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Abstract 
This research aims to investigate a new method for stream delineation with point cloud data 
in areas with low topographical relief, by using high-quality LiDAR point cloud data. Stream 
delineation is the derivation of streams, based on elevation data. By optimally using the 
quality LiDAR point cloud data, it is expected that better results in this field of study can be 
retrieved. The main objective of this research was to find and provide a proof of concept of an 
innovative method for stream delineation with direct point cloud analysis. Current methods 
predominantly use raster-based methods. Because of necessary interpolations that must be 
done during the creation of a raster terrain model, data is generalized and not optimally 
utilized for the analysis. The most commonly used conventional method is the D8-method. 
This method has limited direction options and, therefore, gives length errors. The new method 
handles this problem, as it can flow into an infinite number of directions. To identify the most 
suitable method that uses point cloud data more directly and to overcome the problem of the 
limited directions, an extensive theoretical review was performed and several prototypes 
were developed. The new method was selected by regarding three main requirements: 
accessibility, accuracy and simplicity. This means, respectively that the new method should be 
openly available for everyone, is more accurate than conventional approaches and is relatively 
easy to apply. This resulted in a new method: the absolute point-method. To ensure open 
accessibility of this method, the source code of this method can be found on: 
https://github.com/stn228/Absolute_point_method_Stream_delineation. This method looks 
for the lowest point within a specified search radius. To avoid getting in a local depression, an 
extendable neighbourhood and a maximum allowed course change was included in the 
algorithm. To examine the added value of the newly designed method, the results were 
compared to the results of a conventional stream delineation method: the deterministic 8 
directions (D8), raster-based method. This research not only shows the added value of the 
newly designed absolute point-method but does also underline the great potential of point 
cloud data for hydrological analysis. The Root Mean Square Error of the D8 and the absolute 
point-method results were compared to a reference stream and the absolute point-method 
showed a significantly higher accuracy. Although this approach is very local, the absolute 
point-method offers a good alternative if conventional methods do not return satisfying 
results. It was demonstrated that, mostly in areas with very low topographical relief, the 
accuracy of this method is significantly higher. This shows the added value of the use of direct 
point cloud data for hydrological analysis. As hydrological applications become more and more 
important for proper water contamination management, this research advocates for a 
broader development of direct point cloud based hydrological tools. Finally, this research 
provides different suggestions for future research to scale this method. By adopting more 
efficient data structures and analysis methods for the point cloud, more advanced 
hydrological methods can become available. 
  

https://github.com/stn228/Absolute_point_method_Stream_delineation
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1 Introduction 
Throughout the past decennia, possibilities for advanced digital mapping have become more 

widely available. New technologies have introduced continuously increasing computing 

power. This resulted in a rapidly increasing variety of data types and possibilities for analysis 

of the data. These emerging methods and techniques also resulted in new tools for 

hydrological analysis. Digital Elevation Models (DEMs) are commonly used for hydrological 

analysis (Longley et al., 2015). These gridded datasets represent parts of the real world with 

squared cells with a value assigned, that represent, for instance, elevation (Arun, 2013). 

Because of the wide availability and accessibility of gridded DEMs, the high information 

density and relatively low required computational power, this type of data seems very suitable 

to carry out hydrological analysis (Arun, 2013). Many raster DEMs are created by interpolating 

point cloud data, retrieved by using Light Detection And Ranging (LiDAR) scanning techniques. 

The raster-based approach is generally considered as accurate and the ease of this type of 

analysis is considered as an advantage. However, although raster techniques are widely used, 

Anderson and Ames (2011) suggest that information gets lost during interpolation of the raw 

point cloud data to a gridded format. With the emergence of the high-quality LiDAR point 

clouds, a solution to overcome this problem of information loss. Maintaining as much as 

possible data is required to retrieve accurate results for the analysis. Generally, the more data 

that can be utilised during the analysis, the higher the expected accuracy. A higher accuracy 

for stream delineation applications is mostly relevant for areas with low topographical relief. 

If direct analysis with the raw point cloud data can be executed effectively, significantly less 

loss of information will occur during the analysis because there is no interpolation needed. 

This increases the accuracy of the analysis (Anderson & Ames, 2011). Besides, raster-based 

approach are restricted to a finite number of directions to stream to. As a consequence, the 

model will show a cascading stream that follows the number of directions that it is restricted 

to; for instance, eight or sixteen directions (van Bemmelen et al., 1993). The conventional 

vector- and raster-based approaches do not seem to be the most optimal methods anymore. 

The relatively new point cloud representations possibly offer a solution, as they work without 

heavy interpolations and maintain the integrity of the data (Gabrisch, 2011).  

1.1 Problem statement 
Different researchers have identified the added value of point cloud-based approaches in 

hydrological analysis. Anderson and Ames (2011) explored a neighbourhood-based approach, 

while Gabrisch (2011) investigated this more direct point cloud analysis by using tessellations. 

This is considered a more direct approach as this method maintains the original elevation 

values of the points. Their approaches were proven and working on point cloud data. Also, the 

errors of the data are significantly lower than the gridded, conventional data (Gabrisch, 2011). 

Point cloud-based approaches are not new in hydrology. Different solutions with tessellations 

are found by researchers, but often data integrity is damaged constructing TIN-datasets by 

using gridded source data (de Azeredo Freitas et al., 2016; Rheinwalt et al., 2019; Zhang et al., 

2018; Zhou & Chen, 2011). Gabrisch (2011) created a well-functioning algorithm based on 

tessellation to perform a catchment delineation and proved that direct point cloud analysis is 

more effective in areas with low topographical relief. However, their approaches are not easy 

to adapt and the created algorithms are highly complex and run on non-regular software. 
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Thereby, the performance in speed of the algorithms is lacking and the accessibility of these 

algorithms is insufficient. This research compares the different methods and creates an 

algorithm to delineate streams directly from point cloud data. Thus, this stream delineation 

tool derives streams efficiently from elevational data in an accessible manner. 

Stream delineations model a part of the ecohydrological dynamics in a defined research area 

that specifically integrates the above-ground hydrological processes. Understanding and 

being able to predict these processes helps to regulate water quantity and quality within the 

researched area. The pressure on the human environment is increasing as overpopulation, 

urbanisation and climate change is becoming more and more significant. Effective sustainable 

policies are needed to maintain or restore the current water resources. To carry out an 

effective policy for water management, prediction of the behaviour of water in an area is very 

important. Mostly in underdeveloped areas, the need for water contamination and regulation 

is increasingly important. However, also in developed areas, it is important to expand 

knowledge to face the increasing severity of problems concerning water quality and quantity 

(IHE Delft Institute for Water Education, 2020). Because the above-described problems are 

occurring in various places, it is very relevant to be able to delineate streams for differing types 

of landscapes. Currently, accurate stream delineation, and thus creating an accurate 

ecohydrological model, is not well feasible in areas with low topographical relief. Concludingly, 

a stream delineation algorithm that is accurate in areas with low topographical relief, 

accessible, simple and one that performs well, concerning computing capacities, does not exist 

yet. This research aims to give an overview of existing methods and provides an accessible and 

accurate method to delineate streams more accurately in areas of low topographical relief. 

Therewith, it can be used as a tool to apply sustainable hydrological management and 

planning more effectively.   

1.2 Research objectives 
This research aims to delineate multiple streams in a predefined catchment area with low 

topographical relief using point cloud data. In this research, stream delineation is defined as 

the derivation of a water flow in a predefined catchment area, based on elevation models. 

This does not include the delineation of a catchment area, based on the derived streams. As 

stated above, Anderson and Ames (2011) and Gabrisch (2011) explored, among others, direct 

point cloud analysis. This research defines direct point cloud analysis as a method where the 

original z-values of the points in the raw point cloud are not modified. They successfully 

created algorithms that help to conduct direct point cloud analysis for hydrological 

applications. However, these algorithms do not focus on low relief areas or cannot yet be 

considered as ready to use tools. Because of its accessibility and simplicity, the conventional, 

grid-based approach is still dominant in hydrology. This research aims to create the 

fundaments for a ready-to-use stream delineation tool for using direct point cloud data. A 

comparison between different existing methods was made. The different approaches were 

being examined and an optimal method was identified and selected for further analysis. Open-

source software was used, to enable future researches to get access to the tool. An advanced 

method to delineate stream in areas with low topographical relief is searched for.  
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This leads to the following research question: 

“What is the best approach to delineate streams in areas with low topographical relief using 

LiDAR retrieved point cloud data?” 

To answer the above standing research question accurately, the following sub-questions are 

drawn up: 

1. “What different methods for stream delineation with LiDAR data exist and what 
strengths and weaknesses can be identified?” 

2. “What approach with direct point cloud analysis is most suitable to delineate streams 
in an area with low topographical relief?” 

3. “To what types of areas could a stream delineation with direct point cloud analysis be 
of added value?” 

4. “Can an algorithm be created and applied in a suitable research area of the identified 
most suitable stream delineation method?” 

5. “What is the added value of the selected approach in contrast to conventional 
methods to delineate streams?” 
 

This research explores different existing approaches and selects the most suitable method. 

This selection is mainly based on three set requirements to meet the objectives of this 

research: accuracy, simplicity, accessibility of the algorithm. 

The accuracy should be higher than conventional existing 

methods in areas with low topographical relief; the algorithm 

should be able to handle big datasets and should be relatively 

simple to execute with normal computers. Lastly, the algorithm 

should be openly accessible and useable for everybody who 

wants to use it. This not only means that open-source software 

should be used, but also that an average hydrologist, without 

high-level programming skills, is able to execute the algorithm. 

The main objective of this research is to provide a proof of 

concept of a well-working stream delineation algorithm that 

meets these three requirements. If all these characteristics are 

sufficient, the algorithm accommodates the desired research 

objectives. Finally, this research identified the strengths and 

shortcomings of the designed method.  

1.3 Research  
To answer the main research question, a step-by-step approach 

was adopted. Four steps are identified, which must be executed 

consecutively. The first steps function as the fundament of later 

steps. These steps are graphically visualised in figure 1. In phase 

one, sub-question 1 was answered, phase 2 provides an answer 

on sub-question 2 and 3. Three candidate methods were 

identified. Based on the results of prototypes, the most suitable 

method was identified. Phase three answers sub-question 4 
Figure 1: conceptual 

research approach 

Figure 1: conceptual research 
approach. 

. 
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and phase four answers 5. Lastly, an evaluation of the created method was done. The results 

are reviewed extensively and suggestions for future research are done. This research gives an 

overview of different methods to prepare and process point cloud data for hydrological 

analysis. Based on the literature review, an algorithm was designed that meets the set 

objectives and requirements, mentioned in the previous paragraph. Finally, the algorithm was 

executed in two small sub-catchments as a proof of concept.  
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2 Theoretical background 
Since the emergence of computer technology, stream modelling tools are increasingly 

frequent adopted. Different approaches were developed through the years. As this research 

aims to find an accessible and efficient tool to delineate streams, it is important to understand 

how these streams are extracted and what different approaches with LiDAR retrieved data 

already exist. This chapter elaborates on the different approaches that have been adopted in 

previous researches and gives an overview of the strengths and weaknesses that can be 

identified. This chapter lists the supposedly most useful methods to execute a stream 

delineation algorithm.  

2.1 The concepts of stream delineation 
The main objective of stream delineation is to model the flow of water in a specific area based 

on the topographical and geomorphological features of the surface. Therewith, a better 

understanding of complex ecohydrological systems can be achieved. This supports better 

water management as more customised policies can be made. Conventional, raster-based, 

algorithms do not require a selected starting or endpoint but define the streams in the 

research area, based on the continuous raster. Alternative models determine a flow path 

starting from any arbitrary point to its outlet (F. Zhang et al., 2018). However, it is also possible 

to delineate a stream from low to high. Then, the stream follows the steepest path up. This 

can be convenient if there are difficulties in finding the starting point. In many cases, the outlet 

point of a stream is easier to find, because this is the point where all the water flows to in the 

(sub-)catchment. However, the risk exists that a stream will be delineated away from the 

actual stream because the surface outside of the river bed is higher than points upstream. The 

stream can be delineated, based on the flow direction that can be extracted from an elevation 

model. The flow directions are based on the direction of the slopes between different 

measurement points. A stream network can be extracted, based on the determined directions 

of the flow (F. Zhang et al., 2018). This maps the drainage pattern in a specific area resulting 

in a comprehensive stream network existing of many different streams with varying 

significance. Raster-based approaches commonly order these streams, based on a flow 

accumulation or Strahler order, which is explained later in this chapter in section 2.4.1. 

Alternatively, the flow path is based on the steepest descent. The flow direction of the water 

naturally follows the path of steepest descent (F. Zhang et al., 2018). Furthermore, some 

important topographical characteristics of a stream must be taken into account when creating 

a stream delineation algorithm: a stream cannot cross itself, return to the path where it came 

from and an arbitrary maximum course change of the flow path should be considered 

(Anderson & Ames, 2011).  

2.1.1 Conceptual model 

To create and understand the new stream delineation method, it is important to understand 

the importance of the decisions that are made for creation. In all cases, the stream follows its 

way down or up over the modelled elevation surface. The main objective of stream 

delineation is to identify the direction of the flow at specified points on the surface. The results 

of the stream delineation are dependent on the quality and type of input data that is used. 

The stream flows over the surface in a specific direction that is dependent on the type of data. 
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From a specified starting point, the stream flows over a specified distance towards the next 

point and this process is repeated until the stream reaches the outlet. Mainly three methods 

can be distinguished and are discussed in this research. Traditional stream delineation with 

rasters stream from grid cell to grid cell and are restricted to the cardinal eight directions. 

With a triangular representation, the flow streams towards a connected neighbouring point; 

with individual points, the stream flows towards a point at an arbitrary distance. This process 

of identifying the path downward over a surface is iterated until it reaches the outlet of the 

research area. Mostly in areas with low topographical relief or with a highly complex surface, 

minor details can affect the final results of the stream delineation model. For example, errors 

occur when algorithms end up in a local depression (sinks). The influence of the data 

preparation phase and therewith the chosen input data type is an important aspect of this 

research and is, among other things, discussed in this chapter. A choice can be made for a 

highly accurate surface representation, which is more complex to work with, or for a more 

simplified representation of the earth’s surface, which is more suitable for analysis but 

possibly impacts the accuracy of the results. These decisions strongly influence the final results 

of the analysis and therefore should be chosen with care. Based on the theoretical background 

and the created prototypes of the selected candidate methods, a choice was made for the 

algorithm that is developed. This research uses high-quality point cloud data to delineate a 

stream in a research area. Then, based on the theoretical review, the most suitable 

representation of the data was selected to perform a stream delineation that preserves the 

original high-quality point cloud data as much as possible. As stated before, when selecting 

the data representation and the stream delineation algorithm the accuracy, simplicity and 

accessibility of the model are decisive for the choice. This process is conceptually shown in 

figure 2. This chapter discusses the different possible methods. Methods that comply with 

these three requirements are identified in this research. 

 

Figure 2: Conceptual model. 

2.2 Analysis steps 
Traditionally, stream delineation analyses are conducted with raster-based elevation models. 

It can be assumed that the more accurate the elevation is modelled, the better the results of 

the analysis are. Elevation data can be gathered and preprocessed in different manners. This 

research uses LiDAR data. Although LiDAR data can be considered highly accurate, different 

applications with the data can have a great impact on the results of the analysis. More 

•High quality 
LiDAR data

Point cloud

•To raster

•To tessellated 
surface

•No conversion

Surface 
represen-

tation

•Accuracy 

•Simplicity

•Accessibility

Stream 
delineation



 

17 
 

specifically, the results of a stream delineation analysis can be influenced during mainly four 

stages:  

• Data gathering; 

• Data preparation; 

• Preprocessing; 
• Processing. 

 

Preprocessing of the data by collectors are not included in these steps as this is commonly 

done by the data-gathering agencies. It is important to note that this potentially has an impact 

on the data. For example, the chosen methods during the scanning process impact the 

resulting point cloud dataset and thus, the results of the research. The data can be prepared 

to make it easier to work with. Commonly, point clouds are very big datasets with not many 

ready-to-use tools available. To make the data easier to process, the data sometimes is being 

converted to other data types such as gridded- or triangulated datasets. Furthermore, to 

minimise the occurrence of expected errors, the data can be preprocessed. Examples of this 

are terrain reconditioning algorithms, such as filling the voids and sinks in the data or river 

burning (Wang & Liu, 2006). Finally, the last step is the processing of the data. This is where 

the actual stream delineation algorithm is being executed. This chapter discusses the different 

methods and possibilities step-by-step. 

2.2.1 Data gathering 

There are different methods available to collect topographical data. Remote sensing 

techniques enable researchers to measure electromagnetic radiation coming from an object. 

The retrieved data can be translated into information about the ground object (Meesuk, 

2017). Mainly two types of remote sensing can be distinguished: active and passive. Active 

remote sensing techniques are commonly used for measuring the height of land surfaces. 

