the shell.

– Inconsistent face orientation - The normals of faces should either all point

in- or outward.

• Solid level:

– Bad surface normal orientation - The normals of all faces of the solid should

point outwards relative to the interior.

– Shells intersection is 2D or higher - Shells in the solid may only intersect at

points and line segments.

– Inner shell outside outer - Inner shells may not be outside the outer shell.

– Interior not connected - The interior of a solid must be connected

20 Chapter 2. Background and Related Work

2.4 Current Development

Conversion tools from IFC to CityGML, but also CityGML to IFC are freely available.

Three of such tools have been tested in this research and are described below. They are

evaluated at the end of this section.

• BIMserver - The Building Information Modelserver (BIMserver) is being devel-

oped to centralize the information of a construction project and make the collab-

oration between actors more efficient and effective. It therefore is also capable of

exporting the IFC files to COBie, CityGML, Collada, KMZ and SceneJS. Their

current implementation of a IFC to CityGML writer, developed by A.J. Jessurun,

aims at producing a CityGML file which can be visualized by CityGML view-

ers. The closed source IFC Engine from (Nederlandse centrale organisatie voor)

Toegepast Natuurwetenschappelijk Onderzoek (TNO) is used by the converter. A

wire frame front view of a resulting conversion can be seen in Figure 2.13. The im-

plementation by Laat and Berlo [3] is not part of the evaluation as their intentions

were to extend CityGML to support IFC classes and geometries.

Figure 2.13: Conversion results by BIMserver, IFC on the left, CityGML on the right

• KIT IFCExplorer - At KIT a software environment is being developed called

IFCExplorer. At the moment they are able to merge CityGML, CityGML ADEs,

BoreholeML, gbXML, Alkis, XPlanGML and Map Services into one scene as native

features. Their goal is not to transform IFC to CityGML, but to have all models

natively in one environment. Integrating IFC will be a next step [41].

Their software is however capable of converting between IFC and CityGML. The

converter can create all LoDs to some extent, but there are no solids defined and

the geometry does not yet adhere to the CityGML specification. LoD1 and LoD2

can also be converted to IFC, which results in models that are in compliance with

the IFC specification, but does not comply to Coordination View 2.0, which is an

initiative to define the correct implementation of IFC. Development by KIT con-

tinues on LoD1 and LoD2. On request, the conversion results are not shown since

the results are not proper CityGML yet which could lead to misinterpretations.

Chapter 2. Background and Related Work 21

• Safe Software FME - FME is a flexible application which does not use a one-to-

one format architecture. There is support for both reading IFC as well as writing

CityGML, however the required data model transformations need to be built in

the Workbench. The conversion is thus not a native function of FME. There are

currently no plans to create a converter for generating proper CityGML geometry

from IFC. Results of a conversion using a pre-made FME workbench [42] can be

seen in Figure 2.14.

Figure 2.14: Conversion results by Safe Software FME, IFC on the left, CityGML on
the right [42]

Although the output of the different conversion tools visually represents the input

building to some extent, none of the converters is currently capable of creating valid

LoD3 CityGML geometries, nor fully correct semantics (see Table 2.2). The calculation

of the explicit geometries from IFC is properly handled by the Bimserver and IFCEx-

plorer, but the FME workbench does not apply Boolean operation. In CityGML only

(virtual) surfaces that are visible in reality should be modelled. The results of each of

the converters still show the whole original geometry. The IFCExplorer however, filters

out internal objects by relying on the ‘external’ attribute. The semantics are at a similar

level. Due to the limited geometric conversion no distinction is made between interior

and exterior wall surfaces and none of the converters handles the surface normal con-

straints on the semantics. In general one could say that the current converters are not

capable of generating LoD3 CityGML building models from IFC which are optimized

for the use in 3D GIS applications. In Chapter 3 a methodology is given for a converter

which does just that.

Table 2.2: Evaluation of current IFC to CityGML LoD3 converters

FME BIMserver IFCExplorer

Correct Explicit IFC Geometry 7 3 3

Transformation of Geometry 7 7 7

Correct Semantics 7 7 7

ISO Validity of Geometries Equal to IFC Equal to IFC Equal to IFC

Chapter 3

Methodology for the Conversion

In Chapter 2 the information on the two standards used in this thesis and the require-

ments on their formats is given. In this chapter the information is used to formulate the

actual methodology for the automatic generation of CityGML LoD3 building models

from IFC models. In Chapter 4 an implementation of a prototype for this methodology

is described together with an evaluation of the results.

The methodology is based on the three pillars described in Section 1.1: semantic

mapping, geometric transformations and refinements. Instructions on how to parse an

IFC file and how to generate the explicit geometry can be found in the IFC2x3 Model

Implementation Guide [23]. The flow diagram in Figure 3.1 provides an overview of the

conversion methodology. Detailed flow diagrams for the whole conversion can be found

in Appendix C. The methodology outlined in this chapter can be used by others as a

guideline for the automatic generation of LoD3 building models.

IFC CityGML

Semantic

Filtering

Semantic

Mapping

Exterior Shell

Computation

Semantic

Refinements

Geometric

Refinements

Incorporation of

BuildingInstallations

Figure 3.1: General workflow diagram of the conversion methodology

First the semantic filtering and mapping is described in Section 3.1. The methods

produce explicit IFC geometries with CityGML semantics. Section 3.2 explains the

methods which have been developed for the transformation of these IFC geometries into

CityGML geometries. During the geometric transformation the semantics are main-

tained. At the end of this section alternative methods for the geometric transformation

are evaluated and discussed. Lastly, in Section 3.3 the refinement processes are clarified

which are needed for the creation of a CityGML and ISO19107 conform file.

23

24 Chapter 3. Methodology for the Conversion

3.1 Semantic Filtering and Mapping

A LoD3 buildings in CityGML can have semantic properties at three different levels of

geometry: the solid level, the face level and the curve/line string level. Since terrain

and thereby the terrain intersection curve is out of the scope of this thesis and ‘Buildin-

gInstallations’ remain solid, edge level semantics are not discussed. Furthermore since

a building can only have one solid (‘BuildingParts’ are only created when geometrically

necessary), passing semantics at the solid level is trivial, thus leaving only the extraction

of face level semantics from IFC.

IFC on the on the other hand has a completely different structure for storing se-

mantics, as is explained in Section 2.1. In IFC an object is connected via a network

of relations to other objects. For the extraction of CityGML semantics sometimes the

type of object is sufficient, at other times the network needs to be traversed in search of

the optimal semantics. To determine what the semantics are in CityGML for one par-

ticular face, a combination of multiple semantic values from IFC and certain geometric

properties are required.

This section aims to provide an unambiguous methodology for the extraction of

CityGML semantics. As such, it also covers the implementation to some extent. The

filtering and mapping is done by analysing all the ‘IfcObjects’ in the input IFC file. This

section is describes when an ‘IfcObject’ is relevant for the conversion and how CityGML

semantics can be extracted from the IFC semantics. Important properties of an object

which are used are:

• Whether it has geometry, IfcObjects do not always have geometry

• Whether it is contained in a building

• The entity class

• The ‘PreDefinedType’ attribute

• Whether it decomposes another object

• The normal vectors of the faces, a geometric property

A complete overview can be seen in Appendix C Figure C.1. These processes will yield

a set of relevant geometries of which the faces contain the CityGML semantics. While in

this methodology only the boundary surface types are attached to faces, other attributes

may be attached as well.

3.1.1 Filtering of IFC objects based on semantics

There are around 900 classes defined in the IFC schema [3]. These classes are used

to store information like geometric representations, properties, relations and topology.

Chapter 3. Methodology for the Conversion 25

Considering the output driven approach, which is explained in Section 1.2, very few of

these classes are relevant for CityGML LoD3. Furniture for example are not relevant to

the buildings exterior shell they are also movable and should therefore not be modelled

as a ‘BuildingInstallation’. Furthermore, objects that do not have geometry or are not

part of the building can be ignored. Filtering these objects leaves only objects which

have meaningful mappings in CityGML.

The relevant classes are ‘IfcSpace’ and all the subtypes of ‘IfcBuildingElement’ (see

Figure 2.6). All other classes either represent movable objects or are abstract classes

without geometry. For each ‘IfcObject’ present in the IFC file it is checked whether it

has geometry and whether it is contained within a building. For the latter the ‘IfcRel-

ContainedInSpatialStructure’ relation is used recursively. In Figure 3.2 a flow diagram

is shown for the filtering process.

Spatially Contained in Building?

Has Geometry?

Ignore

Is Contained in a

Building?

Contained in

SpatialStructure?

SpatialStructure is

IfcProject or IfcSite?

Spatial Structure is

IfcBuilding?

Filtered

IfcObject

No Yes

Yes Yes Yes

NoNoNo

IfcObject

Is a Subtype of
IfcBuildingElement

or an IfcSpace?

Yes No Yes

Yes No

No

Figure 3.2: Workflow diagram for the filtering of IfcObjects (the boxed processes
detail the process to which they are connected)

One may notice that the ‘IsExternal’ property is not used for the filtering. The value

of ‘IsExternal’ should be true when the geometry of the object is connected to the exterior

of the building. Using only objects with this property set to true could potentially result

in a speed up during the geometric transformation. However, by doing so the converter

would become dependent on the right application and consistent usage of the property

[21]. This property is therefore ignored. For similar reasoning subtypes of the relation

‘IfcRelConnects’ are not used during the geometric transformation. If the geometries of

two objects are connected this can also be deduced from the geometries themselves.

3.1.2 Semantic Mapping from IFC to CityGML

The mapping of semantics determines for every face of the filtered ‘IfcOjects’ what the

CityGML boundary surface type is when the face is to be part of the exterior shell of

the building. Since LoD3 does not have inner shells, thus does not distinguish between

26 Chapter 3. Methodology for the Conversion

interior and exterior, the mapping can be performed before the geometric transforma-

tion. The mapping of a face depends on its normal and the types and relations of the

‘IfcObject’ to which it belongs.

The semantics mapping has been developed from scratch for this thesis using the

documentations of the two standards [11, 12]. For every combination of an entity type,

‘PredefinedType’ and face normals type, a link is made to the CityGML boundary

surface counterpart. To which boundary surface type the link is made is based on the

intended purpose and use of the ‘IfcObject’ given the entity and ‘PreDefinedType’, and

how CityGML expects the faces of such an object to be modelled.

For some combination the link is certain, for example when the entity type is

‘IfcRoof’. These mappings are called ‘final’. In other cases it is possible that more

information results in a different mapping. These cases are called ‘temporary’. For ex-

ample, an ‘IfcPlate’ on its own could potentially be anything and is thus mapped to a

‘WallSurface’. However, the ‘IfcPlate’ might decompose an ‘IfcWindow’, in which case

the ‘IfcPlate should be mapped to ‘Window’ in CityGML. As such, when a combination

is marked as ‘Temporary’, the mapping of the parent object which the active object

decomposes is used. This search is done recursively until a ‘final’ mapping is found, or

the object does not decompose another parent object, or the parent object is no longer

a subtype of ‘IfcBuildingElement’. In case no ‘final’ mapping could be determined the

last ‘temporary’ mapping is used instead. The whole process is depicted in Figure 3.3.

Get PreDefinedType

Find Related

PreDefinedType

Entity Class +

PreDefinedType has

a Final Mapping

Store Temporary

Mapping

Decomposes another

IfcBuildingElement?

Use Decomposed

Object for

Mapping

Has

PreDefinedType?

Has Related

IfcTypeObject

Has

PreDefinedType?

Determine Face

Normal Vectors

Apply Semantic

Mapping

Filtered

IfcObject

Geometry

with CityGML

Semantics

Return

PreDefined

Type

No

PreDefined

Type

Yes Yes

NoNo

YesNo

No

YesNo

Yes

Figure 3.3: Workflow diagram for the mapping of semantics (the boxed processes
detail the process to which they are connected)

The mapping is shown in Table 3.1. The definitions of up and down are given

in Section 2.3.1. Note that there are no boundary surface properties determined for

‘BuildingInstallations’. The reason for which is that the set of boundary surfaces present

in CityGML is too limited. It is believed to be undesirable for example for a stairs to be

covered by ‘Floor-’ and ‘WallSurfaces. In case semantics for balconies and dormers are

Chapter 3. Methodology for the Conversion 27

added to the IFC standard, then for those ‘BuildingInstallations’ the boundary surface

properties using the exact same methodology as for ‘Buildings’. The site/terrain is out

of the scope of the this thesis, however if the geometry of the terrain is known, all faces

bellow the terrain with a normal pointing down should be mapped to ‘GroundSurface’.

‘BuildingInstallations’ are different from ‘Buidings’ and ‘BuildingParts’ as they can

have any kind of geometry. Types of objects that are stored as ‘BuildingInstallations’ are

for instance: stairs, columns, beams, dormers and chimneys. The latter would in IFC2x3

need to be modelled using ‘IfcBuildingElementProxy’ instead of ‘IfcWall’ in order for it

to be marked as ‘BuildingInstallation’. Dormers are not explicitly marked in IFC. The

only indication that there might be a dormer is when an ‘IfcRoof’ is decomposed by

other ‘IfcRoofs’, but this is not sufficient for extracting the geometry potential dormers.

A distinction can be made between columns and beams which are detached from

the building and columns and beams which are part of a wall and thus potentially part

of the exterior shell of the building. The semantic mapping is different for both kinds.

Although possible, it is not common practise in IFC to model columns and beams as

part of another object, such as an ‘IfcWall’ or ‘IfcSlab’. In case this modelling practise

is not applied, the kind of column or beam cannot be determined from the semantics

and requires user input.

There is another issue which may require user input which is caused by the mapping

of ‘IfcSpace’ to ‘ClosureSurface’. An ‘IfcSpace’ represents a zone which can be constraint

by physical and virtual boundaries. This mapping is very desirable when the entrance to

a building is a large open space, see for instance the train station in Figure 2.7. However,

an ‘IfcSpace’ can also be outside of de building while still being modelled as part of the

building. This occurs for example when the zone of a balcony is modelled, as can be

seen in Figure 3.4. Here the ‘IfcSpace’ should be ignored, but IFC provides no semantics

to distinguish these cases.

Figure 3.4: An IfcSpace can be used to model the zone of a balcony

28 Chapter 3. Methodology for the Conversion

T
a
b
l
e
3
.1
:

S
em

an
tic

m
ap

p
in

g
from

IF
C

to
C

ity
G

M
L

L
oD

3
b

ased
on

sem
an

tics
an

d
th

e
n

orm
a
l

vecto
r

o
f

each
fa

ce.
T

h
e

tem
p

orary
m

a
p

p
in

gs
can

ch
an

ge
b

ased
on

th
e

p
aren

t
ob

ject.
A

ll
faces

b
ellow

th
e

terrain
w

ith
a

n
orm

al
p

oin
tin

g
d

ow
n

sh
ou

ld
b

e
m

ap
p

ed
to

G
rou

n
d

S
u

rface

IF
C

e
n
tity

ty
p

e
P

re
d

e
fi

n
e
d

T
y
p

e
T

e
m

p
o
ra

ry
/

C
ity

G
M

L
L

o
D

3
m

a
p

p
in

g
b

a
se

d
o
n

fa
c
e

n
o
rm

a
l

F
in

a
l

U
p

H
orizon

tal
D

ow
n

IfcB
ea

m
T

em
p

orary
–

B
u

ild
in

gIn
stallation

–
IfcB

u
ild

in
g
E

lem
en

tC
o
m

p
o
n

en
t

T
em

p
orary

–
B

u
ild

in
gIn

stallation
–

IfcB
u

ild
in

g
E

lem
en

tP
rox

y
T

em
p

orary
–

B
u

ild
in

gIn
stallation

–
IfcC

o
lu

m
n

T
em

p
orary

–
B

u
ild

in
gIn

stallation
–

IfcC
overin

g
C

E
IL

IN
G

F
in

al
O

u
terF

lo
orS

u
rface

W
allS

u
rface

O
u

terC
eilin

gS
u

rface
F

L
O

O
R

IN
G

F
in

al
O

u
terF

lo
orS

u
rface

W
allS

u
rface

O
u

terC
eilin

gS
u

rface
R

O
O

F
IN

G
F

in
al

R
o
ofS

u
rface

R
o
ofS

u
rface

O
u

terC
eilin

gS
u

rface
O

th
ers

T
em

p
orary

W
allS

u
rface

W
allS

u
rface

W
allS

u
rface

IfcC
u

rta
in

W
a
ll

F
in

al
W

allS
u

rface
W

allS
u

rface
W

allS
u

rface
IfcD

o
o
r

F
in

al
D

o
or

D
o
or

D
o
or

IfcF
o
o
tin

g
F

in
al

O
u

terF
lo

orS
u

rf ace
W

allS
u

rface
G

rou
n

d
S

u
rface

IfcM
em

b
er

T
em

p
orary

W
allS

u
rface

W
allS

u
rface

W
allS

u
rface

IfcP
ile

T
em

p
orary

–
B

u
ild

in
gIn

stallation
–

IfcP
la

te
T

em
p

orary
W

allS
u

rface
W

allS
u

rface
W

allS
u

rface
IfcR

a
ilin

g
F

in
al

–
B

u
ild

in
gIn

stallation
–

IfcR
a
m

p
F

in
al

–
B

u
ild

in
gIn

stallation
–

IfcR
a
m

p
F

lig
h
t

F
in

al
–

B
u

ild
in

gIn
stallation

–
IfcR

o
o
f

F
in

al
R

o
ofS

u
rface

R
o
ofS

u
rface

R
o
ofS

u
rface

IfcS
la

b
F

L
O

O
R

F
in

al
O

u
terF

lo
orS

u
rf ace

W
allS

u
rface

O
u

terC
eilin

gS
u

rface
R

O
O

F
F

in
al

R
o
ofS

u
rface

R
o
ofS

u
rface

O
u

terC
eilin

gS
u

rface
L

A
N

D
IN

G
T

em
p

orary
–

B
u

ild
in

gIn
stallation

–
B

A
S

E
S

L
A

B
F

in
al

O
u

terF
lo

orS
u

rface
W

allS
u

rface
G

rou
n

d
S

u
rface

U
S

E
R

D
E

F
IN

E
D

T
em

p
orary

O
u

terF
lo

orS
u

rface
W

allS
u

rface
O

u
terC

eilin
gS

u
rface

IfcS
ta

ir
F

in
al

–
B

u
ild

in
gIn

stallation
–

IfcS
ta

irF
lig

h
t

F
in

al
–

B
u

ild
in

gIn
stallation

–
W

a
llS

u
rfa

ce
F

in
al

W
allS

u
r face

W
allS

u
rface

W
allS

u
rface

W
a
llS

u
rfa

ceS
ta

n
d

a
rd

C
a
se

F
in

al
W

allS
u

rface
W

allS
u

rface
W

allS
u

rface
IfcW

in
d

ow
F

in
al

W
in

d
ow

W
in

d
o w

W
in

d
ow

IfcS
p

a
ce

F
in

al
C

losu
reS

u
rfa

ce
C

losu
reS

u
rface

C
losu

reS
u

rface

Chapter 3. Methodology for the Conversion 29

Although the mapping is made from scratch it does correspond to the very basic

mapping published by El-Mekawy and Östman [18] (except IfcCovering) and to that

from Laat and Berlo [3] for as far as that is possible. Their mappings do not distinguish

between LoDs. Both mappings map complete IFC solids to face level semantics, thereby

disregarding the normal constraints and all faces of a solid are either interior or exterior.

