o]
TUDelft CGI

USING VOXELISED SPACES FOR THE GENERATION AND VISUALISATION OF
DYNAMIC EVACUATION ROUTES

A thesis submitted to the Delft University of Technology in partial fulfillment
of the requirements for the degree of

Master of Science in Geomatics for the Built Environment

by
Michiel de Jong

June 2022

Michiel de Jong: Using voxelised spaces for the generation and visualisation of dynamic
evacuation routes (2022)

©@@® This work is licensed under a Creative Commons Attribution 4.0 International
License. To view a copy of this license, visit
http://creativecommons.org/licenses/by/4.0/.

The work in this thesis was made in the:

GIS Technology group

Architectural Engineering + Technology
Faculty of Architecture & the Built Environment
Delft University of Technology

/[77/

)

In cooperation with:

3

Supervisors: ir. Robert Votite
Prof.dr.ir. Peter van Oosterom
Co-reader: Dr.ir. Martijn Meijers

http://creativecommons.org/licenses/by/4.0/

ABSTRACT

In the modern world, evacuating a building in a safe and orderly manner remains a
challenge. Fire-based emergencies in a building are dynamic environments that can
be simulated to better understand, analyse, and contribute to safer and smarter build-
ings. While different spatial representations exist, voxels provide a structured, flexible
and efficient 3-dimensional grid for applications like analysis, classification, surface
reconstruction and simulation. Furthermore, voxels implicitly contain topological
and spatial relations that are relevant for 3-dimensional events such as evacuations
in a rapidly changing building, with a fire spanning multiple floors.

Voxels can suffer from the problem of scale and resolution, where high resolution
voxel scenes take up a lot of memory space. For this, there are solutions that make
more efficient data storage for voxels possible. These include but are not limited to:
the regular voxel grid, the sparse voxel octree, directed acyclic graphs and the use
of space filling curves. Finding the shortest safe path for the evacuees is a challenge,
especially if the area is dynamic, and there are other actors that have to share the
space. Many different pathfinding algorithms exist, each with their own speciality,
such as A*, any-angle pathfinding algorithms like Theta* and incremental algorithms
like D*-Lite.

In this thesis, we look at whether voxelised indoor spaces can form the basis for evac-
uation simulations with multiple actors in a dynamic situation. We do this by com-
paring both the voxel data structure and pathfinding algorithm combinations in a
dynamic evacuation simulation application. The comparison is done by looking at
the quality of the paths, if the algorithms are able to adapt to a dynamic situation
and the performance of the paths, both in computation times and memory load.

These experiments reveal that a time-aware variant of A* is able to outperform the
other algorithms, when applied on a sparse Morton grid. Additionally, it shows that
the use of a sparse Morton grid is preferable to implementing a full octree or the use
of a non-sparse regular voxel grid for dynamic multi-actor voxel scenes. Finally, the
experiments show that dynamic events can be added into pathfinding algorithms by
separating walking the path from finding the path, and using a data structure that is
time-aware.

ACKNOWLEDGEMENTS

I'would like to thank my first mentor, Robert Vofite, for his support, and above all his
input at every step of the way of this graduation project. He has helped me from the
inception of this project, while also giving me a lot of personal freedom in shaping
this project for myself. Next, I would like to thank professor Peter van Oosterom, who
has found time to read through everything I wrote, and share his vast knowledge to
help me improve my thesis. Thirdly, I would like to thank Martijn Meijers for fruitful
discussions along the way and his comments as co-reader. From CGI I would like
to thank Bart Staats for helping me think of this project, and the many talks we had,
especially at the start of the project. I would also like to thank the other CGI interns
that were always supportive and patient when listening to me ramble on about my
struggles.

I'would like to thank my family for supporting me during this time, and also for many
of them who have had to read this thesis many times over, especially Philip. Finally, I
would like to thank my closest friends for always being there for me and also allowing
me to sometimes give them a lecture about voxels.

vil

CONTENTS

1

2

INTRODUCTION
11 Motivation o
1.1.1 ScientificRelevance o oo
1.1.2 Societal Relevance
1.2 ResearchQuestions
1.2.1 Scopeofresearch
122 Assumptions, L
1.3 ReadingGuide. L L L oL
THEORETICAL BACKGROUND
2.1 Digital representations of theworld
2.2 TheVoxelisedSpace.
2.3 Voxel Data Structures
231 VoxelGrid L
2.3.2 SparseVoxelOctree.
2.3.3 Sparse Voxel Directed AcyclicGraph
2.4 Pathfinding algorithms
241 Gridvsgraph o L
2.4.2 Dijkstra’s Algorithm
2.43 AfAlgorithm 0 L
2.4.4 Theta* and Phi* Algorithm
2.4.5 D*Liteand LPA* L.
2.4.6 Hierarchical pathfinding
2.4.7 Whichalgorithmstouse
2.5 Thenavigablespace.
METHODOLOGY
3.1 Researchdesign
3.2 Avoxelised space fromamesh,
3.2.1 Properties of thevoxelgrid
3.2.2 FHllingthegrid
3.2.3 Extracting navigablespace.
3.2.4 Generating startingpoints
3.3 Creating the sparse voxeloctree
3.31 MortonOrdering L oL
3.3.2 Creatinglevels
3.3.3 Neighbour Access
3.4 Adapting A*
3.4.1 Heuristics o 0
3.4.2 RegularVoxelGrid
3.4.3 SparseVoxelOctree.
3.5 Adapting Theta*
3.6 AdaptingD*-Lite
3.7 FireSimulation
3.8 Smarter paths: Time-aware A*.,
IMPLEMENTATION
41 Simulatingandtesting 0L
411 OpenGLandMagnum
4.1.2 Concurrency management.
413 Datasets L
4.1.4 Hardware
4.1.5 Simulation Parameters oL

4.2 A voxelised space from a mesh

X

I CONTENTS

4.3 Creating the sparse voxeloctree
4.4 SIZes
4.5 Heuristics
4.6 Implementing A* o
4.7 Implementing Theta*,
4.8 Implementing D*-Lite
4.9 Smarter paths: Time-aware A*.
5 RESULTS
51 OVerview e e e e
52 A*onaregulargrid. o 0 L.
53 A*onanMortongrid oo oo
5.4 Theta*onaregulargrid
5.5 Theta*onaMortongrid
5.6 SmarterPaths o o
5.7 Rotatingthedataset
6 CONCLUSIONS AND DISCUSSION
6.1 Conclusions
6.2 Discussion e
6.2.1 Incremental vs. Non-incremental pathfinding
622 D*Lite
6.2.3 Theta*
6.2.4 Fullvspartialoctree
6.2.5 Rotateddataset
6.26 MultipleFires
6.2.7 Actorsize
628 UsingRDBMS
6.2.9 Multipleexits o L
6.3 FutureWork
6.3.1 Extending semantic information
6.3.2 Path smoothing & map generation
6.3.3 Datasetsize L o o0 L.
6.3.4 Differentresolution
6.3.5 Using a full octree implementation
6.3.6 Adynamic3Dmaze
6.3.7 Choiceof heuristics

A APPENDIX A
B APPENDIX B

CONTENTS |
ACRONYMS
AR augmentedreality oL oL Lo 78
API application programming interface L. 40
BIM Building InformationModel L oL L. 3
CAD Computer Aided Design
FIFO firstin firstout i i 46
GPU graphics processingunit oL L Lo 40
HPA* Hierarchical Pathfinding A* 20
LoS lineofsight 17
LPA* Lifelong Planning A* L o 18
MLS Mobile Laser Scanner 21
RGB red, green,blue o 8
RLE run-length-encoding 10
SDL Simple DirectMedia Layer 39
SFCs space fillingcurves L L 9
SVDAG sparse voxel directed acyclicgraph 13
SVO sparsevoxeloctree L o 2

VR virtualreality 78

xi

INTRODUCTION

In this chapter, the motivation, relevance and relation to the field of Geomatics of the
research conducted in this thesis will be briefly discussed. Consequently the research
questions will be presented and a general overview of the thesis will be given.

1.1 MOTIVATION

In modern society, proper evacuation management in complex buildings represent
a serious safety challenge. With fires being prevalent in an urban environment, and
people finding it difficult to identify safe paths to exit the building [Khan et al., 2018]
in a chaotic, changing and unsafe or unfamiliar environment. Evacuation modelling
can help designers make decisions on how to properly manage these types of situa-
tions in the buildings they design, but also help building managers simulate how an
emergency would play out in an existing building and can give insight in to how to
guide the users of that building through the emergency. 3D models of indoor spaces
are used to generate input for either the simulation or guidance. [Gorte et al., 2019a].

Voxels provide a structured and flexible 3D solution for the storage and analysis of
spatial data. Voxelised spaces have been used extensively for the past years to pre-
process, perform segmentation, classification, and reconstruction of both indoor and
outdoor 3D representations of the built environment [Xu et al., 2021]. Research has
shown that using voxels to automatically reconstruct and segment an indoor environ-
ment [Hiibner et al., 2021] that has been generated from a point cloud and to detect
the navigable space in the indoor environment [Flikweert et al., 2019] and [Xiong
et al., 2017] has proven to be effective.

Additionally, because voxels provide a highly structured way to encode true 3D envi-
ronments, they allow for more true-to-reality analyses in situations that are 3-dimensional,
such as evacuations, where a possible fire on the ground floor will invariably affect
the floors above, as well as the fact that voxels are often used in computational fluid
dynamics simulations, which are a natural part of evacuation simulations due to the
flow of smoke. In a digital representation of space that is not 3-dimensional, this is
a spatial connection that could be missed. For instance, many pathfinding applica-
tions make use of 2-dimensional grids, and it would be logical to assume that this
would work well in a building, where for instance, a floor could be converted to a
2-dimensional grid. Pathfinding could then be done on the floors and links between
floors could be modelled as required. But this approach misses the point of the fun-
damentally 3D nature of the real world, and would need additional attention to adapt
this 2D version to the 3D world. This is not impossible of course, but using voxels for
this eliminates the need to perform these adaptions.

1.1.1 Scientific Relevance

While research has been done on 2D/2.5D/3D pathfinding in a static environment
using voxels, such as in Koopman [2016] and Gorte et al. [2019b], Brewer and Sturte-
vant [2018], and Muratov and Zagarskikh [2019], this has not yet been researched
in a dynamic setting. Dynamic in this sense means that the pathfinding area can

2

| INTRODUCTION

change while the paths are being calculated. As well as the fact that in Koopman
[2016], there is still a pre-processing stage that extracts a search graph from the vox-
els, and the pathfinding is not done on the voxels itself. The method that Koopman
[2016] uses, could however, be adapted to be used in a dynamic voxelised environ-
ment, by allowing the search graph to change while the paths are being computed.
Like Koopman [2016], many other approaches, such as Gorte et al. [2019b] use a net-
worked graph based on semantic information to perform hierarchical pathfinding.
Hierarchical pathfinding is a pathfinding paradigm where pathfinding is performed
on multiple levels, where first a general path is found between clusters, and once this
coarse path has been found, the detailed path is found within the clusters and the
full path is assembled.

Voxels are also a part of the field of computer graphics, where they serve as the basis
of volumetric rendering (voxel rendering). Research has been done to devise ways to
improve the performance of very high resolution scenes, such as Dado et al. [2016],
van der Laan et al. [2020] for static voxel scenes, and Careil et al. [2020] for dynamic
voxel scenes. The use of these data structures outside of computer graphics is limited.
While data structures such as the sparse voxel octree (SVO) have become more main-
stream, these have not yet become the standard when dealing with voxels [Aleksan-
drov et al., 2021]. The use of (parts) of this research could improve the performance
of voxels in the field of Geomatics.

Lastly, many methods exist for pathfinding Noori and Moradi [2015]. With each al-
gorithm having their own niche of specialised use, such as D* or HPA*, and other
more general algorithms, like A* or Dijkstra’s algorithm that just focus on finding
the shortest path (with “shortest”, being the least cost, which could be distance, time,
turns etc.). Finding the right algorithm for the right job can be tricky. Though Noori and
Moradi [2015] provides an overview of pathfinding algorithms used in gaming, these
often focus on performance in terms of memory limitation, and less on the more se-
mantically enriched representation of the digital world used in the field of Geomatics.

Thus, most of the established tools and resources in Geomatics, such as pgRouting,
make use of a limited number of algorithms, mostly A* or Dijkstra. While these algo-
rithms focus on finding the shortest path, the shortest path might not always be the
safest path, depending on the cost function. It should be noted however that algo-
rithms that are more specialised are often more complex, and that most grid-based
pathfinding algorithms are usually only tested in 2D grid space, such as Koenig and
Likhachev [2002] and Nash et al. [2009].

1.1.2 Societal Relevance

When a fire based emergency in a building does occur, things may not always go
as the architects, or building managers intended, with many of these unpredictabili-
ties being due to human behaviour. In Kobes et al. [2010], a psychonomic approach
to fire safety is recommended, owing to the discrepancy that exists to between the
assumption of fire safety and the knowledge gained from incident evaluations and
experiments. The differences are visible in Table 1.1 from Kobes et al. [2010].

(Real time) indoor navigation and real time guidance could therefore be a valuable
tool in the management of the built environment. Indoor navigation requires an in-
door model, an indoor position, a path from origin to destination and a human in-
terpretation of the path [Flikweert et al., 2019]. Research has shown that wayfinding
and correctly interpreting direction that guide evacuees towards a safe exit is not al-
ways easy for people unfamiliar with the building, or due to a complex layout or large

https://pgrouting.org/

1.1 MOTIVATION |

size. [Kobes et al., 2010].

Point of departure or assumption in Knowledge from incident evaluations and
(Dutch) policy experiments

All people in a fire situation may be confronted
with some degree of limitation, and are, therefore,
potentially less or not at all self-reliant

People who are mobile can escape
without assistance

Incident evaluations show that in 400 cases of
escape from fire, 92% of the survivors were not
aware of the presence of escape route signage.

People use escape route signage to
find the closest exit

People usually escape via familiar exit routes and
rarely via emergency exits. The objective walking
distance does not determine the choice of route.
Familiar routes are experienced as being shorter
than unfamiliar routes.

People escape via the nearest
(emergency) exit

People (in groups) customarily ignore ambiguous
cues like a fire alarm bell. People are more likely
to respond to verbal cues. Social rules have a
strong influence on people’s (non-) reaction

to cues of danger.

People escape immediately after
hearing a fire alarm bell

People who are exposed to the effects of fire
walk more slowly than the pace concluded
from walking experiments in normal
environmental conditions.

People’s walking speed is constant,
regardless of whether or not they are
walking through smoke

Table 1.1: Difference between policy and actual fire safety. Source: Kobes et al. [2010].

The current standard for evacuation management in large buildings consists of a pa-
per map at key points showing the evacuation route(s), combined with emergency
lighting showing where the emergency exits are, with many rules and regulations de-
termining visibility and capacity of each route [Ministerie van Binnenlandse Zaken
en Koninkrijksrelaties, 2011]. However, evacuations in real emergencies are rarely
static, orderly and simple, as evidenced by the discrepancies shown in Table 1.1. Thus,
simulation of such dynamic evacuations can help building users, managers and de-
signers understand the possible chaos that could ensue in an emergency better, espe-
cially concerning the issue of crowds, which could block safe paths due to the volume
of people needing to evacuate the building.

To set a static evacuation scenario apart from a dynamic evacuation is the inclusion
of simulated sensor input from the fire. In modern buildings adhering to local fire
codes, there exist both input and output systems that could be included in a fire safety
management system. Input could be: temperature sensors, fire notification alarms,
smoke sensors, automatic fire doors. Output could be: evacuation alarms, signage,
emergency lighting, fire extinguishers, automatic fire doors, spoken fire alarm [Kobes
etal., 2010].

In Wang et al. [2015] a 3D escape directional map is presented in a Building Informa-
tion Model (BIM) evacuation simulation, together with a walk-through video. With
a 3D directional map, the route is visualised for the user, thus enabling the user to
plan ahead, and giving them a 3D overview of what is to come. An example of a
directional map is shown in Figure 1.1, made with Esri ArcGIS software. A more im-
mersive strategy is using a augmented reality to display the path to follow. However,
this does require the position of the user to be known by using an indoor positioning
system.

3

4

| INTRODUCTION

Figure 1.1: A 3D directional map showing a route through a building. Figure from Alattas
[2022]

1.2 RESEARCH QUESTIONS

Considering the motivation behind this project, the main research question of this
thesis is:

Which algorithm is best suited for multi-actor real-time pathfinding in a dynamic
3D voxelised indoor space?

As previously mentioned in Section 1.1, most implementations that use voxels and
perform pathfinding do so by either pre-processing the voxel grid into a navigational
graph or by casting the 3D space in 2 dimensions, and perform pathfinding on the 2D
grid. Conversely, many of these implementations do not consider dynamic environ-
ments. Therefore, the goal of this research is to find out which pathfinding algorithms
are best suited for real time pathfinding in a dynamic voxelised space. To achieve this,
the following sub-questions have been defined:

e Which data structure for the voxelised space is best suited for dynamic pathfind-
ing algorithms?

e How to include dynamic events into the pathfinding algorithms?

e Is it possible to combine evacuation simulation with pathfinding?

1.2.14 Scope of research

This thesis will focus on pathfinding directly in the voxel space, so the generation
of a navigational mesh or other higher level abstractions will not be included in this
research. Automatically segmenting the voxelised space or otherwise assigning se-
mantics such as deriving the navigable space is considered pre-processing, but not
part of the research itself. Furthermore, the graph is virtual and computed on the fly.
Also, only indoor pathfinding inside the voxelised space will be considered.

1.2.2 Assumptions
In order to limit myself to the research at hand, several assumptions have to be made.
e A voxel can only hold one person at a time, and has a size of 0.08 m.

e A person has a walking speed of 1.42 m/s, and 0.9 m/s in stairwells Shi et al.
[2009].

e The study area will be void of obstacles, doors, and other clutter.

1.3 READING GUIDE |

o The best path is the shortest path in terms of distance.

1.3 READING GUIDE

This thesis consists of 5 further chapters. In Chapter 2, the theoretical foundation for
the research proposed in this thesis will be laid. In particular, attention will be given
to the various spatial data structures and pathfinding algorithms.

In Chapter 3, the methodology to solve the problem stated in the research question
will be presented in a theoretical manner. The implementation of this methodology
as well as the datasets and tools used is documented in Chapter 4.

In Chapter 5, the results of the experiments done with the implementation of the
methodology are presented and analysed. Lastly, in Chapter 6, these a conclusion
will be drawn from these results, and the limitations and recommendations of this
research will be discussed.

Additionally, there are two appendices, Appendix A and Appendix B, which contain
extra information about the research done in this thesis.

5

THEORETICAL BACKGROUND

In this chapter, I will review the theoretical background of the subjects that are at the
basis of the research carried out in this thesis. First, a general introduction to digital
representations of the our 3 dimensional world. Next, the voxelised space will be
discussed, and lastly, pathfinding algorithms will be discussed.

2.1 DIGITAL REPRESENTATIONS OF THE WORLD

Digitally representing the world in a way that is both useful for humans to under-
stand and possible for computers to handle is at the core of Geomatics. In the field
of Geomatics there are, broadly speaking, three main ways to represent spatial data
in 3 dimensions: point clouds, triangle or polyhedral meshes (often in the form of
boundary representations) and voxel data. A point cloud, in its simplest form, can be
considered to be a direct representation of the studied area, where measured points
are assigned a 3D coordinate [Xu et al., 2021]. A mesh is a boundary representation
of geometry, where a collection of points, lines and triangles are used to digitally rep-
resent geometry. A mesh stores features such as topology, curvature and edges, to
support accurate geometric analysis [Lv et al., 2021], where not only the points that
make up the studied area are stored, but these points are the boundary of a surface.
Lastly, voxels (a contraction of volumetric pixels) are a discrete representation of the
3D space, usually through a 3 dimensional grid.

Figure 2.1: The Stanford bunny model represented in the 3 spatial data representations: point
cloud (left), voxel (centre), and 3D mesh (right). Figure from Hoang et al. [2019]

2.2 THE VOXELISED SPACE

A voxel model of an indoor space such as a building can thus be considered as a
structured 3-dimensional grid in a topologically implicit way [Xu et al., 2021], which
makes it a suitable representation for purposes such as, but not limited to, analysis,
simulation and visualisation. A voxel space can be manually constructed, or can be
the result of a process known as voxelisation, where a dataset represented by a differ-
ent data structure is converted to the 3D grid. In this process, a point cloud, or even
a Computer Aided Design (CAD) drawing can be voxelised, with the resolution of

8

| THEORETICAL BACKGROUND

the resulting voxelised space being determined according the the needs of the user.
The simplest way to represent voxel data is by using a 3D grid, where every 3D index
in the voxel grid represents a voxel; however, this method of representing the voxel
space is very expensive at higher resolutions, resulting in very large datasets that
make using voxels less practical. Thus, different ways exits to represent voxels more
efficiently. [Jones, 1989], see next section for more efficient voxel data structures.

2.3 VOXEL DATA STRUCTURES

Multiple topological data structures exist for storing and performing operations on
voxels, such as searching, transforming, updating or rendering. A few examples of
these data structures are: the voxel grid, the voxel octree and the directed a-cyclic
graph, as well as some hybrid forms such as a Morton code based sparse grid. In
the following sections, these data structures will be discussed in more detail, but
first some general terminology that is applicable to all data structures that deal with
voxels. In a uniform, dense voxelised space, all voxels have the same size and all voxels
are known: for all voxels, their position is known, as well as their value (e.g. air,
wall, with multiple attributes possible). This representation describes the complete
3D space of the study area, which has some downsides, such as storing information
for many empty voxels. In contrast to the dense voxel space, there is the sparse voxel
space which only encodes those voxels which are not empty; if a voxel is not stored
it is considered empty [Gorte et al., 2019b]. Lastly, we can distinguish between static
and dynamic voxelised spaces. In a static voxelised space, the space does not change,
and in a dynamic voxelised space it does.

2.3.1 Voxel Grid

The regular voxel grid is the simplest way to store voxel data. In this section the
different aspects of the voxel grid are discussed.

Construction

Constructing a regular voxel grid is often the direct result (or part of the) voxelisation
process. While many different approaches exist for voxelisation [Aleksandrov et al.,
2021], with differing parameters regarding rasterisation (e.g. Bresenham, supercover,
etc.), the general idea is that for every voxel in the grid, it is checked if the voxel
in question intersects the input geometry. If the voxel in question does intersect the
input geometry, this is recorded at the index of that voxel, which should be the current
index in the grid traversal, by setting a Boolean to true, an integer value to 1 or and
red, green, blue (RGB) triplet to a certain colour for example. This is highly dependent
on the implementation and the information the voxel grid is required to store.

