

A Framework for the Automatic Geometric Re-
pair of CityGML Models

Junqiao Zhao* **, Jantien Stoter*, Hugo Ledoux*

* Department of GIS Technology, OTB Research Institute, Delft
University of Technology, Delft, the Netherlands
** College of Surveying and Geo-Information, Tongji University, Shanghai,
P.R. China

Abstract. Three-dimensional (3D) city models based on the OGC CityGML
standard are becoming increasingly available in the past few years. Alt-
hough GIS applications call for standardized and geometric-topological
rigorous 3D models, many existing visually satisfied 3D city datasets show
weak or invalid geometry, as will be shown in this paper, and sometimes
they are even standard contradicting. These defects prohibit the processing
and analysis of such models. As a result, intensive work of model repair has
to be conducted which is complex and labour-intensive. Although model
repair is already a popular research topic for CAD models and is becoming
important in GIS, existing researches either focus on certain defects or on a
particular geometric primitive. Therefore, a framework that investigates the
full set of validation requirements and provides ways to repair a CityGML
model according to these requirements is needed and proposed in this pa-
per. First, this paper demonstrates and classifies the errors found in exist-
ing CityGML models. Then, the repair question is defined based on the
formal definition of both valid and invalid models. Finally, a recursive
framework aiming at obtaining a valid, strong aggregated and standard
conforming CityGML models is finally presented. The geometric terms
adopted in this paper are compliant with the ISO19107 standard. Future
work will further implement the framework.

Keywords: 3D models, CityGML, Validity, Repair

1. Introduction
The three-dimensional (3D) Geo-information has been treated as one of the
essential sources of the latest and future GIS applications (Gruen 2008,
Gröger et al. 2012, Stoter et al. 2013). However, current practice of digital

city construction still focuses mainly on the visual appearance of the model
rather than on the correctness of geometric-topological structure (Gröger &
Plümer 2009). As a result, most of the analysis applications cannot be con-
ducted with these ill-posed models, such as physically based structural and
environmental analysis, indoor navigation and emergency management
(Hughes et al. 2005, Isikdag et al. 2008, Haala et al. 2011). This is seen as a
significant bottleneck of the 3D GIS industry and a waste of the expensive
modeling efforts and expenses.

One of the error sources of 3D city models starts in the early stage of model-
ing. To produce visually satisfied 3D city models with the least effort, pro-
ducers employ interactive modeling tools, i.e. 3D studio MAX, Maya,
SketchUp and AutoCAD, to shape the appearance of the city objects with
polygonal meshes. However, the freedom provided by these tools leads to
error-prone mesh models (Botsch et al. 2007). In many projects, model
library is widely used which dramatically decreases the modeling costs for
similar features among 3D city models (Badler & Glassner 1997). However,
mismatches between model parts create various types of errors such as in-
tersection (Figure 1 left), overlap and gaps. Another error source is the
model optimization to reduce the data size of the model. The optimization
is accomplished by vertex welding and simplification in which close vertices
and trivial triangles are merged. In this process, complex vertex and edges
as well as degeneracies are often produced (Figure 1 right). Moreover,
modelers usually delete the concealed surfaces to further decrease the data
size, which leads to the incompleteness of the model (Zhao et al. 2012).

Figure 1. Errors found in visually satified 3D models (left, intersection between
components; right, complex edges produced by merging).

Besides the errors that originated from the modelling process, errors can be
created from conversion and semantics editing (Nagel et al. 2009). Many of
the currently available CityGML building models are produced from con-

version of CAD models. The different definitions of building structures in
the GIS and the CAD domain lead to inappropriate interpretation of build-
ing components. For example, walls in the Industry Foundation Class
standard (IFC) in CAD domain are often modeled as solids but should be
represented by surfaces in CityGML (Liebich et al. 2010, Gröger et al. 2012).
For the sake of simplicity, the solid wall is converted into a set of MultiSur-
faces, which omits not only the volume information of the component itself
but also the topological relationships between walls. Additionally, errors
may occur in the manual semantics editing process of CityGML models, if
mistakes are made when matching geometries with CityGML semantics
(Benner et al. 2005, Wagner et al. 2012).

Repair of 3D models has become an important topic in the field of CAD and
computer graphics. A number of methods have been proposed for the repair
of polygonal meshes (Ju 2009, Campen et al. 2012). These approaches are
not sufficient for city models, since 3D city models are aggregated models,
made up by heterogeneous geometric primitives in multiple dimensions. In
addition, for 3D city models based on CityGML, semantics plays an essen-
tial role for interpreting the model. Thus attentions should also be paid on
the semantics attached with geometry such as geometric types and rules for
representing certain models, other than only geometry.

In the field of GIS, previous researches studied the validation of geometrical
models. Van Oosterom et al. (2004) proposed an extended definition and a
set of validation rules for polygons. Tolerance issue was introduced for
practical consideration. Kazar et al. (2008) introduced the validation rules
for geometry defined in Oracle, especially the surface and solid, but no re-
pair method is provided. Verbree & Si (2008) and Ledoux et al. (2009)
proposed methods to validate the GML solids based on tetrahedralizations.
Gröger & Plümer (2012a, b) proposed rules and axioms for consistent re-
presentation and updating of 3D city models. However, their definition of
geometry is not fully conformed to the ISO19107 standard (Herring 2005).

Recently, Ledoux et al. (2012) developed a triangulation based repair meth-
od for planar polygons with holes. Repair pipeline for CityGML models
have been proposed in (Bogdahn & Coors 2010, Wagner et al. 2012). Alt-
hough both the geometric and semantic aspects are included, they only re-
pair errors that are similar to mesh repair such as holes and incorrect
orientations of mesh surface, while the overview of the different types of
geometric errors of CityGML model and their repair is not provided.

Started with the introduction of the geometric model of CityGML in Section
2, this paper demonstrates and classifies the errors found in existing
CityGML models in Section 3. Then, the repair question is defined based on
the valid and invalid models defined from an application perspective (Sec-

tion 4). All these definitions are based on the ISO 19107 standard (Herring
2005). According to the repair question, a framework for repair of geomet-
ric errors of CityGML is proposed in Section 5, which is a recursive frame-
work and deals with the hierarchical models of the CityGML model. Finally,
we conclude with a discussion on the implementation issues and on future
realizations.

