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The upper Figure illustrates two point cloud tiles before registration. The two point
cloud tiles represent the same scan, but have been captured at different times from
different view points. The one point cloud is illustrated with red color and the other
point cloud with gray color. Corresponding objects from the two point clouds do
not match. This can be clearly seen by observing the vertical structures (light poles).
The lower Figure illustrates the point cloud tiles of the upper Figure after
registration.
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A B S T R A C T

In this thesis, an image-based method is proposed for solving the relative
translation errors of 3D point clouds collected by Mobile Laser Scanning (MLS)
techniques. The process of matching 3D point clouds is known as registration. Due
to environment-depending limitations of the positioning component of MLS
systems, when recording a certain scene more than once, point clouds recorded at
different times tend to have mainly positioning distortions. Additionally, due to
yaw-angle errors of the recording platform it is possible that the point clouds have
small distortions around their Z axis or the point clouds are scanned with fuzziness.
This project deals only with the translation errors.

Various methods can be found in the literature to perform pair-wise registration
of point clouds. Commonly, the challenge of aligning 3D features is tackled in 3D.
Only a few techniques for registering point clouds in 2D have being explored.
However, the approach presented in this thesis uses the attributes of the 3D points
to generate and match 2D-projections, by employing a simple correlation technique
instead of matching in 3D. As a result, the developed method depends more on the
number of pixels in the 2D-projections and less on the number of points in the point
clouds. This leads to a more cost-efficient method in contrast to 3D registration
techniques. The method uses this benefit to provide redundant translation
parameters for each point cloud pair. Particularly, several images are created from
each point cloud tile. The constructed images illustrate the density of the points, the
intensity, the gradient of intensity, the depth, the gradient of the depth and the
normal vectors of the points. As a result, the translation parameters are retrieved
from the matching of various image-techniques and that is how redundant
solutions are provided. Next, with the utilization of image-based evaluation criteria
the reliable translation parameters are detected and only those are used to compute
the final solutions. The reliable estimations are taken into account for the estimation
of the final solutions. Since redundant solutions are provided, the confidence levels
of each final estimation can be computed. In addition, an indication of robustness
showing how many estimations where included for the computation of the final
solution is included. As a result, the developed approach is capable of providing
information about the precision and reliability of each pairwise registration. In such
a way it is known which of the results can be used in a following step, such as a
global registration. Furthermore, a 2D Gaussian elliptical fitting is used to obtain
sub-pixel accuracy registration results, as the accuracy of the estimations is
restricted to the pixel size of the generated images.

It is proven that the developed image-based registration method has the
capability to produce reliable matches when there is at least some overlap between
two overlapping point clouds and corresponding objects between the point clouds
are distinct in pairs of 2D projections. The technique developed for the computation
of sub-pixel accuracy results seems to have potential, but further improvement is
required.
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Breakdown Point A breakdown point defines the degree of robustness of an estimate
in the presence of outliers. It measures the amount of outliers an estimate
can handle before giving a spoiled estimate [Hampel, 1971].. 26
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geodetic observations Observations such as coordinates, distances and angles
between points measured to derive the coordinates of other points of
interest. The data are measured with surveying techniques by using
instruments such as total stations for angles and distances, optical
levelling instruments for elevations, and Global Navigation Satellite
System (GNSS) receivers to collect coordinates of (permanent) reference
stations or other points.. 11, 12, 66, 67

global registration Global, multiview, or absolute registration refers to the
integration of all the retrieved point clouds in a common reference system.
To do so, all the the individual relative registrations need to be fused into a
single point cloud [Sanchez et al., 2017].. 5, 109, 112

I

image pair An image pair is a pair of images which originates from a point-cloud
pair. The two images are the outputs of projecting the two corresponding
point clouds with the same method. The values of the pixels of the two
images contain the same information such as intensity, depth etc.. 30, 47,
50, 51, 62
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k-distance The k-distance of an observed point is the distance within which at least
the k points can be found.. 14, 15

kd-tree A k-dimensional tree is a data structure that organizes a dataset as a tree,
which was developed by Bentley [1975]. The k refers to the dimensionality
of the space. Thus for point clouds the dimensionality of the kd-tree is
three. To store the data, a random attribute among the X, Y, Z is peaked,
and then for that attribute the median is found. The median is used to split
the dataset, thus the points are split in the middle of the selected attribute.
The same process repeats recursively until the algorithm ends up with a
predetermined number of points left in each branch of the tree. Then this
structure can be used to find the k-nearest neighbors. The leaf of the tree
that an examined point is stored is found and then the neighbours are
searched within that leaf. It is possible that a point which is a nearest
neighbor it is not detected as a neighbor because is stored in another
branch [Lavrenko, 2015]. Nevertheless, it is a data structure that makes the
search for nearest neighbors fast, as the neighbors are searched in a small
search space.. 86
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xxii Glossary

LAS format LAS is a format for storing data retrieved from Light Detection And
Ranging processes. LAS files are binary [Brown and Butler, 2012] and open,
which means that there are no restrictions regarding their use and users
[Isenburg, 2015]. LAS files are decompressed LAZ format files [Isenburg,
2015].. xxii, 85

LAZ format It is a compressed LAS format and it is an open format [Isenburg, 2015]..
xxii, 7, 85

local registration Local, pairwise, or relative registration refers to the estimation of
the relative transformation required to match point-cloud pairs
[Magnusson et al., 2007].. 5

O

overlapping point clouds This is similar to the term point-cloud pair with the
difference that overlapping point clouds may refer to more than two point
cloud sets.. 3, 5, 24

P

point-cloud pair A point cloud pair refers to two point cloud tiles (point-cloud sets)
that overlap as they cover the same scene, but captured at different times
from different observation points. The overlap between the overlapping
point clouds may vary.. xxi, xxii, 11, 23, 25, 26, 28, 37, 38, 48, 50, 67

point-cloud set In the case of this project a set of 3D points refer to the points
included in a tile of 50 by 50 meters.. xxii, 39

T

time-of-flight This is a technology with which the distance from a laser sensor to the
surrounding objects is measured. Specifically, the time that a pulse takes to
travel from a laser sensor to an object and back is measured. The distance
is then computed as a multiplication of the travelling time with the speed
of light divided by two as the distance is measured once towards the object
and once from the object to the laser detector [Lemmens, 2011b].. 6



1
I N T R O D U C T I O N

Point cloud data is an important source of 3D spatial information, which is growing
in popularity and size [Van Oosterom et al., 2014]. Point cloud acquisition
techniques, such as laser scanning techniques employ laser scanners mounted on
static, mobile, or airborne platforms. These techniques are often preferable over
traditional land surveying methods. The reason is that vast amounts of 3D data can
be acquired in a minimal amount of time and with less manpower [Mendenhall,
2014]. Moreover, the 3D points have a high density that allows for a wide variety of
applications. For instance, point cloud data can be used for deformation
monitoring. This can be achieved by placing targets on the points of interest, such
as bridges’ foundations and railway lines, collecting point clouds periodically and
measuring the displacement of the target points. Point clouds can be used also for
real estate appraisal by assessing the condition, the neighbourhood and the location
of a property. Another example is when point clouds are collected by Unmanned
Aerial Vehicle (UAV)s for disasters management. In such cases algorithms are
developed for the classification of the buildings’ damage.

Laser scanners mounted on aerial platforms are particularly useful for recording
terrain, forests andthe outline and roof shape of buildings. Laser scanners mounted
on static platforms are useful for objects that can be viewed from the ground and
for small scale projects. These can be for example the scanning of the interiors and
the facades of some buildings. In cases of large scale projects where there is a
demand of immense street-view information acquisition, Mobile Laser
Scanning (MLS) techniques are employed [Haala et al., 2008]. MLS is a technology
that incorporates Light Detection And Ranging (LiDAR) sensors, Global Navigation
Satellite System (GNSS) receivers and Inertial Measurement Unit (IMU) in a system
mounted on a mobile platform (Figure 1.1). By using MLS the collection of 3D point
data can be achieved rapidly and cost effectively [Kaartinen et al., 2012].

Figure 1.1: A Light Detection And Ranging (LiDAR) sensor, a Global Navigation Satellite
System (GNSS) receiver and an Inertial Measurement Unit (IMU) deployed on a mobile
platform for the purpose of street view geo-referenced laser scanning. The Figure depicts a
MLS system as configured and mounted to a vehicle of the company CycloMedia Technology
B.V.

1



2 introduction

1.1 problem statement and motivation

1.1.1 Problem origin

The focus of this project is on point clouds retrieved from MLS techniques. The
integration of observations from GNSS and IMU mounted on recording vehicles
determine the vehicle’s position and orientation [Haala et al., 2008]. By knowing the
position and orientation of the mobile platform the coordinates of the scanned
points can be derived as a function of distance. Namely, the LiDAR sensor mounted
on the mobile platform records distances between itself and the scanned 3D
environment.

The GNSS receiver on the platform can provide continuous positioning of good
quality as soon as it receives direct signals (Figure 1.2) from four navigation satellites.
Four range measurements between the receiver and the satellites are needed for the
determination of the four unknowns. The first three unknowns are the X, Y, Z of the
receiver’s location. The fourth one is the time offset between the clock of the receiver
and the clocks of the satellites [Lemmens, 2011a].

When the laser scanners provide data with accuracy of centimeter order, the
accuracy of the retrieved point clouds from a MLS technique depends only on the
accuracy of the integrated navigation solution [Puente et al., 2011]. Nevertheless,
the GNSS reception may be limited due to dense blocks of high structures that
surround the streets (Figure 1.2). Particularly, the GNSS signals may be reflected by
neighbouring structures leading to longer signal traveling times (Figure 1.2) and
potentially causing large errors in the positioning [Shetty, 2017]. In other cases, the
signals of the satellites may be completely blocked. Thus the number of the
available satellites may not be sufficient for the determination of the position.

As a result of the possible lack of GNSS reception, the navigation solution of the
MLS system depends on the IMU. An IMU computes position while the platform
moves by using accelerometers. It also uses gyroscopes to measure the angular
orientation of the scanner relative to the ground. The gyroscopes are additionally
usefull to discard effects of the gravity vector in the measured linear acceleration of
the vehicle [Levi and Judd, 1996]. An IMU operates on the basis of the method
Dead-Reckoning (DR), where every position is based on displacements from an
initial known position [Levi and Judd, 1996]. Consequently, potential positioning
errors are accumulated, leading to degraded accuracy of the provided positioning
[Barshan and Durrant-Whyte, 1995].

Figure 1.2: In environments with high-rise buildings there may be limited visibility of the
signals from the navigation satellites. The signals may be blocked or reflected on neighbouring
structures. (Modified figure from [Kukko et al., 2012]).
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Apart from the positioning errors due to the limited GNSS visibility in specific
environments, it is also possible to have orientation errors around the Z-axis of the
mobile laser scanning platform. Namely, errors of the yaw angle. This is more likely
to happen when the driver of the recording vehicle takes successively the same
direction in turns. Since the orientation is determined by the IMU with which errors

are propagated, orientation errors around 1
10

th
of a degree may be noticed [Joosten,

2017].

1.1.2 Problem statement

The lack of GNSS reception when scanning in environments that restrict the GNSS

visibility and the probable error in the yaw angle of the recording platform can be
easily noticed at the recordings of street-junctions. In such cases, the vehicle needs to
return to a previously scanned region so as to re-scan and retrieve a complete scenery
of the surroundings. Thus, overlapping point clouds are obtained. If the quality of
the positioning is poor then corresponding points of the overlapping point clouds
may have offsets in the X, Y, Z coordinates. Figure 1.3 illustrates two overlapping
point clouds where the offset in the horizontal direction is conspicuous.

Figure 1.3: (a) Square point cloud tile of 250m2. (b) A second point cloud tile that captures the
same region as (a) recorded at a different time. (c) The point clouds (a) and (b) do not match
when are superimposed due to positioning errors. The offsets in the horizontal direction are
especially visible at the magnified parts depicting electricity and sign poles.

If there are yaw angle errors when recording a specific scene, then the collected
points may be tilted or otherwise distorted. The effects of the rotation errors depend
on the orientation of the 3D objects and the direction of the vehicle. Particularly, if
the vehicle moves perpendicular to planar surfaces, then the surfaces are



4 introduction

represented tilted. If the vehicle moves parallel to planar surfaces, then the surfaces
in the point clouds are represented fuzzed. Since the rotation errors are small

(around 1
10

th
of a degree), it is not easy to visualize the problem. Therefore a

simulation is provided with 1◦ artificial yaw angle error of the laser scanning
platform as illustrated in Figure 1.4.

Figure 1.4: a) Top view of a point cloud scanned with no yaw angle error of the scanning
platform. b) Top view of a point cloud scanned with artificial 1◦ yaw angle error of the
scanning platform. It can be seen that the surfaces that are parallel to the trajectory of the
recording vehicle are characterized by fuzziness. c) Overlay of (a) and (b). It can be seen that
the surfaces that are perpendicular to the trajectory of the vehicle are tilted.

Figure 1.5 is given in order to understand the effects of the yaw angle errors.
Everything that is coloured with green indicates that the recording system does not
have a yaw angle error. Everything that is coloured with red indicates that there is a
yaw angle error. A vehicle scans the surroundings. Firstly, a surface which is
perpendicular to the direction of the vehicle is detected. A point which would be
scanned at 315◦, is scanned at 315◦ plus the degrees of the error. A point which
would be scanned at 320◦, is scanned at 320◦ plus the degrees of the error.

Figure 1.5: Example of the yaw angle error effects from a top view . Everything that is
coloured with green indicates that there is no yaw angle error. Everything that is coloured
with red indicates that there is a yaw angle error.
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The laser beam coming from the platform with wrong orientation around the Z
axis has exactly the same distance as the laser beam coming from the platform with
no orientation errors. For example, the laser beam at the 315◦ is marked with an
’a’ which indicates the laser beam’s distance from the platform to the hit surface.
The laser beam at the 315+◦ it is also ’a’ meters long. Consequently, the point that
is scanned at 315+◦, apart from the fact that is tilted, it is also captured slightly at
the right of the point which is scanned with no error. The surface which is parallel
to the direction of the vehicle appears fuzzy when there are orientation errors at the
moving platform. That is because the laser beams with orientation error have exactly
the same distance as those without error, as explained. At the right part of the figure
the result is illustrated, where the dots represent the scanned points from the two
cases.

Scaling errors are not encountered often, but in theory, when performing MLS for a
long time without strong GNSS reception, the scale factor of the point clouds will not
be equal to 1. For this project, it is assumed that possible scaling errors are negligible.

1.1.3 Motivation

The integration of all the retrieved point clouds in a common reference system is
required after the recording of an area with a MLS system. This process is known as
global registration. Prior to that it is necessary to perform relative alignment of all
the overlapping point clouds so that possible errors (as explained in Section 1.1.2) are
minimized. This process is known as local registration. These two steps constitute
the 3D registration approach.

Locally and ultimately globally registered point clouds result in highly detailed
and measurable 3D models that describe the geometry and topology of the objects
in the real world. These models can then be used for several purposes such as object
recognition, cultural heritage modeling [Sanchez et al., 2017], vehicle and pedestrian
navigation, location based services [Kaartinen et al., 2012], disaster management,
spatial analysis or even as alternatives to surveying processes such as coordinate
extraction of cadastral parcels.

1.2 objectives & research question

The focus of this project is to solve the translation errors of overlapping point cloud
pairs. Pairs of point clouds consist of two tiles of points that (partially) overlap
because they represent the same scene. The point cloud tiles that overlap recorded
from different observation points at different epochs. Many researchers employ a
variant of the most commonly used algorithm for the local registration of
overlapping point clouds; the Iterative Closest Point (ICP) algorithm. These
modified ICP methods deal with the limitations of ICP to compute pairwise
registrations of higher quality. Despite some improvements to the main method,
registration approaches that use the concept of ICP are sensitive to point cloud pairs
in which not all the points in the one scan have a correspondences in the other scan
[Huang et al., 2017]. They also have problems with point cloud pairs of which the
initial positions of the two point clouds are not close to the required matching
position [Shetty, 2017]. Moreover, ICP-based methods require computationally
expensive and extensive search of point correspondences between the point clouds
Godin et al. [1994]. A thorough explanation is found in Section 3.1.

Given the limitations of ICP and given that the execution time of 3D registration
methods is highly dependent on the number of points, the problem is approached
differently in this research. The proposed approach uses the attributes of the 3D
points to generate and match 2D-projections, in order to retrieve the transformation
parameters that register pairs of 3D point clouds. In such a way the method will be
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more dependant on the number of pixels in the 2D-projections and less on the
number of points in the point clouds. This implies a more computationally efficient
method in comparison with the 3D registration techniques. Therefore, the main
research question for this thesis is formulated as follows:

To which extent is it possible to automatically, reliably, precisely and efficiently align mobile
laser scanning data relatively, using an image-based technique?

To answer this question the following sub-questions are relevant:

1. How to deal with the outlying points in the data so that they do not affect the
registration?

2. How to generate images from the point clouds and what kind of images so that
the point clouds are best described?

3. How to compute the translation parameters that align relatively 3D
overlapping point cloud pairs by matching 2D imagery?

4. How to assess reliability, precision and efficiency of the developed method
automatically?

5. The accuracy of the transformation estimations will be restricted to the grid
cell size of the generated imagery. How to retrieve a sub-pixel accuracy results
to improve the drawback of discrete grid cell size in the imagery?

To summarize, this thesis focuses on how to match pairs of overlapping point
clouds using images as an intermediate step. Specifically, the aim is to retrieve the
translation parameters to minimize the translation errors which are mostly present.
The effects on the point clouds from potential orientation errors in the yaw angle of
the mobile platform are not solved. Furthermore, this project does not deal with the
development of a global registration solution in order to align all the scans from an
area in one common reference system.

1.3 use case

1.3.1 Laser scanner

This project held in cooperation with the company CycloMedia Technology B.V. and
the point cloud data-sets used are provided by the company. The employed laser
scanner for the collection of the 3D points is a Velodyne HDL-32E. The head of the
scanner rotates continuously about the system’s central vertical axis to deliver a 360◦

horizontal Field Of View (FOV) [Chan and Lichti, 2015]. The rotation speed capability
is from 5Hz to 20 Hz [Velodyne LiDAR, Inc., 2010]. It utilizes 32 laser-detector pairs
aligned from +10◦ to -30◦ [Velodyne LiDAR, Inc., 2010] providing a vertical FOV of
approximately 40 ◦ (Figure 1.6). The scanner has the potential to generate about
700.000 points per second [Velodyne LiDAR, Inc., 2012], capability of measurement
range from 5 centimeters to 100 meters [Velodyne LiDAR, Inc., 2010] of which the
usable range is up to 70m [Velodyne LiDAR, Inc., 2012] and a typical accuracy of
+/-2cm. In addition, Velodyne HDL-32E operates with the time-of-flight principle
[Chan and Lichti, 2015].
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Figure 1.6: The figure illustrates how the laser beams are configured in the Velodyne HDL-32
laser scanner. Thirty-two radially oriented lasers are embedded inside the scanner from
+10◦ to -30◦. The numbering on the right of the lasers refers to their labeling given by the
manufacturer. (Modified figure from [Chan and Lichti, 2015]).

1.3.2 Point cloud data

Point Cloud data is continuously collected during the mobile scanning process. The
recorded 3D points are stored in tiles of 50m by 50m in the LAZ format. For every
tile of points there exists a corresponding LAZ file which contains the observation
point of each point in the tile. In other words, the trajectory of the vehicle is provided
as a 1 to 1 relationship with the recorded points.

Based on experience (CycloMedia, 2018), but also based on observations of the
data, the translation errors between overlapping point cloud tiles range from
millimeters to meters. Millimeter errors cannot be detected since the accuracy of the
laser scanner is 2cm. Translation errors that reach meters are encountered when the
GNSS reception from the position of the recording vehicle is significantly poor.

When the vehicle is fairly close to the scene a tile may contain millions of points,
as illustrated in the Figure 1.7. In contrast, a tile may contain only a few thousands
of points or even less in cases where the vehicle was recording a scene from far away
(Figure 1.8).

Figure 1.7: Example of a square point cloud tile of 250m2 including millions of points.
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Figure 1.8: Example of a square point cloud tile of 250m2 including less than two thousands
of points. The point cloud set illustrates the same scene as the tile in Figure 1.7, but recorded
from different observation points.

1.3.3 Thesis outline

The rest of the thesis is structured as follows:

• A list of acronyms and a glossary explaining terms used in the thesis are given
in pages xix and xxii, correspondingly. Acronyms and words written in blue in
the documents can be found in the aforementioned sections.

• The chapter 2 introduces the terminology used throughout this thesis and
describes techniques and methods used for the development of the proposed
algorithm.

• The chapter 3 describes and analyses approaches used in the bibliography for
the relative registration of 3D point clouds. Mainly the point cloud
registration is solved in 3D, but also some 2D techniques are presented. The
advantages and disadvantages of those approaches are discussed and some
relevant conclusions with respect to their performance are drawn.

• The chapter 4 motivates the development of an image-based point cloud
registration method. A thorough description of the developed method
follows, while every step taken is motivated.

• The chapter 5 provides information about the implementation details of the
developed algorithm. It also contains experiments performed to judge the
effectiveness of the proposed approach.

• The chapter 6 provides visual and arithmetical results of a number of point
cloud registrations and analyzes their quality. It also includes results from the
proposed sub-pixel accuracy method.

• The chapter 7 contains the answers to the research questions, the conclusions
drawn regarding the performance of the developed method and the
contributions of this work. It also contains recommendations on the aspects
that could be improved and suggestions on how the specific project could be
extended.

• Lastly, in the appendix A a reflection on the value of the graduation project in
the larger social and scientific framework is given.



2
T H E O R E T I C A L B A C KG R O U N D

This chapter introduces the terminology used throughout this thesis and describes
techniques and methods used in the proposed technique. Initially, the terms local
and global registration are explained. Next, definitions relevant to the quality of
a local point cloud registration method are given. Lastly, point cloud and image
processing techniques are discussed.

2.1 local point cloud registration

Local, relative or pairwise registration refers to the process of aligning pairs of point
clouds or any other data which share common information. This is done by
estimating the transformation parameters needed to match one with another
[Magnusson et al., 2007]. In the case of mobile scanned point clouds the
transformation parameters depend on the circumstances with which the point
clouds are retrieved. As for this project the focus is on the translation errors resulted
from poor positioning, finding the relative translation parameters is required
(Figure 2.1). A translation constitutes a geometric transformation which moves each
point of a point cloud tile by the same distance in a given direction. For example, if
an X translation equals to 20cm, a Y translation equals to 60cm and a Z translation
equals to 1.5m, then each point of one point cloud will be shifted 20cm in X, 60cm in
Y and 1.5m in Z. Then the shifted point cloud could be matched to the reference
point cloud.

Figure 2.1: The example illustrates a relative transformation where only translation is
required to match two corresponding points from different data-sets. The displacements ∆x,
∆y, ∆z are applied onto the point O so as to match it with point O’.

9
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2.1.1 Local coarse registration and local fine registration

Registering point clouds locally is in some cases split in two steps; the coarse
registration and the fine registration. The registration is split in these two steps
when the application of one registration step is not enough to bring the point clouds
in a perfect match. Particularly, the coarse registration refers to the estimation of an
imperfect matching position of two overlapping point clouds [Byun et al., 2017].
Figure 2.2a illustrates the idea of two objects being coarsely matched. A fine
registration is applied on the coarsely matched point clouds as a final and improved
step (Figure 2.2b). It is a re-estimation of the transformation parameters so as to
enhance inaccurate or coarse estimates of low quality [King et al., 2005].

Figure 2.2: Puzzle pieces are used for visualization purposes. (a) It illustrates the result of a
coarse pairwise registration, thus the puzzles are not completely matched. (b) It illustrates the
result of a fine registration, thus the puzzles are perfectly matched. (c) It illustrates the result
of a global registration, where each matched pair is aligned with the other local pair matches.
(Modified figures from [Theiler et al., 2015])

In this project, a course registration is not really necessary. Since in this project we
deal with data that accompanied with location information, even though the
positions of the point clouds might have large errors, there is still some information
about their initial position. If the project was dealing with images for which no
positioning information was available, then the coarse registration would be a
necessity.

2.1.2 Fixed & moving point clouds

Researchers usually consider that there is one scan which defines the coordinate
system of the matching result when dealing with local registration. In other words,
a scan which is free from positional errors. This is termed as fixed [Kang et al.,
2009], target [Huang et al., 2008], model [Besl and McKay, 1992] or reference
[Pomerleau et al., 2013]. The other scan needs to be transformed into the coordinate
system of the fixed scan and is termed as moving[Kang et al., 2009], source [Huang
et al., 2008], data scan [Besl and McKay, 1992] or reading [Pomerleau et al., 2013]. In
this project the terms fixed and moving are used to describe the point clouds in a
pair. Figure 2.3a depicts a fixed scan and Figure 2.3b depicts a moving scan. For the
better understanding of having a fixed and moving scan, the initial positions
(Figure 2.3c) of Figure 2.3a and Figure 2.3b, their coarse registration (Figure 2.3d)
and their fine registration (Figure 2.3e) are illustrated.

Nevertheless, for the registration of mobile laser scanning data none of the point
clouds in a pair can be used as the fixed scan. It is possible that a point cloud that
overlaps with some other point clouds has minimum positioning error (order of
millimeter). However, even if that is the case, there is no knowledge which point
cloud among some overlapping point clouds has minimum positioning errors.
Despite this lack of information, the relative transformation parameters would be
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Figure 2.3: Puzzle pieces are used for visualization purposes. (c) The initial positions of a
fixed scan (a) and a moving scan (b). (d) A course registration is applied where the moving
scan is almost matched onto the fixed scan. (e) A fine registration is applied to improve the
coarse registration result.

the same even if one point cloud or another is considered to be the fixed one. Only
the directions (positive, negative) of the displacements will have to change.
Therefore, the selection of the fixed scan does not influence the relative registration,
but it influences the global registration. In Chapter 7 a recommendation is given on
how the relative translations, can be used to facilitate the global registration. A
method is suggested with which the relative offset between a point-cloud pair
could be distributed between the overlapping scans. The suggested method
depends on the positioning quality of the overlapping point clouds.

2.2 global point cloud registration
Global registration is also known as multiview registration [Pulli, 1999]. This term
describes the process of aligning, in a common reference system, all the point cloud
scans that have been acquired along the trajectory of a vehicle performing MLS

[Nüchter et al., 2005]. The implementation of this step implies the alignment of the
all the local matchings together (Figure 2.2c). Namely, all the matched scans
resulted from the relative registration need to be adjusted so that they can correctly
co-exist and form an integrated 3D point cloud model. To achieve that, global
registration methods distribute the registration error over all the scans [Krishnan
et al., 2007].