Also both mapping rely and misuse the ‘IsExternal’ property. When a wall is marked as

exterior it only means that at least some part of the wall is part of the exterior. That is, at

LoD4 faces of an exterior IfcWall need to be mapped to ‘InteriorWallSurfaces’ depending

on whether the faces itself is internal or external. Lastly, whether the decomposition

relations are taken into account for the mapping is unclear from the papers.

Using the mapping and the explicit geometry, a set of geometries can be created,

each face of which is linked to its own CityGML semantic property.

3.2 Geometric Transformations

The next step in the conversion is to transform the explicit IFC geometries with CityGML

semantics into CityGML geometries while maintaining the semantics and the converted

CityGML semantics. In Section 3.2.1 an elaboration is given on the operations needed

to extract the exterior shell geometry. The last transformation steps are given in Sec-

tion 3.2.2. There the methods required for the incorporation of ‘BuildingInstallations’

into the scene are described. An overview can be found in Appendix C Figure C.2.

In Section 3.2.3 other concepts for the geometric transformation from the conceptual

design phase are evaluated.

The results which can be generated with the methods from this section are in the

ideal case ready to be written to a CityGML file. In reality, however, some refinement

is needed to assure the validity. These refinement processes are provided in Section 3.3.

3.2.1 Exterior Shell Computation using Boolean and Morphological

Operations

The main concept for extracting the exterior shell is to make sure that all IFC geometries

are topologically connected by unioning all of them into one and then removing all the

geometries inside the outer boundary. In the most simple case the union results in just

one solid geometry from which the interior can then be removed. This process is depicted

in Figure 3.5.

During the unioning of the geometries it is important that the semantics and the

converted CityGML semantics assigned to the faces are maintained, including the geo-

metric boundaries of the faces. Ambiguities due to overlapping solids are assumed not

to occur as overlapping solids are not modelling reality. It is however possible for the

faces of a 3D solid and a 2D surface to overlap. This requires special treatment in the

30 Chapter 3. Methodology for the Conversion

(a) Model before transfor-
mation, IFC geometries with

CityGML semantics

(b) Model after the Boolean
union of all geometries

(c) Model after removal of the
interior geometry

Figure 3.5: Visualisation of the basic steps of the geometric transformation. The
colors of the lines represent the boundary surface types (Roof- WallSurface etc.), but

they may be further subdivided based on other attributes.

conversion. In Figure 3.6 an example is shown. There the 3D slab has a 2D covering to

indicate that the upper side of the slab is ‘ROOFING’. In those cases the semantics of

the 2D geometry should always be prioritized during the conversion.

Figure 3.6: When two surfaces overlap, the semantics of a 2D surface object is used

It is possible that the result contains multiple solids of which the interiors are dis-

connected. In such cases the smaller solids are processed as CityGML ‘BuildingParts’

whereas the largest solid becomes the geometry of the main CityGML ‘Building’. Fur-

thermore, since interior geometry is unwanted it is removed at multiple stages during

the transformation to avoid unnecessary computations. A flow diagram of the process

is shown in Figure 3.7.

Remove Interior

Geometry of Each

IFC Geometry

Union Building

Geometries
Separate Solids BuildingParts

Building

Remove Interior

Geometry

IFC

Geometries

with CityGML

Semantics

Figure 3.7: Workflow diagram for extracting the exterior shell using union operation.
This is a part of Figure C.2

Chapter 3. Methodology for the Conversion 31

3.2.1.1 Morphological Closing

Only unioning the geometries does not guarantee that the proper exterior shell geometry

is extracted. Parts of the interior of the building can still be present. This occurs when

there are holes in the building. Real buildings are never watertight: vents, chimneys

and utilities all penetrate the exterior. Also during the modelling of the building small

gaps may (unintentionally) be created. None of these causes makes the input IFC model

invalid. They therefore need converted in such a way that they do yield valid CityGML

data. This section explains how the gaps can be closed using the morphological dilation

and erosion operations, while other methods are described in Section 3.2.3.

Dilation and erosion are two elementary operations of mathematical morphology.

Dilation (⊕) by a structuring element expands the input geometry, while erosion ()

shrinks the input geometry (see Figure 3.8a and 3.8b) [43]. If the structuring element

is a sphere, the operation is equivalent to the buffer operation known in GIS. The

dilation of two input geometries A and B is defined by Equation 3.1. Erosion is the

morphological dual to dilation, thus erosion is dilation of the background. Erosion is

given by Equation 3.2, where Xc is the complement of X. Closing (•) is an often

irreversible morphological operation which is comprised of a dilation followed by an

erosion operation by the same structuring element (see Equation 3.3 and Figure 3.8c).

A⊕B =
⋃
b∈B

Ab = {c|c = a+ b, a ⊆ A& b ⊆ B} (3.1)

A	B = (Ac ⊕B)c (3.2)

A •B = (A⊕B)	B = ((A⊕B)c ⊕B)c (3.3)

(a) Dilation (b) Erosion (c) Closing

Figure 3.8: Morphological operations using a disk as structuring element and the
grey geometry as input (Source: [43])

The small gaps in the building are removed by applying a slightly altered version of

morphological closing. In this version the interior geometries are removed after dilation

and before erosion. By doing so the gaps do not reopen during the erosion operation.

Figure 3.9 shows the process of extracting the exterior shell step-by-step. One may

32 Chapter 3. Methodology for the Conversion

notice that a cubical structuring element is used. A spherical structuring element has

a negative influence on computation time, due to large amount of linear geometries

needed to approximate the sphere. Furthermore, a sphere closes concave parts of the

geometry spherically (see Figure 3.8c). The spherical closure geometry would have to

be approximated by many triangles, unnecesarily increasing the data size, while it is

also believed to be an uncommon geometry for buildings. The cube was chosen as the

assumption was made that its shape represents buildings in general the most, as all

angles are 90◦. There are however two more aspects of importance aside from the shape

of the structuring element. These are the size and the orientation.

(a) Model with gaps before
transformation

(b) Boolean union fails at ex-
tracting the exterior shell

(c) Dilation using a cubical
structuring element

(d) Dilation result from
which the interior geome-

try can be removed

(e) Erosion using the same
structuring element

(f) The closed exterior
shell with most semantics

and geometries intact

Figure 3.9: Visualisation of the exterior shell extraction with closing

The size of the structuring element determines the maximum gap size which can still

be fixed by the closing operation. From practical experience for the cases that require

closing, a width of 100mm to 300mm is found to be reasonable. A larger width would

soon close narrow windows, whereas a smaller radius might introduce very tiny or nearly

degenerate geometries. Although 300mm can be used for all conversions, this would also

introduce closing geometries for buildings that do not require closing. As such the size

of the structuring element is a user setting in the prototype.

Chapter 3. Methodology for the Conversion 33

The orientation of the structuring element can be constant for the whole model, or for

each face it can be rotated such that the it is aligned with the face [40]. The dilation of a

simple geometry for both concepts is depicted in Figure 3.10. In this thesis it was found

that, although the offset is constant for the face aligned concept, artefacts are created

whenever there is a convex corner with an angle between 0◦ and 90◦, or between 90◦

and 180◦. Since these artefacts do not disappear during erosion, face aligned structuring

elements are not used. Instead a constant orientation of the structuring element is used.

(a) Dilation with a structuring el-
ement having a constant orienta-

tion

(b) Dilation with face aligned
structuring elements

Figure 3.10: Two concepts for orienting the structuring element when dilating a
simple geometry

For the orientation the assumption is made that the vertical direction is always

predominant for buildings, e.g., walls are vertical. This assumption fixes the cube with

two faces perpendicular to the z-axis, leaving only room for rotation around the z-axis.

The optimal orientation is then determined using the normals of the remaining faces from

the IFC model. Faces with 0, 90 or 180 degrees rotation between the normals in the

x-y plane are grouped. The orientation of the group of faces with the largest combined

area is used. Least squares fitting of a plane though all faces is not used as it results

in a sort of average of the input planes, while the most common orientation is always

an orientation which is actually geometrically present in the IFC model. Figure 3.11

shows the flow diagram for the process of extracting the exterior shell including closing

operation.

Just like with the Boolean set operations the semantics and the converted CityGML

semantics of the faces need to be maintained. During dilation and erosion the semantics

of a face are transferred only to the parallel face which is on the positive side of the

original face. If there are two adjacent coplanar faces with different semantics, their

dilation would overlap. This is resolved by removing the semantics of the overlapping

34 Chapter 3. Methodology for the Conversion

Apply Closing

Remove Interior

Geometry of Each

IFC Geometry

Union Building

Geometries
Separate Solids BuildingParts

Building

Apply Closing

Compute Dilation Compute Erosion
Remove Interior

Geometry

Compute Most

Common

Orientation

Rotate Structuring

Element

Remove Interior

Geometry

IFC

Geometries

with CityGML

Semantics

Figure 3.11: Workflow diagram for extracting the exterior shell using union and
closing operations. This is a part of Figure C.2

section, since during erosion the unassigned faces will disappear. An example of how

the semantics are maintained can be found in Figure 3.9c.

To differentiate the semantics of a face, also attributes may be used other than the

boundary surface type. For example the type or ID of the IFC object may be used

so that the faces of an ‘IfcSlab’ are not merged with those of an ‘IfcWall’ even if their

CityGML mapping is both ‘WallSurface’. The newly created faces to close the gaps

are often without semantics. The methodology for assigning semantics to those faces is

described in Section 3.3.2.

3.2.2 Incorporation of BuildingInstallations

The CityGML standard states that the geometry of ‘BuildingInstallations’ in LoD3

should be generalized with respect to its shape in reality. This is in contrast with all

the other geometries which are to represent the full architectural extent [11]. What

the generalized shape should be is however not defined in the standard. According to

Special Interest Group 3D (SIG3D) ‘BuildingInstallations’ should be constructed using

line segments, faces and solids [36]. A fence for example should be constructed using

only lines. These generalizations are found to be out of the scope of this thesis. The

only operations that can be considered a generalization are that the interior geometry

is removed and the geometries unioned. Solids in LoD3 should not overlap each other.

Therefore the ‘Buildings’ and ‘BuildingParts’ generated using the methodology of Sec-

tion 3.2.1 are cut from the ‘BuildingInstallations’ using the Boolean difference operation.

The workflow for this process is shown in Figure 3.12.

Chapter 3. Methodology for the Conversion 35

Remove Interior

Geometry of Each

IFC Geometry

Union

BuildingInstallations

Geometries

Cut Building and

BuildingParts from

BuildingInstallations

BuildingParts

Building-

Installations

Remove Interior

Geometry &

Separate Solids

Building

Remove Interior

Geometry

IFC

Geometries

with CityGML

Semantics

Figure 3.12: Workflow diagram for processing BuildingInstallations. This is a part
of Figure C.2

3.2.3 Concepts for Computing the Exterior Shell Geometry

Morphological closing is not a flawless method for closing the geometry. Although

the process is automated, human evaluation is still required to determine whether the

actual exterior shell has been extracted. Also local concave sections may be closed even

when no closing was required, possibly creating faces without semantics. As such other

concepts for computing the exterior shell have been generated and evaluated in this

thesis at differing stages of development during this thesis. The concepts are divided

into three groups: best matching model, convex hull based methods and closing methods.

Techniques which require the rasterisation of the geometry, for example like the method

published by Snyder et al. [44], are not considered due to the inherent loss of accuracy

[45]. At the end of this section a trade-off is made between the concepts and explained

why morphological closing is the best concept for the conversion of IFC data to valid

CityGML data.

3.2.3.1 Template Matching

Template matching concept uses a large library with pre-made CityGML building mod-

els. During the conversion, the geometry and semantics of each building in the library

are matched with the input’s IFC explicit geometries with CityGML semantics. Rains-

ford and Mackaness [46] implemented template matching for the footprints of buildings.

Each building model in the library should be scaled and rotated such that their match

is optimal. Dufour et al. [47] showed how the size location and orientation can be

determined using template matching.

This concept did not leave the early design phase and is not implemented due to the

expectation that either the output would have a low amount of detail, or the library

would have to be unrealistically large. An improvement to the concept is to match

multiple smaller building sections and unioning them. However this is expected to

result in the same need for closing which the Boolean union of all IFC geometries has.

Kada [48] avoided the latter problem by decomposing the building only in horizontal

directions, such that the sections do not overlap.

36 Chapter 3. Methodology for the Conversion

3.2.3.2 Convex Hull Based Methods

Convex hull based methods start from a geometry which is known to be a valid 2-

manifold; the convex hull. The algorithms then try to approximate the exterior shell by

decreasing the volume of the hull each in its own way.

Shrink Wrapping When an object is shrink wrapped, it is sealed within an air-

tight membrane after which the air between the membrane and the object is removed.

Kobbelt et al. [49] published a shrink wrapping method for remeshing polygonal sur-

faces. For the purpose of extracting the exterior shell, not all the air should be removed.

Instead an equilibrium should be achieved between the surface tension of the membrane

and the vacuum force.

In an initial implementation during this thesis, it was found that the required mag-

nitude of the vacuum force differs depending on the location of the gap in the model. If

a gap on one side is nicely closed another may need a larger or smaller vacuum force.

Also determining rules for stopping the shrink wrapping process locally proved to be dif-

ficult. This together with the expected difficulties when handling semantics and when

shrink wrapping geometries with genus-1 (homeomorphic to a doughnut) or higher, lead

to abandoning of the shrink wrapping concept.

Heuristic Carving Heuristic carving is developed by Zhao et al. [50] to repair

LoD2 building solids. The method uses a constrained Delaunay tetrahedralization of

the input geometry and its convex hull. The carving process works by chipping away

one tetrahedron at a time. A tetrahedron can only be removed when it meets the

requirements. The removal must for example not result in an invalid geometry of the

remaining solid and also the planar nature of buildings is taken into account. The

concept is depicted in Figure 3.13.

proper heuristics and constraints should be introduced to guide
and confine the operations, so that to fix the errors.

According to the above analysis, the proposed repair work flow
using shrink-wrapping includes four consecutive steps: 1) the
initial approximation; 2) the constrained tetrahedralization; 3)
the heuristic carving and 4) the extraction of the exterior shell.

3.1 Initial approximation

The initial approximation of the shrink-wrapping process which
acts as a membrane can be any valid shell that bounds the input
model. It is straight forward to use the convex hull of the input
model, which is easy to compute and satisfies the validity
criterion for the approximation. Comparing to the alternative
bounding box or sphere, a convex hull reuses a subset of the
input vertices thus easies the sequent step of tetrahedralization.
In addition, it offers a tight bounding shell which is more
efficient for carving.

3.2 Constrained tetrahedralization

The constrained tetrahedralization (CT) decomposes the
geometric set into 3-simplices (tetrahedra) that are non-
overlapping and every input constraint, i.e. triangle surfaces in
both the input model as well as the convex hull, are represented
in the tetrahedralization result. Therefore, the input geometry
can be preserved during repair. However, CT cannot be directly
conducted due to the possible errors of intersections and
degeneracies. These errors should first be handled by
tessellation and decomposition. The tessellation step
triangulates all the input polygons and results in triangles that
are not degenerated as illustrated in Figure 2 b). Then, the
decomposition step detects all sorts of intersection between
triangles and decomposes the intersected ones (Figure 2 c)). The
result of this step is a complex (can be further improved by
coplanar merging as shown by Figure 2 d)), which is the
demanded input for CT. During the process of CT, the Delaunay
property is not mandatory because more Steiner points will not
help improve the repair result but rather introduce extra
expenses for carving.

Figure 2. Tessellation and decomposition of intersecting objects (a) the input model; b) tessellated result; c) decomposition using

triangle-triangle intersection; d) refined result by merging coplanar triangles)

Figure 3. The 2D demonstration of the approach (in heuristic carving, a hole is filled because carving inwards the hole breaks one of
the constraints)

Figure 4. Demonstration of the carving operation (a) the candidate tetrahedron with a triangular facet colored in red1; b) after carving,

the rest three triangular facets are classified as candidate triangles colored in yellow; c) if the tetrahedron is preserved, all its
triangular facets are classified as fixed, colored in blue)

1 This color configuration will be used throughout this paper (current candidate tetrahedron: red; candidate triangles: yellow; fixed

triangles: blue).

ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences,
Volume II-2/W1, ISPRS 8th 3DGeoInfo Conference & WG II/2 Workshop, 27 – 29 November 2013, Istanbul, Turkey

This contribution has been peer-reviewed. The double-blind peer-review was conducted on the basis of the full paper. 311

Figure 3.13: Heuristic carving a method for repairing geometry (Source: [50])

A key advantage of heuristic carving is that the concept is less influenced by thresh-

olds like the size of the structuring element in morphological closing. Also since the

Chapter 3. Methodology for the Conversion 37

the concept aims at repairing solid geometries, it is less prone to errors in the input.

Unlike morphological closing, this method can guarantee that the output is 2-manifold.

However, this is not necessarily an advantage since the exterior shell could inherently be

a non-manifold. When there is a non-manifold edge in the actual exterior shell, heuristic

carving could leave the tetrahedron incident to that edge in order to keep the geome-

try 2-manifold. Yet placing a tetrahedron to repair a non-manifold is not an optimal

method. Better methods are described in Section 3.3.

Although the range of gap sizes that can be closed is large, one fundamental aspect of

the current implementation is that it keeps all the geometries from the input. Something

which is exactly the opposite of what is needed, but the main principals of heuristic

carving are still applicable. The method was not researched further as it is still very

novel and only published at the end of this thesis project. However the method is a

potential candidate to replace morphological closing in future work.

3.2.3.3 Closing Methods

Unlike convex hull methods, closing methods do not necessarily start from a valid ge-

ometry. Closing methods use all the input geometries and transformed them such that

the exterior shell is created. Morphological closing as used in this project and described

in Section 3.2.1 also falls into the category of closing methods.