Although there are passive remote sensing techniques, such as Structure from Motion and 

photogrammetry, to create point cloud elevation models, these techniques are less accurate 

than the more recently developed active scanning techniques (GIM International, 2020). Two 

techniques are available and can be generalised to Radio Detection and Ranging (Radar) and 

Light Detection and Ranging (LiDAR) applications (Clevers, 2020). 

Radar 

Radar retrieved topographical surface representation is the most common method to acquire 

elevation data. Active microwave sensors illuminate the earth surface and measure the 

backscattered signal. With the time delay and strength of the received signal, the distance to 

the target can be determined (Clevers, 2020). As a result of the radar sensing, a gridded Digital 

Elevation Model (DEM) can be created. Each pixel in the dataset depicts an elevation value. 

Global satellite programs, such as the Shuttle Radar Topography Mission (SRTM) of NASA, 

result in large-scale and cost-efficient DEMs. Because of the wide availability and sufficient 

quality and reliability, these DEMs are suitable for various hydrological analyses. However, the 

coarse resolution of global Radar DEMs limit the accuracy of stream models with this type of 

data as input. The finest resolution of the SRTM is a DEM with 30-meter pixels, while the LiDAR 

retrieved AHN DEM has a 0,5-meter resolution (AHN, 2019). Thus, these global radar DEMs 

are useful for regional and global scale studies to identify patterns that should be further 
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examined using higher-resolution datasets (Acharya et al., 2018). Mostly because of the 

regional nature of hydrologic basin analysis, specifically stream delineation, a more specific 

elevation model should be adopted for more accurate and refined results. As stated before, 

more accurate elevation models can be retrieved with LiDAR technologies.  

LiDAR 

LiDAR is an active optical remote sensing technique that generates a representation of the 

earth’s surface with point clouds. Aerial scanning is only discussed as this is the most suitable 

method to create an elevation model with LiDAR. With airborne LiDAR scanning, a laser 

scanner is attached to a plane and transmits laser beams to the earth surface. The beams are 

scattered back and then are analysed by the receivers in the sensor. Based on the calculated 

travel time of the laser beam, the distance to the earth, or a specific object on the earth, can 

be determined (Clevers, 2020). The main difference from Radar is that LiDAR uses much 

shorter wavelengths in the electromagnetic spectrum; the ultraviolet, the visible or the near-

infrared (Clevers, 2020). This commonly results in a large dataset that consists of independent 

LiDAR-points with x, y and z values: a point cloud (Longley et al., 2015). These point clouds 

provide a 3D visualisation of the earth surface and can be considered as a valuable addition to 

the two traditional forms of earth modelling, vector and raster representations. The point-

density of the point cloud and thus the accuracy is dependent on the quality of the measuring 

equipment and the flight planning settings. More concrete, this is dependent on the scanning 

angle, pulse repetition and scanning frequency for the sensor and the flying altitude, speed 

and overlap for the flight planning (Höfle & Rutzinger, 2011). One of the great advantages of 

LiDAR retrieved data is that the geomorphological specifications of a surface can be mapped 

with much detail and because of the active data acquisition process with laser scanning, the 

point cloud is even measured under vegetation cover (Höfle & Rutzinger, 2011). 

Each point in the point cloud has its own x, y and z value. These point clouds provide a 3D 

visualisation of the earth surface and can be considered as a valuable addition to the two 

traditional forms of earth modelling, vector and raster representations. One of the great 

advantages of LiDAR retrieved data is that the geomorphological specifications of a surface 

can be mapped with much detail and because of the active data acquisition process with laser 

scanning, the point cloud is even measured under vegetation cover (Höfle & Rutzinger, 2011). 

The usage of LiDAR to create point cloud representations of the earth’s surface is emerging, 

because of the high accuracy and the potentially wide range of applications of LiDAR in, for 

example, forest management, urban planning, hydrological analyses or flood control (Aguilar 

et al., 2010). In particular, point cloud representations are suitable for analyses where details 

possibly affect the results. This is because LiDAR depicts very detailed elevation information 

of a specific area (Höfle & Rutzinger, 2011). An example of this is in hydrological analyses in 

areas with low topographical relief. High accuracy of the actual elevation under vegetation is 

important to understand the natural stream of the water.  

The gathered data is commonly preprocessed by the data collectors. The adjustments of the 

data should result in more accurate representations, but it is important to note that this could 

affect the data. A frequently used preprocessing step is filtering. Using a filtering algorithm, 

ground and non-ground points can be distinguished. Filtering on ground points, for example, 
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enables researchers to conduct bare earth analyses. Also, outliers can be filtered out from the 

data. This requires intelligent algorithms with diligent parameter adjustment for such big 

datasets (Chen, 2007). Furthermore, tiling and compressing data could influence the data. This 

helps users to access the big datasets more easily, but the data are reorganised in this process 

and could affect the data, mostly at the edges of a tile (Chen, 2007). 

Besides the various advantages of LiDAR, there are some downsides to the use of LiDAR. First, 

aerial LiDAR data collection is expensive because a plane, a pilot and a high-quality laser 

scanner is required to acquire the information. Thereby, the plane can scan a limited area at 

a time. This makes the gathering of the data a very time consuming and logistically complex 

process. Although the cost-effectiveness of LiDAR scanning is currently continuously 

improving by, for example, increasing the pulse frequency of a single scanner or by mounting 

multiple scanners on a plane, it is still an expensive process (Johnson et al., 2014). 

Furthermore, since point clouds are a relatively new data type, next to the traditional vector 

and raster data types, there are not many easily accessible applications for use of the data. 

Thereby, the resulting datasets are often very demanding of computer processing capabilities 

because of their great data density. Therefore, many researchers choose to modify the 

datasets to traditional data types before they use them. This results in (partial) loss of a 

previously given advantage: the high accuracy.  

2.2.2 Data preparation 

As stated before, the relatively high complexity of point cloud data could force researchers to 

modify the data to a more useable data format. The main goal here is to prepare the data for 

further analysis, without using too much accuracy of the origin data. The topographical 

modelling of a terrain is often associated with a gridded visualisation, known as the Digital 

Elevation Model (DEM). Accordingly, point clouds are frequently converted to these gridded 

DEMs to make them useable for the analysis phase. However, there are many different 

possibilities to create an accurate model or representation of the earth’s surface. This results 

in terrain models in different dimensions, with different features and different characteristics 

(Gold, 2016). Logically, it can be stated that these different models influence the final results 

of the research. Generally, a researcher can choose to prepare the raw point cloud data in 

three different manners: 

1. Conversion to raster datasets; 
2. Conversion to tessellated datasets; 
3. No conversions. 

 

With a conversion to a continuous surface (raster or TIN), the stream direction of the flow can 

be retrieved for the whole area. No conversions presumably lead to a more local approach 

where the direction of the flow is retrieved per point. This paragraph discusses the different 

possible conversion methods relevant to this research. Later in this chapter, the different 

methodological approaches are discussed.  

2.2.3 Conversion to raster dataset 

Traditionally, rasterised data is broadly used for hydrological analysis. Before the emergence 

of LiDAR technology, elevation data was mostly gathered with Radar which results in 
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rasterised datasets (Clevers, 2020). The pixels are a very efficient way to visualise the surface 

elevation with single values, in 2.5D (Höfle & Rutzinger, 2011). Thereby, as stated before, there 

are many applications available that require raster input for a wide variety of analyses. 

Therefore, point cloud data is regularly transformed into raster data. This can be achieved 

with calculations that assign values to the pixels in the grid, based on the measured x, y, z 

values assigned to the points in the point cloud. Different interpolation methods perform such 

calculations. Mainly two approaches for point cloud to raster interpolation can be identified: 

(1) deterministic methods and (2) geostatistical methods (Xiaoye Liu, 2008). For both, 

respectively one specific method has been lighted out as an example: (1) Inverse Distance 

Weighting (IDW) and (2) Kriging.  

Deterministic methods 

The deterministic approaches assume that each input point has a local influence that 

diminishes if the distance from the point increases (Xiaoye Liu, 2008). IDW assumes that points 

closer to a specific location have a stronger influence than 

the farther points. Within a window, an adjusted number of 

points are selected and a weight is assigned to it based on 

the proximity of the point. This is visualised in figure 3. The 

determination of the search window can be fixed, based on 

a radius, or variable, based on a number of points that must 

be included in the search window. IDW is particularly useful 

if the input data is dense and well-distributed (Xiaoye Liu, 

2008). Moreover, because IDW contains original values, a 

proper approximate representative elevation can be 

created. In the case of interpolation of point cloud datasets, 

it can be assumed that the first criterion is met. However, 

LiDAR retrieved point clouds are known for their irregular 

distribution of points because the laser reflects randomly 

(Clevers, 2020). This potentially results in less accurate 

results of an interpolation of point cloud data. Thereby, 

IDW is a method that uses weighted averages and is not 

capable of considering survey points outside the search window. This could result in the 

ignorance of topographical characteristics, such as steep ridges. These shortcomings are of 

great influence in hydrological analyses and could lead to ignorance of important features of 

the surface. Therewith, the result of the model could be impacted drastically. Although these 

methods are usually relatively easy and accurate, deterministic methods are not always 

suitable for system modelling, because do not take the model of spatial processes within the 

data into account (Xiaoye Liu, 2008). 

Geostatistical methods 

The spatial correlation of the data is considered in geostatistical interpolations (Xiaoye Liu, 

2008). Spatial correlation assumes that the closer a specific point is located to the sample 

point, the more it is related. As mentioned before, an example of a geostatistical method is 

Kriging. Therewith, it assumed that there is a spatial correlation between the sample points. 

The correlation can be used to explain the variation in a surface (Xiaoye Liu, 2008). In essence, 

Figure 3: IDW Search 

Window where closer points 

have a higher assigned 

weight (Esri, 2020). 
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it is a statistical approach that can be used, using the mathematical formula of kriging to 

predict the surfaces of an area. By creating variograms and covariance functions, the statistical 

dependence can be estimated. Therewith the unknown values in the surface can be filled in 

(Esri, 2020). Essentially, Kriging is a technique that weights averages of weighted distances 

between sample points and estimated locations and mutual distances among sample points 

(Xiaoye Liu, 2008). This results in more sophisticated, and therewith more complex, surface 

models. However, it assumes a specific pattern in the data while this is not always true for 

complex surfaces. A generalisation of the data is manifested. This generalisation is applied in 

all both geostatistical as deterministic interpolations. Hui et al. (2016) introduces a multilevel 

Kriging filtering algorithm with a high accuracy and low errors in comparison to other 

interpolation methods for LiDAR data. The combination of the relatively easy applicability and 

the high performance of geostatistical interpolations this a suitable choice in the data 

preparation phase. However, although Kriging, and other geostatistical interpolation 

methods, are considered as powerful and efficient tools, the transformation with 

interpolations to a gridded dataset results in data loss. This causes errors in the pixel values 

and the analysis is generally constrained by an eight-direction flow algorithm. This potentially 

impacts the final results of the model (Gabrisch, 2011). 

Concludingly, it can be stated that a conversion to gridded data has well-developed methods, 

where the resulting datasets are DEMs of good quality. However, the accuracy of the resulting 

raster grid is limited and could impact the final results if the details in the earth surface matter 

for the results of the research, for example in areas with little differences in relief. Thereby, 

raster representations are 2.5-dimensional as they only contain height information and no 

volume (Garbrecht & Martz, 2000). Thereby, most conventional methods only use the x and y 

values to determine the weight of the specific cell. For instance, IDW bases the weight on 

distance. This weight is used for the calculation of the average z-value for the specific cell. This 

makes the gridded representations a constrained simplified image of the real world wherein 

complex geometries are not easy to depict. An approach where the interpolations are more 

dependent on the elevational data is desired for more immersion of the elevation model. 

2.2.4 Conversion to tessellated datasets 

The use of tessellated datasets as a representation of the earth’s surface is often suggested as 

an alternative for raster solutions. Often, tessellations manifest themselves through 

triangulations. A prevailing triangulation type is the Triangulated Irregular Network (TINs). 

One of the great advantages of TINs is that the source data point-values are not modified. By 

creating a TIN, the survey points are converted to a continuous surface, existing of vertices 

that are connected with edges by triangular facets. If only the edges and vertices are used as 

a network for the analysis, the triangulated dataset is no longer a continuous representation 

of the surface area, as the faces of the triangles are not taken into account and do not 

represent anything. The raw data is more or less preserved in the interpolated surface as the 

vertices are the original measurement points (Gold, 2016). For triangulation of datasets, 

different methods can be identified. These different methods can be categorised by 

dimensionality: 2D, 2.5D and 3D; or: TINs, Data-Dependent Triangulations (DDTs) and 

tetrahedralizations. 
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Triangulated Irregular Networks (TINs) 

Creating a TIN can be done with different approaches. As stated before, TIN representations 

are created from data where the data loss is minimal. Thereby, this type of interpolation of 

point cloud data can be considered as a more sophisticated techniques for terrain analysis 

that maintain the high information density of the LiDAR data (F. Zhang et al., 2018). Also, the 

TIN-structure enables to store the available data more efficiently and perform better in 

feature representation (Zhou & Chen, 

2011). Furthermore, the processing 

speed is relatively good in these data 

structures, both TIN and Voronoi, 

because it is possible to create 

hierarchies in the data (Gold, 2016). 

One of the most commonly used 

calculation for TIN creation is the 

Delaunay triangulation. The Delauney 

triangulation fulfils the ‘empty circle 

criterion’. This criterion is visualised in 

figure 4 on the next page (Verbree & 

van Oosterom, 2003). As a result, the high information density can be maintained, but they 

do not ensure that all hydrologic features are modelled as accurate as possible (Nelson et al., 

1994). Lastly, the irregularly sampled point, characteristically of a LiDAR retrieved point cloud, 

is very suitable for creating triangulated networks. 

For stream delineation modelling, an adjacent Voronoi diagram is being calculated with the 

Delaunay triangulation. Then, the triangulation becomes solely a topological connection and 

the Voronoi cells can be used for the mathematical properties (Gold, 2016). Voronoi diagrams 

are asymmetrical polygons where any boundary of the polygon is closest to the sample point 

than any other sample point (Gabrisch, 2011). Figure 5 shows the relationship between the 

Delaunay triangulation and Voronoi diagrams. The far-right of figure 5 is also called a dual 

Delaunay triangulation. The Voronoi diagram is used for the generation of the topology and 

volumetric calculations, while the triangulated surface is the basis of the terrain model (Gold, 

2016). This combination is explicitly useful for stream modelling as the edges of the triangles 

share the same spatial relationship as the adjacent Voronoi polygons created from the same 

nodes. Both triangulations and Voronoi diagrams are suitable to model terrains elevations. 

Thereby, this method maintains the quality of the data more sufficiently than alternative 

interpolations to rasters (Gabrisch, 2011).  

 

Figure 5: Relation between Delaunay triangulation and Voronoi diagrams (Gold, 2016). 

Figure 4: The empty circle criterion that is used 

for constructing a Delaunay TIN (Verbree & van 

Oosterom, 2003). 
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A constrained Delaunay triangulation generalises the regular Delaunay Triangulation by 

forcing specific segments, usually defined by break lines, into the triangulations. Along the 

break lines, the Delaunay rules are ignored. In areas with low topographic relief, this method 

is used to guarantee that important characteristics, such as streams, lakes or other objects in 

a landscape are maintained. With that, the triangulation consists predominantly of both well-

shaped triangles and the topology is accurately mapped; although misshaped triangles could 

occur at the locations of the break lines as they force the triangulation to conform to these 

break lines (Marsh et al., 2018). Other 2-dimensional triangulations consist of poorer shaped 

triangles and are, therefore, less suitable for mapping elevation. Furthermore, contour lines 

can be generated from point clouds. Contour lines are lines constructed over areas based on 

equal elevation. By using interpolations, the intermediate elevation values, between the 

sample points, are calculated to create the contour lines. The contour lines simplify terrain 

contours and describe geomorphologic characteristics, such as ridges in surfaces accurately 

(Ai, 2007). By including these contour lines in a Delaunay triangulation as a constraint, these 

geomorphological characteristics can be mapped more accurately. More specifically, for LiDAR 

data, contour lines can be used to distinguish ground points from non-ground points in the 

dataset (Z. Wang et al., 2018). Ground points are considered as all the points of the earth 

surface and non-ground points are the points that are above this surface, such as objects and 

trees. Despite the better modelling of small details in the surface, a constrained Delaunay TIN 

is likely to consist of flat areas along the contour lines (de Azeredo Freitas et al., 2016). The 

points along the contour lines have the same elevation value and because of this constraint, 

the triangles can become very narrow with a negligible slope. This is considered a 

disadvantage when modelling a stream, based on elevational differences. Furthermore, in the 

case of AHN3, ground and non-ground points are already distinguished (AHN, 2019). Thus, this 

is a step that can be skipped as the ground points are already classified. 

Finally, numerous advantages of TINs can be identified. First, triangulated datasets maintain 

the source data sufficiently and this results in lower errors in the elevation models (Gabrisch, 

2011). Furthermore, the triangulations are very accessible tools and the resulting datasets are 

very efficient. The combination of the high accuracy compared to the raster DEMs and the 

efficient data structure makes it potentially very suitable for stream delineation tools. 

