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ABSTRACT: 
 
Although point clouds are characterized as a type of unstructured data, timestamp attribute can structure point clouds into scanlines 
and shape them into a time signal. The present work studies the transformation of the street point cloud into a time signal based on the 
Z component for the semantic segmentation using Long Short-Term Memory (LSTM) networks. The experiment was conducted on 
the point cloud of a real case study. Several training sessions were performed changing the Level of Detail of the classification (coarse 
level with 3 classes and fine level with 11 classes), two levels of network depth and the use of weighting for the improvement of classes 
with low number of points. The results showed high accuracy, reaching at best 97.3% in the classification with 3 classes (ground, 
buildings, and objects) and 95.7% with 11 classes. The distribution of the success rates was not the same for all classes. The classes 
with the highest number of points obtained better results than the others. The application of weighting improved the classes with few 
points at the expense of the classes with more points. Increasing the number of hidden layers was shown as a preferable alternative to 
weighting. Given the high success rates and a behaviour of the LSTM consistent with other Neural Networks in point cloud processing, 
it is concluded that the LSTM is a feasible alternative for the semantic segmentation of point clouds transformed into time signals. 
 
 
 

1. INTRODUCTION 

Point clouds are known to be a typical example of unstructured 
data. The points are distributed over surfaces in an irregular and 
unordered way, not fitting into a grid. However, in a detailed 
analysis of the distribution of points on surfaces in raw point 
clouds, certain patterns related to geometry and scanning time 
can be appreciated (Figure 1). These patterns match the scanlines 
and are easily identified in terrestrial, mobile, or airborne laser 
scanning. 
 
Scanlines are lines of successive points that form a point cloud. 
The structuring of the point cloud in scanlines has shown its 
usefulness in segmentation (Chu et al., 2017; Honma et al., 2019; 
Wang et al., 2016), ground detection (Che and Olsen, 2017; Chu 
et al., 2019), road edge detection (Honma et al., 2020), indoor 
space subdivision (Zheng et al., 2018) and modelling (Lin and 
Hyyppä, 2011). 
 
In the case of streets acquired with a Mobile Laser Scanning 
(MLS), the scanlines are distributed sequentially along the street 
according to the speed of the MLS during acquisition (Cahalane 
et al., 2010). Given the proximity between scanlines and the 
quasi-constant geometry of a street, the Z component of the 
points has a repetitive and common behaviour between scanlines. 
In turn, each scanline also has a common temporal direction, 
where the X and Y components are closely related to the 
timestamp of each point. Therefore, urban street point clouds can 
be considered as 3D data but also as a continuous signal in time, 
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defined by the Z component of the scanlines points and with a 
frequency obtained from the intervals between buildings and 
street. 
 

 
Figure 1: Zoom in on scan patterns of a street acquired with 

MLS. 
 
The aim of this work is to evaluate the semantic segmentation of 
street point clouds considering them as time signals and applying 
Recurrent Neural Networks (RNN). Specifically, this work 
evaluates the use of Long Short-Term Memory (LSTM), one of 
the networks in the state of the art in text and voice processing 
(Sherstinsky, 2020).  In the segmentation of the street, two levels 
of detail are considered: one coarse with three classes (ground, 
buildings, and objects), and another more detailed with 11 classes 
(road, curbs, sidewalks, buildings, vegetation, cars, motorbikes, 
furniture, poles, pedestrian, and others). 
The rest of this paper is organized as follows. Section 2 contains 
works on point cloud semantic segmentation with artificial 
intelligence. Section 3 details the characteristics of the LSTM and 
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the scanlines generation. Section 4 presents the case study, the 
results, and the analysis. Section 5 concludes the work 
 
 

2. RELATED WORK 

Semantic segmentation in point clouds is a research line 
extensively developed since its origin at the beginning of the 21st 
century (Zhang et al., 2019). Semantic segmentation, also known 
as point-based classification, consists of assigning a label to each 
point in the cloud. Given that each point is represented only by 
3D geometry, it is crucial to establish relationships with 
neighbouring points in order to obtain local shape descriptors for 
subsequent classification. 
 