2. The Geometry Model of CityGML
To understand the repair task of a CityGML model, which is partly using the
most restrictive geometry as possible, a brief introduction to the geometry
types used in CityGML is provided.

The geometry model of CityGML is based on the ISO19107 standard (Her-
ring 2005). An object can either be represented by a single geometric prim-
itive (GM_Primitive) or by a collection of geometric primitives. The 0-
dimensional (0D) geometric primitive is a point (GM_Point) that repre-
sents a position by a 3-tuple of real numbers when embedded in a 3D Eu-
clidean space. The 1-dimensional (1D) geometric primitive is a curve
(GM_Curve), which represents the continuous image of a line. In CityGML,
it is restricted to the straight line string (GM_LineString). The 2-
dimensional (2D) geometric primitive is a surface (GM_Surface), which
represents the continuous image of a region of a plane. In CityGML, surfac-
es are restricted to planar polygons (GM_Polygon). Finally, the 3D geo-
metric primitive is a solid (GM_Solid), which represents the continuous
image of a region of Euclidean 3 space.

A collection of geometric primitives is represented by aggregate
(GM_Aggregate) or complex (GM_Complex). The aggregate allows all
kinds of arrangement of geometric primitives without strict restrictions.
They can intersect, overlap or isolate with each other. It is the loosest col-
lection of geometric primitives. On the contrary, the complex describes a
more strict aggregation in which each geometric primitive should be sim-
ple1, and should not intersect with each other. They touch only at the shared
boundaries.

If a collection only contains geometric primitives of the same dimension,
the aggregate and complex can further be specialized in MultiPrimitive

1 Simple means that every point in the interior of the object must have a metric neigh-

borhood whose intersection with the object is isomorphic to an n-sphere, where n is the

dimension of this GM_Object (Herring 2005).

(GM_MultiPrimitive) and composite2 (GM_Composite) respectively. An
example of MultiSurface and CompositeSurface is shown in Figure 2.

Figure 2. Geometric types for a collection of surface primitives (Gröger et al. 2012)
(left, MultiSurface; right, CompositeSurface)

The inheritance diagram of geometric types discussed within this section is
shown in Figure 3. Their comparison is shown in Table 1. After introducing
the geometry model, errors existing in available CityGML models can be
studied.

Figure 3. Inheritance of geometric representation types defined in ISO19107
(Herring 2005)

2 The composite should be isomorphic to a primitive.

GM_Object

GM_Primitive GM_Complex

GM_Composite

GM_Aggregate

GM_MuliPrimitiveGM_Point

GM_Curve GM_SolidGM_Surface

Table 1. The comparision of abstract geometric representations

3. Errors in CityGML Models
According to the error sources of CityGML modeling described in Section 1,
geometric errors in CityGML datasets can be classified into three types:
invalid geometry, weak aggregation and standard contradiction.

3.1. Invalid geometry
The geometry of a CityGML model may contain geometric-topological er-
rors of any kinds. An inventory of recognised general errors in geometric
objects can be summarized from existing researches (Table 2). Errors of a
composite are listed along with the corresponding primitive because they
share the most semantics (Herring 2005).

 Errors Examples

Point/
composite point

Duplicate;
Points shared the same coordinates (Defined
with some tolarance)

Curve/
composite curve

Degeneration;
Self-intersection
and folding;
Crack/Open (if it's a
ring);

Curve represented by a point;
Curve intersects or overlaps with itself;
Gaps within a curve or a ring is not closed;

Surface/
composite surface

Degeneration;
Self-intersection
and folding;

Surface represented by a curve or a point;
Surface intersects or overlaps with itself;
A hole incorrectly touches or intersects with
boundaries;

 Contain boundary Same dimension Allow isolation Aggregation

GM_Aggregate Likely No Yes Weak

GM_Complex Yes No Yes Strong

GM_MultiPrimitive Likely Yes Yes Weak

GM_Composite Yes Yes No Strong

GM_Primitive No Yes No Strong

Invalid holes;
Orientations;
Non-2-manifold;
Non-planar (if it's a
polygon);
Open (if it’s a shell);

Surfaces with inconsistent orientations;
Complex edge and singular vertex;
Bended polygon;
Holes on a shell

Solid/
composite solid

Degeneration;
Self-intersection;
Invalid voids;

Solid represented by any of the lower dimensio-
nal geometric primitives;
Solid intersectes or overlaps with itself;
The void degenerates, incorrectly touches or
intersetes with voids (including itself) or the
exterior shell;

Aggregate
Any or all of the
above;

Polygonal soup

Table 2. The inventory of possible errors in geometric objects (examples of cor-
responding errors are also listed in sequence)

3.2. Weak aggregation
Even though each geometric object is valid, a collection of geometric ob-
jects may be weakly aggregated. For example, a complex is represented by
an aggregate, or a geometric primitive is represented by the aggregation of
its lower dimensional boundaries. These defects limit the use of the geome-
try in applications which prefer tight input, such as solid models. Thus, this
can be considered as an error, termed weak aggregation (Herring 2005).

In a CityGML model, weak aggregation, i.e. MultiPrimitive, is frequently
applied, because it offers the compatibility of the standard by accepting
most 3D models represented by polygonal mesh. However, freedom granted
by the weak aggregation would cause inconsistencies when part of the ge-
ometry is not modified correspondingly with its neighbours (Figure 4).
Thus the weak aggregation fits the visualization purpose but is not friendly
to geometric processing.

Figure 4. Inconsistency at the boundary of surfaces in a MultiSurface (found in
the official example of LoD4 building of CityGML 2.0 dataset)

3.3. Standard contradiction
In CityGML, the geometric form used to represent a feature has been speci-
fied in a certain thematic model. A representation contradicting the stand-
ard will cause problems in the downstream applications, even the represen-
tation is a stronger aggregation than that defined in the standard. For ex-
ample, a CityGML conforming parser would not be able to extract the right
surface geometry from a wall defined by solid.