Size and complexity

The standard way to represent voxelised spaces are regular grids, where voxels are
stored as 3D arrays, allowing for fast neighbour access and fast lookup [Aleksandrov
etal., 2021]. Regular grids (often just called voxels grids) store all the voxels, and all
voxels are of the same size. This regularity and simplicity is one of the advantages
of this data structure. Due to the fast access and lookup of voxels, this data structure
can be used to store both static and dynamic voxel data. A typical implementation of
a regular voxel grid is a one dimensional array which stores voxel elements and its
attributes, which can be accessed by an [x, y, z] index [Jones, 1989], or a 3D array with
elements accessed by index [x][y][z]. Both methods store the same amount of voxels,
and both methods require looping over all voxels (namely x * y * z) voxels to traverse

2.3 VOXEL DATA STRUCTURES \

the entire grid. The order in which the voxels are stored has an influence of the per-
formance. The standard method is to store the voxels in increasing order, per dimen-
sion, so [0,0,0], [0,0,1], [0,0,2]... until the entire grid has been processed. Using
space filling curves (SFCs) can greatly influence both traversal performance as well
as neighbour finding by providing a higher level of spatial clustering [Holzmidiller,
2017]. Because of the high number of voxels stored (x * y * z = 16777216 a 2563 voxel
grid), storing voxels in this way is quite expensive on storage (i.e. O(n®) space com-
plexity), which can lead to unwieldy datasets when a high resolution is required. In
Table 2.1, an example of the memory footprint or a simple voxel grid using regular a
simple example: if every voxel uses 32 bits of memory (this could be a simple integer
value representing some attribute data), it shows the size of the resulting voxel grid.

Number of voxels Size in memory [GB]

2563 16.5 million 0.07
5123 134 million 0.54
10243 1 billion 4.29
20483 8.5 billion 34.36
40963 68.5 billion 274.88

Table 2.1: Table showing the number of voxels and their memory footprint for different reso-
lutions of voxel grids.

Neighbour access

Accessing neighbours in a voxel grid is simple: for the required connectivity (i.e. typ-
ically 6, 18 or 26 connectivity) the appropriate indices have to be generated and then
used to access the neighbouring voxels. This can be done directly without any pre-
processing. For 6-connectivity, the neighbours are only the voxels that share a face
with voxel (x,y,z).

(x’y’z)éﬂeigthM}’S = (x i 1/]/12)/ (x/]/ i 112)/ (x/]//Z i l)

For 18-connectivity, the voxels that share faces or edges with voxel (x, y, z) are consid-
ered neighbours.

(x/ylz)‘lSneighbours = (x i 1/]//2)/ (x/y i 1/Z)/ (x/]//Z i 1)/
x+Ly+Lz),(x+Lyz+D, (xy+Lz+1)

For 26 connectivity, the voxels that share either a face, an edge or a vertex are consid-
ered neighbours of voxel (x,y,z).

(xryiz)26neighbours = (x i 1/ ylz)r (x/y i 1/Z)r (x/y,Z i 1)/
(x+Ly+Lz),x+Lyz+D, xy+lz+1),
(x+Ly+lz+1)

These indices can then be used in the 1D array directly to access the information
stored at the index. For Morton code based grids, a different method of accessing
neighbours in a 1D array has to be used, which is explained in Section 3.3.3.

Typical uses and optimisations

Multiple ways exist to compress the size of the voxel grid, to make it more manageable
in size. Many of these methods come from the world of computer graphics, where
voxel based rendering is seen as an alternative to traditional triangle based rendering.
It is however good to note that most of these representations are not useful in the con-
text of Geomatics, as often within that field more data is stored in the voxel than an

9

10

| THEORETICAL BACKGROUND

Figure 2.2: The three most used 3D voxel connectivity types: 6 connectivity (left), 18 connec-
tivity (centre) and 26 connectivity (right). Figure from Tankyevych [2010].

RGB value such as is often the case with render scenes. Concurrently, using voxels to
render a scene requires a much higher resolution than most Geomatics related appli-
cations require. This will be discussed in more detail in section 2.3.3. Compression
methods such as using run-length-encoding (RLE), can be used to perform some rel-
atively simple compression [Houston et al., 2004]. RLE is a very simple compression
method where, if there are elements that are repeated in a part of a certain sequence,
instead of storing all the elements, only the first element is stored, and the number of
times it repeats in this part of the sequence.

Because of the nature of the dense voxel grid, i.e. using [, y, z] coordinates to index all
the voxels, there is little extra possibility to improve on space complexity. Because of
this, and also because many of spatial datasets have a high level of sparseness [Dado
etal., 2016], alternative data structures have to be considered when very large or high
resolution datasets are to be used, such as sparse or hierarchical data structures.

2.3.2 Sparse Voxel Octree

Figure 2.3: A schematic illustration of a sparse voxel octree.

The svO is a hierarchical data structure for storing voxels. An octree is a recursive
subdivision of space. Starting out at the root, the space is subdivided into 8 children,
and depending on whether something is present in these subdivisions determines
whether the children themselves need to be subdivided as well, until a sufficient res-
olution has been achieved. In Figure 2.3, the SVO can be seen in a conceptual sense.

2.3 VOXEL DATA STRUCTURES \

While dense octrees, where empty nodes would also be stored, could also technically
exist, they are not used.

Construction

Numerous methods exist for the construction of sVOs [Baert et al., 2013], both top-
down and bottoms-up. Additionally, the construction is also dependent on the type
of octree that is required. Generally speaking, there are two approaches: pointer-
based octrees and linear octrees [Cormen et al., 2022]. In pointer-based octrees, leaf
nodes are stored, as well as all their parents are stored, with relationships recorded
through pointers. This makes it easy to traverse the tree by following either the child
or parent pointer from or to a node. Linear octrees however store only the leaf nodes,
and use a locational code to identify the octants. This code contains information about
the position of the octant, and its level in the tree. [Sundar et al., 2008].

Both approaches have their advantages, but broadly speaking: linear octrees perform
well in terms of space, and often require less overhead, whereas pointer based octrees
are easier to traverse due to their parent/child relationships being explicitly stored.
Both approaches often make use of SFCs to partition the space in an efficient manner
and to cluster the data in a spatial manner.

Of the SFCs, used in methods like Baert et al. [2013] and Sundar et al. [2008], the
Morton curve (or Z-order curve) is the most common. The Morton curve is a lineari-
sation of a an n-dimensional grid, in which n dimensions are mapped to one dimen-
sion [Morton, 1966], while maintaining their locational integrity in the grid, through
interleaving the bits of the coordinates. In Figure 2.4 we can see how this works in
two dimensions.

X: !
oo 1 2 3 1 4 5 6 7
000 001 010 011 1 100 101 110 111
1
|
}:ugu 000000 000001 ' 000100 000101 :010000 010001 ' 010100 010101
|
|
031 000010 000011 ' 000110 000111 :010010 010011 : 010110 010111
|
2 |
o010 | 001000 001001 : 001100 001101 :011000 011001 : 011100 011101
|
3 |
011 |001010 001011 001110 001111011010 011011 : 011110 011111
|
e ., R e = = = o = == -
1 |
oo | 100000 100001 : 100100 100101 ' 110000 110001 : 110100 110101
|
|
= |
131 100010 100011 ; 100110 100111 | 110010 110011 ; 110110 110111
|
I
6 |
110 | 101000 101001 : 101100 101101 ! 111000 111001 : 111100 111101
|
|
7 |
111 | 101010 101011 ;101110 1011111111010 111011 ; 111110 111111
|

Figure 2.4: Morton encoding in two dimensions. Figure from Wikipedia - Z-order curve

Thus, using this, when constructing an SvO, every node will be assigned the Morton
code of their position, which will function as their index in the storage array of voxels.
This strategy can be used in both a pointer-based and linear svO, especially because
Morton curves are hierarchical, as can be seen in Figure 2.5.

1

https://en.wikipedia.org/wiki/Z-order_curve

12

| THEORETICAL BACKGROUND

Level 0

Level 1 0 1

Level 2 03147 @ @
Figure 2.5: An illustration of the hierarchical nature of Morton codes. Figure from Baert et al.
[2013]

Size and complexity

When comparing the size and complexity of an SVO compared to say, a regular voxel
grid, it is important to note the type of SVO (pointer vs. linear) as discussed above.
However, generally speaking a regular voxel grid will usually be less complex com-
pared to a run-of-the-mill sVO, due to the simple fact that SVOs require more informa-
tion and information links than a regular n-dimensional grid (parent-child relation-
ships, etc.). In terms of space, an SVO can save space by not encoding for space that is
not filled [Dado et al., 2016]. For very larges volumes of course, this will still amount
to very large voxel numbers as evidenced by Table 2.1.

Neighbour access

Accessing neighbours in an svO is not as straightforward as in a regular voxel grid,
due to the fact that not all neighbours might be of the same size as the starting node.
This presents multiple challenges. Different methods exist, but one of the most widely
known is the method by Samet [1989]. This method deals with finding equal sized
neighbours, as well as smaller and larger sized neighbours, based on their common
ancestors. Yet again however, the exact implementation of this method is highly de-
pendent on the type of svO. The method by Samet [1989 | can be used on either pointer
octrees or linear octrees. The method starts by computing the face neighbours of
equal size (6-connectivity) of a node by finding the nearest common ancestor. Then
the edge neighbours of equal size are found, and after that the vertex neighbours of
equal size. These procedures also account for the finding of neighbours of non-equal
sizes by, when traversing up and down the octree, also checking if the ancestors of
the start node share a face, edge or vertex.

Neighbour access using this method however is significantly more complex than in
a regular grid, because numerous operation have to be done to record the neighbour
relations for every node. While other methods do exist, like Voros [2000], all of them
require some form of computation. This is acceptable, of course, in a static SVO where
this can be done in a pre-processing stage, while doing this in real time in a dynamic

2.3 VOXEL DATA STRUCTURES \

SVO can present performance costs. It should be noted that storing all the neighbour
relationships (i.e.pointers to all neighbours for all voxels) is very expensive too.

Typical uses and optimisations

While svOs do present significant decreases in space complexity, the data structure is
significantly more advanced and complex than a regular grid and thus requires more
overhead and a lot of bookkeeping when using them for dynamic data. This does not
make it the catch-all definite improvement to a regular voxel grid, it really depends
on the use and requirements of the dataset.

Furthermore, while svOs efficiently deal with the high level of sparsity in most datasets
[Dado et al., 2016], it is also possible to compress spatial datasets even further by
making use of the fact that most spatial datasets have a high level of geometric re-
dundancy.

2.3.3 Sparse Voxel Directed Acyclic Graph

A sparse voxel directed acyclic graph (SVDAG) is a generalisation of an SVO where geo-
metrically identical subtrees are merged, this way, even higher levels of compression
can be achieved that allow large static scenes to be fully present in memory [Dado
etal., 2016]. This data structure is being used in the field of computer graphics when
using rendering very high resolution voxel scenes while maintaining traversal effi-
ciency. It should be noted that this data structure is highly compressed, usually aim-
ing for 1 bit of information for every node [Dado et al., 2016]. In this section some
aspects of this data structure will be discussed.

Construction

The construction of an SVDAG starts with an svO. The paper by Kampe et al. [2013]
provides a bottom-up method for transforming an SVO to an SVDAG. Starting at the
leaf nodes, it looks at the arrangement of the geometry by checking the childmask,
which is a bitmask that refers to the geometrical arrangement of the voxels that make
up this node (in this paper, the leaf nodes are not the voxels themselves, but rather,
the parents of the smallest voxels). Because of this, there exists a finite arrangement
of that these parent voxels can hold (28 = 256 in fact, due to every leaf having a
combination of 8 possible children). This fact is leveraged, and thus leaf nodes can
be compared, and if leaves are identical, they can be merged and their parent nodes
can now point to the same child node.

TSR O

‘I DXB(KJZ(!

© @

Figure 2.6: Reducing a sparse voxel tree, illustrated using a binary tree, instead of an octree,
for clarity. a) The original tree. b) Non-unique leaves are reduced. c) Now, there
are non-unique nodes in the level above the leaves. These are reduced, creating
non-unique nodes in the level above this. d) The process proceeds until we obtain
our final directed acyclic graph. From Kampe et al. [2013].

Moving to the next level, the same procedure is performed, and this time identical-
ness is measured not only by checking the identical childmasks but also the identical
pointers, which, if identical, can be merged again. This is repeated until it is not

13

14

| THEORETICAL BACKGROUND

possible to merge any more nodes, at which point the construction of the SVDAG is
complete. The procedure is schematically laid out in Figure 2.6.

Size and complexity

The entire purpose of the SVDAG is to compress an SVO, so naturally, the resulting data
structure is smaller than an svO of the same dataset would be, and also smaller than
a voxel grid of the same scene.

This is also due to the fact that most implementations of SVDAGs are specifically for
rendering scenes, and thus can often only hold positional and colour data.

Neighbour access

Neighbour access in the SVDAG is done by traversing up and town the graph, and has
mostly been implemented for ray tracing. Because this data structure has a much
higher level of abstraction and is not used much outside of computer graphics.

Typical uses and optimisations

Currently in the literature, the sole use for SVDAGs is for rendering, and because of this,
the implementations only concern themselves with performance in that sector. High
compression is achieved by storing only what is necessary for encoding and thus
rendering geometry: childmasks, pointers and contours Kdmpe et al. [2013]. This
makes the data structure highly specialist, while also hampering its use outside this
domain: when more data is needed per node, as is often the case outside (as well
as inside) of computer graphics, then the compression factor of this data structure
lowers, and the upsides of less memory consumption do not outweigh the downsides
of having such a complex data structure.

2.4 PATHFINDING ALGORITHMS

Finding the shortest path between two points on a graph or a grid, and pathfinding
in general is at the heart of many technologies, from logistics to gaming. Generally,
pathfinding, works by starting at a vertex, and visiting adjacent vertices and keeping
track of the cost of visiting these vertices repeatedly until the destination vertex is
found. Many different pathfinding algorithms exist, with different optimisations for
different types of data and goals. Some algorithms have lower memory consump-
tion, whereas in other applications memory is not an issue, but computation time is
a tighter constraint. In this section, various pathfinding algorithms relevant for this
research will be explained, as well as some of the core principles of pathfinding.

2.4.1 Grid vs graph

In pathfinding in general, there are two general approaches: using graphs or using
a grid, which is a fixed type of graph in this context, with one node per cell. When
using a graph, the 3D space has to be subdivided into spaces, the centres of which
will form the nodes of the graph, and from these nodes a navigational network can
be constructed with paths between the nodes which are adjacent, which can be used
to perform searches. Many pathfinding algorithm are designed to work optimally on
a graph. When using a grid, the space is subdivided into tiles (or cubes) of a certain
size, and algorithms determine when an agent can move from tile to tile, and keeps
track of which tiles have already been visited, such as in Wirth and Szab6 [2018]. This
approach is considered computationally expensive when the grid resolution is high
[Gorte et al., 2019a], and especially expensive when pathfinding on a 3-dimensional
grid, due to the fact that the pathfinding in a 3D cubic space is NP-hard [Canny and

2.4 PATHFINDING ALGORITHMS \

Reif, 1987]. Graphed (or vector) based pathfinding can also have performance prob-
lems, as described in Van Bemmelen et al. [1993], where a vector based solution for
cross country pathfinding turns out to be a very heavy resource user. Another factor
to consider is the choices of movement. In a graph, a node only has a limited num-
ber of neighbours, and thus can only move in a limited number of directions. This
is also true for a grid, where often one can move only towards that neighbours of
a cell. Van Bemmelen et al. [1993] provide a solution by using a higher connected
grid, where new neighbours are added between the lower connectivity neighbours,
as illustrated in Figure 2.7.

SNy
W 4 - Q ’ |7
<ol [elelel ~[elele/ele
_ PR 4 sl
ooe o¥e oW
“lela e ‘ e = r";f‘\“‘“-’;
¥ 4 pr . ‘. Ta,
FIF[[V [S
Fig. 4: 8-connected. Fig. 5: 16 connected. Fig. 6: 32-connected.

Figure 2.7: Higher levels of connectivity in a 2D grid. Figure from Van Bemmelen et al. [1993].

2.4.2 Dijkstra’s Algorithm

Dijkstra’s algorithm (complete algorithm in Algorithm 2.1, also known as the uni-
form cost search algorithm, is a shortest path algorithm for searching a weighted
graph. To initialise the algorithm, all the node distances are set to unknown, except
for the starting node, which is set to 0. All nodes are then added to a queue. The
algorithm starts at the starting node, and then moves outward by visiting the start-
ing node’s neighbouring nodes. For each visited nodes neighbours in the graph, the
distance from the current node to the source is calculated, and added to the cost of
travelling to the neighbour from the current node. If that result is smaller than the
cost of travelling from the neighbour to the source, the distance is updated and the
relationship between the two nodes is recorded: every node gets a pointer to a previ-
ous node. When all the nodes have been visited, it is possible to reconstruct the back
by starting from the goal, and travelling along the previous pointers and adding the
nodes to a path. One can also choose to use the result of Dijkstra’s algorithm as a
shortest path tree, because it holds all distances from all the nodes in the graph to the
goal [Dijkstra, 1959].

Dijkstra’s algorithm performs well when used on a weighted graph, but less so when
a large number of nodes has to be visited. It does however guarantee the shortest
path, and works well when you have no knowledge of the graph (it is an uninformed
algorithm). It is not efficient to use Dijkstra’s algorithm on grids, (which are of course
essentially very large graphs to a search algorithm), and therefore it is not suitable for
3D pathfinding with voxels. It is however a very fundamental in simple algorithm,
and it lays the basis for many other pathfinding algorithms in this thesis.

15

16

[

| THEORETICAL BACKGROUND

Algorithm 2.1: Dijkstra’s algorithm

1 Function Dijkstra's algorithm(graph, source):

2 for vertex v in Graph.Vertices do

3 distance[v] « oo

4 previous[v] « @

5 add v to PQ

6 distance[source] « 0

7 while PQ is not empty do

8 u —vertex in Q with min(distance[u])
9 remove u from PQ
10 for neighbours of v of u still in PQ do
11 alt « distance[u] + cost(u,v)

12 if alt < dist[v] then

13 dist[v] « alt

14 prev[v] « u

15 return dist[|, prev]]

16 Function reconstructPath(dist[], prev[]):
17 | path « Q@ u < goal

18 if prev[u] is defined Vu « source then
19 while u is defined do

20 insert u at the beginning of S
21 u « prevlu]

Note: PQ denotes a priority queue, which is a queue container that sorts elements according to a certain
priority. Often there is a top() function that accesses the element with the highest priority and a pop()
function which removes the highest priority element from the queue.

2.4.3 A* Algorithm

A* (a-star), is a generalised, informed version of Dijkstra’s algorithm, which uses a
heuristic for optimised searches, the full procedure is displayed in Algorithm 2.2.
This heuristic estimates the cost from the current node to the destination cost. In A¥,
it is essential not to overestimate the heuristic, which could significantly hamper per-
formance. The heuristic is used to choose which node to visit, meaning less nodes
to visit than with Dijkstra’s algorithm. The heuristic is problem dependent, and in
spatial pathfinding, metric such as Euclidean or Manhattan distance between the cur-
rent node and the destination node can be used to estimate the distance, and thus to
choose which node to visit next." A*is a best first algorithm, but it is still also a greedy
algorithm, needing to store many visited nodes in a large search area, and has a space
and time complexity of O(b%) Hart et al. [1968].

The goal of A* is to minimise the number of nodes to visit while still being able to find
the most optimal path. The algorithm starts at the starting node, and maintains two
array-like data structures. A priority queue called the PQ and a map called cameFrom.
The PQ can be thought of as the frontier of the search, i.e. all nodes currently under
consideration. The cameFrom map is a map which links nodes with their preceding
nodes (this is also often done with pointers). Additionally, A* maintains two values:
g(n), which is the cost so far of the starting node to the current node and (1), which
is the heuristic function, which estimates the cost from the current node to the goal
node. To initialise the search, the starting node’s g (1) value is set to 0, and the starting
node is added to the queue. Then the algorithm visits all the neighbours of the cur-

In Algorithm 2.2 the heuristic returns a distance value, and this does make the most sense for spatial
pathfinding algorithms in a grid, but the heuristic could be any value even unrelated to the physical dis-
tance between nodes.

2.4 PATHFINDING ALGORITHMS | 17

Algorithm 2.2: A* Algorithm

1 Function main (g4 Sgoar):

2 | PQ<0
5 | cameFrom « ()
4 8 (Sstart) < 0
5 insert 54, into PQ with priority g (Ssart) + M (Sstarts Sgoar)
6 while PQ # @ do
7 Scurrent < PQ-top()
8 if Seyprent = Sgoal then
9 L return reconstructPath(cameFrom)
10 PQ'pop(Scurrent)
11 foreach Sneighbour € Scurrent 40
12 Stentative < & Scurrent) + €OSt(Scyrrents Sneighbour)
13 if Stentative < g(sneighhour) then
14 Camd:rom[sneighbour < Scurrent]
15 g(sneighbour) < Stentative
16 if Sneighbour & PQ then
17 insert s,,p;gnpouy iNto PQ with priority
g(sstart) + h(sstart/ Sgoal)
18 return;
19 Function reconstructPath(cameFrom):
20 Scurrent <~ Sgoal
21 while Scurrent ¥ Sstart do
22 add s, e to path
23 L Scurrent < CAMEETOM[S yypent]
24 return

25 Function heuristic(s,s’):
26 L return distance(s,s’)

rent node, which is the node with the lowest g(n) + h(n) value, and then computes a
new tentative g(n) value for the neighbour nodes by taking the g(n) score of the cur-
rent node, plus the cost of travelling to the neighbour. If this tentative score is lower
than the previous g(n) score of the neighbour, the new lower cost is set as the new
g(n) score of the neighbour, and the current-previous relationship is recorded in the
cameFrom map. The neighbour is then added to PQ with the new g(n) +h(n) value for
this node as its priority in the queue. This process repeats until PQ or the goal node
is reached. Then the path can be reconstructed in a similar fashion to Dijkstra’s algo-
rithm: backwards and following the cameFrom map (or pointers) to previous nodes.

A* performs well, is generally well liked and is used ubiquitously, however, with in-
creasing grid sizes, the traditional A* algorithm is not adequate and not able to keep
up with modern day demands [Foead et al., 2021]. Small modifications or improved
heuristic functions can greatly improve the performance of A*, and make it a even
more efficient than it already is. Furthermore, A* is a shortest path algorithm, and the
shortest path is not always the best path.

2.4.4 Theta® and Phi* Algorithm

Theta* (theta-star) is an any-angle pathfinding algorithm for grids [Nash and Koenig,
2013], which is a version of the A* algorithm which uses line of sight (LoS) checks

18

| THEORETICAL BACKGROUND

to update and visit nodes. The full Theta* algorithm can be found in Algorithm A.1,
with the discerning method of the algorithm displayed below in Algorithm 2.3. Theta*
has been developed for any-angle path planning on a grid, meaning it is not limited
to movement on the primary axes and diagonals on a grid. However, the Theta* al-
gorithm is not particularly well suited for dynamic environments, which is where
Phi* comes into play. Phi* is able to recompute lines of sight when nodes change
(i-e. from blocked to free), with similar performance to Theta* [Nash et al., 2009],
making it a variant of Theta* which is suited for dynamic path planning at any an-
gle. Additionally, Phi* is an incremental algorithm, meaning that it assumes that the
agent (and thus the starting node) is moving. However, both algorithms are more
performance heavy than, for instance, A*, due to their computationally expensive LoS
checks. These Los checks however, should produce smoother paths which are not
dependent on obstacle shapes or the size of the agent Algfoor et al. [2015].