Data Dependent Triangulations (DDTs) 

As state above, DDTs take the height values of the input data points into account during the 

calculation of the triangles. Triangulations constructed from 3D point clouds are optimal if 

they consider the z-values of the points during the triangulation (Hjelle & Dæhlen, 2006). DDTs 

can be implemented in different manners. In fact, any type of triangulation could be used for 

a data-dependent approach by maximising or minimising the cost-function that expresses the 

properties of the surface (Verbree & van Oosterom, 2001). The significant difference between 

the different methods can be illustrated by the following figures (figure 6). Because of the urge 

to optimise the triangles, the representation of the surface is strongly influenced by the 

Delaunay representation. This is shown in figure 6: on the left side, a Delaunay triangulation 

is performed and on the right, a DDT is shown (Dyn et al., 1990). As is shown, in contrast to 
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the right visualisation the 

triangles are well-shaped on the 

left side. However, the ridge in 

the area is more smoothly 

visualised than with a Delaunay 

triangulation. Figure 6 also 

illustrates the most important 

difference between planar 

(Delaunay) and data-dependent 

triangulations: planar 

triangulations are not satisfactory 

in areas with a steep slope, for 

example at areas with steep 

ridges (Kolingerová, 2004). 

Rodríguez and Silveira (2017) 

implement a DDT with higher-

order Delaunay triangulations. By 

using small order triangulations, under three, the accuracy of the terrain models already 

increased as the root mean square error declined. Creating constrained Delaunay 

triangulation is also a DDT approach. By adding the contour lines of important topological 

features to the scope area, these important features can be included in the triangulation 

(Pfeifer, 2002; Verbree & van Oosterom, 2001). This method relies on an accurate definition 

of the contour lines. This, however, sometimes is difficult since these lines cannot always be 

defined as straight lines or the lines are deduced from interpolations of the same input data 

that is used for the triangulation (Pfeifer, 2002). Accurate constrained Delaunay TINs can be 

created if the point dataset is from another source than the contour lines dataset. There are 

many different approaches to triangulate points and mostly it is shown that DDT performs 

better for terrain models. DDTs are referred to as 2.5-dimensional because it does take the 

elevation into account during the triangulation process, but the resulting dataset does not 

have volume. For stream delineation, it could be convenient to have well-shaped triangles to 

ensure a more natural path of the stream. The elevation data can also be included here by 

using the z-values of the points after the triangulation has taken place. For instance by looking 

at the z-values of the points or by assigning a slope to the edges of the triangulated dataset. 

Lastly, pure DDTs do not perform well on terrain surface data because it results in very sliver 

triangles and artificial plain areas could be created as local and global criteria could disregard 

specific geomorphological features of the surface (Verbree & van Oosterom, 2003). The 

narrow triangles potentially result in plain surfaces in the data and the pure DDT struggles to 

map ridges and edges.  

Figure 6: A Delaunay triangulation (a) versus a Data 
Dependent Triangulation (b) (Dyn et al., 1990). 
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Tetrahedralizations 

To create a 3-dimensional representation of a surface, a spatial decomposition model is 

defined as all the 3D locations that are closest to a geometric object than to any other (Gold, 

2016). There are different approaches, such as the facet-edge, augmented quad-edge or dual 

half-edge implementation, but the Delaunay 

tetrahedralization is the most common approach as a 

result of its simplicity combined with its ability to model 

volume (Gold, 2016).  

A Delaunay tetrahedralization creates a tetrahedral 

mesh in a 3-dimensional space that discretely 

represents the space continuously. By finding the 

closest points in the 3D space, triangles are 

constructed. This results in a volumetric surface mesh 

that is created. Therewith, a tetrahedral mesh of the 

convex hull of its vertex set is created (Si, 2020). An 

example of these meshes are given in figure 7. The 

figure shows that a smooth surface reconstruction is 

created by the algorithm.  

Tetrahedralizations are capable to interpolate big point cloud datasets to a 3D representation 

of the surveyed surface. Because of the full 3D approach, this can be considered as the most 

accurate approach to reconstruct continuous surfaces. Therewith, this method is explicitly 

suitable for the modelling of overhangs, caves or other complex objects in space (Pfeifer, 

2002). Herewith, a smooth surface is guaranteed and the errors are minimised. However, 

these algorithms, similar to the aforementioned methods, do not take the curvature of 

surfaces between survey points into account (Si, 2020). Furthermore, these methods are 

demanding from processing capacities and there are also no ready to use and easy to 

implement tools available. Lastly, for stream delineation approaches, it is not required to take 

the volumes into account as the water flows over the upper surface.   

2.2.5 No conversions 

Aerial LiDAR scanning results in point cloud data. In this chapter, different methods were 

discussed to interpolate this raw point cloud data to continuous surfaces. However, the raw 

data also represents the surface in a sampled manner. The characterising high point-density 

of these point clouds make this discrete representation sometimes sufficient for analysis. 

Thereby, no conversion of the data means that there is no data loss occurring because of 

mathematical transformations during the interpolation. The originally measured data is 

directly being used for the analysis. Anderson and Ames (2011) showed that direct use of raw-

point cloud data results in lower errors in the model than when using a gridded raster, 

retrieved from interpolation of the raw point cloud. By using the z-values of the point clouds, 

a 3-dimensional representation can be given. 

Although the big advantage of assured data preservation, the surface represented discretely. 

To model the inherent topological relationships between the different points, a continuous 

surface would be more suitable (Gabrisch, 2011). Additionally, similar to previously discussed 

Figure 7: a surface mesh 

constructed with a Delaunay 

tetrahedralization (Si, 2020). 

Figure 7: a surface mesh constructed with a 
Delaunay tetrahedralization (Si, 2020). 
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data preparation methods, there are no ready to use tools available for analysis with raw point 

clouds, although the points can be converted to vector points to enable available software to 

read and analyse the features. Also, the point clouds are demanding from processors and 

memory because of their huge data density. Although there are filtering methods to compile 

the data, this could be not desirable, because this also results in data loss. Thereby, for a 

stream delineation, it is desirable to only use the ground points of the LiDAR retrieved point 

cloud, but these filtered datasets are still very bulky. Nevertheless, the high data density and 

the maintenance of the original values of the data could be the fundament for highly accurate 

analysis. 

2.3 Data preprocessing 
For raster-based analysis, this step normally occurs after the data preparation phase. Data 

preprocessing is needed to fill local sinks and pits to assure a continuing flow (Zhou & Chen, 

2011). However, point cloud preprocessing sometimes is needed before data preparation to 

optimise or filter the LiDAR retrieved point cloud to improve the processing capacity and 

accuracy of the model (Hui et al., 2016). In the case of AHN3, some steps are undertaken to 

improve the accuracy of the data. For example, GPS-corrections and different flight strips are 

compared to verify if the data matches. Furthermore, filtering processes are being executed 

to classify the data to recognise the type of measured object, for example, buildings or 

vegetation. Lastly, quality checks on point-density, the division of the points, 3D-locations and 

checks on the filtering are performed (AHN, 2020). These intensive preprocessing methods 

assure a high quality of the raw point cloud data. Therefore, the quality of this dataset can be 

considered as sufficient and normally, no further preprocessing measures are required.  

To conduct a raster-based stream delineation, a DEM is calculate the flow directions. 

However, local depressions may impede the continuity of the stream, because the flow 

directions all point at a specific pixel, or group of pixels, in a depression. These sinks are pixels 

with the same, or a lower elevation than surrounding cells (Aziz et al., 2020). Sinks appear in 

valleys, divergent topographical areas and they can also occur because of errors during the 

creation of the raster. Therefore, to ensure continuity of the stream, sink filling algorithms are 

normally applied before conducting raster stream delineation analysis. These algorithms 

generally fill the sinks by using the elevation values of proximate pixels to smoothen the 

surface of the DEM (Aziz et al., 2020). Commonly used methods use a minimum slope as the 

parameter to determine what steepness on depressions are filled. These parameters can be 

adjusted to optimise the results of the sink filling. Mostly the sink filling algorithm of Wang & 

Liu (2006) is an accessible and accurate tool to fill sinks. Their tool is also available in QGIS. 

Lastly, it is important to check the DEM whether or not there are no data pixels before filling 

the sinks. No data pixels are voids in the data and cause non-existent elevation if a sink filling 

algorithm is used on it. Therefore, the voids must be filled prior to further steps in the analysis 

(Aziz et al., 2020). However, in a LiDAR retrieved DEM, it is not likely that voids are present 

because of the great data density of the original point cloud. Thereby, if the interpolation was 

executed properly, all the gaps in the surface area should be filled with a value.  
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2.4 Processing 
In the case of stream delineation processes, the processing phase is the part where the actual 

stream delineation algorithm is being executed. Based on the choices made in the previously 

described phases. The type of analysis is contingent upon the input data that is being used for 

the research. Therefore, the results of the research are dependent on the type of data that is 

being used. As described, in the case of stream delineation mainly three input data types can 

be distinguished: raster, tessellations and raw point cloud data. This chapter reviews different 

dominant methods to determine flow direction by category. 

2.4.1 Raster based methods 

Besides the previously mentioned pitfalls of raster-

based stream delineation in areas with low relief, such 

as the loss of information during the interpolation, 

limitations by pixel size and the restriction of their 

eight-cardinal directions, this method also offers 

opportunities (Gabrisch, 2011).  

Raster based approaches are very well-known and 

many pre-made software packages with good 

documentation are available. Processing methods to 

determine flow direction coming with advantages and 

disadvantages are listed by Gortzak et al. (2020). Their 

overview is shown in table 1. Predominantly, two 

methods are distinguished: eight directional (D8) and 

infinite directions (D∞) algorithms. A distinguishment 

can be made between approaches that flow to only a 

single direction (deterministic) or in multiple directions (multi-flow). The D8 can only stream 

to its eight adjacent grid-cells while the D∞ also takes further grid-cells into account. Based 

on the values in these cells, the angle of the direction of the stream is adjusted. This is 

conceptually shown in figure 8 (Szczepaniak-Kołtun, 2015). The stream direction is based on 

the elevational values assigned to the neighbouring cells. This results in a stream network with 

many different streams of diverse volumes. Different methods exist to extract the major 

streams from the smaller streams in this network. Usually, this is done with the Strahler order, 

where the streams are ordered based on the size. The size of a stream increases as two 

streams join each other in the stream network; the more streams have joined, the higher the 

streams are ranked by the Strahler order. The higher the order, the bigger the streams (van 

der Kwast & Menke, 2019). Another possibility to define the significance of a stream is by using 

a flow accumulation algorithm. Therewith, the accumulated value of each cell is added up to 

the cell where it flows to.  

  

Figure 8: Conceptual approach 

of the D∞ algorithm 

(Szczepaniak-Kołtun, 2015). 

Figure 8: Conceptual approach of the D∞ 
algorithm (Szczepaniak-Kołtun, 2015). 
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Table 1: Raster based methods for determining flow direction 

Raster based methods for determining flow direction 

Method  Author  Summary  Advantages  Disadvantages  

D8 (Deterministic 
eight algorithm)  

O’Callaghan & 
Mark (1984)  

From the 
source cell, a 
water 
particle can 
flow in a 
single stream 
to 1 of the 8 
neighbouring 
cells.   
  
  

- Watershed 
boundary and river 
network are 
derived easily  
- Simple and 
convenient  
- Widely applicable 
in hydrology 
research  
- Functions well in 
low elevation 
areas  

- No accurate 
flow-
representation 
due to only 8 
directions (zig-
zag pattern 
visible)  
- No 
continuity of 
water flow in 
areas with pits  
  

MD8 (Multi-flow 
directional eight 
algorithm)  

Quinn et al. 
(1991)  

From the 
source cell, a 
water 
particle can 
flow in 
multiple 
streams to all 
the 8 
neighbouring 
cells  
  

- Truer to life 
results then D8 
due to multiple 
flows  
- Avoids 
concentration of 
all streams on a 
single flowline  

- Lot of 
dispersion, 
even on 
convergent 
slopes  
- Does not 
function well in 
low-elevation 
areas due to 
multiple 
streams 

D∞ (Deterministic 
infinity 
algorithm)  

Tarboton (1997)  From the 
source cell, a 
water 
particle can 
flow in a 
single stream 
in infinite 
directions  
  

- Follows natural 
stream better 
compared to D8 
and MD8 
(less zigzag)  

- Does not 
function in flat 
areas due to 
the infinite 
number of 
directions  

MD∞ (Multi flow 
directional infinity 
algorithm)  

Seibert and 
McGlynn (2007)  

From the 
source cell, a 
water 
particle can 
flow multiple 
streams in 
infinite 
directions  
  

- Ideal for 
topographic index 
applications  

- Mostly useful 
for overland 
flow analysis  
- Not useful in 
low elevation 
areas due to 
multiple 
streams and 
infinite 
directions  

Gortzak et al., 2020 
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For areas with a distinct topography, these methods are particularly suitable. In these areas, 

the flow-direction is straight forward and there is a clear downward slope in the area. The D8 

algorithms are very useful to conduct a stream delineation effectively and easily. However, 

because of the limited directions in these types of algorithms, the directions cannot be derived 

effectively in areas with more complex topographical features. The D∞ methods are better 

suited for areas where finer differences are of importance during the stream direction 

calculation. These techniques are considered as more refined, but they are still not specifically 

useful in areas with low topographical relief. The streams that are created will be very 

dispersed and random if there is no fluent and clear topography in the area (Yang et al., 2017). 

Furthermore, by using raster-based approaches, a good path can be found. However, van 

Bemmelen et al. (1993) argue that the exact solution can never be found with raster-based 

approaches and that it will always be an approximation. For example, a 4-connected raster 

stream is approximately 41 per cent longer than the actual, optimal length (van Bemmelen et 

al., 1993). The stream model is always dependent on a specified number of directions to 

stream to. As stated before, a limitation of several directions result in a deviating and 

cascading stream, which is not an accurate representation of the natural water flow.  

2.4.2 Tessellation based methods 

As stated before, flow direction modelling can also be performed using tessellated datasets. 

Creating triangulated data is a convenient method to create tessellated networks. Usually, the 

original input dataset is a point cloud dataset. These points are placed in a 3D space and are 

the vertices of the triangles. These vertices are connected with the edges. Then triangle-

shaped polygons are formed that are called the faces of the polygons. A combination of these 

different facets of a triangulated dataset represent the surface area continuously. Normally, 

in triangulated representations of surfaces, an elevation attribute is assigned to the faces 

based on an interpolation of the elevation values assigned to the vertices. These interpolated 

values can be used for stream delineation modelling. However, this results in an analysis with 

interpolated data and will be very similar to the raster-based approaches. Therefore, for flow 

direction calculations, alternative methods with TINs can be adopted. These methods are 

discussed. 

First, Voronoi diagrams are used for creating a flow direction model. Dakowicz and Gold (2007) 

created a finite runoff model with Voronoi cells that function as buckets that are filled by 

water based on stream direction information from a Delaunay TIN. The flow is modelled 

iteratively by examining the movement of the water from Voronoi cell to cell, based on the 

direction of the flow, assigned to the TIN edges. The water is accumulated in each Voronoi cell 

based on the inflow and outflow. The outflow in the higher elevation points will be higher than 

the inflow and the other way around. They conclude that the model can accurately create a 

global flow model, but it is indicated that the method is complex and the processing 

performance of this model is particularly low. Other stream delineation algorithms with 

tessellations can be seen as a walking algorithm over the triangulated network. For example, 

the edge lines can be used to identify the stream flowing from point to point and to find the 

path downward (Gabrisch, 2011). Depending on the characteristics of the algorithm the 

choices for the route can differ (F. Zhang et al., 2018). Using this network for the analysis 

results in less data loss because no interpolations take place in the process. Potentially, this 
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makes this approach more precise as data is not generalised, but all the original data is being 

maintained in the vertices of the network. This chapter discusses different stream delineation 

methods, based on triangulations. First, some assumptions are considered that are required 

for successful stream delineation (Qu et al., 2014): 

1. The flow follows the direction of the steepest slope; 
2. The flow continues until it gets into a depression or crosses the research area 

boundary; 
3. For every node, a unique direction with a steepest slope can be identified; 
4. Every triangle has a maximum of one edge where the water flows out. 

 
Gabrisch (2011) uses the vertices and the edges to calculate the flow direction on a Delaunay 

TIN. Using the line distance between the vertices, a slope can be determined. The directions 

are the steepest descent path from each vertex to its adjacent neighbouring vertex. Based on 

the flow direction, the natural stream in the scope area can be delineated. The streamflow 

lines are generated over the edges from vertex to vertex and get a slope attribute value 

assigned. The flows can globally be hierarchically categorised based on its steepest descent. 

In this algorithm, the flow direction is directly based on the slopes between the original LiDAR 

point cloud data. Therefore, this method can be considered accurate and reliable because it 

maintains the integrity of the raw point cloud data. This method examines the streams of the 

flow globally in an area with low relief and is presumably more accurate than alternative 

methods as the TIN surface model preserves the original points of the point cloud. However, 

a risk is that the forced flow over the edges lead to a rugged and unnatural flow path. Another 

method where the stream is delineated over the edges of the triangles is suggested by Qu et 

al. (2014). They propose two methods, where they present the flow direction based on the 

triangles gradient as the most suitable for surface water runoff modelling. Alternatively, they 

present a more classical method where the gradient of the edge decides the flow direction. 