In some application domains, more specified implementation rules have
been proposed based on the CityGML standard. Figure 5 gives an example
of the valid and invalid representation of walls and roofs in (SIG 3D/AG
Quality 2012). Regarding the multiple choices of modeling, these rule sets
should also be exploited as constraints that confine the geometric forms of a
feature.

Figure 5. Rules for the modeling of 3D objects (left, invalid and valid WallSu-
rfaces; right, invalid and valid RoofSurface)

4. Validity of CityGML Models
Before repairing, we should first agree on an exact definition of valid and
invalid 3D city models. The ISO19107 standard has provided the criteria of
valid geometry, such as simple and orientable (Herring 2005). The ques-
tion is whether these criteria are sufficient for the downstream applications.

In visualization applications, such as urban planning and virtual reality,
only the geometric primitives, i.e. point, curve and surface are required,
thus there is no strict requirements for the input geometry (Hearn & Baker
1996). In more sophisticated applications such as 3D cadastre, accurate
representations of parcels are mandatory, thus the n-D geometric object
should represents the continuous image of an n-D space (Herring 2005),
and should not intersect with itself or with other geometric objects
(Thompson & van Oosterom 2011). Thus simple geometry is appropriate for
this application.

However, analysis and processing intensive applications such as structural
analysis and simulation demand more strict local and global properties for
the input model. If are restricted to the boundary-based representation,
these algorithms usually rely on orientable 2-manifold surfaces 3 (2-
manifold for short) (Botsch et al. 2007). However, the surface of a simple
geometric object might not be a 2-manifold. Figure 6 a) shows a surface
with its interior ring (shown by the grey line) tangent to its exterior ring
(shown by the dark line) at an shared boundary edge. Because its interior
(shown by the blue dash line) is isotropic, this surface is simple according
to the definition (Herring 2005), but the shared boundary forms a dangling
edge which is non-2-manifold. In Figure 6 b), a simple complex composed
of three surface primitives is illustrated in which the surfaces touch at a
shared boundary. This boundary forms a complex edge, thus is non-2-
manifold. For simple 3D geometric objects, its surface can also be non-2-
manifold because of tangency (Figure 6 c)).

In conclusion, simple is not sufficient to describe the validity of the input
model for advanced applications. The least requirement to support the ge-
ometric processing intensive applications is that all the geometry that to be
processed should be 2-manifold. However enforcing 2-manifold globally for
a CityGML model would be too restrictive because 2-manifold based repre-
sentation of a collection of geographic features is intricate and difficult to

3 a manifold of dimension n is a topological space that near each point resembles n-

dimensional Euclidean space. More precisely, each point of an n-dimensional manifold has a

neighbourhood that is homeomorphic to the Euclidean space of dimension n.

model (Gröger & Plümer 2009, Thompson & van Oosterom 2011). There-
fore, the validity of CityGML model should be defined in different hierar-
chies according to the application requirements.

Figure 6. Non-2-manifold simple geometric objects (a) a simple surface with its
interior ring tangent to its exterior ring; b) a simple complex of surface (Note it's
not a composite surface which should be isophomic to a surface); c) a simple com-
posite solid)

Because the CityGML model is composed of a hierarchical structure of fea-
tures represented by instances of subclasses of CityObject (Gröger et al.
2012), we define the basic units of this hierarchy that to be used for the ge-
ometric processing purpose as component models. Their parents, collec-
tions of component models, are termed as aggregate models. Based on this
definition, more exact definitions of valid geometry of component model as
well as of aggregate model are proposed in the next sections.

4.1. Valid geometry of component models
Based on the previous definition, the component model should be treated as
the unit of geometric processing applications, thus 2-manifold should be
the criteria for the valid geometry.

We define the dimension of a component model as the highest dimension of
its geometric objects. If a component model is represented by any of the 0D
and 1D geometric objects, simple defined in the ISO19107 standard is suffi-
cient because they are the lower dimensional primitives of a 2-manifold
(Herring 2005). However, if 0D or 1D geometric primitives are presented
in a higher dimensional component model (2D or 3D), they should be ex-
cluded because they form dangling cases which are non-2-manifold.

a) b) c)

For 2D component models, they should only contain surface primitives
with consistent orientations. For a surface without hole, a simple surface is
also a 2-manifold with boundaries4, thus in this case the simple surface is
valid. The closed simple surface, a shell, represents a closed 2-manifold
which is also valid. For a valid composite surface, each of the surfaces in-
cluded should all be simple, and self-intersection or isolation between sur-
faces is not allowed. Surfaces should only touch in an appropriate manner
in which the touched part between surfaces should be the existing shared
boundaries, i.e. edges or vertices. Therefore “free touching” is not allowed,
because the combinatorial structure does not represent the shared primi-
tives, resulting in a gap. These valid and invalid cases of a composite sur-
face are shown in Figure 7. For a MultiSurface, the valid geometry should
contain only simple surfaces with no intersections. However, the surfaces
can be isolated from each other or touch at an existing shared boundary.
Both are valid cases that form a 2-manifold5.

Figure 7. Valid and invalid cases of a composite surface (a) a valid composite
surface which is also simple; b) an invalid composite surface with one of its surface
isolated; c) an valid composite surface where the dashed lines indicate the two ver-
tices are identical; d) an invalid composite surface contain a “free touching”
between two surfaces; e) an invalid composite surface with its surfaces intersected
and form a complex edge)

If holes are present in a surface, the validity should be defined more care-
fully because of the possible tangencies. If all the interior rings that form
the surface are isolated and are located within the only exterior ring, the
simple surface is a valid 2-manifold with boundaries. However, if rings
touch, they should only touch at an existing vertex (Figure 8 a)) and do not
break the interior of the surface into more than one connected components

4 This boundary indicates the edges with only one neighbour face

5 The disjoint union of a family of n-manifolds is a n-manifold (Lee 2010)

a) b) c) d) e)

(Figure 8 d)). If rings touch at a shared edge, the edge will become an inva-
lid dangling edge (Figure 8 c) and e)). The “free touching” as shown in Fi-
gure 8 b) will cause the error of T-junction, thus it is also not valid. If holes
are present in a shell, the shell is invalid according to its definition. For a
valid composite surface that contains holes, the surfaces included should
all be valid, and they should not intersect or isolate, but touch only at
shared existing boundaries in an appropriate manner. Thus the complex
edges and “free touching” which causes T-junction are also not allowed
(Figure 9). For a valid MultiSurface that contains holes, the only difference
with the valid composite surface is that isolation of surfaces is allowed.