Theta* is a more complex algorithm than A¥, but in principle it is quite similar. In fact,
this algorithm becomes A* when lines 2-6 are removed from Algorithm 2.3 [Nash
et al.,, 2009]. Therefore, the procedure is quite similar as described in Section 2.4.3
above, and only this function will be explained here. In this function, the Theta* and
Phi* algorithms check whether vertex s’ is in the line of sight of the parent of vertex
s. If that is the case, the algorithm checks whether the vertex is also closer to the goal
than the previous g(n) value for s’, if that is the case, the parent of s" will become
the parent of s. This method should thus lower the amount of vertices to be visited
because all the vertices that are between parent(s) and s’ can be skipped because the
algorithms knows it can pass, and generate smoother and more natural paths simul-
taneously. However, due to the fact that Theta* and Phi* needs to perform these LoS
checks to be able to skip nodes, it is not always more efficient than A* [Algfoor et al.,
2015].

Algorithm 2.3: Compute Cost method from Basic Theta*

1 Function computeCost(s,s’):

2 if lineOf Sight (parent(s),s’) then
// Path 2
3 if g(parent(s)) + cost(parent(s),s’) < g(s") then
4 parent(s') « parent(s)
5 g(s") < g(parent(s) + cost(parent(s),s’)
6 local(s') « s
7 else
// Path 1: identical to A*
8 if g(s) + cost(s,s") < g(s") then
9 parent(s) « s
10 g(s") « +cost(s,s")
11 local(s') « s

2.4.5 D?*-Lite and LPA*

D*-Lite (d-star-light) is a dynamic pathfinding algorithm by Koenig and Likhachev
[2002], which is based on Lifelong Planning A* (LPA*), which in turn can be thought
of as an dynamic version of A*, meaning that it can efficiently handle when costs in
the search graph change, which was first published by Koenig and Likhachev [2001].
It is called D*-Lite because it fulfils the same goal as the original D* algorithm by
Stentz [1993] which is autonomous robot navigation in unknown terrain, but it is
unrelated to the D* algorithm aside from the name. D*-Lite performs well when nav-
igating unknown terrain, and is therefore popular within the field of robotics [Noori

2.4 PATHFINDING ALGORITHMS \

and Moradi, 2015]. The main difference between LPA* and D*-Lite is the that LPA*

assumes a static start and end node, and D*-Lite assumes a moving start position.

The full LPA* algorithm is presented in Algorithm 2.4, with the differences between
the two being mainly in the main() function in the algorithm.

Algorithm 2.4: Lifelong Planning A* algorithms

1 Function main():

2 foreach s € S do

3 L rhs(s) = g(s) = oo

rhs(Ssart) < 0

Q.insert (Ssarts [(Sstare), 01)

while true do
computeShortestPath()

while no changes in search area do

L sleep
10 foreach 54,4 do
1 L updateVertex(Sganged);

w NN S u B

o

12 Function updateVertex(s):

13 if s * Sstart then

14 | rhs(s) = mingepreqcs) (§(5') +¢(s',5))
15 if s € Q then

16 L Q.remove(s)

17 if g(s) # rhs(s) then

18 L Q.insert(s,calculcateKey(s))

19 Function computeShortestPath():
20 while Q.topKey () <calculcateKey(sgops1) V 1h5(Sgoa1) F §(Sgoar) dO

21 Scurrent < QPOP()

22 ifg(scurrent) > rhs(scurrent) then

23 g(scurrtznt) - rhs(scurrent)

24 foreach s’ € Succ(sqyppent) do

25 L updateVertex(s’)

26 else

27 8(Scurrent) <« ©

28 foreach s’ € Succ(s.yrrent) U {Scurrent} dO
29 L updateVertex(Sq, rent)

30 Function calculcateKey(s):
31 L return [min(g(s), rhs(s)) + h(s); min(g(s), rhs(s))]

They key with both D*-Lite and LPA* is that it maintains not one, but two estimates per
node: g(n) and rhs(n), where g(n) is the same as in A*, an estimate of the distance to
the goal, and rhs(n) are one-step lookahead values for even more informed searching
runs. The value of this rhs(n) value is based on the g(n) values of the predecessors
of node n. This rhs(n) value always maintains the following principle:

ifs = Sstart

rhs(s) = {O (2.1)

MiNg cpred(s) (§(8") + cost(s’,s)) otherwise

When anode has the following state where g (1) = rhs(n), then anode is considered to
be locally consisted and a shortest path can be found with A*, but when the search area
changes, the values can change, and only need to be calculated for nodes that are local

19

20 | THEORETICAL BACKGROUND

for the route that was found. This way, the algorithms do not have to recalculate all
the nodes in the graph when the graph changes, only the nodes relevant to the found
path have to be calculated. This fact makes these algorithms suitable for dynamic
environments because they learn from their previous iterations.
Like A* and Theta*, both algorithms use a priority queue to sort nodes for (re)evaluation.
And just like having two values to estimate the distances to the goal node, the key to
sort the priority queue is also two dimensional. The key value is defined as follows:
k)| _ |min(g(n),rhs(n)) + h(n, goal)
k(n) = [kz(n)] - [min(g(n),rhs(n)) (22)
With the keys in the queue being compared by lexicographic ordering, i.e. first kq (1)
is evaluated, and then k, (). Both LPA* and D*-Lite have been developed for 2 dimen-
sional grids, but are theoretically feasible in 3D space, though not many implemen-
tations exist.

2.4.6 Hierarchical pathfinding

Many pathfinding algorithms, such as the ones described above are very efficient
at medium scale datasets, but are not particularly efficient when dealing with large
(gridded) datasets. Thus, to compensate for the high computational load of a fully
gridded approach to use for pathfinding on a large area in real time, hierarchical
pathfinding can be used. In this approach, the study area is subdivided into (of-
ten semantic) clusters (e.g. room, hallway, stairs), and a path is found between the
clusters, and then the shortest path is found within the clusters. As many levels as
required are possible, with a minimum of two. Because the clusters are of limited
size, path finding algorithms such as A* can be used inside the cluster, such as in the
Hierarchical Pathfinding A* (HPA*) approach developed by Botea et al. [2004] and
used in a 3D voxelised space by Koopman [2016]. However, clustering approach
used in HPA* is a 2D method that cannot be extended to 3D, thus when using HPA* in
3D, other methods have to be used to cluster the space.

To execute hierarchical pathfinding, the 3D space should be abstracted by means of
clustering to be able to cover large areas in a more efficient way [Botea et al., 2004].
In Muratov and Zagarskikh [2019], they use an approach combining an SVO and HPA*,
using the intrinsic properties of the octree to define the clusters, promising a signif-
icant reduction in memory costs and time for the pathfinding. By using the depth
level of the octree for clustering, instead of a semantic clustering based on size, this
process can be automated in 3D.

However, hierarchical pathfinding does still have some caveats, especially when deal-
ing with a dynamic space, primarily due to the fact that the hierarchical data structure
ithas to run on is not always particularly well suited for dynamic data, as described in
Figure 2.3.2. Furthermore, hierarchical pathfinding does not always find the optimal
path Foead et al. [2021].

2.4.7 Which algorithms to use

When looking at the aforementioned pathfinding algorithms, the decision was made
to focus on three algorithms: A*, Theta* and D*-Lite. A* was chosen because it is
described as being versatile, fast and reliable, and reliable on grid [Foead et al., 2021].
Theta* was chosen because of its any-angle pathfinding qualities, and concerning it

N

Q.topKey() returns the node with the smallest key from priority queue Q. Q.pop() removes the node with
the smallest key from priority queue Q and returns this node. Q.insert(s, k) inserts node s into queue Q
with priority k. Q.remove(s) removes node s from the queue.

2.5 THE NAVIGABLE SPACE \

was devised specifically for (albeit 2D) grids. Lastly, D*-Lite was chosen because it
was conceived for navigation in unknown dynamic terrain.

Dijkstra is widely considered, while guaranteeing to find the shortest path, to be too
slow for dynamic situations [Koenig and Likhachev, 2001]. Phi* could be consid-
ered once Theta* has proven to be effective, and LPA* is inferior to D*-Lite regarding
incremental pathfinding.

2.5 THE NAVIGABLE SPACE

The indoor navigable space is the free surfaces inside a building that actors in the
indoor environment can use to navigate without obstacles blocking their way [Staats
etal., 2017]. In Koopman [2016], there exist three walking actors and one flying actor
who use the indoor space for movement: the walking adult, a person in a wheelchair,
a drone, a vacuum cleaner robot. Each of the actors has a size, a mode of locomotion
(e.g. driving, flying, walking), and a notion of best path (e.g. shortest, Manhattan,
Morton). For evacuation management however only the walking adult and the per-
son in wheelchair in wheelchair are relevant. Each of these actors however have a
different notion of the navigable space.

Several approaches exist for determining the navigable space in an indoor environ-
ment. In Staats et al. [2017] and Flikweert et al. [2019] the trajectory of a Mobile
Laser Scanner (MLS), together with voxel operations are used to generate the nav-
igable space from an indoor point cloud, according to the IndoorGML definition.
Whereas in Koopman [2016] and Gorte et al. [2019b] a distance transform, dilation
and watershed method is used to determine the navigable space inside a voxelised
space.

21

3 METHODOLOGY

In this chapter, the theoretical process of how this thesis will answer the research
question will be described in detail. First, the general design of the research will be
presented. Next, the steps taken to setup pathfinding on a grid and on an octree.
Thirdly, adapting the algorithms to voxel spaces. Lastly, the testing environment will
be presented.

3.1 RESEARCH DESIGN

In this section the general approach to answering the research questions of this thesis
will be discussed. The main research question is as follows:

Which algorithm is best suited for multi-actor real-time pathfinding in a dynamic
3D wvoxelised indoor space?

What is best suited can mean many things, thus, first clear testing parameters to mea-
sure need to be defined. While many parameters exist for measuring algorithms’ per-
formance, especially from the field of computer science, like time and space complex-
ity, this is not the only factor to consider. Thus, suitability will not only be measured
in terms of performance. Accuracy of paths is also important to consider, but for
this the paths have to be visible, and thus the paths need to be simulated to check
accuracy. Lastly, the length of the paths is a factor to consider when determining the
efficiency of a pathfinding algorithm. Lastly, as mentioned in Section 1.2.2, an algo-
rithm is only successful in the first place, when it is able to compute paths before the
fire has invalidated the path that was calculated.

From the literature, the three pathfinding algorithms present themselves as being
suited for this type of pathfinding: A* Theta* and D*-Lite. A* is efficient and fast,
albeit not great in dynamic environments. Theta* facilitates any angle movement,
and could thus lead to better paths, and can be extended to Phi* for dynamic maps.
D*-Lite is a planning algorithm for unknown 2D grids, thus making it potentially
suitable for 3D grids.

Considering all the above, the following data will be compared across the algorithms,
in order of importance:

1. Success: is an algorithm able to recalculate a path fast enough (i.e. in real time)
in the dynamic scenario, and is it thus able to find a path at all or will it con-
stantly be behind on reality.

2. Path length: the length of the paths produced is important when comparing
algorithms.

3. Time: the number of seconds it takes to find a path or recalculate a path. This is
a straightforward measure of efficiency of an algorithm. Conversely, the theo-
retical time complexity of an algorithm can also be determined, and presented
in Big O-notation.

23

24

[SS)

| METHODOLOGY

4. Size of data structure: the size of the data structure required to facilitate this
pathfinding method. The data structure is key to the performance of the algo-
rithm, and also part of this research. The size of the data structure is relevant
for the performance of the algorithm.

5. Nodes visited: the number of nodes the algorithm has to find a path. This is a
straightforward measure of efficiency of an algorithm. Conversely, the theoret-
ical space complexity of an algorithm can also be determined, and presented in
Big O-notation.

This means, a simulation environment will have to be created to compare algorithms
across multiple scenarios. This simulation environment needs to be visible and vari-
able, meaning that it has to be possible to dynamically change the parameters of the
simulations in terms of people to evacuate and number of fires. What these parame-
ters will entail is of course dependent on the dataset, but for every distinct space in
the dataset, there should be the possibility of starting a path, so as to test a fictitious
maximum capacity of the test building.

Lastly, a test dataset needs to be constructed. This dataset should have some key
features to bring the simulation closer to reality than the simple pathfinding grids
presented in papers like Koenig and Likhachev [2001], Koenig and Likhachev [2002],
and Nash et al. [2009]. However, it should not be as complex or cluttered as the
real world can be, as this is only exploratory research into the use of pathfinding
algorithms on voxels.

3.2 A VOXELISED SPACE FROM A MESH

The first step is the creation of the voxelised space on which to test. While the actual
voxelisation of meshes or point clouds is also the subject of research [Aleksandrov
et al., 2021], it is not the focus of this thesis, so for this research a simple voxelised
space is assumed to be the starting point of pre-processing the data for pathfinding.

3.2.1 Properties of the voxel grid

The voxel grid can be thought of as a 1D array that holds information about the voxels:

(0,0,0)
voxels = :

(xmtle ymax/ Zmax)

Where the z runs fastest, then y, then x. Meaning to loop over all the voxels, a triple
nested loop according to Algorithm 3.1. Consequently, this means that internally, the
voxels are ordered according to scan-line ordering, as such:

coord(x,y,z) — index{xX + Y - Xy + Z* Xppax * Yinax)

This fact ensures fast access of voxels by coordinates, and is also the basis for fast
neighbour access. However, what the array holds, is simple values, that denote the
status of the voxel itself, not a voxel entity or object. In this simple voxel grid, simple
integer values encode meaning, with Table 3.1 showing what the different values en-
code for. Lastly, the voxel grid also holds the voxel size, which is used to render the
voxels.

By using only integer values to encode 3D information about the voxels, a lot of space
is saved, because an integer 3 holds only 2 bytes, whereas even a simple data package

While it is possible to use 1 byte sized char, a choice was made at the start of the research to use int because
of eventual scaling

3.2 A VOXELISED SPACE FROM A MESH \

encoding semantic, coordinates, perhaps neighbour pointers, would be in the order
of 100s of bytes, as shall be shown in Section 3.3. Using this, the size of the voxel grid
1S Xpuax Yimax * Zmax * 2 bytes'

Algorithm 3.1: Looping over the voxel grid

1 forx « 0...x « x,,,, do

2 fory < 0...y « Yqr do

3 forz < 0...z « z,,, do
4 L access voxel at (x,v,z)

Integer value Meaning

air

filled
walkable
fire

fire

fire

0 path

LUl R W N RO

>

Table 3.1: The different integer values with their corresponding meaning.

3.2.2 Filling the grid

When using 26-connectivity for voxels in combination with hollow walls that are po-
sitioned diagonally on the grid, tunnelling (see Figure 3.1) can occur [Aleksandrov
et al., 2021]. While this can be remedied with a thicker voxelisation algorithm that
uses a supercover line rasterisation algorithm, it can also help to fill walls and other
cavities that ought to be actual solids to ensure tunnelling does not happen.

To fill the walls, floors and other cavities that a building might have, a simple flood
fill algorithm was used, with a seed point being selected randomly that is known to
be in inside of the cavities. When using a clean dataset of a real building, one can
assume that all hollow spaces are connected, as floating hollow spaces do not occur
in real life, therefore, only one seed point needs to be chosen. The flood fill algorithm
is a simple algorithm often used in 2D for filling pixel spaces, but is easily adapted to
3D as shown in Algorithm 3.2.

Algorithm 3.2: Flood fill algorithm

Input: s..;(x,y,2), stack S

1 ;S « @ S.add(seed)

> while S # 0 do

Scurrent <~ S'top()

S.pop()

Scurrent (_fill

foreach Sneighbour € Scurrent do
if Sneighbuur ¥ fille‘i then

L L Sﬂdd(sneighbour

[RS

N

25

26

| METHODOLOGY

Figure 3.1: Tunnelling between 8-connectivity in a 2D pixel grid

3.2.3 Extracting navigable space

To ensure paths are found in spaces that actual users can also use for walking around
in a building, the navigable space needs to be defined. What is used, is the navigable
space as defined by Staats et al. [2017]: “free surfaces that are used to navigate inside
a building without bumping into any obstacles”. To determine this navigable space,
first, walkable surfaces have to be determined. In the case of voxels, this is simple for
all voxels where the following is true:

Theorem 1. Given voxel s(x,Y,2), if Syeighpour (X, ¥ — 1,2) = filled, then voxel s is a surface
voxel

Thus, using this given, the surface voxels can be defined. There is however, more
to it, because not all floor surfaces are navigable for humans for locomotion. There
needs to be enough space for a human actor to safely stand. To do this, one simply
has to check that for all the floor voxels, a set number of voxels needs to be empty,
depending on the voxel size and the size of the dataset. If these voxels do not have the
aforementioned required space above them, they should be marked as non-walkable.

Once the voxels with too little vertical space above them have been unmarked as being
walkable, layers of walkable voxels should be placed on the current layer to ensure
connectivity between voxels that are part of vertical or inclined walkable spaces, such
as stairs. If only the layer directly above the floor is demarcated as walkable, and the
step height is larger than the voxel size, vertical movement along these stairs would
never be possible, as shown in Figure 3.2.

3.2.4 Generating starting points

Currently, starting points are generated by selecting them manually in the dataset,
however, they could also be automatically created by using a watershed algorithm on
the dataset Koopman [2016], Gorte et al. [2019a]. Every starting point corresponds
to a person for which a path has to be computed.

3-3 CREATING THE SPARSE VOXEL OCTREE \

(a) No connectivity with one layer of (b) Full connectivity with three layers of
walkable voxels walkable voxels

Figure 3.2: The thickness of the walkable layer

3.3 CREATING THE SPARSE VOXEL OCTREE

The svO was created according to the method of Baert et al. [2013], which is a bottom
up approach. While this method was created specifically for out-of-core construc-
tion of SVOs, the method is perfectly acceptable and adaptable for other purposes.
In this section, the steps taken to construct the SVO from the voxel grid described in
Section 3.2 are documented.

3.3.1 Morton Ordering

The first step is to, for every voxel in the voxel grid which is walkable, generate Mor-
ton codes, and add these to a list. After all these Morton codes have been gener-
ated and added to an array, this array should be sorted in ascending order. This
means the voxels itself are sorted in ascending order, because #,,,;,,,(0,3,0) = 18 <
Myorton(1,3,0) = 19. Doing this ensures spatial locality and coherence when having
to create octants for the octree.

3.3.2 Creating levels

The next step is to create the levels (full procedure explained in Algorithm 3.3, start-
ing with the lowest level (i.e. the leaf level). This is done using the aforementioned
sorted array of Morton codes. When using this array as a sort of stack, where the top()
operation refers to the entry in the stack as the smallest Morton code, and this entry
can be removed using pop() operation, one can create octants by counting up from
0, and by checking if the Morton code for a certain number exists in the stack. If it
does, an object must created for this octant. This object should have a few properties:
a pointer to the parent node, eventual pointers to the children nodes, coordinates,
attributes, a Boolean to signify if it has changed and a level number.

This is done for all octants, and if the octants are not all empty, a parent node is also
created. The children and their parent are added to a map that maps index (which
is the Morton code) to the node objects for easy access. If the octants are empty, no
nodes and no parent nodes are created, thus only creating and storing parts of the
space where there is data. This procedure is done until the entire array (or stack) of
Morton codes has been processed. If this is the case, all the input voxels have been
converted to a node, with the accompanying semantic information (index, parents,
children in case of non-leaf nodes) also being recorded.

27

28

| METHODOLOGY

VCLree Node (At vran NrAn
Octree Node Octree Node Octree Node
Children (8) —‘:> Children (8) —’:» Children (8)
Parent node 4_uParent node 4_lkl?arent node
[x, v, 2] [x, y, 2] [x, vy, z]

Figure 3.3: A schematic overview of the essential properties of the nodes and their relation-
ships

Algorithm 3.3: Creating a level of the sparse voxel octree

Input: stack S,,,,t0n
Output: map of node objects Moy, and M e,
1n<0
2 index < 0
3 while S,,,4,, # @ do
empty « true
create new node 1,4,¢,

C < Smorton‘top()
if c = n then

4
5
6 fori < 0...i —« 8do
7
8
9 create node s

10 Smorton'pop()

11 Mlevel[c] «— S

12 empty < false
13 n++

14 if empty = false then
15 L Mparent[index] < Nparent

16 index + +

3.3.3 Neighbour Access

As discussed in Figure 2.3.2, neighbour access and consequently generation is not as
straightforward due to the non-uniformity of the octree. Additionally, due to how
the nodes are stored in a hash map, they can be accessed in constant time by using
their Morton code index, thus the fastest way to access the neighbours of a current
node in the octree is if you have the Morton codes of the neighbour.

To achieve this, a method is used to take advantage of the properties of Morton codes
bitinterleaving. This method takes advantage of the fact that for a given node v(x, y, z)
with Morton code i, if one wants to know (x + 1,y, z), the difference in i is dependent
on x, and independent from y and z. This same holds true when moving in other
axis directions [Arndt, 2010]. Due to the way Morton ordering works, the offset Ai
in each direction can be pre-computed for every voxel coordinate. This relationship
is shown for an example voxel in Figure 3.4. Notable is that the relationship between
the offset A7 in each direction is a multiple of the previous direction.

It is possible to pre-compute the offset value for each voxel and use a lookup-table to
access these values, the full look-up table can be found in Appendix B. This way, one
can access a voxels’ neighbours by coordinate and index and check if these exist in the
svo. Of course, these operations can then be combined, to create 6-connectivity, 18-
connectivity and 26-connectivity by using earlier computed neighbours. Both these

3.4 ADAPTING A”™ |

v[3, 4, 3]
imorton: 173
Aimorton: 110 V[3, 3/ 3]

imorton : 63

vi4, 3, 3] e VI3, 3, 4]
imorton : 1 1 8 Zn-\orton . 2 8 3
Aj-morton 3 5 5 / lrorton: 22 0

Figure 3.4: The relationship between Morton codes and the Morton codes of neighbours in an
axis direction.

operations are done in constant time due to the fact that the SVO is built using a (hash)
map and checking a key in a (hash) map is, on average, done in constant time.

While implementing the method described in Figure 2.3.2 has some advantages, that
implementation is fully based on a static SVO, where there is always time to pre-
compute the neighbour relations, and then use them at run-time. This is not possible
in a dynamic SVO, where not only does the SVO need to recompute some relationships
already, but running the neighbour algorithms costs even more time and resources.

This method does however only consider nodes on the same level as the node for
which the neighbours are computed, so no parent or child nodes are considered as
neighbours. This has both downsides and upsides. An obvious downside is that no
use is made of the hierarchical nature of the data structure, but this is not truly the
case: the fact that nodes are organised with this much spatial coherence is due to the
data structure.

