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ABSTRACT:

Point cloud data have rich semantic representations and can benefit various applications towards a digital twin. However, they are
unordered and anisotropically distributed, thus being unsuitable for a typical Convolutional Neural Networks (CNN) to handle.
With the advance of deep learning, several neural networks claim to have solved the point cloud semantic segmentation problem.
This paper evaluates three different neural networks for semantic segmentation of point clouds, namely PointNet++, PointCNN
and DGCNN. A public indoor scene of the Amersfoort railway station is used as the study area. Unlike the typical indoor scenes
and even more from the ubiquitous outdoor ones in currently available datasets, the station consists of objects such as the entrance
gates, ticket machines, couches, and garbage cans. For the experiment, we use subsets from the data, remove the noise, evaluate the
performance of the selected neural networks. The results indicate an overall accuracy of more than 90% for all the networks but
vary in terms of mean class accuracy and mean Intersection over Union (IoU). The misclassification mainly occurs in the classes
of couch and garbage can. Several factors that may contribute to the errors are analyzed, such as the quality of the data and the
proportion of the number of points per class. The adaptability of the networks is also heavily dependent on the training location:
the overall characteristics of the train station make a trained network for one location less suitable for another.

1. INTRODUCTION

Over the last few years, technology has constantly been evolving,
and with the constant growth of computational power, ideas
from a long time ago have resurfaced to finally show their worth
completely. With this constant growth of information, the col-
lection of data has also increased as well as the detail with
which this has been captured. This gives a way to the emer-
ging deep learning methods that can learn from the data. Re-
cently, deep learning has been used to address multiple geospa-
tial problems and has proven to be competent (Zhu et al., 2017,
Ma et al., 2019, Ardabili et al., 2019).

The training data of deep learning are defined by the applica-
tion. For indoor and outdoor applications, naturally, this im-
plies the use of different data. This paper strives to test the
state-of-the-art deep learning models in an environment that is
still somewhat less unexplored, namely the indoor scene. Com-
pared with the outdoor scene, the indoor scene is more com-
plex to parse since it is more costumed and the variety of the
indoor features surpasses that of the outdoors (Meijers et al.,
2005, Pang et al., 2018). Nevertheless, it does not imply that
the indoor scene is inferior to the outdoor scene. On the con-
trary, the indoor scene is closer to the human habitat, therefore
worthy of exploring equally, if not more. We focus on point
cloud data which is currently less explored than the traditional
image-based machine learning.

Processing unstructured point clouds is non-trivial, and it is
only recently that deep learning approaches have been proposed
∗ Corresponding author

for tackling this task (Qi et al., 2017a, Qi et al., 2017b, Li et
al., 2018, Thomas et al., 2019). These point clouds are usually
obtained from LiDAR sensors mounted on a vehicle or from
visual SLAM approaches; few are collected for the indoor en-
vironment. There is a lack of attention to public space where
unexploited patterns may exist from the indoor scenes.

In this paper, we investigate how deep neural networks per-
form within the context of a public indoor environment. Spe-
cifically, we evaluate the performance with the point cloud ac-
quired in a railway station. Compared with the existing indoor
scenes (Khoshelham et al., 2017, Dai et al., 2017, Armeni et al.,
2016), our scene contains more significant noise where moving
objects appear. Besides, the point clouds captured by the ter-
restrial laser scanner exhibit varying density regarding the dis-
tance between the objects to the scanner. We extensively eval-
uate the performance of several deep neural network architec-
tures for semantic segmentation on this data. An advantage that
applying deep neural networks for applications, such as asset
management, brings is that data does not need possibly hun-
dreds of man-hours to be labelled. This saves a lot of time and
also expense each time a scan is made.

2. RELATED WORKS

Recent advance in deep learning has boosted diverse computer
vision applications. In the geospatial sector, deep learning-
powered solutions contribute to the creation of the digital twin,
where automatic object detection and semantic segmentation
from point clouds play an important role (Zhu et al., 2017).
These applications include urban planning (Urech et al., 2020),
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asset management (Fang et al., 2016), public safety (Wang et
al., 2015), etc.

Deep Learning on Point Clouds. Point clouds are unordered
and anisotropically distributed in space. Therefore, unlike the
grid data such as images or voxels, point clouds are more dif-
ficult to process efficiently in deep neural networks due to this
irregularity. Volumetric CNNs (Maturana and Scherer, 2015,
Wu et al., 2015, Qi et al., 2016) project the point sets into grids
with uniformity. However, this type of methods often involves
non-trivial projection and are often constrained by its resolution
due to the sparsity of the voxel representations. Recently, there
are neural networks proposed that directly consume raw point
clouds. PointNet (Qi et al., 2017a) and Deep Sets (Zaheer et
al., 2017) both address order invariance of input points using
a symmetric function over the inputs. PointNet++ (Qi et al.,
2017b) further improves the local feature aggregation by apply-
ing PointNet hierarchically over the point set. PointCNN (Li et
al., 2018) applies an χ-transformation to learn the weighting of
the input features and the point set permutation. Moreover, with
graph structures proven to be successful in geometric learn-
ing (Battaglia et al., 2018, Zhou et al., 2020), deep neural net-
works utilizing graph structures are proposed (Landrieu and Si-
monovsky, 2018, Wang et al., 2019). Within this paper, we
evaluate several state of the art solutions for semantic segment-
ation.