In Machine Learning, feature extraction is a manual process, and 
the accuracy of the classification depends on well-designed 
feature descriptors (Ku et al., 2020). The most common 
geometric features are those based on surface normals, curvature, 
eigenvalues, and eigenvectors. These features are dependent on 
the neighbouring points. A change in the number or position of 
the neighbours will influence the value of the feature (Weinmann 
et al., 2015). The most common methods for estimating point 
relationships and structuring the point cloud are the voxelization 
and the k-nearest neighbours (knn) algorithm. 
 
The adjustment of a point cloud to a grid, either in 2D (Hernandez 
and Marcotegui, 2009), or 3D (voxels) allows to transform the 
unobstructed point cloud into a regular structure where points are 
distributed in cells. In each cell, features can be extracted from 
the points that belong to that cell (Meida et al., 2020; Poux and 
Billen, 2019). In addition, cells with similar features can be 
grouped together, forming super-pixels or super-voxels (Ramiya 
et al., 2016). By contrast, features can be extracted of each point 
with respect to the k nearest neighbouring points directly by 
applying knn (Li et al., 2017; Xiang et al., 2016; Zhang et al., 
2018), so it is not necessary to group points in voxels, with the 
adjustment and truncation problems that voxelization entails.  
 
Feature extraction on Deep Learning is an internal neural 
network process and does not require manual feature extraction. 
However, neural network architectures influence feature 
extraction because they follow the same principles of 
neighbourhood calculation as in manual feature extraction. Thus, 
3D-CNN  structures the point cloud in voxels (Huang and You, 
2016), while PointNet works directly on the points based on their 
proximity relationships (Charles et al., 2017). In (Wang et al., 
2019), the semantic segmentation is based on the representation 
of the point cloud as a graph.  In (Ye et al., 2018), the point cloud 
is structured in 3D blocks to obtain contextual features with an 
RNN. 
 
With respect to other works, our proposal is based on structuring 
the point cloud in scanlines as a continuous time signal, without 
a structuring based on voxels or knn. Moreover, the use of Deep 
Learning, specifically the LSTM, implies that the feature 
extraction process is executed internally by the neural network. 
From the best of our knowledge, we have not found other studies 
that process point clouds as time signals with an LSTM. 
 
 

3. METHOD 

3.1 Long Short-Term Memory  

Recurrent Neural Networks (RNNs) are a specific type of 
network for signal processing. As a peculiarity, in these 

networks, information can persist through the layers of neurons, 
allowing to remember previous states. The RNN is that 
information can persist for a very short number of stages. To 
solve this, Long Short-Term Memory (LSTM) networks improve 
the architecture of neurons by adding gates to store relevant 
information longer, update it or discard it. 
 
The input used by LSTM networks for segmentation is a series 
of arrays (samples) of variable length stored sequentially. In case 
there are several features, the input is in parallel with one parallel 
array for each available feature. 
 
3.2 Scanlines generation 

Given an input consisting of a street point cloud 𝑃 =
[𝑃, 𝑃, 𝑃 , 𝑃்], the generation of the scanlines is executed by 
ordering the cloud based on the timestamp attribute 𝑃். The time 
ordered point cloud will fulfil  𝑃் <  𝑃்ାଵ ∀𝑖 ∈ [1, 𝑛], being n 
the number of points. In this way, each point cloud attribute is 
ordered according to time and can be used as an array for the 
LSTM input. 
 
The division of the point cloud into different and consecutive 
scanlines 𝑆 = [𝑆, 𝑆, 𝑆, 𝑆்] for subsequent distribution in the 
training and testing sets is performed based on the time difference 
between consecutive points ∆𝑡 = 𝑃௧ାଵ − 𝑃௧ (Figure 2). Time 
difference between consecutive points ∆𝑡 is not always constant. 
The angular resolution ∝ of the MLS allows one point to be 
acquired every ∝ increment, but there is not always an element 
of the built environment to be acquired. Between points of 
consecutive scanlines there is a greater time difference, 
corresponding to the area of the sky not acquired, than between 
consecutive points of the same scanline. Therefore, when the 
average between all the ∆𝑡  is calculated, the points are assigned 
sequentially to different scanlines delimited by ∆𝑡  whose values 
are greater than 100 times the average ∆𝑡തതത. 
 

 
 
Figure 2: Scanlines of a street in lateral view (a) and isometric 

(b). 
 