3.4 ADAPTING A*

The first algorithm that is tested is A* which is arguably the simplest algorithm.
While the algorithm is very similar to the original as described in Section 2.4.3, some
adjustments had to be made to make the algorithms work for the different data struc-
tures.

3.4.1 Heuristics

The first thing to decide is the heuristic to use for the algorithm. It is important to
consider what we want to achieve with the algorithm: A* can find the shortest path
accurately and fast with the perfect heuristic [Hart et al., 1968]. However, finding
the shortest path often takes longer than finding a very good path, even faster. This
depends on either over or underestimating the heuristic. When underestimating the
heuristic, the algorithm will explore more possibilities before settling on a path, and
when over estimating the heuristic it will just choose the path it has already found
because all other options seem worse. Often, it is not necessary to find the true short-
est path, because there could be many shortest paths, an a good path is also sufficient

29

30

| METHODOLOGY

for the task at hand. What a “good” path is, is a testing and balancing act: a perfect
heuristic leads to the true shortest paths, while a cheap overestimated heuristic will
lead to faster computation. Therefore, there are a few options to use.

-
N e
T r
T T
L
L g g g
T T
i |
(a) A* on a 2D grid with Manhattan distance
=
= |
(b) A* on a 2D grid with Diagonal distance
||
(c) A* on a 2D grid with Euclidean distance
Figure 3.5: Comparison of different heuristics on a 2D grid. Figures from

https://www.redblobgames.com/

While A* can move in all 26 directions provided by 26-connectivity, it is not an any-
angle pathfinding algorithm, therefore it does not make sense to use Euclidean (L,)
distance, because this would often lead to underestimating the distance between the
current node and the goal node, because Euclidean distance cuts corners that A* can-
not make. Additionally, calculating Euclidean distances with their quadratics and
square roots, is rather expensive, and does not pay off if you want to find paths
quickly.

dEuclidean (4, b) = \/(al - b1)2 + (ap — b2)2 + (a3 — b3)2

Another option is to use Manhattan distance, which is also known as the taxicab or L,
which more accurately predicts the distance when using 6-connectivity. Manhattan
distances are less expensive than Euclidean distances, only additions and subtrac-
tions. With Manhattan distances, moving in all directions is considered as being 1

https://www.redblobgames.com/

3.4 ADAPTING A™ |

grid unit. Therefore, when using Manhattan distance, the cost function of the algo-
rithm should also be accordingly adapted.

dManhattan (ﬂ, b) = |a1 - bll + |ﬂ2 - b2| + |113 — b3|

V2

Figure 3.6: Distances on a cube

Thirdly, there is the Diagonal distance (L.,), which attempts to take into account mov-
ing diagonally without resorting to the true, Euclidean distance. It can be thought of
as a generalisation of Euclidean distance, adapted for the grid. The distance takes
into account that for face neighbours, the distance needs to be scaled by 1, for edge
neighbours, this distance needs to be scaled by V2, and for vertex neighbours, this

distance needs to be scaled by V3, as per the Pythagorean theorem, made visual in
Figure 3.6.

Apiagonal (@, 1) = (V3 = \2) - min(Ax, Ay, Az) + (V2 = 1) - (Ax + Ay + Az)
—min(Ax, Ay, Az) — max(Ax, Ay, Az) + 1 = max(Ax, Ay, Az)

For the cost function (the cost from moving from one node to the next), the metrics de-
scribed above are also relevant, because this determines how optimistic or pessimistic
A* will be about how much distance remains. If for instance, one uses a relatively ac-
curate cost based on the Diagonal distance, but uses a heuristic that underestimates
the distance remaining like Euclidean, the algorithm will spend more time trying to
find the best path, with the opposite of course being true if it is the other way around.

For this research, Euclidean distance will be used, to facilitate as much freedom in
movement for the evacuees and to find the shortest paths. In Chapter 4, I will show
the different heuristics and their performance in action.

31

32

| METHODOLOGY

3.4.2 Regular Voxel Grid

The algorithm is suited for a voxel grid with good neighbour access, which is the
case as described in Section 3.2. While the algorithm does call for some features like
keeping track of things per node, and the voxel grid does not store nodes, only inte-
gers that convey meaning, this can be solved by slightly changing how A* keeps track
track of its g(n) values. Instead of storing this information in the grid itself, one can
maintain an extra associative container (map, dictionary) to store the nodes that A*
has already expanded, and record the g(n) of the nodes there. This way, you only
store what you use, and you do not have to check the entire grid if you want to look
up a voxels g(n) value.

Algorithm 3.4: On the fly neighbour generation for A*

1 ..main A* loop
foreach coordinates [x,y,z] of 18-connectivity of 5., pen; do
check status in grid for [x,y, z]
if [x,y,z] = walkable then
create Sneighbour

N

continue with algorithm

else
delete Sneighbour

© ® N o u R W

Another thing to consider is how to deal with changes in the voxel grid. A* should
only consider nodes that are walkable, all other nodes should not be accessed. How-
ever, this grid does not hold any nodes, only integer values that convey meaning.
Thus, the simulation will change the integer values of in the grid, and nodes will
only be created if it is created. This way of dynamically creating nodes is the key to
adapting A* for this grid. The downside of not storing information for longer than
you need is that you cannot deal with dynamic changes in a clever way, so when
the grid changes, you have to recalculate the entire path. However, even when do-
ing these repeated one shot A* runs, the speed and efficiency of the algorithm will be
high.

3.4.3 Sparse Voxel Octree

Because the SVO stores a lot more information than the regular grid, it is easier to
deal with dynamic changes in the scene. Other than being able to know when a node
has changed, making it easier to change only those paths that have changed nodes in
them, the algorithm runs the same as with the voxel grid. However, because the svO
stores only voxels that are walkable, and voxels are removed from the tree if they are
no longer walkable, the algorithm need only check if the tree contains a neighbouring
node before proceeding.

3.5 ADAPTING THETA"

These algorithms are much more complex than A* and require more information per
node to function. They also need more auxiliary functions to operate, like a line of
sight function. While the algorithm does use a heuristic, and it’s function is rather
similar to that of A%, it is less influential on the entire algorithm as a whole because
other factors also influence the algorithm, making it more informed and less depen-
dent on the whims of a single heuristic. However, because Theta* is an any-angle

3.6 ADAPTING D*-LITE | 33

pathfinding algorithm, the heuristic to use is Euclidean distance, because this comes
closest to the path Theta* will probably find.

As stated in Section 2.4.4, the only essential difference between Theta*/Phi* and A* is
the compute cost method (see Algorithm 2.3), which uses line of sight checks to cut
corners before regressing back into A* if there is no line of sight between two nodes.
But because Theta* maintains extra values to keep track of this, a node that is able to
store more information is required. Where in A* the node was only used to keep track
of the g(n) values, Theta* also needs to store a parent relationship so the algorithm
can skip nodes between which there is a line of sight.

The line of sight function is a well known algorithm that is used for ray tracing in
the field of computer graphics. This algorithm can be thought of as a rasterisation
algorithm in 3 dimensions, and was first described by Cohen-Or and Kaufman in
1997. The algorithm is described in Algorithm 3.5.

Algorithm 3.5: Line of Sight

1 Function sign(x):
2 L return (x > 0) — (x < 0)

Function line(x,y,x, Ax, Ay, Az):

3
4 line — @
5 sx «<sign(Ax), sy <sign(Ay), sz «sign(Az)
6 ax « |Ax|, ay < |Ay|, az < |Az|
7 bx —«2-ax,by < 2-ay,bz < 2-az
8 exy « ay — ax, exz « az — ax, ezl «— ay — az
9 ne—ax+ay+az
10 while n— do
11 check voxel v[x,y, z] is walkable
12 add v to line
13 if exy < 0 then
14 if exz < 0 then
15 X < X+ 8sx
16 exy < exy + by, exz — exz + bz
17 else
18 Ze—z+sz
19 exz « exz — bx, ezy < ezy + by
20 else
21 if exz < 0 then
22 Z << zZ+5Z
23 exz « exz — bx, ezy « ezy + by
24 else
25 Yy<y+sy
26 exy « exy — bx, ezy « ezy — bz

If the line of sight algorithm returns a line with no obstructions, then the algorithm
knows that there is a path between the two voxels, meaning it can go to the node on
the other end of the line, and continue pathfinding from there.

3.6 ADAPTING D*-LITE

D*-lite and LPA* both, could theoretically be applied somewhat directly on the reg-
ular grid, and with some adaptions to the svO. However, in practice, the algorithm

34

| METHODOLOGY

runs into problems when adapting it to 3 dimensions, especially when dealing with
obstacles. The D*-Lite algorithm especially does not perform well in 3D with obsta-
cles with some initial testing. The problem lying in the manner in which ties must
be broken. Often, there might be multiple nodes with the same g(n) and/or rhs(n)
values, and the algorithm can get stuck. This is where tie breaking functions come in.
One popular way is to prefer paths that lie closest to the true distance (as the Nazgil
flies) between the start and goal node [Patel, 2022].

Algorithm 3.6: D*-Lite/LPA* with tie breaking

1 while S0t # Sgoal do

2 ...main planning loop

3 Cmin <

4 tmin < 0

5 foreach Sneighbours € Scurrent 40

6 f(S) — oSt (Scyrrents Sneighbour) + g(sneighbour)
7 stmightLine « deuclideun (Sneighhour/ Sgoal) + deuclidean (Sstart/ Sneighbaur)
8 iff(s) = c,,;,, then

9 if t,,;, > straightLine then

10 tyin < straightLine

11 Cin < f ()

12 Smin < Sneighbour

13 else if f(s) < c,,;, then

14 tiin < straightLine

15 Cmin <—f(S)

16 | Smin < Sneighbour
17 | Scurrent < Smin

Another hurdle is the fact that every instance (i.e. every start-goal iteration) of D* will
have to hold their own version of the entire dataset, because the g(n) and rhs(n) val-
ues of the entire grid are dependent on the start and the goal, making it less efficient
than on-the-fly node generation like in A* or even Theta*.

3.7 FIRE SIMULATION |

3.7 FIRE SIMULATION

To simulate the dynamic emergencies spoken of in the research questions, fire has to
be simulated in the voxel grid. This will be done by abstracting a fire to a growing
area of inaccessible voxels. The growth rate of this area should be able to vary. Two
algorithms are used to achieve this: one for the regular grid, and one for the svO. For
the regular grid, the well-known midpoint circle algorithm (see Algorithm 3.7), op-
timised for integers, is used, and for the sVvO a modified flood fill algorithm is used
(as described in Algorithm 3.2).

x
nn
<]
<]
<
n
N
w
=
r+
[}
[}
i
r+
o
=]
3
<]
=9
x
nn
[<]
o1
<
n
N
N
=
+
o
H
0
+
M
o
=
<3
o

ion 11

nn
=Y
<]
<
n
N
=Y
=
r+
[}
[}
i
r+

(d)

Figure 3.7: The midpoint circle algorithm in 2D. Figure from Wikipedia

The midpoint circle algorithm is performed by calculating one octant of the circle,
and then mirroring this in all other octants. The algorithm works by trying to ap-
proximate the circle formula on the y — plane with x> + z2 = r? on a 3D grid where
y is up. Thus every voxel on the circle should be about the same distance from the
centre of the circle. The algorithm does this by starting out at the top (i.e. 0°, north)
of the circle and choosing voxels that satisfy x> + z? < r? while maximising x? + z2.
The algorithm is run inside the simulation for an increasing radius value to simulate
a growing fire. Once the horizontal limit of the fire is reached, the algorithm will
be run on the voxels above the current circle, thus producing a growing cylinder of
“fire”.

For the svO, a limited 2-dimensional version of the flood fill algorithm is used to
simulate the fire. The algorithm is limited in both its speed and it’s spread, ensuring

35

https://en.wikipedia.org/wiki/Midpoint_circle_algorithm

36

| METHODOLOGY

a comparable spread to the grid based fire algorithm. The algorithm will produce a
sheet of “fire” voxels, then also travel upwards, giving the impression that a fire is
rising. However, since the svO only holds the walkable voxels, it will actually remove
voxels from the tree.

Algorithm 3.7: Midpoint circle algorithm optimised for integer only maths

Input: (xg, Yo, z), radius
1 f « 1 —radius
2 d(Fx) <0
3 d(F,) « =2 - radius
4 X < 0
5 z « radius
6 plot(xgy, Yo, 2o + radius)
7 plot(xy + radius, yg, zg)
8 while x < z do
9 if f > 0 then

10 ze—z-—1
11 d(FZ) — d(FZ) +2
12 f <—f+d(FZ)

13 xe—x+1

14 d(F,) <« d(F,) +2

15 f<—f+d(Fx)+1

16 plot(xg + x, Yo, 2o + 2)
17 plot(xg + x, Yo, 29 — 2)
18 plot(xg + z, Yo, zg + X)
19 | plot(xg + z, Yo, 29 — X)

38 SMARTER PATHS: TIME-AWARE A"

To accurately reflect the occupancy in a building, one voxel should only be able to
hold 1 person at the time, which is already an abstraction because of the fact that the
voxelsize is much smaller than the occupied space by an actor. An issue however, is
that with A*, when looking for the optimal path from multiple locations to an exit,
the paths will converge like a river with tributaries in a sort of shortest path graph.
Meaning that all paths will inevitably join together. Another side effect is that if paths
are not allowed to use the same voxels, a path might think that there is no path to an
exit because it has been “cut of” by a path going in front of the door, as is visible in
Figure 3.8.

Therefore one should allow paths to share voxels, but try to make sure that they do
not constantly share their paths. This can be solved by allowing paths to cross paths,
and share voxels between them for one or two voxels, but no more. This can be im-
plemented for all algorithms.

Another option is to use incremental paths, that have a moving starting voxel that
travels along the path at the speed at which people would walk, which could be com-
bined with the adage that one voxel can only hold one person/path at a time. Doing
this would also allow the use of changing the goal voxel mid-route. To do this, an
adapted version of A* will be used, that will in essence be the same as the version of
A* described in Section 3.4.3, using the same main loop, but for a time period defined

3.8 SMARTER PATHS: TIME-AWARE A" | 37

2,
I,

AN

]

EEEEEREREREN [l EEEREEEEREEREEEEEEREEEEEE .
(b) A path cut off by another path

Figure 3.8: Some difficulties when not allowing paths to share voxels

by the voxel speed, which is defined as the normal walking speed converted to voxel
units. Where the voxel speed can be defined as:

kulking

Upoxel =

Svoxel

Using this one can determine the amount of time a pathfinding simulation must wait
before moving one voxel, which can be determined as:

1

t] =
oe Uyoxel
If, the algorithm on every interval moves the start voxel up one voxel in the path, and
sets the previous starting voxel to free again, one could satisfy the one person per
voxel rule.

IMPLEMENTATION

In this chapter, the implementation of the methodology is presented. First, the testing
environment will be presented. Next, the steps taken to setup pathfinding on a grid
and on the Morton grid. Thirdly, adapting the algorithms to voxel spaces. All code
can be found at GitHub.

4.1 SIMULATING AND TESTING

Starting off the implementation is an environment in which to test all the aforemen-
tioned algorithms and data structures, as well as providing visual feedback. Thus,
an application will have to be developed to serve as both a testing ground for the
algorithms, as providing direct visual feedback on what the algorithms are doing.
Additionally, the path data will be outputted by the application for further analysis.
As the methodology calls for real-time recalculations, the best way to check the “real
time-ness” of the pathfinding is to visualise it, in real time.

Main
—> q
Preprocess Data Simulator
Prepare Rendering
Voxel <) Tl 2 Main Render Loop
Grid on separate - Render Static Model
thread
- Render Instance Buffer
(voxels)
» -
<« Fire UI
> . < 5 Simulation - Setup parameters
on separate - Launch Individual
thread Threads for Paths/Fires
A\ 4

Instance _
Buffer N

Figure 4.1: A schematic overview of how the methodology is implemented.

The tool to do this all, the C++ programming language is used to build an application
using a few dependencies, namely Magnum, which is a lightweight middle-ware
layer on top of raw OpenGL, making it easier to setup a basic Simple DirectMedia
Layer (spbL) application, while also providing integration with Dear ImGui, which
is a “a bloat-free graphical user interface library for C++" Cornut [2020]. The choice
for C++ is for its speed, and widespread use in the graphics field, making it easier
to find resources, as well as personal preference. However, it should be noted that

39

https://github.com/dumigil/Thesis-Source
https://magnum.graphics/
https://github.com/ocornut/imgui

40

| IMPLEMENTATION

in this research C++ means the ISO [2020] standard informally known as C++20, the
most recent standardised version of the language. The CXX compiler that is used, is
the LLVM AppleClang compiler version 13.1.6.13160021. The full code of the appli-
cation can be found on GitHub.

411 OpenGL and Magnum

OpenGL is an open-source, free application programming interface (Ar1) for interac-
tion with the graphics processing unit (GPU) to render anything from games to virtual
reality to CAD and information visualisation. Therefore it is the ideal tool for this re-
search, because it is open, and provides the most direct access to the hardware of a
computer, which means high performance, so as to not impede with the performance
of the real-time pathfinding. Raw OpenGL however, can be quite cumbersome to
deal with, especially when one is not an experienced graphics programmer. There-
fore, middle-ware abstraction layers over OpenGL exist, with varying degrees of con-
trol over OpenGL itself. One of these libraries is Magnum, which makes things eas-
ier while allowing control wherever the developer feels the need to do things “their

17

way" .

V¥ Settings & controls

Model Color

es

Grid

Show Walkable
appl
appl

Resekt camera Reset simluator

Figure 4.2: The Ul designed for the application

In Figure 4.2, we can see that there are a number of simulation parameters that can be
changed. The number of evacuees can be changed, as can the number of fires. Apart
from this a number of speed parameters can be changed, and lastly, the appropriate
algorithm and data structure can be selected. Once everything is set to the required
simulation, the start button can be pressed. It should be noted however, that there
exists a starting points for each room in the building (30), and that if one for instance
were to select only 4 evacuees, then 4 rooms will be chosen at random, with no pref-
erence for path length or something else.

Magnum simplifies the OpenGL render pipeline for the user, so no time is wasted
setting up buffers, writing simple shaders or other tedious tasks. For this project, the
standard Magnum/sDL template application was used as the basis for the simulator
application. While the entire dataset is of course a voxelised space, for practical pur-
poses, the static part of the dataset (i.e. the walls, floors etc.) are imported as a mesh
(.obj file). This static mesh is rendered in the application as a semi-transparent solid
to see inside the building while the paths are being rendered, so the paths are not
obscured by the building when running the simulation.

Rendering the paths is a more complicated affair. To do this, an instancing approach
was chosen. In graphics, instancing refers to multiple instances of the same geometry

https://github.com/dumigil

[S T S VI

4.1 SIMULATING AND TESTING \

being rendered, thus saving memory by already knowing the to-be-rendered geome-
try. Instancing in OpenGL and Magnum requires the preparation of a mesh (in this
application, obviously a cube will represent a voxel) that will serve as the “original”
instance. The instances of this cube will be rendered according to the instance buffer.
The instance bulffer itself is supplied data by the a dynamic array (a std::vector<>
called _instanceData)which contains the actual render information for the applica-
tion. All voxels that need to be rendered are added and removed from this array as
needed, making it a central part of the architecture of the application. What actually
goes into the array is the InstanceData struct (see Listing 4.1), which consists of all
the information necessary for rendering the voxel. Namely, a transformation matrix
containing the position information for the voxel, the normal matrix, a colour value
and an identifier, which corresponds to the id of the voxel as presented in Table 3.1.
InstanceData {
transformation;
normalMatrix;

color;
id{};

Listing 4.1: Data struct used to render the voxels

4.1.2 Concurrency management

This array is thus a central part of the rendering procedure, and indeed of the en-
tire application, as can be seen in Figure 4.1. This data container, like the svO and
the Voxel Grid, is shared among the many threads that are required to concurrently
perform the pathfinding process for all the different starting points. Thus, access to
this data must be managed accordingly, to prevent data corruption and data races.
What this means is that two threads should not be allowed to access the same data
at the same time. For if one thread would, for instance, change a value at a certain
memory location while another thread is reading that memory location, data could
be corrupted, or simply the wrong value could be retrieved. Therefore, these data
containers need to be thread safe.

While many possible, and arguably cleverer ways, to prevent this exist, in this appli-
cation this has been implemented using mutexes and atomic types. A mutex can be
considered as a lock on a memory location, if one thread is currently accessing this
memory location, it “locks” the mutex, and then when another thread tries to access
the data, it sees the locked mutex and knows that it must wait. Only when the first
thread unlocks the mutex, can the second thread access the data. This methods pre-
vent data corruption. An atomic type is a special kind of a data type. For instance, an
atomic integer is an integer which ensures thread safety without manually using mu-
texes. Therefore, whenever it is possible, when thread safety is required, first the use
of an atomic type was considered, before moving on to the aforementioned mutexes.

4.1.3 Datasets

The dataset to be used is an artificial test building created specifically for this research.
Attributes of the model are: three floors, two entrances/exits, two staircases, 34 dis-
tinct spaces, a balcony, and a split-level. These attributes have been chosen to sim-
ulate areas in real world buildings that do not fit easily in a 2D representation of a
building. However, this model is empty, that is, there is no furniture present and
there are no doors or windows. The actual size of the building is about 13m by 8m by
20m (x,y,z) with y being up.

This model is then voxelised online at drububu.com, with a resolution of 163x101x256,
resulting in a voxel size of 0.078125m, and 458174 filled voxels. The voxelisation pro-

4

https://drububu.com/miscellaneous/voxelizer/?out=txt

42

| IMPLEMENTATION

Figure 4.3: A section of each floor of the dataset model

cess outputs a . txt file with the index numbers of the voxels that are filled, together
with the size (x,y,z) of the voxel grid. This method has been chosen to allow the
most simple datasets to be ingested by the programs. Even a list of points can be
used, where they will be treated as voxels.

4.1.4 Hardware

All the software designed for this approach is run on the same device. A MacBook
Pro (16-inch, 2019), with a 2.6 GHz 6-Core Intel Core i7 and 16 GB 2667 MHz DDR4
of memory. The primary graphics card is the AMD Radeon Pro 5300M 4 GB. The
hardware is running the MacOS Monterey 12.3.1 operating system.

4.1.5 Simulation Parameters

The parameters that were used to start the simulations were: 1 to 30 evacuees, with 1
fire in the building and two possible exits.

4.2 A VOXELISED SPACE FROM A MESH

The input . txt is ingested by the pre-processing element of the application, with all
the voxel indices being loaded into memory by means of an std: :vector<Voxel>.
The voxel class is the first of the three voxel utility classes used by the application,
with each of them serving a specific algorithm or data structure. Of these, the Voxel
class is the most simple. The main properties of this class are visible in Listing 4.2,
with a few key functions of interest additionally being shown. The < and > operators
have been overloaded to ensure compliance with the way priority queues work in C++,
namely by comparing things according to strict weak ordering. This is a predicate that
compares two objects, returning true if the first precedes the second, according to ISO
[2020]. Other functions that are key to the class are the getNeighbours() functions,
while only one is shown in Listing 4.2, one exists for 6-, 18-, and 26-connectivity.