2.3 quality of local point cloud registration
Quality is a measure of the degree to which a product meets the user’s demands
[Teunissen et al., 2006]. A stand alone estimated solution is not enough. Each
estimation must be accompanied with a quality measure. In this project a quality
indication is needed for the estimated transformation parameters. To define the
quality of the local point cloud registrations, theoretical knowledge from the
Adjustment and Testing theory for geodetic observations mainly developed by
Baarda [1968], studied thoroughly by Teunissen et al. [2006] and applied by Sweco
Nederland B.V. [2016] is used. The quality of a measure in the ’Adjustment theory’
is described by the aspects of reliability and precision [Teunissen et al., 2006]. In
order to provide definitions about the reliability and precision of a local
transformation solution, reliability and precision are initially generally described.
Then definitions of these terms are given for geodetic networks. The proposed
method adjusts the theory described in this section to the problem of local
registration of LiDAR data in Section 4.7.

the reliability of a system or a product Reliability has been studied by
many researchers from different disciplines. The reliability of a product or a service
as explained by Teunissen et al. [2006] refers to: 1) the degree to which errors and
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anomalies, or misspecifications of the product in general can be traced, and 2) the
degree of sensitivity of the final results to errors, anomalies and misspecifications
that remain undetected. A more general definition is given by Grous [2013], where
reliability refers to the discipline that analyzes failure of a product. According to
Gnedenko et al. [1999] reliability is the prediction of the estimation’s confidence
limits. Neubeck [2004] defines the reliability of a system as the detection of its
pluses and minuses to verify the system’s functionality.

the precision of a system or a product Precision refers to the variability
of the results expected when a process of a product is observed many times under
similar circumstances [Teunissen et al., 2006]. The variability is caused by random
errors in the process and in the measurements.

geodetic observations vs lidar data The Adjustment and Testing theory
which is used to compute reliability and precision has been extensively studied for
traditional geodetic observations, but not for modern observations such as LiDAR

data. The main difference between the two is that the LiDAR data is enormously
dense. For example millions of points can be found in a square tile of 250m2 (as
shown in Figure 1.7). In contrast, a few hundreds of geodetic observations could be
collected for an area of 250m2. Nevertheless, both LiDAR and geodetic observations
include spatial information. Thus the reliability and precision defined for geodetic
observations could be used to provide adjusted definitions for the purposes of the
local registration of LiDAR data. The definitions of the reliability and precision of
geodetic observation follows. These definitions are adjusted for point clouds local
registration and presented in Section 4.7.

the reliability of geodetic observations The reliability is subdivided into
internal and external reliability. Internal reliability is the size of the smallest
possible observation error, where a large size indicates a weakly checked
observation. The internal reliability can be explained with the Redundancy Number
of the observations [Sweco Nederland B.V., 2016]. To be more precise, the
redundancy is achieved when redundant measurements are retrieved, while the
measurements obey to some mathematical rules [Teunissen, 2000]. For example,
instead of measuring only two angles of a triangle and calculating the third,
measuring all the angles. The external reliability is used as a measure to determine
the influence of a possible undetected error in the observations that affect the
adjusted coordinates [Sweco Nederland B.V., 2016]. Adjustment of the coordinates
is necessary when multiple, but unequal measurements exist.

the precision of geodetic observations Precision describes the degree of
closeness of the observations when repetition of observations is possible [Sweco
Nederland B.V., 2016]. A highly precise observation indicates that a measurement is
repeated many times. It is likely possible that repeating a measurement will not
always give the same answer.

2.4 point clouds processing

This section presents techniques used for LiDAR point clouds processing. Firstly, the
cases where a 3D point constitutes an outlier with respect to the local registration
are explained. Next, a method for rejecting outlying points based on their density is
explained. Lastly, the basic concept for the computation of the normal vector on 3D
points is described.
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2.4.1 Rejection of outlying points

definition of outliers in the point clouds A 3D point cloud registration
method may converge to a solution driven by false matches due to outliers or noise
presented in the point clouds. An outlying point with respect to the relative mobile
LiDAR point clouds registration is a point that does not belong to the topography of
the area [Matkan et al., 2014]. Outlying points can be clusters of points or single
points [Pang, 2011]. The following four cases indicate when 3D points represent
outliers which can possibly cause registration results of degraded quality.

Points that represent moving objects, such as cars, people [Matkan et al., 2014] or
suspended objects at high altitude, such as birds and smoke, are considered outliers.
These constitute clusters of outliers and describe specific objects. Moving objects
may influence negatively the registration of overlapping point cloud pairs (Figure
2.4). For example, if a car is parked when a scene is initially recorded, but during
the second recording the car is not there anymore, or is moving, or has parked in
another spot then the two point clouds do not share common information. Thus,
the registration could be negatively influenced. If the moving objects captured at
the overlapping point clouds are the same position, then they do not constitute a
problem for the local registration. In contrast, they will represent extra common
information which may facilitate the matching. An example of moving objects that
can be scanned at different times but remain at the same position are parked cars.

Figure 2.4: a) Point cloud square tile of 250m2 in which moving objects (cars) have been
scanned. These are circled in red. b) Point cloud square tile of 250m2 representing the same
area as (a) in which moving objects have not been scanned.

In cases where the laser beam hits the boundary of an object, but that object
blocks other objects, then artificial points are scanned between the two objects
(Figure 2.5). These artificial points are produced between two surfaces because the
footprint of the laser beam is not a single point but a geometrical Gaussian ellipse
[Sotoodeh, 2006] [Naidu and Fisher, 1991]. When the laser beam hits a boundary of
an object which occludes another object, the elliptical footprint of the laser beam is
split and artificial points are measured. The irradiance of the artificial points equals
a weighted average of the irradiance from the two involved surfaces; the occluded
and the one that occludes. These points constitute noise in the point clouds.

Additionally, in cases of surfaces that return very high or very low reflection
values such as black objects, glasses and smooth metal surfaces [Sotoodeh, 2006]
noise is collected. Namely, recording such surfaces result in biases in the distance
measurements and thus, to increased noise [Beraldin, 2004] in the point clouds.

When the angle formed by the Z axis of the scanner and the laser beam is
significantly small (i.e smaller than 45◦), then the object is hit under a low angle. In
cases were objects are hit under a low angle, the laser beam is firstly deflected onto
neighbor objects and then reflected back to the receiver. This causes longer
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Figure 2.5: a) Point cloud square tile of 250m2 viewed from the top. The light blue line
indicates the direction of the recording vehicle. The red square includes the area of interest
which is explained in (b). b) Side view of the point cloud tile of (a). Three objects are included
in the magnification. A short object, a high object and a wall. From the perspective of the laser
beam direction the wall is occluded by the high object and the high object is occluded by the
short object. Therefore noise is captured in between the objects.

traveling time of the laser beams [Sotoodeh, 2006]. As a result, noise is generated in
the point clouds.

an outlier rejection method The Local Outlier Factor (LOF) is a property that
indicates the degree to which a point is isolated from its neighborhood [Breunig et al.,
2000]. It can be used as an outlier rejection method. It is calculated by comparing
the point’s local density with the local densities of its neighboring points (Figure
2.6a). The locality is given by the nearest neighbors of a point, and the distance
to the neighboring points is used to estimate the density. To compute the LOF of
each point it is necessary first to detect the k-Nearest Neighbors (k-NN) of each point.
These are the k (number of) points that are closest to the observed point. Then the
’reachability distance’ is considered as it is needed for the computation of the LOF of
each point. The reachability distance of a point is the maximum distance between
the actual distance of a neighboring point to the observed point, and the k-distance of
the observed point. The k-distance metric of an observed point is the distance within
which at least k points can be found (Figure 2.6b). The reachability distance of all
the points that do not constitute a nearest neighbor of the examined point is their
actual distance from it. The reachability distance of all the k-NN is the k-distance of
the examined point (Figure 2.6c). The reachability distance is introduced in order to
reduce the statistical fluctuations for all the neighboring points of the observed point.
In such a way, more stable (LOF) results within clusters of points are produced.

To compute the LOF of each point, it is necessary first to compute the Local
Reachability Density (lrd) of each point. The Local Reachability Density of a point
equals to the inverse of the average reachability distances with which the point can
be reached from its neighbors. A more detailed explanation about the computation
of the lrd of a point is given through the Figure 2.7. The general Equation for the
computation of the lrd of a point is shown in the equation 2.1. The Equation 2.2
shows how the equation 2.1 is modified specifically for the example illustrated in
Figure 2.7.
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Figure 2.6: The following illustrations take into account 3-nearest neighbors for each point
of interest. (a) Representation of the basic idea of the Local Outlier Factor: the comparison of
the local density of a point with the local densities of its neighboring points. The local density
of A is much lower than that of its neighbors. (b) The k-distance of A with k=3 is the distance
within which the 3 nearest neighbors can be found. The k-distance equals the distance of A
and B, as B is the 3rd neighbor of A, namely the 3rd closest neighbor to A. (c) The reachability
distance of B, C and D with respect to A is the same and equals to the k-distance with k=3. In
contrast, E is not one of the 3 nearest neighbors of A, and thus its reachability distance from
A is the actual distance of D and A. (Figures (a) and (b) from Wikipedia. Figure (c) modified
from Wikipedia).

Figure 2.7: Example for the calculation of the Local Reachability Density of point A with
k=3 nearest neighbors. The red lines connect A with its 3 nearest neighbors which are B, C
and D. The light blue lines connect B with its 3 nearest neighbors. The gray lines connect C
with its 3 nearest neighbors. The dark blue lines connect D with its 3 nearest neighbors. The
point A is used as the observed point for which the lrd needs to be computed. The reachability
distances at which A can be reached from its neighbors are needed for the lrd calculation.
The reachability distance at which A can be reached from its neighbor C is the k-distance
(3-distance) of C, because A is one of the 3 neighbors of C. The 3-distance of C is coincidentally
the distance from C to A, as A is the 3rd furthest neighbor of C. The reachability distance at
which A can be reached from its neighbor B is the actual distance from A to B and not the
3-distance of B, since A is not one of the neighbors of B. The same is valid for the reachability
distance at which A can be reached from its neighbor D. The Local Reachability Density of A
is equal to the inverse of the average reachability distances with which A can be reached from
its neighbors (Equation 2.2).

lrd(pj) =
1

∑k
i=1 rd(pj, pi)/k

(2.1)

where lrd(pj): local reachability density of a point j
k: number of nearest neighbours
rd(pj, pi): reachability distance of point j from a neighboring point i
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1
(distance(A, C) + distance(A, B) + distance(A, D))/3

(2.2)

where distance(A, C): the actual distance between the observed point A
and the neighboring point C
distance(A, B): the actual distance between the observed point A
and the neighboring point B
distance(A, D): the actual distance between the observed point A
and the neighboring point D
3: the number of the nearest neighbors

Next, the LOF can be computed by comparing the lrd of the observed point and the
lrd of the neighbors. Particularly, the LOF equals the average of the lrd of the observed
point neighbors divided by the observed point’s own lrd.

LOF(pj)k =
∑k

i=1 lrd(pi)/k
lrd(pj)

(2.3)

where LOF(pj)k: The Local Outlier Factor of a point j based on its
k nearest neighbors
lrd(pi): local reachability density of a point i
lrd(pj): local reachability density of a point j

Breunig et al. [2000] prove that a LOF value close to 1 represents an object with
density comparable to its neighbors, and thus not an outlier. Objects with LOF value
below 1 indicate a dense cluster, thus an inlier point. In contrast, values
significantly larger than 1 indicate outliers. The LOF method does not make the
assumption that being an outlier is a binary property Since each point gets a (LOF)
score which describes the degree to which a point constitutes an outlier. This gives
the opportunity to specify some thresholds to define the inliers and the outliers.

2.4.2 Normal vectors

The normal vector of a point is the vector which is perpendicular to the tangent
plane fitted on an observed point and its neighbouring points. Therefore, the
estimation of the normal vector includes the search for each point’s neighbors. The
neighboring points can be found for example based on a fixed distance from the
observed point or based on a specific amount of points considered as neighbors
(Figure 2.8a). In order to find how the points in each neighborhood are spread, the
local variation of a neighbourhood is taken into account. An example of the local
variation in a neighbourhood of points with a covariance ellipse is visualized in
Figure 2.8b. The local spread of the points is described with 3 vectors as shown in
Figure 2.8b. The vector with smallest vector value determines the direction of the
least variation, and is the normal vector of the observed point (Figure 2.8b). The
normal vector is perpendicular to the direction of most variations. The Figure 2.8c
shows the normal vectors of a triangular mesh for a better understanding.
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Figure 2.8: a) The red point shows the observed point and the black points are its neighbors.
b) The covariance ellispsoid that shows the local variation of an observed point and its
neighboring points. The blue vector is the normal vector of the observed point and its
neighbourhood. c) Visualization of the normal vectors of a triangular mesh. The normals
are perpendicular to each planar triangular face.

2.4.3 The Principal Component analysis method

The Principal Component Analysis (PCA) is a statistical approach used, among
others, for the computation of the normal vectors of the surfaces on 3D points. To
get insight regarding the variations of the points from their centre of gravity the
covariance matrix of the neighbourhood of each point is computed. The equation of
the covariance matrix for 3D points is shown in Equation 2.4. The values inputted
in the covariance matrix are the covariances of all the possible combinations
between the variables X, Y and Z. Equation 2.5 illustrates an example of how the
covariance between two variables is computed. The next step is the computation of
the eigenvectors and the eigenvalues of each covariance matrix. Then eigenvectors
and eigenvalues show the dispersion of the neighbors in the 3 directions around the
examined point (Figure 2.8b). The eigenvector of which the corresponding
eigenvalue is the least among the 3 eigenvalues indicates the least variation. That
eigenvector is considered the normal vector of the plane that fits bests to the
neighborhood of points [Smith, 2002]. The normal of the fitted plane can be used
also as the normal vector of the examined point.

C =

 cov(x, x) cov(x, y) cov(x, z)
cov(y, x) cov(y, y) cov(y, z)
cov(z, x) cov(z, y) cov(z, z)

 (2.4)

cov(x, y) =
N

∑
i=1

[(Xi − X̄)(Yi − Ȳ)]/(N − 1) (2.5)

where Xi, Yi: the coordinates of an observed point
X̄, Ȳ: the mean X and mean Y values of the points in

the neighbourhood of pointi
N: the amount of points in a neighbourhood

2.5 image processing

This subsection describes techniques that can be applied on images. These
techniques are the image gradient, the Sobel operator and the Gaussian smoothing
is given. Also the method template matching which is suitable for registering
images is analyzed.
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2.5.1 Image gradient

The gradient of an image shows how the values of an image change in the horizontal
and vertical direction. The change is represented by a direction and a magnitude. To
retrieve such information it is necessary to compute the first derivatives of the values
of an image in the X and Y directions and combine those into a vector [Jacobs, 2005].

As the gradient has a direction and a magnitude, the gradient is usually encoded
as a vector. An example of a gradient vector applied to a point of an image is shown
in Figure 2.9. The left part of the Figure 2.9 shows a 2D image and the direction of
the change of the values at a specific point. The right part of the Figure 2.9 shows
the same as the left part but in 3D. Namely, at the right part the brightness values
of the image are imagined as height values. The direction uphill is the direction of
the gradient, pointing in the direction of the largest possible increase of the values
[Flores-Mangas, 2014].

Figure 2.9: A 2D image and its corresponding representation in 3D. It is shown at a specific
point of the image how the brightness values change. In the 3D representation, the direction of
the gradient is the direction uphill, pointing in the direction of largest possible value increase
[Flores-Mangas, 2014]. (Figures from [Flores-Mangas, 2014]).

Figure 2.10a shows a simple black and white image. The gradient in the
horizontal direction is computed for the Figure 2.10a and the result is illustrated in
Figure 2.10b. The constant gray values inside the hexagon and at the background
indicate that there is no change in the values of the Figure 2.10a. The bright values
in the horizontal gradient (Figure 2.10b) indicate change from low (dark) values to a
high (bright) values, thus change from left to right. In contrast, the dark values
indicate change from (high) bright values to (low) dark values. The original image
is scanned from the left to the right to compute the gradient. Thus, firstly the dark
values of the Figure 2.10a are encountered and then the bright resulting to the
brighter gradient values at the left side of the hexagon. Subsequently, dark values
are encountered first (inside the hexagon) in the Figure 2.10a and then bright
resulting to dark gradient values at the right side of the hexagon. Figure 2.10c
shows the rate of change in the vertical direction of the values in Figure 2.10a.
Brighter gradient values are shown at the upper part of the hexagon as the image is
scanned from up to down encountering first low pixel values and then high. Darker
gradient values are shown at the lower part of the hexagon as the image is scanned
from up to down encountering first the high pixel values inside the hexagon and
then the high values in the background. The left and right sides of the hexagon are
gray as there is no change in the values. The Figure 2.10d shows a combination of
the Figures 2.10b and 2.10c. It illustrates the gradient in both the horizontal and
vertical direction of the Figure 2.10a.
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Figure 2.10: a) A black and white image. b) The result of the gradient in the horizontal
direction applied on the image shown in (a). c) The result of the gradient in the vertical
direction applied on the image shown in (a). d) The result of the gradient in the horizontal
and vertical direction applied on the image shown in (a).

2.5.2 Sobel Operator

A Sobel operator could be used for the computation of the first derivative of an
image. A Sobel operator does not actually calculate the first derivative of an image.
However, it calculates an approximation of it by fitting a polynomial with discrete
values [Bradski and Kaehler, 2008].To apply a Sobel operator a convolution
operation must be used. Convolution in the spatial domain is the process of using a
matrix, or a kernel as it usually called, which slides over the values of an image and
modifies them by performing a specific calculation. At each overlay, each element
of the kernel is multiplied with the corresponding element on the image. Then all
the results of the multiplications are summed up. The output is placed in the new
image at the pixel as that of the center of the kernel1.

The Sobel operator can be performed for kernels of any size [Bradski and Kaehler,
2008]. There is one kernel to compute the horizontal chanages and one to compute
the vertical changes. Here an example of symmetric 3X3 kernel used to apply the
Sobel operator in X and Y direction is given in Equations 2.6 and 2.7 correspondingly.
In order to calculate the magnitude or in other words the rate of change in one image
the Equation 2.8 is used [Lemmens, 1992].

GxSobel = G ∗

 −1 0 1
−2 0 2
−1 0 1

 (2.6)

GySobel = G ∗

 −1 −2 −1
0 0 0
1 2 1

 (2.7)

where G: the image on which the operator is applied
GxSobel : the output of the Sobel operator in the X direction
GySobel : the output of the Sobel operator in the Y direction

GMSobel =
√

Gx2
Sobel + Gy2

Sobel (2.8)

1 The convolution in the spatial domain is usually implemented as a multiplication in the frequency domain
through the Fast Fourier Transform, because it is a significantly faster than the convolution in the spatial
domain.



20 theoretical background

2.5.3 Gaussian Smoothing

Smoothing is another convolution operation often applied in order to reduce noise
on images. An example of a smoothing filter is the Gaussian Smoothing, which
is used to remove Gaussian noise from images. The 3 x 3 kernel of the Gaussian
Smoothing is given in Equation 2.9 [Lemmens, 1992].

SMOGAU = G ∗

 1/16 1/8 1/16
1/8 1/4 1/8

1/16 1/8 1/16

 (2.9)

where G: the image on which the operator is applied
SMOGAU: the output of the GAUssian SMOothing

2.5.4 Image registration

Image registration constitutes the process of matching images that contain common
visual information Gaidhane et al. [2014], but possibly retrieved at different epochs,
from different viewpoints, and by different instruments [Norollah et al., 2012]. The
Figures 2.11a and 2.11b illustrate an example of two images retrieved from different
viewpoints. The Figure 2.11c illustrates the registration result of the Figures 2.11a
and 2.11b. It can be seen that the common visual information of the Figures 2.11a
and 2.11b is matched.

Figure 2.11: (a) and (b) Images containing common visual information, but retrieved from
different viewpoints. (c) The registration result of (a) and (b). (Figures: MATLAB Tutorials).

2.5.5 Template matching

A template matching technique can be used for image registration. Template
matching is the process of determining the presence and the location of a template
image inside a reference image [Zhang et al., 2009]. A template image usually
corresponds to an image smaller than the reference image (Figures 2.12a and 2.12b).
This difference in the size of the two images is necessary to create some search space
between the two images. Since the requirement is to detect the location of the
template image in the reference image, the template image is the one which should
be smaller. The concept of template matching is that the template image slides over
every possible location of the reference image, pixel by pixel, from left to right and
from up to down (Figure 2.12c). At every location, a degree of similarity between
the two images is calculated, or in other words a metric that shows how good or
bad the match is. Thus, the output of the template matching is an array containing
the similarity scores calculated at every possible overlay between the 2 images. This
array is called the score map, as it contains the similarity scores of mapped locations
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between the template and the reference image. Its size equals to
(W − w + 1)x(H − h + 1) in pixels, where W and H the width and the height of the
reference image, and w and h the width and the height of the template image,
correspondingly. The size of the output score map array is based on the number of
possible positions that the template could be placed on the reference image. Figure
2.13 illustrates a relevant example.

Figure 2.12: (a) An example of a template image. (b) An example of a reference image. (c)
The location of the template image shown in (a) is searched into the reference image shown in
(b). The template is sliced over the reference so as to compare them and find the best matching
location.

Figure 2.13: A reference image where its Width equals to 4 and its Height equals to 5. A
template image where both its width and height equal to 3. Next to the reference image the 6
possible overlays between the reference and the template image are illustrated. The 6 possible
overlays indicate where the template can be superimposed on the reference without having
pixels ’hanging out’ of the reference image. Therefore, the resulted score map array has only
6 cells constructed from width equal to 2 (Width - width + 1 = 2) and height equal to 3 (Height
- height + 1 = 3).

The location (simply the image coordinates) of the highest similarity score in the
score map defines the matching location of the template image into the reference
image. Particularly, the matching location refers to the upper left corner of the
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template image in the reference image. The Figure 2.14a illustrates a reference
image. The Figure 2.14b illustrates at its upper part a template image of which the
position must be found in the reference image. The lower part of Figure 2.14b
shows the output of a template matching technique, namely the score map array.
The score map array obtains color according to the similarity values calculated at
every overlay between the template and the reference image. Thus the score map
array is also called score map image. The brighter the pixel, the higher the
similarity. In Figure 2.14c the matching location is searched in the reference image
to spot the location of the template image.

Figure 2.14: a) A reference image. b) The upper part shows a template image. The lower part
shows the resulted score map array from a template matching. The red circle indicates the
pixel with the highest similarity, or in other words the matching location of the top left corner
of the template image onto the reference image. c) The matching location of the template
image is detected on the reference image. The white outline indicates the boundaries of the
template image on the reference image.
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R E L AT E D W O R K

This chapter is split in two main sections, the 3D Local Point Cloud Registration
(Section 3.1) and the 2D Local Point Cloud Registration (Section 3.2). The aim of the
Section 3D Local Point Cloud Registration is to show which concepts and methods
are followed by other researchers to solve relative registration of point clouds in 3D.
Thorough explanation on the most commonly used algorithm for point cloud
registration, the Iterative Closest Point (ICP), is given (Subsection 3.1.1).
Additionally, some variants of ICP are discussed (Subsection 3.1.2), quality
assessment methods are examined (Subsection 3.1.3) and outlier rejection methods
are reviewed (Subsection 3.1.4). Conclusions upon the suitability of registering
point clouds in 3D are also provided (Subsection 3.1.5). The aim of the Section 3.2,
2D Local Point Cloud Registration is to provide insight on techniques that could be
used to develop an image-based local point cloud registration method. The section
contains information about existing image-based local point cloud registration
approaches (Subsection 3.2.1) and types of images that could be generated from the
point clouds (Subsection 3.2.2). Moreover methods used to obtain subpixel accuracy
values from imagery, or in other words from discrete values, are investigated
(Subsection 3.2.3). Lastly, conclusions upon the suitability of registering point
clouds in 2D with existing approaches are discussed (Subsection 3.2.4).

3.1 3d local point cloud registration

3.1.1 Point clouds local registration with ICP

In this subsection, the concept of the ICP algorithm and some limitations of it are
explained, as this algorithm is often used for point cloud registration in 3D. The
main ICP algorithm was initially developed by [Besl and McKay, 1992]. Multiple
modified versions of it have been developed to deliver improved results [Byun et al.,
2017].

As stated in Section 2.1.2 (Fixed & moving point clouds), the notions fixed and
moving are used to describe the point clouds in a point-cloud pair. ’Fixed’ F is the
point cloud that is considered to have correct coordinate system. ’Moving’ M is the
point cloud that has to be moved to match the fixed one. The ICP algorithm computes
repetitively the transformation parameters by reforming point associations between
the fixed and the moving scan (Figure 3.1). The algorithm iterates until the Mean
Square Error (MSE) of the distances between the correspondences is sufficiently small,
or the MSE difference between two consequent iterations is sufficiently small, or if the
maximum allowed amount of iterations is achieved. When one of these conditions
is satisfied the motion that matches M to F is calculated and applied to M.

23
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Figure 3.1: The Iterative Closest Point algorithm that matches a moving scan to a fixed scan
by iteratively minimizing the distance between the computed correspondences.

Equation 3.1 indicates that according to the determined point correspondences,
the sum of the squares of the residuals between the points in a fixed (F) scan and
their rotated and translated corresponding points in a moving M (scan), must be
minimum.

(R, t) = min(
N

∑
i=1
||Fi − R ∗Mi − t||2) (3.1)

where R: Rotation parameter
t: translation parameter
Fi: A point of the fixed scan
Mi: A point of the moving scan

ICP implementations may vary according to the features registered. For example,
the main ICP registers point to point features [Besl and McKay, 1992], a method of
Chen and Medioni [1992] registers points to planes, while a method of Segal et al.
[2009] registers planes to planes etc. ICP point to point features perform better than
the point to plane ICP if there are quadratic or polynomial geometric (curved)
structures in the scene [Bellekens et al., 2014]. ICP point-to-plane [Chen and
Medioni, 1992] provide better results than the point-to-point if the structures in the
environment are characterized by many straight lines [Pomerleau et al., 2013]. In
cases were a lot of noise is observed in the point clouds, the ICP plane-to-plane
would outperform the ICP point-to-plane [Bellekens et al., 2014].

3.1.2 Point clouds local Registration with ICP variants

Variants of ICP provide optimal local registration results when the initial positions
of the overlapping point clouds are close to the registration solution [Shetty, 2017],
[Cartwright, W. et al., 2009], [Wang C. et al., 2014], [Trucco et al., 1999]. In contrast,
as explained in the section 2.1.1, the initial positions of the overlapping point clouds
in the case of mobile laser scanning may be far away from each other. Additionally,
ICP methods are negatively influenced when many incorrect point correspondences
are estimated because a corresponding point does not exist in the other point cloud.
This occurs due to the partial overlap between the overlapping point clouds
[Pomerleau et al., 2013]. Therefore, ICP provides results of high quality when all the
points or many points in one scan have correspondence in the other [Trucco et al.,
1999]. Having points in one scan without correspondence in the other is quite
common in the case of MLS data as it was shown in the Figures 1.7 and 1.8 on pages
7 and 8 respectively. Lastly, the need for correspondences establishment in 3D
requires an expensive nearest neighbors search [Sanchez et al., 2017]. Thus, the
execution time of the registration with ICP is considerably high [Langerwisch and
Wagner, 2010]. An overview of the ICP algorithm’s limitations is provided with the
illustrations of Figure 3.2.
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Figure 3.2: The Iterative Closest Point (ICP) algorithm converges to a false local minimum
Mean Square Error when: (a) the initial alignment of the two scans is not sufficiently accurate
and (b) the two scans do not contain the same information or, simply put, do not fully overlap.
(c) ICP algorithm provides appropriate results when the two scans fully overlap (or share
considerably large overlap) and their initial positions do not differ significantly from the final
matched positions.

