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ABSTRACT: 

In guiding the energy transition efforts towards renewable energy sources, 3D city models were shown to be useful tools when 
assessing the annual solar energy generation potential of urban landscapes. However, the simplified roof geometry included in these 
3D city models and the lack of additional semantic information about the buildings’ roof often yield less accurate solar potential 
evaluations than desirable. In this paper we propose three different methods to infer and store additional information into 3D city 
models, namely on physical obstacles present on the roof and existing solar panels. Both can be used to increase the accuracy of roof 
solar panel retrofit potential. These methods are developed and tested on the open datasets available in the Netherlands, specifically 
AHN3 lidar point-cloud and PDOK aerial photography. However, we believe they can be adapted to different environments as well, 
based on the available datasets and their precision locally available. 

* Corresponding author 

1. INTRODUCTION

The share of renewable energy consumption in the Netherlands 
is currently at 7.4%. Comparatively small, both in respect to the 
other energy sources and compared to the International Energy 
Agency members median of 15.5%. With the goal to raise the 
share of solar in energy production to 27% by 2030, solar 
energy plays an important role in the transition towards 
renewable energy sources and future development of Dutch 
energy network (Dutch New Energy Research, 2021). To 
maintain this development, tools to evaluate solar potential are 
valuable resources for determining the suitability of mounting 
solar panels on buildings. 

The solar potential depends, next to atmospheric conditions, and 
the geometrical layout of the building and its surroundings -
namely the aspect, material and tilt of the roof - on the size of 
installation area and shaded areas caused by any obstacles 
(Machete et al., 2018). Small-scale obstacles on the roof, which 
also influence the available area and shading, are often not or 
only insufficiently regarded in the solar potential models and 
analysis process (Rodríguez et al., 2017). 

Our research, focusing on buildings’ roofs, aims to detect any 
physical obstacles and existing solar panels from various types 
of open datasets available in the Netherlands and integrate them 
as additional attributes into existing 3D city models 
(CityJSON). The information can then be integrated into solar 
potential models and ultimately allow for more accurate 
assessment of solar panel retrofit potential. 

2. LITERATURE REVIEW

The available roof area for the installation of PV panels is one 
of the crucial factors for an individual building’s suitability of 
solar energy production.   Roof obstacles, such as dormers, 
chimneys, and roof windows play an important role in this sense 
but are often not sufficiently regarded. 

Aarsen et al (2015) worked on creating a database of currently 
installed PV panels in a given research area, including already 
registered ones, to detected them through an algorithm. This 
algorithm uses aerial images and is based on the shape, the 
contrast, and the color of solar collectors (Aarsen et al., 2015). 
In the city of Amsterdam, research has been conducted to detect 
and model square chimneys to monitor their compliance with 
chimney height regulations. For this, points in a point cloud 
above a modelled roof structure are filtered out and 
subsequently analyzed with a rule-based approach (Alexandridis 
et al., 2020). 

Similar to these projects, most of the research found focuses on 
a specific type of obstacle only. In that sense, Satari (2012) 
proposes a way to recognize dormers based on lidar data and an 
LoD2 model without detailed roof structures through support 
vector machine, a supervised machine learning model. The 
approach is based on the different normal direction of dormer 
points to the main roof points. 

3. METHODOLOGY

Three different approaches based on different types of open 
datasets are explored and implemented to produce the 
information and to meet the objectives of the project. The Dutch 
datasets were used to test the methods, but the latter can be 
applied to different country depending on their data available. 
However, the precision and resolution of the data used would 
alter the result’s quality. 

3.1 Geometry-based classification 

The first method uses AHN3 Dutch airborne lidar point cloud 
and the derived 3DBAG LoD2.2 city model of all buildings in 
the Netherlands as the input. The aim is to couple and compare 
these two to identify their differences which would correspond 
to some installations’ relief present on the roofs.  

First, the detection of obstacle points is achieved by computing 
the distance between the mesh and the points. The points below 
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the 3D mesh are discarded as well as the one belonging to a 
vertical surface, that is, if the angle between the vertical axis 
and its normal is greater than 50 degrees. For the remaining 
points, when its distance to the mesh is greater than 40 cm, it is 
considered as an obstacle. This parameter is experimentally 
determined and gives the best results. Additionally, isolated 
points are discarded, using a radius search method to find the 
number of neighbouring points. 