22

23
24

4.2 A VOXELISED SPACE FROM A MESH \

&z) {

Voxel {
X, y, z, id;
Voxel(&, &y,
->X = X;
-2y =Y,
->7 = z;
->id = 0;
}
<(Voxel &other) {
std::tie(x, y, z) < std::tie(other.x, other.y, other.z);
}
>(Voxel &other) {
std::tie(x, y, z) > std::tie(other.x, other.y, other.z);
}

std::vector<Voxel> getNeighbours26()

neighbours;

Listing 4.2: The Voxel class

Abounding box is extracted from the vector of voxels as well. With this bounding box,

the number of rows for each axis is determined, and an instance of the VoxelGrid class
is instantiated. This class is the first major data structure that is to be used. It has been
described theoretically in Section 3.2, but its implementation will be shown here. As

described before, all the information is contained in a single std: :vector<int>. By

correcting for the dimensions of the voxel grid, as shown on line 22 in Listing 4.3, the
call operator is defined as such that one can access the correct integer value through
(x,y,z) coordinates. Note that the operator asserts that the coordinates are within the
grid before returning, because otherwise the return statement will either return the
wrong integer value, or get an out-of-bounds index.

VoxelGrid {

std::vector<int> voxels;
max_x, max_y, max z;
mVoxelsize;

VoxelGrid(X, Y,
max_x = X;
max_y =y,
max_z = z;
total voxels = x*y*z;
voxels.reserve(total voxels);

(i=0; i < total voxels; ++i) voxels.push back(0);

() (&x, &y,
assert(x >= 0 & x < max_x);
assert(y >= 0 & y < max_y);
assert(z >= 0 && z < max_z);
voxels[x + y*max X + z*max_ x*max_ y];

I3

&z) {

Listing 4.3: The VoxelGrid class

After the VoxelGrid class is set up, the grid has to be “filled” with the appropriate
information. The temporary array holding all the voxels that are filled, is looped
through, and for every coordinate, a 1 is stored at the appropriate location in the Vox-

elGrid array.

43

44

| IMPLEMENTATION

After this, a function is used to fill the hollow spaces in the floors, ceilings and walls,
to ensure a solid voxel model. This function is an implementation of the flood fill
algorithm as described in Algorithm 3.2. Starting from the seed that is known to be
in the interior, it uses a std: : stack<Voxel> based approach to fill the entire hollow
space. In this dataset, this leads to 280.959 voxels being filled. If we add that to the
number of voxels that were previously filled, we now have 739.133 filled voxels, on a
total of 4.214.528 voxels, meaning 17% of the voxels are filled or blocked. However,
one should note that this is not the search graph, the search graph is only the walka-
ble voxels, which has to be extracted from the dataset next.

The extraction of the navigable space is done in a short function, which has the Voxel-
Grid as its input. This function is straightforward and based on the theorem defined
in Section 3.2.3, displayed in Listing 4.4. This function simply loops over all the voxels
in the grid, per dimension, and checks if for any given function that is filled, if there
is a space of 24 voxels (= 2m) above the floor that is empty, it will mark the 3 voxels
above it as walkable. This function leads to 252.789 walkable voxels, which in total
is only about 5% of the total voxel grid, showing the low efficiency of the voxel grid.
While it isn’t quite accurate that the filled voxels aren’t used, because the contours of
the filled voxels define the navigable space, they are not traversed anymore.

extractWalkableSpace(VoxelGrid &voxels){
(x = 0; x < voxels.max x-1; ++x) {

(y = 0; y < voxels.max_y-25; ++y) {
(z = 0; z < voxels.max z-1; ++z) {
(voxels(x,y,z)==1) {
space = ;
(i=1; i <24; i++){
(voxels(x, (y + i), z) != 0) space = ;
}
(space) {
(voxels(x, y + 1, z) == 0) voxels(x, (y + 1), z) = 2;
(voxels(x, y + 2, z) == 0) voxels(x, (y + 2), z) = 2;
(voxels(x, y + 3, z) == 0) voxels(x, (y + 3), z) = 2;
}
}
}
}
}
}

Listing 4.4: Extracting the navigable space

The extraction of the navigable space is the last step in the data preparation for the
regular voxel grid, which can now be used for pathfinding and rendering alike, and
more importantly to create the svO.

A full comparison of the size of the VoxelGrid and Voxel classes can be found in
Table 4.1.

4.3 CREATING THE SPARSE VOXEL OCTREE

The svO is a more complex data structure and thus more complex to create. It is im-
plemented by the SparseVoxelOctree class, and maintains two separate nested con-
tainers for convenience. One of the key benefits of the svO is that one needs to only
check if a voxel exists in the octree to check if it is navigable. Thus checking if a value
exists in a container is one of the key operations performed on the octree. Therefore,
it is of paramount importance that this operation is made as efficient as possible, and
comparing this between std: :map and std: :unordered_map, this operation has time
complexity of O(log(n)) and O(1) (on average, worst case O(n)) respectively. Ad-
ditionally, the fact that there are two containers, with only the unordered container
being used for data modification, means that the ordered container can act as a sort

o U R W N e

© ® N o U R W N R

10

12

13

4.3 CREATING THE SPARSE VOXEL OCTREE

Figure 4.4: The walkable space in the dataset

of backup, so one does not have to rebuild the entire octree from scratch but can just
restore it from the ordered container.

struct SparseVoxelOctree {
std::vector<std::map<uint fast64 t, OctreeNode *>> mTree;
std::vector<std::unordered map<uint fast64 t , OctreeNode *>> mQTree;

Listing 4.5: The sparse voxel octree class

The SparseVoxelOctree class is in essence just a container class of Morton codes,
where only the leaf node levels are used. What it holds is the nodes mapped to their
(Morton) index, which has been implemented using the OctreeNode class. This class
holds all the information about the nodes itself, as can be seen in Listing 4.6. The
obvious necessary information is of course the nodes parent, and children, which
are both pointers to other instances of the OctreeNode class. It holds both the nodes

index and (x,y,z) coordinates, as well as some variables required for pathfinding.
More importantly, it has a Boolean which knows whether the node has changed (i.e.

removed from the map of Morton codes). Because these are the same nodes that
make up the path, the pathfinding algorithms know that they have to recompute
their path. As soon as a node has changed (i.e. set to non-walkable) the node is
removed from mQTree, but the node itself is not deleted as it could still exist inside
a path, which could lead to invalidated memory. The pathfinding algorithms are
therefore required to delete nodes that have changed.

struct OctreeNode{
OctreeNode *Children[8];
OctreeNode *Parent;
OctreeNode *PhiParent;
uint fast64 t index;
uint fastl6 t attribute, level, x, y, z, h;
float g;
bool isLeaf = false;
bool isFull = false;
bool isChanged = false;

}
Listing 4.6: The octree node class

The svO is created by first generating Morton codes for all the walkable voxels in
the regular voxel grid. This is done using the libmorton library by Baert [2018]. In

45

46 | IMPLEMENTATION

essence, only two main functions of the library are used: to encode coordinates into
Morton code, and to decode Morton code into coordinates. The library however is
very particular in using fixed-width integer types, which is rather commonplace in
graphics programming, thus not unusual, but something to take note of when doing.
Thus, the two procedures that are used to convert coordinates to Morton code and
vice-versa are visible in Listing 4.7.

X, ¥, Z;
code;

code = libmorton::morton3D 64 encode(x, y, z);

7 libmorton::morton3D 64 decode(code, x, y, z);

Listing 4.7: Encoding and decoding morton codes

After Morton codes have been generated for all walkable voxels, the std: :vector<>

holding these codes needs to be sorted (ascending) and then put in a std: :map<> to

ensure sequential first in first out (FIFO) access to the codes, after which the std: : unordered_map
is also filled. Because only the lowest level of the “tree” is used, it is not a full octree
implementation, and therefore I will start referring to this structure as a sparse Mor-

ton grid from here on out, however, in the code snippets, this will still be called the
SparseVoxelOctree and OctreeNode classes.

4.4 SIZES

When comparing the two main data structures we can see in Table 4.1, that the Spar-
seVoxelOctree is almost 3 times as large as the VoxelGrid, as it needs a lot of “scaf-
folding” to function. However, because we do not use the full SparseVoxelOctree,
but only the leaf nodes as the SparseMortonGrid, we can see in Table 4.1 that this
already saves quite some space.

Data object Size (byte)
Voxel 16
Node 64

OctreeNode 144
VoxelGrid 16.858.112

SparseVoxelOctree 44.307.792
SparseMortonGrid ~ 36.529.056

Table 4.1: Sizes of different data structures and types used for the dataset

4.5 HEURISTICS

As stated in Section 3.4.1, the choice of heuristic is of great importance to the per-
formance of the paths generated by an algorithm, as well as the quality of the paths.
Sources like Patel [2022] and Sharma and Kumar [2016] posit that Manhattan dis-
tance is the most efficient in terms of computation, as well as an oft stated rule that
one should avoid having to compute the square root if one can due to its compu-
tational expense. However, in Table 4.2, we can clearly see that Euclidean distance
actually has the lowest mean calculation time for a test run where the heuristics are
compared. We can also see that Euclidean and Diagonal distance provide more nat-
ural looking paths, while a heuristic of 0, which is when A* regresses to Dijkstra,
gives the straightforward shortest path. When looking at path lengths, we see that

4.6 IMPLEMENTING A" | 47

(a) No heuristic (Dijkstra) (b) L, distance (Manhattan)
(¢) L, distance (Euclidean) (d) L., distance (Diagonal)

Figure 4.5: A comparison of the different heuristics in a testing run (n,,,. = 6).

indeed Dijkstra does give the shortest path, with Euclidean and Diagonal both giving
shorter paths than Manhattan. Euclidean gives shorter paths with vertical movement
included, thus Euclidean heuristic is used for all pathfinding algorithms.

Heuristic Mean calc Mean number of Path length Path length
time [s] nodes visited (435106)-(12579) (4538 194)-(149 5 210)
Dijkstra 10.67 272960.72 97.94 183.27
Manhattan 7.47 92238.89 103.74 200.77
Diagonal 6.76 115149.48 98.53 187.17
Euclidean 4.92 125856.65 100.18 184.1

Table 4.2: The time statistics of the heuristics tested on A*.

4.6 IMPLEMENTING A"

When using A*, two different approaches are used for the two data structures, and
both will be discussed in this section. The main differences between the approaches
will be highlighted, but for the most part, the approaches are of course very similar.

The A* pathfinding is launched from the U], in a separate thread, by the anonymous
functions visible in Listing 4.8. These threads detach to separate them from the main
thread. As can be seen, both functions are identical except for the data structure and
associated mutexes to ensure proper data access. While most of the parameters of the
function are self-explanatory, the _running and i parameters are of note: _running is
an atomic Boolean, which is a variable that will be set to false if the simulation needs
to come to an end, thus signalling all the pathfinding threads that they should stop.
i is an ID value for every thread, which is unique and will later on also be used to
identify a path in the voxel use, as shown in Table 3.1. Every pathfinding thread then
finds its starting point by using the its ID value as index from the list of starting points.
Next, the closest exit must be determined, which is done by simply checking which

48

©® N B W N R

| IMPLEMENTATION

exit is closest, according to the heuristic, which as described in Section 3.4.1, is set to
Euclidean distance for A*.

std::thread th = std::thread{[, 1] {
a_star_search_grid(voxelGrid, _mtx, _instanceData, _voxelsize,
i, speed, running, incremental);
}}; th.detach();
std::thread th = std::thread{[, 1] {
a star search svo(voxelOctree, svo mtx, instanceData, voxelsize,
i, speed, _running, incremental);
}};th.detach();

Listing 4.8: Launching the pathfinding threads

When the algorithm has a start Voxel, and a goal Voxel, it can instantiate its utility
data containers, of which there are three. A priority queue, and two maps, namely
std: :map<Voxel, Voxel> came fromand std::map<Voxel, int> cost so far. The
priority queue is a more convenient wrapper for std: :priority_queue, that has been
implemented in the same manner as Patel [2022]. It has a few key functions, put (T
item, priority t priority), which places an element in the queue with a certain
priority value, top() which returns the best item of the queue, and get () which re-
turns the best item of the queue, and removes that item from the queue. Because the
standard C++priority queue returns the items with the largest priority, and with A*
we want nodes with the lowest f (1) values, the wrapper changes this by comparing
items in the queue with std: :greater instead of std: : less.

When these data structures are initialised, the starting Voxelis added to the came_from
map, with it mapping to itself (as in Algorithm 2.2, the starting node is its own par-
ent). Also the starting Voxel is added to cost_so_far with cost 0, and lastly inserting
it into the PriorityQueue, meaning the main loop of A* can start. The main A* loop
is a while loop, which is true while PriorityQueue is not empty or breaks when the
current voxel is the goal voxel. In the implementation, the PriorityQueue is called
the frontier, which is to signify that these are the voxels that are currently being “in-
vestigated” by the algorithm. The first step in the loop is getting the voxel that has the
lowest f (n) = g(n) + cost() value. This will be the current voxel of the loop iteration.

(!frontier.empty()) {
current = frontier.get();

(current == exits) {

v

When it has been ascertained that the current voxel is not the goal, the algorithm
can continue and explore the neighbouring voxels of the current voxel. Due to the
nature of the neighbour access differing vastly between the two data structures, the
two different methods can be seen side by side below. With the grid having easier
neighbour access, lots of if-statements are needed to see if the neighbour is truly a
navigable voxel, whereas with the SparseMortonGrid, it is simply the case of check-
ing if the voxel is in the tree, and if it hasn’t yet been visited by the algorithm.

4.6 IMPLEMENTING A" |

(next: current.getNeighbours18()){ (&conn:
((next.x && next.y && next.z >= 0) getNeighbours18 morton(current->x,
&& next.x <= voxels.max x - 1 current->y, current->z, current->
&& next.y <= voxels.max y - 1 index)) {
&& next.z <= voxels.max z - 1) { ('octree.mQTree[level].contains(
(voxels(next.x, next.y, next.z) conn))
=0 next = octree.mQTree[0][conn];
&& voxels(next.x, next.y, next. (next->attribute == voxellD)
z) !'= voxellID g
&& voxels(next.x, next.y, next.
z) =1
&& voxels(next.x, next.y, next.
z) '=3) {

Calculating the new, tentative, cost to the neighbouring voxel is done by checking the
cost_so_far map and looking up the cost it takes to get to the current voxel, and then
using the diagonal distance to calculate the cost of going to the neighbouring voxel.
If this is cost is not yet in the cost_so_far map or smaller than the cost of going from
current to the neighbour, the cost is updated or entered into cost_so_far and the
tentative cost becomes the cost of this voxel. Then, the h(n) value for the voxel can be
calculated with the Manhattan distance heuristic.

new cost = cost so far[current] + distDiagonal(current, next);

(cost so far.find(next) == cost so far.end()
|| new cost < cost so far[next]) {
cost_so_far[next] = new_cost;
priority = new cost + heuristic(next, exits);

To ensure that this neighbour is not visited again, the neighbour is set to the Vox-
elID value, except when it is the goal node. Before doing this however, because vox-
els(...) is accessed, which is the name of the VoxelGrid data object in the this
function, and is thus a resource accessed by up to 32 threads at a time. The mutex
guarding this object needs to lock it for this thread exclusively. After the neighbour-
ing voxel has been set to the VoxelID value, the neighbour can be inserted in the
priority queue, and the parent-child in the path is recorded in the came_from map.
Once all the neighbours of the current voxel are visited, the main loop ends, and a
new current voxel is taken from PriorityQueue, and this is repeated until either the
entire dataset is traversed and the goal is not found, or the goal is found, and the loop
is exited via a break statement.

mutex.lock(); mutex.lock();
(next !'= exits) { (next !'= exits) {
voxels(next.x, next.y, next.z) = neighbours->attribute = voxellID;
voxellD; }
} mutex.unlock();

mutex.unlock();

frontier.put(next, priority);
frontier.put(next, priority); came from[next] = current;
came_from[next] = current; visited.push back(next);

As is visible in the code snippet above, the SparseMortonGrid version of A* main-
tains an extra data container, visited, which is just a std::vector<OctreeNode*>
that holds pointers to all the nodes that have been visited by this thread of the A*
algorithm. This container is used solely for cleanup purposes.

After the main search loop has broken, either when the entire dataset has been ex-
hausted or by reaching the goal voxel, the path has to be reconstructed by traversing
the voxels backwards from the goal towards the starting voxel. This is done in both
the SparseMortonGrid and the VoxelGrid in very similar functions.

50

| IMPLEMENTATION

std::vector<Voxel> path; std::vector<OctreeNode*> path{};
current = goal; current = goal;
(current != start){ (current !'= start){
(current !'= Voxel{0,0,0}){ (current !=){
path.push back(current); path.push back(current);
current = came_from[current]; current = came_from[current];
} { } {
std::cout<<"No path found!\n"; std::cout<<"No path found!\n";
} }
} }
path.push back(start); path.push back(start);
std::reverse(path.begin(), path.end()); std::reverse(path.begin(), path.end());
path; path;

These functions find their way back from the goal voxel to the starting voxel trough
the came_from map, and add these voxels to a path vector. Once the path is done, the
path is reversed, but this is actually not even strictly necessary when not dealing with
an incremental search algorithm (which this implementation of A* is not).

When the path has been reconstructed, the pathfinding is done, the stats of this run
are recorded to a . csv file linked to this thread, and the voxels that make up the path
are sent to the _instanceData rendering buffer, where the main rendering thread will
receive them and render them accordingly.

When the data changes however, regular A* has no tricks up its sleeve and has to
recalculate the entire path again. And since the VoxelGrid data structure has no idea
about anything other than the integer values as certain coordinates, when running
the simulation for this data structure, the algorithms will simply run on an interval
of n seconds, which is the speed parameter of the A* function. The SparseMortonGrid
data structure is a much more intelligent data structure that does remember things, and
stores things other than a simple attribute value. Consequently, when running the
simulation on the SparseMortonGrid, a convenience function pathChanged is used to
determine whether A* needs to recalculate the path or not. This is done by utilising
the isChanged Boolean member of the OctreeNode class, which is only set to true if
it is affected by a fire. Thus, the pathChanged function simply scans the previously
calculated path to see if any of them have changed in the meantime, which is signifi-
cantly cheaper than recalculating the path.
change = g
(&e: path){
(e->isChanged) {
change = ;
change;

change;

If the path does need to be recalculated, in both the case of the SparseMortonGrid and
the VoxelGrid the utility containers came_from, cost_so_far and PriorityQueue are
emptied. Before doing that, the came_from is used to reset all the voxel to navigable.
Then when a new path has been found by A*, then using the path vector, the instance
buffer needs to be cleared of the previous path. This is done by iterating over the
instance buffer and removing elements that match the ID value of the thread. Lastly,
the path vector itself can be cleared and filled with a new path. With this process
repeating until the simulation comes to an end.

4.7 IMPLEMENTING THETA® \

4.7 IMPLEMENTING THETA®

When adapting Theta*, two different approaches are used for the two data structures,
and both will be discussed in this section. The main differences between the ap-
proaches will be highlighted, but for the most part, the approaches are of course
very similar. Theta* is a much more complicated algorithm, that for its main loop in
essence, though rather similar to A*, uses more auxiliary functions.

Theta* on the VoxelGrid uses a child class of the Voxel class used for A*, and de-
scribed in Listing 4.2. This Node class has a few extra members that are required for
performing Theta* (g(n), and the parent and child pointers), as well as members
that are required for Phi* pathfinding, namely rhs(n) and k, however, this is not im-
plemented at this stage.
Node: Voxel{
Node *parent, *child;
g, rhs;
std::pair< , > k;
Voxel: :Voxel;

std::vector<Node*> getChildren(){
std::vector<Node*> kids;
(n: ->getNeighbours26()){
tmp = Node () ;
tmp->x = n.x;tmp->y = n.y;tmp->z = n.z;
kids.emplace back(tmp);

kids;

Listing 4.9: The Node class

When looking at the containers used for Theta*, these are essentially the same as in
A*, with PriorityQueue and came_from being used. cost_so_far however, is not
used, as for Theta*, the g(n) values are stored with the Node class. The initialisation
of Theta* is in essence also the same as in A*, with the exit being chosen that is the
closest to the starting node, and the starting voxel inserted into came_from with itself
as its parent. A marked difference is that newly created instances of Node are passed
to the initialiseVertex() function before further use.

initialiseVertex(Node *node) { initialiseVertex(OctreeNode *node){
node->g = 0 (node->attribute < 11) {
node->parent =] node->g =
} node->PhiParent = ;
} {
}
}

We can see the different approaches, with new Node instances being created on the
fly, and the OctreeNode objects of course already being inside the SparseMortonGrid,
therefore the need exists to check if they are not already used by another path thread
(attribute integers from 11 and up signify path use).

When all this is done, Theta* employs roughly the same main loop as A*, a while
loop that is true while the priority of the best element of PriorityQueue is smaller
than the g(n) value of the goal voxel (which is initialised to be infinity). The loop
gets the best item from the queue, and starts visiting the neighbouring voxels of

the current voxels in the same manner as in A* and then things start to diverge.

51

52

| IMPLEMENTATION

initializeVertex(next);

came_from[neighbour] = current;

updateVertex(current, neighbour, goal,
voxels, voxelsize, frontier, voxellD);

mutex.lock();

voxels(neighbour->x, neighbour->y,
neighbour->z) = voxellID;

mutex.unlock();

(initializeVertex(neighbours)) { ;
came_from[neighbours] = current;
updateVertex(current, neighbours, goal,

octree, voxelsize, frontier,
voxellD);
visited.push_back(neighbours);

mutex.lock();
neighbours->attribute = voxellID;
mutex.unlock();

(neighbours->index == goal morton) {
goal->g = current->g;
goal->PhiParent = current;
came_from[goal] = current;

b {

}

As is visible above, we can see that the actually relevant pathfinding operations are
done in the function updateVertex, and that in the case of the SparseMortonGrid, if
the voxel is not free, and can not be initialised, it cannot be visited. This has conse-
quences for multi-actor pathfinding, because this means that one voxel can only be
part of one path at the same time, but this can also sometimes lead to the algorithm
not finding a path while there should be one, therefore, when performing pathfind-
ing on the SparseMortonGrid, the Theta* algorithm uses an extra looping condition
in its outer loop: if a previous path was unsuccessful, try again. This is of course only
possible when you know that there is a path between start and goal, which should
always be the case in the dataset.