A description of some algorithms that are based on ICP follows. These algorithms
utilize the main concept of ICP, but are modified in order to deal with its limitations.
Usually the computation of point correspondences is alternated in order to detect
and filter out incorrect correspondences. These constitute incorrect associations
between points of two scans. Incorrect correspondences often occur when points
that exist in one scan do not exist in the other scan of a point-cloud pair. A point
cloud scan might have less points than another scan, due to the vehicle’s long
distance from the scene during the recording.

The purpose of describing a few ICP variants is to stress the avails and limitations
of using an ICP-based method for local point cloud registration. These are
summarized in Section 3.1.5.

iterative closest compatible point The Iterative Closest Compatible
Point (ICCP) algorithm developed by Godin et al. [1994] differs from ICP as ICCP

seeks for the correspondences between the points under a constraint. This
constraint is a compatibility measure based on the intensity of the points. Points are
compared based on their intensity, for each point, the points that have similar
intensity value are determined. Subsequently, the point with the minimum distance
is chosen as the corresponding point. The search space is reduced since the
corresponding point is searched only among the points which have similar intensity.
Thus, the most computationally expensive operation of ICP, the detection of
correspondences, is improved. Despite this, the compatible points with regard to
the intensity are recomputed at each iteration which is a costly operation. ICCP, like
ICP, performs suitably when most of the points in the one point cloud have a
correspondence in the other.

robust iterative closest point The difference of the Robust Iterative
Closest Point (RICP) [Trucco et al., 1999] and the ICP is that a Least Median
Squares (LMedS) method is applied [Rousseeuw, 1984] to eliminate the incorrect
correspondences. A point from each point cloud set is randomly selected. Then, the
registration transformation between the two points is calculated and applied to the
moving scan’s point. Then, their residual is computed. This process is repeated
until all the potential registrations are evaluated and the solution that returns the
LMedS value is chosen. The residuals that are larger than a threshold given by the
user are rejected. Just as the ICP [Besl and McKay, 1992], so too the RICP depends on
the initial positions of the point clouds. Nevertheless, it provides better results than
the ICP if there is a high presence of incorrect correspondences. In other words, if
the overlap between the overlapping point clouds is small the results have good
quality Trucco et al. [1999].

trimmed iterative closest point The trimmed-ICP algorithm, developed by
Chetverikov et al. [2002], is based on the Least Trimmed Squares (LTS) method
which was introduced by Rousseeuw [1984]. This method focuses on the distances
between determined corresponding points in point cloud pairs. It sorts the square
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distances and minimizes their sum by iteratively excluding a number of extreme
values [Chetverikov et al., 2002]. Namely, it trims the largest distances to prevent
influencing the point cloud registration. The optimal property of LTS relates to its
high Breakdown Point which is equal to 50%. A Breakdown Point determines the
degree of robustness of an estimate in the presence of outliers. It measures the
amount of outliers an estimate can handle before giving an incorrect estimate
[Hampel, 1971]. The high Breakdown Point of LTS is the advantage of this method.
It indicates that the Trimmed-ICP can handle highly contaminated data. This refers
to incorrect correspondences [Cizek and Visek, 2000]. A limitation of this method is
that it assumes a fixed overlap of scans [Pomerleau et al., 2013]. The algorithm
requires knowledge of the overlap percentage in order to know how many point
correspondences to trim. If this method was used for the local registration of mobile
laser scanned point clouds, the overlap of every point-cloud pair should be
calculated, leading to additional computation time. Sorting the determined point
correspondences by the distance between them in order to remove incorrect
correspondences, adds to the computational load [Padia and Pears, 2017].

iterative closest point using invariant features The algorithm Iterative
Closest Point using Invariant Features was developed by Sharp et al. [2002]. It deals
with the improvement of the correspondences selection by extracting features
invariant to 3D rigid motion from the point clouds. These features do not alternate
when arbitrary rotations and translations are applied. Such a feature is the
curvature, which is the amount by which a geometric object deviates from being a
flat plane, or the amount by which a curve object deviates from being a line. Point
locations are related to the extracted features to determine the correspondences in
the point clouds that overlap. The benefit of the Iterative Closest Point using
Invariant Features (ICPIF) algorithm is that fewer iterations are required than in the
ICP to converge to a solution. However, the ICPIF constructs correct point
correspondences when the point clouds are free from noise.

3.1.3 Local registration quality

In this Subsection techniques used for the quality assessment of local point cloud
registration methods are examined.

The quality of relatively registered data is evaluated in a research work by
assessing whether the overlapping region after alignment represents the same
physical surface [Huber and Hebert, 2003]. Some measures of surface consistency
were used such as the Euclidean distance between corresponding points of two
overlapping point clouds and the angle between the normal vectors of
corresponding points. A surface is considered consistent when these two measures
are less than a threshold. In another work, similar to the Euclidean distance, a
mean-square error MSE was computed after the detection of point correspondences
[King et al., 2005]. The matching solution is accepted when the MSE is close to the
approximate noise of the sensor. In addition, a non-randomness score is used to
detect the random alignments or mis-alignments due to repetitive structures. An
example of a repetitive structure could be a row of windows in a building. This
non-randomness score relates to the output of the matching of distinctive structures
detected on the two point clouds. Namely, the matching is implemented two times,
but with two different methods. If the transformation parameters are close to the
first registration estimation, then this accounts as a proof that the firstly estimated
solution is non-random.
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3.1.4 Outlier rejection to minimize influence on registration

In this Subsection, some methods for rejecting outlying points in 3D are discussed. It
is necessary to find how the outliers could be rejected to decrease their effect on the
registration results.

The definition of outliers with respect to point clouds registration is extensively
described in Subsection 2.4.1. Briefly, outliers can be either moving objects or noise.
The outliers that represent moving objects could be rejected from the point clouds by
developing an algorithm for moving objects detection. However, such a step would
be out of the scope of this project. Therefore, the research focuses only on the noise
in the point clouds which might decrease the quality of the registration.

Matkan et al. [2014] use a cross-validation technique and specifically the method
leave-one-out to reject outliers based on the height variations from the surrounding
points. This cross-validation technique considers every data point of a LiDAR point
cloud once as the testing sample and excludes it from the rest of the data-set. Then,
an interpolation method is applied to the elevation component of the neighboring
points of the observed point to find its interpolated height. The error of the point is
calculated by subtracting its actual height from the predicted height, given from the
interpolation. This process is then iterated to all the points in a point cloud. Next,
a threshold is determined based on the maximum height error value, which is more
robust than choosing a random number. Then, the points that gave an error value
higher than the threshold are rejected. All the previous steps are repeated and the
algorithm terminates when the maximum height error value among the errors from
all the points is higher than the maximum error of the previous iteration.

The chosen cross validation method is less biased than other validation methods
as every sample is considered once as test-data. However, it is very
computationally expensive since every point is taken as a testing sample. Also the
discussed method rejects outliers only based on the relative height between the test
point and its neighbors. The spatial relationship of the points is neglected.
Particularly the method does not take into account how isolated or nearby a point is
from other points.

A multi-attribute model is used by Pang [2011] to detect 3D outliers. The elevation
of each point is taken into account and a Connectivity Outlier Factor (COF). The
COF indicates how isolated a point is from its neighbors. These two attributes are
considered for each point. Then, the attributes are combined to form a 2D space as
shown in Figure 3.3a. A Minimum Covariance Determinant (MCD) is used to detect
the outliers. This constitutes a robust estimator of location and scatter [Rousseeuw,
1985] for outlier rejection in comparison with the classical covariance. The classical
covariance is also an estimator of location and scatter, but highly affected by outliers
[Pang, 2011]. Figure 3.3b visualizes with covariance ellipses the comparison between
the classical covariance and the robust MCD for outlier rejection. Further explanation
of the MCD concept follows.

The MCD of some neighboring 3D points refers to the minimum number of points
that are not outliers. The concept of MCD is applied by using a robust Mahalanobis
distance distance. The Robust Mahalanobis distance is applied on neighborhoods of
points in the formed 2D-attribute space. The Robust Mahalanobis distance is
calculated for each point to determine how far the point is from a tolerance ellipse.
The tolerance ellipse is formulated by considering the mean, the variance and the
covariance of the elevation and COF attributes of the points. If the Robust
Mahalanobis distance of the point is higher than the threshold, then the point is
considered an outlier. The threshold is the formulated tolerance ellipse, visualized
in Figure 3.3b.

This method detects individual and clusters of outliers. However, the
relationship of the two attributes is not very well integrated in the model which
causes the detection of more outliers than really exist [Pang, 2011]. Figure 3.3a is
observed to describe a relevant example. If a point has a bit higher COF value than
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Figure 3.3: (a) An example of a 2D space based on the elevation and the Connectivity Outlier
Factor of each point in a point cloud. b) According to the given point observations, the result
of the classical covariance is illustrated with the large ellipse. According to the given point
observations, the result of the robust covariance is illustrated with the small ellipse.

its surrounding points, but its elevation is comparable to the rest of the points then
the point might be considered as outlier because of the slightly different COF value.
Nonetheless, the removal of more outliers could increase the efficiency of the
registration process, however there should be a balance. Considering many points
as outliers while they are not, may lead to registration results of degraded quality.

3.1.5 Conclusions

This subsection contains some conclusions drawn after the analysis of the literature
concerning the point clouds registration and the outlier rejection methods in 3D.

why to register in 3d by using icp-based methods

• By registering with ICP in 3D or with a variant of ICP in 3D, or with any other
3D registration method, the matching will have the accuracy with which the
points have been collected. LiDAR point clouds are usually collected with high
accuracy, thus the registration in 3D will have high accuracy.

why not to register in 3d by using icp-based methods

• ICP-based algorithms are computationally expensive due to the need for search
and detection of point correspondences in point-cloud pairs.

• ICP-based algorithms require good estimations of the initial positions of the
overlapping point clouds. Else the algorithm minimizes the MSE by associating
wrong points.

• ICP-based algorithms require that the overlapping point clouds have all or a
large number of the corresponding points in both scans. Nevertheless, this is
not the case with the mobile scanned point clouds. The amount of collected
points may vary according to the distance and orientation of the vehicle with
respect to the surroundings.

outlier rejection in 3d A factor which can contribute to the determination of
the isolation of a point from its neighboring points, such as the COF used from Pang
[2011], is considered of high importance. The determination of neighbourhoods of
points can facilitate the description and comparison of the spatial relationship of the
points. However, it is challenging to define how big a neighbourhood should be so
as to allow for detection of all the outliers in a point cloud set. For example in a
square point cloud tile of 250m2 there might be sections where a small
neighbourhood must be used to detect the outliers. In other sections of the 250m2
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area possibly large neighbourhoods must be used to detect the outliers. Therefore,
the spatial relationship should be combine with an extra attribute, as performed in
the research of Pang [2011] by using the elevation of the points. Nevertheless, the
elevation may not be the best option for judging if a point belongs to the topology
of an area or not. Let us take as example the points representing a light pole in
Figure 3.4.

Figure 3.4: Example of a square point cloud tile of 250m2 where the color gradations represent
the elevation values. The magnified part illustrates a part of a light pole in the scene. The
emphasis is on the noise that appears close to the pole. The noise exists due to the occlusion of
the vertical structure from the pole with respect to the laser beam. In such a case, the elevation
of an inlier point and the elevation of an outlier point at a certain horizontal plane will be the
same. Thus, the elevation will not be a representative factor to describe an outlier. In contrast,
it can be seen that the outlier points are very sparse in comparison to the points that actually
represent the pole. Therefore, density of a spatial neighbourhood could be used as another
attribute to assess whether a point is an outlier or not.

The method of Matkan et al. [2014] which employs a cross-validation technique
to compare the actual elevation of each point with a predicted elevation value is
considered a very expensive method. Besides this, it takes into account only the
elevation of the points, and as explained this might not provide very representative
results.

To summarize, the aim is to use a method that takes at least into account the spatial
relationship of the points so as to provide information about the isolation of the
points with respect to their neighbors. Also, the points’ density should be used to
judge if a point is an outlier or not. Further attributes, such as the intensity and the
elevation of the points could be combined to provide more robust results.



30 related work

3.2 2d local point cloud registration
The aim of the 2D Local Point Cloud Registration section is to provide insight into
techniques that could be used to develop an image based local registration method.
Other image-based local point cloud registration approaches are discussed, and
types of images that could be generated from the point clouds are described.
Additionally, methods for retrieving sub-pixel accuracy registration results are
discussed. Lastly, conclusions upon the suitability of registering point clouds in 2D
with existing approaches are discussed.

3.2.1 Image-based local point cloud registration

Bearing angle images (which are described in Section 3.2.2) are generated from 3D
point clouds [Lin et al., 2017]. Then, a feature based matching method is used to
find corresponding pixels between an image pair. The (2D) pixel correspondences
are filtered to avoid including incorrect correspondences in the solution. The Figure
3.5a illustrates an example of two bearing angle images with common visual
information, along with the pixel correspondences extracted from the feature-based
matching. The (2D) pixel correspondences are converted in 3D (point
correspondences). The Figure 3.5b illustrates the corresponding 2D
correspondences in 3D, namely on the point cloud pair. The point correspondences
are used in a least squares approximation to derive the transformation parameters,
which is basically the main step of ICP. The sum of the squares of the residuals of
the distances between the corresponding points is minimized in order to obtain the
optimal transformation parameters.

Figure 3.5: (a) Two bearing angle images that highlight the edges of the objects in the diagonal
direction, extracted from a two point clouds. In addition, the correspondences found in the
images by using a feature descriptor are shown. (b) The correspondences found in 2D are
converted and presented in the 3D space. (Figures from [Lin et al., 2017]).

The benefit of using a feature based matching method is that an initial alignment
of the point clouds is not needed. Lin et al. [2017] compare their algorithm with the
generalized-ICP, which constitutes a plane to plane matching Segal et al. [2009]. They
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show that the computation cost is significantly less than ICP, due to the 2D matching.
However, the precision is not better than that of generalized-ICP, because sometimes
incorrect correspondences are included.

Furthermore, a method developed by [Liang et al., 2017] generates perspective
intensity images1 by constructing central projections of terrestrial point clouds. After
the construction of the perspective intensity images, corner points are detected in the
imagery and used as corresponding points to match the images. The advantage of
this work is that building structures become very distinct on the perspective intensity
images, which facilitates the registration process [Liang et al., 2017]. Despite this,
one should generate perspective images from many viewpoints to achieve complete
representation of a 3D point cloud set.

3.2.2 From 3D point clouds to 2D imagery

Some techniques for converting 3D data to 2D have been explored, discussed and
compared in this section.

depth images Point cloud data can be converted to depth images that convey
per pixel depth information [Chmelar et al., 2016]. The depths are distance values
between each point and a view point of the point cloud, thus their computation is
simple. Depth maps are useful for distinguishing which objects are closer to the
view point and which are further away. Figure 3.6a illustrates an intensity image
of an indoor place in RGB. Figure 3.6b illustrates the same indoor place as a depth
image in grayscale. The closer the object is to the camera point, the brighter the object
is in the depth image. In contrast, the further away from the camera the darker the
object is in the depth image.

Figure 3.6: a) An image with intensity values in RGB colours. b) The depth image of Figure
(a) in grayscale. (Figures from NCTech [2018].)

perspective images 3D data can be converted to perspective intensity images
Liang et al. [2017]. The generation of this type of images requires the use of the
collinearity equation which is commonly used in Photogrammetry. This equation is
used in order calculate the planar coordinates of the 3D points while performing a
central projection. A relevant example is visualized in Figure 3.7.

bearing angle images Bearing angle images have been proposed by
[Scaramuzza et al., 2007]. They can be used to stress discontinuities of depth and
changes of directions in the point clouds. The bearing angle images have the ability
to stress the aforementioned image details at specific directions. For example, by
highlighting the depth discontinuities only at the horizontal or vertical or diagonal
direction.

1 The perspective images are described in the upcoming Section (3.2.2).
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Figure 3.7: (a) A screen-shot of a point cloud. (b) A central projection on the point cloud of
(a). The centre of projection, illustrated with red color, is placed inside the scene of the point
cloud as shown in the miniature. (c) The retrieved perspective intensity image in grayscale
projected from the point visualized in (b). (Modified Figures from Liang et al. [2017].)

These images illustrate the angle between the laser beam and the vector that joins
2 consecutive measurements of points (Figure 3.8). To define the consecutive points
it is necessary first to arrange the point measurements in a 2D array where the entries
of the array are ordered based on the direction of the laser beam. According to the
direction in which is desired to stress the depth discontinuities the consecutive points
are detected. The bearing angle value is computed for each point as a function of
the depth value of a point, the depth value of its adjacent measurement point, the
distance between the two and the angle formed by the consecutive points and the
laser beam. Specifically, the Equation 3.2 indicates how the bearing angle for each
point is calculated.

BAi = arccos
ρi − ρi−1 ∗ cosdφ√

ρ2
i − ρ2

i−1 − ρi ∗ ρi−1 ∗ cosdφ
(3.2)

where ρi: the depth value of the point i in the selected direction of the depth array
ρi−1: the depth value of the point i-1 in the selected direction of the depth array
dφ: the angle of the laser beam in the desired direction

Figure 3.8: The blue circles illustrate two consecutively scanned 3D points. The bearing angle
is the angle which is formulated by the vector which connects the two points and the secondly
reflected laser beam (Figure from Lin et al. [2017]).
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The Figure 3.9 illustrates an example of four bearing angle images where the
consecutive points where taken into account in four different directions.

Figure 3.9: (a) Bearing angle images in the vertical direction, (b) the horizontal direction, (c)
and (d) in the diagonal directions (-45◦, +45◦). The color shade added from blue to red is
proportional to the bearing angle value (Figures from [Scaramuzza et al., 2007]).

histogram binning The histogram binning approaches are discussed by
Blomley et al. [2014]. Additionally, in an unpublished work [van Someren, 2016]
and Christodoulou [2017] histogram binning methods are developed. Specifically, a
set of 2 histograms per point cloud are created, one for the X and Y values (the
xy-histogram) and one for the Z values (z-histogram). Particularly, for the creation
of the xy-histogram the point clouds are projected on a horizontal plane viewed
from the top. Next, a 2D grid is created on the horizontal plane, and the points are
binned into the cells according to their X and Y coordinates. The value of each 2D
grid cell (pixel) represents the number of points that fall within the cell. The Figure
illustrates the creation of an xy-histogram. For the Z-histogram, the point cloud is
considered as a 3D volume sliced horizontally. Specifically, the point clouds are
’viewed’ from the side, then sliced horizontally and each created horizontal cell
corresponds to a grid cell (pixel) in the Z-histogram. The value of each pixel
represents the number of points that fall within the corresponding 1D grid cell. The
Figure illustrates the creation of an xy-histogram.

Figure 3.10: A visual example of the xy-histogram creation. (a) The point cloud is projected
to a horizontal plane viewed from the top and sliced in 2D grid cells. (b) Each grid cell of (a)
corresponds to a pixel in the xy-histogram image. Each pixel carries the frequency value of the
points that fall within the 2D cell. The less the points, the darker the pixel. The examples (a)
and (b) consider very large pixels for visualization purposes. c) It illustrates the xy-histogram
image of the point cloud (a) with a small grid cell size (0.1m x 0.1 m).
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Figure 3.11: A visual example of the z-histogram creation. (a) The point cloud is considered
as a 3D volume, which is sliced horizontally. (b) Each horizontal cell of (a) corresponds to a
pixel in the Z-histogram image. Each pixel carries the frequency value of the points that fall
within the corresponding 1D cell. The less the points, the darker the pixel. The example (a)
and (b) considers very large pixels for visualization purposes. (c) It illustrates the z-histogram
image of the point cloud (a) with a small grid cell size (0.1m x 0.1 m).The picture is stretched
horizontally visualization purposes.

3.2.3 Sub-pixel accuracy

As mentioned in Section 1.2 (Objectives & research question) the relative
transformation parameters between point clouds will be calculated by developing
an image-based technique. As a result, the parameters can have at maximum the
accuracy of the images’ grid cell size. Techniques to retrieve values of sub-pixel
accuracy, or in other words, accuracy higher than that of the pixel, are explored.

A second order polynomial is fitted on the values of some pixels of interest
[Zhang et al., 2009] to retrieve sub-pixel values. P1, P and P2 of Figure 3.12
represent three neighbouring pixels. It can be seen that when a polynomial is fitted
on the three pixels, values of sub-pixel accuracy are generated. For instance,
information is acquired about the highest possible value between the area that the
three pixels cover. This is the value Wmax of the point Pmax and not the value W of
pixel P, as one would think by examining the discrete pixel values. In another work,
the fitting of a 1D Gaussian function is discussed [Naidu and Fisher, 1991] and
applied with the same concept as explained for the polynomial fitting.

Figure 3.12: P1, P, P2 represent the discrete locations of three pixels. W1, W and W2 are the
corresponding pixel values. The discrete pixel values are interpolated with a second order
polynomial to retrieve sub-pixel accuracy values.
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3.2.4 Conclusions

image-based local point cloud registration Both image-based point cloud
registration methods described in Section 3.2.1, extract and match distinct features
such as corner points on the generated image pairs. Therefore, the registration in
both approaches is based on the determined correspondences. The approach with
which bearing angle images are created and matched has worse precision than that of
generalized-ICP due to the inclusion of wrong point correspondences [Lin et al., 2017].
Thus, although it is a 2D-based method for point cloud registration, it has similar
limitations as ICP. In both methods the incorrect correspondences is the reason for
which the registration results are negatively influenced. In contrast, the method in
which perspective images are created and matched has accuracy of millimeter level
Liang et al. [2017]. However, that method was only tested with three point cloud
pairs. Therefore, the conclusions cannot be representative for various data-sets.

Although the bearing angle images have the ability to highlight the
discontinuities of the depth of the objects, they must be computed for every desired
direction. For example, if it is desired to stress the image details in the horizontal
direction and the vertical direction then two different computations must be
implemented. However, the reason why the bearing angle images were introduced
was because there was a requirement to stress the image details in different
directions Scaramuzza et al. [2007]. Otherwise, the normal images could be
generated as they can also illustrate the orientations of the surfaces Scaramuzza
et al. [2007]. If the normal vector is split in its three directions (X, Y and Z), then it is
possible to highlight the surfaces’ orientations in the different directions without
performing additional computations for each direction. In contrast, as mentioned,
this is required for the construction of the bearing angle images.

Furthermore, the registration method in which perspective images are created was
tested only on a few point clouds Liang et al. [2017]. Therefore, the location of the
centre of projection could be manually chosen to ensure that the resulted images
will have overlap. Some overlap, or in other words common visual information,
is necessary for the images registration. However, for mobile laser scanned point
clouds retrieved from different positions the selection of the centre of projection it
is more complex. The centre of projections must be selected automatically because
many point clouds are collected and need to be matched. Also, the automatically
selected centre of projection must ensure that there is overlap between two created
images.

More information about the suitability of different image types for image
registration is given in Section 4.4.1. That section explains why specific images are
preferred and how they are created, as part of the proposed point cloud registration
method.
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I M A G E - B A S E D P O I N T C LO U D LO C A L
R E G I S T R AT I O N A P P R OA C H

This chapter presents the proposed image-based point cloud local registration
approach from a conceptual point of view.

4.1 motivation
The key motivation behind the proposed method follows from the limitations of the
techniques that already exist with respect to mobile point clouds. The 3D ICP-based
point cloud methods require that the initial positions of the point-cloud pairs are
close to the final solution. However, as explained (Section 3.1.2), when it comes to
MLS data, in many cases the initial offset between the overlapping point clouds is
large. Also, ICP-based methods have high performance when the overlap between
the point clouds that capture the same scene is complete. With point clouds
retrieved from MLS processes it is not common to have complete overlap. Large
overlap is possible when both scans have been captured from short distance,
hpwever also small overlap is possible when at least one scan in a pair has been
captured from long distance. Furthermore, the ICP variants require extensive and
expensive search for correspondences between the point clouds that overlap. This is
not ideal for a project that deals with MLS data, as an immense amount of 3D points
may be scanned in a small time period. Consequently, the method must have the
potential to converge to solutions in a considerably short amount of time. From this
perspective, a 2D-based method would be more suitable than a method that
registers the point clouds directly, in 3D. This is believed because if the point clouds
are converted to images and the images are matched, then the method will be less
dependant on the number of 3D points. Instead, the method will be more
dependant on the number of the pixels in the generated imagery. There will be
certainly less pixels in the imagery than points in the points clouds, when point
clouds are projected on 2D, requiring less computation.

In Chapter 3, the existing methods for point cloud registration in 3D and 2D were
explained and judged. The method which converts the point clouds to bearing
angle images [Lin et al., 2017] (Section 3.2.1), delivers results with lower quality
than the Generalized-ICP which matches planes to planes (constructed from the
points). The reason for this is the determination of incorrect point correspondences
between the point clouds pairs. Therefore, the requirement is to develop a method
that either constructs robust point correspondences or avoids completely the
concept of the point correspondences. Furthermore, neither the method using
bearing angle images [Lin et al., 2017] nor the method using perspective images
[Liang et al., 2017] deal with mobile point clouds. That indicates that the methods
do not deal with big amounts of data, neither with large offsets between the point
clouds nor with small overlaps between the point clouds. Therefore, it is not known
how the existing methods perform in those cases.

As explained, it is believed that an image-based point cloud registration method
is promising and thus, an image-based method is developed. The aim of the
developed method is to overcome the limitations faced by the ICP-based methods
and the existed image-based methods, while focusing the design of the method on
mobile laser scanned point clouds. Then, it will be possible to answer the question
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of this research, namely: To which extent is it possible to automatically, reliably, precisely
and efficiently align mobile laser scanning data relatively, using an image-based technique?

The following sections present the algorithm developed to answer the research
question of this thesis. Many steps of the algorithm are based on the theory presented
in Chapter 2. Implementation details are found in Chapter 5. For every decision the
motivation and reasoning is explained. Section 4.2 provides a global overview of
the whole approach, while the following sections describe the different steps in the
approach in more detail.

4.2 method overview

Figure 4.1 illustrates an overview of the developed method. Point cloud tiles are the
input to the designed algorithm. The initial three steps of the method are part of the
pre-processing. A method based on the density of the points’ neighbourhoods is
used to reject outlying points, particularly noise. Subsequently, for every point
cloud tile the normal vectors of the surfaces are computed on the points. The last
step of the pre-processing is the construction of point-cloud pairs; pairs of
overlapping point cloud tiles. The Pre-processing steps are described in Section 4.3.
Thereafter 2D projections are created from the 3D point cloud tiles. The reduction of
the dimensions is applied with various techniques which are described in Section
4.4. The following step which is explained in Section 4.5 constitutes a
multi-registration approach, as various techniques are used to convert the input 3D
data to 2D. Therefore redundant 2D registration solutions are estimated. Section 4.6
indicates how the redundant 2D solutions are converted to 3D. Section 4.7 provides
information concerning the manner with which the low quality results among the
redundant solutions are discarded to estimate the optimal translation parameters.
In section 4.8, the technique used to retrieve transformation parameters of sub-pixel
accuracy is discussed. This technique is applied on the optimal translation solutions
retrieved from the main image-based registration method in order to increase the
translations’ accuracy. Lastly, the 2D sub-pixel accuracy translation parameters are
converted back to the 3D space coordinates.

Figure 4.1: Overview of the proposed image-based point cloud registration method.
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4.3 pre-processing
This section discusses the initial steps of the developed method; the rejection of the
outliers, the computation of the normal vectors and the creation of point cloud pairs.
The developed method is applied on point cloud tiles, which are also mentioned as
point-cloud sets.