3.3 Feature extraction 

The only feature used in the semantic segmentation of the point 
cloud is the Z component, which is converted into a time signal 
by means of scanline structuring. This signal, transversal to the 
vehicle's trajectory, has similar characteristics to the cross-
sections used in other works for the identification of elements in 
road environment (Balado et al., 2019; Holgado-Barco et al., 
2017; Novo et al., 2020). 
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Most LiDAR mounted on a vehicle generate scan patterns 
perpendicular to the vehicle's trajectory, and coincident with the 
normal direction of the façades of a street (Balado et al., 2017). 
Therefore, X and Y components are related to the trajectory and 
the distance to the façade, and they are not used as features for 
the LSTM in this work. The point position with respect to the 
MLS along trajectory is not relevant to identify an object. The 
point position with respect to the façade is intrinsically stored in 
the signal since the point cloud is ordered according to the 
timestamp 𝑃்.  
 
In order to take advantage of the point cloud distribution in 
scanlines, features based on the 3D proximity (nearest 
neighbours or voxels) between points are not calculated. 
Furthermore, since RNNs have the capacity to extract features 
related between the distribution and position of the samples 
inside signals, features based on consecutive points are also not 
calculated. 
 
3.4 Sample Weighting 

The number of points in the urban environment is clearly 
unbalanced between the different classes. This is due to the 
acquisition distance of the MLS from the element to be scanned 
as well as the scannable surface of each element. Given this 
problem, some trainings are performed by adding to the LSTM a 
module to weight the training accuracy according to the inverse 
of class percentages (Equation 1) 
 

𝑤 =  
𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑠𝑎𝑚𝑝𝑙𝑒𝑠 𝑡𝑜𝑡𝑎𝑙

𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑠𝑎𝑚𝑝𝑙𝑒𝑠 𝑐𝑙𝑎𝑠𝑠 
 Eq. 1 

 
 

4. EXPERIMENTS 

4.1 Data 

An MLS-acquired point cloud of 153 m in Camelias street in 
Vigo (Spain) was selected as case study. The area was segmented 
by half-street, containing one line of façades, one direction road 
line, sidewalks, and urban furniture. The point cloud had 12 
million points and was acquired with LYNX Mobile Mapper of 
Optech (Balado et al., 2017). The point cloud was structured in 
6942 scanlines, with an average distance between scanlines of 2.7 
cm. The average time difference between consecutive points on 
the same scanline is 2x10-6 seconds. The selection of the feature 
z in consecutive points generates a time signal suitable for the 
LSTM input (Figure 3). 
 
The point cloud was segmented and labelled manually. Classes 
were defined at two levels of detail (LoD). The coarse level of 
detail contains 3 classes (ground, building, and objects), and the 
fine level contains 11 classes (road, curb, sidewalk, building, 
vegetation, car, motorbike, pedestrian, pole, furniture, and 
others). Figure 4 shows the point cloud coloured by the 11 
labelled classes. Figure 5 contains the number of points 
percentages of each class over the total number of points. 
Considering the coarse level of detail, the ground class occupies 
more than half of the labelled samples, within ground, the road 
class has the highest weight. The road class occupies half of the 
samples in the case study. Similarly, within the object class, 
vegetation occupies the largest percentage, leaving the rest of the 
object classes in very small percentages. 
 
The scanlines of the point cloud were distributed randomly in 
50% for the training set and 50% for testing.  
 

 

 
Figure 3: Time signal generated from consecutive scanlines of 

the point cloud. 
 

 
Figure 4: Point cloud coloured by 11 labelled classes. 

 
 

 
Figure 5: Distribution of classes in thousands of points 

according to level of detail: a) Coarse and b) Fine 
4.2 Results 

The trainings were performed with a maximum of 30 epochs, 
mini-batch of 64 observations, Adam optimizer, learning rate of 
0.001, two levels of hidden layers (200 and 500 hidden layers), 
and with two weighted options (weighted and unweighted). All 
experiments were executed on Intel® Core™ i5-8400 CPU 
2.8GHz, 8GB RAM, and NVIDIA 1050ti 4096 GDDR5 using 
MATLAB. Each training session lasted about 15 and 40 minutes, 

The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XLIII-B2-2021 
XXIV ISPRS Congress (2021 edition)

This contribution has been peer-reviewed. 
https://doi.org/10.5194/isprs-archives-XLIII-B2-2021-123-2021 | © Author(s) 2021. CC BY 4.0 License.