Figure 8. Valid and invalid surface with holes where vertices and edges of the
extierior ring are colored in black while vertices and edges of the interior ring are
colored in grey

Figure 9. Valid and invalid composite surface with holes (left, a valid case of com-
posite surface with one of its surface contains a hole, where the dashed lines indi-
cate the two vertices are identical; right, the invalid case of “free touching”)

Besides 2D surfaces, a component model may also be represented by 3D
geometric objects, i.e. solid, composite solid and MultiSolid. The validity
requirements of 2-manifold should be defined based on shells of the solid
models. For a valid 3D solid without voids (holes in 3D), its exterior shell
should be a closed valid surface, i.e. a compact, oriented 2-manifold with-
out boundary. A 3D solid with a handle as shown in Figure 10 left can be
treated as valid when referring to the connectivity of its interior and used
for representation purpose ((Kazar et al. 2008). However, as a component
model, non-2-manifold situations are formed in the touched edges (shown
by bold lines), which is invalid for many geometric processing applications.

a) b) c) d) e)

Figure 10 right shows another case of simple solid with non-2-manifod
situation.

For a composite solid, even though all the contained solids are valid, the
touch between solids leads to complex edges, which is not 2-manifold (as
shown in Figure 11 by bold lines). As a result, the composite solid is invalid
to represent a component model for processing purpose. However, a Multi-
Solid with all its solids valid and isolated from each other consists of a set of
2-manifold objects, thus is valid.

Figure 10. Non-2-manifold solids with their interior connected and simple

Figure 11. Non-2-manifold cases formed in composite solid

For voids in 3D, interior connected solids shown in Figure 12 b) and c) pre-
sent complex edges when two shells touch with each other. As a result, a
valid 2-manifold solid with voids should exclude any case of tangency be-
tween shells. Likewise, a composite solid with voids is also not a 2-
manifold. And a valid MultiSolid with voids should contain only the isolat-
ed valid solids, as shown in Figure 12 a).

A valid 3D component model can also contain 2D surfaces. However, the
surfaces should be isolated from solids in order to prevent non-2-manifold
situations via tangency.

Figure 12. Valid and invalid solid with voids (a) two valid solid with void (form a
valid MultiSolid); b) invalid solid with its interior shell touch the exterior shell; c)
invalid solid with its two interior shells touch with each other)

4.2. Valid geometry of aggregate models
The aggregate model is represented by assembling component models. It is
used to model more complex features in a CityGML model. Because com-
ponent models may be represented by geometric objects of different dimen-
sions, the geometry of an aggregate model can be modelled as a heteroge-
neous set, represented by aggregate or complex (Herring 2005). However,
aggregate allows the intersection of primitives which is invalid for most
applications. Thus, complex should be defined as the valid representation
for aggregate models, where component models can disjoin, or touch only
at shared boundaries.

Since the valid component models are defined as 2-manifold, they can al-
ready support most of the downstream applications. Thus the non-2-
manifod geometry can be allowed for an aggregate model. In addition, 2-
manifold based representation is difficult to represent relationships be-
tween two solids (Cavalcanti et al. 1997). Based on the Xlinks, complex can
use the shared boundary to indicate the connectivity between two compo-
nent models (Gröger et al. 2012), For example, a building and an attached
garage can be concisely represented by a composite solid as shown in Figu-
re 13 a), even though it is not a 2-manifold as a whole. Otherwise, each of
the buildings should be represented by a solid and certain relationships
should be defined to describe their connection via walls. In another case,
when representing two connected rooms inside a building (Figure 13 b)),
it’s proper to represent the model by a complex, which employs a composite
solid to represent the collection of two connected rooms, and represent the
building as a shell. It should be noted that the orientations of the composite
solid are inverted (Gröger et al. 2012). This example also shows that the

a) b) c)

hierarchy of aggregate model and component model can provide the capa-
bility for advanced analysis applications and can also maintain the power of
representation.

Figure 13. Building represented by complex (a) A building with a garage attached
on one of its wall surface (Gröger et al. 2012); b) Demonstration of two connected
rooms inside a building)

4.3. Validity, aggregation enhancement and standard conform-
ing

Besides geometry, the weak aggregation and standard contradiction de-
scribed in Section 3.2 and Section 3.3 should also be prohibited in a valid
model. Concerning the weak aggregation, for example, a solid model rep-
resented by a valid MultiSurface needs further check for closure in order to
be used as a volume, which is often ignored in algorithms. As a result, if
various representations are allowed, the strongest aggregated geometric
type should always be chosen for the valid model. The standard contradict-
ing valid geometric model will cause more serious problems. Therefore, if
this occurs, it should be converted to standard conforming representations,
even though a weaker aggregated geometry may be the result.

5. Repair Framework of CityGML Models

5.1. The definition of the repair question
After the discussion of the validity criteria for CityGML models, the defini-
tion of the repair question can be made, which clarifies the goal and scope
of the repair.

a) b)

The input model for repair, M, is a (not yet validated) CityGML model
which may contain non-2-manifold or non-simple geometry. The geometry
may also be weakly aggregated and contradicting the CityGML standard
and certain additional implementation rules (MOHURD 2010, Stoter et al.
2011, SIG 3D/AG Quality 2012, van den Brink et al. 2012, Stoter et al.
2013).

The output model from repair, M’ should be a CityGML model, in which
each component model must be an orientable 2-manifold and each aggre-
gate model must be a complex which is simple. Based on the valid geome-
try, the component model as well as the aggregate model should be struc-
tured as tight as possible. And they must obey the restrictions defined in the
CityGML standard and the related implementation specifications.