4.3.1 Outlier rejection

Outlier points in the point clouds are defined in Section 2.4.1. The outliers are split
in two categories, the moving objects and the noise. As stated in Section 3.1.4, the
development of a method for the detection and rejection of moving objects is outside
of the scope of this project. Thus, the focus lays on how to reject the noise from the
point clouds so that its influence on the registration results is limited.

reasoning The concepts behind the proposed approach are based on existing
methods as discussed in Section 3.1.5.

• It is necessary to consider a factor that takes into account the spatial
relationship of the points. In other words, each point should be compared to
their neighbouring points. For example, as shown in the Figures 4.2a and 4.2b,
the points in the neighborhoods that represent the noise are more scattered
than the points in the neighbourhoods of inliers.

• The density of the points’ neighbourhoods could be used as a factor to detect
outliers. However, the density of neighbourhoods of points that were far away
from the recording system will also be low. A related example is illustrated
in Figure 4.2b in the upper red circle. It is possible that points that are not
outliers will be considered outliers with a method that compares the density of
points. However, this would only be undesired if the registration results of the
developed method are negatively influenced. If the results are not becoming
worse while more points are rejected, then this could actually work as a benefit,
as the method will have to process fewer points. That could lead to decreased
computation time of the algorithm.

• The elevation of a point (used in [Pang, 2011] and Matkan et al. [2014]) might
not be the best parameter to judge if a point belongs to the topology of an area
or not. As it was shown in Figure 4.2c the elevation of the outliers does not
differ from the elevation of the inliers.

Figure 4.2: a) Noise in the point clouds, where the points are very scattered. b) Same as (a)
but it also illustrates scattered points that are not noise. c) The elevation of the outliers can be
the same as the elevation of the inliers.
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Consequently, a method that computes the local density of the points is used for
the reduction of noise. With this method, the degree to which an object is isolated
from its surrounding neighborhoods is utilized. That degree of isolation is known
as the local outlier factor (LOF). The computation of the LOF is given by comparing
the local density of an object to the local densities of its neighbors [Breunig et al.,
2000]. The locality is given by the nearest neighbors of a point. The advantage of this
approach over others is that it gives the ability to determine which points are outliers
and which not by configuring the threshold based on the computed LOF scores of the
points.

method The concept of the LOF method and its design details are thoroughly
explained in the theoretical background in Section 2.4.1, page 14. These are used in
order to calculate the LOF of the points. Implementation details are given in Section
??.

Two parameters determine how the LOF method performs; the k number of
points considered as the nearest neighbors of each point and the threshold that
regulates which points are outliers. Initial experiments showed that the lower the k
value, the faster the performance of the method. Concerning the threshold, two
different approaches have been applied and tested; a relative threshold and an
absolute threshold. The difference between the two becomes clear by observing
Algorithms 4.1 and 4.2. To apply the relative threshold (Algorithm 4.1), the
computed LOF scores of all the points are sorted. Then, the relative threshold is
multiplied by the total number of points to determine how many points are outliers.
The numner of outliers based on the relative threshold is notated as X. LOF scores
significantly larger than 1 indicate outliers as mentioned in the theory (page 16). By
sorting in decreasing order the high LOF scores appear first. Thus, the first X
amount of LOF scores correspond to the outlier points.

Algorithm 4.1: LOF - Relative threshold

1 sorted← Sort Decreasing(LOF scores (points))
2 N← Amount Of Points
3 Amount Of Outliers← N * Relative Threshold
4 X← Amount Of Outliers
5 outliers← sorted [From 0th to Xth]
6 inliers← sorted [From Xth to Nth]

Algorithm 4.2: LOF - Absolute Threshold

1 for LOF score (pointi) ∈ LOFscores(points) do
2 if LOF score (pointi) < Absolute Threshold then
3 point← inlier
4 else
5 point← outlier
6 end
7 end

The execution of some initial experiments proves that the absolute threshold is a
better option. Figure 4.3a shows a point cloud tile. The outliers are visualized to
have a clear impression of the rejected points. Figure 4.3b illustrates the outliers
when a relative threshold equal to 0.1 is used. Figure 4.3c illustrates the outliers
when an absolute threshold is used. Although the two thresholds cannot be
compared numerically, it can be seen that with the relative threshold not only noise
is rejected, but also the edges of the objects and the edges of the tile. This happens
because points at the boundaries do not have neighbours in every side, thus they
are considered isolated at some extension and as a result, their LOF score is a bit
higher than 1. Also, their LOF score is lower than 1.3 as the points on the edges are
not rejected with absolute threshold equal to 1.3. Moreover, the probability to
remove same points with the a relative threshold from point cloud tiles
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representing the same area but retrieved from different viewpoints is lower. This is
because the amount of points in overlapping point clouds may differ significantly,
and the rejection of outliers with the relative threshold depends on the total number
of points in a point cloud. In contrast, in with absolute threshold the probability to
remove same points from overlapping tile is higher as the rejection depend on the
LOF scores.

Figure 4.3: a) A point cloud tile with 2380094 number of points. b) The LOF scores of the points
in Figure (a) are computed. A relative threshold equal to 0.1 is applied and thus the number
of outliers is 238009. c) The LOF scores of the points in Figure (a) are computed. An absolute
threshold is applied. The outliers, which are illustrated, are the points of which the LOF score
is higher than 1.3.

To sum up, the absolute threshold is preferred over the relative threshold because
then the rejection of the outliers is based on the examined property; the local density
of the points.
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4.3.2 Normal vectors computation

reasoning After the outlier rejection, the normals vectors are computed on the
points of each tile as they are needed for the generation of images from the point
clouds (Section 4.4). In order to compute the normal vectors of the surfaces at each
point, the PCA method is applied which is explained in Section 2.4.3. PCA constitutes
a simple method for calculating normal vectors and therefore it is used.

method The Algorithm 4.3 indicates how the normal vectors are computed with
PCA. Firstly, the neighboring points of each point in a tile must be computed. These
have been detected in the previous step for the rejection of the outliers, thus the
same neighboring points are used for the computation of the normal vectors. The
covariance matrix of each neighbourhood is computed by as explained in the theory
and the eigen values and eigenvectors of the covariance matrix are computed. The
smaller eigenvalue is found and its corresponding eigenvector is used as the
normal vector that can be fitted by the neighbourhood of points. This vector is also
the normal vector of the 3D point. However, the result does not provide consistent
normal vectors. The normal vectors of one surface are not pointing in the same
direction as they should. For example, some of the normal vectors of points that
represent a wall point inside the building and some outside the building.

Algorithm 4.3: Normal vectors on 3D points
Input: 3D points
Output: list of normal vectors

1 for pointi ∈ 3Dpoints do
2 find neighbors
3 compute their covariance matrix
4 minValue←minimum eigenvalue(covariance matrix)
5 PlaneNormalVector← the eigenvector of the minValue
6 PointNormalVector← PlaneNormalVector
7 createdVector← vector from the trajectory point to the point cloud point
8 if dotproduct(PointNormalVector, createdVector) > 0 then
9 add the normal vector to the list of normal vectors

10 else
11 normal vector← -(normal vector)
12 add the normal vector to the list of normal vectors
13 end
14 end

It is desired that the vectors are pointing at the same direction else the values of
vectors of a plane will be different. Thus, in such case the normal vectors will be of
no use. The trajectory points of the moving vehicle are used to orientate the normal
vectors towards the vehicle’s direction at the moment of the recording. For each
point in the tiles there is a corresponding point recorded in the trajectory points. To
orientate the normal vector of a point its corresponding viewpoint is used. A vector
is formed from the examined point in the point cloud and its view point. Then the
orientation of that vector is compared with the orientation of the computed normal
vector by computing their dot product. If the output of the dot product is positive
then the computed normal vector points at the direction of the trajectory. If the
output of the dot product is negative then the computed normal vector points has
incorrect orientation. Therefore the sign of the vector value is changed; form
positive to negative or from negative to positive. In such a way, the normal vectors
are pointing opposite to their initial direction.
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4.3.3 Pairing overlapping point clouds

The following step is to pair overlapping point cloud tiles as the purpose of this
project is to perform pairwise registration. Firstly it is required to know which point
clouds overlap. Despite the fact that the positioning of the 3D data could be
degraded due to the lack of GNSS reception, it is still possible to detect the
overlapping point cloud sets from their coordinates by assuming a buffer zone. In
the data-sets used it was already determined which point cloud tiles overlap.
Therefore the only step left is the pairing of the point clouds. To do so, all the
possible combinations of overlapping point clouds are made. The pair of point
cloud 1 and point cloud 2 is the same as the pair of the point cloud 2 and the point
cloud 1. This redundancy is not wanted. The number of possible combinations is
given by the equation 4.1. For example, if the are 10 point cloud tiles that capture
the same scene, but retrieved at different times from different viewpoints, then 45
different pairs of point clouds tiles are made.

combinations = n!/(r! ∗ (n− r)!) (4.1)

where n: the number of overlapping point cloud tiles
r: number of point cloud tiles to combine. It equals to 2,

as point cloud pairs must be constructed.
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4.4 conversion from 3d to 2d
This section explains how 2D imagery is acquired from 3D point cloud tiles with
the proposed method, in a way to facilitate the 2D matching process. Initially it is
discussed how the three dimensions of the data are reduced in two (Subsection 4.4.1).
A thorough description of the illustrated attributes on the created imagery follows
in Subsections 4.4.2 - 4.4.7.

4.4.1 Reduction of dimensions

reasoning For the reduction of the data dimensions two methods are found in
the literature. The first method suggests the projection of the 3D data from a
perspective point of view [Liang et al., 2017]. The second method suggests the
orthographic top view projection of the 3D data to create a 2D XY-plane, but also
the orthographic projection in 1D to represent only the Z coordinates [van Someren,
2016]. Two visual comparisons of a perspective and an orthographic projection are
shown in Figures 4.4 and 4.5.

Figure 4.4: a) How to project a 3D surface from a perspective point of view. b) How to project
a 3D surface from an orthogonal point of view.

Figure 4.5: a) A perspective image of 3D objects. b) Three orthogonal images of a 3D object.

As it can be seen in both Figures, the parallel lines in a perspective projection
appear to converge on a vanishing point, while the parallel lines in an orthographic
projection never converge. The advantages and disadvantages of the perspective
and orthogonal images are discussed in Table 4.1. Due to the disadvantages that the
perspective images have, they are not used in this project.
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Perspective projections Orthogonal projections
+ They can provide more information
about the depth of the objects.

+ The depth may be incorporated in the
pixels values.

- However, the depth information
is implicit and not easily extracted.

In general, the computational complexity
of both images is the same, because the
number of resulted pixels, which is
the biggest performance factor, would
be the same.

+ However, it is possible to have less
computational complexity when creating
orthogonal images than when creating
perspective images. This could be achieved
by choosing a very simple setup. If a point
cloud is just observed from a top view,
then the only step to construct the orthogonal
image would be to use the X and Y
coordinates of the 3D points. No
calculations would be needed to create
the orthogonal image.
Contrarily, to create a perspective image
from a top view it is necessary to
compute the 2D coordinates by using
the collinearity equation, the central
mathematical expression in photogrammetry.

The selection of the center of projection
is critical because it will determine the
overlap between the two point clouds.

- If the center of projection is placed
outside the point cloud tile area many
unnecessary computations of 3D
coordinates to 2D must be conducted.
This will happen because many 3D
points will end up having the same
2D coordinates. The same problem will
occur if the center of projection is placed
inside the point cloud, but in a lower
degree.

- If the center of projection is placed
inside the point cloud tile area, for
example on a trajectory point of one
of the trajectories of the two point
clouds, many images should be created
to represent one tile and assure that there
is overlap between the created images.
Instead of creating several images, a
panoramic (complete perspective)
image could be used.

Table 4.1: A comparison between the perspective and orthographic projections concerning
the image registration.
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For the conversion of the 3D data to 2D a method that originates from the method
used by van Someren [2016] is applied. The difference is that instead of one
orthogonal 2D projection and one orthogonal 1D projection, each point cloud tile is
projected on three different 2D planes resembling three orthogonal views. Each
point cloud tile is viewed once from the top, from the front and from the side.
Consequently, the point cloud tiles are projected in XY-planes, in XZ-planes and in
YZ-planes. An overview of the concept of the projections is illustrated in Figure 4.6.
Additionally, Figure 4.7 shows a point clouds tile which is viewed from the three
planes used for the projections.

Figure 4.6: The figure illustrates how the 3D data are projected in 2D in three different planes.
One plane is formed when the 3D data is viewed perpendicularly from the top, one plane
is formed when the data is viewed perpendicularly from the front and one plane is formed
when the data is viewed perpendicularly from the side.

Figure 4.7: a) A point cloud tile viewed from the XY-plane. b) A point cloud tile viewed from
the XZ-plane. c) A point cloud tile viewed from the YZ-plane.

By creating three 2D projections the method is benefited in three ways.

1. The translation parameter for X, Y and Z can be retrieved twice. By matching
the XY-projections of two overlapping point clouds the translation in X and
the translation in Y will be estimated. By matching the XZ-projections of two
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overlapping point clouds the translation in X and the translation in Z will be
estimated. Similarly for the YZ-projections the translation in Y and the
translation in Z will be estimated. Therefore in case one of the pair projections
fails to estimate the correct parameters then there is still chance to get the
correct result from another projection.

2. By generating three projections the possibility to have more common visual
information in the generated 2D data is higher than by having one 2D
projection. As mentioned in page 62, image registration is the process of
matching imagery with common visual information. Therefore, in order to
match an image pair the corresponding objects must be visible in the created
projections. It is possible that common objects cannot be seen from one plane
or that common objects can be seen better from one than from another plane
(Figure 4.8). If 1D projections of the Z coordinate was used as in [van Someren,
2016] and [Christodoulou, 2017], then this advantage would not exist.

Figure 4.8: a) and b) Two overlapping point clouds viewed from the XY-plane. The
black circles and the ellipsis indicate common visual information that could facilitate the
registration. c) and d) The same overlapping point clouds as in a) and b) are viewed from
the XZ-plane. The poles in the black ellipses indicate common information. These correspond
to the objects circled in a) and b). In a) and b) the poles are shown like dots but in c) and d)
they easily stand out. Therefore, the XZ-planes may produce better results due that. However
the structure included in the black ellipsis in a) and b) cannot be seen by c) and d). This may
facilitate the matching of the XY-planes.



48 image-based point cloud local registration approach

method The 2D projections are created per point-cloud pair. For every point
cloud pair the combined minimum and maximum X, Y, and Z coordinate is
computed. These are used as the spatial boundaries for two 2D projections
generated from the two corresponding point cloud tiles in a pair. Therefore, the two
images resulted from one point cloud pair will have the same size. By using the
same boundaries to create two images that correspond to two overlapping point
cloud tiles, and specifically by using the same origin point, it is ensured that the
points’ coordinates are transported to the imagery. Thus, it becomes feasible to spot
and compute the positioning offsets in the created image pairs. According to the
plane of projection, the corresponding combined boundaries of the two point cloud
tiles are utilized. For example, for the creation of the XZ-plane the combined
boundaries of the X coordinates and the combined boundaries of the Z coordinates
are used (Figure 4.9).

Figure 4.9: The red points are from one point cloud tile and the gray points are from another
overlapping point cloud tile. The Figure illustrates the combined boundaries of the point
cloud pair for the XZ-plane. Because the combined boundaries are used, the positioning
offsets are distinct.

The combined boundaries of the 2D coordinates and a user specified grid cell size,
are used to construct the 2D grid of each image. For the example shown in Figure
4.9, a XZ grid must be constructed. Let’s assume that the combined minimum X
boundary is 10m, the combined maximum X boundary is 60m and the grid cell size
(pixel size) is 1m. Then it means that 50 columns ((60− 10)/1) be constructed at
every 1m. The same procedure follows for the Z axis, for its combined minimum
and maximum, in order to construct the rows of the grid. As a result, the 2D grid is
constructed. By using the created grid for each point cloud in a pair, the
2D-coordinates of the two point clouds are used to spatially bin the points into the
2D grid cells (Figure 4.10, Figure 4.11) and create projections for each point cloud.

The concept of the reduction of the 3D points dimensions in order to bin the points
in 2D grid cells based on the projection plane is summarized in Algorithm 4.4. In
the pseudo code the coordinates in the two dimensions of a projected plane are
noted as CoordinatesA and CooridnatesB. For example for the XZ-plane the
CoordinatesA refer to the X coordinates of the points and the CoordinatesB refer to
the Z coordinates of the points.
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Figure 4.10: Binning the 3D points of one of the point clouds shown in Figure 4.9 in a 2D grid
based on its X and Z coordinates.

Figure 4.11: Binning the 3D points of the second point cloud shown in Figure 4.9 in a 2D grid
based on ita X and Z coordinates.

Algorithm 4.4: Binning the 3D points in a 2D grid
Input: Point Cloud 1, Point Cloud 2, Grid Cell Size, projection plane
Output: Binned Coordinates In 2D Grids

1 Use Coordinates A and Coordinates B based on the projection plane
2 Find Min Coordinate A based on Point Cloud 1 & Point Cloud 2
3 Find Min Coordinate B based on Point Cloud 1 & Point Cloud 2
4 Find Max Coordinate A based on Point Cloud 1 & Point Cloud 2
5 Find Max Coordinate B based on Point Cloud 1 & Point Cloud 2
6 Construct the 2D grid for each point cloud tile based on the combined

coordinates and the Grid Cell Size
7 Bin the points of Point Cloud 1 in the 2D grid
8 Bin the points of Point Cloud 2 in the 2D grid
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assigning values to the 2d grid cells Every time that the 3D points are
binned in the 2D grid cells, one pixel value is simultaneously computed. Attributes
of the points are used as the illustrated information on the 2D-projections. In other
words attributes of the points provide the pixel values on the grid cells of the
generated projections. The attributes used aim to describe the 3D information in 2D.
Since many points may be binned in one grid cell, the attributes of the points are
compressed to one value by using statistics such as the mean and the max.

In this project, the three projections that are used to reduce the dimensions of the
data are generated multiple times with different attributes of the 3D points. The
projections are created with pixel values representing the density of the points within
the grid cells, the intensity, the depth, the gradient of the intensity, the gradient of
the depth and the calculated normal vectors of the points. In other words, a set of
images is produced from every point cloud tile. This decision was taken in order to
increase the reliability of the results. More information is found in Section 4.7.

As mentioned on pages 48 - 49, the binning of the points in 2D grid cells is
performed per point-cloud pair so that the translations between the image pairs can
be ultimately detected. Likewise, the assignment of points’ attributes into the grid
cells of the 2D created projection is performed per point cloud pair. This gives the
capability to use properties of both projections in order to assist the next step, the
image registration. Details are found in the following subsections when the
methods used for assigning attributes to the pixels are described.

4.4.2 Density images

The density of the points is used as one attribute to fill the grid cells of the generated
projections on the three planes. Each grid cell of a density image simply illustrates
the total amount of points that fall in the 2D cell.

reasoning The density is considered an important characteristic because long
and thick features, such as walls or the ground, will be represented with high
amounts of points. Thus these features can be highly distinguishable in image pairs.

method In order to create a density image a histogram is computed from the 2D
grid cell of the generated projections and the points that are binned to each cell.
Therefore a single value is provided for each pixel. This value is amount of the
points that fell in the cell of the grid. As only one value is used to color the pixels,
only one color channel is used and thus, the density images are in grayscale. The
pixels of grayscale images illustrate only shades of gray. Black pixels represent the
lowest possible intensity while white pixels represent the highest possible intensity.

The downside of a density image with respect to an image matching process is the
fact that corresponding objects in two overlapping images may be described by more
or fewer points. The number of recorded points depend on the recording vehicle’s
position towards the object. The closer the moving platform to the object, the more
the points that will be recorded, while the further the moving platform to the object,
the fewer the points. Examples of density projections are illustrated in Figure 4.12.
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Figure 4.12: The three images produced from the point cloud tile of Figure 4.7 illustrating
density values. The images have grid cell size 0.15m.

explanation of the images

• By observing the Figure 4.12 very bright and very dark pixel can be seen. The
strongly bright pixels indicate that in the specific grid cells the number of
recording points was high. The strongly dark pixels indicate that in the
specific grid cells the number of recording points was low.

• In the XZ and YZ projections the most distinct feature is the ground. To create
for example the XZ projection, the tile is sliced in the X (horizontally) and Z
(vertically) direction. All the points of the 3D tile are binned in the 2D cells
based on their X and Z coordinates. The 2D cells of the horizontal slice that the
ground points are binned are filled with many points and thus, they are very
bright.

• Even if the density values of an image pair are normalized up to the same value,
it is possible that pixels of corresponding objects will have very different values.
This is clear by observing the Figure 4.13.

Figure 4.13: The two images illustrate the density images created from two overlapping point
clouds. As it can be seen, the recording vehicle scanned the same area by following different
trajectories. Consequently, different number of points collected for some identical objects. For
example the objects which are circled with yellow in Figure (a) are very bright indicating many
points binned in the 2D cells. The objects which are circled with yellow in Figure (b) are very
dark indicating few points binned in the 2D cells.
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4.4.3 Intensity images

The three projections of each point cloud tile are also created with the points’
intensity values. The laser beams of the scanner are emitted and interact with the
surrounding surfaces. Then, backscatter is generated and the signals are received
back by the scanner. The intensity of a point refers to the strength of the
corresponding received laser signal [Höfle and Pfeifer, 2007].

reasoning Godin et al. [1994] used the intensity of the points in order to assist
an ICP point cloud registration process. Also, Pfeifer et al. [2007] state that intensity
measurements are mostly used for the visual analysis of point clouds but they
should be used for other process like registration. But how can the intensity
facilitate a point cloud registration process? The strength of the backscattered signal
is depended on the range between the scanning system and the object that scatters
back the emitted beam, the angle of incidence between them and the object’s
reflectivity Pfeifer et al. [2007]. The object’s reflectivity can be very useful for
registration. Objects that lay exactly on same 2D plane but have high reflectivity
become distinct in intensity images.

method The intensity values are stored along with the 3D point. Thus, when the
3D points are retrieved, the intensities are also read to construct the intensity
images. To produce one intensity value per grid cell, a statistical measure is used
which considers the intensities of all the points that are binned in a cell. The results
produced by using different statistics are influenced by the selected grid cell size.
For example, if a large cell size is used then the mean of the intensity values in a cell
will be very incorrect. It will be the mean of very different normal vector values. In
such case, it would probably be better to use the mode of the collected intensity
values. For very small grid cells it is assumed that the influence of the statistic on
the registration results will not be great. Different statistical measures are applied
and compared in Chapter 5 (Implementation & Experiments).

Examples of intensity projections are illustrated in Figure 4.14.

Figure 4.14: The three images produced from the point cloud tile of Figure 4.7 illustrating
intensity values. The images have grid cell size 0.15m and each pixel value is the result of the
mean of the binned points’ intensities.
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explanation of the images

• The brighter the pixel, the higher the intensity value. High intensity values
correspond to objects with high reflectivity. These objects have brighter
colours.

• The darker the pixel, the lower the intensity value. Low intensity values
correspond to objects with low reflectivity. These objects have dark colours.

• For example, as it can be observed in the circled areas of the Figure 4.14, the
painted lines on the roads which usually have white or yellow color are
represented with brighter pixels. In contrast, the rest of the road surface is
represented by darker pixels.

4.4.4 Gradient of intensity images

Apart from the intensity images also images that illustrate the gradient of the
intensity are generated.

reasoning Corresponding points in two overlapping point cloud tiles may have
different intensities. This happens because the intensity values depend among others
on the distance between the scanned object and the position of the scanning system
at the time of the recording. The Figure 4.15 illustrates the problem. Images that
illustrate the gradient of intensity are introduced to support the multi-registration
method. As explained in the theory in Subsection 2.5.1, the information expressed
by the gradient is the rate of change of the values in one image, in the horizontal and
vertical direction. As it was clearly shown in Figure 2.10d of page 2.5.1, when the
gradient of an image is computed the edges of the objects are clearly distinguished.
By computing the gradient of intensity, the problem of the intensity images is not
solved as explained with Figure 4.16.

Figure 4.15: The two Figures illustrate the intensity XY-projection created from two
overlapping point cloud tiles. The pixels in the yellow circles show corresponding areas in the
two images where the intensity values are different. This depends on the distance between
the objects and the recording vehicle. When the points are scanned from a short distance, the
pixels in the intensity images are brighter. When the points are scanned from a long distance,
the pixels in the intensity images are darker.

The added value is the provision of a new types of images which is assumed that
can help the registration process. This assumption is made because the rate of
change is a property which is not visualized in the intensity images. It is of high
importance because it indicates the boundaries of the objects, which it is believed
they can determine the registration results.
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Figure 4.16: The two Figures illustrate the gradient of intensity XY-projections generated from
two overlapping point cloud tiles. As the gradient expresses the rate of change in the values,
the gradient has very high values when the rate of change is high. The areas in the circles
are observed and compared with the areas in the circles of the intensity images (Figure 4.15.
When the intensities of the stripes on the roads are high, then the rate of change in the gradient
of intensity is high. When the intensities of the stripes on the roads are low, then the rate of
change in the gradient of intensity is low.

method As mentioned in the theory the computation of the gradient of an image
requires the computation of the first derivative of the image. The Sobel operator is a
very common operator suitable for approximating differentiation. The
approximation is performed by fitting discrete values on a polynomial. The Sobel
operator is applied on the intensity images created on the previous step to compute
the gradient of the intensity. Relevant theory about the Sobel operator is found in
Section 2.5.2.

9The size of the kernel indicates the extent of the approximation since the number
of the discrete values in the kernel are fitted on a polynomial. If a large kernel is
used then the kernel is computing the fit over a larger area of pixels. Therefore,
a large kernel will have higher possibility to compute a closer approximation to the
differentiation. Consequently, a 5 X 5 pixels kernel is chosen. Prior to the explanation
of the whole method, a Figure relevant to the choice for the kernel’s size is discussed.
Particularly, the method for the computation of the image gradient is applied twice,
once with a 3X3 kernel and once with a 5 X 5 pixels kernel. As it can be seen in Figure
4.17 some edges of objects are better distinguished when the kernel’s size is 5x5. This
could positively assist the image registration process.

After the selection of the kernel size the gradient of each intensity image is
computed once in the horizontal and once in the vertical direction by using the
respective kernel. A software library is used to compute the gradient in X and in Y
direction (Section 5.1.2). Next, the magnitude of the gradient is computed with the
equation given in the theory. It was noticed that points that were very isolated, as
expected, became more distinct when the gradient was computed. Such cases could
confuse the registration, therefore a Gaussian smoothing filter was applied to the
intensity gradient images. An example of the final intensity gradient images is
illustrated in Figure 4.18.

explanation of the images

• The bright pixels indicate change in the intensity values. The dark pixels
indicate no change in the intensity values.

• The brighter the pixel the bigger the change in the intensity values.
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Figure 4.17: a) The gradient of the intensity applied on an XY-projection with kernel size 5
x 5 pixels. b) The gradient of the intensity applied on an XY-projection with kernel size 3 x 3
pixels. As it can be observed at the magnified part of the images and especially at the edges
where the arrows are pointing, the result with a kernel 5 X 5 produces edges that are more
clear.

Figure 4.18: The three images produced from the point cloud tile of Figure 4.7 illustrating
gradient of intensity values.