Indoor Point Cloud Application. Indoor scene semantics based
on point cloud is essential for many applications, such as plan-
ning, localization and navigation services (Flikweert et al., 2019,
Quintana et al., 2016). However, indoor environments pose spe-
cific challenges for point cloud semantic segmentation due to
complex layout, variety of object types and occlusions (Och-
mann et al., 2016, Pang et al., 2018). There are indoor point
cloud datasets available that target different scenes (Khoshel-
ham et al., 2017, Dai et al., 2017, Armeni et al., 2016). How-
ever, none of the existing datasets cover the scene of a railway
station. This paper strives to study the indoor scene that is less
exploited. Specifically, the lack of benchmark on railway sta-
tion point cloud semantic segmentation motivates the study of
this paper.

3. MATERIALS AND METHOD

3.1 Data

The study uses a LiDAR dataset at the Amersfoort Central Sta-
tion. It consists of standard information, such as position (XYZ),
intensity, and additional Red-Green-Blue (RGB) colour from
the camera. An overview of the point cloud dataset from out-
side and inside the station is shown in Figure 1. The data ac-
quisition was conducted in October 2019 with 19 different scan
locations inside the station.

The raw point clouds were unlabeled and still noisy, i.e. mov-
ing objects were present. We distil the whole data first to distin-
guish the interesting assets that are typically inside the station.
Based on the screening, we define five classes: clutter, entrance
gate, couch, garbage can, and floor.

Furthermore, we subset the data into several partitions based on
the planar position X and Y. We did the manual labelling to the
specified classes and data cleaning to each partition to remove
noise, for example, people sitting on the couch. However, it
is impossible to remove the noise completely, so we still have

Figure 1. Top: overview of the whole points of Amersfoort
station; bottom: sample of point clouds data inside the station.

Figure 2. Data partition and manual labelling.

clutter as another class in our classification scheme and end up
having the number of points not proportional between classes.
Based on our initial implementation through different partition
sets, we found that the training did not perform well on the un-
balanced data. Meanwhile, a local scene labelled correctly was
able to produce plausible results. Thus, the large partitions are
not suitable to train because each scene contains many undesir-
able objects classified as clutter. This paper uses the small data
subsets generated from larger partitions with desired objects.
The comparison between large and small partitions is illustrated
in Figure 2. The final data subsets are shown in Figure 3. We
use consistently three scenes to train the networks and the other
two for testing.

3.2 Method

This paper uses three different neural network architectures to
evaluate on our dataset, namely PointNet++ (Qi et al., 2017a),
PointCNN (Li et al., 2018), and DGCNN (Wang et al., 2019).
Specifically, we used the PyTorch implementation for Point-
Net++ (Wijmans, 2018) and DGCNN (Tao, 2020), and the Arc-
GIS API for PointCNN (Esri, 2021). These networks have been
used for semantic segmentation tasks on the private indoor point
clouds (Dai et al., 2017, Armeni et al., 2016).

As shown in Figure 4, we perform training of the three networks
using the same dataset. All common hyperparameters of the
networks are structured as with the S3DIS dataset (Armeni et
al., 2016). We adapt the data preparation process to fit the data
we have. We use the default setting, except for the block size in
PointCNN, which is changed from 1.5 m to 1 m as we consider
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Figure 3. Final data partition to be labelled. Three scenes on the left are used for training, and the rest is for testing.

Point clouds training data set Point clouds
testing data set

PointNet
training

PointCNN
training

DGCNN
training

- training loss
- training accuracy

- training IoUs

Accuracy metrics from
different networksTrained models

Figure 4. Flowchart of the experiments conducted in this study.

the objects in our scenes to have different dimensions from that
of S3DIS.

The training is analyzed by monitoring the loss and accuracy.
We stop the training when there is no significant improvement
of these metrics. Then, we evaluate each trained model of the
networks in the testing stage. Here we use standard approaches
to measure the quality of segmentation results by comparing
the predicted and ground truth values w.r.t. the overall accuracy
and Intersection over Union (IoU).