They argue that this type of analysis is mostly suitable for channel runoff modelling. However, 

this method struggles to effectively handle minor local elevational differences, which results 

in possibly random local flow direction. Besides, this method is a very local approach, where 

not the whole surface is taken into account. Specifically, in areas with low topographical relief, 

the water may flow in multiple directions. This could result in an insufficient description of the 

actual flow of the streams in an area (Qu et al., 2014). 

Besides the above-described methods, the flow path does not necessarily stream from vertex 

to vertex over the edges. It is also possible to direct the flow through the triangles from edge 

to edge or from edge to vertex (F. Zhang et al., 2018). This alternative routing can be useful 

when triangles are not perfectly shaped to maintain the natural gradient of the stream. 

Thereby, if the algorithm is not constrained to only streaming over the edges, the algorithm is 

less restricted for the direction it flows to. Furthermore, it is possible to direct the stream over 

the faces instead of over the edges. Then, the flow direction is determined by the gradient of 

the triangle. The gradient of the triangle can be accurately established by using the elevation 

values of the three corresponding vertices (Rheinwalt et al., 2019). This method lets the water 

drain into each other via the flow lines. This drainage model also delineates water streams, 

based on the flow direction.  
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De Azeredo Freitas et al. (2016) propose a method to delineate streams in flat areas by using 

surveyed contour lines as input data. A constrained Delaunay triangulated elevation model is 

created with the contour lines, extracted from sample-points. They argue that the constrained 

Delaunay assures the maintenance of important characteristics and features of the terrain 

surface. However, the contour lines cause completely flat areas in the constrained TIN. Self-

evidently, this must be avoided if the model for runoff modelling is based on elevational 

differences. Therefore, their method removes completely flat areas by adding artificial points 

to the data, to ensure continuity of the stream downward. The flat areas are removed by 

inserting new points on the so-called critical edges of the triangles. The critical edges are the 

edges that occur in two cases: (1) edges connecting non-consecutive points on the same 

contour line or (2) edges connecting points on different contour lines of the same height (de 

Azeredo Freitas et al., 2016). The height of the new points on the critical edges are linearly 

interpolated between the elevations of the initial and final points. The initial points are the 

starting points, defined by the triangles with only one critical edge. This method traces the 

stream flow path of steepest descent with the flow direction defined by the gradient vectors 

of the triangles. This analysis is particularly useful when there is a limited availability of input 

data, specifically contour lines, for the stream delineation analysis. Because this research 

works with high-quality data, this method would not be a logical choice as a lot of available 

data would not be utilised.  

De Azeredo Freitas et al. (2016) note that this analysis, both with raster as with TIN are very 

local operations. Specifically, in areas with low topographical relief, this could cause problems, 

because the stream delineation could get stuck in a local topographical depression. As 

mentioned before, this phenomenon is called a sink and this is a location where there is no 

lower neighbour for the specific location. These sinks can be handled during preprocessing, 

but can also be considered during the execution of the algorithm. Traditionally, the sinks are 

filled using a smoothening algorithm that locally increases the elevation value of the sink. De 

Azeredo Freitas et al. (2016) suggest to remove these pits with an interpolation of the Z-value 

of the points in the TIN. Rheinwalt et al. (2019) suggests a method to handle the sink problem 

in landscapes by carving the sinks. Therewith, the water is directed away from the bottom of 

the sink, instead of filling the sink. If the algorithm comes into a sink, it causes circling in cycles. 

If this is being identified, an artificial tunnel can be created to the lower values behind the 

higher triangles around a specific point. Therewith, the locality of the algorithm is being 

broadened by not only looking only at the adjacent vertices, but also to further points until a 

path downward has been identified. The approach of Rheinwalt et al. (2019) is conceptually 

shown in figure 9. The turquoise arrows represent the stream cycling in a sink, the pink arrows 

show the tunnels that are created when running into the sink and the blue arrows represent 

the flow direction (facet-flow network). 
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Figure 9: conceptual visualization of handling sinks by increasing the locality of the analysis 

(Rheinwalt et al., 2019). 

Concludingly, it can be stated that applying a stream delineation algorithm correctly is more 

complex than the conventional raster-based approach, but it most likely results in more 

accurate results. By applying a stream delineation algorithm that walks over a network of 

edges, there is a risk that the algorithm is longer than in reality because it has to follow the 

connections between the points. Therefore, because of this long path that is chosen, the 

sinuosity (the length of the stream to the valley length) could be higher than the actual 

sinuosity (Anderson & Ames, 2011). A network-based flow algorithm, similar to the method 

of Gabrisch (2011), seems to be the best fit for this research concerning the requirements of 

accessibility and accuracy. However, the simplicity of this method could become a challenge. 

A method where the water flows over the edges of the triangulated network presumably is 

more accurate than conventional methods and meets the requirement of simplicity. 

Nevertheless, this method could result in very long streams as it is obliged to follow the edges 

of the triangles. By allowing it to flow over the surface, through the faces of the triangles, the 

algorithm tends to get very complex because it is difficult to determine when it has to choose 

a path over the edge or when it has to flow over the network. The original point cloud data 

can be preserved and the details in the landscape are better considered in this model. Thus, 

these methods presumably are more suited for analysis in areas where the topography is more 

complex, where details in the landscape play a more important role in retrieving highly 

accurate drainage networks (de Azeredo Freitas et al., 2016; Gabrisch, 2011; Qu et al., 2014; 

Rheinwalt et al., 2019). 

2.4.3 Direct point cloud-based methods 

Lastly, methods directly applied on point clouds, without conversion of the data are discussed. 

Direct methods are defined as methods where the raw point cloud is used as input for the 

stream delineation algorithm. This section discusses different methods that are identified as 

direct point cloud analyses. Using direct point cloud data is relatively innovative and therefore, 

new methods, based on knowledge about the concept of stream delineation, are suggested. 

Anderson and Ames (2011) created a stream delineation algorithm, the mDn method, that 

automatically creates a neighbourhood, divided into several sectors, around an arbitrarily 
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selected starting point. Different parameters can 

be adjusted: the size of the neighbourhood, the 

number of sectors and the maximum allowable 

course change. This method is conceptually 

shown in figure 10. The average elevation of a 

sector is calculated based on the LiDAR points 

that fall within a specific sector. Then, the stream 

flows to the sector with the lowest elevation and 

the process is iterated until the algorithm is 

terminated. This is a convenient method to 

perform a stream delineation directly with raw 

point cloud data. The results show a lower root 

mean square error of this method than 

conventional, raster-based, methods. 

Nevertheless, some shortcomings of this 

approach can be identified. First, during the 

calculations, the point values are generalised in a mean elevation value; the optimal usage of 

the high information density, therefore, is not utilized. Moreover, the algorithm is created for 

ArcView, a GIS-platform that does not exist anymore. This limits the usability and accessibility 

of this approach. Finally, this algorithm is very sensitive to voids and sinks in the input data. 

Very careful parameter adjustment is required for this method, otherwise the calculations will 

terminate. These forced choices potentially influence the results of the stream delineation 

strongly (Anderson & Ames, 2011).  

To overcome the problem of generalising the raw point-cloud data, another neighbourhood-

based approach could be adopted where no averages are calculated. Similar to the mDn 

method some adjustable parameters are used, but this approach does not use sectors with 

generalised elevation values. Within the created neighbourhood, the point with the lowest 

absolute Z-value is selected and the stream is directed to this point. This is based on spatial 

autocorrelation, where it is assumed that nearer points are more related to each other than 

points that are further apart. This is an alternative method that is not executed yet for stream 

delineation. However, Ujaval Gandhi (2020) suggests a method to select neighbouring points 

using a search radius in QGIS with decision rules. By using the field calculator, a specified 

relation to each individual point within a search radius can be identified. Also, the K-nearest 

neighbour algorithm could be used bere. This way the number of neighbours can be specified 

and the search radius is adapted automatically, based on the input data (Zhu et al., 2016). In 

the case of a stream delineation, the point within this search radius with the lowest elevation 

is identified. This method is similar to the mDn method, but it does not use averages. In this 

case, the algorithm selects the absolute lowest point that is shown within the radius in figure 

10. Also, a search angle within this radius can be included. This can be used to push the 

algorithm forward and prevent it from flowing back. Based on different decision rules the 

method selects the most presumable point where the stream flows to. These decision rules 

can be based on characteristics of natural flow and the input data. This method is very local 

and, therefore very sensitive to get stuck in local depressions. However, the search radius can 

Figure 10: Visualisation of the mDn 
method. The water flows towards the 

sector with the lowest elevational average 
(Gortzak et al., 2020). 
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be easily extended locally if there is no lower point identified within the originally specified 

neighbourhood. Furthermore, this method is restricted to a single stream delineation as it is 

not possible to identify multiple paths at once. The locality of the algorithm results in a stream 

delineation from point-to-point and the multiple streams over the whole surface cannot be 

identified herewith. Finally, this method would require high processing capacities because of 

the high point-density. This could be mitigated by creating spatial indexes of the points before 

processing them. Also, as this is a local approach, the calculations can be performed locally. 

This limits the required points to be processed. Therewith, the speed of this algorithm is 

boosted. 

Furthermore, it is possible to calculate the flow, based on the normal vector of the points. The 

normal of a surface is a vector perpendicular to that specific point and says something about 

the orientation of these points. The normal can be calculated with different local surface 

models such as a plain area, a 2D triangulation or a quadric model (CloudCompare, 2020). The 

method with the plane neighbourhood is robust to noise but edges and sharp corners are not 

taken into account accurately. The quadric method is very suitable for curvy surfaces and the 

2D triangulation is weak to noise but is good with sharp edges. As represented areas typically 

are not curvy and because the noise in the dataset is relatively small because of the high 

quality, the 2D triangulation method is presumably most suitable for this research 

(CloudCompare, 2020). With the 2D triangulation method, the normal of a point or triangle is 

determined based on a Delaunay triangulation.  

The normal vectors can be used to identify the direction of the flow at a specific location based 

on the Z-value. This research focusses on the Z-value orientation of the vector. The flow 

streams over the surface where the Z-dip is most significant. The orientation of these points 

can be used to identify the stream direction of the water. This direction can be used for 

individual points (from point to point) but also the direction of the flow over a triangulated 

network can be defined with normals, instead of the slope as the determinant of the direction. 

The stream can be delineated from an arbitrary starting point and flows towards the next 

point where it aims to, for example over the edges over a TIN. This is a local application as the 

stream flows from point to point and streams for the whole surface are not calculated. If 

looking for a more global application, this approach can be useful when combining it with 

Voronoi diagrams. An approach, similar to the previously described bucket method (Dakowicz 

& Gold, 2007), is very applicable with the normals at each point as the water is poured into 

the Voronoi cells and filled like a bucket based on water height and direction at each point. 

Dakowicz and Gold (2007) determine the direction of the stream with a Delauney TIN and the 

assigned slopes, but the directions at each point could also be determined with the assigned 

normals. This method would result in a global flow direction model and this approach would 

not meet the requirement of simplicity of the model as this method requires high-level 

programming and performance issues would occur here. In these methods the original points 

are used and the normal vectors can be calculated in freely available software: CloudCompare. 

The normal vector approach and the triangular network approach are similar because the 

orientation of the points, based on the normals, will be approximately similar to the direction 

to the  edge with the lowest gradient. Also individual points can be used for the direction. The 

normal vectors of the points provide useful information about the orientation and direction 
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of the surface at a specific point. Because the normals of the points can be easily computed, 

it is a promising approach. However, to use the normals, a TIN or other surface representation 

is needed to determine the path. Thus, this method is not considered as an entirely direct 

approach as the transformation of the point cloud data is needed.  

Direct point cloud-based methods do have great potential, because the process of stream 

delineation is simplistic; only processing steps are required since the raw point cloud serves 

as directly as the input. Hence, the results of these methods presumably will be accurate. 

However, the currently known approaches harm the integrity of the raw point cloud data, are 

still not very accessible because of their limited availability or do not take important surface 

features into account (Gabrisch, 2011). Therewith, the approaches can be very local and at 

risk to end up in sinks. For instance, this risk should be taken into account with the absolute 

point neighbourhood-based approach as it is based on very local operations. Nonetheless, the 

method is relatively accessible, easy to apply and has the potential to be very accurate as it 

maintains the integrity of all the points. 

2.5 Conclusion  
This chapter overviews different stream delineation methods. The main focus is to find an 

accurate, simple and accessible application that maintains the integrity of the raw point cloud 

data as much as possible. An overview of the strengths and weaknesses of different 

approaches was given. Based on these insights, three candidate methods were identified. The 

raster-based approaches do not maintain the high information density of the original data 

because the data is being generalised during the necessary interpolations. Furthermore, other 

methods, with an interpolated TIN or with a local neighbourhood that calculates the average 

per sector, is generalising the points too much to maintain the integrity of the data. 

Triangulations maintain the data integrity and are particularly suitable because of their 

efficient data structure. However, the analysis can become complex and not accessible. 

Vector-based methods are suitable because the stream delineation model is based on a very 

accurate orientation of the points. However, vector-based methods are also considered as 

complex and not accessible, yet. Lastly, methods, based on the absolute values of points are 

suitable because of the utilisation of the original point cloud data. However, problems can 

occur when looking for an algorithm with sufficient computing speed. The three candidate 

methods are listed: 

1. TIN network-based; 
2. Normal vector-based; 
3. Absolute point-based. 

 
The next chapter discusses these three candidate approaches more elaborately. This 

theoretical review functions as the fundament of the methodology for this research.  
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3 Methods 
This chapter describes the methods that are adopted to delineate streams in a selected scope 

area. Since the scope area has relatively low topographical relief, this research aims to adopt 

a more accurate algorithm, as the details in the surface matter and data loss from the raw 

point cloud is not desired. By creating four prototypes, the most suitable method for this 

research was selected. First, this chapter presents the methods for two Delaunay TIN-based 

approaches, a normal 

vector-based approach 

and a direct point-based 

approach. Based on the 

results of these 

prototypes, the 

presumable best method 

was selected and further 

developed towards a well-

functioning algorithm. This 

process is visualised in figure 11 and gives an answer to the second sub-question: “What 

(combination of) approaches with direct point cloud analysis is most suitable to delineate 

streams in an area with low topographical relief?”.  

3.1 Prototypes 
This paragraph discusses the methods to create four prototypes that possibly meet the main 

criteria of this research to create an accessible, simple and accurate stream delineation 

algorithm in areas with low topographical relief. The TIN-network approach is a process where 

the water flows over the edges of the TIN, based on the slope assigned to each edge. 

Alternatively, the water can be directed based on the normal vector of the vertices, attached 

to edges. The normal vector-based approach uses the directions of the individual points to 

determine the flow direction per point in the research area. The absolute point approach looks 

at the absolute points within a search radius of the reference point. 

The four methods are executed in a very small test area with approximately 4000 LiDAR points. 

The used research are both consist of more than 100 times more points (see table 3, page 

53The prototype tests are executed in QGIS, using existing libraries and basic programming in 

PyQGIS. These prototypes are used to get a better understanding of the performance and 

specifications of the different approaches to select the best method for this research. Because 

the prototypes are executable in the open software of QGIS, it is assumed that all the methods 

meet the requirements of accessibility. The simplicity and accuracy has been examined based 

on the preliminary results of the prototype algorithms. To examine the accuracy of the stream, 

a reference stream, provided by the local water authorities is used. The selected area is a part 

of one of the scope areas, that are lightened out in chapter 3.4. This area is selected, because 

it is representative of the whole scope area, contains a curving stream and also contains areas 

with relatively low data density. This low data density is a result of the filtering of ground 

points that are used for the stream delineation. The different approaches that are identified 

are essentially the same, because all the streams identify the fastest path down, based on the 

Figure 11: Methodological approach for selecting the most 
suitable approach 
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elevation and their relation to neighbouring points. The difference between the methods is 

how this relationship between the different points is defined. The distance that the water can 

flow to neighbouring points and the number of neighbouring differs per approach. Also, the 

determinator for the flow direction differs, where the first approach is based on the slope that 

is assigned to the edges of TINs, the second on is based on the normal vectors, based on 

triangulation. Thirdly, the absolute elevation values in a specified neighbourhood are used.  