Vertex normal closing The main downside of morphological closing is that sharp

concave corners are closed by the structuring element regardless of whether closing is

needed. In 2D these sharp corners can be maintained by dilating the polygon using the

vertex normal. The vertex normal in 2D can be computed by averaging the two normals

of the incident edges. For each edge an dilation area can be calculated by making a

trapezoid using the edge and a parallel edge which endpoints lay on the vertex normals.

Figure 3.14 shows how the four trapezoids from four edges dilate the polygon. The

Boolean union of the polygon and all dilation trapezoids results in the dilated polygon

with all corners intact.

The intersection between the parallel edge and the vertex normal can be computed

using the coordinates of the original vertex, the dilation offset distance, and the scalar

product between the unit vertex and edge normal vectors. The formula for calculating

the new vertices is given in Equation 3.4. The geometry must not be degenerate as

otherwise the new vertex would be at infinity.

v2 = v1 + n̂vert · offsetcos θ

Where, cos θ =
n̄vert·n̄edge

‖nvert‖·‖nedge‖

(3.4)

38 Chapter 3. Methodology for the Conversion

Figure 3.14: Vertex normal dilation in 2D maintains sharp corners, four trapezoids
are created for the dilation

This concept works in 2D, but in 3D there is one major issue. A vertex normal does

not necessarily exist, or how Jin et al. [51], who made a comparison of algorithms for

vertex normal computation, stated it: “none of the available algorithms are particularly

good.” From research during this thesis the same conclusion was drawn when limiting

the geometry to building shapes.

There is however a shape for which the vertex normal can always be determined,

which is a tetrahedron. As such, after merging all the IFC geometries a tetrahedron

decomposition could be applied to the resulting solids. Each tetrahedron can then be

dilated safely, but artefacts arise when a vertex is dilated by multiple tetrahedra (see

Figure 3.15). These artefacts remain present even after eroding the geometry. Though

averaging all new positions for a vertex yields slightly better results, the artefacts cannot

be prevented when there is a small gap. The artefacts which arise due to morphological

closing are more predictable and less invasive making it the better method for closing.

(a) A rectangle to
be dilated

(b) Triangulation
of the rectangle

(c) Dilation of
each individual

triangle

(d) The resulting
dilated shell has
artefacts due to the
intersecting geome-

tries

Figure 3.15: Artefacts occur when applying vertex normal dilation to individual
triangles or tetrahedra in 3D

Scaling Geometries can be scaled about their individual centroids in order to closed

the gaps between them. However, a solid never closes itself during a scaling operation.

Chapter 3. Methodology for the Conversion 39

That is, if there is one solid with a gap, no matter how much the solid is scaled, the gap

just scales with it. Therefore a convex decomposition is required which has the same

downside as it does for vertex normal closing.

Patching Local operations can be applied instead of dilating and eroding the whole

geometry. The technique is named patching as surface patches are to be applied between

geometries when the distance between them is below a certain threshold. The concept

is very similar to that of alpha-shapes [52] and a similar implementation is published by

Bischoff et al. [53], but with the intent to repair geometries.

To explain the concept, imagine that a building is completely covered in snow and

you are given a spherical snow shovel to remove as much of the snow as possible. Due to

the size of the shovel, not all the snow can be removed. The remaining snow is where the

linear patches are applied. Note that the implementation differs from the explanation

which is why the concept does not belong to the convex hull methods.

The advantage over morphological closing is that the input geometry is left un-

touched. Semantics would therefore not need to be maintained during Boolean opera-

tions. There are also disadvantages with this concept compared to morphological closing.

Not all concave corners should be patched, for example the corners of a room or two

Building Parts having each their own exterior shell should not be patched together when

their geometries are close. Figure 3.16a shows how the patches are applied and what

the resulting exterior shell would be. A proper exterior shell is extracted, however the

shape of the closing geometry is not optimal.

The structuring element of morphological closing can be oriented in the most common

orientation, similarly surface patches can be limited to the same orientations. By doing

so recursively, the result in most cases is the same as morphological closing. However,

as is shown in Figure 3.16b in some cases the correct exterior shell is not found. The

difference occurs in morphological closing due to removal of the interior geometry while

the geometry is dilated. Improvements to the concept may close the gap, but will never

yield better results than morphological closing. An example of such an improvement is

shown in Figure 3.16c.

40 Chapter 3. Methodology for the Conversion

(a) Freely oriented
patches

(b) Axis aligned patch-
ing can fail to extract

the exterior shell

(c) Axis aligned
patching with addi-
tional patches at every
vertex (only shown for

the relevant corner)

(d) Exterior shell ex-
tracted using morpho-

logical closing

Figure 3.16: The results of patching compared to morphological closing

Procedural Modelling A remaining question may be: “Can the semantics not

be used to extract the exterior?” The answer to which is yes. In fact semantics are used

a lot when generating the explicit geometry. Subtypes of the relation ‘IfcRelConnects’

indicate for example whether a wall stands on top of a slab, or a roof is supported by a

wall [12]. Given that there is no relation like ‘almost connects to’, only the object types,

as they are used in the semantic mapping in Section 3.1.2, could potentially be useful.

Procedural modelling applies geometric operation in a defined sequence when the

conditions for it, based on the shape and semantics, are met. A procedure may be

that when the minimum vertical distance between a wall and a roof is lower than a

certain threshold, the wall is extruded upwards till it hits the roof. However parts of

the wall may as a result protrude through the floor of a different section. This requires

additional rules. Procedural modelling was first implemented to model plants by Měch

and Prusinkiewicz [54], but it is also used for modelling building architecture instantly

by Wonka et al. [55]. Due to the complexity, estimated risk of uncaught cases and the

overall feasibility, this concept was not evaluated in an implementation.

Morphological Closing Morphological closing, as described in Section 3.2.1, is

selected as the most suitable concept for finding the correct exterior shell. Table 3.2

provides an overview of the described concepts and how they are evaluated relative to

each other. Each of the concepts are rated from – to ++ for several criteria. A higher

ranking means that the concept is expected to perform better on that criteria. The

criteria are defined as follows:

Chapter 3. Methodology for the Conversion 41

• Feasibility / Complexity - The likelihood that the concept is capable of ex-

tracting the exterior shell and the complexity of the implementation.

• Predictability - How well the results from a concept can be predicted.

• Number of Artefacts - The number of places where geometry added while it

was not needed (fewer places gives a higher score).

• Shape of Artefacts - How well the shape of the artefacts fits the building geom-

etry.

• Amount of Detail - The capability of a concept to maintain or create high detail

models.

• Transferability of Semantics - The ease at which semantics can be transferred

from the input of the output.

Table 3.2: Qualitative trade-off of all concepts for extracting the exterior shell

Concept Total Feasibility / Predictability Number of Shape of Amount of Transferability

Score Complexity Artefacts Artefacts Detail of Semantics

Morphological closing ++ 28 ++ ++ + ++ ++ +
Heuristic carving + 26 + + + + ++ ++
Patching + 26 + - ++ + + ++ ++
Vertex normal closing + - 22 + + - + - + - ++ +
Procedural modeling + - 20 - - - + - + ++ ++
Best matching model - 18 - - - ++ ++ - +
Shrink wrapping - - 16 - - - + - + - + + -
Scaling - - 16 - - - - - - - ++ ++

From Table 3.2 can be concluded that morphological closing offers the best method-

ology for obtaining an exterior shell without gaps. The advantages of morphological

closing are summarized in the following list:

• The reliability is high as whenever there is a gap smaller than the width of the

structuring element, the gap will be closed.

• Barely any semantics or geometric detail is lost due the operation. The only loss

occurs due to artefacts.

• Only a small amount of artefacts is created at predictable locations, such as un-

derneath roof overhang and round or triangular attic windows.

• The artefacts that are created are aligned with the building model.

• The resulting model is guaranteed to only contain solids, as Boolean operations

cannot create geometries of a lower dimension than the input.

• It is possible to transfer the IFC semantics to the output.

42 Chapter 3. Methodology for the Conversion

3.3 Producing a CityGML and ISO Conform File

The methodology described in Section 3.1 and Section 3.2 covers the whole conversion

process for the generation of CityGML LoD3 building models. However, the closing

operation from Section 3.2.1 could potentially create faces without semantics and the

validity of the geometry is not guaranteed during the transformation. As such the

resulting model needs to be validated before it can be written to a CityGML file.

The refinement methodology is again divided into a semantic and a geometric part.

Section 3.3.1 provides the geometric refinement for which a detailed flow diagram can be

found in Appendix C Figure C.3. The semantic refinement is documented in Section 3.3.2

and its flow diagram in Appendix C Figure C.4.

3.3.1 Geometric Refinements

In order for the geometry in the output file to comply with the ISO19107 specification

the geometry in the file needs to be 2-manifold. In this section the methodology is given

for ensuring compliance with ISO19107 and how in future use of the data, issue due to

floating-point arithmetic are limited.

The geometry was implicitly stored in the IFC file and is ultimately transformed into

CityGML B-rep geometry. Due to these processes the geometry may have coordinates

with a large number of decimals. These numbers will be rounded when written to a

file. When doing so the geometry might change ever so slightly, possibly making the

geometry invalid. To fix this problem all the coordinates are rounded and then the

geometry is made valid again. The method for making geometries valid is described

later in this section. This is an recursive process as making the geometry valid may

introduce new vertices. Once all the coordinates are final and the geometry valid, the

geometry is cleaned to limit the occurrence of degenerate faces and semantically refined

before writing it to a file. Figure 3.17 shows a simplified overview of the geometric

refinement.

Remove Interior

Geometry &

Separate Solids

Regularize

Make Shells

2-Manifold

Round

Coordinates

Exterior Shells are

2-Manifold?

Attempt to Fix

Degeneracies

Detriangulate

Building

BuildingParts

Building-

Installations

Building-

Installations

BuildingParts

Building

No

Yes

Figure 3.17: Simplified workflow diagram of the geometric refinement process

The process for ‘BuildingParts’ and ‘BuildingInstallations’ is slightly different to that

of the ‘Building’, as rounding of the coordinates the geometries may be overlapping.

Chapter 3. Methodology for the Conversion 43

Therefore these overlapping volumes need to be removed using Boolean operations (see

Figure C.3).

Regularization is a procedure which removes all dangling geometries, these are un-

wanted as they do not bound interior of the solid (see Figure 3.18). This is done by

taking the closure of the interior. After rounding the coordinates and regularizing the

geometry new inner shells may have been created or solids may have split in two (see

Figure 3.19). They have to be removed and separated before it can be checked whether

the shells are 2-manifold or not. The removed dangling geometries can be stored as

‘BuildingInstallations’.

(a) Geometry before regu-
larization

(b) The interior is extracted
from the geometry

(c) The closure is applied to
the interior where all geome-

tries bound the interior

Figure 3.18: Regularization is applied to remove dangling geometries

(a) Geometry before rounding
coordinates consists of one vol-

ume

(b) After rounding two ver-
tices collapsed and split the

volume in two

Figure 3.19: Rounding of coordinates may split volumes in two

3.3.1.1 Repairing Non-Manifold Vertices and Edges

The definition of a 2-manifold shell is given in Section 2.3.2. In this section only non-

manifolds with a connected interior are discussed as the other manifold cases would have

been split in previous processes.

To repair a non-manifold solid appropriately without changing the exterior geometry

ISO19107 advices to split the solid into multiple parts. In the event of non-manifold

vertices or edges, a convex decomposition can be applied to the geometry as is depicted

in Figure 3.20. After the decomposition a set of solids is created where each face is

either a semantic boundary surface or a shared boundary between two solids. The

44 Chapter 3. Methodology for the Conversion

geometry of the boundary faces are not influenced by this operation and still represent

the full (non-manifold) exterior shell of the building. However, for analytical purposes

the solid geometries, which are stored separately as one ‘gml::CompositeSolid’, are now

guaranteed to consist of only 2-manifold solids.

(a) A non-manifold geome-
try with semantic boundary

faces

(b) A convex decomposition
is applied ensuring that each

solid is 2-manifold

(c) The boundary faces re-
main unchanged, yet the
solid geometry is now valid

Figure 3.20: A non-manifold exterior can be decomposed in a CompositeSolid with
multiple 2-manifold solids. The grey edges in Figure C represent shared faces of adjacent

solids which do not have semantics

There are two other methods for repairing non-manifold geometry, both of which

change the shape of the geometry locally and are thereby less optimal. The first de-

veloped by Mäntylä [56] who proposed a method for repairing non-manifolds in which

the non-manifold vertex or edge is duplicated and moved slightly away from each other.

The method is able to maintain the geometry as one solid. When a non-manifold edges

belonging to a wall is repaired using this method, the wall become ever so slightly less

vertical. This is believed to be an undesirable side-effect as the generated CityGML

semantics depend on the surface orientation. Therefore, this method should not be

used.

A second method is developed during this thesis. A non-manifold vertex can be fixed

by cutting the solid with a small element surrounding the vertex. To create this element,

first for every edge incident to the vertex an offset point on the edge is calculated at a

minimal distance ε away from the vertex. The cutting element can then be constructed

by taking the convex hull of all these points together with the original vertex as is

depicted in Figure 3.21. In case ε is larger than the distance to the adjacent vertex, the

vertex is used instead.

Since the procedure creates new vertices, it needs to be repeated until all vertices

are manifolds. To speed up the process a search can be made for non-manifold edges.

Fixing a non-manifold edge is similar to fixing a single vertex. The difference is in that

cutting element is constructed using the offset points from both the vertices of the edge

and the vertices themselves for the convex hull.

Chapter 3. Methodology for the Conversion 45

Figure 3.21: The (green) element to be removed to make a shell 2-manifold is con-
structed using the convex hull

The method for repairing non-manifolds by subtracting small elements from the

geometry has the small advantage that the building geometry can be represented by

only one solid. However, it does slightly change the shape of the building locally and

may require multiple iterations before the geometry is 2-manifold. Therefore, doing a

convex decomposition is the recommended method for repairing non-manifold solids.

3.3.1.2 Finding and Repairing Degenerate Geometries

A robust procedure to eliminate degenerate faces from a triangular mesh was published

by Botsch and Kobbelt [38]. However, it was decided not to use any operation that

changes the shape of the geometry. The reason for which is that such kind of operation

may have an cascading effect where a large number of small changes to the geometry

may have a big impact on the shape.

As is explained in Section 2.3.2, there are two types of surface degeneracies; caps

and needles. Another distinction can be made between perfect and nearly degenerate

geometries. For perfect degenerates the distance ‘d’ between the vertex and the edge or

other vertex is zero, while for nearly degenerates this distance is almost zero. Perfect

degenerates are the only forms of degeneracies that can be removed in a robust way

without changing the shape.

Perfect needles are basically two vertices on top of each other and can be removed by

collapsing the (virtual) edge between them. By doing so the left and right side are split

in separate faces and/or the triangles formed by the (virtual) edge are removed. Perfect

caps can be removed by first creating a triangle using the related edge and vertex. Since

this triangle is completely collinear it effectively does not have semantics and is always

coplanar with the other face incident to the longest edge. By merging the triangle with

the face on the opposite side of the longest edge the perfect cap is removed. Examples

of both operations are shown in Figure 3.22.

In case one would want to maintain a triangular mesh, an attempt can be made

to remove perfect caps by applying an edge flip to the longest edge of the degenerate

triangle. This operation is also only allowed on coplanar faces with the same semantics.

It is however possible that due to this operation new caps are created. When that

happens, the cap cannot be removed by means of an edge flip. Attene [57] presented a

46 Chapter 3. Methodology for the Conversion

 Before After

(a) Prefect needle fix

 Before After

(b) Prefect cap fix

Figure 3.22: Methods for removing perfect surface degeneracies. For perfect degen-
eracies the length of the dashed red line is zero

recursive method using edge flips on a growing region until all caps are solved. Although

no coordinates are moved in this method, a smooth surface is assumed which is why the

method is not applicable in this project.

It is important to note that even if all perfect degeneracies are removed there is

still a possibility that when floating-point arithmetic is used, parts of polygons may

collapse and become invalid. Therefore to reduce the likelihood of those situations,

all the coplanar faces with the same semantics are unioned into larger faces. During

this detriangulation no invalid faces must be created. Although this operation reduces

the number of nearly degeneracies, it definitely does not guarantee that all of them

are removed. Furthermore, besides degeneracies on the boundary of a solid also the

interior of the solid may degenerate due to floating-point arithmetic. However, no perfect

degeneracy occur in the interior due to the rounding of coordinates and subsequent fixing

of the geometry.

3.3.2 Semantic Refinements

During the morphological closing operation and while making the exterior shells 2-

manifolds, faces may have been created without semantics. Although generating se-

mantics for these faces is not necessary for compliance with the CityGML standard,

generating semantics might be required for certain applications. Since CityGML aims

at the use in many applications a methodology was developed.

The semantics are assigned based on the normal direction of a face and whether it is

directly or indirectly connected to certain boundary surfaces. By indirectly connected is

meant that the face can be connected to a boundary surface through other unassigned

faces having the same type of normal direction. The type of normal refers to whether it

is up, horizontal or down. The decision process can be seen in Figure 3.23. ‘Opening’

semantics are only assigned when the unassigned faces are completely contained by

‘Openings’.

Chapter 3. Methodology for the Conversion 47

Face without

Semantics

Normal

Direction?
WallSurface

Ground

Surface

Roof

Surface

Connected to

GroundSurface

?

Face with

Semantics

Connected to

RoofSurface

?

Connected to

OuterFloorSurface

?

OuterFloor

Surface

Connected to

OuterCeilingSurface

?

Enclosed by Door /

Window Surfaces

Door /

Window
OuterCeiling

Surface

No

Yes

Up

Down

Hor.

No

No

Yes

No

Yes

No

Yes

Yes

Figure 3.23: Workflow diagram for determining the semantics for faces without se-
mantics

Alternatively the faces without semantics could all be assigned to ‘ClosureSurfaces’,

however that would imply that there is connection between the interior and exterior of

the building allowing for the transit of people.

Window and door ‘Openings’ in CityGML are required to be part of a boundary

surface like for instance a ‘WallSurface’. The boundary surface is not required to have

geometry, which is useful in the case of an all glass facade. Therefore, in theory every

‘Opening’ face could be assigned to its own boundary surface, but this is believed to be

very undesirable. Instead all faces that are connected to each other and have the same

semantics are grouped and will be written to the file as one ‘MultiSurface’. Here the

semantics aside from the boundary surface type may also be for example the type or ID

of the IFC object from which the face originates.

For an ‘Opening MultiSurface’ an adjacent ‘BoundarySurface’ is found for it to be

part of. If there is none, a ‘BoundarySurface’ is found through other connected ‘Open-

ings’. In the unlikely case that the object is made entirely out of doors and windows, a

‘WallSurface’ without geometry is assigned.