• With the gradient of intensity the edges of the objects are distinguished. This
is something that is not visible on the intensity images (Figure 4.14).

4.4.5 Depth images

The attribute of depth of the 3D points is also used to assign values to the pixels of
the XY, XZ and YZ projections. Depth images depict how far the objects of an image
are with respect to a view point.

reasoning The depth of the 3D points is considered useful for the
multi-registration process because identical objects placed at different depths can be
distinguished. For example, if some identical buildings are placed next to each
other but a few of them are placed at a shorter distance to the viewpoint than other
buildings, then their depth values will be different. In such a way, the possibility
that the image registration process matches identical buildings incorrectly would be
lower.
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method The depth of each pixel in the created projections considers the
coordinate of the 3rd dimension of the binned points. For example, the pixels of an
XY-projection illustrate the Z-values of the points. The closer the Z from an
imaginary XY-plane viewing the point cloud tile perpendicularly from the top, the
less the depth of the points. Similarly, a YZ-projection illustrates the X-values of the
points as their depth. The closer the X from an imaginary YZ-plane viewing the
point cloud tile perpendicularly from the side, the less the depth of the points.
Lastly, a XZ-projection illustrates the Y-values of the points as their depth. The
closer the Y from an imaginary ZY-plane viewing the point cloud tile
perpendicularly from the side, the less the depth of the points. In many LiDAR

processing applications the depth value computed for 2D data is the distance value
between the laser scanner and the point object. However, for a point cloud
registration process such an action would not be ideal. Two overlapping point
clouds tiles may have been retrieved from different viewpoints, thus corresponding
points will not have the same depth.

To produce one depth value per pixel again different statistical measures are
compared in Chapter 5. Examples of depth projections illustrating the maximum
depth value calculated per pixel are given in Figure 4.19.

Figure 4.19: The three images produced from the point cloud tile of Figure 4.7 illustrating
depth values. The images have grid cell size 0.15m and each pixel value is the result of the
max of the binned points’ depths.

explanation of the images

• The brighter the pixel, the less the depth of the binned points from an
imaginary plane from which the points are observed.

• If the trees at the left part of the XZ-projection in Figure 4.19 are observed, one
might think that the tree illustrated with black pixels is closer to the viewpoint
than the tree illustrated with bright pixels. But as explained, bright pixels are
closer to the viewpoint. The images show the maximum depth of the points
collected in each cell. In the case of the XZ-projection the maximum Y
coordinate lays the further away from the viewpoint of the XZ-plane. The tree
illustrated with bright pixels overlaps the tree illustrated with black. But
because the maximum depth is chosen, the tree at the back is also shown and
not only the tree at the front. Where bright pixels exist, it is indicated that
nothing else exist behind those pixels.
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4.4.6 Gradient of depth images

Apart from the depth images also images that illustrate the gradient of the depth are
generated.

reasoning The drawback of the depth images is that the depth value of the
same object in two overlapping point clouds may be different. That can happen
because of the possible offset between the coordinates of two overlapping point
clouds. For instance, if the depth image in a XY-projection is created and there is a
positioning error in Z direction of 10cm that means that corresponding depth values
in the two images will differ by 10 cm. Therefore, image registration techniques
which are dependent on the common visual information of the matched images can
possibly produce incorrect results. In order to make the multi-registration method
profit from the depth information, images that illustrate the gradient of the depth
are constructed. The gradient of the depth will make the depth discontinuities
distinguished. Thus, even if the depth of two corresponding pixels in two
overlapping images differs, the depth discontinuities will be the same. In such a
way, the possibility to retrieve better matching estimates than with the depth
images is considered higher.

method The images that illustrate the gradient of depth are constructed exactly
the same way as the images that illustrate the gradient of the intensity. An example
of gradient of depth images is given in Figure 4.20.

Figure 4.20: The three images produced from the point cloud tile of Figure 4.7 illustrating
gradient of depth values. The images have grid cell size 0.15m.

explanation of the images

• The bright pixels indicate change in the depth values. The dark pixels indicate
no change in the depth values.

• The brighter the pixel the bigger the change in the depth values.

4.4.7 Images based on normal-vectors

The normal vectors computed on the points of each tile are also used to assign values
to the pixels of the XY-, ZX- and ZY-projections.

reasoning The image registration approach could be assisted by using the
normal vectors as the pixel values. As the normal vectors determine the surfaces’
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orientation, the created images based on normal-vectors will have the same
property. Instead of using the normal vector the bearing angles could be computed
as suggested by Lin et al. [2017]. However, by comparing the images based on
normal-vectors and the images based on the bearing angles, it is decided to use the
normal-vectors. The advantages and the disadvantages between the two types of
images concerning the image registration are summarized in the Table 4.2. The
construction of the bearing angle images takes into account consecutive
measurements of points to highlight the orientations of the surfaces on the created
images. However, consecutive point measurements may not be exactly scanned on
the edges of the objects. Consequently, the edges created with the bearing angle
images will not be representative of the real edges of the objects.

Bearing angle images Normal vector images
Capability to highlight the orientation
of the surfaces at specific directions.

Capability to highlight the orientation
of the surfaces at all directions.

Consecutive point measurements may not
be exactly scanned on the edges of the
objects. Consequently, the edges created
with the bearing angle images will not
be representative of the real edges of the
objects.

Table 4.2: A comparison between the images based on the bearing angles and the images
based on the normal vectors.

method The normal vectors computed for each point cloud in the pre-processing
phase are used to create the images based on the normal vectors. Each normal
vector value is consisted of three components; the value in X, Y and Z. To store the
vector values, three color channels are used. Therefore the normal images are
RGB-based. The values of the three components could be merged into one, thus the
output would be grayscale images. In such a way the normal vector images would
require less storage memory. However, this is not performed in this project, but it
could be considered as a future enhancement of the method. The Figure 4.21 shows
an example of the XY, XZ and YZ projections which illustrate the normal vectors of
the points in the point cloud shown in Figure 4.7. To produce one normal vector
value per grid cell, the mean of the normal vectors of all the points that are binned
in each cell is calculated. The output is influenced by the selected grid cell size. For
example, if a large cell size is used then the mean of the normal vectors in a cell will
be very incorrect as it will be the mean of very different normal vector values. In
such case, it would probably be better to use the mode of the collected normal
vector values, but this is not currently implemented. For very small grid cells it is
assumed that the influence of the statistic on the registration results will be
insignificant.
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Figure 4.21: The three images produced from the point cloud set of Figure 4.7 illustrating
normal vector values. The grid cell size equals to 0.15m.

explanation of the images

• The images show the perpendicular vectors of the planes that can be fitted on
neighbourhoods of points. That means that the pixels which have the same
color belong to surfaces of which the perpendicular vector is pointing at the
same direction.

• For example it can be seen that the ground is filled with pixel of the same color
(purple). That is because the normal vectors of the points at the ground are
pointing towards the same direction, towards the sky.

• On the normal images the directional discontinuities can be spotted. For
example green lines of pixel can be seen among the purple pixels that
represent the ground (Figure 4.21, plane XY).

• Structures that are parallel and the recording vehicle passed in the area
between can be spotted, as they are illustrated with different colours. For
example, in the XY-plane there are parallel lines at the lower part of the image
and approximately in the middle of the image. Those that are on the lower
part have green colour and those that are in the middle have dark purple
colour. This is an indication that the registration approach could not be
confused by wrongly matching different structures that have identical form.
The normal vectors of the parallel lines have same direction but different
orientation because the vectors are pointing towards the trajectory of the
recording vehicle.

4.4.8 Images based on the components of the normal-vectors

Apart from the images based on the normal vector, the normal vectors are used to
generate images that show the vector’s value only in X, only in Y and only in Z
direction.

reasoning The decision to create these images is taken because it is expected
that in this way the surfaces’ orientation could be strengthened. By using the vectors’
values only in one direction it means the focus of the orientations lays on the selected
direction. Further explanation follows.



60 image-based point cloud local registration approach

method To construct the images of the normal vector’s components, each channel
of the normal vector images is used separately to create the three different types of
images. Similarly with the other types of images that have been mentioned, different
statistical measures are used in order to produce one value per pixel. These are
compared in Chapter 5. The Figures 4.22, 4.23 and 4.24 show an example of the
relevant images for the point cloud shown in Figure 4.7. The Figure 4.22 shows the
values of the normal vectors in X direction, the Figure 4.23 in Y direction and the
Figure 4.24 in Z direction. A legend is added to the Figures to explain the symbols
which are added in order to assist the explanation of the images.

Figure 4.22: The three images produced from the point cloud set of Figure 4.7 illustrating the
X values of the normal vectors.

explanation of the images

• If the selected component of the computed normal vector has high value then
the pixel’s value will be high. High pixel values are bright in grayscale images.
If the selected component of the computed normal vector has low value then
the pixel’s value will be low. Low pixel values are dark in grayscale images. If
the selected component of the computed normal vector has an average value
then the pixel’s value will be average. Average pixel values are gray in
grayscale images. This is visualized on the XY-projections of the Figures 4.22,
4.23 and 4.24. Same explanation is valid for the other projections.

• For example in Figure 4.22 which shows the normal vector in X direction the
normal vectors are drawn at three points. Then the normal are split in their
components, the Nx which is the normal in the horizontal direction and the
Ny which is the normal in the vertical direction. For now the Nz which is
the normal in Z direction is skipped since the image illustrates the Nx values.
The dark pixel values appear when the Nx has a low value, the bright values
appear when the Nx has a high value and the gray values appear when the Nx
has an average value. Same logi valids for the Figure 4.23.

• In Figure 4.24 which shows the normal vector in Z direction the normal vectors
are drawn at two points. When the normal points towards the sky, the Nz
has a high value thus the pixels are bright. When the Nz points -90o or +90o

from the sky then the Nz has an average value and thus the pixels are gray.
Dark pixel values do not appear as the normal vector never points towards the
ground. This occurs because the normal vectors are always orientated towards
the scanning system.
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Figure 4.23: The three images produced from the point cloud set of Figure 4.7 illustrating the
Y values of the normal vectors.

Figure 4.24: The three images produced from the point cloud set of Figure 4.7 illustrating the
Z values of the normal vectors.

In this Section, the proposed method for the conversion of 3D to 2D data was
presented. To summarize, nine types of images are used to represent each point
cloud tile. An image type defines the points’ attribute used to fill the 2D grid cells
of the three projections. For each image type, a set of three projections is produced.
For example, the XY, XZ and YZ projections that illustrate the density of the points
define one image type. Overall, 27 image pairs are constructed for each point cloud
pair (Figure 4.25).
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Figure 4.25: The 27 produced image pairs from each overlapping point cloud pair. Each small
blue rectangle indicates the plane of the projection. Thu numbering indicates the point cloud
that is projected.

4.5 pairwise image registration

For each pair of overlapping point cloud tiles, 54 images are created. The 54 images
correspond to 27 images per point cloud tile. 27 image matchings are performed per
point cloud pair, therefore the proposed method is often referred to a
multi-registration method. A template matching technique is used to register image
pairs. Detailed theoretical information about template matching techniques is
found in Section 2.5.5. Briefly, a template matching technique determines the
location of a template image within a reference image [Sarvaiya et al., 2009]. The
detection of the one image’s location into the other is performed by comparing the
pixel values of the two images. The best match lays at the pixel where the highest
similarity value is computed.

The proposed method suggests having projections in XY, XZ and YZ planes for
each image type. The registrations of the three projection pairs of the same type
output twice each translation parameter. For instance, the registration of the density
XY-projection of a point cloud tile t1 with the density XY-projection of a point cloud
tile t2 outputs the X and Y translation parameters. The registration of the density
XZ-projection of a point cloud tile t1 with the density XZ-projection of a point cloud
tile t2 outputs the X and Z translation parameters. Similarly, the registration of the
density YZ-projections outputs the Y and Z translation parameters.

reasoning As mentioned in Section 4.4 on page 50, the decision for creating
multiple images per tile was taken in order to increase the confidence levels of the
results. However, this design decision should not be the reason why the method
becomes very complex and requires large computation time. There must be a
balance. Template matching techniques consider simple statistical analyses of the
brightness values of two images. Therefore, the template matching methods are
suitable for the proposed multi-registration method. An alternative of template
matching techniques could be the detection and matching of features in the images
[Rublee et al., 2011]. As implied, such techniques require first the implementation of
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a method to detect unique features and then their matching to compute the
transformation parameters. In contrast, a template matching technique can be used
to estimate the position of the one image into the other only by comparing
statistically the pixel values of the two images.

There are different methods that can be performed in order to apply a template
matching technique [Ding et al., 2001]. The employed template matching method is
based on a simple cross correlation statistical analysis of the brightness values of the
two images. Theoretically the template image shifts over every possible location of
the reference image, pixel by pixel1. At every location, a degree of similarity
between the two images is calculated as the sum of all the multiplications between
the corresponding pixels of the template and the reference image [Ding et al., 2001].
A cross correlation method is sensitive to possible differences in the brightness
values of corresponding pixels between the two images that are matched [Sarvaiya
et al., 2009]. Such differences may exist in the created images as explained. For
example, the density values at corresponding pixels of an image pair may be
different due to the different recording positions of the point cloud tiles. Despite
this drawback of the cross correlation method, it is used in this project because high
correlations can still be obtained if the pixel values follow the same pattern [Ding
et al., 2001]. In other words, if the pixels’ values increase and decrease the same way
but the pixels’ values are not completely the same, it is still possible to get a correct
registration solution. Additionally, the method performs successfully even when
small rotations and scaling is presented [Sarvaiya et al., 2009]. Since there might be
some small rotations in the point clouds, as explained in Section 1.1.2, this property
of the cross correlation method could be beneficial.

method As a template matching technique determines the location of one image
into another one, it is implied that the one image should be smaller than the other
image. If the images in a pair have the same size, then there is nothing to compute.
The conversion from 3D to 2D is conducted in this project in such a way that the
images resulted from one overlapping pair have the same size (as described in page
48). In order to allow to the template matching technique to detect the matching
position of the two images in a pair, search space must be created between the
template image and the reference image. Therefore, a border of additional pixels is
added to the reference image. The added pixels contain zero values. An ideal
selection for the value of the added pixels would only positively influence the
template matching process. Adding zero values was an easy decision in order to
achieve the goal of creating search space between the template and the reference
image. The number of the extra pixels is determined according to the maximum
expected translation error and the grid cell size. The assumption that in worst case
scenario the translation errors between the point clouds can be 5m is made. Such a
big error is chosen for the cases where there is no GNSS reception at all, and the
system is completely dependant on the IMU. For example, if the grid cell size of the
created imagery equals to 0.05m, then approximately 100 grid cells (pixels) are
added in each side of the image used as reference. The number 100 results by
dividing 5m by 0.05m. Figure 4.26 illustrates two images created from two
overlapping point clouds. This Figure indicates the reason why one of the images
must be modified in order to be used as the reference image.

In the theory, it was mentioned that usually registration methods take into
account a fixed and a moving scan (Section 2.1.2). The moving scan is moved to
match the fixed scan. The cross correlation template matching technique in this

1 The template matching technique constitutes theoretically a convolution of matrices in the spatial domain.
The convolution in the spatial domain is usually implemented as a multiplication in the frequency domain
through the Fast Fourier Transform, because it is a significantly faster than the convolution in the spatial
domain. The OpenCV library which is used for the implementation of the template matching technique,
performs the convolution in the frequency domain.
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project is implemented twice. The first time one image from a pair is considered the
reference or in other words the fixed image, and the next time the other. This is
decided because there is no knowledge with regard to which point cloud set in a
pair has the most correct absolute position, or even if any of them has. This is
explained further in Section 2.1.2.

Figure 4.26: a) and b) Two depth gradient YZ-projections created from two overlapping point
clouds. The images are created with the proposed method thus they have equal size. If these
two images are superimposed, corresponding objects will not match. This can be seen by
observing at the lines that represent the ground in the two images. There is clearly a different
in the Z coordinates of the images. c) In order to allow to the used method to detect the
position of the one image into the other, zero-pixels are added at each side of the image in (a).
In such a way, (c) can be used as the reference image and (b) as the template. The white line
in (c) is added here to distinguish the added pixels from the initial image.

Every time that the template matching is applied to match two images of the same
type, the so-called score map is extracted. As described (in Section 2.5.5), a score
map is a 2D array that contains the similarity scores computed between the template
and reference image at all the possible overlay positions.

As the matching of each image pair is applied twice with swapped roles between
the reference and the template image, one of the two resulted score maps is flipped
horizontally and vertically. Then the modified score map is superimposed onto the
other score map to retrieve the final output. A relevant example is illustrated in
Figure 4.27.

The next step is to detect the image coordinates of the array cell in the score map
that contains the highest similarity value. As explained and illustrated in the theory,
the location of the highest similarity value is the location of the template image into
the reference image. The highest similarity value is determined by detecting the
maximum value among all the pixel values in the score map.

To summarize, let’s take an example where a density XY-projection created from
a point cloud tile 1 is matched with another density XY-projection which is created
from a point cloud 2. Firstly, the template matching is performed by using the one
XY-projection as reference and then, another template matching is performed by
using the other XY-projection as reference image. The resulted score maps are
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Figure 4.27: The two images on the top (A and B) are examples of two overlapping density
XY-projections. a) The score map resulted from using the image A as reference and the image
B as template during the matching process. b) The score map resulted from using the image B
as reference and the image A as template during the matching process. c) The final score map
resulted from superimposing the mirrored and flipped score map (b) on the score map (a).

combined in order to have one score map. The location of the highest pixel value is
detected on the finalized score map. This 2D location is the location in the reference
image, where the left top corner of the template image must be placed. Then the
images will be matched.

Each 2D matching location which is defined with pixel units, is then used to
determine the translation that registers the point clouds.

4.6 image coordinates to space coordinates

Since the developed method suggests the matching of images to ultimately match
point clouds, the matching location of the images given in pixel units must be
converted to meters.

method It is important to understand that a matching location indicates the
transformation parameters only in the directions that a plane is projected. If for
example two XY-projections are matched, then the matching location indicates the
translation parameters in X and Y axis only. If two XZ-projections are matched, then
the matching location indicates the translation parameters in X and Z axis only. The
similar applies when matching YZ-projections.

The coordinate represented in the width-axis of a projection is symbolized here
with a. The coordinate represented in the height-axis is symbolized with b. For
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instance, in an XY-projection X is represented by a and Y is represented by b. The
matching location resulted from matching two projections of common visual
information is defined by the location’s width and height in pixel units. The width
indicates the offset in the direction symbolized with a and the height indicates the
offset in the direction symbolized with b.

matchLocationab = matchwidth, matchheight

where a: the coordinate represented in the width-axis of a projection
b: the coordinate represented in the height-axis of a projection

As explained in page 48 the creation of the projections from the point cloud tiles
requires that the points’ coordinates on the vertical axis acquire a negative sign.
Consequently, a negative sign is assigned to the height component of the matching
location so as to retrieve the correct offset in the vertical axis. Apart from this
design decision, a number of pixels is added in each side of the image that is used
as reference. The additional pixels are determined based on the expected
translation error. The extra pixels must be subtracted from the matching location.
To compute the amount of additional pixels, the expected error in meters added in
one side of the image is divided by the grid cell size. As a result, the translation
parameters in pixel units that are free from the design decisions become known.
Lastly, the pixel units are converted in meters by multiplying with the grid cell size.
To summarize, the calculation of the 3D transformation parameters is given by:

btranslation = −(matchheight − ExpectedError/GridCellSize) ∗ GridCellSize

atranslation = (matchwidth − ExpectedError/GridCellSize) ∗ GridCellSize

where GridCellSize: is the width (which is equal to the height) of the
created projections’ cells in meters
ExpectedError: the expected translation error in meters added
in a side of the image

4.7 optimal solution & quality evaluation
In this chapter, it is explained how the final transformation parameters are retrieved
as they are computed many times from the multi-registration process. At the same
time it is explained how the quality of the results is judged. The suggested method
constitutes a combination of:

• Theoretical information from the Adjustment and Testing theory developed
for traditional geodetic observations [Teunissen, 2000], [Sweco Nederland B.V.,
2016]. Actual readjustment of the theory for LiDAR data is not conducted.

• Image processing techniques.

• Statistical measures.

This chapter reveals also the usefulness of creating various 2D projections from
each 3D point cloud tile.

In the theoretical background, in Section 2.3, the term quality is explained with the
reliability and precision. General definitions are given, but also definitions from the
Adjustment and Testing theory for geodetic observations [Teunissen, 2000]. The
given definitions are adjusted in this chapter for the local registration of mobile
laser scanned point clouds. By doing so, the suggested method for the retrieval of
the optimal solutions which is analyzed at the following steps, is justified.
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reliability and precision of local point cloud registration The
reliability and precision of the final optimum geodetic observations are based on
the collected relevant redundant observations [Teunissen, 2000]. For this project, the
observations taken into account at each local registration are the two overlapping
point cloud tiles with the points included in each tile. Therefore, the maximum
possible repetition of observations is two. Repetition is needed to calculate
precision. Repetition could only exist at the overlapping area between the two point
cloud tiles. After the application of the proposed registration method, a MSE could
be calculated between the points at the overlapping area of each point cloud pair.
However, it would be necessary first to detect the overlapping area between the
point cloud tiles. Moreover, there is no redundancy which could be utilized to
determine the internal reliability of the local registration results. In order to have
redundancy, a mathematical relationship must exist between the observations to
validate their correctness. For the geodetic measurements redundancy can be
obtained when measuring all the angles of a triangle instead of measuring two and
calculating the third. Nevertheless, a pair of overlapping point cloud tiles does not
provide any relationship which could be used to validate the reliability of the
relative registration results.

Instead of using the input data, namely the point cloud tiles, in order to judge the
quality of the results, the estimated transformation parameters could be used. As
the transformation parameters are computed with many different methods, they
can be used as observations in order judge the reliability and precision of the final
optimum estimations.

By merging all the information given here and in the theory, and by taking into
account the developed method up to now, the quality of a relative registration
between two point cloud tiles is defined as:

• A number that accompanies each final X, Y, Z translation parameter and
indicates the degree to which the parameter can be trusted. Particularly, that
number must describe how reliable and how precise each final translation is.
The final adjusted output consists of a set of three final translations (X, Y, Z)
originating from multiple local registration results of the same point-cloud
pair, retrieved from different methods.

• The reliability is defined as the extend to which errors are detected and how
sensitive are the final estimations to undetected errors. These two are
expressed by the internal and external reliability, respectively.

• The internal reliability determines how well errors are detected and thus,
whether a translation parameter is strongly checked. It can be defined
through a redundancy number. Redundancy is achieved when the computed
redundant relative estimations obey to some mathematical rules. The higher
the existing redundancy, the more powerful a measurement is. Also, the
internal reliability of an estimation can be defined by the size of the smallest
possible error that the estimation has. If the smallest possible observation
error is small, then the measurement is strongly checked.

• The external reliability of a final transformation parameter determines the
influence of a possible undetected error from a single registration estimation.
Final transformations that are highly influenced by undetected errors have
poor external reliability.

• The precision must be expressed by the repetition of local registration
estimations taken into account for the computation of the final translation
parameters. The smallest the variability in the considered estimations, the
more precise the final estimation.
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estimation of optimal solution - method The translation parameters are
computed from nine different techniques, since nine image types are employed for
the registration of each point cloud pair. Moreover, the transformation parameters
are extracted twice when registering one image type because of the three different
ways that the point cloud tiles are projected. Therefore a method to retrieve a single
optimum X, Y and Z translation for every point cloud pair is required. To do so, the
following steps are performed.

To obtain one optimum solution, firstly the results of low quality must be rejected.
As the quality is expressed partly with the internal reliability which determines how
well errors are detected, the first step is to use a method for errors detection. In
other words, the aim is to detect the transformation parameters that might have
been estimated incorrectly from the multi-registration method. The method must be
capable of judging a single local transformation estimation individually. This is done
by applying three evaluation criteria on the resulted score maps. The information
that the score maps contain indicates the strength of the matching and that is the
reason why the focus of the evaluation is on the score maps. The evaluation criteria
are explained below.

1. Criterion 1: The highest similarity value of a score map must be higher than
a specific value. As specified by Lemmens [1988] a threshold value must be
applied on the highest similarity values of the score maps to eliminate the
values that are not high enough. The lower the similarity value the weaker the
matching between the two images. Some experiments were performed with
which it was observed that the highest similarity values, retrieved when
matching the created imagery, were either very high or very low. Particularly,
the high values had order of magnitude higher or equal to 3 and the low
values had order of magnitude -1. The lower boundary is set to 1.00 so as to
exclude all the matching results with highest similarity values of order of
magnitude -1. These values are considered significantly low in comparison
with rest of the highest similarity values, and therefore the selected threshold
is 1.00.

2. Criterion 2: The highest similarity value of a score map computed with two
different methods must be at the same image location. As explained on page
64, the highest similarity value of a score map is initially determined by
searching for the maximum value among the pixel values of a score map. The
highest similarity value is computed again at this step with a different method.
This method employs a maximum filter2 to detect the local maxima in the
score maps. Local maxima constitute peak pixels formed by their surrounding
pixel values. It is possible that in a score map there are more than one peaks.
Some of those will have higher and some lower values (in score maps of good
quality) or all of them will have high values (in score maps of bad quality).
The detected peak pixels with the maximum filter method are sorted from the
highest to the lowest value. The peak with the highest value constitutes the
matching location computed with this method (Figure 4.28). The expectation
is that the matching location returned from the first method (page 64) is the
same as the matching location determined with the technique explained here.
If this criterion is validated then there is no doubt that there is only one
matching location. In such case a score map passes the present criterion.

3. Criterion 3: If more than one peaks of similarity values exist in the score
maps, then the matching location is accepted if its value is significantly
higher than the value of the second highest peak. To check the strength of

2 A maximum filter employs a running window which is an array that slides over the score map image. At
every location that the running window is shifted, a cell of the running window corresponds to a pixel in
the score map. The pixel of the score map that corresponds to the central cell of the window is replaced
by the brightest pixel among the pixels included in the window.
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Figure 4.28: a) An example of a score map in 2D. b) The score map of (a) in 3D. The yellow
circles indicate the local maxima in the specific score map, in 2D, and in 3D. The highest peak
among all the three local maxima is found in the middle of the score map and is illustrated
with red color.

the highest matching score, a comparison is made between the pixel values of
the first and second highest peak, in case there are more than one local
maxima. The technique used to detect the peaks of similarity values is
described in the previous criterion. If there is a significant difference between
the values of the highest two peaks, then the first highest peak is undoubtedly
the best matching location. Specifically, the difference in the values of the two
highest peaks is found and converted to a percentage. After conducting some
experiments with the given data, it was decided that by setting a threshold of
3%, the unreliable score maps could be detected. If the difference between the
values of the two highest peaks is higher than 3% then the highest peak can be
highly trusted. If the difference between the values of the two highest peaks is
lower than 3% then the highest peak is not trusted.