 
Next, the points are considered in 2D. Since we did not obtain 
satisfying results by clustering the points into obstacles, we 
form the obstacle shapes by offsetting the points as polygons 
and merging them together (Figure 1). The buffer offset size is 
based on the point cloud density, which is around 30cm in the 
case of AHN3. 
 
 

   
 

Figure 1. Obstacle detection based on geometry mismatches 
between the datasets (left to right: highlight of the most distant 

points, selection, offset) 
 
 
3.2 Unsupervised image classification 

The second method relies on an image classification model to 
identify roof obstacles. For this, the openly available aerial 
images from the Netherlands (25cm resolution) are used (PDOK 
Luchtfoto), along with the footprints from the Key Register 
Addresses and Buildings (BAG).  
 
Since the aerial photography used is not a true ortho-photo, the 
building footprint polygons are aligned with the roofs in the 
aerial imagery using the Canny edge detection algorithm and 
edge matching.  
 
Ultimately, a k-means clustering algorithm is used on the 
aligned image to detect two classes: the main roof surface, and 
the obstacles on it. Additionally we add an additional class for 
pixels out of building bounds (Figure 2). 
 

 
 

Figure 2. Unsupervised classification result in three classes 

3.3 Supervised image classification 

The third method explores utilizing supervised image classifiers 
to identify and classify existing objects on the roof, namely 
solar panels. Since we failed to find any open datasets with 
individual panels labelled, we resorted to labelling the solar 
panels manually, focusing on an area of Delfgauw located 
nearby Delft. A convolutional neural network (CNN) was 
trained on this data, aiming at detecting existing solar panels in 
aerial imagery and therefore, identifying the buildings already 
equipped and having less priority for panel retrofitting.  
 
The output from the network is a per pixel map of probabilities 
ranging from 0 to 1 for a solar panel being located at a given 
pixel. Since the probability range is continuous while we prefer 
a fully binary result, we implement a chain of gaussian blur 
filters and thresholding operations to identify the blobs / areas 
of high solar panel probability and filter out the noise. (Figure 
3). 
 

 
Figure 3. Solar panel detection pipeline (left to right: input 

image, prediction, filtered result, ground truth). 
 

 
3.4 Combining the three detection methods 

The three approaches are integrated into a common pipeline. 
The obstacle polygons derived from first two methods are 
rasterized and an obstacle probability value is computed per 
pixel, assessing the chance for it to be an obstacle (Figure 4, 
right).  
 

 
Figure 4. Rasterization and overlay of the two first methods, 
yielding three obstacle probability classes: 0% (blue), 50% 

(green) and 100% (yellow) probability. 
 

 
Our experiments show that obstacles detected by the first 
method are usually correct but incomplete: higher obstacles 
such as chimneys are detected whereas lower ones, like solar 
panels, are missing due to not crossing the obstacle distance 
parameter. The second method tends to detect more obstacle 
surfaces than the first one, especially due to misclassifying 
thrown shadows. Conclusively, we assign a 100% probability to 
the output from the first method if they are also represented in 
the second method. We give a 50% chance to the other pixels, 
and to the ones obtained by image classification. The others are 
assigned an obstacle probability of 0%. 
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Furthermore, the 2D area of the obstacle can be computed. To 
retrieve the area in 3D, the point cloud dataset is used: the 
normal angle value of each point is projected in 2D and 
rasterized to obtain a value per pixel. An Inverse Distance 
Weighting (IDW) interpolation method is used to obtain a value 
for each pixel (Arroyo Ohori et al., 2020) (Figure 4, left). These 
angle values evaluate the tilt of the roof per pixel and 
consequently allows us to compute the corresponding 3D area. 
 
Additionally, the solar panel detection model infers whether the 
building is already equipped with solar panels. The computed 
obstacle surface areas and detected solar panels are outputted 
and integrated back into the CityJSON model as new semantic 
attributes, which can be used to improve the accuracy of 3D city 
models-based solar potential assessment such as Solar3DCity 
(Biljecki at al., 2015). 
 