The component model and the aggregate model are defined and extracted
based on the semantics and the geometric information contained in the
model. Thus the correctness of the semantics is assumed. For generic 3D
city models without semantics, the component model and the aggregate
model should be defined purely based on geometry, such as the largest con-
nected component, or depending on certain application requirements. The
repair process discussed in this paper will only focus on the geometric er-
rors. Other issues, such as positional accuracy (Akca et al. 2010) and the-
matic quality defined in the ISO19157 standard (ISO 2012) are outside the
scope of this paper and will therefore not be addressed.

5.2. The recursive paradigm
According to the hierarchical structure of CityGML model, the repair of
CityGML model should be carried out in different levels in a sequential or-
der. It is straightforward to employ a recursive approach to fulfil the repair
goals. After repairing each component model, the higher level aggregate
models are repaired in a next step (Figure 14), until the whole geometric
model is valid as defined in Section 4.

Figure 14. The recursive framework for repair of CityGML models (The numbers
represent the order)

5.3. Repair of the component model
The repair of the component model consists of three sequential steps: geo-
metric repair, enhancement of the weak aggregation and standard confor-
mation. This order is made because geometry is the basis of the other two
repair steps. The standard conforming requirement is an obligation for the
CityGML model. In addition, a strong aggregated geometry, even though in
some cases standard contradicting can be easily modified in a standard con-
forming geometry. Conversely, if conformation is conducted before the ag-
gregation enhancement, the aggregation enhancement may result again in a
not standard-conforming geometry. The three steps of repair are described
in the next three sections.

5.2.1. Step 1: Geometry repair
The goal of this repair step is to convert invalid geometry to valid geometry.
Since the invalid 0D and 1D geometric objects have to be repaired to simple
versions. This process includes the removal of duplicate points by introduc-
ing a tolerance value, the conversion of the degenerated line segments into
points and the decomposition of the intersected line segments. If the 1D
geometric object is a ring, the closeness of the line segments should also be
checked and ensured.

For invalid 2D surface primitive, Ledoux et al. (2012) have proposed a tri-
angulation based repair method for planar polygons. For a more general
surface, repair methods for each of the error types illustrated in Section 3.1
should be employed, as shown in Table 3.

Firstly, rings of each surface patch should be validated and repaired using
the repair methods for curves. Besides, the planarity of each ring should
also be ensured for polygons by introducing a tolerance value (van Ooster-

Repair CityGML
Model

Repair of each
Component Model

Repair Aggregate
Model

1

2

3

4

om et al. 2004). Then, the possible degeneration of surface patches should
be checked. If degenerated, a surface should be converted to the proper
primitive types, e.g. a line string or a point. If an edge or a vertex has no
neighbour faces, it is a dangling primitive and therefore should be removed.
For a shell, there should be no holes in any of its surface patches. If holes
are present, hole-filling algorithms should be employed (Liepa 2003). If a
surface patch intersects with itself or with others in a set of surface patch-
es, the intersection should be detected and the intersected surface patches
should be decomposed by inserting vertices and edges. If the surface con-
tains several isolated parts, it should be separated into different surfaces or
be converted to a MultiSurface, which has to be repaired afterwards. Be-
cause of the decomposition of intersected surface patches, complex edges
and vertices may appear. Algorithms cutting along these complex primitives
and stitching them in an appropriate way should be used (Guéziec et al.
2001). Finally, the orientations of all the surface patches should be checked
for consistency. If incorrect, the orientations should be restored by propa-
gating from the orientation of a valid surface patch.

It is important to identify the optimal order of applying these repair algo-
rithms. Therefore, a pairwise comparison matrix of these steps is built in
Table 4. The matrix shows that the step of separating the isolated surface
parts should be conducted at the beginning. Then each part of the original
surface is repaired separately following the order of F-A-B-C-D-E-G-B-C-H.
Because decomposing surface patches may also lead to degeneracy and
dangling primitives, the repair steps B and C should be conducted again. In
the implementation, a surface can be triangulated after the repair of its
rings, because the 2-simplex based representation can help the repair pro-
cess (Campen et al. 2012, Ledoux et al. 2012).

The repair of composite surface is similar to the repair of a surface where
surfaces inside the composite surface can be treated as surface patches. If
there are isolated surfaces, the composite surface should be separated. For
a MultiSurface, the repair pipeline of composite surface can be employed
but the isolation of surfaces is allowed.

ID Errors Repair

A Errors of rings, non-planar (if it's a
planar polygon)

Repair of the rings

B Degeneration Remove degeneracies and convert them to
proper representation

C Dangling primitives Remove dangling edges and isolated vertices

D Open (if it’s a shell) Hole filling for a shell

E Self-intersection and folding Decompose the intersected surfaces

F Isolation Separate isolated surface parts

G Non-2-manifold Cutting and stitching complex primitives

H Inconsistent orientations Restore orientations

Table 3. Errors and their repair methods for 2D surface

 B C D E F G H

A AB AC AD AE FA AG AH

B BC BD BEB FB BGB BH

C CD CEC FC CG CH

D DE FD DG DH

E FE EG EH

F FG FH

G GH

Table 4. Pairwise comparison matrix of repair methods for 2D surface (shows the
orders of each pair of repair methods)

For a 3D solid, all the shells that compose the solid should first be repaired
based on the previous repair method for surfaces. Some solids may degen-
erate to a lower dimensional non-solid primitive, such as a surface or a line
string. The representation types should be corrected and the 0D and 1D
primitives should be removed. If there are solids that intersect with each
other, the solids should either be decomposed and be converted to a Multi-
Solid or they should be merged into one solid if they share the same proper-
ties. Similar to the previous repair approach for a surface, if a solid contains
several disconnected parts, it should be separated into several solids or be
converted to a MultiSolid. As discussed in Section 4.1, voids inside a solid
should not tangent to each other or to the exterior shell. If this occurs, it
should be healed by offsetting the tangent primitive inward the exterior
shell. In this process, only the tangent edges should be treated, because the
tangent surfaces results in dangling surfaces, which should be removed.

These repair processes are listed in Table 5 with corresponding errors. A
pairwise comparison matrix is constructed again (Table 6). The proposed
sequence of repair is then derived as D-A-B-E-F-C-B-F. Because degenera-
cies and dangling primitives may be generated in the step of decomposition,
they should be removed again at the end.