The score maps that are taken into account for the computation of the optimal
transformation parameters are those which pass all the evaluation criteria. Even if a
score map passes two out of the three criteria, it is still rejected. This decision is
made to increase the possibility that only transformation parameters of good
quality are considered for the final estimations. The score maps that pass all the
evaluation criteria are taken into account to reduce the computed redundant
solutions. Particularly, the translation parameters (X, Y, Z) which are computed 27
times per point cloud pair are decreased to 9. To explain the method, the Table 4.3 is
given. The row 0 of the table indicates the image type. The column 0 of the table
initially indicates the projection type. The cells that are filled with a ’Yes’ or ’No’
show if the evaluation criteria are passed for a specific image type projected on a
specific plane. For example, the cell in row 1 and column 2 shows that the matching
of two depth XY projections has been accepted since all the evaluation criteria are
passed. This means that the X and Y translation parameters computed from this
specific image pair can be used for the computation of the optimal solutions. Also,
the cell in row 2 and column 2 shows that the pair of XZ projections passed the
assessment criteria. In comparison, the example shows that the matching of depth
YZ projections did not pass the evaluation criteria (row 3, columns 2). As a result,
there are two X parameters computed from the depth image type. One from the XY
projection and one from the XZ projection. The X can be then computed for the
depth image type as the average of the two X translations. In comparison, the Y
parameter is only accepted from the XY projection. Thus, the Y parameter from the
depth imagery is equal to the Y translation parameter as given from the matching of
the XY image pair. Furthermore, it can be seen that in the example, none of
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projections of the depth gradient has been accepted. Therefore, the depth gradient
images do not contribute at all to the final estimations. Overall:

• The solutions produced from the multi-registration process of each point
cloud pair are treated firstly per image type. The alternative way, would be
just to treat together all the estimations of each translation which pass the
evaluation criteria. The decision to merge the estimations firstly per image
type is made because the projections of one image type contain the same
information. This information is the specific attribute of the 3D points that the
projections illustrate.

• Each parameter is computed from two projections per image type. If the
matchings of both projection pairs (from which one translation parameter is
computed) are accepted, then the X, Y and Z of the specific image type are
computed as the average of the two solutions retrieved from the two
projections’ matchings.

• If the matching of only one projection pair among the two projection pairs
(from which one translation parameter is computed) is accepted, then the X, Y
and Z resulted from a specific image type are equal to the one solution from
the one projection’s matching.

• If the matchings of both projection pairs (from which one translation
parameter is computed) are rejected, then the two translation parameters
computed from the specific image type are not considered for the
computation of the final solution.

0 1 2 3 4 5 6 7 8 9

0 density depth
depth

gradient
...

1
XY
projection

Yes Yes No

2
XZ
projection

Yes Yes No

3
YZ
projection

Yes No No

4
X translation
from an
image type, X

(Xxy +
Xxz)
/2

(Xxy +
Xxz)
/2

-

5
Y translation
from an
image type, Y

(Yyz +
Yxy)
/2

Yxy -

6
Z translation
from an
image type, Z

(Zyz +
Zxz)
/2

(Zyz +
Zxz)
/2

-

Table 4.3: The table shows the redundant solutions are decreased from 27 per translation
parameter (X, Y, Z) to 9 per translation parameter.

The optimum X, Y and Z translation parameter are the average of the estimations
resulted from the previous step. For instance, the optimal X solution of the example
given in the Table 4.3 is the average of all the values included in the cells 4,1 till
4,9 where the first number indicates the row and the second indicates the column.
The maximum amount of estimations that can be taken into account for the optimal
solution’s calculation is nine, as the image types are nine. Nevertheless, the included
solutions can be less than nine, depending on the amount of accepted score maps per
point cloud pair.
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internal, external reliability and precision - method The Figure 4.29
illustrates an overview of the method followed for the quality evaluation of the
results.

Figure 4.29: Overview of the method followed for the quality evaluation of the results.

In order to provide insight about the internal reliability of the results it must
be checked how well errors are detected, or in other words, whether a translation
estimation is strongly checked. An indication about the internal reliability is given:

• for the estimations retrieved from the registrations of every image type and

• for the final optimum estimation.

The ultimate purpose is to judge the internal reliability of the optimal solutions.
However, the optimal solutions are based on the estimations retrieved from the
matchings of the different image-types. Thus, firstly the internal reliability of those
is evaluated. A mathematical relationship between the computed translation
parameters is required. The only correlation that can be claimed is the equality
between the translation parameters retrieved from the registrations of the same
image-type, but from different projections. For instance, the X translation estimated
from the registration of the density XY-projections and the X translation estimated
from the registration of the density XZ-projections, must be the same. This kind of
correlation can be assumed since the registration is performed with the same type
of information. Namely, both projections visualize the same attribute of the points.

Redundancy exists when the matchings of both projection pairs (from which one
translation parameter is computed) are accepted, and the estimations from the
matchings are equal. Otherwise, redundancy does not really exist and the
estimation is internally not reliable. However, here redundancy is considered the
amount of estimations from a specific image-type that are taken into account for the
calculation of the optimum solution. This modification is made so as to gain
detailed insight on how strong an estimation from a specific image-type is. Below
this concept is explained and illustrated in Table 4.4.

1. If the matchings of both projection pairs (from which one translation
parameter is computed) are rejected, then the redundancy number of the
translation parameter estimated from the specific image-type is equal to zero
out of two (0/2). For example, in Table 4.4 the cell 7,3 (row, column) shows
that the internal reliability of the X translation parameter from the depth
gradient images is 0/2. This is because the estimation of the X translation
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parameter from the depth gradient projections does not exist. Th estimation
does not exist because the score maps of the XY and XZ projection did not
pass the evaluation criteria (see Table 4.3).

2. If the matching of only one projection pair among the two projection pairs
(from which one translation parameter is computed) is accepted, then the
redundancy number of the translation parameter estimated from the specific
image-type is equal to one out of two (1/2). For example the cell 8,2 shows
that the internal reliability of the Y translation parameter computed from the
depth images is equal to 1/2. This is because the Y parameter of the depth
images is retrieved only from the matching of the depth XY projections. The
matching of the depth YZ projections is rejected.

3. If the matchings of both projection pairs (from which one translation
parameter is computed) are accepted, then the redundancy number of the
translation parameter estimated from the specific image-type is equal to two
out of two (2/2).

4. If the matchings of both projection pairs (from which one translation parameter
is computed) are accepted and they are equal, then the redundancy number of
the translation parameter estimated from the specific image-type is symbolized
with a two plus out of 2 (2+/2). This is the highest possible redundancy that
can be retrieved from the registrations of one image type.

0 1 2 3 4 5 6 7 8 9

0 density depth
depth

gradient
...

1 X
(Xxy +
Xxz)
/2

(Xxy +
Xxz)
/2

-

2 Y
(Yyz +
Yxy)
/2

Yxy -

3 Z
(Zyz +
Zxz)
/2

(Zyz +
Zxz)
/2

-

4

Internal
reliability X
(Redundancy
number)

2/2 2/2 0/2

5

Internal
reliability Y
(Redundancy
number)

2/2 1/2 0/2

6

Internal
reliability Z
(Redundancy
number)

2/2 2/2 0/2

Table 4.4: The table is an extension of the example shown in Table 4.3. It illustrates the internal
reliabilities of the estimations outputted from each image type.

To determine the internal reliability of the X, Y and Z optimum solution, simply
the amount of image-types included for computation of the final estimations are
counted. To illustrate this, the Table 4.5 is given. Each cell of the row 1 shows the
amount of matchings that passed the evaluation criteria and thus they are taken
into account for the computation of the final X translation parameter. Since only the
depth gradient images (cell 1,3) does not contribute to the final X estimation, the
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overall redundancy is equal to 8/9. Nine is the amount of image types that are used
in total for the registration process.

0 1 2 3 4 5 6 7 8 9 10

0
Image
type

den-
sity

depth
depth
grad.

...
Ove-
rall
RN

1

Internal
reliability
X
(RN)

2/2 2/2 0/2 2/2 2/2 2/2 2/2 1/2 2/2 8/9

2

Internal
reliability
Y
(RN)

2/2 1/2 0/2 0/2 0/2 0/2 0/2 2/2 2/2 4/9

3

Internal
reliability
Z
(RN)

2/2 2/2 0/2 2/2 2/2 1/2 1/2 0/2 1/2 7/9

Table 4.5: The table is an extension of the example shown in Table 4.3. It illustrates the overall
internal reliability of each estimation.

In order to provide insight about the external reliability of the final estimations,
information about the influence of undetected errors must be provided. Errors that
might not be detected with the explained evaluation criteria (presented in page 68)
could take place when:

1. there are changes in one scene which is captured more than one times. For
instance, the first time that a scene is captured, a car is parked in front of a
building, but the second time the scene is captured, the car is not any longer
parked.

2. features with similar geometry, but different elevations are matched. For
example, two point clouds from the same area might include a road which has
a bridge on the top. Since a road and a bridge could possibly have similar
geometry, they could possibly be matched.

3. the observation point of the recording vehicle was far away from the scanned
scene. That means that only a few points recorded and especially less than
when the car was recording from a short distance. In such cases, the
registration process could be hindered as the overlap between two point
clouds may not be existed or the overlap between them may be very small.

In this project, only the last cause of possible undetected errors is employed to
provide information about possible influence on the final estimations. If few 3D
points scanned in a point cloud tile, then there will be many empty pixels in the
corresponding constructed projection. Empty pixels are those that are illustrated
with black. The employed method accumulates the pixels that are not black, namely
the pixels that include information from 3D points. According to the pixel’s size,
the area in m2 that those pixels cover, is calculated. Then the percentage of that area
is calculated by taking into account the total amount of pixels in the image, and the
area that the image covers in m2. This percentage is calculated for both images in an
image pair. It can be the case that one of the images represents a point cloud tile
with many points and the other image represents a point cloud tile with a few
points. Thus, in the one image there are will be many filled pixels, while in the other
many pixels that are empty. Such cases could hinder the registration process as the
overlap between them could not exist or the overlap between them could be small.
Therefore, in every case the minimum percentage from the two involved images is
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chosen. According to that percentage, weights that indicate how (externally)
reliable a matching might be, are given. These weights are illustrated in Table 4.6.
For example, the percentage of the area covered by non-empty pixels is computed
for two images that contain common visual information. If the least percentage
among the two is equal or higher than 40%, then it is assumed that the external
reliability of the specific matching is 0.9. A percentage of minimum 40% covered
area is considered high, therefore the external reliability assigned is high (0.9). The
external reliability weights are related only to the explained possible cause of errors.

External
Reliability
(ER)

Least %
of covered
area

0.9 >= 40%

0.8
>=20% AND
<40%

0.6
>=4% AND
<20%

0.4
>=1% AND
<4%

0.1
>=0% AND
<1%

Table 4.6: The table shows the (external) reliability weights given to image registration results
according to the image area (m2) that adopts information from the 3D points.

In order to provide insight about the precision of the final estimations a standard
deviation is computed. The standard deviation shows the variability of the
estimations resulted from each image-type registrations. The equation 4.2 indicates
how the standard deviation is computed per final translation parameter. The Table
4.7, which is an extension of the example shown in Table 4.3, shows in detail how
the standard deviations are computed.

Ov.σtp =

√
∑n

i=1(tpi −Ov.tp)2

n− rtp
(4.2)

where Ov.σtp : Overall standard deviation of a final translation parameter.
X, Y and Z are the translation parameters.
i : It refers to the image type from which a mean translation parameter

is retrieved. For example, density image matchings, depth, depth
gradient etc.
n : It is the total amount of image types from which a mean

translation parameter can be computed. This equals to 9, since 9 image
types are created per point cloud tile.
tp : The (mean) translation parameter computed from the registrations

of the two projections pairs of an image type.
Ov.tp : The mean translation parameter from all the translation
parameters retrieved per image type matchings, which pass the
evaluation criteria.
rtp : The amount of the image types from which both translation

parameters are rejected, when the evaluation criteria are applied.
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0 1 2 3 4 5

0 density depth
depth
grad

Other
image
types
..

Overall
mean /
Overall
stand deviation

1 Xi

(Xxy +
Xxz)
/2

(Xxy +
Xxz)
/2

-
Ov.X=
∑N

i=1(Xi)

9− rx

2 Ov.σX

Ov.σX=√
∑9

i=1(Xi −Ov.X)2

9− rx

3 Yi

(Yyz +
Yxy)
/2

Yxy -
Ov.Y=
∑9

i=1(Yi)

9− ry

4 Ov.σY

Ov.σY=√
∑9

i=1(Yi −Ov.Y)2

9− ry

5 Zi

(Zyz +
Zxz)
/2

(Zyz +
Zxz)
/2

-
Ov.Z =
∑9

i=1(Zi)

9− rz

6 Ov.σZ

Ov.σZ=√
∑9

i=1(Zi −Ov.Z)2

9− rz

Table 4.7: The table is an extension of the example given in the table 4.3. It shows how the
precision is computed for each final translation parameter. The final translation parameters
are symbolized as Ov.X, Ov.Y, Ov.Z. The precision of the final parameters are based on the
computation of the standard deviation. The standard deviations are symbolized as Ov.σX ,
Ov.σY and Ov.σZ, and they are computed from the accepted solutions retrieved per image
type. If an image type does not provide any solutions, then only the remaining solutions are
considered.

To summarize, the quality of the final registration parameters is indicated with
three numbers. These numbers define the internal reliability, the external reliability
and the precision of each final parameter. Moreover, the translation parameters
computed from each image-type are accompanied with a number that shows their
internal reliability. In other words, it shows how strongly each parameter is
checked.

4.8 sub-pixel accuracy
The accuracy of the results with the proposed method can not be better than the
accuracy of the images’ grid cell size. That is because the method detects the pixel
were the best matching between two images is found. As a result, the accuracy of the
translation parameters is always equal to the resolution of the images. For example
if the images’ pixel size is 5 cm, then it is not possible to detect a potential translation
error of less than 5 cm. To gain more insight about the problem, a score map resulted
from the registration of two images is visualized in 3D and magnified 4.30. One can
see that the result of the matching is not a single point, but is a whole square (that is
the upper face of the bar that represents the peak). That implies that the matching
solution lays somewhere in that square, or in other words, lays somewhere in the
pixel that indicates the matching location.

It is important to clarify that since the optimum translation parameter is calculated
as the average from the accepted estimations, the final estimation could possibly
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have sub-pixel accuracy. But this accuracy is retrieved by calculating the average
translation and it is not computed from the registration method.

Apart from the fact that by performing a sub-pixel accuracy method the results
will have better accuracy, there is another reason why a sub-pixel accuracy method
would be beneficial. The execution time of the developed algorithm is related with
the grid cell size of the created images. That is because the size of the grid cells
determines the amount of cells in an image. The computation time of the developed
algorithm would be less if a large grid cell size is used. The bigger the grid cell size,
the less the grid cells of an image. As the cells are less when large grid cell size is
used, it means that the binning of 3D points into 2D grid cells will be performed
less times. It also means that the template matching will have to examine less pixels.
Nevertheless, when large grid cells are used, the accuracy of the translation
parameters will be very poor. However, if a simple sub-pixel accuracy method is
applied on the registration results retrieved by constructing images with large grid
cells, then the results will obtain high accuracy. Moreover, the execution time would
be less than when using small grid cell size. For that reason, a sub-pixel accuracy
method is wanted.

Figure 4.30: a) An example of a score map image visualized in 3D. The score map illustrates
the similarity scores between two images that are matched. The highest score is colored with
red. The emphasis of the Figure is on the fact that the matching solution does not have
point-resolution, but a pixel-resolution. (The score map used to create the graph has grid cell
size 0.5m. By using a score map with low resolution, the problem of having discrete matching
values is visually stressed).

methodology Lemmens [1992] and Zhang et al. [2009] interpolate over the
discrete values of an image in order to obtain sub-pixel accuracy. Thus, the main
idea of the developed method is to apply an interpolation method on the discrete
pixel values of the score maps. The interpolation method is performed on the score
map arrays because they include the matching information. The pixel with the
highest similarity indicates the matching location. By applying an interpolation
method, the exact point where the highest similarity score lays, can be found. The
sub-pixel accuracy method is only applied to the score maps that pass the quality
evaluation criteria (see page 68). Since the peak pixel is computed earlier with two
methods (see pages 64 and 68), the interpolation is specifically applied over the
peak pixel value and its neighbouring pixels in a score map (Figure 4.31). The
challenging part is to find what kind of interpolation method to use so as to
describe best the way the pixel values are distributed. In other words, the function
that could be best fitted in the area over the peak pixel is searched.

Theoretically it would be logical that the pixel values over the peak pixel in the
score maps are distributed almost normally (Gaussian distribution). As mentioned
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Figure 4.31: The area on a score map where a sub-pixel accuracy method may be applied.
The blue pixel indicates the highest similarity value. The red square includes the neighboring
pixels to the peak pixel. The square includes 3 neighboring pixels in each direction. This could
be different but for this visualization 3 neighbors have been drawn. (The example score map
is the output from images with the grid cell size was 0.5m x 0.5m. For visualization purposes,
some columns and rows at the edges of the score map have been cropped).

by Naidu and Fisher [1991], the light incident on the laser scanner sensor is
distributed nearly normally. Thus, the points in a small area, such as the area
covered by a small pixel, are normally distributed. However, the developed method
bins the points in pixels and provides one value per pixel. Thus, the Gaussian
distribution begins to fade away. Furthermore, the template matching method is
applied and the similarity values are computed. Therefore, the way the values
distributed in a score map deviates more from a Gaussian distribution.

Moreover, it is considered that the distribution of the values around the highest
similarity value is not symmetric. This is believed because the scanned environments
are mostly not symmetric, and even more rarely are symmetric in every direction.
In such cases, the similarity values that surround the peak value would deviate in
different directions, such as in vertical and horizontal direction. The similarity values
could even deviate when they are in the same direction, but in opposite orientations,
for example on the left and the right of the peak value.

Firstly, a polynomial fitting was conducted. The equation that describes the fitted
polynomial can be used as an interpolation method to find the highest similarity
value with sub-pixel accuracy. Lemmens [1992] suggests two relevant methods. The
2D discrete values of the score maps can be approximated with two 1D second order
polynomials. The two 1D polynomials are fitted on the horizontal and vertical lines
of pixels that intersect on the highest similarity value (Figure 4.32).

Figure 4.32: The Figure illustrates where exactly a horizontal and a vertical curve is fitted on
the score maps in order to interpolate the discrete pixel values.
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The other method suggested by Lemmens [1992] considers the fitting of a curved
surface, described by a second order polynomial. In general, it is considered a
better solution to fit a surface instead of two 1D curves. By fitting a surface, the
whole neighbourhood is taken into account. However, the fitting of two 1D curves
is a simplified solution. In any case, both methods suggested by Lemmens [1992],
employ second order polynomials. To test if a second order polynomial is a good
way to model the values in the score maps, two 1D second order polynomial curves
are fitted horizontally and vertically. Score maps resulted from low resolution
images have been used to test the method. Such score maps contain less values than
the score maps resulted from high resolution images. In other words, the similarity
values are more sparse than in the score maps resulted from high resolution images.
It is more challenging to fit a function on sparse values, than on very dense values.
If the developed method succeeds with low resolution score maps then, there is
high chance that the method will also be successful with high resolution score
maps.

The Figure 4.33 shows a second order polynomial fitting on the values of the
score map shown in Figure 4.32. The Figure 4.33a shows how a second order
polynomial is fitted on the highest discrete similarity value and on 4 neighbouring
pixel values from the peak’s left and right side. The Figure 4.33b shows how a
second order polynomial is fitted on the highest discrete similarity value and on 4
neighbouring pixel values from the peak’s upper and bottom side. It can be seen
that the fitted created curves deviate significantly from the pixel values. This
indicates a non-representative fitting by the second order polynomial curves.
Although, only one example of fitting a second order polynomial curve is shown
here, some other experiments have shown the same insufficient fitting results.

Figure 4.33: a) Horizontal 1D second order polynomial fitting over the peak pixel of the score
map shown in Figure 4.32 and 4 neighbors of it in each side. b) Vertical 1D second order
polynomial fitting over the peak pixel of the score map shown in Figure 4.32 and 4 neighbors
of it in each side.

Before this option was totally excluded, the same method was performed by
using only 2 neighbouring pixels. By having less observations, in other words less
pixel values, the restrictions of the fitting are less. Thus, the fitting method is
facilitated. Nevertheless, as it can be observed in Figure 4.34 the fitting results
deviate significantly from the observations.

Since, the second order polynomial provided poor results, polynomials of higher
order were examined. Score maps created with images of different resolutions have
been used. Additionally, different numbers of neighbouring pixels have been
considered. As the Figure 4.35 shows, the order of the polynomial which fits best
the observations is in every case different. According to the input parameters,
different orders of polynomials fit best to the score maps. However, as the Figure
4.36 shows, when the input parameters do not change, the same order polynomial
fits best different score maps. The Figure shows the fitting result of only 3 score
maps, but more were examined and the order of the polynomial fitted best to the
observations was the same.



4.8 sub-pixel accuracy 79

Figure 4.34: a) Horizontal 1D second order polynomial fitting over the peak pixel of the score
map shown in Figure 4.32 and 2 neighbors of it in each side. b) Vertical 1D second order
polynomial fitting over the peak pixel of the score map shown in Figure 4.32 and 2 neighbors
of it in each side.

Figure 4.35: The Figures show the fitting of 1D curves on the values over the highest similarity
pixel of different score maps. a) Five neighbouring pixels are considered. A polynomial
of tenth order fitted successfully the horizontal values over the peak pixel value of a score
map resulted from images’ resolution 0.5m. b) Four neighbouring pixels are considered. A
polynomial of eight order fitted successfully the vertical values over the peak pixel value of a
score map resulted from images’ resolution 0.5m. c) Five neighbouring pixels are considered.
A polynomial of sixth order fitted successfully the horizontal values over the peak pixel value
of a score map resulted from images’ resolution 0.15m.

Figure 4.36: The Figures show the fitting of 1D curves on the values over the highest similarity
pixel of different score maps. All the score maps used resulted from images’ resolution 0.5m.
Also in all the cases 2 neighbouring pixels are considered in both directions (vertical and
horizontal). For all the cases a polynomial of fourth order fits best the pixel values over the
peak value.

Based on the conducted research, the conclusion is that a polynomial fitting could
be used if the input parameters are stable. The number of the neighboring pixels
can be stable, but the grid cell size of the created images is something that changes
according to the user’s desire. A possible solution to this would be to make the
algorithm examine different orders of polynomial. Then, the algorithm would
choose the order of polynomial that gives MSE (between the pixel values and the
corresponding points on the fitting line) equal or close to zero. However, such



80 image-based point cloud local registration approach

technique would be a bit complex as for every grid cell size, different order
polynomials would be required. This means that different functions must be used
to find the peak of the polynomials3, according to the polynomial’s order. For that
reason, other methods are examined.

The next step constitutes the 3D visualization of several score map images that
resulted from high image resolutions. The purpose is to observe if the score map
values follow a specific distribution. Then this could be used as the interpolation
method. The visualization is performed on high resolution images because those
are constituted from dense values, thus the distributions are better described. Since
the Velodyne HDL-32E LiDAR scanner from which the data used in this project has
accuracy 2cm, high resolution score maps are considered those that have accuracy
(grid cell size) from 2cm to 15cm. The Figure 4.37 shows examples of score maps
(in 2D and in 3D) resulted from images with resolution 5cm. The creation of the 3D
visualizations is made by extruding the matching scores. It is important to mention
that the score maps shown in the Figure 4.37 constitute ideal examples, as the high
similarity values are quite distinct; they are sharp and their values are high.

Figure 4.37: The score maps shown are outputs of the registration of different image pairs,
created from the same point cloud tile pair. The first line includes score maps in 2D. The
labels above the 2D score maps indicate the type of images matched to give the score map the
is placed below. The second line illustrates the 3D visualization of the 2D score maps. The
third line has more score maps in 2D and again the line below illustrates the corresponding
score maps in 3D.

The conclusion that can be drawn by observing the (ideal) score maps is that the
similarity values seem to be distributed with a 2D Gaussian or a 2D Laplacian
function, which is also known as a Bivariate Laplacian function (Figure 4.38).
Sometimes the peak of the score maps is not rounded. This can lead to the
conclusion that the distribution of the values is closer to a 2D Laplacian than to a 2D
Gaussian. Peaks that are not rounded are illustrated clearly on the score maps in 3D
at the second line of the Figure 4.37. Despite this, when the 3D score maps are

3 The peak of a polynomial corresponds to the highest similarity value between the two matched images,
that has sub-pixel accuracy.
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observed, it can be seen that the way the values are distributed at the edges does
not remind either a Laplacian or a Gaussian function. Both functions are flat at the
edges, while the score maps appeared to be a bit curved at the edges. Nevertheless,
the Laplacian and the Gaussian are the two distributions that are closer to the
distribution of the values in the score maps 4.

Figure 4.38: a) An example of a 2D Gaussian Probability Density Function. b) An example of
a 2D Laplacian Probability Density Function

It is finally chosen to model the values over the peak pixel in the score maps with
a 2D Gaussian function. The reasons are:

• There is no certainty about the perfect way to model the similarity values in
the score maps. The score maps seem to be distributed with a function similar
to a Gaussian or a Laplacian.

• It was explained that theoretically the values in the score maps are expected to
be distributed with a function similar to a Gaussian (see page 76).

• The equation for a 2D Gaussian is simpler than that of a 2D Laplacian (Figure
4.39). A simpler equation could possibly lead to a less complex implementation.
This is considered important as by applying a sub-pixel accuracy an additional
step is added to the proposed method. This step aims to improve the accuracy
and possibly the speed of the method. By applying a complex method, then
there is a chance that the algorithm becomes more complex than it was, or it
even needs longer execution time. These are both undesired.

Figure 4.39: The upper equation describes an (asymmetric) bivariate Laplace function
(Source [Kozubowski et al., 2013] and Wikipedia). The lower equation describes an (elliptical)
2D Gaussian function (Source [Anthony and Granick, 2009] and Wikipedia). The terms
asymmetric and elliptical indicate that the given equations describe observations that are
distributed differently in the two main directions where the peak is formed. For example,
the distribution of the values in X direction is more narrow than the distribution of the values
in Y direction.

4 Perhaps there are other distributions more suitable for the modelling of the values in the score maps
which the author is not aware of.
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The parameters in the 2D elliptical equation are:
A : Height of the peak
(xo, yo) : Location of the peak
a, b, c : Parameters that include the angle that describes the rotation

of the peak, and the variance in X (σx) and in Y (σy)

developed method The suitability of a Gaussian distribution is examined as
explained below.

1. Firstly the score maps that passed the evaluation criteria are retrieved.

2. The peak pixel computed from previous methods is obtained.

3. The neighbouring region to the peak pixel is found. Some experiments were
conducted to find out what is the ideal number of neighbouring pixel that must
be taken into account. It was found that by using no more than 2 neighbours
in each side of the peak pixel, the sub-pixel accuracy results were better than
when higher number of neighbors had been used.

4. A least squares adjustment method is applied to find the optimal 2D elliptical
Gaussian fit. The (bottom) equation in Figure 4.39 is used. An elliptical 2D
Gaussian is used because the variance of the values in the two directions
around the peak can be different in the score maps. An example is shown in
the ’intensity gradient score map’ of the Figure 4.37. To apply the least square
adjustment, initial approximation of the unknowns are provided. A takes the
value of the discrete highest peak value in the score map. (xo, yo) take the
location of the discrete highest peak. a, b, c adopt random numbers. After
some iterations, the sum of the squares of the residuals (between the
observations and the predictions created from the fitting) is minimized. The
input parameters that are initially approximate obtain final optimal
estimations based on the least squares adjustment. The new (xo, yo)
constitutes the location of the highest point in the fitted Gaussian surface.
This is the matching location of the images from which the score map was
retrieved. The location has sub-pixel accuracy.