3.1.1 Constrained and normal Delaunay TIN network-based approach 

As stated before, an approach that maintains the integrity of the data is by creating a 

triangular network with a Delaunay triangulation. The created dataset functions as a network 

of vertices (the original points) and edges (the connection between these points), where a 

slope is assigned to the edges.  The Delaunay TIN is created by using an existing QGIS 

algorithm. This library provides an algorithm that efficiently creates Delaunay TINs (QGIS API 

Documentation, 2020). This tool also exports edges of the triangulated dataset to vectorised 

line-segments. The edges are now individual features and values can be assigned to them. The 

edges must consist of a slope gradient as the water flows to the point over the steepest slope 

downward. The slope of the edges is calculated in a three-dimensional surface with x, y and z 

coordinates assigned to each point. The slope is calculated with the following formula: 

𝑆𝑙𝑜𝑝𝑒 =
𝑅𝑖𝑠𝑒

𝑅𝑢𝑛
 

The rise is the difference of the elevation (z) value of the points, while the run can be 

calculated using the Pythagorean theorem: 

𝑅𝑢𝑛 = √(∆𝑦)2 + (∆𝑥)² 

Once the slope is calculated, it can be assigned to the vertices. These values can be used for 

the flow direction calculations, while the steepness of the slope determines the direction and 

the significance of the flow. Now, the local flow direction for each edge for the whole surface 

is defined. For this prototype, these stream directions are used from point to point. An 

arbitrary starting point is selected upstream as the beginning point for this algorithm. The 

prototype algorithm is executed manually. To make sure the stream goes forward, a maximum 

course change was integrated by restricting a course change angle between -88 to 88 degrees. 

This method is also executed on a constrained Delaunay TIN. This dataset is created by using 

the contour lines, extracted with a normal triangulation of the points, as a constraint during 

the triangulation. After that, the above-described method is adopted on this dataset. For the 

creation of the contour lines, a contour interval of 0.4 meters is used. Linear interpolation is 

used to treat each triangle as a plane. The contour lines change from direction when they 

enter the adjacent triangle (Esri, 2021). 

3.1.2 Normal vector-based approach 

Furthermore, the normal vector-based approach is suggested. The normals of the points are 

extracted using CloudCompare, open-source software that is designed to work with point 

cloud data. The normal vectors are based on triangulation and indicate the Z-orientation of 

the points. During the creation of the prototype, multiple approaches were explored based on 
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the direction of the normals. The extraction and the orientation of the normals is based on a 

triangulated approach. Many challenges were faced and it was not possible to create a 

prototype that met the requirements of this research: accessibility, simplicity and accuracy. 

However, in the results section, the normal vectors were visualised and reviewed to provide 

an understanding of the potential of this method.  

3.1.3 Absolute point-method 

Lastly, a method that uses the absolute points, without data conversion, was lighted out. In 

the case of this prototype, the neighbourhood was set to 3. With the field calculator, the 

lowest neighbour of a specific point can be identified. Using a script in PyQGIS, a line is drawn 

between an arbitrarily selected starting point and the lowest neighbouring point. This process 

was iterated until the lowest point in the area was reached. For this prototype, the lowest 

neighbour of each point in the dataset was identified.  

3.2 Absolute point-method  
An advanced neighbourhood-based approach looking at the absolute values of points was 

created for this research. The stream is modelled from an arbitrarily selected starting point 

towards the lowest neighbour in a specified neighbourhood. This process is iterated until the 

model reaches the lowest point in the research area, the outlet. The accuracy of this method 

was validated by comparing it to the results of a conventional analysis using a D8-algorithm 

and by logical interpretation. All the analysis steps were conducted in QGIS. This open-source 

software is particularly suitable because everybody has access to it and works well with point 

cloud data. Besides, there is a wide availability of ready to use tools, that can be integrated 

into this method without difficulties. These tools are stable and tested and therefore, the 

expected number of errors that occur within these tools is negligible. It is not only possible to 

view the point clouds, but it also is possible to easily convert them to other data types, for 

instance, Delaunay TINs or vector point datasets. If the available tools need adjustment or no 

tool is available, the Python extension of QGIS can be used. From here, this chapter describes 

the different steps that are taken during this research. First, the analysis design is presented. 

Then, a suitable scope area is identified. Therewith, an answer to the third sub-question was 

be provided. Thereafter, the data preparation, preprocessing and processing methods for the 

newly suggested approach are described. Lastly, the validation methods are described more 

precisely. 



 

40 
 

3.3 Analysis design 
In previous sections, it is explained 

that the process of stream 

delineation requires different steps. 

This research focusses on the data 

preparation and the processing of 

the data. The newly designed 

method should be an accessible, 

simple, accurate and well-

performing tool. Based on the 

literature review, a choice was  

made for a neighbourhood-based 

approach, where absolute points 

in an adjustable neighbourhood 

determine the flow of the water. This 

method will be referred to as the 

absolute point-method. AHN, LiDAR 

retrieved, point cloud data was used 

as input for this research. The ground 

points are already filtered and 

classified (AHN, 2019). The main 

advantage of this approach is that it 

is possible using existing libraries in 

QGIS and that the original point 

cloud data is directly used. The 

ground points are used as the input 

for the absolute point-method. After 

selecting an arbitrary starting point, 

the lowest neighbour of this point is 

identified. Thereafter, a line is drawn 

between the selected starting and ending point. This process is iterated until the outlet of the 

area is reached. The algorithm is more elaborately discussed in paragraph 3.7. The designed 

model was validated by comparing it to a conventional, raster-based, stream delineation and 

an existing reference stream. Also, the vertical performance was examined by looking at the 

longitudinal profile. The validation model is executed with the D8 algorithm. An IDW-

interpolated DEM is used, as AHN provides an advanced 0,5m raster DEM created using a 

squared IDW interpolation (AHN, 2019). A discrepancy between the results of the different 

approaches was expected, as the input data and processing methods differ drastically. 

Theoretically, the D8-method performs less in areas with low topographical differences. 

However, this method is very accessible and performs better in low elevation areas than 

alternative conventional approaches (Szczepaniak-Kołtun, 2015). Logical interpretation, based 

on the elevation models and their sinuosity and Root Mean Square Errors (RMSE) were used 

for validation. The RMSE is calculated by the root mean differences between a selected 

Figure 12: Workflow of the stream delineation 

processes. 

Figure 12: Workflow of the stream delineation processes. 
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reference dataset, provided by PDOK and considered as most accurate, and the delineated 

streams by the different algorithms.  

This chapter elaborates on how an algorithm was created to accurately delineate streams in 

an area with low topographical relief. The analysis can be subdivided into three components. 

First, the data preparation, then the algorithm execution and finally the model is validated 

when the results of the calculations are available. Figure 12 shows a flowchart of this process. 

The design of the stream delineation algorithm that is developed for this research is shown in 

figure 17 in section 3.5. First, the research area and the source data is discussed. 

3.4 Research area  
The main goal of this research is to provide a proof of concept of a well-working algorithm to 

delineate streams in an area with low topographical relief. Therefore, The research area must 

meet some requirements: 

• The scope area is a predefined (sub)-catchment with a clear outlet; 

• The area should be of low topographical relief, yet a pattern from high to low elevation 
must be present; 

• AHN3 data must be available; 

• No human interventions to ensure natural flow. 
 

Two research areas are selected. One area with a clearly identifiable topographical elevation 

difference and a small area with very small elevational differences. In a small research area, 

the test dataset is smaller and tests can be executed more easily because faster processing is 

possible. First, the performance of the created algorithm was tested in an area with some 

relief. Although there is relief in this area, this area still can be considered as an area with low 

topographical relief compared to other hydrological studies. Low topographical relief can be 

defined as areas where subtle differences in elevation values appear (Gabrisch, 2011). For this 

stream delineation analysis, the whole of the Netherlands was considered as an area with low 

topographical relief; also the hilly areas in Limburg. This research distinguishes two research 

areas. One of the areas has a distinct topography, while the latter has almost no topographical 

relief. The selected research areas are small sub-catchments: the Beversbergbeek, shown in 

figure 13 in the southern part of Limburg and a stream around Olst, shown in figure 15. As is 

shown in the longitudinal profile graph in figure 14, the surface at the top is 15 meters higher 

than at the bottom of the stream.  In the area with very low topographical relief, the total 

elevational difference is less than 0.2 meters over a length of 600 meters. Lastly, there are no 

human infrastructures in the Epen research area that possibly influence the natural water 

stream. The second research area in Olst, shown in figure 15, has an almost negligible relief. 

It was expected that the conventional D8-method does not work in this area when examining 

the longitudinal profile in figure 16. This very spikey pattern is presumably caused by the very 

low relief and because the stream is channelised. Also, the big spike, just before the horizontal 

distance of 400 meters is caused by a culvert that is located there (PDOK, 2020). However, 

although it is almost negligible, there is a downhill pattern recognizable. If the direct point-

method works in this area, it presumably is very effective in all areas with low topographical 
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relief. The two research areas will be referred to as respectively Epen (Limburg, higher 

elevation area) and Olst (lower elevation area). 

A reference stream provided by PDOK was used for validation. This dataset is compiled from 

datasets from different Dutch water authorities. The most current information is provided via 

the national geo-register PDOK. It is noted that not all water authorities provide all the data, 

but this dataset provides the best possible information about the local stream as a reference 

(PDOK, 2021). This research will refer to this dataset as ‘the reference stream’ from here.  

 

 

Figure 14: Longitudinal profile of Epen research area. 
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Figure 13: Epen research area: a small water stream in the hilly southern area of Limburg 

Figure 13: Epen research area: a small water stream in the hilly southern area of Limburg 
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Figure 15: Olst research area: a small water stream in the middle of the Netherlands near 

Olst. 

 

 

Figure 16: Longitudinal of Olst research area. 

3.5 Source data and preprocessing 
This research uses AHN3 LiDAR retrieved point cloud data. As stated in the literature review, 

raw point clouds from the AHN are already sufficiently preprocessed. As the research area is 

located in the Netherlands, AHN3 is a very suitable dataset of the Dutch governmental agency 

AHN that provides high-quality LiDAR data. AHN3 LiDAR data is retrieved with airborne LiDAR. 

A laser scanner is attached to a plane and transmits laser beams to the earth surface. The 

beams are scattered back and then analysed by the receivers in the sensor. Based on the 

calculated travel time of the laser beam, the distance to the earth, or another specific object 

on the earth, can be determined (Meesuk, 2017). This commonly results in a large dataset that 
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consists of independent LiDAR-points with x, y and z values: a point cloud (Longley et al., 

2015).  

AHN3 data is gathered between 2014 and 2019 with aeroplanes and helicopters. The point 

density is averagely between 6 to 14 points per square meter. The point density depends on 

the type of landscape and the adopted methods for data gathering  (AHN, 2019). The Epen 

scope area of this research consists of 760 095 points, of which 431 404 are classified as 

ground points. In Olst, this is respectively 988 747 and 686 181 points. For this analysis, the 

ground points have been used. The size of the Epen research area is 36.536 square meter, 

while the Olst research area is 110 368 square meter. That comes down to over eleven points 

per square meter for the Epen research area and over 6 points for Olst. Typically, the low 

elevation area is less dense with points that the higher elevation area since there is more 

scattering if there is a less heterogeneous surface. Usually, a DEM with a very high spatial 

resolution has approximately maximal 0,5m² grid cells (Aguilar et al., 2010). This means that a 

high-resolution DEM almost consists of two data points per square meter, which is much lower 

than the corresponding LiDAR elevation model. Furthermore, because AHN3 is calibrated 

precisely, the height errors are not low. An overview of the errors and the height accuracy is 

given by AHN and is shown in table 2 (AHN, 2019). 

Table 2: Overview of errors and the accuracy of AHN3 

Overview of errors and the accuracy of AHN3 

Accuracy parameter Error 

Systematic error 5cm 
Stochastic error 5cm 
68,2% of the points have an accuracy of at 
least 

10cm 

95,4% of the points have an accuracy of at 
least 

15cm 

99,7% of the points have an accuracy of at 
least 

20cm 

  AHN, 2019 

These raw LiDAR retrieved points are classified and only the ground points were included in 

the analysis. The points, with their corresponding z-values, were not modified any further. 

Thus, these points are used as input for the final analysis. This presumably improves the 

accuracy of the calculations, as the originally measured -highly accurate- values are used for 

the analysis. 

3.6 Data preparation 
As stated before, this research uses points directly from raw point clouds to minimise data 

loss. To use existing libraries in QGIS, the LAS-points are converted to multipoint Geopackage 

datasets. Next to the x and y coordinates, these points consist of a z-value that represents the 

measured elevation. For this research, the AHN LAS tile is clipped to a smaller area. Since the 

designed algorithm is a local approach, the research area is clipped to a minimised research 

area to improve the performance of the model. On the other hand, to apply the D8-method, 
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a square scope area is used. This was done to optimise the result of the performed D8-method. 

For the absolute point-method, no further data preparation is necessary. 

The D8-method inputs an interpolated AHN raster. This raster is created by AHN and is based 

on a squared IDW of the LiDAR points. The DTM (the digital elevation model with only the 

ground points) was used. First, the data gaps were filled and thereafter, the sinks were filled 

by using the commonly known algorithm of Wang and Liu (2006). The filled rasters serve as 

input to create a flow direction raster, where one of the eight possible flow directions is 

assigned to each cell. Based on the flow direction raster, a stream network can be identified 

by using the Strahler order. The absolute point-method is further explained in the next 

paragraph. 

3.7 Processing methods 
All the data is arranged to serve as input for the final algorithm that applies the stream 

delineation. The algorithm finds the fastest way downward and, therewith, simulates how 

water flows from an arbitrarily selected starting point down. This algorithm uses the absolute 

elevation values of each point in the dataset. The water flows from a specific point towards 

the lowest identified point within a, specified by user, search radius. As the lowest points are 

searched, the streams from upstream downward. If the stream would flow upwards, the 

stream would be modelled away from the stream because these points are commonly higher 

than the points in the river bed. The starting point must be chosen by the user of the 

algorithm. This starting point is arbitrary and it is important to choose this starting point with 

care. If the starting point is selected sufficiently, the stream should be delineated towards the 

outlet of the research area. Often, the outlet of the research area is known, and if the stream 

does not lead towards the outlet, an alternative starting point of the algorithm should be 

found to optimise the results. This algorithm executes calculations until it reaches the outlet 

of the area. By default, this is the lowest point in the dataset. However, the endpoint of the 

algorithm can be changed by the user manually. Finding a suitable starting point for the 

algorithm is a process of trial and error. Furthermore, this model does not take the sub facet, 

underground level into account and only considers the water that flows over the top surface. 

Thus, this model ignores possible infiltration of water during the stream; it is assumed that 

the water is homogeneously distributed along the surface contours (Rheinwalt et al., 2019). It 

is supposed that the surface where the water flows over has the same properties and water 

flow behaves the same everywhere. Besides, the volume of the water was not taken into 

account in this algorithm. The path towards the lowest point in the neighbourhood 

determines the direction of the flow in this model.  

This model deals with local depressions by extending the search radius for a new point if there 

is no lower point identified within the specified search radius. Just like the default search 

radius, the extended search radius is also a parameter that can be adjusted by the user. If also 

no lower point is identified in the extended search radius, the stream flows to a point with a 

higher elevation. This is included in this algorithm to ensure the continuation of the flow. A 

choice for this method of sink handling was made because this method was considered as 

both accurate and simplistic; two of the main requirements of this research. Other methods 

that could have been adapted, such as smoothening the data by identifying points with no 
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lower adjacent points, is more complicated and do not meet the initial requirements of this 

research (Rheinwalt et al., 2019). Moreover, one of the key advantages of this algorithm is the 

maintenance of the original input data. A smoothening algorithm possibly harms the quality 

of the original input data as it modifies the elevational values of features.  

With the maximum allowed course change, the correct direction of the stream is guaranteed. 

Furthermore, some topographical rules should be included. For example, the stream cannot 

cross itself (Anderson & Ames, 2011). Also, a maximum course change of the stream was 

included to ensure a natural flow of the water. Next to the adjustable search radius, this is a 

parameter that can be set by the user of the algorithm. Lastly, a projected coordinate system 

- RD New - was used, to make sure that all the inputs and results are metric. This ensures that 

all the distances are measured in meters. 

As stated before, this method maintains the original points and their assigned z-values. 

Therefore, this method is useful for stream delineation in areas with low topographical relief. 

The flowchart of the created absolute point-algorithm is given in figure 17. By that, the stream 

can flow in an infinite number of directions, dependent on the set maximum course change 

by the user. Furthermore, this algorithm is very local and only looks at the points within the 

search radius. The travel distance of a line segment is variable, with a maximum travel distance 

of the size of the search radius. The closer the lowest point within the neighbourhood, the 

shorter the line segment that will be drawn. The global flow of water over the surface is not 

taken into account by this algorithm. Therefore, if a global flow model is desired, this algorithm 

should be used as an addition to conventional flow models. Specifically, if these conventional 

methods return errors because of too low elevation differences, this algorithm will 

presumably be of added value.  

This method has three parameters that can be modified by the user: (1) default search radius, 

(2) maximum allowed course change and (3) extended search radius. The extended search 

radius applies when the neighbourhood must be extended if no lower points are identified. 

The starting point has no restrictions. Therefore, the search angle at the first point is always 

set to 360 degrees. The search angles of further points in the algorithm are based on the angle 

of the start and endpoint of the previously drawn line. The direction in radians was calculated 

by using the function atan2(Δx, Δy). Where the delta’s are calculated by subtracting the 

starting point from the endpoint of the previously created line segment. Based on this angle, 

the maximum allowed course change is added and subtracted to define the search angles for 

the new point. The values that are returned are between -180° and 180°. As the input must 

be between 0 and 360, the negative angles were changed to positive angles that fit within the 

full circle. The maximum allowed course results in that the search radius is being reduced to a 

half-circle or smaller. Therefore, it actually only really is a ‘radius’ if the maximum allowed 

course change is set to 360 degrees. 