According to the definition of validity, composite solid should be converted
to a MultiSolid or be merged to a solid. Then the remaining separated solid
can be repaired using the above steps.

ID Errors Repair

A Errors of shells Repair of the shells

B Degeneration Remove degeneracies

C Intersection Decompose or merge the intersected solids

D Isolation Separate isolated solids

E Invalid voids Offset tangent edges of void

F Dangling primitives Remove dangling surface, edges and isolated vertices

Table 5. Errors and their repair methods for 3D solid

 B C D E F

A AB AC DA AE AF

B BCB DB BE BF

C DC EC FCF

D DE DF

E EF

Table 6. Pairwise comparison matrix of repair methods for 3D solid (shows the
orders of each pair of repair methods)

5.2.2. Step 2: Aggregation enhancement
Based on the valid geometry, the next step is to enhance the aggregation of
the geometry of a component model. In this step, the form of the represen-
tation of a component model is upgraded from a weaker aggregation to a

stronger aggregation when possible. Meanwhile, the proper geometry-type
is applied.

According to the degree of aggregation, different representations of objects
can be sorted as following:

𝑎𝑔𝑔𝑟𝑒𝑔𝑎𝑡𝑒 < 𝑐𝑜𝑚𝑝𝑙𝑒𝑥 < 𝑐𝑜𝑚𝑝𝑜𝑠𝑖𝑡𝑒 ≤ 𝑝𝑟𝑖𝑚𝑖𝑡𝑖𝑣𝑒

where the aggregate defines the least constraints on the geometry which is
not favourable by many geometric processing applications. Thus, the con-
figuration of an aggregate should be examined and traversed. Those with
primitives neatly connected with each other should be enhanced to the type
of complex or even composite when it contains the geometric primitives of
the same type. According to the ISO19107 standard, primitive and compo-
site share most of the semantics, except the boundaries (Herring 2005).
Therefore, if the boundary information is not significant for representing
the object, a composite can be further converted to a corresponding geo-
metric primitive. Primitives inside the composite are then converted to 2D
surface patches or 1D line segments. Because the solid is already the high-
est degree of aggregation in a 3D space, thus the previous upgrading pro-
cess is not applied on models of this type.

Besides enhancing the aggregation, also the primitive can be converted to
more rigorous types. For example, a closed surface or a closed composite
surface can be converted to a shell, and a closed curve or a closed compo-
site curve can be converted to a ring. In some circumstances, the 2D shell
can even be converted to a solid and the 1D ring can be converted to a 2D
polygon, when their interiors are homogeneous. Both processes are show in
Figure 15.

Figure 15. Aggregation enhancement upgrade flow (top, aggregation enhance-
ment in 1D geometry and from 1D geometry to 2D geometry; bottom, aggregation
enhancement in 2D geometry and from 2D geometry to 3D geometry)

5.2.3. Step 3: Standard conformation
After the geometric repair and aggregation enhancement, valid and strong
aggregated geometry will be produced. However, the aggregation may not
be conforming to the standard. Figure 16 a) demonstrates a strong aggre-
gated solid wall components upgraded from original standard conforming
MultSurface based representation. However the CityGML standard defines
the wall in LoD2 as the exterior shell that bounds the interior of the build-
ing. Therefore, the geometry should be revised to be standard conforming.
For this case, the exterior surface of the solid wall should be extracted as
shown in Figure 16 a) right. Another similar example of roof defined in
LoD2 is also shown in Figure 16 b).

Figure 16. The solid based component and surface based component defined in
LoD2 (a) left, walls are represented by solid model; a) right, walls are represented
by surfaces extracted from solid based representation; b) left, a roof is represented

MultiCurve

CompositeCurve

Curve

Ring Surface or
PolygonIf connected If closed convert

MultiSurface

CompositeSurface

Surface

Shell SolidIf connected If closed convert

a) b)

by solid models; b) right, the roof is represented by surfaces extracted from solid
based representation)

Figure 17 left shows four walls in a LoD4 building model are also enhanced
into solid based representation. However, to be standard conforming, they
have to be converted into surface patches of the exterior shell and the inte-
rior shell (Figure 17 right). Because openings like window and door are
present in LoD3 and LoD4 model, they have to be referenced twice in both
the exterior and the interior wall surface to ensure the closeness of shells
representing rooms and the building (Figure 18).

Figure 17. The solid based walls and surface based walls defined in LoD4 (left,
walls are represented by solid model; right, walls are represented by surfaces
extracted from solid based representation)

Figure 18. A valid, strong aggregated model of walls with openings defined in
LoD4 (Gröger et al. 2012) (left, shown in shaded mode; right, shown in wireframe
mode)

Besides the CityGML standard, more specific implementation rules can also
be integrated in this step. Since all these rules may be set up from different
applications, conversions between one type of geometric representation to
another may also be needed, such as the conversion from a surface based
railing to a solid model (Zhao et al. 2012) and the conversion from a line

based pipe to a solid based pipe and its inverse (Thakura et al. 2009). Con-
version routines show in Table 7 may be needed to meet these require-
ments.

From\To Curve Surface Solid

Curve N/A
Sweep (Hearn & Baker
1996)

Sweep (Hearn &
Baker 1996)

Surface Median axis (Lee 1982) N/A
Extrusion (Le-
doux & Meijers
2011)

Solid
Abstraction (Mehra et al. 2009);
Dimensional reduction (Thakura
et al. 2009)

Decomposition;

Dimensional reduction
(Thakura et al. 2009)

N/A

Table 7. An incomplete list of conversions between different types of geometric
representations

To implement the above conformation process, different strategies exist as
shown in the Figure 19. For the first strategy, the error of standard contra-
diction is repaired right after the previous two repair steps. For the second
strategy, component models that are contradicting with the standard will
first be marked, and then repaired during the repair of the aggregate mod-
el. This is because the conversion or extraction of different geometric repre-
sentations is easier when considering their context information. Taking the
wall as an example, after marking all the wall components as standard con-
tradicting, they can be first merged to a single solid with a void (together
with ceilings and floors). In a next step, the exterior shell and interior shell
will be easier to be extracted.