Looking at the updateVertex() function, it is a straightforward implementation of the
function as defined in Algorithm A.1. The main purpose of this function is to compute
the cost of visiting a voxel, which is implemented in the computeCost function, and if
this new cost is better than the old cost of the voxel, it will reinsert the voxel into the
queue.

g old = next->g;
computeCost(current, next, voxels,
voxelsize, voxellD);
(next->g < g old && voxels(next->x, next

g old = next->g;

computeCost(current, next, octree,

voxelsize, voxellD);
(next->g < g old && next->attribute !=

->y, next->z) != voxelID){ voxelID){
queue.put(next, next->g + dist(next, queue.put(next, next->g + dist(next,
goal)); goal));
} }

The main difference between Theta* to A* happens in the computeCost function. This
is where the algorithm decides whether the voxel is within the line of sight, and the
voxels in between can be skipped. In this function, the ray from the current voxels’
parent to the neighbouring voxel of the current voxel is traced using the procedure as
described in Algorithm 3.5, and if this line does not contain any obstacles, the parent
of the neighbouring node will be set to the parent of the current node. However,
as this is repeated, more and more “corners” can be cut because the parent voxel
is selected, meaning the algorithms keeps moving backward along the parents and
checking the Los. In the code snippet below we can see that these functions are almost
identical between the two data structures.

4.8 IMPLEMENTING D*-LITE |

std::vector<Node*> line = raytrace3d(std::vector<OctreeNode*> line = raytrace3d(
current->parent, next, voxels, voxelID current->PhiParent, next, octree,
N voxellD);
(line0fSight(line, voxels, voxellID)){ (line0fSight(line, octree, voxelID)){
line.erase(line.begin(), line.end()); line.erase(line.begin(), line.end());
new g = current->parent->g + dist new g = current->PhiParent->g +
(current->parent, next); dist(current->PhiParent, next);
(new g < next->g){ (new g < next->g){
next->parent = current->parent; next->PhiParent = current->
next->g = new g; PhiParent;
} next->g = new g;
} { }
} {
new g = current->g + dist(current
, next); new g = current->g + dist(current
, next);
(new g < next->g){
next->parent = current; (new_g < next->g){
next->g = new g; next->PhiParent = current;
} next->g = new g;
} }
}

Theta*’s main loop also ends when either the entire dataset has been exhausted, or
the goal node has been reached. Like in A*, the path needs to be traced back from goal
to start. While this could be done with either came_from or the parent pointers, the
latter often produces unexpected behaviour, and in the implementation, came_fromis
more solid. Therefore, Theta*’s function for reconstructing the path is identical to A*.

After the path is found and reconstructed, it is sent to the instance buffer in the same
manner as in A*, and cleanup is also done in the same manner as in A*.

4.8 IMPLEMENTING D*-LITE

Multiple attempts have been made trying to implement D*-Lite, with both a self writ-
ten approach, using the Node and OctreeNode classes (because they use the same
values) as well as using an open source implementation of D*-Lite. Both were mod-
erately successful in initial tests: the implementations perform well when there are
no obstacles that require sharp corners, but when they do, the algorithm gets stuck
and breaks down.

However, there is another issue with D*-Lite. D*-Lite has been conceived as an in-
cremental, actor-centred, path planning algorithm, for which each actor maintains
their version of the search space, because it requires accurate and up-to-date infor-
mation about every node in the search space to replan paths. This information is
made concrete in the g(n) and rhs(n) values. But since these values depend on the
start and goal node, every actor needs a unique version of the dataset to find their way.
What this means on the implementation side, is that SparseMortonGrid or VoxelGrid
would need to be copied to each thread, and then somehow the fire simulation algo-
rithms would need to distribute the simulation information to each thread individ-
ually, which is not impossible but rather impractical. The bigger issue is that every
thread would require the entire dataset of memory, increasing the memory footprint
of the simulation by the size of the SparseMortonGrid or VoxelGrid for every added
actor. For a simulation running paths for the full dataset, meaning a path from every
room this would mean an extra 512MB when using the VoxelGrid, and a whopping
1.4GB extra when running the full simulation on the SparseMortonGrid.

53

54

| IMPLEMENTATION

(a) D*-Lite attempting to find a path from the blue (b) The path produced by the adapted implementa-
voxel to the green voxel, with explored voxels in tion of D*-Lite
red

The implementation that was built from scratch employs much of the same structure
as the implementation described for A* an Theta*, and is a faithful implementation of
the algorithm described in Algorithm 2.4. The implementation has a main function,
a computeShortestPath() function which comprises of the same main loop as A%, a
while loop based on a conditional while loop, and an updateVertex() function that
will check the g(n) and rhs(n) values for a voxel and its successors and predecessors
(i.e. neighbours). However, PriorityQueue needs a different priority value, because
D*-Lite needs two dimensional keys to function. Thus PriorityQueue is now defined
as as PriorityQueue<Node*, std::pair<double, double>>. The PriorityQueue is
sorted lexicographical order using its two-dimensional key. When the algorithm was
put together, initial experiments found that it had no problem finding paths that were
straight or slightly curved, but, as stated before, when sharp corners needed to be
made, then the algorithm would run into problems.

In Figure 4.6a we can see clearly that with this implementation, D*-Lite is unable to
move past the x and y values of the goal point, and that it gets stuck. This experiment
was repeated with all the starting points and all the exits, and similar behaviour was
observed. This led to a search for an existing implementation, to eliminate any suspi-
cion of implementation error.

(cur != s goal) {

cmin = 0

tmin;
Voxel smin;
(i=neighbours.begin(); i'!=neighbours.end(); i++) {
val = cost(cur,*i);

val2 = trueDist(*i,s goal) + trueDist(s start,*i);
val += getG(*i);

(close(val,cmin)) {
(tmin > val2) {
tmin = val2; cmin = val;smin = *i;

}
} (val < cmin) {
tmin = val2; cmin = val; smin = *i;
}
}
n.clear();
cur = smin;

}

This led to using existing 2-dimensional implementation of D*-Lite by Neufeld [2015],
which was subsequently retooled for 3 dimensions, but which alas also generated
many problems when dealing with obstacles. In this implementation however, the
trouble is in the replanning function, where the path is constructed by using a tie-
breaking function that is supposed to prevent the algorithm from simply choosing

14

4.9 SMARTER PATHS: TIME-AWARE A" |

a path at 45° from goal to start. However, unfortunately, this is exactly what was
observed. In the code above we can see that the value with the lowest g(n) value is
selected, and ties are broken using the val2 parameter. The result is however that the
algorithm prefers paths that are close to the the ideal line without obstacles instead
of preventing this, as can be seen in Figure 4.6b, which is almost a 45° path straight
into a wall, not ideal.

4.9 SMARTER PATHS: TIME-AWARE A*

The implementation above describes some useful successes and challenges when im-
plementing the methodology, but as also stated in the methodology, improvements
can be made to make the paths better and more useful for answering the research
question. By using a version of A* that is time-aware, while simpler than LPA* or
D*-Lite, but more complex than A* itself, one could achieve a version of pathfinding
that accounts for the other calculated paths as well as the emergency situation in the
building. This version of A* is however only possible with the SparseMortonGrid
data structure, because the information needs stable and reliable information about
the voxels across the threads.

The starting point of this implementation is same as for A* that was created for the
SparseMortonGrid and described in Section 4.6. The first thing to change is the data
structure for the path itself, which is changed from a std: : vector<OctreeNode*>to a
std: :deque<OctreeNode*>. A deque is a double ended queue that allows for the data
insertion and removal at both the front and the back of the queue. This way, we can
reliably access the first voxel in the path, and pop it from the queue without issues,
whereas these positions are not guaranteed with a std: :vector<T>.

(pathChanged(path, mutex) || first || !successfulPath(path)) {
main A* loop...

(&nodes: visited){
mutex.lock();

(nodes->attribute == voxelID) nodes->attribute=2;
mutex.unlock();

3

path = reconstruct path SVO(start, exits, came from, voxelID);

(path.front()->isOccupied) std::this thread::sleep for(std::chrono::milliseconds
(110));

path.front()->isOccupied = ;

push to buffer(path.front(), pathcol, voxelID, mutex, vSize, instanceData);

Listing 4.10: The pathfinding parts of the time-aware A* algorithm

Another thing is that the main A* loop runs while the simulation is running, and only
recomputes its paths when the paths have changed, but otherwise does not do any-
thing. This incremental A* must move the starting point continuously, but must do
so without recomputing the path, if this isnot needed. In Listing 4.10 and Listing 4.11,
we can see the essential parts of the code, and see that outside of the main A* loop,
it is significantly more complex than regular A*, because it needs to clearly manage
its location per at all times and avoid collisions with both other paths and the fire. To
handle this, an extra Boolean has been added to the OctreeNode class: isOccupied,

55

56

1

20
21

22

24
25

27
28
29
30
31
32
33

35
36
37

| IMPLEMENTATION

that is separate from whether the voxel in question is affected by the fire. This class
member is only concerned with the occupancy of the paths in the voxel, and of course
ensures that it can only be occupied by one path at a time.

} {

(path.empty()) B

(near(path.front(), exits)){
mutex.lock();
start->attribute = 2;
start->isOccupied = H
(all: path){
all->attribute = 2;
all->isOccupied = 0

}

mutex.unlock();

std::cout<<"Thread "<<id<<" has exited\n";

v

mutex.lock();
start->attribute = 2;
start->isOccupied = ;
(!'path.front()->isOccupied && !path.front()->isChanged) {
start = path.front();
start->isOccupied = B
path.pop_front();
mutex.unlock();

push _to buffer(start, pathcol, voxelID, mutex, vSize, instanceData);

std::this thread::sleep for(std::chrono::milliseconds(110));
} {

std::cout<<"conflict at "<<path.front()->index<<"\n";
mutex.unlock();
std::this_thread::sleep_for(std::chrono::milliseconds(110));

Listing 4.11: The moving parts of the time-aware A* algorithm

We can first see that this incremental version uses the same successfulPath function
as the Theta* implementation because this version is more likely to not find a path on
the first try as it is not allowed to use any voxels that are in occupied by other paths,
but it is allowed to compute a path that contains voxels shared by multiple paths, as
long as it doesn’t occupy them at the same time. Inside the main pathfinding loop
this is again handled by, checking if a voxel attribute = voxelID. But to ensure that
only the occupied part of path is set to the correct attribute, the main A* loop must do
more bookkeeping, but clearing all the voxels it has used for pathfinding again to be
walkable, with the exception of the voxels that now constitute the occupied portion
path, which have to be set to occupied. In the real-time visualisation, care has to
be taken to allow the temporal nature of this algorithm to be shown. This is done by
showing the current voxel with a short tail of a few voxels moving around the dataset.
This makes it easy to visually debug and check if the paths are not colliding.

5 RESULTS

In this chapter, the results of the experiments which were outlined in Chapter 3 and
implemented according to Chapter 4, will be discussed. To start, a general overview
of the performance of the different algorithms will be presented, after which every
algorithm/data structure combination will be analysed in more detail.

5.1 OVERVIEW

Algorithm Success Rate [%]* Average memory footprint when
running on max [MB]
Idle> - 464.8
A* on Grid 100.00 936.70
A* on Morton 100.00 860.87
Theta* on Grid 16.00 5496.42
Theta* on Morton 50.00 528.00

Table 5.1: The performance of the algorithms.

In Table 5.1, we can see that A* has the highest success rate, with the algorithm always
being able to find a safe path before the simulation has ended. Theta* on the regular
grid has the lowest success rate, and Theta* on the Morton grid has a 50% success
rate. This means that Theta*, on a regular grid and on the Morton grid, is not able
find a path before the end of the simulation in 84% and 50% of the runs respectively.
A possible explanation for this could be the increased complexity of the algorithm in
general compared to A*. Furthermore, the regular grid consumes more memory than
the Morton grid, and this could explain why the Theta* on the regular grid has such
a low success rate. When the simulator application is idle, we see that it consumes
about 460MB of memory, which is quite something. Concerning the algorithms, we
see that Theta* on the regular grid has the highest memory footprint, with almost
50GB, and Theta* on the Morton grid has the lowest footprint. A* is more memory
efficient when implemented on the Morton grid, with only about 300MB required to
run a simulation with 30 evacuees.

Algorithm Mean calc Maxcalc Mean no. of Path length
time [s] time [s] nodes visited (45 38 194)-(149 5 210)
A* on Grid 3.54 59.28 28330.42 159.61
A* on Morton 5.56 20.02 125560.29 160.00
Theta* on Grid 0.70 16.13 22120.14 178.00
Theta* on Morton 1.92 16.50 26465.43 178.00

Table 5.2: The time statistics of the algorithms and the mean number of nodes visited per al-
gorithm.

4 Success rate refers to algorithms finding paths before the simulation comes to an end.
5 Idle refers to the simulation application running without any algorithms running.

57

58

| RESULTS

In Table 5.2, we can see that Theta* on the regular grid has the best time performance,
and A* on the Morton grid has the worst. This is not a complete representation of
the performance of the algorithms, because Theta* on the regular grid fails 86% of
its runs, and this is not taken into account for the time calculations. While Theta*
on the Morton grid also has good time performance, taking the success rate into ac-
count, a similar effect can be seen here, even though the success rate for Theta* on
the Morton grid is much higher than on the regular grid. When looking at A*, the
regular grid based implementation has the better mean value, but its extremes are
higher and lower than the Morton grid counterpart. When looking at the number of
nodes visited, we can see that Theta* on the regular grid has the best performance,
and A* on the Morton grid has the worst performance. These results for Theta* are
however skewed by the low success rate, and are mostly ground floor paths. The 5x
increase for A* on the Morton grid is strange, as this is the same algorithm as the
regular grid implementation. Looking at the path lengths of a sample path, we see
that both algorithms have the same path length regardless of data structure. Theta*
should theoretically have shorter paths, but it does not.

5.2 A" ON A REGULAR GRID

For A* on the regular voxel grid, the results are visible in Figure 5.1. In the top right
we can see that the computation time rises linearly with increased path lengths. Even
though most of the path computation times are still under 10 seconds, the very long
computation times > 30[s] only occur when running the simulations with a very high
number of starting points, with 30 and 20 starting points being the main contributors
of these long computation times. We can see that for comparable paths lengths when
running the simulation on only 3 starting points, very good computation times can be
achieved, as is evidenced by the purple and dark blue regression lines in Figure 5.1a,
which represent 3 and 6 starting points respectively.

In Figure 5.1b, on first glance, we can see a similar pattern to Figure 5.1a, where the
number of starting points really affects computation times. We can, however, also see
a stable distribution pattern along the number of nodes visited, which indicates that
for repeat runs (of which this instance of A* has many), A* is stable and visits the
same number of nodes. Also visible is the same phenomenon as in Figure 5.1a, that
paths that visit upwards of 100.000 nodes have very long computation times when
the simulation runs many different threads, but when only running 3 threads this
computation time is comparable with much shorter paths.

Moving on to comparing the number of nodes visited to the path length, the first
thing that is very obvious is the clear gulf between approximately 60.000 nodes and
120.000 as nodes visible in Figure 5.1c. This could be all the paths that start from
the second floor, which have to check many more nodes, due to their sheer distances
from the exits.

In Figure 5.1d, we see the distribution of computation times for the different simu-
lations. A similar pattern emerges where high loads in the simulation lead to high
computation times. The distribution of computation times is spread out much more
in the high load simulations, with the low load simulations having very stable and
reliable computation times, and the high load simulations having both faster and
slower computation times. This is probably the case, because due to the nature of the
methodology, the high load simulation contain all the paths (both the shortest and
the longest) whereas this is not the case for the low load simulations, which could
only randomly contain long paths.

700
600
500
)
[}
x
£ 400
-
©
c
9 300
=
©
a
200
100
[]
0
0 10
500
Number
of evacuees
e 3
400 e 6
e 10
—_ e M
3 o 15
g 300 o 20
- o 30
§S)
c
[0}
-
< 200
©
o

100

0K 25K

20 30 40
Time (s)

(@)

50K 75K 100K
Nodes visited (voxels)

()

Number

of evacuees

125K

3

6

10
1
15
20
30

[]

60

150K

250K

200K

150K

100K

Nodes Visited (voxels)

50K

0K

0.175

0.150

0.125

0.100

Density

0.075

0.050

0.025

0.000

5.2 A* ON A REGULAR GRID | 59

Number

of evacuees
e 3
e 6
e 10
o M
e 15
o 20
@ 30

0 10 20 30 40 50 60
Time (s)
(b)
Number

of evacuees

10 107" 10° 10’ 10°
Computation time per path (s)

(d)

Figure 5.1: Performance results for A* on a regular grid. (a) Time and path length. (b) Time
and nodes visited. (c) Path length and nodes visited. (d) Density of time per path

on a logarithmic scale.

Figure 5.2: Paths generated by A* on a regular grid. Some of the paths, such as purple, are
using a route which will soon become blocked.

If we look at what the paths look like, we can see that the paths generated by this
method are correct, and seem to be similar to the shortest paths described in Chapter 3
and Chapter 2. We can see that two of the paths in Figure 5.2 are using the semi-

60

| RESULTS

circular staircase, under which the fire in the simulation is situated. This means that
the paths calculated by these thread will be different as soon as the voxels containing
the path are affected. This changed path route is visible in Figure 5.3, where the
purple path now goes through the other staircase, before going to their original exit.
Lastly, we can see that voxels are shared between paths.

Figure 5.3: Paths generated by A* on a regular grid. The purple path that used to use the semi-
circular stairs is now going by another route.

5.3 A" ON AN MORTON GRID

In Figure 5.4, we can see the detailed performance results for A* on the Morton grid.
In Figure 5.4a, we see that the general tendency that was present in Figure 5.1a is also
present here: simulations with a lower load perform better than high load simula-
tions and longer paths lead to longer computation time, a fact which is exacerbated
by the aforementioned simulation load. If we look carefully we can also see that this
does not hold true for the simulation with the lowest load (3 starting points), where
we can see that the longest path is actually computed in less time than the shorter
path. Lastly, if we look at the graph as a whole in comparison to Figure 5.1, we can
see that the variance in computation time is lower for the Morton grid than for the reg-
ular grid, with the longest computation time being about half as long as the longest
computation time on the regular grid.

In Figure 5.4b we see the same pattern to the regular grid based A* algorithm, as
expected, with time increasing when more nodes need to be visited, and with the
simulation load exacerbating this as well. In Figure 5.4c, we can see a less uniform
correlation between path length and nodes visited than in Figure 5.1c, with the low-
est load simulation again going against the grain. In general it also seems that longer
paths do not necessary lead to much higher numbers of nodes visited for A* on the
Morton grid. However, from looking at Table 5.2, we know that A* on the Morton
grid visits many more nodes that the regular grid. Thus, if we compare Figure 5.4b to
Figure 5.1b, the maximum values for the Morton grid are about 50.000 nodes higher,
which is as of yet unexplained.

Lastly, we see that in Figure 5.4d, as expected, a similar pattern emerges as in A* on
the regular grid, with the highest peak with the high load simulation being around
10'[s]. This is similar to A* on the regular grid, but the bulk of the computation
times is well around and below 10°[s], which is better than the regular grid. Overall,
looking at the time performance of A* on the Morton grid we can say that it is gen-
erally faster than A* on a regular grid, especially when dealing with larger distances.
However, its mean is slightly higher than the regular grid.

5.3 A* ON AN MORTON GRID | 61

600 T T
Number 300K
of evacuees
s0 ® 3
e 6 [250K
e 10 ° s
. o 15 PN
Za00 oy v S 200K . /
X oo o ° °
g © 30 Poe e o ° s /
e
£ / o]
5 300 £ 150K . ®
[0} >
E‘ 2 Number
£l 3 of evacuees
£ 200 S 100K o 3
e 6
50K o 10
100 ° 15
o 20
0K @ 30
O I
0 5 10 15 20
Time (s)
(a) (b)
600 T 1
Number Number
of evacuees 0.25 of evacuees
s0 © 3 30
e 6 q 20
e 10 15
e | ® 15 A 0.20 "o
2 o 20 10
X o
g o 30 ® o . 6
% 0.15
£ 300 g
g a
-
3 0.10
& 200 :
100 0.05 !
0 | 0.00 —
-3 -2 -1 0 1 2
0K 50K 100K 150K 200K 10 10 10 10 10 10
Nodes visited (voxels) Computation time per path (s)
(9) (d)

Figure 5.4: Performance results for A* on a Morton grid. (a) Time and path length. (b) Time
and nodes visited. (c) Path length and nodes visited. (d) Density of time per path
on a logarithmic scale.

Figure 5.5: The yellow path starting on the first floor in the centre of the image is using the
semi-circular stairs.

62

| RESULTS

Figure 5.6: The yellow path is not using the other staircase.

When we look at what the paths look like, we can see that the paths follow the same
behaviour as A* on the regular grid, which is to be expected. We can also see that for
the yellow path in Figure 5.5 is diverted in Figure 5.6.

5.4 THETA® ON A REGULAR GRID |

5.4 THETA® ON A REGULAR GRID

Because Theta* on the regular grid has such an abysmal success rate (only +16%),
there are not a lot of data points to assess its performance. The low success rate of
this implementation is probably twofold: the grid generates neighbours on the fly,
and Theta* can generate many neighbours while doing its LoS checks. All these extra
neighbours come at a computational cost, which slows down the entire simulation,
and makes it so that not many paths are found before the simulation is finished. In
Figure 5.7, the general tendency is similar to what was seen in A*. What can be noted
is that Theta* does not have the highest number of nodes visited (that is A* on the
Morton grid), which is may be due to only successful runs being included in these
statistics. It is unfortunately not possible to include the failed runs. Theta* visiting
less nodes than A* is surprising when looking back at Table 5.1, where the memory
footprint of Theta* on a regular grid can be observed to be about 50 gigabytes. How-
ever, Theta* has found longer paths in less time than it takes A* to sometimes find
paths of equal or shorter length.

600K

Number Number
1400 of evacuees of evacuees
e 3 e 3
e 6 500K e 6
1200 e 10 e 10
—_ e 15 2 400k e 15
3 1000 20] 20
x
g 30 = 30
£ 800 2 300K
2 k2]
] >
= 60 2
& § 200K
400
100K
200
Lo ateuier—a ;:%/'
o | = 0K
0.0 25 5.0 7.5 10.0 125 150 0.0 25 5.0 75 100 125 150
Time (s) Time (s)
(a) (b)
600 06
Number Number
of evacuees of evacuees
500 e 3 05 30
e 6 1 20
e 10 1 15
= 400 e 15 — M
2 20 0.4 1 10
) 30 6
= 2
£, 300 §03 I
S a
-
<
& 200 0.2
100 5/ 0.1
0 0.0
0K 100K 200K 300K 400K 107 10" 10° 10’ 10°
Nodes visited (voxels) Computation time per path (s)
(9) (d)

Figure 5.7: Performance results for Theta* on a regular grid. (a) Time and path length. (b)
Time and nodes visited. (c) Path length and nodes visited. (d) Density of time
per path on a logarithmic scale.

In Figure 5.8 and Figure 5.9, we can see that the path zigzags near door openings,
when it seems to think that it can reach its destination sooner like that, and then comes

63

64

| RESULTS

to its senses and tries the way it was going again. The any-angle nature of Theta* can
not be seen, because the algorithm does seem to prefer to travel at 45°. This behaviour
is reminiscent of the behaviour seen by using the Manhattan heuristic on A* in the
short testing run seen in Figure 4.5, but it is much more extreme.

Figure 5.8: Paths generated by Theta* on a regular grid.

Figure 5.9: Paths generated by Theta* on a regular grid. Exaggerated zigzagging can be ob-
served.