To improve processing capabilities, the lowest neighbours are only identified for the points 

where the model streams over. Other points in the dataset remain unused. Moreover, also 

the lowest neighbour in the extended search radius only is calculated if the lowest neighbour 

in the default radius has a higher elevation than the starting point of the specific line segment. 

This is done to minimise the calculations that must be executed, to improve the speed of the 
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algorithm. Correct parameter optimisation ensures accurate results of the stream delineation 

in areas of low topographical relief. Dependent on the data density, the number of outliers 

and the characteristics of the surface, the optimal parameter settings can differ. Typically for 

low relief areas, no drastic course changes of the stream occur, while a more drastic course 

change can occur in more steep areas. This must be taken into account during the parameter 

optimisation. Lastly, the algorithm will terminate if it arrives at the lowest point in the research 

area, which is generally located at the outlet. In appendix A, the PyQGIS code for the prototype 

is attached.  

 

Figure 17: absolute point-method delineation algorithm flowchart. 

3.8 Model validation 
As explained in the analysis design, the model was validated by comparing the stream 

algorithm to a conventional D8-method. In the selected research area a reference stream is 

provided by PDOK, the Dutch governmental spatial data provider. These streams are acquired 

using aerial photography, terrestrial collection or using large scale topographic maps. This 

information is continuously being updated (PDOK, 2020). For the model validation, the root 

mean square error (RMSE) is calculated of the extracted streams, compared to the reference 

data. The RMSE gives a degree of match between the reference stream and the modelled 

stream. The better the match, and thus, the lower the RMSE, the more accurate the model is 

(Anderson & Ames, 2011).  

 

 



 

48 
 

The RMSE formula can be formulated as follows: 

𝑅𝑀𝑆𝐸 = sqrt(∑((𝑋0 − 𝑋1)² + (𝑌0 − 𝑌1)²)/𝑛) 

Where X0 is the delineated stream and X1 is the PDOK reference dataset. Evenly distributed 

points along the line segments are created. The number of sample points is represented by n. 

The RMSE of the average distance of the points from the reference points is being calculated. 

Furthermore, the sinuosity is being calculated to examine the flow path of the stream to each 

other. The sinuosity is the ratio of stream length to valley length (Anderson & Ames, 2011). 

This can be calculated and compared for each stream with: 

𝑆 =
𝐿𝑚
𝐿𝑠

 

Where Lm is the meandering length (the length of the whole polygon of the stream) and Ls is 

the straight-line distance from the starting to endpoint of the stream.  

Lastly, the vertical performance of the models is examined. By analysing the elevation of the 

streams per horizontal distance, the performance can be assessed locally. In the perfect 

situation, the longitudinal profile would be a smoothly descending line, without any upward 

spikes. Also, as the algorithm streams from point to point, the selected points of the algorithm 

are plotted in a graph to compare them to the vertical performance of the stream. 

Furthermore, the vertical performance of conventional D8 results and the performance of the 

absolute point-method are compared. The graphs are created with the Python library 

MatPlotLib and the terrain profile plug-in in QGIS. The script for these graphs can be found in 

Appendix B. Because a continuous surface model is required for an elevation graph, for both 

research areas a DTM is used for the longitudinal profiles.  

A D8 stream delineation consists of different steps that must be conducted. These steps are 

shown in the workflow diagram in figure 12. An AHN 0,5m raster DTM serves as the input. 

Before use, the file was clipped to the extend, with some margins added, of the research area. 

The following steps were executed by using existing GDAL and SAGA libraries in QGIS (van der 

Kwast & Menke, 2019). First, no data cells are filled by interpolating from surrounding pixels. 

Then, to ensure the continuity of the flow, the sinks are filled using the earlier mentioned 

Wang and Liu (2006) algorithm, provided by SAGA. A low minimal slope of 0.01 degrees was 

used, because of the relatively low topographical relief, this low value was used. After 

completion, the data is prepared for the flow direction calculation to derive a channel 

network. This is done by an algorithm that calculates a flow direction raster based on the 

gradient value assigned to each pixel. The flows are classified from one to eight, as this method 

is limited to eight cardinal directions. Lastly, the streams are distracted from the flow direction 

raster with the Strahler order. With a process of trial and error of the ordering, the actual 

flows in the scope area can be identified. 

Using these three validation methods, combined with visual interpretations, the accuracy of 

the D8 and the absolute point-method can be assessed. The result streams are visualised on 

the elevation point cloud points. To understand the topography of the area best, and to 
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visualise a recognizable pattern in the gradient of the research area, the points are classified 

with an equal count classification.  Furthermore, a grey-scale was used for visualisation of the 

elevation of the points to optimise the visibility of the streams in the maps. Using this greyscale 

shows the elevational pattern of the map and enables the viewer to identify all streams well. 

Because the prototype map consists of only one stream, a coloured (‘reds’) classification was 

used here to give an optimal insight into the height patterns of the surface.  
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4 Results 
This chapter presents the results of the created prototypes. Based on the preliminary results 

of the prototypes, the absolute point-method was advanced. To retrieve the results for this 

research, the main focus was to make a completely working algorithm. This algorithm forms 

the fundament for an easily accessible processing algorithm in QGIS. The results and the 

presumable added value of the absolute point-method was lighted out. Also, the conventional 

D8-method is executed in the research areas. In the Olst research area, the topographical 

relief was too small to successfully apply the D8-algorithms. Therefore, this comparison is only 

made at the streams in the research area at Epen. First, the results of the prototypes are 

presented. Then, an overview of the result streams is given. Thereafter, the parameter 

optimisation process was discussed. The influence of different parameters will be discussed, 

based on the results of the algorithm with different parameters. Then, the quality of the 

different streams was discussed in detail, based on different quality parameters and visual 

interpretation. This chapter concludes with advice for the parameter settings for the absolute 

point-method. 

4.1 Results of the prototypes 
For this research three prototypes were developed. The results of the different prototypes are 

discussed in the following paragraphs. 

4.1.1 TIN Network-based approach 

This prototype was applied to both a normal Delaunay TIN as a constrained Delaunay TIN. A 

stream was manually delineated based on the slope, assigned to the edges of the TIN. Figure 

18 illustrates that the stream does follow the reference stream and flows from uphill 

downwards roughly, but the delineation is not very accurate. 

 

Figure 18: TIN network-based stream delineation prototype. 
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In the centre of the area, where there is a relatively low data density, the flow deviates 

strongly from the actual stream. Furthermore, the stream is very rugged and does not seem 

to be similar to a natural flow. This could be caused by the restriction for the algorithm to only 

flow over the edges. Hence, this algorithm is not satisfactory and does not meet the 

requirements for this research. Furthermore, a constrained Delaunay TIN was used as input 

for this method. However, it was not possible to accurately delineate a stream in this area, 

because artificial flat areas are created around the contour lines. This is shown in figure 19, 

where the edges without a slope are visualised in red. It can be concluded that the contour 

lines, that function as a constraint during the triangulation, cause flat areas.  

 

Figure 19: The red edges show that there are artificial flat areas created around the contour 
lines that are used as a constraint for the Delaunay triangulation of this dataset. These flat 

areas impede the model to calculate the stream downward. 

A global approach, that derives a stream network for the whole area is possible with the TIN 

based approach. All edges have, based on the slope, a flow direction assigned. Therewith, a 

flow direction network can be identified. However, based on figure 19, the modelled streams 

will still not follow a natural path and illogical course changes will presumably occur. 

Moreover, a flow network from a Delaunay triangulation was extracted by Gabrisch (2011). 

This method worked and was relatively accessible as it was written in Python, but was 

effective in an area with a relatively high relief with elevation differences up to 150 meters. 

Although a global approach, where the stream directions on the whole surface is taken into 

account can be desirable. A higher accuracy can be achieved by letting the water flow over 

the faces from edge to edge. However, this method did not meet the requirement of 

simplicity. This can be concluded from the derived stream with the prototype, which is not 

accurate enough. 
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4.1.2 Normal vector approach 

Another suggested approach is the normal vector-method. A prototype was developed for 

this, but many challenges where faced. The designed method follows the stream over the 

edges of a Delaunay TIN from a specific point uphill to the outlet. However, the normals led 

the path in random directions as the normals at the stream itself pointed towards each other. 

Therefore, a working prototype for this method is not feasible. Figure 20 illustrates that the 

orientation of the points at the stream is pointed at the centre of the stream. Although the 

points farther away do have an orientation in the direction of the stream, the normals on the 

actual stream are disrupting the model. This results in a back and forth going flow, which is 

not an accurate representation of the actual flow of the water. The sinuosity of the modelled 

flow would presumably be too high. Furthermore, as illustrated in figure 20, the gradient of 

the normal vectors becomes more significant as it comes closer to the reference stream. The 

bucket approach of Dakowicz and Gold (2007) was found too complex to implement in 

combination with the normal vectors. However, this could be an effective method if looking 

for a more complex, demanding and advanced algorithm. 

 

Figure 20: Normal vectors of the points show that the directions at the stream cause 
disruption. 

4.1.3 Absolute point-based approach 

Lastly, the absolute point-based method is suggested. This method selects the lowest point in 

a specified neighbourhood. On this relatively small prototype dataset, there were no 

performance issues. However, if the datasets become bigger, performance problems could 

occur. This can problem can be mitigated by limiting the required calculations. Hence, it is not 



 

53 
 

necessary to calculate the lowest neighbour for all the points. It is only required for the points 

where the model streams to. Furthermore, this method is a very local approach as it looks at 

the individual points. It is possible that the lowest point that is identified within the search 

radius, is positioned in a local minimum. To circumvent this, the search radius can be extended 

locally to identify a lower point. A search radius of 2 meter was used in this prototype; the 

extended search radius was 3 meters. It can be observed in figure 21 that the extended search 

radius was applied in the centre of the stream in this prototype. A total of 15 line segments 

were created during the execution of this prototype and the length of the stream is 

approximately 25 meters.  Lastly, it was also tested to delineate the stream from downhill 

upward. This did not work as the model flows to the edge of the research area. Logically, the 

points outside the stream bank are higher than in it.  In figure 21 it is demonstrated that this 

method is relatively accurate by comparing the modelled stream to the reference stream of 

PDOK. Although this prototype is very basic and is executed in a small area, it was found to be 

suitable to scale up. Since the lowest neighbour for every point was calculated, this method 

seemed to be very demanding. This was taken into account during the creation of the 

advanced algorithm. In the advanced algorithm, only for the points that were used, the lowest 

neighbour was identified. Also, spatial indexes for the points were created to optimise the 

database speed. 

 

Figure 21: Lowest point within neighbourhood approach prototype. 

This approach seems to meet the requirements that are set for this research, as this approach 

is accessible (all operations can be executed in QGIS), accurate (the modelled stream seems 

to follow the reference stream accurately) and simple (the processing capacity is not too 

demanding and by indexing the points, processing requirements can be improved). Although 
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this method is limited to a single stream delineation, it is expected to be effective in low relief 

areas and offers a solid addition to retrieve information about water flows, where 

conventional methods are less accurate or return errors. The added value of this approach, 

compared to conventional methods, was further investigated in this research. The arbitrarily 

selected starting point can be selected uphill or could be selected at the location where the 

error of conventional methods begins.  

This method is a very local approach, as the algorithm only looks at the stream direction per 

point. Where TIN and rasters provide a local stream direction for each location in the dataset, 

does this approach only looks at the stream direction from point to point. This, however, 

contributes to the simplicity of the model and the high accuracy of a single stream delineation 

can be achieved. It is expected that this method, with its higher accuracy combined with the 

relatively high simplicity, is of added value to the existing methods. 

Finally, an answer to sub-question 2 can be provided: “What (combination of) approaches with 

direct point cloud analysis is most suitable to delineate streams in an area with low 

topographical relief?”. The absolute point-method seems to meet the requirements for this 

research most closely. The integrity of the point cloud data is preserved and the natural flow 

of the water is modelled accurately. Because of the preservation of all the measured points 

and the high data density, the accuracy of the model is expectedly higher than conventional 

methods. Therefore, the reliability and accuracy of this method presumably is higher than 

other suggested methods. This method can be created with existing tools and libraries in 

(Py)QGIS. Therewith, the requirements of simplicity and accessibility are met sufficiently. 

Although this approach is very local, the algorithm handles with sinks by locally increasing the 

search radius if no lower point is identified and by pushing the stream forward implementing 

a maximum allowed course change. Stream delineation with Delaunay triangulations is also 

possible but does not sufficiently meet the requirements for an algorithm sought for this 

research. Given the low elevation differences, the stream would become too rugged and 

accuracy will be not sufficient. This can be improved by using a more advanced algorithm with 

a Delaunay TIN, but then, the requirement of simplicity and/or accessibility would not be met. 

The absolute point-method meets the requirements most closely of all the discussed methods. 



 

55 
 

4.2 General results 
Based on the previous results, the absolute point-method was created. This method is used 

to gather the results and to prove the added value of an approach that looks more direct at 

the point cloud. As the 

main objective of this 

research is to show the 

added value of the absolute 

point-method, the absolute 

point-method is not yet 

fully functioning as a 

processing algorithm in 

QGIS. 

Currently, the algorithm  

can only be executed from  

the Python-code (attached  

in appendix A). To ensure  

the open availability of this 

algorithm, the source code 

can be found on: 

https://github.com/stn228 

/Absolute_point_method_ 

Stream_delineation. As this 

research focusses on the 

provision of a proof of 

concept of this method, a 

well-working, user-friendly 

tool has not been created. However, this code forms the fundament for a ready-to-use tool 

with a user-interface in QGIS. By making some minor changes, the tool could look like (and 

work) as is shown in figure 22 (QGIS Documentation, 2020). Conceptually, this algorithm works 

well, but to make it really user friendly, some changes could be made. The most important 

change is the automatic identification of the x, y and z coordinates. Also, the lowest point in 

the area must be identified automatically by the algorithm, or another condition for 

termination should be included. For instance, the calculations automatically end if the stream 

is within a specified distance from the edge of the research area.  

4.2.1  Overview of  input data 

For both research areas, a filled raster DTM and a point dataset was generated. This data is 

used input-data for the analyses. Table 3 gives an overview of the statistics of the different 

input datasets. The number of cells in both areas is much higher, but the difference is not as 

big as expected, as there are averagely more than five points per grid cell. However, the raster 

grids are clipped to a squared extent, while the point data area is smaller as it can be clipped 

to the exact area extent. The point dataset was minimized as much as possible to boost 

processing performance. In line with the theoretical expectations, the standard deviations of 

the DTMs are higher than the point cloud as the accuracy of the point cloud is expectedly 

Figure 22: This figure shows how the algorithm can be 

adopted in QGIS as a ready-to-use-tool. 

Figure 22: This figure shows how the algorithm can be adopted in QGIS as a 
ready-to-use-tool. 

https://github.com/stn228/Absolute_point_method_Stream_delineation
https://github.com/stn228/Absolute_point_method_Stream_delineation
https://github.com/stn228/Absolute_point_method_Stream_delineation
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higher. Also, the maximum and minimum values of the rasters are respectively higher and 

lower than the point data. Since the points, originally serve as input for the raster DTMs, this 

is remarkable. Since the squared IDW interpolation preserves the maximum and minimum 

values, this can have two causes: (1) the minimum and maximum value are outside the point 

dataset extent (as the raster is a bigger area) or/and (2) the Wang and Liu (2006) fill sinks 

algorithm changes values to smoothen the raster dataset to increase the accuracy 

performance of the D8-algorithm. In the case of Epen, where a difference of 13 meters can be 

identified, it is caused by the first listed reason. In the corner of the dataset, a higher area is 

located. This area is not included in the point dataset. The dataset was not clipped to the exact 

extent of the scope area as this could cause errors during the execution of the D8-method. If 

the raster is clipped to the geometry of the scope area, the height differences are significantly 

lower in Epen and Olst. The minimum maintains the same, but the maximum becomes 

respectively 190.2 and 8.3 meters. 

Table 3: Statistics of input datasets for D8- and absolute point-method 

Statistics of input datasets for D8- and absolute point-method 

Statistic Filled DTM Epen LiDAR ground 
points Epen 

Filled DTM 
Olst 

LiDAR ground 
points Olst 

Size of area (m²) 54 400 36 527 141 246 75 737 
Cell size/point 
density 

0.5 m² 13.2 0.5m² 9.1 

Number of 
cells/points 

217 600 482 662 564 984 686 181 

Mean 178.72 175.01 3.52 3.75 
Std. deviation 9.24 6.52 1.51 0.49 
Minimum  159.91 160.00 1.00 2.78 
Maximum  202.75 189.57 8.32 8.19 

 

4.2.2 Research area 1: Epen 

In the Epen research area, three streams are modelled. Two streams from the same starting 

point, but the streams have disparate search radii. These parameters and the impact of the 

differences are discussed later in this chapter. The third stream starts from another starting 

point. This starting point was selected because the D8-modelled stream altered from the 

reference stream. The conventional D8-method resulted in a stream network in this research 

area. For the analysis, the streams that have the same starting point are selected. The results 

are shown in figure 23. This map is also attached in Appendix C. Based on the first visual 

impressions, both models perform satisfactorily in this area as they all flow from the starting 

point in a logical and natural path towards the outlet. Looking at the underlying data, this was 

expected, because a clear pattern from high to low elevation can be distinguished. A quantile 

classification is adopted for the visualization of the points.  
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Figure 23: Overview of results in Epen. 