After the geometric and semantic refinements the CityGML file can be written (see

Figure 3.24). Due to the refinement processes the output fully adheres to both the

CityGML and ISO standards, while also the chances of future complications due to

floating-point arithmetic are reduced.

48 Chapter 3. Methodology for the Conversion

BuildingParts

Building-

Installations

Building

Grouping of

Semantic Faces

Linking Openings

to

BoundarySurfaces

CityGML

Figure 3.24: After the semantic refinement has been performed the model can be
written to CityGML

Chapter 4

Implementation and

Experimental Results

The main research question of this thesis is whether it is possible to do the conversion

from IFC to valid CityGML data which keeps all relevant geometry and semantics. A

complete conversion methodology has been developed which is proofed by a prototype

implementation. The implementation of the prototype was also used to develop the

conversion methodology. In this chapter the implementation of the prototype is de-

scribed. The requirements for an IFC model to be eligible for conversion are given and

experimental results are validated and the quality is evaluated.

Before the implementation is described, first the framework on top of which it is build

is discussed in Section 4.1. The description of the development framework and the spatial

data structures provide background information on why certain engineering decisions

are made in the implementation. The implementation itself is described in Section 4.2.

This is followed by the implementation of the conversion to LoD4 in Section 4.3. The

description of the framework and the implementation is intended to aid others in the

implementation of the methodology. With the implementation explained the focus is

then put on the experimental results. To evaluate the performance of the conversion,

first the requirements are described that make an input IFC file sufficiently clean to

be converted. This is done in Section 4.4. Resulting models from the conversion are

provided in Section 4.5. At the end of this chapter, in Section 4.6, the quality of the

experimental results are discussed. Here also the validity of the models is given and the

performance of the conversion prototype is evaluated.

4.1 Development Framework

The prototype is divided into two parts. The first part handles the preprocessing, while

the second part does most of the conversion. Preprocessing involves reading the input

49

50 Chapter 4. Implementation and Experimental Results

IFC file, generating the explicit geometry and parsing the semantics. Version 0.3.0 of

the IfcOpenShell library is used for this purpose [58]. For the geometric computations

IfcOpenShell relies on OpenCASCADE [59]. In this project OpenCASCADE version

6.5.4 is used.

The main part of the conversion is build using the Computational Geometry Algo-

rithms Library (CGAL) version 4.2 [60]. CGAL is used as it provides a large range

of geometric functionality which is well documented and guarantees robustness. The

separation of the preprocessing and conversion parts is due to conflicts between the

OpenCASCADE and CGAL libraries. The results from the preprocessing stages are fed

into CGAL using a text file using the Object File Format (OFF) file format which is

enhanced with semantics [61]. To avoid problems due to floating-point arithmetic, the

‘Exact predicates exact constructions kernel’ geometry kernel is used [62].

The prototype and all of the used libraries are open source. Also, although the

prototype is developed on Windows it should also work on other operating systems.

The prototype is written in the C++ programming language.

4.1.1 Spatial Data Structures

Two ways to store spatial data from the CGAL library are used in the implementation.

These are the Halfedge Data Structure (HalfedgeDS) [63, 64] and the Nef polyhedra

[65]. Both have advantages and disadvantages.

4.1.1.1 Halfedge Data Structure

The HalfedgeDS is an edge-centered data structure, where one halfedge is an oriented

edge. The halfedge is linked to its previous, next and opposite halfedge and also has a

link to the incident face and one related vertex (see Figure 4.1). The CGAL implemen-

tation of HalfedgeDS is restricted to 2-manifolds and the faces cannot contain holes [66].

Since the geometries in IFC are not necessarily 2-manifold the data cannot directly be

stored in the HalfedgeDS. Also Boolean set operations are problematic as the resulting

geometry from two 2-manifolds can be non-manifold (see Figure 4.2). Nevertheless, the

HalfedgeDS can easily be extended to support semantics.

4.1.1.2 Nef Polyhedra

Since IFC allows any kind of geometry, the prototype requires a data structure which can

handle all geometries. Nef polyhedra allow for the storage of non-manifold geometries

and are also closed under regularized Boolean set operations, whereas a B-rep, like the

HalfedgeDS, is not always closed under Boolean set operations [67]. For Nef polyhedra

in CGAL, finite geometry is stored in sphere maps. Sphere maps were first introduced

by Dobrindt et al. [68]. For every vertex the local neighbourhood is mapped onto a

Chapter 4. Implementation and Experimental Results 51

Figure 4.1: The connectivity of a halfedge in the HalfedgeDS (Source: [64])

Figure 4.2: The union of two 2-manifold solids can result is a non-manifold solid

concentric sphere, which is the sphere map. Incident solids are represented by a Spherical

Face (SFace) on the sphere map, incident faces by a Spherical Edge (SEdge) and incident

edges by a Spherical Vertex (SVertex) (see Figure 4.3). To make the geometry of a Nef

polyhedra more accessible, the more explicit Selective Nef Complex (SNC) representation

is synthesised from the sphere maps. The SNC data structure provides a slightly altered,

but similar interface to HalfedgeDS for edges, faces, shells and volumes. The SNC data

is thereby read-only and cannot be used to alter the geometry.

The data structures of a Nef polyhedra allow for non-manifold geometries, holes

and Boolean operations. A 2D example of a Boolean intersection operation is shown in

Figure 4.4. Boolean operations can be performed in three steps [65].

1. All candidate vertices are found. Candidate vertices are the original vertices and

all points of edge-edge and edge-face intersections.

2. For each vertex the local sphere map in each polyhedron is constructed. Given two

sphere maps for a candidate vertex, the sphere maps are combined using spherical

2D Boolean operations.

3. The empty sphere maps are removed and the SNC structure is generated.

The current implementation of Nef polyhedra in CGAL does not support semantics.

Enhancing the Nef polyhedra also proved to be difficult since the semantics would have

52 Chapter 4. Implementation and Experimental Results

edge use

opposite edge use

vertex

sphere map

svertex
se

dg
e

oriented edge

sphere map

vertex

edge use

svertex

svertex

svertex

sedge

oriented facet

Figure 7: An SNC. We show only one facet with two
vertices, their sphere maps, the connecting edges, and
both oriented facets. Shells and volumes are omitted
for this example.

Figure 4.3: Two sphere maps, the SNC representation and connectivity of faces and
edges for Nef polyhedra (Source: [65])

to be stored in the SEdges, as the SNC faces are recreated after a Boolean operation.

Also 2D Boolean operations on the sphere map would need to be extended to support

semantics.

Making any changes to the geometry of a Nef polyhedron by methods other than

Boolean operations is complicated. For example to move one vertex, the sphere maps

of all connected vertices need to be updated and intersecting geometries need to be

handled. Furthermore, when an object is turned into a Nef polyhedron the geometry is

simplified; all coplanar faces are unioned. Given that semantics are not supported, also

the borders between coplanar faces with different semantics are removed.

Chapter 4. Implementation and Experimental Results 53

(a) Step 1: Candidate vertices are
found

(b) Step 3: The re-
maining sphere maps
are used to generate the

SNC structure

(c) Step 2: 2D Boolean operations are applied to the
sphere maps

Figure 4.4: The three step process of performing a Boolean intersection on two Nef
polyhedra (Source: [40])

4.2 Prototype Implementation

The implementation differs in certain aspects from the methodology, due to limitations

of the development framework. The differences are merely work-arounds and do not

influence the validation of the methodology, but they do degrade the quality of the re-

sults. The influence on the results is discussed in Section 4.6. The goal of this section

is to highlight and explain the differences between the methodology and the implemen-

tation and to provide an example of how the methodology can be implemented. The

conversion process is briefly discussed again from start to finish while referring to the

methodology when the implementation does not deviate from the methodology. The

flow diagram in Figure 4.5 provides an overview of the implementation. In Section 4.3

the implementation for converting IFC to CityGML LoD4 is described.

The cause of the deviation between concept and realisation is the spatial data struc-

tures provided by CGAL that can only handle either semantics (HalfedgeDS), or 2-

manifolds and boolean operations (Nef). The Nef polyhedra are required for the geo-

metric transformation, therefore during that stage of the implementation the semantics

and geometry are separated. Afterwards, the semantics and geometry are brought back

together. Another complication with CGAL is that the function needed to separate

54 Chapter 4. Implementation and Experimental Results

IFC CityGML

Preprocessing

Geometric

Transformation on

Nef Polyhedra

Semantics stored

in HalfedgeDS

Polyhedra

Reattaching

Semantics &

Refinements

Figure 4.5: General workflow diagram for the implementation

volumes and remove inner shells from polyhedra is unreliable when the polyhedron is

not a 2-manifold. Therefore every time the inner shells are removed, the geometry is

made 2-manifold beforehand by subtracting local elements as is described in subsubsec-

tion 3.3.1.2.

In this section no distinction is made between ‘Building’, ‘BuildingParts’ and ‘Buildin-

gInstallations’. In general, for each of these the processing is as described in this section,

with the exception that overlapping geometries should be prevented for ‘BuildingParts’

and ‘BuildingInstallations’ as is described in Section 3.3.1. Also, there are no boundary

surfaces attached to ‘BuildingInstallations’.

4.2.1 Preprocessing

IfcOpenShell

CGALIFC

Generate Explicit

Geometries

IFC Geometries

with Intermediate

Semantics

Extract

Intermediate

Semantics

Create Nef

Polyhedra

Make 2-manifold &

Remove Inner Shells

Nef Polyhedra

Semantic

HalfedgeDS

Polyhedra

OFF File

Figure 4.6: Flow diagram for the preprocessing stage of the implementation

A flow diagram of the preprocessing stage can be found in Figure 4.6. First the IFC

file is parsed by IfcOpenShell, which also generates the explicit geometry. The seman-

tics mapping at this stage does not yet use the normal direction of the faces. Instead

intermediate semantic is mapped to each ‘IfcObject’. These intermediate semantics are

assigned such that they can be translated to the final CityGML semantics using only

the normal direction of the faces after the geometric transformation. The triangulated

geometries and their semantics then are written to a file in the OFF file format which

is enhanced with semantics.

Chapter 4. Implementation and Experimental Results 55

Since the geometry of an ‘IfcObject’ is not necessarily a 2-manifold and can even

contain multiple volumes the object are imported into the CGAL environment as Nef

polyhedra. Non solids geometries like surfaces are dilated using a structuring element

with a width of 1 cm, such that all geometries are solid during the conversion. In order

to be able to reattach the semantics at a later stage, every Nef polyhedron needs to

be converted to a HalfedgeDS polyhedron. The semantics can then be stored in the

faces of the HalfedgeDS polyhedron. To convert the Nef Polyhedron, it is first made

2-manifold using the methodology described in subsubsection 3.3.1.1. However, instead

of subtracting elements from the geometry, they are unioned as not to create gaps

between the geometries (see Figure 4.7). The inner shells are also removed and volumes

separated before the Nef polyhedra are converted to a HalfedgeDS polyhedron. From

the intermediate OFF file the semantics are then attached to the faces of the HalfedgeDS

polyhedron.

(a) The input geom-
etry consisting of two
volumes: a rectangular
doughnut and a cube

(b) A cross-section
view of the input to
show the non-manifold

edges

(c) The edges are not
repaired by subtracting
elements, as it creates

gaps

(d) Instead, the edges
are repaired by union-
ing elements, creating

no gaps

Figure 4.7: Due to robustness issues the IFC input geometry is made 2-manifold
before volumes can be separated or inner shells can be removed. Since subtracting

creates gaps only at this stage the elements are unioned instead of subtracted

4.2.2 Geometric Transformation

Nef Polyhedra
Extract Exterior

Shell

Make 2-manifold &

Round

Coordinates

Final Shape

HalfedgeDS

Polyhedron

Figure 4.8: Flow diagram for the geometric transformation stage of the implementa-
tion

In the geometric transformation stage the Nef polyhedra are transformed into one

final shape polyhedra of the exterior shell (see Figure 4.8). All the Nef polyhedra are

processed according to the methodology defined in Section 3.2.1 for extracting the exte-

rior shells of the ‘Building’ and possible ‘BuildingParts’. The morphological dilation in

CGAL is implemented using the Minkowski sum [69]. The Minkowski sum in CGAL is

56 Chapter 4. Implementation and Experimental Results

implemented as the convex hull of the vector sum of all points between two convex poly-

hedra [70] (see Figure 4.9). Since the Minkowski sum implementation requires convex

polyhedra as input, the polyhedra are decomposed into convex parts and dilated using

the oriented cubical structuring element individually. After the dilation the convex parts

are recombined using the Boolean union [71]. The process is depicted in Figure 4.10.

Figure 4.9: The Minkowski sum of two convex polyhedra A and B is the convex hull
of the vector sum of all point between A and B (Source: [40])

(a) A concave star
shape is dilated by a
square structuring ele-

ment

(b) The star shape is
decomposed into con-

vex parts

(c) Each of the parts is
dilated separately

(d) The dilated parts
are unioned to obtain
the dilated star shape

Figure 4.10: A convex decomposition of both polyhedra into the pairwise Minkowski
sums of the convex pieces, and the union of the pairwise sums (Source: [71])

The Minkowski sum cannot be used directly for erosion since the convex hull oper-

ation never decreases the volume. As such, the duality between erosion and dilation is

used as it is presented in Equation 3.2. First a bounding box is constructed from which

the Nef polyhedron is subtracted using the Boolean difference. This represents the com-

plement of the Nef polyhedron. The complement is then dilated using the Minkowski

sum. The erosion can now be found by subtracting the dilated complement from the

original bounding box geometry using the Boolean difference. According to Hachen-

berger [69], in the worst case, the Minkowski sum executes in O
(
n3m3

)
time, where n

Chapter 4. Implementation and Experimental Results 57

and m are the complexities of the two input polyhedra (the complexity of a Nef poly-

hedron is the sum of its vertices, halfedges and spherical halfedges). The operation is

thereby very time consuming.

After the exterior shell is extracted, the geometry is prepared for writing as is de-

scribed in Section 3.3.1. Part of this preparation is to make the shells 2-manifold. In

order to determine whether a shell with a point-set topology is 2-manifold the sphere

map of each of its vertices can be inspected (see Figure 4.11). A vertex is 2-manifold

when there is only one SFace on the sphere map, which is a valid polygon according to

ISO19107, with the addition that the SFace may not have holes and instead of coplanar

the polygon must be on the surface of the sphere. A non-manifold edge may be recog-

nized by checking whether it has more than two incident faces. Alternatively one could

check whether there are more than two SEdges incident to a SVertex.

Figure 4.11: A sphere map of a non-manifold vertex, the blue SFaces represent the
interior of the solid (Adapted from: [67])

Once the geometry is refined, the Nef polyhedron is converted into a triangulated

HalfedgeDS polyhedron. At this point the shape is final, no vertices are added or moved

in the following processes.

4.2.3 Reattaching and Assigning Semantics

Semantic

HalfedgeDS

Polyhedra

Final Shape

HalfedgeDS

Polyhedron

Semantic

Snapping &

Normal

Constraints

Assign Semantics

& Fix Mismatched

faces

Semantic

Final Shape

HalfedgeDS

Polyhedron

Figure 4.12: Flow diagram for the process to get boundary surface semantics attached
to each face

Since the shape is final, the semantics can be reattached to the geometry. At the end

of this stage a boundary surface is assigned to every triangle (see Figure 4.12). There

is now a triangulated HalfedgeDS polyhedron with the final shape of the exterior shell

for CityGML and many semantic HalfedgeDS polyhedra representing the same building,

58 Chapter 4. Implementation and Experimental Results

but with IFC geometries. Many vertices in the exterior shell correspond to vertices in

the IFC geometries. The semantics are to be transferred to the final shape polyhedron.

This is done in a process named semantic snapping. For the centroid of every triangle

in the final shape polyhedron the nearest semantic triangle is found. The semantics of

the semantic triangle are assigned to the triangle from the final shape polyhedron (see

Figure 4.13). If the least square distance between the centroid and the semantic triangle

is larger than 1× 10−2 m the triangle is considered to be too distant and semantics are

not transferred.

Since this method requires many point to polyhedron calculations Axis-Aligned

Bounding Boxes (AABB) trees are used to speed up the computations [72]. The trian-

gles are the leafs of the thee. The leafs based on their bounding boxes are recursively

grouped into branches making a tree. By building such a tree the computation time can

be reduced for distance queries as whole branches can be ignored if it is more distant

then another. As the CGAL implementation only allows for the least distant polyhedron

to be returned, a separate AABB tree is constructed for each type of semantic value.

Figure 4.13: Semantics are transferred from the triangle (black) for which the least
squared distance to the centroid (green) is minimum

It may occur that there are two semantic triangles from different semantic polyhedra

for which the distance is minimum and approximately equal. If neither of them is too

distant, the semantics are chosen based first on three other criteria. First the triangle is

chosen where the angle between the normal vectors is minimum, then the triangle with

the largest area and finally if all of the properties are approximately equal then simply

the first occurring triangle is chosen. For each of the comparisons a threshold range is

set for which the values are considered equal. 1× 10−2 m is set as the range for which

two distances are considered equidistant. The range for the normal direction is 0.175 rad

(10◦) and for the area to be considered equal a threshold of 1 m2 is used. The method

and thresholds have been determined by trial and error on many different models.

At this stage since the shape is final, the intermediate semantics can be translated

into the final semantics. The normal direction constraints are applied to the semantics

Chapter 4. Implementation and Experimental Results 59

according to the mapping given in Section 3.1.2. Furthermore, for the faces which

are considered too distant semantics are generated using the methodology described in

Section 3.3.2. As can be seen in Figure 4.14, small triangles may have been snapped to

the wrong semantics. Therefore, for small triangles the semantics are reassigned based

on the largest total coplanar area of connected semantic faces.

Figure 4.14: Mismatched semantics may occur due to the semantics snapping process

4.2.4 Processing Degenerate and Nearly Degenerate Faces

CityGML

Semantic

Final Shape

HalfedgeDS

Polyhedron

Process (nearly)

Degenerate Faces

Group/Link

Semantics &

Write Output File

Figure 4.15: Flow diagram for the final process of the conversion

Given that the semantics values are now final and set for each triangle, the (near)

degeneracies on the surface can be removed or limited respectively. Degeneracies are

defined in Section 2.3.2. Afterwards the faces can be grouped and written to the output

file (see Figure 4.15). Most of the degeneracies are created during the morphological

operations on Nef polyhedra and the subsequent triangulation during the conversion

to a HalfedgeDS polyhedron. They are thereby specific to the implementation. For

repairing perfect degeneracies the methodology is followed as explained in Section 3.3.1.