4. RESULTS 

4.1 Obstacle detection validation 

We test the methods on a 50 buildings dataset located in 
Eindhoven. In order to quantify the quality of our results, we 
use a contingency matrix for pixel classification as explained by 
Janssen (2004). A comparison between a manually drawn 
ground truth and our classification result is obtained by building 
an error matrix based on the comparison of their respective 
pixel values (Figure 5). This is done twice with two sets of 
results applied to the 50 buildings dataset: once, with a manual 
alignment of the footprints to the aerial images and once with 
the automatic alignment method we developed. 

 

Figure 5. Comparison between the inferred obstacles and 
ground truth for a sample building 

 

Figure 6. Aerial ortho-photo of a sample building 

The validation method is adapted to our case: the pixels which 
obtained a probability value of 50% in the classification process 
are used both as main roof area and roof obstacle area but 
weighted by 0.5 in the error matrix. Finally, the error matrix 
allows us to compute some objective accuracy parameters: on 
the one hand, the so-called “producer accuracy” and “user 
accuracy”, and on the other hand an “overall accuracy” 
(Janssen, 2004).  
 
The overall accuracy of the obstacle detection method when 
compared to the ground truth for a validation sample set was 
76%. 78% if the orthophoto was manually aligned, instead of 
using our automated orthophoto alignment pipeline (Table 1,2). 
 
 

Table 1. Contingency matrix for a sample building, using the 
automated ortho-photo alignment method 

 

Table 2. Contingency matrix for a sample building, using 
manual ortho-photo alignment 

 
 
4.2 Solar panel inference 

The accuracy of the solar panel detection model was 70% for a 
validation dataset, but with very low accuracy of only 25% in 
positive cases (see Table 3). We believe the results could be 
further improved with more diverse training dataset, since the 
validation dataset included high number of building typologies 
not encountered in the training data. 
 

  Ground truth   
  Main 

part (0) 
Obstacle 
area (1) 

Total User 
acc. 
(%) 

Result Main 
part (0) 

6330 889 7219 88 

Obstacle 
area (1) 

977 364 1340 27 

 Total 7307 1252 8559  

 Prod. 
accuracy 
(%) 

87 29  76 

  Ground truth   
  Main 

part 
(0) 

Obstacle 
area (1) 

Total User 
acc. 
(%) 

Result Main 
part (0) 

6330 889 7219 88 

Obstacl
e area 
(1) 

952 364 1340 27 

 Total 7257 1252 8559  
 Prod. 

accurac
y (%) 

86 19  78 
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Table 3. Accuracy of the solar panel detection for the validation 
dataset 

 
5. DISCUSSION 

5.1 Impacts on the combined results 

Regarding the detection of any installation on the roof, the 
major aspects impacting the results were identified as the 
followings: first of all, the rasterization process involved when 
merging the methods provokes some loss of accuracy. 
Secondly, we noticed the impact of the correct alignment 
between the BAG and the aerial images datasets, which was an 
issue not entirely solved. This aspect might differ from an area 
of study to another, depending on the open data available. 
Furthermore, the obstacle-detection accuracy is highly impacted 
by the different types of roof structures and materials. It is thus 
highly dependent on the sample data used. We could observe a 
high variability of buildings’ type in our datasets: housing in 
rows such as bigger isolated buildings, with various roof 
materials/colours. Finally, the validation method we chose 
impact the quality assessment. Indeed, we consider the results’ 
quality by considering the pixels one by one, in a more accurate 
way than our methods were themselves developed. 
 
5.2 Limitations of the respective methods 

The combined results are primarily dependent on the three 
methods used and their respective limitations. 
 
The limitation of the supervised image classification method 
relies mostly in the amount and diversity of training data that 
we could generate. The trained models are too context sensitive 
(e.g., model trained in a small neighborhood of Delft not being 
able to generalize to typologies from different locations), or on 
the other hand training sets are so broad, that even with larger 
number of images, the model struggles with delivering reliable 
results. 
 