 
125



depending on the number of classes, hidden layers, and the 
weighting. 
The overall accuracy of all tests is shown in Table 1. Confusion 
matrices are shown in Tables 2 to 9 in the appendix. In addition, 
Figures 6 to 13 show an enlarged section of the street where 
successes and errors can be seen (also in appendix). The best 
results were obtained with the training session with 500 hidden 
layers, weighted for 3 classes (97.3%) and unweighted for 11 
classes (95.7%). The errors are concentrated in the transition 
zones between elements and those classes with a low number of 
points, mainly objects. 
 

classes hidden layers weighted accuracy 

3 200 No 96.4% 
3 200 Yes 95.3% 
3 500 No 95.0% 
3 500 Yes 97.3% 

11 200 No 94.2% 
11 200 Yes 75.1% 
11 500 No 95.7% 
11 500 Yes 76.0% 

Table 1: Accuracy obtained by comparing the different training 
parameters 

 
4.3 Analysis and discussion 

The results of semantic segmentation depend largely on the 
number of classes and the LoD. In Table 1, overall accuracy for 
the semantic segmentation of 3 classes is higher than for 11 
classes. In the confusion matrices (Tables 2 to 9), it can also be 
observed that the classes with the highest number of points are 
the ones that reached a better classification, in both LoD. 
 
The ground was very well segmented at a coarse LoD in all tests 
(Tables 2 to 5 and Figures 6 to 9). There is a different behaviour 
in the three elements when the ground is divided into three 
classes (Tables 6 to 9 and Figures 10 to 13). The curbs were 
mainly confused with the road class, as the road has the largest 
number of points in the scene. While road and sidewalk continue 
to be classes with high success rates. Weighted tests will be 
explained in the next paragraphs. 
 
The building class showed a very stable behaviour in all tests, 
although without such high success rates as with the ground class. 
A small area of confusion was observed between the intersection 
of ground and buildings (example in Figures 6 or 10). But it was 
also observed as an important area of confusion in the lower part 
of the buildings, coinciding with the height of the objects 
(example in Figures 8 or 11). 
 
The objects, being the class with the least number of samples 
(points), showed great confusion with sidewalks and buildings 
classes. This is due to the coincidence in the location of the 
objects with both classes. The treetops were well identified in all 
tests, probably due to irregularity in height acquisition in the time 
signal. 
 
The aim of the weighting was to increase the accuracy of those 
classes with few samples. Also, with more hidden layers, the 
network can extract more complex characteristics, patterns, and 
thresholds to improve the classification. This behaviour was 
corroborated in the semantic segmentation with 3 classes, where 
adding the weighting (Table 3) or increasing the number of 
hidden layers (Table 4), the recall of the object class increased by 
more than 10% (although at the cost of 6% of the building class). 

Increasing the number of hidden layers and weighting 
simultaneously obtained the best success rate for the semantic 
segmentation in 3 classes (Table 5). 
 
However, the behaviour with 11 classes was markedly different. 
The increase of hidden layers produced an improvement of the 
recall in those classes with a lower number of points and a very 
slight worsening of the classes with a higher number of points 
(values of the main diagonal in Tables 6 and 8). But on adding 
the weighting, the same behaviour was produced in a much more 
aggressive way, reaching high values in the identification of 
object classes and curbs, but with a notable decrease in the road, 
sidewalk and building classes. As a result, the overall accuracy 
fell by up to 75%. Figures 11 and 13 show large areas 
misclassified. 
 
The direct comparison of the proposed method on public datasets 
is a pending task, since most public datasets of point clouds do 
not include a timestamp attribute, let alone with an adequate 
resolution. However, in view of the results of this work compared 
to others (Balado et al., 2019; Contreras and Denzler, 2019; Ku 
et al., 2020; Roynard et al., 2018; Weinmann et al., 2015), we can 
consider this work in the state of the art. 
 

 
5. CONCLUSIONS 

In this work, the first experiments of semantically segmenting an 
MLS street point cloud through the conversion into a time signal 
and a LSTM. Tests were performed to classify two LODs 
corresponding to 3 classes and 11 classes. The use of a network 
with different depth (200 hidden layers and 500 hidden layers) 
and weighting was also tested. 
 