To prevent near degeneracies in the surface, the surface is detriangulated, by merging

coplanar faces with the same semantics, and simplified, removing as many unnecessary

vertices and edges as possible in the process. Figure 4.16 provides an example of a

surface which is detriangulated.

60 Chapter 4. Implementation and Experimental Results

(a) A coplanar triangulated
surface

(b) The same surface, but de-
triangulated

Figure 4.16: A coplanar surface before and after detriangulation

Since the HalfedgeDS does not support faces with holes an algorithm was developed

to union adjacent coplanar faces without creating holes or faces with non-1-manifold/self-

intersecting rings. Non-1-manifold rings would break the validity requirements discussed

in Section 2.3.2. The coplanarity of the faces can either be calculated using exact

arithmetic or using a threshold. The downside of using exact coplanarity is that far

fewer faces are unioned with each other, increasing the file size by roughly 50 % and

often leaving the nearly degenerate triangles in the output. It is also believed not to be

common practise to use exact arithmetic for this purpose. Instead, the coplanarity of

the triangles is determined based on the angle between the normals using a threshold of

1× 10−4 rad.

The triangles are sorted into groups where all triangles are coplanar to the base

triangle of the group. The algorithm iterates over all the edges of the polyhedron.

For each edge it is checked whether the incident faces are coplanar and have the same

semantics. If they do, the faces can be unioned unless the border that divides them is

not one connected set of edges, as that would break the validity rules as discussed in

Section 2.3.2. The border between two faces is defined as all vertices and edges that

are incident to both faces. A case for which the faces cannot be unioned is shown in

Figure 4.17a. Note that the colours of the faces do not represent different semantics,

but are only there to distinguish the two faces. The whole surfaces of the exterior shell

polyhedron is a connected 2-manifold surface. The white space between the green and

blue faces therefore represent either non-coplanar faces or faces with different semantics.

In case the border is not one connected set of edges, a subset of edges that is connected

can potentially still be simplified (see Figure 4.17b). The implemented simplification is

similar to that published by Meijers [73]. A connected subset of edges is simplified as

follows. Between the end points of the first and second edge a new edge is constructed.

If this edge does not intersect with the boundary of either of the incident faces, then the

first and second edge are removed. If the new edge does intersect with the boundaries

then the new edge is removed. The process continues by applying the same algorithm to

Chapter 4. Implementation and Experimental Results 61

(a) The border between the
green and blue face is repre-
sented in red; the faces cannot
be unioned since the border is
not one connected set of edges

(b) The surface can be detrian-
gulated and the border can be
simplified, but the border can-

not be removed

Figure 4.17: A coplanar surface before and after detriangulation (without creating
holes) and simplification of the border

the third edge and depending on the outcome either the second or the new edge. This

is repeated until all edges from the subset have been processed. Figure 4.18 shows the

simplification of a border. After merging the coplanar faces, collinear edges may occur

for which the shared vertex is connected to only the two collinear edges. These vertices

can be removed from the geometry by merging the two edges.

(a) Two faces that cannot be
unioned

(b) The first vertex cannot be
removed as otherwise the ge-

ometry becomes invalid

(c) The second vertex can be
removed

Figure 4.18: The border between coplanar faces that cannot be unioned can be
simplified, however the simplification should not result in overlapping geometries

4.2.5 Writing CityGML

The faces are grouped and openings are linked appropriately as defined in Section 3.3.2.

When writing the CityGML file each group of faces is written as one ‘BoundarySurface’

or ‘Opening’ with the geometry stored in a ‘gml::MultiSurface’. For every ‘Building’

and every ‘BuildingPart’, also one ‘gml::Solid’ is written using ‘XLinks’ to the geometry

in the ‘MultiSurfaces’ as that is conform the CityGML standard [11]. Since ‘Buildin-

gInstallations’ are not given ‘BoundarySurfaces’, the geometry is directly stored in the

‘gml::Solid’. After writing the CityGML file it can be validated and its quality evaluated.

62 Chapter 4. Implementation and Experimental Results

4.3 Simple Creation of LoD4 Rooms

Although the main focus of this thesis is on LoD3 models, a small side step is made

to LoD4 as well. During the geometric transformation inner shells are removed from

the geometry at several steps. Each inner shells is potentially the geometry of a room.

However, it is found difficult to unambiguously determine whether an inner shell is a

room, or just a (small) enclosed cavity. Instead an almost trivial conversion is made

from the geometry of ‘IfcSpaces’.

‘IfcSpaces’ are added to IFC to create space boundaries for the use in energy analyses

[74, 75]. The ‘IfcSpaces’ for a storey of a building are shown in Figure 4.19. An ‘IfcSpace’

can be bounded by building elements and virtual surfaces. The faces of an ‘IfcSpace’ can

be semantically linked to building elements. In Figure 4.20 an example of an ‘IfcSpace’

which is linked to building elements is shown.

Figure 4.19: The IfcSpaces for one storey of a building

(a) (b)

Figure 4.20: An IfcSpace can be linked to space boundaries which are IfcBuildingEle-
ments. Figure B shows several connected building elements, the other connected walls,

roof and floor slabs are not shown

Chapter 4. Implementation and Experimental Results 63

The geometry is generated by IfcOpenShell from the ‘IfcSpaces’ like any other ob-

ject. Unlike building elements, spaces have always solid geometry as a space is inherently

3-dimensional. Some of the spaces may share a virtual space boundary. In this imple-

mentation the related spaces are union creating a larger space (see Figure 4.21). The

virtual space boundary can instead be modelled by an ‘ClosureSurface’ which is refer-

enced by both rooms. The geometric refinements are also applied to the rooms to ensure

their validity.

(a) Two IfcSpace sharing a
virtual space boundary

(b) The two IfcSpaces are
union creating one large space

Figure 4.21: Connected spaces are union into larges spaces

As the implementation of the conversion to LoD4 is a mere initial exploration of

the problems and possibilities, the semantics in these experiments are limited to ‘Floor-

Surface’, InteriorWallSurface and ‘CeilingSurface’ based on the normal directions, up,

horizontal and down respectively. When writing the rooms to a file care is taken that

the normals of the ‘BoundarySurfaces’ are opposite to those of the solid geometry. This

is done by using ‘XLinks’ in combination with an ‘OrientableSurface’, the latter can be

used to indicate that the surface normal is reversed.

The semantic mapping for LoD3 can trivially be converted to a semantic mapping for

LoD4 by taking into account whether the geometry after the geometric transformation is

interior or exterior. However, LoD4 requires more IFC classes to be mapped to CityGML

semantics depending on the desired amount of detail of the conversion. For example,

besides ‘IfcBuildingElements’ also ‘IfcFurnishingElements’ should be mapped.

4.4 Input Data Requirements

There are few conditions which prevent the conversion to CityGML from being success-

ful. In general, for an IFC file to be suitable for conversion, it need to comply to the

IFC2x3 specifications, the geometry needs to be clean and the semantics need to be

applied appropriately and sufficiently. In this section a number of common modelling

errors are provided which make the conversion impossible or at least less optimal. For

example, CityGML semantics for a roof cannot be generated when it is not stored as

64 Chapter 4. Implementation and Experimental Results

such in IFC, thus the ‘IfcSlab’ does not have the ROOF ‘PredefinedType’ nor a ROOF-

ING ‘IfcCovering’, nor does it decompose a roof object. The roof in the CityGML model

is then given a ‘FloorSurface’ instead of a ‘RoofSurface’ during the conversion.

Another requirement is that the geometry and semantics need to be stored in the

IFC file such that they can be interpreted unambiguously by an IFC-compliant reader.

In order for a model to comply with the CityGML specification, the geometric accuracy

should be better than 0.5 m for LoD3 and 0.2 m for LoD4 [11]. Since the exterior of

LoD3 building can be reused in LoD4 it is recommended that the geometric accuracy of

the IFC input model is better than 0.2 m. The geometry should represent the building,

but does not need to be valid according to ISO19107. In theory, the conversion should

work for as long as the the geometry can be extracted from the IFC file. Solid geometry

is preferred, since non solid geometry will be dilated by the implementation such that

it is a solid. For example, B-rep geometry should not have missing faces. Figure 4.22

shows a door where some of the faces were not properly stored or missing from the IFC

file. In such an event the prototype tries to recover from the bad geometry by dilating

it. Although it is not preferred, objects may contain multiple solids, non-manifolds or

have an inconsistent face orientation. These cases can be recovered from during the

geometric transformation.

Figure 4.22: A solid should be completely enclosed by faces, there are several faces
missing from this door

The explicit geometry must at least represent the complete exterior of the build-

ing, including the base slab. If there are major sections of the building missing, like

in Figure 4.23, even the closing operations cannot recover without using an oversized

structuring element causing a large loss of detail. Also the explicit geometry should

represent doors and windows in their closed state. This also holds for revolving and

sliding doors. Figure 4.24 depicts a revolving door wrongly modelled in its open state.

Chapter 4. Implementation and Experimental Results 65

(a) A church missing a base
slab

(b) Building where part of the
roof is missing

Figure 4.23: Buildings where major sections are missing

Figure 4.24: All doors and windows should be closed in their explicit geometry, even
revolving and sliding doors. The revolving door shown here is not closed leaving a gap

The geometry in IFC should represent physical objects such that the objects can

be produced individually and combined during the construction of the building. The

IFC solids may therefore not overlap unless a Boolean difference operation is specified

between them. If there are overlapping solids the semantic mapping may become am-

biguous as there can be two different mappings for the same surface (see Figure 4.25).

Figure 4.25: Solid geometry should not overlap as it is not physically possible. Here
the roof slab and the beams intersect

66 Chapter 4. Implementation and Experimental Results

For the semantics of the input can be said that more is generally better. For semantics

there is only one requirement on the input IFC file which is that the objects that make up

the exterior of the building should pass the filtering process from Section 3.1.1, thus they

should be subtypes of ‘IfcBuildingElement’ and they should be (indirectly) contained

in a ‘IfcBuilding’ spatial structure. To get optimal results the objects should be given

semantics such that the mapping, given in Section 3.1.2, is optimal. This includes the

issue related to chimneys, beams, columns and ‘IfcSpaces’ as discussed in the same

section. If not, the result will still be valid, but semantics will be lacking. By making

the IFC and modelling specification better defined this can be prevented.

There are two common problems in the way ‘IfcSlabs’ are modelled. First, when

the lowest slab forms the foundation of the building it is sometimes given the ‘Pre-

definedType’ FLOOR instead of BASESLAB. The slab is actually both, but only one

‘PredefinedType’ can be assigned to one object. The solution would be to assign the

BASESLAB type to the slab and attach an ‘IfcCovering’ FLOORING type to the upper

side of the of the slab. By doing so both semantics can be stored.

The second problem occurs when a part of the slab should have different semantics,

but is not subdivided since it is one physical slab. This occurs for example when the

first storey above ground level has a floor slab which protrudes out of the building to

form a roof above the entrance (see the top slab in Figure 4.24). It is unlikely that

the protrusion is meant as a floor and should either have a ROOFING covering or be

separated from the rest of the slab. The latter is preferred as the adjacency between

the slabs can be stored by having the slabs aggregate an ‘IfcElementAssembly’ with the

‘PredefinedType’ SLAB FIELD.

4.5 Experimental Results

The implemented prototype is able to successfully convert IFC models to valid CityGML

LoD3 models and can also generate simple room shapes for LoD4. In Section 4.5.1 the

input and the LoD3 results are shown and discussed for ten models. Section 4.5.2 covers

the results for LoD4. For these models the validity and quality is assessed and the

performance of the conversion processes as a whole is evaluated in Section 4.6.

4.5.1 Input and LoD3 Model Results

The images of both the IFC and the CityGML models are made using FZK Viewer v4.0

by KIT. Some of the images have been manually altered to remove rendering issues as

not to confuse the reader. For each of the models an image is shown for both the input

IFC model and the generated CityGML model, also for each a rendering without the roof

is presented to show the interiors (or lack thereof) of the building models. Figure 4.26

provides legends for the meaning of the colours in both the IFC and CityGML models.

Chapter 4. Implementation and Experimental Results 67

Furthermore, for each of the models the statistics and a description of the characteristics

are given. The protoype is tested on an Intel Sandy Bridge CPU at 4.5 GHz with

sufficient ram. The geometry and semantics of the models are evaluated with automated

and manual methods which are discussed in Section 4.6.

(a) Legend for the most
common objects in IFC

(b) Legend for the
CityGML models

Figure 4.26: Legends for both the IFC and the CityGML models

68 Chapter 4. Implementation and Experimental Results

IfcOpenHouse

(a) Input IFC (b) IFC without roof (c) Output CityGML (d) CityGML without
roof

Figure 4.27: IfcOpenHouse input and conversion result

IfcOpenHouse is a simple building generated with IfcOpenShell. The window op-

posite to the door is not rendered by FZK Viewer due to a minor compliance issue in

the model concerning ‘OpeningElements’. This however did not affect the conversion.

The models does not require a closing operation for the extraction of the proper exterior

shell. The only improvement that can be added to the CityGML model is an ‘XLink’

relation for the faces where the stairs touch the building. Also for the windows can be

argued whether or not the frame should be part of the window. The conversion takes

only six seconds due to the simplicity of the model.

Table 4.1: Information and statistics for IfcOpenHouse (Source:
blog.ifcopenshell.org/2012/11/say-hi-to-ifcopenhouse.html)

Name IfcOpenHouse

File Name IfcOpenHouse.ifc
Number of IFC Entities 46
Input File Size (MB) 0.102
Output File Size (MB) 0.045
Structuring Element Width (mm) 0
BuildingParts/Installations 0/1
Conversion Time (s) 6

Chapter 4. Implementation and Experimental Results 69

FZK-House

(a) Input IFC (b) IFC without roof (c) Output CityGML (d) CityGML without
roof

Figure 4.28: FZK-House input and conversion result

FZK-House is a fictional building with furniture and rooms. It is the first of many

models exported by ArchiCAD. The IFC model has a roof support structure which over-

laps with the roof geometry itself. The support structure should have been subtracted

from the roof geometry for it to be a realistic model. The support structure does not

cause any problems as it is composed out of ‘IfcBeams’ which are mapped as ‘BuildingIn-

stallation’. As such, the subtraction is performed during the conversion. The CityGML

model does not have any geometric or semantic flaws.

Table 4.2: Information and statistics for FZK-House (Source: www.iai.fzk.de/www-
extern/index.php?id=1174&L=0)

Name FZK-House

File Name AC13-FZK-Haus-CV.ifc
Number of IFC Entities 111
Input File Size (MB) 1.49
Output File Size (MB) 0.681
Structuring Element Width (mm) 0
BuildingParts/Installations 0/6
Conversion Time (s) 272

FJK-House

(a) Input IFC (b) IFC without roof (c) Output CityGML (d) CityGML without
roof

Figure 4.29: FJK-House input and conversion result

FJK-House is a building model with more external features compared to the previous

models. It is the first model to require morphological closing for the proper exterior shell

70 Chapter 4. Implementation and Experimental Results

to be extracted. Without closing several of the rooms of the building are not removed

from the geometry. The closing operation does however create several artefacts. The

carport, balcony and chimney are part of the exterior shell in the CityGML model. With

more semantics in IFC in the future, these might be converted to ‘BuildingInstallations’

instead. Even with all the furniture and vehicles filtered out, the ‘BuildingInstallations’

(beam, columns and stairs) take up a large amount of file space. This is amongst others

caused by the large amount of beams that make up the support structure for the carport.

The CityGML model does not have a ‘GroundSurface’ which is a flaw caused by the

semantics of the related slab in the IFC model. The slab is a FLOOR while it for a

proper mapping it should have been a BASESLAB.

Table 4.3: Information and statistics for FJK-House (Source: www.iai.fzk.de/www-
extern/index.php?id=1167&L=0)

Name FJK-House

File Name FJK-Project-Final.ifc
Number of IFC Entities 274
Input File Size (MB) 13.9
Output File Size (MB) 1.12
Structuring Element Width (mm) 300
BuildingParts/Installations 12
Conversion Time (s) 217

Smiley West

(a) Input IFC (b) IFC without roof (c) Output CityGML (d) CityGML without
roof

Figure 4.30: Smiley West input and conversion result

The Smiley West model consists of five terraced houses. Each house can be pro-

cessed individually, however the scope of the thesis requires that one exterior shell is

generated for the combination of buildings. Since the buildings are disjoint, without

morphological closing four of the five buildings are processed as ‘BuildingParts’ of the

largest model. However, by applying closing the exterior shell for the combination of

models is extracted. The closing operation does not create any artefacts as the building

is completely rectangular. The semantics of some areas of the surface are not mapped

Chapter 4. Implementation and Experimental Results 71

correctly. This is caused by missing border edges in the geometry. Also like the FJK-

House and most others, the ‘GroundSurface’ is not generated.

Table 4.4: Information and statistics for Smiley West (Source: www.iai.fzk.de/www-
extern/index.php?id=1168&L=0)

Name Smiley West

File Name AC-11-Smiley-West-04-07-2007.ifc
Number of IFC Entities 627
Input File Size (MB) 7.98
Output File Size (MB) 4.47
Structuring Element Width (mm) 300
BuildingParts/Installations 0/37
Conversion Time (s) 888

Niedriha

(a) Input IFC (b) IFC without roof (c) Output CityGML (d) CityGML without
roof

Figure 4.31: Niedriha input and conversion result

The Niedriha model features a building with a garage and a carport. The model

is converted without closing, the result of which does lack a ‘GroundSurface’. The

garage is a potential candidate for a ‘BuildingPart’ in CityGML. To do so the garage

would need to be modelled as a ‘IfcBuilding’ with PARTIAL as the ‘CompositionType’.

During the conversion, the exterior shell of the main building can then be subtracted

from the exterior shell of the garage, while the surfaces where the new shells touch

should be ‘ClosureSurfaces’. However, since the model does not have such semantics, no

‘BuildingParts’ are generated.

72 Chapter 4. Implementation and Experimental Results

Table 4.5: Information and statistics for Niedriha (Source:
code.google.com/p/bimserver/source/browse/trunk#trunk%2FTestData%2Fdata)

Name Niedriha

File Name AC17-niedriha-V4.ifc
Number of IFC Entities 301
Input File Size (MB) 1.99
Output File Size (MB) 0.526
Structuring Element Width (mm) 0
BuildingParts/Installations 0/1
Conversion Time (s) 92

BIEN-ZENKER Jasmin-Sun

(a) Input IFC (b) IFC without roof (c) Output CityGML (d) CityGML without
roof

Figure 4.32: BIEN-ZENKER Jasmin-Sun input and conversion result

BIEN-ZENKER Jasmin-Sun is the model used in the flow diagram throughout this

thesis. The model does not require closing and there are no flaws despite overlapping

geometries in the input model.