5. The new matching location is converted to space coordinates as explained in
Section 4.6.

The Figure 4.40 shows a visual example of how a 2D elliptical Gaussian is fitted on
the similarity values around the peak value of a score map.
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Figure 4.40: a) The observations from a score map are triangulated for visualization purposes.
However, observations exist only at the vertices of the the triangles. The observations include
the discrete highest similarity value of a score map and two neighboring pixels at every side
of the highest similarity. The score map used in the specific example was extracted from
images with resolution 0.5m. The bar next to the graph indicates the corresponding similarity
score for each gradiation of green. The blue part that appears at the left, belongs to the fitted
Gaussian surface, which is clearly illustrated in (b). b) The predicted values from the fitting
of an elliptical 2D Gaussian. The predicted values are triangulated for visualization purposes.
By observing the triangles, the differences between the observations shown in (a) and the
predictions shown in (b) can be spotted. The bar next to the graph indicates the corresponding
similarity score for each gradiation of blue.





5
I M P L E M E N TAT I O N & E X P E R I M E N T S

This chapter includes details about the implementation of the proposed
image-based method for point cloud registration, which has been analyzed in
Chapter 4. To determine whether the implemented method is suitable for the
registration of 3D point cloud tiles, several experiments have been executed.
Specifically, the chapter is split in three sections. In Section 5.1, the data-sets and
tools used to perform the experiments are presented. In Section 5.2, specific details
of the implemented prototype are explained. Finally, in Section 5.3, the conducted
experiments are explained and the way the metrics of performance alternate is
studied.

5.1 data-sets used & tools

5.1.1 Data-sets

This section provides information about the data-sets and the tools used in order to
develop and test the proposed method.

Point cloud data from the West Paris in France and Schiedam in The Netherlands
has been used for the experiments. The data, which is collected with a HDL-32E
Velodyne scanner, is provided by the company CycloMedia Technology B.V. To
allow the developed algorithm to deal with different cases, the point cloud tiles
used for the experiments represent scans from different areas. Bridges with roads
below, roundabouts, big crossings and narrow streets are some examples of the
included cases.

The input to the algorithm is point cloud tiles each stored in a LAZ format. The
LAZ files are converted to LAS format files. In total, 62 LAS files of square point
cloud tiles that have size 250m2 have been processed. Based on the number of
overlapping LAS files, the number of point cloud pairs that have to be matched are
computed. The number of point clouds pairs is 218. This, multiplied by 27 types of
images gives a total of 5886 image pair registrations (Table 5.1).

5.1.2 Software & Hardware

The proposed method was implemented in Python 2.7. Software libraries that were
used directly and software packages are explained below.

lastools The software suite LAStools contains command line tools for point
cloud processing. Specifically the tool ’laszip’ was used to convert the LAZ format
files to LAS format files. This step was necessary for the processing of the point
clouds.

subprocess The subprocess library was used in order to apply the laszip tool
(see previous paragraph) in the command prompt through Python.
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Scene LAS files Point cloud pairs Image matchings
1 10 45 1215
2 8 28 756
3 6 15 405
4 11 55 1485
5 3 3 81
6 6 15 405
7 4 6 162
8 10 45 1215
9 4 6 162

TOTAL 62 218 5886

Table 5.1: The table illustrates information about the data-sets used. The first column is a
count for the scenes of overlapping point cloud tiles. Each scene refers to a square area of
250m2. The number of existing overlapping point cloud tiles for each scene is shown in the
second column. The number of the constructed point cloud pairs for each scene is shown in
the third column. For the calculation of the number of point cloud pairs in each scene see
Section 4.3.3. The number of the image pairs constructed for each scene is shown in the fourth
column. This is the result of the number of point cloud pairs per scene multiplied by 27, which
is the number of image types created per point cloud.

laspy The Laspy libray was used to read the points’ coordinates from the LAS
files and also other attributes of the points. It was also used to create new LAS files.
This is necessary, for example when the outliers are rejected and when the estimated
translation parameters are applied to match the point clouds.

numpy The NumPy library is used to construct the 2D grids, which are required
for the images creation. More information is found in Section 5.2.3.

scikit-learn The scikit-learn library was used to compute the k-Nearest
Neighbors1. A kd-tree was selected for that purpose. It was faster than other
options (such as a ball-tree) provided by the scikit-learn library. After the nearest
neighbors detection, an implementation of the Local Outlier Factor (LOF) by the
method scikit-learn was used to reject outliers.

scipy, stats The SciPy library and its Statistical function binned statistic was used
for the binning of points in 2D grid cell and the calculation of a single value per grid
cell.

opencv The library OpenCV was used to apply many image processing
techniques needed such as the computation of images’ gradient and the Gaussian
smoothing. It was also used to apply the template matching method.

scikit-image The scikit-image library was also used to process images.

quick terrain reader The software Quick Terrain Reader was used to observe
the point cloud tiles.

No multi-processing or any other library or technique that could minimize the
execution time of the algorithm was used.

hardware For the execution of the experiments, a computer with Core(TM) i7
processor, CPU power 2.7GHz and 16GB RAM was used.

1 The k-NN are found and not the Fixed Distance Neighbors as this is a prerequisite of the LOF method
(Section 2.4.1). The Fixed Distance Neighbors are the points that can be found within a fixed distance
from the examined point.
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5.2 implemented prototype
All the implementation details of the proposed method are explained in the
following subsections.

5.2.1 Input data

The input data was located in one main folder, assuming that the user of the
algorithm will store the data in a single main directory. The main folder was
consisted of sub-folders, representing the scenes. Each sub-folder was consisted of
the overlapping point cloud tiles. This design decision was taken as it makes the
iteration over different scenes easy.

After the outlier rejection, the inlier points are written in a new las file. The header
of the input LAS file is used to create the new LAS file with the inlier points. The
header defines which attributes of the points can be specified. Apart from the X,Y
and Z coordinates of the inlier points, their intensity values is also written in the new
file. Those new files are used for further process. The intensity data is kept because
it is one of the points’ attributes used to assign values in the created images.

5.2.2 Normal vectors

Following the computation of the normal vectors on the inlier points, the RGB
component of the LAS files is used to store the normal vectors values. Prior to the
storing, the normal values are normalized. The normal vector values, which range
from -1 to 1, are normalized from 0 to 65535. The number 65535 is used because it is
the maximum number that can be represented by the 16-bit uint16 (unsigned
integer) type of OpenCV, which is the library used to write images. Following that,
the normalized normal vector values are stored in the RGB component of the LAS
files.

The normal vectors are described by three values indicating the size and
orientation of the vectors in each one of the three main directions (X, Y, Z). The
values in X directions are saved in the red component, the values in Y directions are
saved in the green component and the values in the Z directions are saved in the
blue component.

5.2.3 Reduction of dimensions

For the creation of 2D projections, arrays are created where each cell represents a
pixel of an image. As mentioned, the library NumPy is used for the arrays creation.
In Numpy, to assign values to each array cell, one should specify first the row index
and then the column index of each pixel. The two coordinates of the points used to
construct a specific 2D projection, determine their image coordinates. The
coordinates of the y-axis of a projection represent the indices of the rows in a table.
The coordinates of the x-axis of a projection represent the indices of the columns in
a table. Therefore, the coordinates that required to be in the Y axis are specified
before the coordinates that required to be in the X axis. In comparison, it is common
practise to refer first to the X values and then the Y values. For example, for the
construction of a YZ-projection the Z values must be specified first and then the Y
values.

In order to create computer graphics or simply digital images it is necessary to
define how the computer will handle X and Y coordinates. OpenCV library uses a
computer graphic coordinate system which slightly differs from the well-known
Cartesian Coordinate system (Figure 5.1). For this computer graphic coordinate
system the X-coordinates are applied the same way as in the Cartesian. The
X-coordinates increase from the origin of the system towards the right direction.
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However, the zero Y-coordinate in the specific computer coordinate system lays at
the top (of the computer screen). Simply put, as the Y values increase the computer
graphic coordinate position moves down (the screen) [Craven, 2016]. In contrast, in
the Cartesian coordinate system Y values increase as the coordinate position moves
up.

Figure 5.1: a) The Cartesian Coordinate system. b) A computer graphic coordinate system
(which is used by the library OpenCV). (Figures from [Craven, 2016]).

The height of the created images is represented by the Y-axis. The created
projections must show the coordinates of the Y-axis as they are; the coordinates in
the Y-axis must be increased from the bottom to the top. However, as the system
used for the creation of computer graphics requires the low coordinates of the
Y-axis to be shown on the top and the high coordinates of the Y-axis to be shown on
the bottom, the 2D projections would be upside-down with respect to the Y axis. In
order to avoid this, the coordinates that must be placed on the Y-axis of the
projection get a negative sign. For instance, for the creation of an XY-projection, the
Y coordinates of the points become negative. Therefore, during the binning process
of the points into grid cells, a point representing part of the top of a building,
instead of being binned in a grid cell on the bottom of the projection, is binned in a
grid cell on the top of the projection.

5.2.4 Image registration

The image registration is performed with a template matching technique. The
template matching is applied through the OpenCV software library. Another
restriction by the library is that the images that are compared must be 8-bit or 32-bit
floating-point. As mentioned, the images are stored with unsigned integer 16-bit
data type. In order to maintain the resolution, the data type of the images is
converted to 32-bit floating-point. Then the template matching is applied and the
retrieved similarity score maps are stored again with data type unsigned integer
16-bit. However, similarity values can be higher than 65535, which is the highest
possible value with the data type uint16. The normalization of the values in the
score maps up to 65535 may lead to false conclusions. Particularly, when the two
highest similarity values of a score map are compared to determine whether their
difference is significant (see page 68), but their difference has been shrunk due to
the normalization. A relevant solution is suggested in Chapter 7.
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5.3 experiments
This section contains information about the experiments executed to evaluate the
performance of the proposed method.

The experiments are performed with absolute LOF threshold equal to 1.3. In other
words, the 3D points of which the Local Outlier Factor score is lower than 1.3, are
considered inliers. According to the literature, the closer the LOF score to 1, the
higher the chance the point constitutes an inlier. However, experiments have shown
that a threshold equal to 1 was excluding large number of points. Experiments with
respect to the ideal LOF threshold is something that is considered for future work
(Section 7).

Experiments were performed to examine different grid cell sizes of the created 2D
projections. Particularly, the aim was to find out if any specific grid cell size produces
better registration results than other grid cell sizes. It is expected that smaller grid
cell sizes will give results of better quality because the smaller the grid cell size,
the higher the resolution of the images, and the closer the 2D representation is to
inputted the 3D point cloud tile. However, these are speculations and that’s why the
aforementioned experiments are performed.

To determine which grid cell size is more suitable for the image-base registration
of point clouds, three metrics of performance are used. These are the execution time,
the overall internal reliability (or robustness) of each estimated translation
estimation and its standard deviation. Specifically, grid cells of size 0.05m, 0.15m
and 0.5m are used.

execution time - overview: In Figure 5.2, a comparison of the time needed to
execute the main steps of the algorithm is presented. Approximately 101, 140 and
310 minutes required for the creation and registration of 5886 image pairs with image
grid cell size of 0.5m, 0.15m and 0.05m correspondingly. The difference between the
execution times of the implemented prototype with each grid cell size is significant.

execution time - graph explanation: Each step that indicates an image type
includes the reading of the 3D points, their binning into grid cells and the creation
of the images. The depth images include also the creation of the depth gradient
images. The intensity images include the retrieval of the intensity values from the
LAS files and the generation of the intensity gradient images. The normal vector
images does not include the computation of the normal vector. The normal
computation is performed per point and therefore it takes extremely long time.
Suggestions to improve this are mentioned in Section 7.2.

execution time - graph observations: The registration of images with cell
size 0.05m needs almost double the time which is needed to register images with
grid cell 0.15m. With all the grid cell sizes, the creation of the density images requires
more time than the other image types. The time needed to create the density images
with grid cell size 0.05m is more than two times the duration of the density images
creation with grid cell size 0.15m. The detection of the optimal solution is almost
constant for all the cells sizes as it is not depended on the amount of cells, but on the
amount of the accepted image matchings.

execution time - explanation of observations: Why are the total execution
times of each experiment not proportional to the grid cell size? The same question is valid
for the time need to construct each image type. As mentioned in Chapter 4.5 it is
common that convolution filters are not applied in the spatial domain. That means
that when a convolution filter has to be applied on an image then the process
followed is not the shifting of a window of pixel over an image. This process is
extremely slow and therefore it is replaced by a convolution of the values in the
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Figure 5.2: Execution time of algorithm’s main steps when using grid cells size of 0.05m,
0.15m and 0.05m.

Frequency Domain via the Fast Fourier Transform. Due to this, the execution times
are not solely related to the grid cell size. OpenCV which is used in this project
employs the convolution in the frequency domain in its convolution filters used for
the development of the proposed method. These are the Sobel Operator (image
gradient), the Gaussian smoothing and the template matching.

Why is the execution time needed for the construction of density images with resolution
0.05m significantly higher than that of other images2?

The graph in Figure 5.2 was not created in a way to allow to answer this question
with certainty. This is because, as mentioned, each step shown in Figure 5.2
includes multiple small steps. Thus, it is not clear which part of each generic step
causes high or low execution times. However, an assumption that can be made is
that the high execution time of the density images is caused by the counting of the
points in order to generate one values per pixel. This is the only step which was
only implemented for the density images and for not any other image. All the other
sub-steps towards the creation of the density images were used also for the other
images.

quality: precision & internal reliability To judge the suitability of
different grid cell sizes (also mentioned as bin-widths), graphs that combine
internal reliability with precision are constructed. As explained, the overall internal
reliability is simply described with the amount of image types of which the
matching result has passed the evaluation criteria (see Section 4.7, page 4.7). All the
image types are 9 and the internal reliability is described as a fraction. If for
example all the image types passed the evaluation criteria and thus all have been
considered for the computation of the final estimation, then the overall internal
reliability would be 9/9. The internal reliability is given on the x axis of the graphs
in Figures 5.3, 5.4 and 5.5. The precision is given on the Y axis. The precision is
described with the standard deviation of the included estimations for the
computation of the optimum one.

In Figure 5.3 it can be seen that when the largest grid cell is used as shown in 5.3c,
the internal reliability reaches its highest level which is ’1’, only once. In

2 The time duration required for the execution of the step ’intensity images’ is also high but this step
includes both the construction of the intensity images and intensity gradient images.
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comparison, the other two graphs which refer to results from grid cell size 0.05m
(5.3a) and 0.15m ((5.3b) show many values concentrated at the bottom right sides of
the graphs. The values that lay at the bottom left sides refer to final translation
parameters that have high accuracy and high internal reliability. Nevertheless, in
Figure 5.3b which describes the quality of the estimations computed with grid cell
size 0.15, there are more values that have poor (high) standard deviation.

Figure 5.3: A scatter plot that shows the relationship between the internal reliability and the
standard deviation of the X translation parameters computed with a) grid cell size 0.05m, b)
grid cell size 0.15m and c) grid cell size 0.5m.

Figure 5.4: A scatter plot that shows the relationship between the internal reliability and the
standard deviation of the Y translation parameters computed with a) grid cell size 0.05m, b)
grid cell size 0.15m and c) grid cell size 0.5m.

The Figures 5.4 and 5.5 show similar patterns as the Figure 5.3. Especially in the
Figure 5.5a, the values are more dense at the bottom of the graph, while in the Figure
5.5b the values are more scattered. This indicates that in 5.5a there are many values of
which the internal reliability and the precision are higher than the values computed
with 0.15m grid cell size.

Figure 5.5: A scatter plot that shows the relationship between the internal reliability and the
standard deviation of the Z translation parameters computed with a) grid cell size 0.05m, b)
grid cell size 0.15m and c) grid cell size 0.5m.
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The aforementioned experiments were performed to determine the most suitable
grid cell size to create the 2D projections. As observed, the two quality measures are
quite low when the larger grid cell size is used (0.5m). In comparison, the quality
measures are higher when the grid cell size is 0.15m, and they are even higher when
the grid cell size is 0.05m. However, the smallest grid cell size (0.05m) requires more
than double the time needed to execute the algorithm with grid cell size 0.15m. What
is best to choose it is always related to the application and to the user requirements.



6
R E S U LT S & A N A LY S I S

This chapter provides the results of experiments and analyses them. To judge the
results of the proposed method, the smaller grid cell size (0.05m) is used in order to
show the highest quality which can be retrieved with the developed method.

6.1 main method results
This section provides results from point cloud pairs matched with the proposed
image-based multi-registration method. Different cases are considered. the first
case is about point clouds with big overlap, but are different in the overlapping part
due to the movement of cars. The second case is about point clouds with very big
overlap, but with large offset. The third case represents a scene with a bridge, a
parallel road and a perpendicular road. The fourth case shows point clouds with
large overlap, large offset but distinguishable features like walls and light poles.
The fifth case shows a point cloud retrieved in a tunnel and a neighbouring point
cloud retrieved outside the tunnel.

6.1.1 Case 1: Big overlap, changes in the scene, uncrowded scene

The first case is about two point clouds which have relatively big overlap. This can
be seen by observing the two point clouds individually in Figure 6.1. In Figure 6.2a
(before registration) it can be seen that there are many objects that appear twice.
This indicates that the there is offset between the point clouds. Figure 6.2b shows
the result after the registration. It can be seen that the objects do not appear twice
anymore. This indicates visually that the proposed method performed successfully,
as the corresponding points are matched; after registration the corresponding
objects appear only once when the two point clouds are superimposed. The Figure
6.3 shows the same conclusion, but arithmetically.

Figure 6.1: (a) Square point cloud tile of 250m2. (b) A second point cloud tile that captures
the same region as (a) recorded at a different time. It can be seen that both have points
representing the upper left part of the square tile. This means that they overlap approximately
at the one fourth area of the tile. The point cloud (b) has points representing cars. This can
be seen by observing the light blue and light green points that appear on the ground which is
illustrated with dark blue.

Specifically, the Figure 6.3 illustrates with clockwise orientation (starting from the
top) the internal reliability, the precision, the external reliability for the XY
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Figure 6.2: a) Two point cloud tiles before registration. The poles are shown in double, which
is an indication of the offset between the point clouds. b)The two point cloud tiles of (a) after
registration.

projection pairs and the external reliability for the XZ projection pairs. As already
explained the overall internal reliability indicates the amount of the image types
matchings that passed the evaluation criteria and thus were taken into account for
the calculation of the final parameters. The bigger possible internal reliability
measure is 9 out of 9 while the smaller is 0 out of 9. Estimations with internal
reliabilities equal or higher than 6 out of 9 are empirically considered reliable
solutions. For visualization purposes the internal reliability values are multiplied
by 100. The standard deviation illustrates the variability of the estimations
considered for the calculation of the final parameters. The smaller the standard
deviation, the higher the precision. For visualization purposes the standard
deviations are multiplied by 100 and the result is subtracted from 100. As a result,
small standard deviations cover large areas of the chart. Next, the external
reliabilities are included. The measures for the external reliabilities, are simply the
percentage of the covered area in the images (see Section 4.7). Since two projections
are used for the computation of each parameter, two external reliability values are
included.

Figure 6.3: The charts show the four quality measures for the final X, Y and Z estimations
for the matching of the point cloud pair shown in 6.2. The bigger the measure, the more
extended the purple area and the better the quality of the results.a) The chart shows the
quality measures for the X translation. On the top of the graph the x translation estimation is
indicated. b) The chart shows the quality measures for the Y translation. On the top of the
graph the Y translation estimation is indicated. c) The chart shows the quality measures for
the Z translation. On the top of the graph the Z translation estimation is indicated.
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6.1.2 Case 2: Big overlap, large offset, crowded scene

The example in this case refers to point clouds that have a big overlap, but they
have large offset in the Z axis. Additionally, the scene is crowded, in a sense that
there is an abundant amount of information from points. In other words, there
millions of points in these two tiles. Due to that, it is possible that distinct features,
such as light poles, which could help the registration, are covered by other features.
For example, in an XZ orthogonal projection, the objects included in the upper right
black rectangle of Figure 6.4 would be hidden by the bushes (shown in the big
rectangle at the right).

Figure 6.4a shows the two point cloud tiles before the registration and Figure 6.4b
shows the two point cloud tiles after the registration. Visually the results seem to be
successful as the difference between the corresponding objects seems to be reduced.

Figure 6.4: a) Two point cloud tiles before registration. The squares indicate the double
information, or in other words the offsets between the two point clouds. b)The two point
cloud tiles of (a) after registration.

The Figure 6.5 indicates the quality measures of the translation estimations of the
point cloud pair shown in Figure 6.4.

Figure 6.5: The charts show the four quality measures for the final X (a), Y (b) and Z (c)
estimations for the matching of the point cloud pair shown in 6.4. The internal reliabilities of
all the three parameters are equal to maximum possible value (9/9). However the standard
deviations indicate that the final estimations have standard deviations not equal to zero. This
means that the quality of the results is not at its top level, however there is an indication given
with the standard deviations about the possible variance of the parameter from the truth.

6.1.3 Case 3: Small overlap, presence of a bridge and a road

This case illustrates an example of a point cloud that represents a road and a bridge
(Figure 6.6a) and a point cloud that represents a road on top of the bridge (Figure
6.6b). Furthermore, the overlap between the two point clouds as it can be observed
in Figure 6.6b is significantly small compared to the tile area (250m2).
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Figure 6.6: a) One point cloud tile. b)The point cloud tile of (a) overlaps with another point
cloud. The two are illustrated here before registration. The magnified part stresses some
overlap of the two point clouds and the small translation error between the two. The error is
indicated by the double line of the pole.

After the registration of the point clouds shown in Figure 6.6, the results are
produced and visualized in Figure 6.7a. The matching is completely unsuccessful
since the road which was supposed to be on top, ended up below the bridge. The
bad quality of the results is indicated with the quality measures in Figure 6.7b. Both
the internal reliability and the precision have very low values. However the
external reliability values are quite good, which is not representative of the results’
quality. The method used to compute the external reliability measures, which
indicates the influence of undetected errors, takes into account only one possible
reason for undetected errors (see page 73). Since the problem here is not the amount
of the captured points, but the very small overlap, the measures for the external
reliability do not capture the truth about the quality of the estimations.

Figure 6.7: a) The point cloud tiles of the Figure 6.6 after the registration. b) The quality
measures that describe the Z translation estimation. The Z is selected to be visualized because
of the big failure in the matching in the Z axis.

6.1.4 Case 4: Big overlap, large offset, distinct structures

The point cloud pair matched in this example is described by a big overlapping area
between the two, but also a large offset. Moreover as it can be seen in Figure 6.8a
there are many distinct structures that could facilitate the image matching.
Specifically there are many poles and long walls. After the execution of the
developed algorithm the result of the matching is given and it is depicted in Figure
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6.8b. The visualization of the results indicates that the matching was successful.
The same observation is made by looking at Figure 6.9.

Figure 6.8: a) Two point cloud tiles before registration. b)The two point cloud tiles of (a) after
registration.

Figure 6.9: The charts show the four quality measures for the final X (a), Y (b) and Z
(c) estimations for the matching of the point cloud pair shown in 6.8. Almost all the
quality measures reach their maximum level. This means that the matching is arithmetically
successful.

6.1.5 Case 5: Absence of overlap, presence of tunnel

The example point cloud pair given here shares no overlap. However, the first
impression when observing the two point clouds is that they share a wall. However,
when observing the two walls carefully, it seems that the two walls do not represent
the same wall (Figure 6.10).

To validate the assumption that the two point clouds do not share the same wall, a
panoramic and an aerial image of the scene are observed (Figure 6.11). By doing so,
it becomes clear that the two point clouds do not share any overlap, but they were
considered as an overlapping point cloud pair because they are neighbors.

Figure 6.12a shows the two point clouds before the registration and Figure 6.12b
shows the two point clouds after the registration. Before the registration, the distance
between the two walls is visually comparable to the thickness of the tunnel’s wall
illustrated in Figure 6.11. In contrast, after the registration, the two walls are located
close to each other but they are not match. The algorithm attempted to match the two
walls as it is the only common information between the two point clouds, but it did
not completely matched as the structure of two walls differs at the bottom (Figure
6.10).
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Figure 6.10: a) One point cloud tile scanned inside a tunnel. b) A neighbouring point cloud
captured from a road next to the tunnel A first impression is that the wall on the right side of
point cloud (a) is the same wall as the wall on the left side of point cloud (b). However, when
observing the magnified parts of each wall it can be seen that they differ at their lower part.

Figure 6.11: a) A street view image showing a tunnel within which the point cloud 6.10a was
recorded. It also shows the information captured by point cloud 6.10b, as we can see the light
pole and the blue sign. b) In the aerial image the tunnel wall is slightly more distinct. The red
circles include the area of interest. It can be seen that the wall captured in point cloud 6.10a
represents a wall inside the tunnel, while the wall captured in point cloud 6.10b represents a
wall outside the tunnel. (Images from StreetSmart online viewer, CycloMedia 2018.)

Figure 6.12: a) The two point cloud tiles of Figure 6.10 before the registration. b) The two
point cloud tiles of Figure 6.10 after the registration.
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The registration result produced for this case with the developed algorithm would
be successful if the quality measures of the two point clouds are poor. This statement
is made because the visual result shows that the point clouds are shifted closer to
each, but as explained this is not the real case. The Figure 6.13 is observed. The two
main quality measures indicate that the registration result cannot be trusted, which
is indeed the case.

Figure 6.13: The chart shows the four quality measures for the final X translation estimation
of the point cloud pair shown in Figure 6.10. The focus is on the X direction because the two
walls captured in the two point clouds are perpendicular to the X axis. The standard deviation
points at 10 which means that the real value is 0.9m ((100− 10))/100). An estimation with
precision 0.9m is not considered precise at all, as the point clouds accuracy is 2cm. The internal
reliability of the X translation is 44 out of 100, which means that from the 9 type of images,
the 4 have passed the evaluation criteria. This indicates a medium internal reliability. In
combination with the standard deviation however, the conclusion is that the specific result
cannot be trusted.

6.2 sub-pixel accuracy results
This subsection contains information about the experiment performed to judge the
quality of the sub-pixel accuracy method. Specifically, it is examined to which extent
the transformation parameters resulting:

• from registering imagery of low resolution and applying the proposed
sub-pixel accuracy method, could approach the transformation parameters
resulting

• from registering imagery of high resolution.

The grid cell size of the low resolution imagery used for the experiments was 0.2m,
and 0.05m for the high resolution imagery. Figure 6.14a indicates with box plots the
absolute differences in X, Y and Z between the two approaches. In other words, the
difference of each parameter computed from each of the two methods is calculated.
Four large outliers are encountered. For visualization purposes the Figure 6.14a is
magnified as shown in Figure 6.14b. The sub-pixel approach is completely successful
for dx, dy and dz that are equal or lower than 0.05m. That is because 0.05m is the
accuracy which can be retrieved with the high resolution imagery (i.e. 0.05m grid cell
size). More than 25% of the dx, dy and dz are equal to or less than 0.05m. These are
included in the set coloured with green. The sub-pixel approach has improved the
accuracy of the parameters for which the dx, dy and dz are lower than 0.2m, because
this is the accuracy which could be retrieved with the low resolution imagery (i.e.
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0.2m grid cell size). More than 50% of the dx, dy and dz are smaller than 0.2m. These
are included in the set coloured with blue. This indicates that the accuracy of more
than 50% of the translation parameters was enhanced. Neverthelles, 20cm accuracy
is consider low as the accuracy of the point clouds is 2cm. Finally, a large amount
of translation parameters computed with the sub-pixel accuracy method and low
resolution images, deviate significantly from the parameters computed with high
resolution images. These are all the parameters that have dx, dy, dz higher than
0.2m which is the accuracy of the high resolution images used in the experiment.
These are included in the set coloured with red.