Figure 19. Different strategy to realize the standard conformation process

5.4. Repair of the aggregate model
As discussed in Section 4.2, the valid geometry of the aggregate model
should be the type of complex. The way to construct a complex from a col-
lection of valid component models is straightforward. The ISO19107 stand-
ard had already provided a working flow (Herring 2005):

a) If two primitives overlap, then subdivide them; eliminate repetitions
until there is no overlap.

b) Similarly, if a primitive is not simple, subdivide it where it intersects
itself; eliminate repetitions until there is no overlap.

c) If a primitive is not a point, calculate its boundary as a collection of
other primitives, using those already in the generating set if possible,
and insert them into the complex.

d) Repeat step “a” through “c” until no new primitive is required.

During this repair process, the decomposition of the overlapping compo-
nent models without merging them into a single combinatorial structure
will not produce invalid geometry. Then the aggregate model should be
enhanced to a strong aggregation as discussed in Section 5.2.2 and compo-
nents that are marked as standard contradicting should be further repaired
as discussed in Section 5.2.3.

6. Conclusion	
 and	
 Discussions	

This paper provides an overview of existing errors in CityGML models and
proposes a repair framework for these errors. The goal of the repair is de-
fined as validity from an application perspective. Hence, the result of the
repair process will be valid, strong aggregated and standard conforming

Standard
conformalization

(Strategy 1)

Standard
conformance check

Repaired
component model

Marked
component model

Strategy 2

Valid, strong
aggregated

component model

geometry of CityGML models. Based on the repair framework, the imple-
mentation should regard some crucial aspects. Firstly, the data structure
should be able to faithfully record the input model without missing im-
portant information. In the geometry aspect, generic boundary based repre-
sentation based data structure should be adopted which supports all the
geometric types defined in CityGML and is also able to represent invalid
non-2-manifold edges and vertices. Tolerance values are important to de-
fine the condition of duplication and coplanar, and should therefore be de-
fined carefully. Due to the uncertainty caused by possible rounding-off er-
ror, exact predict method or even exact arithmetic should be used (Richard
Shewchuk 1997). Then, basic repair routines should be developed, such as
triangulation, which convert the input model into simplical 2-complex
based representation; regularization, which removes dangling 0D or 1D
elements (Granados et al. 2003, Worboys & Duckham 2004), and intersec-
tion and decomposition, which extracts the intersected geometric primi-
tives and decomposes the model based on the extracted intersection. More
mesh repair methods like hole-filling, non-2-manifold curing should also be
incorporated (Campen et al. 2012). Besides, extraction and conversion from
one geometric type to another geometric type as described in Section 5.2.3
should be implemented in a parameterized way, so that it could be easily
employed based on certain requirements derived from rule sets. Finally, the
developed repair method should be modularized and made customizable so
that it can be adapted to different applications.

Future works comprise the design and implementation of the data structure
for the repair of the CityGML models. The automatic repair routines dis-
cussed before should then be developed based on the proper data structure.
This paper mainly focus on the geometric aspect of repair, thus the seman-
tics of the CityGML model should be further exploited to strengthen the
ability of repair on specified models, such as a building. Finally, this paper
assumes the correctness of the semantic information, and excludes other
repair issues listed in the ISO19157 standard (ISO 2012). These topics
should be studied in the follow-up researches.

Acknowledgements
This work is supported by the National Natural Science Foundation of Chi-
na (41201379 and 41171311), the Dutch Technology Foundation STW, which
is part of the Netherlands Organization for Scientific Research (NWO) and
partly funded by the Ministry of Economic Affairs, Agriculture and Innova-
tion. (Project code: 11300).

References
Akca, D, Freeman, M, Sargent, I and Gruen, A (2010) Quality assessment of 3D

building data. The Photogrammetric Record, 25(132): 339-355

Badler, NI and Glassner, AS (1997) 3D object modeling. SIGGRAPH 97 Introduc-
tion to Computer Graphics Course Notes

Benner, J, Geiger, A and Leinemann, K (2005) Flexible Generation of Semantic 3D
Building Models, International ISPRS / EuroSDR / DGPF-Workshop on Next
Generation 3D City Models. EuroSDR, Bonn, Germany

Bogdahn, J and Coors, V (2010) Towards an automated Healing of 3D urban mod-
els. In: T. Kolbe, G. König and N. Claus (Eds), Proceedings of International Con-
ference on 3D Geoinformation. Int. Archives of Photogrammetry, Remote Sens-
ing and Spatial Information Science, Vol XXXVIII-4/W15. Aachen: Shaker Verlag
GmbH, pp. 13-17

Botsch, M et al. (2007) Geometric Modeling based on Polygonal Meshes, ACM
SIGGRAPH 2007 courses. ACM New York, NY, USA

Campen, M, Attene, M and Kobbelt, L (2012) A Practical Guide to Polygon Mesh
Repairing. The Eurographics Association, pp. t4-undefined

Cavalcanti, PR, Carvalho, PCP and Martha, LF (1997) Non-manifold modelling: an
approach based on spatial subdivision. Computer-Aided Design, 29(3): 209-220

Granados, M et al. (2003) Boolean operations on 3D selective Nef complexes: Data
structure, algorithms, and implementation. In: G. Di Battista and U. Zwick (Eds),
Algorithms - ESA 2003: 11th Annual European Symposium. Lecture Notes in
Computer Science. Springer, Budapest, Hugary, September 2003, pp. 174–186

Gröger, G and Plümer, L (2009) How to achieve consistency for 3D city models.
GeoInformatica, 15:137-165

Gröger, G and Plümer, L (2012a) Provably correct and complete transaction rules
for updating 3D city models. Geoinformatica: 1-34

Gröger, G and Plümer, L (2012b) Transaction rules for updating surfaces in 3D
GIS. ISPRS Journal of Photogrammetry and Remote Sensing, 69: 134-145

Gröger, G, Kolbe, TH, Nagel, C and Häfele, K (2012) OpenGIS City Geography
Markup Language (CityGML) Encoding Standard. Version 2.0.0. Open Geospa-
tial Consortium. OGC 12-019

Gruen, A (2008) Reality-based generation of virtual environments for digital earth.
International Journal of Digital Earth, 1(1): 88-106