Table 4.6: Information and statistics for BIEN-ZENKER Jasmin-Sun (Source:
www.iai.fzk.de/www-extern/index.php?id=2208&L=0)

Name BIEN-ZENKER Jasmin-Sun

File Name Bien-Zenker Jasmin-Sun-AC14-V2.ifc
Number of IFC Entities 122
Input File Size (MB) 4.58
Output File Size (MB) 0.203
Structuring Element Width (mm) 0
BuildingParts/Installations 0/0
Conversion Time (s) 72

Chapter 4. Implementation and Experimental Results 73

Office Building

(a) Input IFC (b) IFC without roof (c) Output CityGML (d) CityGML without
roof

Figure 4.33: Office Building input and conversion result

Office Building is the model where the entrance’s revolving door is not closed in the

IFC file (see Figure 4.24). Nevertheless, no closing is required for the generation of a

proper exterior shell. The gap left open by the door is closed by an ‘IfcSpace’ modelling

the entrance hall. Although this is not the preferred way to model the entrance, it is

allowed. The lacking semantics of the slab above the entrance still result in it being

mapped to a ‘FloorSurface’ while it should be a ‘RoofSurface’.

Figure 4.34: The gap left open by the door (Figure 4.24) is closed by a ClosureSurface
due to an IfcSpace modelling the entrance hall

Table 4.7: Information and statistics for Office Building (Source:
www.iai.fzk.de/www-extern/index.php?id=1184&L=0)

Name Office Building

File Name AC11-Institute-Var-2-IFC.ifc
Number of IFC Entities 1201
Input File Size (MB) 2.7
Output File Size (MB) 2.25
Structuring Element Width (mm) 0
BuildingParts/Installations 0/2
Conversion Time (s) 612

74 Chapter 4. Implementation and Experimental Results

Haus-G-H

(a) Input IFC (b) IFC without roof (c) Output CityGML (d) CityGML without
roof

Figure 4.35: Haus-G-H input and conversion result

Haus-G-H is another example of a model where closing is required as otherwise not

all rooms are removed. Due to the closing operation artefacts appear underneath the

roof overhang. Aside from the missing ‘GroundSurface’ the semantics could be better

if also the balcony and dormer are extracted as ‘BuildingInstallations’. There are also

several faces with mismatched semantics.

Table 4.8: Information and statistics for Haus-G-H (Source:
code.google.com/p/bimserver/source/browse/trunk#trunk%2FTestData%2Fdata)

Name Haus-G-H

File Name AC9R1-Haus-G-H-Ver2-2x3.ifc
Number of IFC Entities 301
Input File Size (MB) 4.34
Output File Size (MB) 5.28
Structuring Element Width (mm) 300
BuildingParts/Installations 0/4
Conversion Time (s) 1672

Model 4351

(a) Input IFC (b) IFC without roof (c) Output CityGML (d) CityGML without
roof

Figure 4.36: Model 4351 input and conversion result

Model 4351 is unlike most others exported by Autodesk Revit. No closing is required

for the conversion. The model does not have any objects relating to a roof. Since

Chapter 4. Implementation and Experimental Results 75

the highest slab is surrounded by a balustrade it is assumed that it is meant as a

walkable surface. The CityGML standard does not specify how this should be modelled.

Therefore, the ‘FloorSurface’ applied by the conversion is believed to be an appropriate

semantic. In the resulting CityGML model the ‘BuildingInstallations’ again take up a

large amount of space. The result also has one mismatched face.

Table 4.9: Information and statistics for Model 4351 (Source:
code.google.com/p/bimserver/source/browse/trunk#trunk%2FTestData%2Fdata)

Name Model 4351

File Name 4351.ifc
Number of IFC Entities 442
Input File Size (MB) 6.95
Output File Size (MB) 2.81
Structuring Element Width (mm) 0
BuildingParts/Installations 0/7
Conversion Time (s) 1041

1407 Opheusden WoZoCo

(a) Input IFC (b) IFC without roof

(c) Output CityGML (d) CityGML without roof

Figure 4.37: 1407 Opheusden WoZoCo input and conversion result

The 1407 Opheusden WoZoCo model is by far the largest model in size spatially.

It contains 31 apartments and is exported from ArchiCAD. The missing roof section

cannot be recovered by closing without also removing most doors and windows in the

process. The roof section may be intentionally missing in which case it is converted

appropriately. The model required closing for the extraction of a proper exterior shell.

76 Chapter 4. Implementation and Experimental Results

The model contains many ‘IfcSpaces’ which are outside the actual exterior shell. This

is not a modelling error in the IFC file, but does degrade the quality of the conversion.

The result has mismatched faces and no ‘GroundSurface’. Furthermore, 94% of the

CityGML file is allotted to ‘BuildingInstallations’.

Table 4.10: Information and statistics for 1407 Opheusden WoZoCo (Source:
code.google.com/p/bimserver/source/browse/trunk#trunk%2FTestData%2Fdata)

Name 1407 Opheusden WoZoCo

File Name 1407 BE WOZOCO.ifc
Number of IFC Entities 3521
Input File Size (MB) 7.81
Output File Size (MB) 70.1
Structuring Element Width (mm) 300
BuildingParts/Installations 0/64
Conversion Time (s) 5495

4.5.2 Generated Rooms for LoD4

Not all of the models presented in Section 4.5.1 have ‘IfcSpaces’ such that rooms can

be generated for ‘LoD4. The meaning for the colours in the LoD4 room models can be

found in Figure 4.38. In Figure 4.39 the rooms themselves are shown from four of the

models. The only flaws that can be noted are the lack of ‘Openings’ and also the outside

‘IfcSpaces’ from the 1407 Opheusden WoZoCo model should not have been converted to

rooms.

Figure 4.38: Legend for the CityGML LoD4 room models

Chapter 4. Implementation and Experimental Results 77

(a) Bottom-up view of the CityGML
Rooms in the FZK-House model

(b) Bottom-up view of the CityGML
Rooms in the Niedriha model

(c) Top-down view of the CityGML
Rooms in the Office Building model

(d) Top-down view of the CityGML
Rooms in the 1407 Opheusden

WoZoCo model

Figure 4.39: Automatically generated LoD4 rooms

4.6 Validation and Evaluation of the Experimental Results

The models generated by the prototype and presented in Section 4.5 are examined in

this section. The validity of the geometry and semantics are evaluated in Section 4.6.1

to provide insight on where the prototype performs well and where there is room for

improvement. Aside from just the output, the performance of conversion process as

a whole is discussed in Section 4.6.2. The statistics for all models can be found in

Table 4.11. The evaluation of the conversion to LoD4 and the possibilities are discussed

separately in Section 4.6.3.

4.6.1 Validation and Quality of the Generated LoD3 models

During the creation of the solid geometry, the ISO19107 validity standard is taken into

account. The output models are validated using the 3D validator by Ledoux [19]. All

the models are found valid according to the ISO19107 definitions. As expected the

validator does indicate that there are nearly degenerate faces remaining, moreover in

Section 4.6.2.

78 Chapter 4. Implementation and Experimental Results

The exterior shell was successfully extracted for each of the building models. For

four of the models closing is required. The closing is needed as otherwise rooms and

other parts of the interior are not removed due to a gap in the exterior. Examples of

artefacts can be seen in Figure 4.40.

(a) Input IFC model (b) Output CityGML model,
converted with a 300 mm

structuring element

Figure 4.40: Artefacts occur at concave parts of the geometry that are not aligned
with the structuring element

To quantify the influence of the artefacts on the geometry, for each of the models

the percentage of surface area added by the artefacts is approximated. This is done

by calculating the area for all triangles that are found too distant during the semantic

snapping process explained in Section 4.2.3. The average artefact area is 0.8 % of the

total area for all models which required morphological closing. As expected, when no

closing is applied the average artefact area is 0 %.

To visualise the influence of the size of the structuring element the graphs in Fig-

ure 4.41 are made. The graphs show how the percentage of artefact area increases with

an increasing size of the structuring element. Two models are used for which the proper

exterior is already extracted without closing. At first the percentage grows gradually as

only artefacts occur at places like underneath roof overhang. The discontinuous jumps

in the graphs occur when doors and windows collapse. Collapsing doors and windows

must not occur during the conversion as doors and windows are valuable semantics to

an LoD3 CityGML model. As such, a maximum structuring element width of 300 mm is

recommended. In Figure 4.42 the output of the FZK-House is shown for multiple sizes

of the structuring element.

For future work, a methodology can be developed for removing the artefacts. In

Figure 4.43 a Boolean difference operation is shown between the exterior geometry and

all the input solids. This approach potentially makes it possible for a user to select

artefacts from the remaining solids such that they can be removed from the exterior

geometry. Heuristic carving, as explained in Section 3.2.3, can possibly be adapted to

automate this process.

Chapter 4. Implementation and Experimental Results 79

0

2

4

6

8

10

12

0 500 1000 1500 2000 P
er

ce
n

ta
ge

 o
f

ar
te

fa
ct

 a
re

a
(%

)

IfcOpenHouse - Artefact area

Structuring element width (mm)

(a)

0

2

4

6

8

10

12

14

16

18

0 500 1000 1500 2000 P
e

rc
e

n
ta

ge
 o

f
ar

te
fa

ct
 a

re
a

(%
)

Structuring element width (mm)

FZK-House - Artefact area

(b)

Figure 4.41: Percentage of artefact area as a function of the width of the structuring
element

(a) Element width 0 mm (b) Element width 300 mm

(c) Element width 1000 mm (d) Element width 2000 mm (e) Element width INFINITE

Figure 4.42: The influence of the width of the structuring element on the output of
FZK-House. Too large elements make doors and windows collapse(C & D). An element

with an near infinite size can be used to generalize the building (E)

For the semantics it can be argued that they are valid since the normal constraints

are explicitly applied. Also, visual inspection revealed no errors concerning the normal

constraints. This does not mean that faces cannot have been given the wrong semantics.

During the creation of a Nef polyhedron the edges between coplanar faces are removed.

These edges are not always recovered during the triangulation. As such, parts of facets

are given the wrong semantics, an example is given in Figure 4.44. This issue is again

specific to the implementation.

There are also some problems due to limitations in the methodology. In many IFC

models the foundation of the house is a floor slab. If the normal of a floor slab points

down, instead of ‘GroundSurface’, by default floor slab is mapped to ‘CeilingSurfaces’

(see Figure 4.45a). If the slab is stored as a base slab in IFC semantic mapping would

80 Chapter 4. Implementation and Experimental Results

Figure 4.43: The artefacts, the interior geometry and the geometries that fill the gaps
can be extracted by subtracting all the input geometries from the exterior solid. The

artefact (light green area in right figure) can then be distinguished

(a) Input IFC model (b) Output CityGML model, the bor-
der edges between the vertical roof and

wall faces are removed

Figure 4.44: Due to edge removed by Nef polyhedra, parts of faces may be assigned
to the wrong semantics

have resulted in correct semantics. The terrain is required to determine the ‘Ground-

Surface’ accurately for every situation, but that is out of the scope of the thesis. Also,

extracting CityGML semantics for which information cannot be stored in IFC is not

possible. For instance, dormers and balconies (Figure 4.45b) have no special semantics

in IFC and can therefore not be extracted as ‘BuildingInstalations’. As such, in those

cases the semantics are valid, but slightly less than optimal semantics. These semantics

can easily be added to IFC by adding the ‘PredefinedTypes’ balcony and dormer to

‘IfcElementAssembly’.

Chapter 4. Implementation and Experimental Results 81

(a) The CeilingSurface (green) below
the building and the garage should

have been a GroundSurface

(b) A dormer and a balcony not rec-
ognized as BuildingInstallation

Figure 4.45: Several semantics are not optimal or wrong in the output due to missing
semantics in IFC

4.6.2 Performance of the Conversion to LoD3

The prototype application consists of two executables, one for the preprocessing and the

other for the conversion. A batch file enables the two executables to automatically run

in sequence. Neither part of the program has a Graphical User Interface (GUI), but use

the console to provide feedback on the progress. Figure 4.46 shows a screenshot of the

console during the conversion of one of the models. The focus for the remainder of this

section is only on the conversion part.

Figure 4.46: Screenshot of the console during the conversion process

In Figure 4.47 a graph is shown to indicate the influence of the input file size on

the computation time of the conversion. A graph showing the computation time as a

function of the number of objects in the input file gives a similar image. The graph

is a good depiction of how unpredictable the required computation time is. Model

‘1407 Opheusden WoZoCo’ is a special case which contains approximately ten times

the number of objects compared to the other models. Its conversion took 95 minutes.

In general, more complex models take longer to compute, but many factors are hard to

predict like the complexity of the exterior shell and the number of ‘BuildingInstallations’.

82 Chapter 4. Implementation and Experimental Results

0

200

400

600

800

1000

1200

1400

1600

1800

0 2 4 6 8 10 12 14 16
C

o
m

p
u

ta
ti

o
n

 t
im

e
(s

)
Input file size (MB)

Computation time - Input file size

No closing

With closing

Figure 4.47: The computation time as a function of the input file size

To evaluate the influence of the closing operation on the computation time, it is

plotted against the size of the structuring element in Figure 4.48. The graphs show how

the computation time significantly increases as a result of the morphological operations.

Furthermore, the graphs show how the computation time gradually decreases as the

geometry becomes more simplified due to the morphological operations.

0

2

4

6

8

10

12

14

0 500 1000 1500 2000

C
o

m
p

u
ta

ti
o

n
 t

im
e

 (
s)

Structuring element width (mm)

IfcOpenHouse - Computation time

(a)

0

100

200

300

400

500

600

700

800

900

0 500 1000 1500 2000

C
o

m
p

u
ta

ti
o

n
 t

im
e

(s
)

Structuring element size (mm)

FZK-House - Computation time

(b)

Figure 4.48: The computation time as a function of the width of the structuring
element

In addition to the computation time, also the output file size is plotted against the

input file size in Figure 4.49. Since the conversion can be seen as a generalisation, the

output file size is expected to be lower than the that of the input. For the models in

the graph the average file reduction is 60 %. The data from model ‘1407 Opheusden

WoZoCo’ is not plotted as it is at a completely different scale. Its input file size is

7.81 MB, the output 70.1 MB, that is nine times as much. By inspecting the file it is

discovered that most of the file space is occupied by ‘BuildingInstallations’. This is due

to the high amount of faces required to model circular geometries in fences and complex

geometries like stairs. For all the models with ‘BuildingInstallations’, the average file

size dedicated to ‘BuildingInstallations’ is 50 %, with a minimum of 3 % and a maximum

of 95 %. The latter percentage is from the ‘1407 Opheusden WoZoCo’ model. While

the ‘BuildingInstallations’ represent objects of a lower importance than the building

Chapter 4. Implementation and Experimental Results 83

geometry, it takes up a significant amount of space. Further generalisation to bring

balance to the distribution of file space can therefore be considered valuable.

0

1

2

3

4

5

6

0 2 4 6 8 10 12 14 16
O

u
tp

u
t

fi
le

 s
iz

e
(M

B
)

Input files size (MB)

Output file size - Input file size

No closing

With closing
y=x

Figure 4.49: The output file size as functions of the input file size

The surface is detriangulated mainly for the purpose of limiting the chances of nearly

degeneracies on the surface by removing as many unnecessary vertices and edges as

possible. On average, 3.1 % of the vertices are removed for models that require closing.

Only an average of 0.1 % of the vertices are removed in the other models. The difference

is due to the additional vertices created during the morphological operations. For all of

the models an average of 46 % of the edges are removed. The reduced geometries may

prevent future problems due to degeneracies in other applications. The method could

be slightly more effective if the detriangulation can also handle holes. A very welcome

and not unexpected side-effect of the detriangulation is that it reduces the file size.

The reduction is significant; on average a 66 % reduction is achieved, with a minimum

of 62 % and a maximum of 73 %. The reduced files size due to the detriangulation,

but also generalized ‘BuildingInstallations’ becomes beneficial especially when a large

amount of building models are combined in one city model. Table 4.11 shows statistics

for all models.

84 Chapter 4. Implementation and Experimental Results

T
a
b
l
e
4
.1
1
:

S
tatistics

for
all

m
o
d

els

Structuring Element Width (mm)

IFC Entities

IFC Relations

Input File Size (MB)

Output File Size (MB)

BuildingParts/-Intallations

Conversion Time (s)

Artefact Area (%)

BuildingInstallation File Space (%)

Reduced Vertices (%)

Reduced Edges (%)

Detriangulation File Space Reduction (%)

IfcO
p

en
H

o
u

se
0

46
28

0.10
0.05

0/1
6

0.00
11.11

0.00
44.87

65.22
F

Z
K

-H
o
u

se
0

111
249

1.49
0.68

0/6
272

0.00
3.38

0.14
48.23

73.03
F

J
K

-H
o
u

se
3
0
0

274
450

13.90
1.12

0/12
217

0.95
76.16

5.01
47.87

62.13
S

m
iley

W
est

3
0
0

627
2565

7.98
4.47

0/37
888

0.51
79.93

1.78
47.42

63.83
N

ied
rih

a
0

301
950

1.99
0.53

0/1
92

0.00
10.65

0.73
45.70

66.43
B

IE
N

-Z
E

N
K

E
R

J
a
sm

in
-S

u
n

0
122

406
4.58

0.20
0/0

72
0.00

-
0.00

42.80
64.26

O
ffi

ce
B

u
ild

in
g

0
1201

3611
2.70

2.25
0/2

612
0.00

3.56
0.00

42.99
62.78

H
a
u

s-G
-H

3
0
0

301
1286

4.34
5.28

0/4
1672

1.24
81.44

4.31
43.76

64.49
M

o
d

el
4
3
5
1

0
442

2730
6.95

2.81
0/17

1041
0.00

85.12
0.00

48.63
69.49

1
4
0
7

O
p

h
eu

sd
en

W
o
Z

o
C

o
3
0
0

3521
4965

7.81
70.10

0/64
549

5
0.54

94.56
1.36

45.56
61.90

Chapter 4. Implementation and Experimental Results 85

4.6.3 Evaluation of the Possibilities for the Conversion to LoD4 models

The method that is developed for the creation of LoD4 Rooms for CityGML is different

than the method for LoD3. Instead of generating the shell by transforming all relevant

IFC geometries, only a single ‘IfcSpace’ object is used for to generate a room geome-

try. The created models are valid both geometrically and semantically. However, the

implementation in the prototype is limited to ‘Floor-’, ‘Ceiling-’ and ‘InteriorWallSur-

face’. It can be extended with ‘Openings’ by making use of the ‘IfcBuildingElements’

that are linked as ‘space boundaries’ to the ‘IfcSpace’. ‘Openings’ (and ‘ClosureSur-

faces’) between room in CityGML need to be linked either using XLinked surfaces or

at the semantics level (see Figure 4.50). This needs to be taken into account when the

methodology for LoD4 rooms is extended.