Figure 6.14: Differences between 1) the translations resulted from the registration and the
sub-pixel accuracy method of images with low resolution and, 2) the translations resulted
from the registration of images with high resolution 0.05m

6.3 image-type suitability for registration
The proposed method employs a multi-registration method. Several image types are
used to ultimately match point clouds. The results are analyzed to find out whether
specific image types are more suitable for the registration of mobile scanned point
clouds. For this purpose, the internal reliabilities calculated per image type are used.
The internal reliability of each image type equals the redundancy number of the
estimated parameters per image type. Simply put, the redundancy number equals
the amount of estimations from a specific image-type that are taken into account for
the calculation of the optimum solution. For more information see page 71.

The Figure 6.15 illustrates the redundancy number of the estimated X translation
errors. It can be seen that for the X translation parameters the amount of
registrations that were completely rejected were almost equal for the density, depth,
depth gradient, intensity and intensity gradient images. In contrast, the matchings
of the normal vector images had to be rejected a lot more times. This indicates that
the normal vector images are less suitable for image registration at least for the
projections that include the X coordinates. These are the XY and XZ projections.

The Figure 6.16 illustrates the redundancy number of the estimated Y translation
errors. It can be seen that in comparison with the X translations, the estimations for
the Y translation were rejected more times. Again the normal vector images are
those from which the estimations are rejected more often. Nevertheless, the
estimations from the normal vector images are rejected a few less times than the
estimations from the images that show the normal vector values in the 3 directions.
Also the estimations from the depth gradient images are rejected less times than the
estimations from the depth images. The same observation is valid for the estimation
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Figure 6.15: Redundancy number of the estimated X translation errors per image type. The
x axis of the graph indicates the image type. The y axis of the graph shows the amount of
registrations. The blue bars represent the amount of registrations from which both or at least
one of the XY and XZ-projections’ matchings, passed the evaluation criteria. The red bars
represent the amount of registrations where none of the XY and XZ-projections’ matchings
passed the evaluation criteria.

Figure 6.16: Redundancy number of the estimated Y translation errors per image type. The
x axis of the graph indicates the image type. The y axis of the graph shows the amount of
registrations. The blue bars represent the amount of registrations from which both or at least
one of the XY and YZ-projections’ matchings, passed the evaluation criteria. The red bars
represent the amount of registrations where none of the XY and YZ-projections’ matchings
passed the evaluation criteria.

from the intensity gradient and the intensity images. This indicates that the
gradient of the depth and the gradient of the intensity images provided better
registration results than the depth and the intensity images. However, more



102 results & analysis

registrations from depth gradient images than intensity images were rejected. This
indicates that the intensity attribute is better than the depth attribute of the 3D
points. Finally, it can be seen that the y estimations computed from the density
images have been accepted more times than the estimations from any other image
type. This indicates that that the score maps of the density registrations had better
quality. In other words, the highest similarity value between the two matched
images were more distinct. Therefore the density images were more suitable than
any other image type, at least for the calculation of the y translation parameter.

The Figure 6.17 illustrates the redundancy number of the estimated Z translation
errors. Like it was previously observed, the gradient of the intensity and the gradient
of the depth images, provided better results than the intensity and the depth images,
respectively. Also the registration results from the intensity images were more times
accepted than the results from the depth images. Again the estimated translations
from the normal vector images were the most rejected. The estimations from the
normal vector images are rejected a few less times than the estimations from the
images that show the normal vector values in the 3 directions. The only difference
for the Z translation than for the X and Y translations, is that many density (XZ and
YZ) projections were rejected.

Figure 6.17: Redundancy number of the estimated Z translation errors per image type. The
x axis of the graph indicates the image type. The y axis of the graph shows the amount of
registrations. Particularly, the blue bars represent the amount of registrations from which
both or at least one of the XZ and YZ-projections’ matchings, passed the evaluation criteria.
The red bars represent the amount of registrations where none of the XZ and YZ-projections’
matchings passed the evaluation criteria.

why normal vector images fail more often than other images? The
reason why the normal vector images fail to produce as good results as other
images is due to the method used for their computation. The problem is the way
the normal vectors are orientated. The normal vectors’ orientation is based on the
trajectory of the points. If two overlapping point clouds need to be matched and
their trajectory is different, which is most of the time the case, then identical
features could be illustrated with different normal vector values (Figure 6.18).
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Figure 6.18: Two XY-projections that illustrate the normal vectors of the 3D points. The two
projections originate from two overlapping point clouds retrieved from different trajectories.
Therefore, the orientations of the normal vectors of corresponding points is different. This
results to images where corresponding objects have different normal vector value. For
example the trees are illustrated in the left image with pink, while in the right image are
illustrated with green.

why density images fail when xz and yz matchings are performed?
The density projections are often rejected when comes to matchings that include the
Z direction. This happens because only the Z direction is matched properly. To
explain this, the Figure 6.19 is observed. The given score maps resulted from the
matchings of XZ and YZ density projections. It can be seen that there is not a single
peak to indicate the highest similarity value in the score maps. However, the
matching location in the vertical direction is very distinct. In contrast, in the
horizontal direction the registration method could not detect high similarity values.
Since the evaluation criteria that test the quality of the score maps examine distinct
peaks of values, the whole score map is rejected. That means that not only the X,
but also the Z translation estimation is rejected.

Figure 6.19: Example of rejected score maps resulted from the registration of density XZ and
density YZ projections. The specific score maps indicate that the Z translation parameter is
sufficiently computed. This is shown by the high similarity values (illustrated with bright
pixels) in the Z direction of the score maps. In contrast, in the Y direction of the images, there
are no high similarity values.





7
C O N C L U S I O N S & F U T U R E W O R K

This chapter presents the conclusions and the suggested future work of the
conducted research. The conclusions are given in Section 7.1. This section provides
the answers to the research questions of this thesis and summarizes the
contributions of this work. The future work is presented in Section 7.2. It includes
recommendations on the aspects that could be improved in the developed method.
It also contains suggestions on how the specific project could be continued.

7.1 research questions

This section provides the conclusions of this project by answering the research
questions.

1. How to deal with the outlying points in the data so that they do not affect the
image-based registration?

The outlier rejection is tackled by using the Local Outlier Factor (LOF) method. This
method computes the density of points in the neighbourhood of each point. To
compute the LOF score of each point, the point’s density in a neighbourhood is
compared with the densities of the neighboring points. The closer the LOF score to 1
the higher the chance that the point is not very isolated, which means that the point
is an inlier. The method used is suitable for rejecting noise from the point clouds,
especially when the density of an outlier point is different from a neighboring point.
For that reason the selection of the number of nearest neighbors is critical and
varies between different applications. The method used is not suitable for the
rejection of big outliers, such as moving objects. Moving objects can be cars,
pedestrians, birds or even smoke.

2. How to generate images from the point clouds and what kind of images so that the point
clouds are best described?

The developed research suggests the creation of images that project each point
cloud tile on three planes; a XY-plane, a XZ-plane and a YZ-plane. The created
projections show different attributes of the points. The attributes used are the
density of the points, the intensity, the depth, the gradient of the intensity, the
gradient of the depth and the calculated normal vectors of the points. Apart from
the images based on the normal vector, the normal vectors are used to generate
images that show the vector’s value only in X, only in Y and only in Z direction.
According to the results presented in Section 6.3, some image types perform better
than others. The contribution of each image type to the registration of point cloud
tiles is concluded below.

a. density images The registration results for the X and Y translations
calculated from the density images, have passed the evaluation criteria more times
than any other image type 6.3. In other words, in the score maps produced from the
registration of the density XY-projections, the matching locations were described by
the most distinct peaks and highest similarity values.

105
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However, the estimated Z translations given from the density images were
rejected based on the evaluation criteria more times than the results from other
image types. The Z translations are calculated from the XZ and YZ projections. As
shown in some example score maps in the results (Section 6.3), the matching of the
XZ and YZ projections is successful in the Z direction but not in X and Y,
correspondingly. The conclusion that can be drawn is that the density XZ and YZ
projections are in many cases suitable for the calculation of the matching solution in
Z but not for the matching in X and Y. Even though the Z translations may be
calculated successfully, the method used to evaluate the results through the
evaluation of the score maps, rejects both translation parameters. For example, if
the density XZ-projections are matched and the resulted score map is rejected, then
both the X and the Z translation estimations are rejected. However, there is a
possibility that the Z is calculated correctly. Therefore, the evaluation criteria of the
proposed method could be improved.

b. intensity and intensity gradient images The conclusion that can be
drawn is that, at least for the Y and Z translation parameters, the gradient of the
intensity images produce registration results of higher quality than the results from
the intensity images. As shown and explained in Section 6.3 a higher number of
intensity images, than intensity gradient images, have been rejected based on the
evaluation criteria. Thus, if there was a necessity to choose one from the two, then
that would be the intensity gradient image type. The reason why this is happening
is because the gradient intensity images are less dependent on the intensity values
and more dependent on the edges of the features constructed based on the intensity
values. This is beneficial because, as explained in Section 4.4.4 and illustrated in
Figure 4.15, the intensities of corresponding objects in two overlapping point clouds
can be different due to the distance of the recording vehicle to the object.

c. depth and depth gradient images The conclusion that can be drawn for
the depth-based images is that, at least for the Y and Z translation parameters, the
gradient of the depth images produced registration results of higher quality than
the results from the depth images. As shown and explained in Section 6.3 a higher
number of depth images, than depth gradient images, have been rejected based on
the evaluation criteria. Thus, if there was a necessity to choose one from the two,
then that would be the depth gradient image type. The reason why this is
happening is because the gradient depth images are less dependent on the depth
values and more dependent on the edges of the features constructed based on the
depth values. This is beneficial because, as explained in Section 4.4.6, the depth
values of corresponding objects in two overlapping point clouds can be different
due to the possible translation error between the coordinates of two overlapping
point clouds. This is a disadvantage for the depth images because the depth is
simply the third coordinate. For example, in a XY-depth projection, the Z
coordinates represent the depth values.

d. normal vector images and images based on the three components
of the normal-vectors These were the images from which the registration
results were being rejected most of the times. This does not mean that the normal
vector images were completely useless. However, their quality was sometimes
lower than that of the other image types. Additionally, The images that have been
constructed based on the three components of the normal-vectors, did not really
facilitate the registration process. Most of the times, a lot more score maps are
accepted when the basic normal vectors images are matched, than when the images
based on the three components of the normal-vectors are matched. Consequently, it
is concluded that the main normal vector images are suitable enough for the
registration of images created from point clouds. The images that are based on the
three components of the normal-vectors could have been neglected.
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3. How to compute the translation parameters that align relatively 3D overlapping point
cloud pairs by matching 2D imagery?

By applying a template matching method while using a simple correlation measure,
the pixel where one image is placed on the other, can be found. The local
registration of an image pair gives the translation estimations of the parameters
used in the projections. If XY-projections are matched, then the matching location of
X and Y is computed in pixel units. The pixel units are converted back to space
units (meters) and then the translation parameters are retrieved. The proposed
method suggests a multi-image registration technique, as multiple images are
constructed from each point cloud pair. As a result, the X, Y and Z are computed
many times. For that reason, a technique to detect the optimal solution for each
parameter is applied. The technique assess each single image registration solution
by applying criteria that evaluate the quality of the output. The criteria evaluate the
strength (similarity value) and the uniqueness of the achieved matching. Only the
results that pass the evaluation criteria are considered for the calculation of the
optimum final solutions.

Although there are other commonly used methods for matching imagery, such as
the extraction and matching of features, in this project a cross correlation template
matching was used. Since the point clouds do not suffer from big rotation errors but
small rotation errors might be possible (see Section 1.1.2), the template matching
method had the capability to match point clouds. If point clouds with large rotation
errors are used, then the simple template matching method wouldn’t be able to
perform successfully.

4. How to assess reliability, precision and efficiency of the developed method automatically?

The quality measures are computed which accompany each X, Y and Z translation
estimation. As the method employs a multi-registration method, repeated and
redundant estimations are produced. This facilitates the determination of the
reliability and precision. The reliability of the method is assessed by providing
metrics for the internal and external reliability of the optimum results. These two
aspects of the reliability indicate correspondingly if an estimation is strongly
checked and what is the influence of possible undetected errors on the final
estimations.

The internal reliability equals the number of accepted estimations among the
repeated estimations. This metric of quality performs successfully as it is correctly
indicating if a final estimation is strongly checked (see Section 6.1). There is
flexibility on what is considered bad or good internal reliability. For this project it
was considered based on empirical observations that an internal reliability equal or
higher 6 out of 9 observations could be highly trusted. However, this assumption
was based on a few observed examples, therefore a more sophisticated method to
determine the ideal threshold would be beneficial.

For the determination of the external reliability, causes of possible undetected
errors are listed. Then, two external reliability weights are given to each image pair.
The weights express the possibility that the translation estimation could be
influenced by the number of points included in a tile. There are many other causes
of possible undetected errors, for example the differences between the overlapping
point clouds due to moving objects, but these are not currently taken into account.
Therefore, as noticed also in some cases illustrated in Section 6.1, the external
reliability weights do not always represent correctly the quality of the final
estimations.

The precision is determined with the standard deviation of the estimations that
pass the evaluation criteria. The smaller the standard deviation, the less the
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variability between the considered values and the more precise the final registration
estimation. Since the point clouds have accuracy of 2cm, a measure is considered
highly precise if the standard deviation is equal to a few centimeters. However, this
depends on the user requirements and use of the point clouds after their
registration. In any case, the quality measures are computed and the user has the
capability to deal with them as desired. This is valid also for the reliability
measures.

To access the efficiency of the method, the execution time of the algorithm was
tested when using different grid cell (pixel) sizes for the created imagery. Also the
internal reliability and standard deviation measures were used to judge the overall
quality of the developed method when using different grid cell sizes. It was noticed
that the smaller the grid cell, the longer the duration of the execution time, and the
higher the quality of the results. However, it was also noticed that the execution
times were not proportional to the number of pixels contained in the images of
different resolution as it was expected. As explained in Section 5.3 the reason why
this is happening is because the convolution filters used in this project (such as the
Sobel Operator for the image gradient, the Gaussian smoothing and the template
matching) are implemented (by OpenCV software library) in the Frequency
Domain via the Fast Fourier Transform. This method is faster than the convolution
in the spatial domain where a window of pixels is shifted over an image to calculate
new values. Additionally, the convolution in the Frequency Domain, as proven by
the results (Figure 5.2), is less dependent on the number of pixels.

5. The accuracy of the transformation estimations will be restricted to the grid cell size of
the generated imagery. How to retrieve a sub-pixel accuracy results to improve the
drawback of discrete grid cell size in the imagery?

A 2D elliptical Gaussian function is used to model the similarity values in the
neighbourhood of the highest similarity value. This constitutes the best matching
location of one image into another computed with the template matching method.
By fitting a 2D elliptical Gaussian function, similarity values are created
continuously and not in discrete (pixel) positions. In such a way, sub-pixel accuracy
results, instead of pixel accuracy were computed.

To test the performance of the suggested sub-pixel accuracy method, the
mutli-registration method was applied once with high resolution imagery and once
with low resolution imagery but in this case also the sub-pixel accuracy method
was employed. By doing so, it was observed that the accuracy of a large number of
estimations computed with low resolution imagery was enhanced, but did not
reach accuracy higher that then the results computed with high resolution imagery.
For some cases though, the accuracy of the Gaussian fitting results was better than
that of the results retrieved with the multi-registration of high resolution images.
Therefore, it can be conclude that the method shows potential, but needs
improvement.

It is believed that the sub-pixel accuracy method results that have bad quality are
due to the following reasons:

1. According to the input point cloud tiles, the distribution of the similarity values
in the score maps varies. Therefore, the selection of a single distribution is not
an ideal solution.

2. The fact that an elliptical approximation is used is because the distribution of
the values in the two main direction (such as σx and σy) might be different.
However, the spread (σ) of the values in one direction is not the same in the
both sides of the peak. For example, the (+σx) is different than the (−σx). This
is not taken into account in the elliptical Gaussian approximation.

3. The evaluation criteria are based on the (one) highest similarity value
detected in the score maps. It is evaluated whether the difference between the
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two highest peaks is large enough. However, it is possible that the difference
between the two peaks is significant, but if the (Gaussian) surface fitting was
applied to all the candidate peaks, it could may be seen that the highest peak
is found in another pixel than the one with the highest value (Figure 7.1).

Figure 7.1: The left part of the figure shows with blue bars the similarity scores of a score map.
The black line illustrates an interpolation with a Gaussian fitting on the discrete pixel values.
The right part of the figure shows again similarity scores of a score map. Although the peak
value of the figure in left is higher than the peak value of the figure in the right, as soon as the
fitting is performed, it is observed that wit sub-pixel accuracy the highest similarity value is
found at the right part.

By providing answers to the sub-questions, the main research question can be
answered:

To what extent is it possible to automatically, reliably, precisely and efficiently
align mobile laser scanning data relatively, using an image-based technique?

It is possible to use an image-based technique to align mobile laser scanning data
relatively. The quality of the results, or in other words the reliability and the
precision of the results given from the developed method, depend highly on the
input data.

By testing different cases with high image resolution it is concluded that the
suggested image-based registration approach is more likely to be successful, or in
other words the results are more likely to have high quality, when:

• When there is some overlap between two point clouds AND,

• corresponding objects between the point clouds are distinct in pairs of 2D
projections.

When those requirements are met, there is a high possibility that the developed
method will register successfully point clouds with large translation errors (Figure
6.4), or even with some changes in one point cloud scene (Figure 6.1).

By testing different cases it is concluded that the suggested image-based
registration approach is more likely to be unsuccessful, or in other words the
results are more likely to have poor quality, when:

• There are parallel bridges and roads in a point cloud pair.

• The point cloud tiles share very small overlap.

The big advantage of the method is that even if the results have high or low quality
(based on the reasons explained above), it provides the user with quality measures.
Therefore the user, can specify thresholds on the quality measures, and subsequently
employ the registration results only of the cases that have high quality. These would
be beneficial for the global registration step, which follows the relative registration.
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Moreover, by using the proposed image-based technique problems faced by the
Iterative Closest Point, the commonly used method to register point clouds locally,
are solved. Specifically, with the suggested method it is not needed to develop a
method for finding the corresponding points in two point clouds which is an
expensive process, especially if there are millions of points in the tile, which is the
case with Mobile Laser Scanning data. With the proposed method it was also
shown that there is no need for having initial good matching between two point
clouds. This was shown with the cases where there was large offset between the
point clouds and the method successfully matched them. Furthermore, ICP requires
large to full overlap between the point clouds to produce matching results of high
quality. This is needed because the ICP must construct correspondences between the
point clouds, and if corresponding points do not exist, the algorithm is confused.
As shown (for example in Figure 6.1), this is not necessary with the developed
method. However, actual comparison of the proposed method with ICP was not
conducted, but it is something considered for future work.

Finally, although image based registration methods are restricted to the pixel’s
accuracy, which is not the case with the 3D registration methods, a method for
sub-pixel accuracy result was developed. Currently the method is not completely
successful, but shows potential.

7.2 future work

7.2.1 Recommendations to improve the method

outlier rejection

• Experiments should be executed to find out the ideal LOF threshold, as the
number of rejected points is dependent on that. Important factor for the
selection is how the quality of the registration results is affected.

• The outliers detection method could be improved by fitting planes to the points
and rejecting those on which planes cannot be fitted. In doing so, points that
represent objects that can possibly hinder the registration, such as trees, are
eliminated.

normal vectors computation

• The current normal computation method is extremely slow. A way to change
this would be to reduce the number of points as the computation of the normals
is computed for every point. To do this, two things can be tried. First, the
threshold for the outlier rejection method could be increased so as to remove
larger number of points. The second way would be to use a down-sampling
technique in order to reduce the amount of points as the they usually have
high density. However, for both techniques, not more points than needed for
the registration should be removed.

If the time factor is of high importance, then the normal images could be
completely discarded and use only the image types that produce good quality
results. These are the density, intensity gradient and depth gradient images.

lidar distance compensation

• There must be compensation for the vehicle’s distance to the scanned points.
The values of the density and intensity currently used for the created imagery
are relative. They are relative to the distance between the car and the scanned
surfaces. For example, surfaces closer to the recording vehicle will be
represented by a very high amount of points. In contrast, surfaces further
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away will be scanned with significantly less number of points. There must be
a balance between the two cases. This could be solved by sub-sampling in
such a way that the resulting point cloud has a more uniform distribution.
However, in that case it is necessary to make sure that points far away from
the recording vehicle do not become more important than they are, because
the further the points from the scanner, the lower their positional accuracy.

statistical measures for the provision of a single pixel value

• Since imagery is created from point cloud data, many attributes of the points
are compressed into single values. Currently the developed method uses
measures of which the visual preliminary results were satisfactory, but
detailed analysis of what is optimum must be conducted.

additional pixel values to construct reference images

• The created image pairs have equal size. To perform the template matching
method it is necessary to generate search space, therefore pixels are added
around one of the two images. Adding zero values to construct the reference
image was an easy decision in order to achieve the goal. Firstly, thorough
analysis must be performed to reveal if this decision deteriorates the quality
of the registration results and if yes, then a more sophisticated approach must
be developed.

evaluation criteria

• The strength and uniqueness of the highest similarity value in the score maps
is based on normalized pixel values. The current way with which the
evaluation criteria of the score maps are developed stores the score map
images and then evaluates them. The maximum value that can be stored with
the OpenCV library which was used to write images is 65535. However, the
similarity values can be higher than these value. The normalization of the
values in the score maps up to 65535 may lead to false conclusions when
performing the evaluation criteria. An example is when the two highest
similarity values of a score map are compared to determine whether their
difference is significant (see page 68), but their difference has been shrunk due
to the normalization. Currently, many different thresholds have been test to
try to overcome this problem. A way to solve this would be to apply the
evaluation criteria before storing the score map images.

• Many score maps retrieved from density images were discarded because the X
in XZ projections and the Y in YZ projections was not computed reliably, in
comparison with the computation of the Z parameter. This is illustrated in the
score maps as a single bright line in the Z direction. The currently
implemented evaluation criteria, assess for the existence of a peak pixel, and
therefore the aforementioned score maps are rejected, although they produce
successful Z translations. A way to overcome this would be to alternate the
evaluation criteria, detect areas of pixels with high value and compute their
variance in the two directions of the projection. If the variance is small then
the parameter is accepted. If the variance if large, then the parameter is
rejected.

calculation of algorithm’s execution time

• When calculating computation times it is better to split the process in several
individual steps because then it is clear which steps require long execution
time. In such a way, it is evident which steps must be improved.
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external reliability

• Currently only one cause of possible undetected errors is taken into account
to provide external reliability weights for each estimation. This is the number
of points that exist in each point cloud. Other causes of possible undetected
errors must be considered. For example the differences between overlapping
point clouds due to moving objects and the existence of parallel objects with
different elevations (such as the case with the bridge and the road, Figure 6.6).

7.2.2 Recommendations to extend the project

icp comparison

• The proposed method is often verbally compared with the Iterative Closest
Point algorithm but a comparison is not performed yet. Therefore it is
something taken into account for future work.

weights for the accuracy of a point cloud’s absolute position

• What has been developed in this thesis is a method that allows to compute
the relative positioning errors between the point clouds. This method does
not provide any information about the absolute accuracy of the matched point
cloud pairs. As explained in Section 2.1.2, there is not information about the
positional accuracy of the overlapping point clouds. However, it is necessary to
find information about the positional accuracy of the overlapping point clouds,
in order to know which point cloud’s absolute position can be trusted more. In
such a way it will be possible to distribute the translation error between the
overlapping point clouds or provide this information as reliability weights for
a Global registration approach (see next paragraph).

The GNSS observations recorded when scanning a point cloud cannot be
trusted, because even if for example a satellite’s observation was received by
the scanner, it might be the case that the signal of this satellite was blocked or
reflected on buildings, trees etc. Otherwise the GNSS observations could have
been used to provide positional accuracy weights to each point cloud, based
on the amount of received satellite signals. What it could be done to provide
weights about the trustworthiness of a point cloud’s absolute position is to
construct GNSS visibility predictions (based e.g. on a 3D model, or panoramic
images) and compare them with GNSS visibility observations in order to find
out if the observations are representative of the truth. Then a scoring scheme
can be used to assign similarity weights between predicted and observed
satellite signals. If for example a signal is predicted to be invisible, but
according to the GNSS observations at the recording time the signal was
visible, then this is an indication that the signal was diffracted, however it was
considered for the computation of a point cloud’s position. Consequently, the
specific point cloud should get a low accuracy reliability weight.

global registration

• A global registration follows the relative registration approach. After the
relative transformations have be computed, they must be used in order to
align all the point clouds scanned from different epochs together and
construct a complete 3D model of an area. To do this, a Pose Graph
Optimization (PGO) technique could be used. A PGO is the formulation of a
graph whose nodes correspond to the poses of the vehicle at different points
in time and whose edges represent constraints between the poses. The
positions of the moving platform will be given from the GNSS and also from
the IMU observations, and thus the distances between the poses could be used
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as constraints. Also, the individual local registration solutions could be used
as positioning constraints within the pose graph. Then, trustworthiness
weights (as explained in the previous paragraph) should be attached to each
of the three constraints; the GNSS, the IMU and the local registration solutions.
Once such a graph is constructed, the global solution can be computed by
finding the spatial configuration of the nodes that is mostly consistent with
the measurements modeled by the edges (constraints) [Grisetti et al., 2010]. In
other words, a pose graph attempts to pull the positions of the scans by
distributing the positioning error based on the input information so that an
optimal graph of the scans’ positions is obtained. As a result, a complete 3D
point cloud model could be retrieved.
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A
R E F L E C T I O N

This appendix describes the value of this graduation thesis in the larger social and
scientific framework.

The main characteristic of the methodical line of approach of the Geomatics Master
at TU Delft is that the student has to dive into every project to deliver solutions that
are based on detailed research so that every step taken can be justified. Similarly
the method chosen to deliver this project was based on thorough research. What I
learned from that is that even if there are easy solutions to perform certain tasks, if a
student knows why is it beneficial to choose a specific solution then there is higher
probability to obtain results of good quality. This way of thinking will definitely help
me to accomplish future projects.

The following paragraph explains the relationship between the conducted
research and application of the field geomatics. The research performed in this
project considers one step of the many that must be followed to deliver complete
and geo-refenced point clouds. Many people are impressed when looking at point
clouds, but a few people are aware of the usefulness of such data. In this project I
mention application which can be developed when having registered point clouds.
In my opinion, the most important application that can be achieved with registered
point clouds is sitting at you desk and being able to measure coordinates, distances,
volumes, detecting changes between destroyed areas and many others just from the
comfort of your desk. Work which would need days and many people to be done, it
is possible to be achieved by having registered ge-oreferenced 3D point clouds. For
the scientific world of Geomatics the developed method can be considered a big
contribution as many people are currently using the ICP algorithm which has
quality and efficiency limitations.
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