5.5 THETA® ON A MORTON GRID | 65

Figure 5.10: Paths generated by Theta* on a Morton grid, the lilac path is travelling in the
danger zone.

Figure 5.11: Paths generated by Theta* on a Morton grid, the lilac path has recomputed.

5.5 THETA® ON A MORTON GRID

Theta* on a Morton grid has many more data points than its grid implementation,
which gives a better view of how the algorithm performs. The performance results
are visible in Figure 5.12. In Figure 5.12a, the same relationship between path length
and computation time is visible as in the previous implementations. However, it
seems that Theta* on an Morton grid is less sensitive for the effects of high simula-
tion loads with regards to performance, as the highest visible time value is 5 seconds.
It should be noted however that half of all of the threads have failed to find a path,
which could skew the time measurements in favour of “easier” paths, which require
less time to compute, even though the starting points are randomised.

In Figure 5.12b we can see the same relationship between nodes visited and time as in
the previous implementations, where it seems the effect on simulation load is more
pronounced than when solely looking at path length. In Figure 5.12¢, Theta* seems to
satisfy the linear relationship, that a higher path length leads to visiting more nodes,
and though this is not as pronounced as A* on the regular grid, it is not as negligible
as A* on the Morton grid.

Furthermore, in Figure 5.12d, we notice a notable inversion of the relationship seen
in both A* implementations, with Theta* on the Morton grid having shorter compu-

66 | RESULTS

tation times on higher simulation loads. It should be noted again that Theta* still
fails 50% of its runs. The quirks that Theta* had on the regular grid remain for its
incarnation on the Morton grid, with exaggerated zigzagging and strange leaps into
a room before exiting the room again, as evidenced in Figure 5.10 and Figure 5.11.
Again, there is no clear indication that the algorithm is able to compute paths at any
angle, and it sometimes even seems to not want to travel in a straight line, which is
strange. Lastly, it also makes an unnecessary amount of turns that seem to not make
any sense at all.

900 Number 200K Number
of evacuees of evacuees
800 e 6 175K e 6
e 10 e 10
700 e 15 e 15
— e 20 i 150K e 20
» »
=2 [}
g o0 % 3 125K 39
o >
2 z
e
£ 500 2 100K
< K]
- 7
< 400 3 75K °
8 8
o =
°
300 50K
(]
200 25K
100 oK
0.0 25 5.0 75 100 125 150 0.0 25 5.0 75 100 125 150
Time (s) Time (s)
(a) (b)
goo | Number Number
of evacuees 0.30 of evacuees
e 6 30
700 e 10 /20
e 15 0.25 1 15
— 600 o 20 — N
2 30 — 10
5 0.20
2 500 >
£ ‘B
= 5
400 o 0.15
=
©
2 300 0.10
200
0.05
100
0.00
0K 20K 40K 60K 80K 100K 120K 107 107" 10° 10’ 10°
Nodes visited (voxels) Computation time per path (s)

(c) (d)

Figure 5.12: Performance results for Theta* on the Morton grid. (a) Time and path length. (b)
Time and nodes visited. (c) Path length and nodes visited. (d) Density of time
per path on a logarithmic scale.

5.6 SMARTER PATHS |

5.0 SMARTER PATHS

In Section 3.8, it was noted that an optimal solution would require a pathfinding al-
gorithm that was time-aware. This extended variation on A* was implemented using
the steps described in Section 4.9. In this section we discuss the results of this imple-
mentation.

Algorithm Success Rate [%] Average memory footprint when
running on max [MB]
Idle - 464.8
A* on svo 100.00 860.87
Incremental A* 93.40 697.28

Table 5.3: The performance of the algorithms.

In Table 5.4, we can see that the time performance is also good for this time-aware
version of A*, as well as achieving a small reduction in the number of nodes that need
to be visited per run. This makes sense because nodes which are part of any path are
not allowed to be revisited, which will automatically lead to less nodes which can be
visited.

Algorithm Mean calc Min calc Maxcalc Mean number of
time [s] time[s] time [s] nodes visited
A* on svo 5.56 0.0059 20.02 125560.29
Incremental A* 4.22 0.0633 12.39 116704.57

Table 5.4: The time statistics of the algorithms and the mean number of nodes visited per al-
gorithm.

In Figure 5.13, we can see a detailed breakdown of the results. If we look at the de-
tailed analysis of the results of the time-aware A* version, we can see a less clear
correlation between path length and time per path in Figure 5.13a. This could also be
because for all the paths, they can only get shorter over time that is, if a path needs
to be recalculated then the path will always be shorter because the starting point will
have moved down the path as time has gone on.

Next, in Figure 5.13b, there is a clearer relationship between the time it takes to cal-
culate a path and the number of nodes the algorithm needs to visit. Note that the
simulation load almost has no influence on this relationship, in contrast to the other
algorithms. In Figure 5.13¢, there is a rather unclear relationship between path length
and the number of nodes visited. While there appears to be a slight positive linear
trend between, this is not as clear as in other implementations.

Lastly, in Figure 5.13d, we see again that simulation load has less of an effect for this
time-aware implementation, while also seeing a good time performance, with most
of the runs being steady between 10° and 101.

67

68 | RESULTS

600
Number 250K
of evacuees
500 e 3
e 6 200K
° e 10
12 —_
@ 400 °)
e @ o o ® o) g
= e o o © zg & 15K
e
£ 300 o
£ g Number
- » 100K of evacuees
< @
® B e 3
a 200 S o 6
e 10
50K e 12
100 e 156
o 20
| N} 0K 30
0
0 2 4 6 8 10 12 0 2 4 6 8 10 12
Time (s) Time (s)
(a) (b)
600 T
Number 035 Number
of evacuees of evacuees
500 e 23 0.30 [E=] gg
 —)
— 0.25 = 1
2 400 — 10
§ 20.20 6
< g \'j-‘ 3
£, 300 g
5 o
g 0.15
£
& 200
0.10
100 0.05
e
0 0.00
0K 50K 100K 150K 200K 107 10" 10° 10’ 10°
Nodes visited (voxels) Computation time per path (s)
(9) (d)

Figure 5.13: Performance results for time-aware A* on the Morton grid. (a) Time and path
length. (b) Time and nodes visited. (c) Path length and nodes visited. (d) Den-
sity of time per path on a logarithmic scale.

In Figure 5.14, we can see the occupied voxels being rendered in real time.

5.7 ROTATING THE DATASET |

(1 (2) (3)
(4) () (6)
7) (8))
Figure 5.14: The time-aware A* algorithm. The images are in sequence and showcase the
paths “travelling” during the simulations.

5.7 ROTATING THE DATASET

Because the grid and the limitations it imposes on movement for the pathfinding al-
gorithms, the dataset was rotated 30° to see if this makes a difference in the paths. A
simulation (n = 25) was run with A* on the Morton grid on both datasets, with the
results recorded separately, and the results can be seen in Table 5.5. On first glance,
the results for the rotated dataset look incredible. But due to the nature of the voxeli-
sation of lines in non-axis directions, the rotated dataset has only 179.316 walkable
nodes, compared to 253.674 in the regular dataset, which is thus only 70% of the
search graph. However, this does not explain why this rotated dataset is 4 times
faster than the regular one.

Algorithm Mean calc Maxcalc Meanno. of Mean path
time [s] time [s] nodes visited length
A* on Morton 6.14 17.18 111519.19 239.75
A* on Morton (rotated) 1.79 5.89 51493.19 175.36

Table 5.5: The time statistics of the algorithms and the mean number of nodes visited per
dataset variant.

Additionally, when we look at the paths themselves, we see that they look good, accu-
rate and short. In Figure 5.16, we can also see that the paths are recomputed when the
fire spreads, which means that the rotation of the dataset does not affect the correct
functioning of the algorithms.

69

70

| RESULTS

Figure 5.15: Paths in the rotated dataset

Figure 5.16: Paths in the rotated dataset, note that the paths going down the semi-circular
stairs have been recomputed accurately.

CONCLUSIONS AND DISCUSSION

In this chapter the conclusions of this research will be presented. First, the research
questions will be assessed and a conclusion will be drawn from the research results.
Next, the research will be discussed; what went well, and what could be improved.
This chapter will conclude with a future work section, detailing steps that could be
taken to improve aspects of this research. All code can be found at GitHub.

6.1 CONCLUSIONS

In this section, every research (sub)question will be answered, based on the evidence
supplied in the preceding chapters. First, the main question will be assessed, and
next, the sub questions will be answered.

To recall the main research question of this thesis:

Which algorithm is best suited for multi-actor real-time pathfinding in a dynamic
3D voxelised indoor space?

And recalling the definition of “suited-ness” as presented in the methodology, where
success rate, computation time, the size of the data structure and nodes visited are
all taken into account to assess this, we can formulate an answer to the main research
question. This answer being:

A*, with all its limitations, can be considered to be most suited for multi actor
real-time pathfinding in a dynamic 3D voxelised indoor space.

When looking at the five dimensions of suitability in order of importance, A* scores
best in the success rate, with all A* algorithms achieving a 100% success rate. This
means they are able to find a safe path through the building before the simulation
ends. If we consider the context of what these paths are for, the evacuation routes,
success rate is of highest importance. But A* does not only excel the rate of success,
but also in the quality of its success, being able to handle higher simulation loads on
its successful runs. Additionally, A* finds the shortest paths of all tested algorithms.
While Dijkstra is of course guaranteed to find the shortest path, and Section 4.5 shows
that A* is not guaranteed to do so, it does, on average, find the shortest of all the al-
gorithms that were compared. Furthermore, we can see that A* produces the most
natural looking paths, as can be seen in Table 5.2. In Figure 6.1 we see that Theta*
is strangely bound to the grid directions, while A* follows a natural looking shortest
path. In Figure 6.2 we see that A* does somewhat bend near door openings, but not
nearly as much as Theta*.

When looking at the third part of suited-ness as defined in the methodology, compu-
tation time, we can see that A* performs well. As mentioned in Chapter 5, the time
performance of Theta* is markedly better, but this is skewed by the high level of fail-
ure. Regardless, a mean computation time of 4.16[s] on the regular grid, 5.56[s] on
the Morton grid and 4.17[s] on the time-aware version, is a sufficiently short time
when considering an evacuation, especially when considering that the algorithm is
running up to 30 pathfinding threads concurrently and visualising them. The max-
ima of the time computation are a rather high considering the size of the dataset,
especially when looking at the grid based implementation, which has a maximum

71

https://github.com/dumigil/Thesis-Source

72

| CONCLUSIONS AND DISCUSSION

computation time of close to a minute, which is rather a lot when evacuating a build-
ing with the size of the dataset that was used. the Morton grid based implementation
however already cuts this down to 20.02 seconds, while increasing the mean calcula-
tion time, suggesting that it is less prone to dataset size. The fourth marker that was
looked at, the data structure size is, slightly harder to measure exactly, and will be
answered in more detail when answering the first research sub question, but in gen-
eral when looking at the mean memory footprint of A* compared to Theta*, we can
see that A* performs well, with only a 200-450 megabyte increase in memory while
the algorithm is running the maximum load simulation. For Theta* these results are
quite distinct, ranging from the low of 528[mb] to the high of 5400[mb]. Therefore,
also because of its performance instability, the exact data space complexity will be
somewhere in the middle, which is still higher than A*.

The last criterion of “suited-ness”, the number of nodes visited, is a more concrete
measure of assessing the efficiency of a pathfinding algorithm. In this measure, A*
does perform comparable to Theta*, except on the Morton grid, when it has an five-
fold increase in the number of nodes it processes to find paths, which is also the
case when running the incremental version of A* on the Morton grid. This increase
in nodes visited is not reflected in the memory footprint of the Morton grid imple-
mentation, which is lower than its regular grid-based counterpart. This higher node
count does explain why the Morton grid based A* algorithm has a higher computa-
tion time, but there is no obvious reason for it to process this many more nodes, as
both algorithms are identical.

(a) A* (b) Theta*

Figure 6.1: Path zigzagging Theta*. Theta* starts out with a more natural path at a non-grid
angle, whereas A* follows a natural path

(a) A* (b) Theta*

Figure 6.2: Path zigzagging in Theta*. The zigzagging near doors is very extreme with Theta*.

6.1 CONCLUSIONS |

The first sub question of this thesis was:

Which data structure for the voxelised space is best suited for dynamic pathfinding
algorithms?

The answer to this question is slightly more complex than the main research question.
When looking at the results, it seems that the Morton grid has the better performance.
It has slightly lower computation times than the grid, it is able to handle higher sim-
ulation loads, and seems to be less prone to the influence of path length on compu-
tation time. When comparing the size of the data structures, the Morton grid is only
about one-and-a-half times as large in theory, and requires less memory when the
algorithms are being run on it. The key point of the Morton grid is that it is able to
store more information over periods of time, which is crucial for simulation style of
computing. Therefore, it is able to know which paths are using which voxels, which
in turn can be used to signal to those paths that they need to recompute, reducing
the amount of path recalculations needed for dynamic pathfinding. While the grid
might be smaller and faster (on small datasets), the fact that it does not store any-
thing beyond the current value is not suitable for dynamic pathfinding with multiple
actors.

Constructing the Morton grid is currently done by constructing an octree, but this
could be simplified by just generating Morton codes for each non-empty voxel, adding
these to an array, and then sorting this array. Furthermore, because the Morton grid
is essentially an (unordered) map, it could also be used in other infrastructures, like
a RDBMS for things like web based approach.

The second sub question of this thesis was:
How to include dynamic events into the pathfinding algorithms

Using a data structure that is able to store multiple attributes, combined with a data
structure for which it is possible to have multiple threads accessing and modifying it,
itis possible to include dynamic events. The key to this is having pointers to objects in
memory, allowing these pointers so be shared across threads, and checking whether
the information stored at these pointers has changed. Looking at the memory con-
sumption of the two data structures we can see that the Morton grid approach is less
heavy on the CPU, and therefore checking the paths for changed voxels is much more
efficient than repeatedly “single-shotting” the paths as is done on the regular grid.

The third sub question of this thesis was:
Is it possible to combine evacuation simulation with pathfinding?

This is possible, when using a data structure that supports the temporal dimension.
When using a data structure that is not time-aware, it is not possible to include the
information required for evacuation simulations, because the simulator needs to have
awareness of where evacuees are at every moment in time, and also needs to be able
to access previous states of a voxel. Ideally, this would thus be a data structure that
stores a locational position and a temporal position. A hurdle with this, is that, as is
the case in the spatial dimension, a high temporal resolution can lead to a lot of data
points, and thus a lot of space being taken up in memory.

73

74

| CONCLUSIONS AND DISCUSSION

6.2 DISCUSSION

In this section, some elements that were not implemented successfully, or eventual
problems and limitations of the current approach are discussed.

6.2.1 Incremental vs. Non-incremental pathfinding

While it was assumed in Chapter 1 that one voxel should only be able to hold one
“person” at a time, this proved to be a limiting factor for most of the pathfinding algo-
rithms, due to the cutting-off phenomenon as described in Section 3.8. It also creates
a more fundamental question in this thesis: are we simulating or are we pathfinding?
While the word simulation has been used quite frequently to describe the parameters
that determine the testing of the pathfinding, it should be clear to note that this re-
search is not concerned with running full evacuation simulations, but rather with test-
ing pathfinding algorithms by running them with certain parameters and a changing
environment. Thus, the most correct way to incorporate the occupancy of a building
by limiting the occupancy of voxels, but to achieve that, the pathfinding algorithms
would have to be adapted to such a degree that they could account for the temporal di-
mension, or tests would have to be run with full incremental pathfinding algorithms
which innately support the temporal dimension. Thus, in this research, both full in-
cremental and non-incremental pathfinding algorithms have been explored, and a
hybrid time aware version of A* has been developed that is retains the simplicity of
A* while obeying changing occupancy over time.

In Figure 5.13, the entire run of incremental A* has been shown in a storyboard fash-
ion. This version of incremental A* removes old paths from the instance buffers and
writes the new paths to the buffer almost 3 times per second, but it is able to keep up,
and it does illustrate the benefits of this pathfinding paradigm. Something that still
needs to be solved for A* however, is how to deal with multiple potential goals. In
the current implementations, every thread selects the exits during the initialisation
stage of the pathfinding algorithm from the list of exits (which is only 2 long in this
dataset), and it selects this on the heuristic to make sure it matches with distance es-
timations. However, the incremental version is not able to deal with a changing exit,
because it would be confused by the sudden drop in distances, and could not take the
“hard work” it has previously done with it, it would need to start anew and invalidate
all previously calculated distance and cost estimations. While this is not an impossi-
bility to overcome, it is a challenge to do efficiently. For instance, how often would
you do this exit reevaluation? On every loop iteration? Or once every 10 iterations
for instance. How can the algorithm even know if there exists a path to the other exit.
It might be closer in terms of distance, but for the path to go there might be longer
than when it would have stuck with its original exit, due to the layout of the building.
If we bring this into the context of the research, evacuation simulations, information
such as this would be of vital importance, adding intelligence to a complex situation
and aiding humans by having the overview of the spatial situations that the people
are lacking.

6.2.2 D?*-Lite

In Section 4.8, the shortcomings with the 3D approach of D*-Lite were highlighted,
with the focal point of attention being the tie breaking function, which works in two
dimensions, but fails in three dimensions. While the algorithm is certainly useful,
it is also not ideal because of the other shortcoming previously described, namely,
the need for every thread to maintain its own version of reality. Though in essence,
that is what all the algorithms do to a certain degree, D*Lite does not really function
without a full view, at least with this implementation. Because theoretically speaking
it should not need full knowledge of the dataset, yet most implementations do use

o)}

6.2 DISCUSSION |

this. The implementation that was created specifically for this research did so with
the same on the fly node generation or using the cost_so_far and came_from maps as
A* and Theta* and still ran into the same tie breaking issues, which remain unsolved.
Therefore, D*-Lite (and LPA*) have potential, but suffer from flaws that do not make
them workable for voxels.

6.2.3 Theta”

Theta*, and the other related any-angle® path planning algorithms, are promising be-
cause of their power to rise above the grid and plan paths not limited to the arbitrary
directions of the grid, in theory. In practice however, these paths did not perform as
well as Thoped. While some of this could be due to the more complex nature of these
algorithms (i.e. more steps, more computation, more room for things going wrong),
there is also the fundamental issue that these algorithms use line of sight analysis
that is often designed and tested for a 2D grid. Though not surprising it remains
disappointing that extending this to 3D does not produce the desired paths.

6.2.4 Full vs partial octree

As briefly mentioned earlier, the octree that was initially constructed is a full octree,
with all the bells and whistles, but due to the limitation of on the one hand, the com-
plex and computationally heavy neighbour generation for dynamic octrees and, on
the other hand, the small distances between heuristic values that have a large impact
on the path as a whole, the decision was made to only use the nodes at the same octree
depth. I would argue that this is enough of an improvement on the regular grid to
be a success. Firstly, due to the flatness of the search graph (i.e. the navigable space)
the octree only contains 253.674 nodes at the leaf level. In the level above, only 20.133
nodes are “full”, i.e. they have 8 children and can thus be used to simplify the space.
In the level above, only 2652 full octree nodes remain, and all the other levels (6 left)
have no full nodes at all. Therefore, I posit that the gains that could be achieved are
not as momentous, and do not automatically outweigh the costs mentioned above
while the performance gains on the pathfinding when not using the full octree are
still significant.

Map of Morton codes
1050
1051
1054
1055
1106
1110

Figure 6.3: A visualisation of what the SVO data structure holds, visible is the sequential
sparse data that is ordered by Morton code.

Secondly, while the full potential of the octree might not be used in the pathfinding
implementations, spatial clustering of the Morton codes do allow for a type of spatial
clustering that the grid does not have. Putting these nodes in a fast hash table-esque
container like std: :unordered_map also allows for very fast lookup, insertion and re-

Any-angle pathfinding algorithms is the name Nash et al. give this class of pathfinding algorithms. Itis a
slightly misleading name, because the paths are still bound to the grid

75

76

| CONCLUSIONS AND DISCUSSION

moval, without the need to rearrange the entire tree above, the integrity of the spatial
structure is still maintained due to the Morton ordering. While a regular grid would
need much more iteration to find a voxel because of the many redundant and empty
voxels, using the lower level of the octree this way skips the limitations of the grid
while avoiding the hassle of octree management.

Thirdly, due to the fact that the octree stores sparse information only, as seen in Fig-
ure 6.3, we can use the extra space that would have otherwise been used by empty
voxels to store more information per node, allowing for the smarter and incremen-
tal paths that were seen in this thesis. Therefore, while an octree can certainly have
merits for pathfinding in 3D, when the search graph is as flat as the navigable space
above the floor, little spatial compression is possible. Combined with the small mar-
gins with which the heuristic values are compared, that do not compare across reso-
lutions, this sparse Morton grid data structure suffices.

6.2.5 Rotated dataset

It is very interesting to see the results of the rotated dataset in Figure 5.15 and Fig-
ure 5.16, which performs better than when the dataset is aligned with the grid axes.
Additionally, the paths are visually also quite appealing. This is unexpected, and
should be more thoroughly investigated. A reason for the shorter computation times
could be that there are less walkable voxels in the search graph, as mentioned previ-
ously. A smaller search graph does not explain the better looking and shorter paths.
A reason for that could be that with the Euclidean distance, the shortest path is often
found by “cutting corners” instead of travelling in the axis directions, and if there are
no lines in the axis directions to begin with, shorter paths are found.

6.2.6 Multiple Fires

While multiple fire locations were selected at the start of this research, and this is
a parameter that was mutable in the simulator, all the simulations that were tested
with this implementation and recorded in the results section of this report, were done
with the fire starting in the same spot. This was done for two reasons. One, it makes
comparing the algorithms easier, because that is the only factor that is changing, and
two, many other locations would have resulted in blocking off most of the paths be-
cause of the narrow hallways, which would have invalidated many path results. The
location that was chosen, under the semi-circle stair was chosen precisely because
it would force the algorithms to take the other stairwell, and show that the shortest
path is not always the safest path. Furthermore, I think that if one would like to test
the effect of fire location on the paths, this could be an entire thesis unto itself.

6.2.7 Actor size

In this research, the size of the actor has been set on one voxel, but this could also have
been extended to represent the true size of an actor, as per Koopman [2016], which
would have made the paths more accurate, but this is limited by the implementation.
This could be achieved by adding a buffer to around the currently occupied voxel
and blocking these buffer voxels for other paths, an example 2D implementation of
this can be seen in Figure 6.4. This could result in more accurate paths in terms of
overcrowding of spaces.

6.2.8 Using RDBMS

In the implementation, many steps were taken to ensure multi thread data access,
but one could have consider using a relational database to put all the data in, and

6.3 FUTURE WORK |

F
/

/ -

' act]

Actual position — |
Buffer zone held
for path

Figure 6.4: A possible solution for including the actor size

query the voxel status there. While this was considered, it was decided not to do
this to ensure full control over data access. This decision was also partly based when
considering the highly dynamic nature of the voxel data, meaning the insertion and
deletion updates would be heavy. Moreover, the data is not so large that it is imprac-
tical to store in memory. Considering that pointers are used extensively throughout
the implementation to record different inter-voxel relationship, and the fact that this
current exploratory research has no reason to be stored non-locally, for this thesis it
was concluded that it would be best to focus solely on in-memory data storage.