Figure 4.50: The Opening surfaces between room should either be linked using XLinks
or linked at the semantic level

The alignment between the two standards is high with respect to the rooms and

spaces in CityGML and IFC respectively. A required addition to the IFC specification

is a property that indicates whether an ‘IfcSpace’ is inside or outside of the building.

This would resolve the issue with balcony spaces as is first introduced in Figure 3.4.

Furthermore, for the conversion of IFC to a full LoD4 model the mapping presented in

Section 3.1.2 needs to be extended such that it also includes objects like utilities and

furniture.

Chapter 5

Conclusions, Recommendations

and Future Work

The methodology and its prototype implementation, presented in this thesis report

allow for the automatic generation of CityGML LoD3 building models for use in 3D GIS

applications. For optimal compatibility, the conversion is based on, and adheres to three

standards: IFC, CityGML and ISO19107. To prove the effectiveness of the methodology

a prototype application has been implemented and the output models created by the

prototype validated. Conclusions drawn from this thesis are given in Section 5.1.

During the research several limitations of the IFC and CityGML standard found.

Recommendations on both standards are given in Section 5.2 and Section 5.3 which can

improve the interoperability between the two formats. Possibilities for future research

on this topic are given in Section 5.4.

5.1 Conclusions

In this thesis it is shown that it is possible to generate valid and semantically rich

CityGML LoD3 building models from IFC models. The validity requirements for CityGML

LoD3 have been defined as well as the semantic information and geometric operations

needed for the conversion. The effectiveness of the methodology has been successfully

verified by the prototype implementation.

Also an initial investigation into the conversion from IFC to CityGML LoD4 is

made. The geometric transformation cannot easily be extended to LoD4, due to the

uncertainty of whether inner shells are rooms or not. A different approach is required

and proposed which is based on the use of ‘IfcSpaces’. ‘IfcSpaces’ are very similar in

geometry compared to the rooms in CityGML. The geometric transformation is therefore

much simpler. For a complete mapping of semantics more classes are required to be

mapped, but the conversion is definitely possible.

87

88 Chapter 5. Conclusions, Recommendations and Future Work

This research provides the first automated method for generating valid CityGML

building models with high detail. Previously, these models needed to be modelled man-

ually. Other exiting methods for the conversion do not transform the IFC geometries

and the semantics mapping is limited. Therefore, the results from those methods do not

conform to the CityGML standard.

IFC has been accepted as an open standard by the Dutch ‘Forum en College Stan-

daardisatie’ [13]. This will increase the adoption of IFC by Dutch governmental or-

ganisations and thereby the availability of IFC models. The automated conversion to

CityGML makes it feasible to create high detail city models that are optimized for

analyses. Such city model can also be kept up-to-date easily by merging changes when-

ever an IFC building model is updated. Architects may use the results to evaluate the

interaction, like noise and heat transfer, between the neighbouring buildings and the

environment, thereby making better informed design choices. Real estate agents can

query the city models for houses with specific features, like large south facing windows.

The semantic part of the methodology is focussed on ‘BoundarySurface’ type seman-

tics, but the conversion is not limited to transferring semantics at the face level. The

methodology can easily be extended to also support attributes for solids like a ‘Build-

ing’. The building’s address in IFC can for instance trivially be mapped to CityGML,

and every face can be linked to the originating ‘IfcObject’. The implementation can

therefore be extended to fit specific needs.

The semantic mapping between IFC and CityGML LoD3 requires changes to the

standards for better alignment. Limitations in the conversion occur mostly due to infor-

mation missing in the semantics of IFC. By making relatively small adjustments to the

IFC standard, which are provided in Section 5.2, IFC and CityGML could be aligned

such that for every model that complies to the IFC standard it can be guaranteed that

the conversion to CityGML will be flawless.

The use of the methods from this thesis is not limited to the conversion from IFC

to CityGML. The mapping is useful in other research trying to bridge the gap between

the two formats. For example the reverse conversion or the creation of a UBM, which

incorporate the needs of BIM and GIS users in one format [26]. The geometric trans-

formation can even be applied to a wider field. The geometric transformation presented

in this thesis is able to extract the exterior shell and also generalise further as is shown

in Figure 4.42e. In general, any Computer-Aided Design (CAD) model can be sim-

plified using the presented methodology. Furthermore, the geometric refinements can

be used to optimize geometry for analysis by ensuring 2-manifold shells and removing

degeneracies.

Chapter 5. Conclusions, Recommendations and Future Work 89

5.2 Recommendations for IFC

During this thesis project a new version of IFC (IFC4) was released. The new version

brings georeferencing of building models and adds more classes. This is a good develop-

ment and should be continued in the future. In this section recommendations are given

for changes to the standard such that it can become better aligned with the CityGML

standard.

A major step for the alignment of the two formats can be made by creating ‘IfcSpaces’

not only for rooms, but also for the exterior shell. It is already possible to define such a

space, but there is no standardized way of storing the information that a particular space

is an exterior shell. The alignment can be achieved by defining in the standard what

parts of the building should be part of the exterior shell and how it can be stored as a

special ‘IfcSpace’. Software packages for the creation of IFC models could implement the

geometric transformation methods defined in this thesis for the automatic generation of

the exterior shell.

An exterior shell space in IFC would make the most difference, but there are other

changes which can help the alignment as well. For ‘IfcSpaces’ in general it is useful to

know not only whether a space touches the exterior, but also whether it is contained

within the building is beneficial. For example the space for a balcony can then be

ignored, whereas its geometry would otherwise be used as ‘ClosureSurface’.

For balconies and dormers it is currently impossible to extract them as ‘BuildingIn-

stallations’ without using complex feature recognition techniques, because IFC does not

provide semantics for them. In IFC a new type of ‘IfcSpatialStructureElement’ could

be created such that they can be recognized. At the same time this would also indicate

that ‘IfcSpace’, which is part of the balcony spatial structure, should be ignored during

the extraction of the exterior shell.

Although it is already possible in IFC to model columns and beams as part of a wall,

it is not yet common practice. Depending on whether a column is part of a wall or not,

it is modelled in CityGML by a ‘WallSurface’ or a ‘BuilldingInstallation’ respectively

after the conversion. By defining in the IFC standard that columns and beams have to

be part of a wall if it is applicable, the conversion no longer requires user input during

the conversion.

5.3 Recommendations for CityGML

The CityGML leaves a lot of the modelling decisions open to the implementers. By

providing a more detailed specification it becomes easier for modellers to know how to

model, and for users to know what to expect. Several associations, like SIG3D [36]

and Stoter et al. [6], provide their own detailed specifications. The CityGML standard

90 Chapter 5. Conclusions, Recommendations and Future Work

should include a more detailed specification before fragmentation occurs.

The standard should clearly define when and how a building should be subdivided

into ‘BuildingParts’ and ‘BuildingInstallations’. Especially how ‘BuildingInstallations’

should be generalized. Due to the complex geometry of ‘BuildingInstallations’, like stairs

and fences, the amount of file size is disproportional to that of the building geometry.

However, CityGML does not provide any information on how the generalization should

be applied.

Additionally, for the boundary surface types it should be made clearer when some-

thing belongs to a specific type or not. For example, it should be specified whether only

glass should be modelled as window or also its frame. Furthermore, due to the inherent

generalization required by the use of B-rep a specification is needed on how non-planar

geometry should be modelled. For instance, how many planar faces are required to

model an arch.

5.4 Future Work

The methodology leaves little room for improvement. The semantic mapping requires

additional semantics in order for it to be improved and the geometric transformation

works. On the short term support for the new IFC4 classes can be added, though due

to its novelty very few IFC4 models are available yet. Also the more trivial attributes

like the address can be mapped.

Given some more time, the methodology can be developed for extracting the terrain

intersection curve. The terrain intersection curve not only provides where the terrain

surface touches the building, but also enables the ‘GroundSurface’ to be generated prop-

erly. The implementation would benefit most from an internal spatial data structure

to be used during the conversion which supports semantics, non-manifold solids and

Boolean operations.

The long term goal is to achieve a high degree of interoperability between IFC and

CityGML. This not only requires better alignment of the standards, but also method-

ologies for the conversion to other city objects like, tunnels and bridges, and for the

creation of building models with multiple LoDs from IFC. The lower LoD models can

be generated from the LoD3 model. By doing so, instead of making converters for each

LoD separately, the different LoD models can be made in a geometrically consistent and

semantically connected way (see Figure 5.1). The conversion methodology presented in

this report can be used as the foundation for all.

Chapter 5. Conclusions, Recommendations and Future Work 91

IFC

LoD1 LoD2 LoD3 LoD4
Figure 5.1: For consistency the lower LoDs can and should be generated from the

LoD3 model

Appendix A

IFC 2x Platform Architecture

93

Appendix B

CityGML 2.0.0 Building Module
 Building module

Copyright © 2011 Open Geospatial Consortium, Inc. All Rights Reserved. 11

+class : gml::CodeType [0..1]

+function : gml::CodeType [0..*]

+usage : gml::CodeType [0..*]

+yearOfConstruction : xs::gYear [0..1]

+yearOfDemolition : xs::gYear [0..1]

+roofType : gml:CodeType [0..1]

+measuredHeight : gml::LengthType [0..1]

+storeysAboveGround : xs::nonNegativeInteger [0..1]

+storeysBelowGround : xs::nonNegativeInteger [0..1]

+storeyHeightsAboveGround : gml::MeasureOrNullListType [0..1]

+storeyHeightsBelowGround : gml::MeasureOrNullListType [0..1]

<<Feature>>

_AbstractBuilding

<<Feature>>

_BoundarySurface

<<Feature>>

CeilingSurface

<<Feature>>

InteriorWallSurface

<<Feature>>

FloorSurface

<<Feature>>

RoofSurface

<<Feature>>

WallSurfacee

<<Feature>>

ClosureSurface

+class : gml::CodeType [0..1]

+function : gml::CodeType [0..*]

+usage : gml::CodeType [0..*]

<<Feature>>

BuildingInstallation

+class : gml::CodeType [0..1]

+function : gml::CodeType [0..*]

+usage : gml::CodeType [0..*]

<<Feature>>

IntBuildingInstallation

+class : gml::CodeType [0..1]

+function : gml::CodeType [0..*]

+usage : gml::CodeType [0..*]

<<Feature>>

Room

+class : gml::CodeType [0..1]

+function : gml::CodeType [0..*]

+usage : gml::CodeType [0..*]

<<Feature>>

BuildingFurniture

<<Feature>>

_Opening

<<Feature>>

Window

<<Feature>>

Door

<<Feature>>

Building

<<Feature>>

BuildingPart

<<Feature>>

core::_CityObject

<<Geometry>>

gml::MultiCurve

<<Geometry>>

gml::MultiSurface

<<Feature>>

core::_Site

<<Geometry>>

gml::_Solid

<<Geometry>>

gml::_Geometry

<<Object>>

core::ImplicitGeometry

<<Feature>>

GroundSurface

<<Feature>>

OuterCeilingSurface

<<Feature>>

OuterFloorSurface

<<Feature>>

core::Address

*

lod4MultiSurface

*

lod3MultiSurface

*

*

boundedBy

*

0..1

*

0..1

*

*

lod4TerrainIntersection

* *

lod3MultiSurface

*

lod2MultiSurface

*
lod4MultiSurface

*

lod4MultiCurve

*

0..1

interiorFurniture

*

*

address

0..1

*

0..1

* lod3MultiSurface

*

*

interiorRoom

0..1

*

lod2MultiSurface

*

lod4MultiSurface

*lod4Geometry

*

*

boundedBy

*

*

outerBuildingInstallation

*

lod3MultiCurve

*

0..1

*

lod3ImplicitRepresentation

0..1

*

lod4Geometry

*

*

lod4ImplicitRepresentation
0..1

*

0..1

*

lod0FootPrint

*

0..1

boundedBy

0..1

*

lod2MultiCurve

*

lod0RoofEdge

*

lod3TerrainIntersection

*

0..2

opening

0..1

*

lod1MultiSurface

*

*

boundedBy

*

0..1

roomInstallation

0..1

*

lod4MultiSurface

0..1

*

*lod3Geometry

*

*

consistsOfBuildingPart

*

*

interiorBuildingInstallation

0..1

*

lod4Geometry

*

*

*

address

0..1

*

lod1TerrainIntersection

0..1
*lod2Geometry

*

lod2TerrainIntersection

lod4ImplicitRepresentation

lod3ImplicitRepresentation

lod2ImplicitRepresentation

lod4ImplicitRepresentation

lod4ImplicitRepresentation

lod4Solid

lod4Solid

lod1Solid

lod2Solid

lod3Solid

Visual Paradigm for UML Standard Edition(Technical University Berlin)

95

Appendix C

Conversion Workflow Diagrams

97

9
8

A
p

p
en

d
ix

C
.

C
o
n

versio
n

W
o
rkfl

o
w

D
ia

gra
m

s

Spatially Contained in Building?

Get PreDefinedType

Has Geometry?

Ignore

Is Contained in a

Building?

Is a Subtype of

IfcBuildingElement?

Contained in

SpatialStructure?

SpatialStructure is

IfcProject or IfcSite?

Spatial Structure is

IfcBuilding?

Find Related

PreDefinedType

Entity Class +

PreDefinedType has

a Final Mapping

Store Temporary

Mapping

Decomposes another

IfcBuildingElement?

Use Decomposed

Object for

Mapping

Has

PreDefinedType?

Has Related

IfcTypeObject

Has

PreDefinedType?

Determine Face

Normal Vectors

Apply Semantic

Mapping

Has Next

IfcObject
IfcObject

Filtered

IfcObject

Geometry

with CityGML

Semantics

Return

PreDefined

Type

No

PreDefined

Type

No Yes

IFC

IFC

Geometries

with CityGML

Semantics

No
No

Yes

Yes

No

No Yes

Yes

Yes Yes Yes

No No No

No

Yes

No Yes

NoNo

Yes

YesNo

Figure C.1: Workflow diagram for the filtering and mapping of semantics

A
p

p
en

d
ix

C
.

C
o
n

versio
n

W
o
rkfl

o
w

D
ia

gra
m

s
99

Apply Closing

Remove Interior

Geometry of Each

IFC Geometry

Union Building

Geometries
Separate Solids

Union

BuildingInstallations

Geometries

Cut Building and

BuildingParts from

BuildingInstallations

BuildingParts

Building-

Installations

Remove Interior

Geometry &

Separate Solids

Building

Apply Closing

Compute Dilation Compute Erosion
Remove Interior

Geometry

Compute Most

Common

Orientation

Rotate Structuring

Element

Remove Interior

Geometry

Remove Interior

Geometrys

IFC

Geometries

with CityGML

Semantics

Figure C.2: Workflow diagram for the geometric transformation

1
00

A
p

p
en

d
ix

C
.

C
o
n

versio
n

W
o
rkfl

o
w

D
ia

gra
m

s

Remove Interior

Geometry &

Separate Solids

Regularize

Make Shell

2-Manifold

Round

Coordinates

Exterior Shell is

2-Manifold?

Attempt to Fix

Degeneracies

Detriangulate

Remove Interior

Geometry &

Separate Solids

Regularize

Make Shells

2-Manifold

Round

Coordinates

Exterior Shells are

2-Manifold?

Attempt to Fix

Degeneracies

Detriangulate
Cut Building from

BuildingParts

Remove Interior

Geometry &

Separate Solids

Regularize

Make Shells

2-Manifold

Round

Coordinates

Exterior Shells are

2-Manifold?

Attempt to Fix

Degeneracies

Detriangulate

Cut Building(Parts)

from Building-

Installations

Building

BuildingParts

Building-

Installations

Building-

Installations

BuildingParts

Building

No

Yes

No

Yes

No

Yes

Figure C.3: Workflow diagram for the refinement of the geometry

A
p

p
en

d
ix

C
.

C
o
n

versio
n

W
o
rkfl

o
w

D
ia

gra
m

s
1
01

BuildingParts

Building-

Installations

Building

For Each Face:

Has Semantics?

BuildingParts

Building-

Installations

Building

Grouping of

Semantic Faces

Linking Openings

to

BoundarySurfaces

CityGML

Face without

Semantics

Normal

Direction?
WallSurface

Ground

Surface

Roof

Surface

Connected to

GroundSurface

?

Face with

Semantics

Connected to

RoofSurface

?

Connected to

OuterFloorSurface

?

OuterFloor

Surface

Connected to

OuterCeilingSurface

?

Enclosed by Door /

Window Surfaces

Door /

Window

OuterCeiling
Surface

Yes

No

No Down

Up

Hor.

No Yes

No

Yes

No Yes

No

Yes

Yes

Figure C.4: Workflow diagram for the refinement of semantics after which the conversion is completed

Bibliography

[1] Umit Isikdag and Sisi Zlatanova. Towards defining a framework for automatic

generation of buildings in CityGML using building information models. 3D Geo-

Information Sciences, pages 79–96, 2009.

[2] Umit Isikdag, Jason Underwood, and Ghassan Aouad. An investigation into the

applicability of building information models in geospatial environment in support

of site selection and fire response management processes. Advanced engineering

informatics, 22(4):504–519, 2008.

[3] Ruben Laat and Léon Berlo. Integration of BIM and GIS: The development of the

CityGML GeoBIM extension. Advances in 3D Geo-Information Sciences, pages

211–225, 2011.

[4] Sisi Zlatanova and Jakob Beetz. 3D spatial information infrastructure: The case

of port rotterdam. In Usage, Usability, and Utility of 3D City Models-European

COST Action TU0801, Proceedings of the conference held 29-31 October, 2012 in

Nantes, France. Edited by Th. Leduc, G. Moreau, and R. Billens, id. 03010, 8 pp.,

volume 1, page 03010, 2012.

[5] Jacob Beetz. Gebruik van 3D gebouw-modellen in 3D GIS: Building information

modelling (BIM/IFC) voor beginners. Geonovum 3D Pilot Fase II Slotdag, Novem-

ber 2012.

[6] Jantien Stoter, Jacob Beetz, Hugo Ledoux, Marcel Reuvers, Rick Klooster, Paul

Janssen, Friso Penninga, Sisi Zlatanova, and Linda den Brink. Implementation of

a national 3D standard: Case of the Netherlands. Progress and New Trends in 3D

Geoinformation Sciences, pages 277–298, 2013.

[7] Claudia Schulte and Volker Coors. Development of a CityGML ADE for dynamic

3D flood information. In Joint ISCRAM-CHINA and GI4DM Conference on In-

formation Systems for Crisis Management, 2008.