The LSTM obtained an overall accuracy of 97.3% for 3 classes 
and 95.7% with 11 classes, which places it in the state of the art. 
However, the class objects and sub-classes present the greatest 
confusion given the low number of points in the street scene. 
Although this is also indicative of the relevance of the third 
dimension lost when the point cloud was transformed into a time 
signal of the Z attribute. The weighting improved the overall 
accuracy for the classification with 3 classes, but not with 11 
classes, although it did improve the success rate of the object 
classes. In view of the results, the LSTM is a tool as useful as 
others for the segmentation and classification of point clouds 
with regular patterns. 
 
Future work will focus on extending the test to more case studies, 
evaluating other features (intensity, number of returns, 
timestamp), testing other networks such as the Gated recurrence 
unit, and combining with some method to reduce the number of 
points and obtain a more balanced number of samples. 
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APPENDIX 

 
pred/real ground building object 

ground 99.6 0.3 5.1 
building 0.3 96.7 17.3 
object 0.1 3.0 77.6 

Table 2: Confusion matrix (% recall) for 3 classes, 200 hidden 
layers and unweighted. 

 
 

pred/real ground building object 

ground 99.3 0.4 4.3 
building 0.5 90.2 5.4 
object 0.2 9.3 90.3 

Table 3: Confusion matrix (% recall) for 3 classes, 200 hidden 
layers and weighted. 

 

pred/real ground building object 

ground 99.7 2.3 4.4 
building 0.1 88.9 6.1 
object 0.2 8.8 89.5 

Table 4: Confusion matrix (% recall) for 3 classes, 500 hidden 
layers and unweighted. 

 
 

pred/real ground building object 

ground 97.9 0.7 3.0 
building 0.1 97.2 2.6 
object 2.1 2.1 94.3 

Table 5: Confusion matrix (% recall) for 3 classes, 500 hidden 
layers and weighted. 

 
 

pred/real road curb side. build. car moto. veg. ped. pole fur. other 

road 100.0 99.7 5.3 0.4 77.3 1.1 0.1 1.9 0.2 0.2 0.1 
curb 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 
side. 0.0 0.3 89.9 0.2 1.1 39.6 1.2 18.8 11.7 32.8 43.7 
build. 0.0 0.0 4.8 95.3 21.6 35.2 15.4 77.7 31.2 54.9 51.7 
car 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 
moto. 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 
veg. 0.0 0.0 0.0 4.1 0.0 0.0 83.3 0.0 55.4 0.0 0.0 
ped. 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 
pole 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 
fur. 0.0 0.0 0.1 0.0 0.0 24.1 0.0 1.6 1.4 12.1 4.6 
other 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 

Table 6: Confusion matrix (% recall) for 11 classes, 200 hidden layers and unweighted. 
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pred/real road curb side. build. car moto. veg. ped. pole fur. other 

road 72.3 0.0 0.0 0.0 3.0 0.0 0.0 0.0 0.5 0.4 0.0 
curb 11.0 97.3 19.3 0.0 0.0 0.0 0.1 0.0 1.0 0.5 0.0 
side. 0.1 1.2 73.6 1.5 0.0 7.3 0.9 14.2 4.7 12.4 16.6 
build. 0.3 0.0 0.0 81.3 2.2 0.0 10.4 0.0 14.5 0.0 3.6 
car 16.2 0.0 0.1 1.2 94.8 1.1 2.1 0.0 2.0 0.2 0.0 
moto. 0.1 1.5 5.6 0.5 0.0 67.0 0.1 19.3 2.5 7.5 0.0 
veg. 0.0 0.0 0.0 5.5 0.0 0.0 73.3 0.0 23.7 1.8 0.4 
ped. 0.0 0.0 0.3 1.3 0.0 23.9 0.2 40.3 1.7 12.1 0.0 
pole 0.0 0.0 0.0 2.1 0.0 0.0 9.8 0.0 33.3 0.0 0.5 
fur. 0.0 0.0 0.4 3.9 0.0 0.7 2.1 17.9 9.7 32.9 15.3 
other 0.0 0.0 0.7 2.7 0.0 0.0 1.1 8.3 6.4 32.3 63.6 

Table 7: Confusion matrix (% recall) for 11 classes, 200 hidden layers and weighted. 
 