Guéziec, A, Taubin, G, Lazarus, F and Hom, B (2001) Cutting and stitching: Con-
verting sets of polygons to manifold surfaces. IEEE Transactions on Visualization
and Computer Graphics, 7(2): 136-151

Haala, N, Fritsch, D, Peter, M and Khosravani, A (2011) Pedestrian Navigation and
Modeling for Indoor Environments, Proceeding of 7th International Symposium
on Mobile Mapping Technology, Cracow, Poland

Hearn, D and Baker, MP (1996) Computer Graphics, C version. Prentice Hall, 652
pp

Herring, JR (2005) ISO 19107:2005: Geographic information-Spatial schema. In-
ternational Organization for Standardization

Hughes, T, Cottrell, JA and Bazilevs, Y (2005) Isogeometric analysis: CAD, finite
elements, NURBS, exact geometry and mesh refinement. Computer Methods in
Applied Mechanics and Engineering, 194(39-41): 4135-4195

Isikdag, U, Underwood, J and Aouad, G (2008) An investigation into the applica-
bility of building information models in geospatial environment in support of site
selection and fire response management processes. Advanced Engineering In-
formatics, 22(4): 504-519

ISO (2012) ISO 19157: Geographic information - Data quality. International Organ-
ization for Standardization

Ju, T (2009) Fixing geometric errors on polygonal models: a survey. Journal of
Computer Science and Technology, 24(1): 19-29

Kazar, BM, Kothuri, R, Oosterom, P and Ravada, S (2008) On valid and invalid
three-dimensional geometries, Advances in 3D Geoinformation Systems. Lecture
Notes in Geoinformation and Cartography. Springer Berlin Heidelberg, pp. 19-46

Ledoux, H and Meijers, M (2011) Topologically consistent 3D city models obtained
by extrusion. International Journal of Geographical Information Science, 25(4):
557-574

Ledoux, H, Ohori, KA and Meijers, M (2012) Automatically repairing invalid poly-
gons with a constrained triangulation, Proceedings of Agile 2012, Avignon,
France

Ledoux, H, Verbree, E and Si, H (2009) Geometric Validation of GML Solids with
the Constrained Delaunay Tetrahedralization, Proceedings of the 4th Interna-
tional Workshop on 3D Geo-Information, Ghent, Belgium

Lee, DT (1982) Medial axis transformation of a planar shape. IEEE Transactions
onPattern Analysis and Machine Intelligence(4): 363-369

Lee, JM (2010) Introduction to topological manifolds. Graduate Texts in Mathe-
matics, 202. Springer New York, 433 pp

Liebich, T et al. (2010) Industry Foundation Classes 2x4 (IFC2x4) Release Candi-
date 2

Liepa, P (2003) Filling holes in meshes. Eurographics Association, pp. 200-205

Mehra, R, Zhou, Q, Long, J, Sheffer, A and Mitra, NJ (2009) Abstraction of man-
made shapes. ACM Trancactions on Graphics (TOG), 28(5): 1-10

MOHURD (2010) Technical Specification for Three Dimensional City Modeling Of
China (In Chinese)

Nagel, C, Stadler, A and Kolbe, TH (2009) Conceptual requirements for the auto-
matic reconstruction of building information models from uninterpreted 3D
models. In: T.H. Kolbe, H. Zhang and S. Zlatanova (Eds), GeoWeb 2009 Academ-

ic Track - Cityscapes, Vancouver, BC, Canada

Richard Shewchuk, J (1997) Adaptive precision floating-point arithmetic and fast
robust geometric predicates. Discrete & Computational Geometry, 18(3): 305-
363

SIG 3D/AG Quality (2012) Manual for the modeling of 3D objects. Special Interest
Group 3D (SIG3D)

Stoter, J et al. (2011) Towards a national 3D Spatial Data Infrastructure: case of the
Netherlands. Photogrammetrie-Fernerkundung-Geoinformation, 2011(6): 405-
420

Stoter, J et al. (2013) Implementation of a National 3D Standard: Case of the Neth-
erlands. In: J. Pouliot, S. Daniel, F. Hubert and A. Zamyadi (Eds), Progress and
New Trends in 3D Geoinformation Sciences. Lecture Notes in Geoinformation
and Cartography. Springer Berlin Heidelberg, pp. 277-298

Thakura, A, Banerjeea, AG and Gupta, SK (2009) A survey of CAD model simplifi-
cation techniques for physics-based simulation applications. Computer-Aided
Design, 41(2): 65-80

Thompson, R and van Oosterom, P (2011) Axiomatic Definition of Valid 3D Parcels,
potentially in a Space Partition, Proceedings 2nd International Workshop on 3D
Cadastres, November, Delft, pp. 397-416

Thompson, R and van Oosterom, P (2011) Connectivity in the regular polytope
representation. GeoInformatica, 2(15): 223-246

van den Brink, L, Stoter, J and Zlatanova, S (2012) Establishing a national standard
for 3D topographic data compliant to CityGML. International Journal of Geo-
graphical Information Science (In press)

van Oosterom, P, Quak, W and Tijssen, T (2004) About invalid, valid and clean
polygons. In: P.F. Fisher (Eds), Developments in Spatial Data Handling—11th In-
ternational Symposium on Spatial Data Handling, pp. 1-16

Verbree, E and Si, H (2008) Validation and Storage of Polyhedra through Con-
strained Delaunay Tetrahedralization, Geographic Information Science. Lecture
Notes in Computer Science. Springer Berlin / Heidelberg, pp. 354-369

Wagner, D et al. (2012) Geometric-semantical consistency validation of CityGML
Models, 3D GeoInfo Conference 2012, Quebec City, Canada, May 16-17

Worboys, M and Duckham, M (2004) GIS: A computing perspective. CRC

Zhao, J, Stoter, J, Ledoux, H and Zhu, Q (2012) Repair and generalization of hand-
made 3D building models, Proceedings of the 15th Workshop of the ICA Com-
mission on Generalisation and Multiple Representation jointly organised with
EuroSDR Commission 4 - Data Specifications, Istanbul, Turkey, pp. 10