[8] Aneta Strzalka, Nazmul Alam, Eric Duminil, Volker Coors, and Ursula Eicker.

Large scale integration of photovoltaics in cities. Applied Energy, 93:413–421, 2012.

103

104 Bibliography

[9] Shinya Yasumoto, Andrew Jones, Keiji Yano, and Tomoki Nakaya. Virtual city

models for assessing environmental equity of access to sunlight: a case study of

Kyoto, Japan. International Journal of Geographical Information Science, 26(1):

1–13, 2012.

[10] Roberto Rodrigues, António Coelho, and Lúıs Paulo Reis. Data model for proce-

dural modelling from textual descriptions. In Evolutionary Computation (CEC),

2010 IEEE Congress on, pages 1–8. IEEE, 2010.

[11] Open Geospatial Consortium. OGC City Geography Markup Language CityGML

encoding standard version 2.0.0. 2012.

[12] T Liebich, Y Adachi, J Forester, J Hyvarinen, K Karstila, K Reed, S Richter, and

J Wix. Industry foundation classes ifc2x edition 3 technical corrigendum 1, 2012.

URL http://www.buildingsmart-tech.org/ifc/IFC2x3/TC1/html/index.htm.

[13] Forum en College Standaardisatie. Lijst met open standaarden - ifc, November

2011. URL https://lijsten.forumstandaardisatie.nl/open-standaard/ifc.

[14] Linda van den Brink, Dick Krijtenburg, Hans van Eekelen, and Bart Maessen.

Basisregistratie grootschalige topografie - Gegevenscatalogus BGT 1.1.1, July 2013.

[15] Thomas H Kolbe. Representing and exchanging 3D city models with CityGML. 3D

geo-information sciences, pages 15–31, 2009.

[16] Karl-Heinz Häfele. CityGML model of the FJK-Haus. Karlsruher Institut für Tech-

nologie, March 2011. URL http://www.iai.fzk.de/www-extern/index.php?id=

2196&L=1.

[17] Jan Blaauboer, Joris Goos, Hugo Ledoux, Friso Penninga, Marcel Reuvers, Jantien

Stoter, and George Vosselman. 3D pilot eindrapport werkgroep technische specifi-

caties voor de opbouw van 3D IMGeo-CityGML. 2012.

[18] Mohamed El-Mekawy and Anders Östman. Semantic mapping: an ontology engi-

neering method for integrating building models in IFC and CityGML. Proceedings

of the 3rd ISDE Digital Earth Summit, pages 12–14, 2010.

[19] Hugo Ledoux. On the validation of solids represented with the international stan-

dards for geographic information. Computer-Aided Civil and Infrastructure Engi-

neering, 28(9):693–706, October 2013.

[20] Claus Nagel, Alexandra Stadler, and Thomas H Kolbe. Conceptual requirements

for the automatic reconstruction of building information models from uninterpreted

3D models. In Academic Track of Geoweb 2009 Conference, Vancouver, 2009.

http://www.buildingsmart-tech.org/ifc/IFC2x3/TC1/html/index.htm
https://lijsten.forumstandaardisatie.nl/open-standaard/ifc
http://www.iai.fzk.de/www-extern/index.php?id=2196&L=1
http://www.iai.fzk.de/www-extern/index.php?id=2196&L=1

Bibliography 105

[21] Claus Nagel. Ableitung verschiedener detaillierunsstufen von IFC gebaudemodellen.

Master’s thesis, 2006.

[22] Mohamed El-Mekawy, Anders Östman, and Ihab Hijazi. An evaluation of IFC-

CityGML unidirectional conversion. International Journal of Advanced Computer

Science and Applications, 3(5):159–171, 2012.

[23] Thomas Lieblich. IFC2x3 model implementation guide. buildingSMART Interna-

tional, 2009.

[24] Säıd Izza. Integration of industrial information systems: from syntactic to semantic

integration approaches. Enterprise Information Systems, 3(1):1–57, 2009.

[25] I-Chen Wu and Shang-Hsien Hsieh. Transformation from IFC data model to GML

data model: methodology and tool development. volume 30, pages 1085–1090.

Taylor & Francis, 2007.

[26] Mohamed El-Mekawy, Anders Östman, and Khurram Shahzad. Towards inter-

operating CityGML and IFC building models: A unified model based approach.

Advances in 3D Geo-Information Sciences, pages 73–93, 2011.

[27] Rizal Sebastian and Léon van Berlo. Tool for benchmarking BIM performance

of design, engineering and construction firms in the Netherlands. Architectural

Engineering and Design Management, 6(4):254–263, 2010.

[28] buildingSMART, 2013. URL http://www.buildingsmart-tech.org/.

[29] Thomas H Kolbe, Claus Nagel, and Alexandra Stadler. CityGML–a framework for

the representation of 3D city models from geometry acquisition to full semantic

qualification. In Proc. of ISPRS Congress, 2008.

[30] Claus Nagel and T. H. Kolbe. Conversion of IFC to CityGML. Technische Univer-

sität Berlin, OGC 3DIM WG, Paris, July 2007.

[31] TH Kolbe and L Plumer. Bridging the gap between gis and caad geometry, refer-

encing, representations, standards and semantic modelling. GIM international, 18:

12–38, 2004.

[32] WP Wang and KK Wang. Geometric modeling for swept volume of moving solids.

Computer Graphics and Applications, IEEE, 6(12):8–17, 1986.

[33] 2013. URL http://commons.wikimedia.org/wiki/Main_Page.

[34] André Monteiro and João Pedro Poças Martins. SIGABIM: a framework for BIM

application. In XXXVIII IAHS World Congress, 2012.

http://www.buildingsmart-tech.org/
http://commons.wikimedia.org/wiki/Main_Page

106 Bibliography

[35] T. H. Kolbe. 100% CityGML - Introduction to CityGML, March

2011. URL http://collegerama.tudelft.nl/Mediasite/Play/

7b440617cd1342b0b5b006fc0f6563ef1d.

[36] Special Interest Group 3D (SIG3D). Handbuch für die modellierung von

3D objekten - Teil 2: Modellierung gebäude (LoD1, LoD2 und LoD3), 2013.

URL http://wiki.quality.sig3d.org/index.php/Handbuch_f%C3%BCr_die_

Modellierung_von_3D_Objekten_-_Teil_2:_Modellierung_Geb%C3%A4ude_

%28LOD1,_LOD2_und_LOD3%29.

[37] Christoph M Hoffmann. Geometric and solid modeling: an introduction. Morgan

Kaufmann Publishers Inc., 1989.

[38] Mario Botsch and Leif Kobbelt. A robust procedure to eliminate degenerate faces

from triangle meshes. In VMV, pages 283–290. Citeseer, 2001.

[39] Peter van Oosterom, Wilko Quak, and Theo Tijssen. About invalid, valid and clean

polygons. In Developments In Spatial Data Handling, pages 1–16. Springer, 2005.

[40] Roeland Boeters. MSc thesis in Geomatics: Automatic enhancement of CityGML

LoD2 models with interiors and its usability for net internal area determination.

June 2013.

[41] Karl-Heinz Häfele. Personal communication via email, 2013.

[42] Safe Software. Converting BIM IFC data to CityGML, July 2012.

URL http://fmepedia.safe.com/articles/Samples_and_Demos/

Converting-BIM-IFC-data-to-CityGML.

[43] Xiangqian Jiang, Shan Lou, and Paul J Scott. Morphological method for surface

metrology and dimensional metrology based on the alpha shape. Measurement

Science and Technology, 23(1):015003, 2012.

[44] Wesley E Snyder, R Groshong, M Hsiao, KL Boone, and T Hudacko. Closing gaps

in edges and surfaces. Image and Vision Computing, 10(8):523–531, 1992.

[45] Michael Schwarz and Hans-Peter Seidel. Fast parallel surface and solid voxelization

on gpus. In ACM Transactions on Graphics (TOG), volume 29, page 179. ACM,

2010.

[46] Desmond Rainsford and William Mackaness. Template matching in support of

generalisation of rural buildings. In Advances in Spatial Data Handling, pages 137–

151. Springer, 2002.

http://collegerama.tudelft.nl/Mediasite/Play/7b440617cd1342b0b5b006fc0f6563ef1d
http://collegerama.tudelft.nl/Mediasite/Play/7b440617cd1342b0b5b006fc0f6563ef1d
http://wiki.quality.sig3d.org/index.php/Handbuch_f%C3%BCr_die_Modellierung_von_3D_Objekten_-_Teil_2:_Modellierung_Geb%C3%A4ude_%28LOD1,_LOD2_und_LOD3%29
http://wiki.quality.sig3d.org/index.php/Handbuch_f%C3%BCr_die_Modellierung_von_3D_Objekten_-_Teil_2:_Modellierung_Geb%C3%A4ude_%28LOD1,_LOD2_und_LOD3%29
http://wiki.quality.sig3d.org/index.php/Handbuch_f%C3%BCr_die_Modellierung_von_3D_Objekten_-_Teil_2:_Modellierung_Geb%C3%A4ude_%28LOD1,_LOD2_und_LOD3%29
http://fmepedia.safe.com/articles/Samples_and_Demos/Converting-BIM-IFC-data-to-CityGML
http://fmepedia.safe.com/articles/Samples_and_Demos/Converting-BIM-IFC-data-to-CityGML

Bibliography 107

[47] Roger M Dufour, Eric L Miller, and Nikolas P Galatsanos. Template matching

based object recognition with unknown geometric parameters. Image Processing,

IEEE Transactions on, 11(12):1385–1396, 2002.

[48] Martin Kada. Generalization of 3d building models for map-like presentations.

T he International Archives of the Photogrammetry, Remote Sensing and Spatial

Information Sciences: XXXVII.[S. l.]: ISPRS, pages 399–404, 2008.

[49] Leif P Kobbelt, Jens Vorsatz, and Ulf Labsik. A shrink wrapping approach to

remeshing polygonal surfaces. In Computer Graphics Forum, volume 18, pages

119–130. Wiley Online Library, 1999.

[50] Z. Zhao, H. Ledoux, and J. Stoter. Automatic repair of CityGML

LoD2 buildings using shrink-wrapping. ISPRS Annals of Photogram-

metry, Remote Sensing and Spatial Information Sciences, II-2/W1:309–

317, 2013. doi: 10.5194/isprsannals-II-2-W1-309-2013. URL http:

//www.isprs-ann-photogramm-remote-sens-spatial-inf-sci.net/II-2-W1/

309/2013/.

[51] Shuangshuang Jin, Robert R Lewis, and David West. A comparison of algorithms

for vertex normal computation. The Visual Computer, 21(1-2):71–82, 2005.

[52] Herbert Edelsbrunner and Ernst P Mücke. Three-dimensional alpha shapes. ACM

Transactions on Graphics (TOG), 13(1):43–72, 1994.

[53] Stephan Bischoff, Darko Pavic, and Leif Kobbelt. Automatic restoration of polygon

models. ACM Transactions on Graphics (TOG), 24(4):1332–1352, 2005.

[54] Radomı́r Měch and Przemyslaw Prusinkiewicz. Visual models of plants interacting

with their environment. In Proceedings of the 23rd annual conference on Computer

graphics and interactive techniques, pages 397–410. ACM, 1996.

[55] Peter Wonka, Michael Wimmer, François Sillion, and William Ribarsky. Instant

architecture, volume 22. ACM, 2003.

[56] Martti Mäntylä. An introduction to solid modeling. Computer Science Press, New

York, USA, 1988.

[57] Marco Attene. A lightweight approach to repairing digitized polygon meshes. The

Visual Computer, 26(11):1393–1406, 2010.

[58] IfcOpenShell - Open source IFC geometry engine, February 2013. URL http:

//ifcopenshell.org/.

http://www.isprs-ann-photogramm-remote-sens-spatial-inf-sci.net/II-2-W1/309/2013/
http://www.isprs-ann-photogramm-remote-sens-spatial-inf-sci.net/II-2-W1/309/2013/
http://www.isprs-ann-photogramm-remote-sens-spatial-inf-sci.net/II-2-W1/309/2013/
http://ifcopenshell.org/
http://ifcopenshell.org/

108 Bibliography

[59] OPEN CASCADE S.A.S. Open CASCADE Technology - 3D modeling & numerical

simulation, 2013. URL http://www.opencascade.org/.

[60] Cgal, Computational Geometry Algorithms Library. http://www.cgal.org.

[61] Geomview. OFF files - Polyhedra: polygons with shared vertices, 2007. URL

http://www.geomview.org/docs/html/OFF.html.

[62] Hervé Brönnimann, Andreas Fabri, Geert-Jan Giezeman, Susan Hert, Michael Hoff-

mann, Lutz Kettner, Sylvain Pion, and Stefan Schirra. 2D and 3D geometry kernel.

In CGAL User and Reference Manual. CGAL Editorial Board, 4.3 edition, 2013.

URL http://doc.cgal.org/4.3/Manual/packages.html#PkgKernel23Summary.

[63] Kevin Weiler. Edge-based data structures for solid modeling in curved-surface

environments. Computer Graphics and Applications, IEEE, 5(1):21–40, 1985.

[64] Lutz Kettner. Using generic programming for designing a data structure for poly-

hedral surfaces. Computational Geometry, 13(1):65–90, 1999.

[65] Miguel Granados, Peter Hachenberger, Susan Hert, Lutz Kettner, Kurt Mehlhorn,

and Michael Seel. Boolean operations on 3d selective nef complexes: Data structure,

algorithms, and implementation. In Algorithms-ESA 2003, pages 654–666. Springer,

2003.

[66] Lutz Kettner. Halfedge data structures. In CGAL User and Reference Man-

ual. CGAL Editorial Board, 4.3 edition, 2013. URL http://doc.cgal.org/4.

3/Manual/packages.html#PkgHDSSummary.

[67] Peter Hachenberger and Lutz Kettner. 3D Boolean operations on Nef polyhedra.

In CGAL User and Reference Manual. CGAL Editorial Board, 4.3 edition, 2013.

URL http://doc.cgal.org/4.3/Manual/packages.html#PkgNef3Summary.

[68] Katrin Dobrindt, Kurt Mehlhorn, and Mariette Yvinec. A complete and efficient

algorithm for the intersection of a general and a convex polyhedron. Springer, 1993.

[69] Peter Hachenberger. 3D Minkowski sum of polyhedra. In CGAL User and Reference

Manual. CGAL Editorial Board, 4.3 edition, 2013. URL http://doc.cgal.org/

4.3/Manual/packages.html#PkgMinkowskiSum3Summary.

[70] Efi Fogel and Dan Halperin. Exact and efficient construction of Minkowski sums

of convex polyhedra with applications. Computer-Aided Design, 39(11):929–940,

2007.

[71] Mark de Berg, Marc van Kreveld, Mark Overmars, and Otfried Schwarzkopf. Com-

putational geometry: Algorithms and applications. Springer-Verlag, 1997.

http://www.opencascade.org/
http://www.geomview.org/docs/html/OFF.html
http://doc.cgal.org/4.3/Manual/packages.html#PkgKernel23Summary
http://doc.cgal.org/4.3/Manual/packages.html#PkgHDSSummary
http://doc.cgal.org/4.3/Manual/packages.html#PkgHDSSummary
http://doc.cgal.org/4.3/Manual/packages.html#PkgNef3Summary
http://doc.cgal.org/4.3/Manual/packages.html#PkgMinkowskiSum3Summary
http://doc.cgal.org/4.3/Manual/packages.html#PkgMinkowskiSum3Summary

Bibliography 109

[72] Pierre Alliez, Stéphane Tayeb, and Camille Wormser. 3D fast intersection and dis-

tance computation (AABB tree). In CGAL User and Reference Manual. CGAL

Editorial Board, 4.3 edition, 2013. URL http://doc.cgal.org/4.3/Manual/

packages.html#PkgAABB_treeSummary.

[73] Martijn Meijers. Simultaneous & topologically-safe line simplification for a variable-

scale planar partition. In Advancing Geoinformation Science for a Changing World,

pages 337–358. Springer, 2011.

[74] Matthias Weise, Thomas Liebich, Richard See, Vladimir Bazjanac, Tuomas Laine,

and Benjamin Welle. Implementation guide: Space boundaries for energy analysis,

2011.

[75] Vladimir Bazjanac. Space boundary requirements for modeling of building geometry

for energy and other performance simulation. In CIB W78: 27th International

Conference, 2010.

http://doc.cgal.org/4.3/Manual/packages.html#PkgAABB_treeSummary
http://doc.cgal.org/4.3/Manual/packages.html#PkgAABB_treeSummary

	Abstract
	Acknowledgements
	List of Figures
	List of Tables
	Acronyms
	1 Introduction
	1.1 Research Questions
	1.2 Scope
	1.3 Outline

	2 Background and Related Work
	2.1 IFC
	2.2 CityGML
	2.3 Validity Criteria for CityGML LoD3
	2.3.1 Requirements and Geometric Constraints on Semantics
	2.3.2 Geometric Validity Requirements

	2.4 Current Development

	3 Methodology for the Conversion
	3.1 Semantic Filtering and Mapping
	3.1.1 Filtering of IFC objects based on semantics
	3.1.2 Semantic Mapping from IFC to CityGML

	3.2 Geometric Transformations
	3.2.1 Exterior Shell Computation using Boolean and Morphological Operations
	3.2.2 Incorporation of BuildingInstallations
	3.2.3 Concepts for Computing the Exterior Shell Geometry

	3.3 Producing a CityGML and ISO Conform File
	3.3.1 Geometric Refinements
	3.3.2 Semantic Refinements

	4 Implementation and Experimental Results
	4.1 Development Framework
	4.1.1 Spatial Data Structures

	4.2 Prototype Implementation
	4.2.1 Preprocessing
	4.2.2 Geometric Transformation
	4.2.3 Reattaching and Assigning Semantics
	4.2.4 Processing Degenerate and Nearly Degenerate Faces
	4.2.5 Writing CityGML

	4.3 Simple Creation of LoD4 Rooms
	4.4 Input Data Requirements
	4.5 Experimental Results
	4.5.1 Input and LoD3 Model Results
	4.5.2 Generated Rooms for LoD4

	4.6 Validation and Evaluation of the Experimental Results
	4.6.1 Validation and Quality of the Generated LoD3 models
	4.6.2 Performance of the Conversion to LoD3
	4.6.3 Evaluation of the Possibilities for the Conversion to LoD4 models

	5 Conclusions, Recommendations and Future Work
	5.1 Conclusions
	5.2 Recommendations for IFC
	5.3 Recommendations for CityGML
	5.4 Future Work

	A IFC 2x Platform Architecture
	B CityGML 2.0.0 Building Module
	C Conversion Workflow Diagrams
	Bibliography