pred/real road curb side. build. car moto. veg. ped. pole fur. other 

road 96.9 80.9 0.6 0.1 40.6 1.1 0.0 0.0 0.2 0.1 1.5 
curb 0.0 4.2 0.1 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 
side. 0.0 14.8 97.8 0.3 0.0 8.1 0.5 12.0 2.7 5.6 6.0 
build. 0.8 0.0 1.0 98.5 10.2 14.6 6.1 49.7 6.7 5.2 20.3 
car 1.4 0.0 0.0 0.0 26.5 0.0 0.0 0.0 0.0 0.0 0.0 
moto. 0.0 0.0 0.0 0.0 0.0 0.3 0.0 0.0 0.0 0.0 0.0 
veg. 0.5 0.0 0.1 0.9 21.2 2.7 92.2 13.5 32.5 1.2 3.4 
ped. 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 
pole 0.4 0.0 0.1 0.0 1.5 4.3 0.5 5.8 52.2 13.1 4.6 
fur. 0.0 0.0 0.3 0.1 0.0 68.8 0.7 19.1 5.7 74.8 64.2 
other 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 

Table 8: Confusion matrix (% recall) for 11 classes, 500 hidden layers and unweighted. 
 
 

pred/real road curb side. build. car moto. veg. ped. pole fur. other 

road 73.6 0.0 0.0 0.0 1.0 0.3 0.0 0.0 0.1 0.1 0.0 
curb 16.3 99.9 8.9 0.0 0.0 0.0 0.0 0.0 0.2 0.5 0.0 
side. 0.0 0.0 77.2 1.2 0.0 1.8 0.5 7.1 1.8 4.3 3.9 
build. 0.1 0.0 0.0 79.2 0.6 0.0 5.6 0.0 5.1 0.0 3.5 
car 10.0 0.0 0.1 1.0 98.2 0.7 1.4 0.0 1.6 0.2 0.1 
moto. 0.0 0.0 6.2 0.2 0.0 81.6 0.3 8.1 4.7 24.2 0.0 
veg. 0.0 0.0 0.0 7.1 0.0 0.0 80.3 0.0 18.2 0.0 0.0 
ped. 0.0 0.0 1.3 3.8 0.0 13.2 1.4 76.9 3.0 12.4 1.6 
pole 0.0 0.0 0.0 2.0 0.0 0.0 7.7 0.1 48.5 0.7 0.0 
fur. 0.0 0.0 0.1 1.0 0.0 2.4 0.6 0.0 3.9 24.4 0.0 
other 0.0 0.0 6.3 4.5 0.1 0.0 2.2 7.7 13.0 33.2 90.9 

Table 9: Confusion matrix (% recall) for 11 classes, 500 hidden layers and weighted. 

 

 

 
Figure 6: Point cloud coloured by correct semantic 

segmentation for 3 classes, 200 hidden layers and unweighted. 
Correct segmented classified point in green and misclassified in 

red. 

 
Figure 7: Point cloud coloured by correct semantic 

segmentation for 3 classes, 200 hidden layers and weighted. 
Correct segmented classified point in green and misclassified in 

red. 
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Figure 8: Point cloud coloured by correct semantic 
segmentation for 3 classes, 500 hidden layers and 

unweighted. Correct segmented classified point in green and 
misclassified in red. 

 

 
Figure 9: Point cloud coloured by correct semantic 

segmentation for 3 classes, 500 hidden layers and weighted. 
Correct segmented classified point in green and misclassified 

in red. 
 

 
Figure 10: Point cloud coloured by correct semantic 
segmentation for 11 classes, 200 hidden layers and 

unweighted. Correct segmented classified point in green and 
misclassified in red. 

 
 

 

 
Figure 11: Point cloud coloured by correct semantic 

segmentation for 11 classes, 200 hidden layers and weighted. 
Correct segmented classified point in green and misclassified 

in red. 
 

 
Figure 12: Point cloud coloured by correct semantic 
segmentation for 11 classes, 500 hidden layers and 

unweighted. Correct segmented classified point in green and 
misclassified in red. 

 

 
Figure 13: Point cloud coloured by correct semantic 

segmentation for 11 classes, 500 hidden layers and weighted. 
Correct segmented classified point in green and misclassified 

in red. 
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