4.2.3 Research area 2: Olst 

For the research area in Olst, a less clear pattern from high to low elevation can be 

distinguished. As stated before, the runoff in this area is almost negligible. Therefore, stream 

modelling with the conventional D8-method was not feasible in this area. Execution of this 

method did not result in a stream network, because the flow directions differ too much. 

However, as is shown in figure 24, the absolute point-method did perform well at first glance. 

This is also attached in Appendix D. Because of the complex nature of this area to derive 

stream networks, careful parameter optimisation was required. This is discussed next in this 

chapter.  
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Figure 24: Overview of results Olst. 

4.3 Parameter optimisation 
As mentioned before, different parameter settings can influence the results of the algorithm 

strongly. Mostly the accuracy and the runtime is influenced by the chosen settings. Table 4 

gives an overview of the chosen settings for the different modelled streams. The trade-off 

between model performance and accuracy can be seen in the results of stream 1a and 1b. 

Stream 1a is less accurate than 1b (table 5 and 6, page 61), but the runtime for the calculations 

is significantly higher. Stream 2 (Epen) has an alternative starting position and delineates 

another part of the reference stream. This is caused by the number of line segments that must 

be calculated. The line segments are the polylines that are created during each iteration of 

the algorithm.  The shorter the average line segments, the more data points are included in 

the stream. This presumably increases the accuracy of the algorithm. If a high accuracy is 

preferred, the average length of the line segments should be minimised. 
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Table 4: Overview of parameter settings per stream 

Overview of parameter settings per stream 

Stream Search 
radius 
(m) 

Extended 
neighbourhood 
(m) 

Maximum 
allowed 
course 
change (°) 

Number 
of line 
segments 

Average 
segment 
length 
(m) 

Runtime (s) 

Epen 1a 3 5 +/- 88 97 2.54 264.11 
Epen 1b 1 5 +/- 88 163 1.54 604.40 
Epen 2  3 5 +/- 88 78 2.57 220.45 
Olst 3 6 10 +/- 50 113 5.56 815.11 

 

In the Epen region, a maximum allowed course change of +/- 88° was sufficient to ensure the 

stream flows forward. Also, the search radii can be set to particular low values. However, in 

Olst, with the extremely low topographical relief, the search radius must be bigger, otherwise 

the stream ended up in a local depression. Also, the maximum allowed course change had to 

be decreased. Figure 25 illustrates the stream with an 88° maximum allowed course change. 

Because all the values are very close to each other, the stream flows back towards the starting 

point. When comparing the runtimes, stream 3 underperforms per line segment. Stream 1b 

has more line segments and 

has a lower runtime. The 

streams in the Epen 

research area need between 

2.7 and 3.7 seconds per line 

segment, while the model 

needs 7.2 seconds per line 

segment. This is caused 

because the dataset is 

slightly bigger, but mostly 

because the extended 

neighbourhood procedure 

had to be executed 

significantly more in Olst 

than in Epen. This takes 

longer as the algorithm only 

identifies a lower neighbour 

in the extended search 

radius if there is no lower 

neighbour found in the 

default search radius.  

  
Figure 25: An example of the results with wrong parameter 

settings. 
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4.4 Accuracy  
The accuracy of the streams is mainly examined with visual interpretation, the RMSE and the 

sinuosity, compared to the reference stream. As shown before, this research distinguishes 

four modelled streams. These are discussed stream by stream, except for stream 1a and 1b, 

which are discussed together.  

4.4.1 Modelled stream 1a and 1b: Epen 1 

The results in figure 26 shows that both stream 1a and 1b follow the reference stream 

accurately. This is confirmed by the low RMSE for both streams in tables 5 and 6. Also, the 

sinuosity of the streams, derived with the absolute point-method, matches the sinuosity more 

closely than the D8-stream. The relatively small default search radius of stream 1b results in a 

highly accurate stream with a very low RMSE. The RMSE of stream 1a is almost twenty times 

more accurate than the conventionally delineated stream. However, 1a also performs 

considerably better than the D8-derived streams. Furthermore, figure 25 shows that the D8-

stream follows an alternative path at the centre of the stream. At this point, trees cause data 

voids and less LiDAR ground points are retrieved here.  

 

Figure 26: The reference stream and the D8-derived stream compared to modelled stream 1a 
and 1b. 

Table 5: Accuracy of stream 1a (3m default and 5m extended search radius). The Euclidian distance of the path: 224.5 meters: 224.5 

Accuracy of stream 1a (3m default and 5m extended search radius). The Euclidian distance of 

the path: 224.5 meters 

Stream Length (m)  Sinuosity RMSE (m) 

Reference stream 242.6  1.08 - 
D8-method 276.3  1.23 10.32 
Absolute point-
method  

246.3  1.10 2.06 
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Table 6: Accuracy of stream 1b (1m default and 5m extended search radius). The Euclidian distance of the path: 224.5 meters 

Accuracy of stream 1b (1m default and 5m extended search radius). The Euclidian distance of 

the path: 224.5 meters 

Stream Length (m) Sinuosity RMSE (m) 

Reference stream 242.6 1.08 - 
D8-method 276.3 1.23 10.32 
Absolute point-
method  

251.2 1.12 0.56 

 

Lastly, the vertical performance of the stream 1a, 1b and 2 is sufficiently good. As is shown in 

figure 27, a smooth path down is followed. The that are selected by the algorithm follows the 

elevation accurately. Some minor peaks are identified. This is caused by distortions in the data. 

The peaks in the elevational values occur at locations where less data is available, as these 

peeks are identified at the location where trees are located. Since the ground points are used, 

the data density at these points is lower and, thus, data distortions occur. These peaks do not 

show in the D8-derived stream, as this is based on interpolations, where these small peaking 

values are smoothened due to averaging algorithms. Only the vertical performance of stream 

1a is given, while the graph of profile 1b and 2 is more or less the same and are given in 

Appendix E. Figure 28 shows that, although the absolute point-method results in a more rough 

path, the difference is trivial and the vertical performance for both streams is considered as 

sufficient. 

 

Figure 27: The elevation and the accessory horizontal distance of each point that is 

selected during the calculations for stream 1a. A smooth path downward can be 

recognized, without any upward stream line segments. 
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4.4.2 Modelled stream 2: Epen 2 

Figure 29 depicts the three streams from another starting point in the Epen research area. 

Here, all three streams follow an alternative path. Therefore, the RMSE of these streams is 

significantly higher than with streams 1a and 1b. Although the RMSE is much higher than at 

stream 1a and 1b, the absolute point-derived stream joins the path of the reference stream 

earlier, thus, the RMSE is lower.  

 

Figure 29: The reference stream and the D8-derived stream compared to the modelled 
stream 2. 

Figure 28: The vertical performance of the D8- and absolute point-derived streams 
compared for stream 1a. 
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Table 7 shows that the D8-stream is significantly longer than the other two streams. This is 

also the case at previously discussed streams. This is not only caused by a longer path that is 

chosen by the algorithm, but it is also caused by the cascading path that is caused by the 

restriction to stream to only eight directions. With that, the sinuosity of the D8-streams 

matches the sinuosity of the reference stream less good. Figure 30 on the next page zooms in 

on the different streams more closely. It confirms the hypothesis that the D8-streams are 

cascading and that the absolute point-stream follows a more natural flow path. This figure 

also shows a systematic difference between the reference stream and the modelled streams 

of approximately 0.5 meters. In this case, the modelled streams are possibly more accurate 

than the reference stream as they both indicate the same difference. Although the direction 

of the stream in both cases is accurate, the results of the D8-streams are limited by their 

restriction to only stream in eight directions. Although a good path is returned by the D8-

method, this is not the optimal path (van Bemmelen et al., 1993). However, the comparison 

might be unfair as individual point data are compared to a 0.5m² raster DTM. Furthermore, a 

running average can be taken on the cascading D8-route to smoothen the path. In the case in 

figure 30, it would lead to results similar to the absolute point-method. Nevertheless, as is 

shown in figure 7, the overall results of the absolute point-method are significantly higher 

than the D8-derived stream. 

Table 7: Accuracy of stream 2. The Euclidian distance of the path: 172.7 meters 

Accuracy of stream 2. The Euclidian distance of the path: 172.7 meters 

Stream Length (m) Sinuosity RMSE (m) 

Reference stream 199.2 1.15 - 
D8-method 220.8 1.28 23.01 
Absolute point-method  200.7 1.16 11.8 
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4.4.3 Modelled stream 3: Olst 

Finally, the third stream is modelled in an area with very low topographical relief. This stream 

flows from the south towards the north. The D8-algorithm was executable in this research 

area because the topographical relief was too low. The creation of the flow direction raster 

consisted of seemingly random direction in the cells and it was not possible to identify stream 

orders based on these results. The Strahler order resulted in streams of a maximum of three 

cells. This misfunctioning of the D8-method was expected (Gortzak et al., 2020). Although the 

D8-method was not operable in this area and the search default and extended search radius 

is relatively high, the results of the absolute point-method seem to be satisfactory. Figure 31 

shows that the reference stream is followed by the absolute point-stream sufficiently. 

Furthermore, table 8 shows that the sinuosity is close to the sinuosity of the reference stream. 

The higher length of the absolute point-stream is caused by the divergence of the stream at 

the beginning, in the southern part of the stream. Except for this part, the reference stream is 

followed narrowly, also at the curves of the stream. 

Figure 30: The D8-derived stream shows a clear cascading pattern while 
the absolute point-stream shows a more natural flow path. 
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Figure 31: The reference stream compared to the modelled stream 3. 

 

Table 8: Accuracy of stream 3. The Euclidian distance of the path:  526.71 meters 

Accuracy of stream 3. The Euclidian distance of the path:  526.71 meters 

Stream Length Sinuosity RMSE (m) 

Reference stream 627.73 1.19 - 
D8-method n/a n/a n/a 
Absolute point-
method  

644.12 1.22 8.54 

 

Finally, the vertical performance of stream 3 was analysed. Figure 32 shows radical upward 

spikes in the longitudinal profile with almost not an identifiable path downward. This pattern 

was expected as this is similar to the longitudinal profile, discussed in chapter 3. This is caused 
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by the sizable search radii and because this algorithm only looks at the start and the endpoint 

of the line segment. This allows the algorithm to pass areas with high elevation values. This is 

illustrated in figure 33, where a passage can be identified. The algorithm is not hindered by 

this, because of the high search radius that is applied. Thereby, this graph shows that the 

delineated stream can flow upward, against laws of nature. These laws are ignored to handle 

data inconsistencies and to overcome the very low topographical relief. Although it seems 

counterintuitive, it results in a relatively simple method to delineate streams in areas with 

such low elevational differences. In this case, the stream still is accurate because a culvert is 

located here. However, this could cause inconsistencies in the model. This is further explained 

at the end of this paragraph. The stream does follow the path towards the outlet. The line 

segments are smaller at the corners of the water, which is an important characteristic to 

follow the stream there accurately. In the straight parts of the stream, the line segments are 

bigger and therefore the longitudinal profile is very spikey. During the parameter optimisation, 

it is important to take this characteristic of the algorithm into account. When using a big search 

radius, the stream should be examined prudently to check if it crosses high elevation areas. 

Furthermore, figure 33 shows data gaps at the presumable location of the actual stream. At 

some locations in the dataset, there is less data available if there was water during the data 

gathering since this research uses the ground points and these points are classified as ‘water’. 

This results in the stream bouncing back-and-forth between the stream banks, where data 

points are present. Optimally, the model would follow the centre of the stream. However, this 

inaccuracy is relatively small and does not cause significant deviations in the model. 

 

Figure 32: The elevation and the accessory horizontal distance of each point that is selected 
during the calculations. The path does not flow down smoothly and some line segments are 

streaming upward. This is caused by the very small elevation differences in the  
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Figure 33: The absolute point-method enables the stream to cross areas with peaking 
elevation values; furthermore, the stream bounces from stream bank to stream bank. 

As stated above, the vertical performance of the stream is very spikey. There are many high 

peaks. Therefore, the elevation of the 113 selected points in the algorithm were analysed. This 

is visualised in a graph in figure 31. The algorithm executes the extended neighbourhood 

function if the newly selected point is higher than the starting point. If there is also not a lower 

point in the extended search radius, the model draws the stream towards the lowest point in 

the search radius. Thus, the stream can flow up. As the effective elevation difference for this 

research area is about 0.2 meters,  it occurred that the stream had to flow up. The maximum 

allowed course change predominantly makes the forces the stream to flow in the correct 

direction. The water flowing upward has two main causes: (1) because of the canalisation of 

this water stream, human interference impacts the natural flow of the water and (2) despite 

the high-quality data, it could cause inaccuracies in this area as there are parts in the dataset 

where there is no data, specifically at locations where the water is located (see also figure 32). 

The lack of data here is caused by the disability of the adopted LiDAR techniques to measure 

underwater effectively. Although this might be a strange pattern, the accuracy of this stream 

is still very satisfying. Mostly when comparing it to the D8-method, that did not return results 

because of this reason. Therefore, the ability of the stream to flow up can be considered as 

necessary, otherwise the algorithm will not return any good results. As is demonstrated in 

figure 24 (p. 50), if there are significant elevation differences, and if the parameters are set 

correctly, the stream only flows downward. The extension of the (extended) search radius for 

this stream did not lead to better results. Minimal changes in these parameters did not leat to 
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another pattern in the 

horizontal accuracy. If the 

extended search radius 

becomes too big, the 

stream does flow 

downward only, but the 

accuracy of the results are 

strongly lacking then. 

Then, the model does cuts 

of all the curves of the 

original stream. Figure 34 

shows that the 

channelised stream can 

be identified, based on 

satellite imagery. Also, the 

passage, where the 

culvert is located, can be 

seen. The other peaks in 

the longitudinal profile are 

presumably caused by 

overhanging canopy of trees. Based on this image, it can be concluded that the model follows 

the stream accurately.  

4.5 User recommendations for parameter optimisation 
As stated before, this research provides recommendations to the user for parameter 

optimisation, based on the results. Although the results are strongly dependent on the 

characteristics of the chosen research area, some recommendations can be given. In this 

research, the Epen research area has an average declining slope of 0.07 degrees. Based on the 

longitudinal profile of this research area, a smooth decline can be identified. Stream 1b shows 

that, as the search radius decreases, the accuracy rises significantly. However, the calculation 

times increase as well if the search radius decreases. Also, the size of the research area, 

therewith the size of the input dataset, impacts the speed of this algorithm. The trade-off 

between speed and accuracy needs to be considered by the researcher. A considerable 

improvement of accuracy can be found with a default search radius of 3 meters and an 

extended search radius of 5 meters. If a higher accuracy is desired, the default search radius 

can be lowered to one meter. Also, the extended search radius can be made smaller. However, 

the default search radius for these areas should be between 1 meter and 5 meter to retrieve 

satisfying results. The extended search radius should be between 2 and 5 meters. The 

maximum allowed course change can be set to the default of 88 degrees. 

For the Olst research area, a declining average slope of 0.0008 is identified. To handle the very 

low elevational differences in this area, the search radius must be bigger. This very small 

topographical relief results in many local depressions. Therefore, it is advised to have a search 

radius between 5 and 8 meters and an extended search radius between 8 and 15 meters. It is 

Figure 34: A detailed aerial sattellite image of the Olst 

research area. At the location where the elevation peeks, a 

passage for presumably agricultural vehicles can be 

identified.  

Figure 34: A detailed aerial sattellite image of the Olst research area. At the 
location where the elevation peeks, a passage for presumably agricultural vehicles 

can be identified. 
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advised to lower the maximum allowed course change to 50 degrees to avoid the stream from 

circling.  

It is important to note that the results and the parameter optimisation is strongly dependent 

on the characteristics of the research area and the input data. Therefore, the user should 

carefully examine whether the results make are logical or not. This can be done with visual 

interpretation, but also by looking at the vertical performance and the sinuosity of the 

streams.  
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5 Conclusion 
The main objective of this research was to answer the following research question: 

“What is the best approach to delineate streams in areas with low topographical relief using 

LiDAR retrieved point cloud data?” 

An answer can be given by analysing the results of the formulated sub-questions step-by-step. 

The first sub-question resulted in an elaborate literature review: 

1. “What different methods for stream delineation with LiDAR data exist and what 
strengths and weaknesses can be identified?” 

 

Different data preparation, conversion and processing methods were discussed. The main 

advantage of direct point cloud analysis is that very high-quality data is optimally utilised. 