The obstacle-detection method based on geometry remains very 
dependent on the input 3D model and the way the latter was 
generated. In our case, we use the 3D-BAG dataset as main 
input, but the latter does not represent the buildings in a 
consistent manner regarding the high-level semantics: e.g., 
sometimes modelling dormers, sometimes not. The 3D-BAG 
algorithm is indeed dependent on numeric parameters and aims 
at keeping low-complexity. Also, this method is dependent on 
the point-cloud acquisition-pattern (parallel lines) and accuracy. 
Both aspects influence the obstacle point retrieved and the 
obstacle’s shape. 
 
The unsupervised image classification often detects the shadows 
of an obstacle rather than the obstacle itself. This 
misclassification yields bigger surface areas than reality and 
non-overlapping results with the previous method. Additionally, 
the resolution of the aerial images used impacts highly the 
results. In our study-case, the resolution of 25 cm is not enough 
to detect small obstacles and to perform a better automated 
alignment. Finally, labelling correctly and automatically the 
outputted classes is not straightforward, since the clusterization. 

6. CONCLUSIONS 

The objective of this paper is to present a method to infer 
semantic properties of roofs by focusing on roof obstacles such 
as dormers, chimneys, and solar panels. Inspired by the existing 
strategies to detect roof obstacles, three methods have been 
developed. The first one depends on a geometry-based 
classification in which the distance between the AHN3 point 
cloud and the 3D BAG LoD2 model determines the obstacle 
points, which are then offset and merged to form the obstacle 
geometry. The second one is based on an unsupervised image 
classification where the first step aligns the aerial image with 
the 3D BAG footprints, the second one uses K-means clustering 
to create two clusters with obstacle and non-obstacle features. 
Finally, the third one is based on a supervised image 
classification to detect solar panels on roofs, in which we first 
create the training data by manually labelling over a thousand 
individual solar panels and generating XYZ map tiles with the 
input data and output labels to create the training pairs, and then 
use a simple CNN that outputs a probability value of a solar 
panel located at a given pixel.  
 
Considering the low accuracy of individual methods, the three 
methods are combined. The first two methods are combined 
first by rasterizing the polygons resulting from the first method 
and overlaying them with the output of the second one to use a 
pixel-based approach and to decide if a pixel contains an 
obstacle. The obstacle areas are also calculated in 3D with each 
point’s normal indicating the roof’s tilt and added to the 3D 
BAG LoD2 model in CityJSON format as an attribute. 
Moreover, another attribute is added for the information of 
having a solar panel or not as a Boolean value.  
 
To validate and assess the results, we use an error matrix that 
compares the ground truth with our classification. The overall 
accuracy of obstacle detection changes between 2% and 60% 
while the detection of main-roof area presents an accuracy of 
70% to 90%. This high difference can be caused by the different 
number of pixels concerned by each class: since much less 
pixels depict obstacles, retrieving the same ones through 
different methods is less probable. Moreover, limitations 
coming from the geometry-based and unsupervised image 
classifications such as the quality of the 3D BAG dataset and 
the resolution of aerial images affect the results. As for the 
supervised prediction model, we achieve 70% accuracy for the 
test dataset, although the results are better for other validation 
datasets typologically closer to the training data. Additionally, 
we achieved interesting results with predicting the solar 
radiation values at the roof surface using picture-to-picture 
generative adversarial networks. 
 
The described methods are an effective way to increase the 
accuracy of a solar potential assessment performed on 3D city 
models when both dense point-cloud and aerial imagery are 
available. In areas without frequently updated point-cloud data, 
the image-based methods might still be useful if adapted by 
compensating for the tendency to overestimate the obstacle 
surface areas.  
 
Future work should include adapting the algorithm for other 
datasets to see how the density of point clouds and the 
resolution of aerial images change the results. Moreover, instead 
of merging the three approaches, an opposite approach could be 
explored where the data sources are integrated at input instead 
to create a dense coloured point cloud so that only one 
processing method is used at the end.  
 

Cases Accuracy Correct Incorrect 
All 70.0% 35 15 

Positive 25.0% 3 9 
Negative 84.2% 32 6 
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