The overall accuracy describes the ratio between the numbers
of points equal to truth values with the total number of points.
It is given by

OA =
(TP + TN)

(TP + TN + FP + FN)
(1)

where OA is the overall accuracy, TP is the total number of
true positive points (e.g. if labelled couch predicted as a couch),
TN is the total number of true negatives (e.g. if labelled non-
couch predicted as a non-couch), FP is the total number of

false positives (e.g. when labelled non-couch predicted as a
couch), and FN is the total number of false negatives (when la-
belled couch predicted as a non-couch). In the overall accuracy,
the numerator’s sum is equal with the total number of predicted
values that are classified correctly for each class, while the sum
of the denominator is equal to the total number of ground truth
points.

IoU expresses the ratio of the overlapping area and the union
area between the predicted and the ground truth:

IoU =
Intersection

Union
(2)

4. RESULTS AND DISCUSSIONS

Table 1 presents the evaluation results of each network. All
overall accuracy can reach more than 90%. However, the class
accuracy varies between 50% and 80%, and a similar observa-
tion also appears for the mean IoU. The reason is that some
classes have significant low accuracy than others, as indicated
in Table 2.

Table 1. Results on different networks.

Networks Overall Mean class Mean
accuracy (%) accuracy (%) IoU

PointNet++ 95.6 79.9 66.5
PointCNN 92.9 49.9 47.3
DGCNN 94.7 79.9 70.9

Table 2. Class IoUs of each network.

Classes Class IoU (%)
PointNet++ PointCNN DGCNN

Entrance gate 95.1 71.7 91.5
Couch 57.9 7.5e-5 77.1
Garbage can 75.1 57.7 72.8
Floor 98.3 98.4 99.2

All networks appear to have accurate predictions to the class
floor. However, the results suggest that some networks have dif-
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ficulty predicting points belonging to the couch or garbage can.
In this case, PointCNN almost cannot detect the couch at all.
From 106,306 points, only 35 points are predicted as the couch,
and 8 of them are classified correctly; most couch points are de-
tected as the garbage can. We suspect that the block size in our
PointCNN setting may cause errors in the prediction since 1.0
m block size is relatively small considering the size of a couch.
However, PointNet++ and DGCNN, which use the same block
size as PointCNN, pinpoint a significantly higher accuracy.

Figure 5. Results of PointCNN on the surveillance cameras
using two different block sizes.

To further determine the effect of block size in PointCNN, we
clip out one particular type of objects, which are the surveil-
lance cameras inside the station, and evaluate on them using
different block sizes. With five cameras as input, the first test
result for a block size of 1.5 m has only achieved an accuracy
of 30%. The surveillance cameras are considered small, having
a dimension of approximately 30 cm x 20 cm. After we reduce
the block size to 0.5 m, the accuracy increased significantly to
97%. Figure 5 illustrates the prediction results. This experiment
shows a high sensitivity of the block size for PointCNN.

Figure 6 presents the prediction results of each network. We ob-
serve that some objects, including clutter, have a similar shape.
For example, the board above the entrance gate is similar to
the advertisement board on the floor labelled as clutter in the
ground truth data. We argue that this affects how the networks
learn from the training data and may cause misclassification in
the prediction.

Another observation is that the scanner has difficulty capturing
the objects completely. For example, the couch’s points have
holes because it was partly occupied, and we removed the ob-
jects above it in the data cleaning process. Moreover, some ob-
jects may be obscured by others, so the LiDAR scanner cannot
measure them fully, e.g. missing garbage can facades.

5. CONCLUSIONS AND FURTHER WORK

In this paper, a comparison of the semantic segmentation neural
networks is addressed for a public indoor point cloud captured
in a railway station. Our study scene is different from the ex-
isting indoor datasets in terms of the layout, shape and size of
the objects, and the presence of moving objects. The results ob-
tained by PointNet++, PointCNN and DGCNN are compared,
and some factors that may influence the semantic segmentation
performance are analyzed. First, the objects in the station were
not completely recorded by the LiDAR scanner, given the dif-
ficulty of measuring the public space. Second, noise still exists
in the data even after the manual cleaning process. Finally, a
similar shape of the different objects, including the unclassified
points, may cause misclassification. A caveat to this study is
that only a minimal amount of data subset and classes are used.
Despite the limitations in the data acquisition, this data repres-
ents a point cloud in the real-world indoor public space where

several restrictions such as time, budget and administrative ef-
fort have to be taken into consideration.

The implementation of our data partitioning to create small scenes
as input neglects an enormous number of points from the raw
data. With an overall accuracy of more than 90%, though, the
pre-trained model may still not be suitable to be used in a lar-
ger scene. Moreover, the quality of the data and the proportion
of the number of points per class may affect the segmentation
performance. The adaptability is also heavily dependent on the
training location, for which the railway station’s overall char-
acteristics make a trained network for one location less suit-
able for prediction on another. Further study with more classes
and attributes is required to analyze semantic segmentation with
public indoor point cloud data comprehensively.
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