Other approaches lack in optimally using the high-quality data because they are based on 

interpolations and generalisations of the data. The weakness of point cloud data is the size of 

the datasets which result in demanding analyses. Therefore, if the data is not used and 

analysed efficiently, the methods can be complex and poorly performing. Therefore, three 

requirements for the new method were drawn up: accessibility, simplicity and accuracy. This 

means, respectively that the new method should be openly available for everyone, is more 

accurate than conventional approaches and is relatively easy to apply. Based on these 

requirements, three candidate methods were identified that are considered as most suitable 

that meet these requirements and directly use the LiDAR point cloud data. Three candidate 

methods were selected: a method based on a triangulation of the point cloud, a method using 

the normal vectors of the points and a method that uses the absolute (non-changed) elevation 

values directly from the point cloud.  

2. “What approach with direct point cloud analysis is most suitable to delineate streams 
in an area with low topographical relief?” 
 

The main aim was to find a method that accurately delineates streams, is simple to apply and 

is openly accessible. Prototypes were built for the three candidate methods. The preliminary 

results show that the absolute point-method meets the set requirements of this research best. 

Therefore, based on the theory and the results of the prototypes, this method was selected 

as most suitable for stream delineation in areas with low topographical relief. The absolute 

point-method looks for the lowest point within a specified search radius. To avoid getting in a 

local depression, an extendable neighbourhood and a maximum allowed course change was 

included in the algorithm. This maximum allowed course change results in that the search 

radius is being reduced to a half-circle or smaller. This process is iterated from point-to-point 

until it the outlet point is reached. 

3. “To what types of areas could a stream delineation with direct point cloud analysis be 
of added value?” 

 

It was decided to select two research areas. A distinguishment was made between an area 

with low relief and almost negligible relief with a decline of 0.2 meters In the first area, the 

conventional D8-method, which was used for comparison of the algorithms, was presumed to 
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work better. This enables a more effective comparison of the results of the conventional and 

the newly suggested method. In the area with a very low topographical relief, it was expected 

that the D8-method would not return accurate results. To test this hypothesis, and to answer 

the sub-questions four and five, the absolute point-method was worked out more extensively. 

Therewith, it was possible to run the algorithm multiple times in different research areas. 

4. “Can an algorithm be created and applied in a suitable research area of the identified 
most suitable stream delineation method?” 

 

The designed prototype is a Python script that runs in the open-source software QGIS 

(Appendix A).  In this phase, the absolute point-method was designed. This method looks for 

the lowest absolute point in a specified search radius, if no lower point is identified, the search 

radius extends. The stream is pushed forward by including an adjustable maximum allowed 

course change. By adjusting the parameters optimally, the algorithm worked for the research 

areas. 

5. “What is the added value of the selected approach in contrast to conventional methods 
to delineate streams?” 
 

After optimisation of the algorithm and execution of the conventional approach, the results 

show that the conventional D8-method did not return any results in the area with negligible 

relief; the absolute point-method, however, did. Additionally, based on the sinuosity and the 

Root Mean Square Error (RMSE), the accuracy of the absolute point-method was significantly 

higher than the results of the D8-derived streams in the Epen research area. In some cases, 

the absolute point-method resulted in almost twenty times lower than RMSE the 

conventional-method results. Careful parameter optimisation is very important for this 

method to achieve the desired accuracy and calculation speed. This is a trade-off, where the 

researcher can weigh the importance of calculation speed versus accuracy based on the size 

of the search radius. If parameters are not optimised satisfactory, the results can become very 

disturbed and incorrect. These disturbances can be identified by visual interpretation and by 

careful analysis of the longitudinal profile of the streams. This research gives guidelines for 

hydrologists who want to adopt this method. It must be noted that these guidelines are a 

broad approach and can differ per situation, as this strongly depends on the characteristics of 

the research area and the input data.  

The vertical performance of the D8-method seemed to be slightly better in the Epen research 

area, as the absolute point-method shows a very spikey longitudinal profile. The vertical 

performance in the Epen research area was adequate for all models as a clear stream 

downward was identified, without any upward spikes. The vertical performance in the Olst 

research area was found to be very spikey and does not follow a clear path downward. This is 

caused by the extremely small elevation differences, possible human interference and some 

data gaps. Also, a smoother, more natural, path is followed by the absolute point-based 

method, as the D8-method forces the path into a cascading route, due to its restricted number 

of possible flow directions. 
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Mostly when looking at the RMSE and the sinuosity of the streams, it can be concluded that 

the accuracy of the newly designed method is strongly improved in contrast to the 

conventional approach.  Therefore, the absolute point-method can be very useful and of 

added value in areas with very low relief, where conventional methods do not work or are less 

accurate. Since both conventional, as the new method, are accessible in open-source 

software, the accessibility is comparable. The absolute point-method offers a great alternative 

for stream delineations in areas with very low topographical relief as all tested streams 

perform better than the conventional D8-method. It can be used as a replacement if the D8-

method does not work, or as an addition to the D8-method if the accuracy seems to be 

unsatisfactory. Thus, the added value of the absolute point-method, compared to other 

methods, is that it provides a significantly higher accuracy and offers decent simplicity. 

Furthermore, similarly to the conventional method, this method is openly accessible in open-

source software. The Python- code for this algorithm is available on Github via: 

https://github.com/stn228/Absolute_point_method_Stream_delineation. As this method 

works in an area with practically the lowest possible elevational differences, the added value 

of this method has been proven. Thus, concludingly, the absolute point-method meets the set 

requirements of accuracy, simplicity and accessibility to delineate streams in areas with low 

topographical relief. As expected, this method profits from maintaining the integrity of the 

original data points by directly analysing the LiDAR point cloud. When looking for a method to 

delineate streams with direct point cloud analysis with the set requirements of simplicity, 

accessibility and accuracy, this absolute point-method can be considered as the, currently 

known, best way to delineate streams in areas with (very) low topographical relief with LiDAR 

data. 

  

https://github.com/stn228/Absolute_point_method_Stream_delineation
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6 Discussion and future research 
Where other methods lack or return errors, this algorithm has the power to accurately 

delineate streams directly with point cloud data. This research underlines the findings of 

different researches that emphasize the great potential of highly accurate analysis with point 

cloud data for hydrological applications. Especially Gabrisch (2011) and Anderson and Ames 

(2011) demonstrated the power of direct point cloud analysis.  This research confirms their 

findings and suggests a method that is not only accurate but also is accessible and simply 

applicable for every hydrologist. By creating an algorithm that does not require rasterization 

of the data, several advantages appear. First, the high-quality LiDAR data is optimally utilized, 

as no data integrity-harming interpolations have to be done. The data is not generalised with 

averages of multiple points into raster cells. Furthermore, in contrast to conventional raster-

based methods, this algorithm is not restricted to a limited number of flow directions, 

resulting in an unnatural flow path (van Bemmelen et al., 1993). Moreover, this method 

handles data gaps and sinks innovatively by including an adjustable search radius and 

maximum allowed course change. However, in addition to these measures, a fill sinks, data 

smoothening algorithm could also be created for direct point clouds. Similar to existing 

methods, this algorithm identifies sinks and raise the elevational value if all surrounding points 

are higher than the point of reference (Rheinwalt et al., 2019; L. Wang & Liu, 2006). 

Furthermore, the K-nearest neighbour algorithm could be used to comply with a minimum 

number of points within the search radius. Then, the user of the stream delineation tool could 

specify a number of points that should be within the search radius and the algorithm will 

adaptively change the search radius, based on the input data at a specific point. These features 

can be included in this method in future researches. 

Counterintuitively, this research allows the stream to flow upward if there is no lower point 

within the extended search radius. The results show that this does not happen if the research 

area has a noticeable topographical relief. However, the stream does flow upward multiple 

times in the Olst research area. Looking at the longitudinal profile of this area, this is not 

unexpected. This unnatural pattern is possibly caused by human modifications of this area. 

The algorithm still returns satisfactory results because of the possibility to adopt an extended 

neighbourhood, but also because of the maximum allowed course change. This proves that 

this algorithm works in the area with unnatural patterns with the lowest possible relief. 

Although the water streams upward, the model still returns highly accurate results. By 

implementing this technique, the sink-problem is handled in a convenient and relatively 

simplistic manner. Because of the satisfactory results in the Olst research area, with almost 

negligible relief, it is assumed that this method works in almost all types of areas and could be 

of an added value to the existing methods. Although the results show that this algorithm 

fundamentally works, the test case areas are relatively small and the number of used points 

is not very significant for point cloud data. To strengthen the findings, and to improve the 

recommendations for the parameter settings, this method should be tested in bigger research 

areas, with more points and with different topographical characteristics. This will prove the 

scalability of this method and it will give more insight into the general performance of this 

algorithm. 
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Although the results of this research convincingly demonstrate the added value of the 

absolute point-method, some limitations of this method can be identified. First, this method 

does not take the volume of water streams into account. The significance of streams, based 

on cubic meters of water,  is an important aspect to know. This would also help to derive a 

whole stream network in a specific area. This will enable the researcher to generalise small, 

insignificant streams away and to identify the more important streams. Thereby, this method 

is a very local approach. With this approach, it is only possible to identify single streams from 

an arbitrarily selected starting point. Therefore, it is not possible to extract the stream network 

of a specific catchment, based on the outlet-point. However, this often is desired in 

hydrological analysis. To extract a complete stream network, conventional methods must be 

adopted. Based on these results, the absolute point-method can be deployed to verify the 

accuracy of the delineated streams by the conventional methods. In future research to stream 

delineation methods with direct point cloud analysis, a more global approach could be 

investigated. For instance, the bucket-approach combined with the normal vectors of the 

individual points is potentially a global and effective method. However, the currently known 

tools do not allow to create such a method as the processing demands will be too high 

(Dakowicz & Gold, 2007). Also, a more advanced triangulation-based method could be 

adopted where the water flows in the direction of steepest descent from edge to edge, over 

the face of the triangle. This research identified a method where the water flows over the 

edges of the TIN. It was found that this is not an accurate approach and a better approach 

could have been selected. A global approach, that meets the set requirements for this 

research of accuracy, simplicity and accessibility, still must be found. Presumably, the best 

method for an advanced stream network extraction model is with the bucket-approach or a 

TIN approach, where the water flows over the faces of the triangles (Dakowicz & Gold, 2007; 

Gabrisch, 2011). The main challenge is to make these approaches also comply with the 

requirements of accuracy, simplicity and accessibility.  

It is assumed that the reference stream that is used for verification of this research is 

undoubtedly the ground truth. However, it is stated that some water authorities did not yet 

deliver completely accurate datasets (PDOK, 2020). It is not specified what water authorities 

did not deliver all the data yet. To verify the results of this research more accurately, field 

surveying should be done. Furthermore, this research assumes, based on literature, that the 

D8-method with Strahler orders is the most suitable conventional and accurate approach for 

areas with low topographical relief. However, in future research, other conventional methods 

can also be executed to compare the results with the absolute point-method results. In that 

case, the added value of the absolute point-method can be described more sophisticatedly. 

The chosen research areas and the data, self-evidently, influence the results. This research is 

a case study and the results could differ drastically in areas with strongly differing 

characteristics. As it was demonstrated that this algorithm is capable of jumping over areas 

with spikes in elevation, this could cause problems if there are many obstacles in the research 

area. By including some suggested advancements in the algorithm, this problem could be 

tackled. First, multiple search radii could be included in the model. Currently, only one 

extended search radius is included in the model, but this could be extended. Although this 

presumably impacts the processing speed negatively, the algorithm will be more advanced 
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and accurate. Secondly, obstacles and other locations where the water cannot flow can be 

indicated with restriction lines or polygons. Also, the classification attributes can be used 

smartly. The usage of these classification attributes is already done in this research as only the 

ground points of the point cloud were used for analysis. For instance, uprights of bridges, trees 

or other objects can be marked as areas where the water can impossibly flow through. Lastly, 

the algorithm can be made more adaptive, by making the search radius dependent on the 

vertical profile of the area. Although these modifications presumably will not prevent the 

stream from flowing up as this seems impossible, given the elevation profile, it will presumably 

increase the accuracy of the model. Furthermore, an upward flow could be a restriction itself 

in this algorithm. However, this would result in premature termination of the algorithm in 

areas where the topographical relief is very low. The previously described trade-off between 

accuracy and processing time applies to this as well, as these advancements in the algorithm 

increase calculation times. In future research, the Python code can be made more efficient to 

decrease calculation times by using more efficient databases (e.g. PostGIS) and by improving 

the efficiency of the code. For example, currently, the lowest neighbour is identified by using 

an expression for field calculator as a string in the script, but this expression can also be done 

with Python-commands directly. This will presumably improve performance. Also, the 

geometries of the points are read as integers and then converted to QGIS geometries, while 

it is more efficient to skip this conversion step and directly use the geometries. Furthermore, 

it is possible to optimise the data structures of the point cloud data by using spatial indexes 

or by converting it to triangulations. Because of these efficient data structures and the 

possibility to maintain as much as possible data, the potential of stream delineation with 

triangulated data is high and should be further investigated (Gabrisch, 2011). 

Currently, the algorithm terminates if it reaches the lowest point in the dataset or the specified 

outlet point. For further development, it would be better to let the calculations stop if the 

edge of the research area is reached. Then, there is no disturbance by low outliers in the data.  

To effectively enable analysis of the LiDAR data in QGIS, this research converted the LiDAR 

ground-points to vector points with x, y and z values. This research shows that this is a well-

functioning approach to conduct advanced analysis on point cloud data with open-source 

software. Even though QGIS is not created to work with such big datasets, this method adopts 

a smart algorithm, that only uses the necessary points for calculations. This guarantees a 

sufficient speed of the speed of this method. Simplicity is one of the core requirements for 

the created method. This includes processing time. Although the processing times in this 

research are satisfactory, the processing time increases significantly as the input dataset 

increases. Stream delineation in very big catchment areas with enormous datasets could 

become problematic as calculation times could become too long. However, as the point cloud 

data type is emerging, more and more open-source tools become available to perform direct 

point cloud analysis. An example is the open-source Point Data Abstraction Library (PDAL) or 

LAStools (Bell et al., 2021). These tools are developed to efficiently work with extremely big 

point cloud datasets. Currently, PDAL is a C/C++ library, which is not considered as accessible 

and simple in this research, but there are concrete plans to create make this library more 

accessible via QGIS, similarly to GDAL. By using PDALs efficient approach, the previously 

mentioned, more global, bucket approach (Dakowicz & Gold, 2007) or the tessellated-based 
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surface model (Gabrisch, 2011) would become more feasible because simplicity and 

accessibility then improves. More above, in the next version of QGIS (v 3.18), point cloud data 

formats are support more extensively and it is expected that this offers a new set of openly 

accessible analysis tools for point clouds (Lutra Consulting, 2021). In future research, it is 

important to keep the scalability of this method in mind. Not only the use of efficient tools for 

point clouds could offer the possibility to broadly scale this method for much bigger datasets. 

For example, working with different levels of detail would make this method possibly scalable 

towards a national scale. By implementing continuous levels of detail method, points can be 

filtered or used adaptively to optimise computing performances (L. Zhang et al., 2020). These 

continuous level of detail methods are state of the art and are still in development. This 

research underlines the potential of broad use of point clouds and, therewith, makes the 

relevance for further research to efficient use of point clouds higher.  

Concludingly, the results of this research show the great potential and added value of direct 

point cloud-analysis for different applications as this algorithm is accessible and simplistic and 

significantly more accurate than conventional methods. Since hydrological management 

applications becoming more and more important and diverse and because increasingly more 

LiDAR data is becoming available, more tools should be created as an addition or even a 

replacement for conventional tools. This can be very useful for multiple applications, also 

outside the field of hydrology. This LiDAR-based absolute point-method works in all types of 

areas, also if there is a negligible elevation difference of 0.2 meters over a horizontal distance 

of 700 metres. By innovatively using all the available data optimally and include smart decision 

rules as parameters, this algorithm offers a significantly better accuracy than conventional 

approaches. 
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Appendix A: Stream Delineation with QGIS Python script 
Please consider the attached file: ‘stream_delineation.py’ or via: https://github.com/stn228/ 

Absolute_point_method_Stream_delineation  

 

Appendix B: Python script to plot the longitudinal profiles 
Please consider the attached file: ‘create_graphs_Epen.py’ and ‘create_graphs_Olst.py’ 

https://github.com/stn228/Absolute_point_method_Stream_delineation
https://github.com/stn228/Absolute_point_method_Stream_delineation


 

 
 

Appendix C: Overview of the results in the Epen research area 
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Appendix D: Overview of the results in the Olst research area
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Appendix E: Overview of the vertical performance of all the 
modelled streams 

 

Stream 1a: vertical performance compared to the selected points by the absolute point-

method 

 

Stream 1a: The results of the D8-method and the absolute point-method compared. 

 



 

92 
 

 

Stream 1b: vertical performance compared to the selected points by the absolute point-

method 

 

 

Stream 1b: The results of the D8-method and the absolute point-method compared. 
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Stream 2: vertical performance compared to the selected points by the absolute point-

method 

 

Stream 2: The results of the D8-method and the absolute point-method compared. 



 

 
 

Stream 3: vertical performance compared to the selected points by the absolute point-method 