6.2.9 Multiple exits

An issue with the current implementation is that A* chooses one exit at the start, and
cannot find a different exit midway through its computation when the situation has
changed, without just deleting all the previous information and starting anew, but
then it does not know if this path is actually shorter than the path it would otherwise
have taken. This is why D*-Lite and LPA* store an extra value, to check if the situation
has improved or worsened. However, other solutions are possible, such as initially
calculating a path for the evacuee to every exit, and then choosing the shortest path.
But, this is fine when there are only a few exits, but more difficult to manage with
larger and more complex buildings. Secondly, sometimes a path needs to be recalcu-
lated more than 10 times per simulation, and if the dynamic aspect of the simulation
is to be included, every exit should also be reevaluated at every recalculation, signif-
icantly increasing the memory load for every path by #,,;,.

6.3 FUTURE WORK

6.3.1 Extending semantic information

Currently the voxels have options for the algorithms: walkable or not walkable. It
could be possible to extend this more, and incorporate it into the decision making
process of the paths and by adding more intelligence to the voxels, the algorithms
can infer more information from the voxel space and make even smarter paths. For
instance, one could think of adding the width of the walkable space to the voxels’
attributes, which the algorithms can then use to avoid spots that are potential choke
points by assigning a higher cost to these voxels. Currently, travelling from one voxel
to the other is only dependent on the distance between the voxel and the next (which
is1vy2v+3- Spoxel, depending on connectivity), but more information could be
added to this step, at little extra computation cost because if this information is stored
in the voxel itself, and the algorithm is looking to calculating the cost of going to that

77

78

| CONCLUSIONS AND DISCUSSION

voxel, then the algorithm is already at that voxel.

6.3.2 Path smoothing & map generation

As described earlier, some of the paths can zigzag. There is the possibility of apply-
ing path smoothing techniques to the paths after they have been found, but for the
A* paths this is not needed. Path smoothing could in this context also be making the
paths look more visually appealing. Many different path smoothing options exist as
found in Patel [2022], and these come at different costs to the implementation. An-
other thing, is that many of the paths now skirt the walls or edges of the walkable
space, and were you to make these paths useful as a tool for evacuation, a way would
have to be found to reposition them to the centre of the navigable space. While these
are cosmetics, when thinking of applying the results of this research to for instance,
automatic evacuation map generation, the paths need to be logical and communica-
ble for the users.

The next step would then be to integrate this implementation with a positioning sys-
tem, and develop an augmented reality (AR) or virtual reality (VR) application that
can guide real users through a building and use the computed path to guide the
evacuees to the exits. How the paths look, is of great importance for these kinds of
implementations, and therefore research should be done as to how the paths will can
best be presented. For instance, is it logical to have many paths skirt the wall because
this is simply the true shortest path, or would users misunderstand this?

6.3.3 Dataset size

All the tests and simulations in this thesis has been done on a single dataset, which
is not ideal. Ideally, I would have liked to use a second, larger and different indoor
dataset to test the success of the solution on that dataset. While some results do
point to the Morton grid based implementation being able to manage that, because
the longer paths do have computations that are comparable to the shorter paths, it
would have been interesting to see the solution on another dataset that differs from
this one not only in size, but also one with other attributes of the indoor space.

6.3.4 Different resolution

Further research could be done on the influence of the resolution of the voxel grid.
In this research, a single voxel size has been used for all the paths and both datasets.
Research could be done on if the resolution size has influence on the quality of the
paths. An interesting option could be to see what the lowest possible resolution is
at which this type of pathfinding (dynamic, with multiple actors) can still be done,
because a lower resolution will invariably lead to lower computation times.

6.3.5 Using a full octree implementation

As previously stated, this implementation only uses one level of the octree as a sparse
Morton grid. Therefore, all the voxels have the same size. In further research, a
true octree implementation could be done that passes the following criteria: dynamic
neighbour generation (pre-computed neighbours take up too much space) and live
updating of tree when the search graph changes due to events. This implementation
could be compared with a sparse Morton grid, or a regular grid, and the path quality
as well as the computation speeds could be analysed.

6.3 FUTURE WORK |

6.3.6 A dynamic 3D maze

Currently, this implementation is rooted firmly in the evacuation context, with a fairly
regular spatial, albeit artificial, dataset. To fully check the capabilities of this method
of dynamic multi-actor pathfinding, a stress-test could be devised in the form of a
dynamic 3D maze, to see how well the implementation holds up. Mazes are partic-
ularly difficult for pathfinding algorithms, because often a simple distance heuristic
can be misleading in a maze that has many dead ends winding paths.

6.3.7 Choice of heuristics

In Section 4.5, it is shown that the choice of heuristic has a very large influence on the
length and quality of the paths, as well as the computation time. Considering that
these are only the most commonly used distance based heuristics, further research
could be done by looking at the influence of heuristic choice for A* in dynamic evacu-
ations, and look into using non-distance based heuristic. Another option is increasing
the complexity of the heuristics by incorporating other aspects such as vertical move-
ment, the number of people currently in an area.

79

BIBLIOGRAPHY

Alattas, A. (2022). The Integration of LADM and IndoorGML to Support the Indoor Nav-
igation Based on the User Access Rights. PhD thesis.

Aleksandrov, M., Zlatanova, S., and Heslop, D. J. (2021). Voxelisation Algorithms
and Data Structures: A Review. Sensors, 21(24):8241.

Algfoor, Z. A., Sunar, M. S, and Kolivand, H. (2015). A Comprehensive Study on
Pathfinding Techniques for Robotics and Video Games. International Journal of
Computer Games Technology, 2015:1-11.

Arndt, J. (2010). Matters Computational: ideas, algorithms, source code. Springer Science
& Business Media.

Baert, J. (2018). Libmorton: C++4 morton encoding/decoding library. https://
github.com/Forceflow/libmorton.

Baert, J., Lagae, A., and Dutré, P. (2013). Out-of-core construction of sparse voxel
octrees.

Botea, A., Miiller, M., and Schaeffer, J. (2004). Near Optimal Hierarchical Path-
Finding. Journal of Game Development, 1(1):1-30.

Brewer, D. and Sturtevant, N. R. (2018). Benchmarks for Pathfinding in 3D Voxel
Space. Symposium on Combinatorial Search (SoCS).

Canny, J. and Reif, J. (1987). New lower bound techniques for robot motion planning
problems.

Careil, V., Billeter, M., and Eisemann, E. (2020). Interactively Modifying Compressed
Sparse Voxel Representations. In Computer Graphics Forum, volume 39, pages 111—
119. Wiley Online Library, Wiley.

Cohen-Or, D. and Kaufman, A. (1997). 3D line voxelization and connectivity control.
IEEE Computer Graphics and Applications, 17(6):80-87.

Cormen, T. H., Leiserson, C. E., Rivest, R. L., and Stein, C. (2022). Introduction to
algorithms. MIT Press, fourth edition.

Cornut, O. (2020). Dear ImGui.

Dado, B., Kol, T. R., Bauszat, P, Thiery,].-M., and Eisemann, E. (2016). Geometry and
Attribute Compression for Voxel Scenes. Computer Graphics Forum, 35(2):397—

407.

Dijkstra, E. W. (1959). A note on two problems in connexion with graphs. Numerische
Mathematik, 1(1):269—271.

Flikweert, P, Peters, R., Diaz-Vilarifio, L., Voute, R., and Staats, B. (2019). Automatic
extraction of a navigation graph intended for IndoorGML from an indoor point
cloud. ISPRS Journal of Photogrammetry and Remote Sensing, IV-2/Wx5:271—278.

Foead, D., Ghifari, A., Kusuma, M. B., Hanafiah, N., and Gunawan, E. (2021). A Sys-
tematic Literature Review of A% Pathfinding. Procedia Computer Science, 179:507—

514.

Gorte, B., Aleksandrov, M., and Zlatanova, S. (2019a). Towards Egress Modelling in
Voxel Building Models. ISPRS Annals of the Photogrammetry, Remote Sensing and
Spatial Information Sciences, IV-4/W9:43—47.

81

https://github.com/Forceflow/libmorton
https://github.com/Forceflow/libmorton

82

| BIBLIOGRAPHY

Gorte, B., Zlatanova, S., and Fadli, F. (2019b). Navigation in Indoor Voxel Models. IS-
PRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences,
IV-2/W5:279-283.

Hart, P, Nilsson, N., and Raphael, B. (1968). A Formal Basis for the Heuristic De-
termination of Minimum Cost Paths. [EEE Transactions on Systems Science and
Cybernetics, 4(2):100-107.

Hoang, L., Lee, S.-H., Kwon, O.-H., and Kwon, K.-R. (2019). A Deep Learning
Method for 3D Object Classification Using the Wave Kernel Signature and A Cen-
ter Point of the 3D-Triangle Mesh. Electronics, 8(10):1196.

Holzmiiller, D. (2017). Efficient Neighbor-Finding on Space-Filling Curves. Comput-
ing Research Repository.

Houston, B., Wiebe, M., and Batty, C. (2004). RLE sparse level sets. In ACM SIG-
GRAPH 2004 Sketches, page 137. ACM Press.

Hiibner, P., Weinmann, M., Wursthorn, S., and Hinz, S. (2021). Automatic voxel-
based 3D indoor reconstruction and room partitioning from triangle meshes. IS-
PRS Journal of Photogrammetry and Remote Sensing, 181:254—278.

ISO (2020). ISO/IEC 14882:2020: Programming languages — C++. 1SO, sixth edition.
Available in electronic form for online purchase at http://webstore.ansi.org/,
http://www.cssinfo.com/ and https://www.iso.org/standard/79358.html/.

Jones, C. B. (1989). Data structures for three-dimensional spatial information systems
in geology. International journal of geographical information systems, 3(1):15-31.

Khan, A., Aesha, A. A., Aka,].S., Rahman, S. M. F,, and Rahman, M. J.-U. (2018). An
IoT Based Intelligent Fire Evacuation System. In 2018 21st International Conference
of Computer and Information Technology (ICCIT), pages 1-6.

Kobes, M., Helsloot, I., de Vries, B., and Post, J. G. (2010). Building safety and human
behaviour in fire: A literature review. Fire Safety Journal, 45(1):1-11.

Koenig, S. and Likhachev, M. (2001). Incremental Ax. Advances in neural information
processing systems, 14.

Koenig, S. and Likhachev, M. (2002). D* lite. AAAI 15.

Koopman, M. (2016). 3D Path-finding in a voxelized model of an indoor environ-
ment.

Kémpe, V., Sintorn, E., and Assarsson, U. (2013). High resolution sparse voxel DAGs.
ACM Transactions on Graphics, 32(4):1-13.

Lv,C., Lin, W,, and Zhao, B. (2021). Voxel Structure-based Mesh Reconstruction from
a 3D Point Cloud. IEEE Transactions on Multimedia, abs/2104.10622:1—1.

Ministerie van Binnenlandse Zaken en Koninkrijksrelaties (2011). Bouwbesluit 2012.

Morton, G. M. (1966). A computer oriented geodetic data base and a new technique
in file sequencing.

Muratov, T. and Zagarskikh, A. (2019). Octree-Based Hierarchical 3D Pathfinding
Optimization of Three-Dimensional Pathfinding. In Proceedings of the 2019 3rd
International Symposium on Computer Science and Intelligent Control, ISCSIC 2019,
New York, NY, USA. Association for Computing Machinery.

Nash, A. and Koenig, S. (2013). Any-Angle Path Planning. Al Magazine, 34(4):85-
107.

BIBLIOGRAPHY |

Nash, A., Koenig, S., and Likhachev, M. (2009). Incremental Phi*: Incremental any-
angle path planning on grids. In Twenty-First International Joint Conference on
Artificial Intelligence.

Neufeld, J. (2015). D*-Lite. Online. Accessed at
https://github.com/ArekSredzki/dstar-lite.

Noori, A. and Moradji, F. (2015). Simulation and Comparison of Efficency in Pathfind-
ing algorithms in Games. Ciéncia e Natura, 37(Part 2):230-238.

Patel, A. (1997—2022). Amit’s Thoughts on Path-Finding and A-Star.

Samet, H. (1989). Neighbor finding in images represented by octrees. Computer Vision,
Graphics, and Image Processing, 46(3):367—386.

Sharma, S. K. and Kumar, S. (2016). Comparative Analysis of Manhattan and Eu-
clidean Distance Metrics Using A* Algorithm. Journal of Research in Engineering
and Applied Sciences, 01(04):196—198.

Shi, L., Xie, Q., Cheng, X., Chen, L., Zhou, Y., and Zhang, R. (2009). Develop-
ing a database for emergency evacuation model. Building and Environment,

44(8):1724-1729.

Staats, B. R., Diakité, A. A., Votte, R. L., and Zlatanova, S. (2017). Automatic Gen-
eration of Indoor Navigable Space Using a Point Cloud and Its Scanner Trajec-
tory. ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information
Sciences, IV-2/W 4:393—-400.

Stentz, A. (1993). Optimal and Efficient Path Planning for Unknown and Dynamic
Environments. INTERNATIONAL JOURNAL OF ROBOTICS AND AUTOMA-
TION, 10:89-100.

Sundar, H., Sampath, R. S., and Biros, G. (2008). Bottom-Up Construction and 2:1
Balance Refinement of Linear Octrees in Parallel. SIAM Journal on Scientific Com-

puting, 30(5):2675-2708.

Tankyevych, O. (2010). Filtering of thin objects : applications to vascular image analysis.
phdthesis, University Paris-Est.

Van Bemmelen, J., Quak, W., Van Hekken, M., and Van Oosterom, P. (1993). Vector
vs. raster-based algorithms for cross country movement planning. In Auto-Carto
XI, pages 304—304. ASPRS AMERICAN SOCIETY FOR PHOTOGRAMMETRY
AND.

van der Laan, R., Scandolo, L., and Eisemann, E. (2020). Lossy Geometry Compres-
sion for High Resolution Voxel Scenes. Proc. ACM Comput. Graph. Interact. Tech.,

3(1).

Vords, J. (2000). A strategy for repetitive neighbor finding in octree representations.
Image and Vision Computing, 18(14):1085-1091.

Wang, S.-H., Wang, W.-C., Wang, K.-C., and Shih, S.-Y. (2015). Applying Building
Information Modeling to Support Fire Safety Management. Automation in Con-
struction, 59:158-167.

Wirth, E. and Szab6, G. (2018). Overlap-avoiding Tickmodel: An Agent-and Gis-
based Method for Evacuation Simulations. Periodica Polytechnica Civil Engineer-

ing, 62(1):72-79.
Xiong, Q., Zhu, Q., Du, Z., Zlatanova, S., Zhang, Y., Zhou, Y., and Li, Y. (2017). Free

Multi-floor Indoor Space Extraction from Complex 3d Building Models. Earth
Science Informatics, 10(1):69-83.

83

https://github.com/ArekSredzki/dstar-lite

84 | BIBLIOGRAPHY

Xu, Y., Tong, X., and Stilla, U. (2021). Voxel-based representation of 3D point clouds:
Methods, applications, and its potential use in the construction industry. Au-
tomation in Construction, 126(103675):103675.

APPENDIX A

Algorithm A.1: Basic Theta*

1

2

N S u W

@

10
11
12
13
14
15

16
17
18

19

20
21
22
23
24

25

26
27
28
29
30
31

32

33
34
35
36
37
38
39
40
41

Function main():
initialise()
computeShortestPath()
if §(5¢0a1) # oo then
| return path found
else
‘ return no path found

Function initialise():
open « closed — (@
initialiseVertex(sgu,,+)
initialiseVertex(sgoq)
8 (Sstare) < 0
parent(Ssiar < Sstart)
L Open'lnsert(sstartrg(ssturt) + h(sstart))
Function initialiseVertex(s):
8(8) «

parent(s) « @

Function computeShortestPath():
while open.TopKey () < §(Sqoa1) + h(s
s « open.Pop()
closed « closed U {s} foreach s’ € s,,;enpours A0
if s’ & closed then
if s & open then
| initialiseVertex(s')

1) do

goa goa

updateVertex(s,s’)

Function updateVertex(s,s’):
otd — §(s")
computeShortestPath(s,s’)
if g(s" < go14 then
if s' € open then
L open.Remove(s")
open.Insert(s’,g(s") + h(s"))

Function computeShortestPath(s,s’):
if lineOf Sightparent(s), s’ then

parent(s') « parent(s)

g(s") « g(parent(s) + cost(parent(s),s’)
else
if g(s) + cost(s,s’) < g(s") then

parent(s) « s
g(s") « +cost(s,s")

if g(parent(s)) + cost(parent(s),s’) < g(s") then

85

APPENDIX B

static const std::array<int32 t, 256> deltaX=
{1,7,1,55,1,7,1,439,1,7,1,55,1,7,1,3511,1,7,1,55,
1,7,1,439,1,7,1,55,1,7,1,28087,1,7,1,55,1,7,1,
439,1,7,1,55,1,7,1,3511,1,7,1,55,1,7,1,439,1,7,1,
55,1,7,1,224695,1,7,1,55,1,7,1,439,1,7,1,55,1,7,
1,3511,1,7,1,55,1,7,1,439,1,7,1,55,1,7,1,28087,1,
7,1,55,1,7,1,439,1,7,1,55,1,7,1,3511,1,7,1,55,1,
7,1,439,1,7,1,55,1,7,1,1797559,1,7,1,55,1,7,1,439,
1,7,1,55,1,7,1,3511,1,7,1,55,1,7,1,439,1,7,1,55,
1,7,1,28087,1,7,1,55,1,7,1,439,1,7,1,55,1,7,1,
3511,1,7,1,55,1,7,1,439,1,7,1,55,1,7,1,224695,1,7,
1,55,1,7,1,439,1,7,1,55,1,7,1,3511,1,7,1,55,1,7,
1,439,1,7,1,55,1,7,1,28087,1,7,1,55,1,7,1,439,1,
7,1,55,1,7,1,3511,1,7,1,55,1,7,1,439,1,7,1,55,1,
7o 8

static const std::array<int32 t, 256> deltaY=
{2,14,2,110,2,14,2,878,2,14,2,110,2,14,2,7022,2, 14,
2,110,2,14,2,878,2,14,2,110,2,14,2,56174,2,14,2,
110,2,14,2,878,2,14,2,110,2,14,2,7022,2,14,2,110, 2,
14,2,878,2,14,2,110,2,14,2,449390,2,14,2,110,2, 14,
2,878,2,14,2,110,2,14,2,7022,2,14,2,110,2,14,2,878,
2,14,2,110,2,14,2,56174,2,14,2,110,2,14,2,878,2,14,
2,110,2,14,2,7022,2,14,2,110,2,14,2,878,2,14,2,110,
2,14,2,3595118,2,14,2,110,2,14,2,878,2,14,2,110, 2,
14,2,7022,2,14,2,110,2,14,2,878,2,14,2,110,2,14,2,
56174,2,14,2,110,2,14,2,878,2,14,2,110,2,14,2,7022,
2,14,2,110,2,14,2,878,2,14,2,110,2,14,2,449390, 2,
14,2,110,2,14,2,878,2,14,2,110,2,14,2,7022,2,14,2,
110,2,14,2,878,2,14,2,110,2,14,2,56174,2,14,2,110,
2,14,2,878,2,14,2,110,2,14,2,7022,2,14,2,110,2,14,
2,878,2,14,2,110,2,14,2};

static const std::array<int32 t, 256> deltaZ=
{4,28,4,220,4,28,4,1756,4,28,4,220,4,28,4,14044,4,
28,4,220,4,28,4,1756,4,28,4,220,4,28,4,112348,4,28,
4,220,4,28,4,1756,4,28,4,220,4,28,4,14044,4,28,4,
220,4,28,4,1756,4,28,4,220,4,28,4,898780,4,28,4,220,
4,28,4,1756,4,28,4,220,4,28,4,14044,4,28,4,220,4,
28,4,1756,4,28,4,220,4,28,4,112348,4,28,4,220,4,28,
4,1756,4,28,4,220,4,28,4,14044,4,28,4,220,4,28,4,
1756,4,28,4,220,4,28,4,7190236,4,28,4,220,4,28,4,
1756,4,28,4,220,4,28,4,14044,4,28,4,220,4,28,4,1756,
4,28,4,220,4,28,4,112348,4,28,4,220,4,28,4,1756,4,
28,4,220,4,28,4,14044,4,28,4,220,4,28,4,1756,4,28,
4,220,4,28,4,898780,4,28,4,220,4,28,4,1756,4,28,4,
220,4,28,4,14044,4,28,4,220,4,28,4,1756,4,28,4,220,
4,28,4,112348,4,28,4,220,4,28,4,1756,4,28,4,220,4,
28,4,14044,4,28,4,220,4,28,4,1756,4,28,4,220,4,28,
4};

87

COLOPHON

This document was typeset using IXIgX. The document layout was generated using
the arsclassica package by Lorenzo Pantieri, which is an adaption of the original
classicthesis package from André Miede.

%
TUDelft

	1 Introduction
	1.1 Motivation
	1.1.1 Scientific Relevance
	1.1.2 Societal Relevance

	1.2 Research Questions
	1.2.1 Scope of research
	1.2.2 Assumptions

	1.3 Reading Guide

	2 Theoretical Background
	2.1 Digital representations of the world
	2.2 The Voxelised Space
	2.3 Voxel Data Structures
	2.3.1 Voxel Grid
	2.3.2 Sparse Voxel Octree
	2.3.3 Sparse Voxel Directed Acyclic Graph

	2.4 Pathfinding algorithms
	2.4.1 Grid vs graph
	2.4.2 Dijkstra's Algorithm
	2.4.3 A* Algorithm
	2.4.4 Theta* and Phi* Algorithm
	2.4.5 D*-Lite and LPA*
	2.4.6 Hierarchical pathfinding
	2.4.7 Which algorithms to use

	2.5 The navigable space

	3 Methodology
	3.1 Research design
	3.2 A voxelised space from a mesh
	3.2.1 Properties of the voxel grid
	3.2.2 Filling the grid
	3.2.3 Extracting navigable space
	3.2.4 Generating starting points

	3.3 Creating the sparse voxel octree
	3.3.1 Morton Ordering
	3.3.2 Creating levels
	3.3.3 Neighbour Access

	3.4 Adapting A*
	3.4.1 Heuristics
	3.4.2 Regular Voxel Grid
	3.4.3 Sparse Voxel Octree

	3.5 Adapting Theta*
	3.6 Adapting D*-Lite
	3.7 Fire Simulation
	3.8 Smarter paths: Time-aware A*

	4 Implementation
	4.1 Simulating and testing
	4.1.1 OpenGL and Magnum
	4.1.2 Concurrency management
	4.1.3 Datasets
	4.1.4 Hardware
	4.1.5 Simulation Parameters

	4.2 A voxelised space from a mesh
	4.3 Creating the sparse voxel octree
	4.4 Sizes
	4.5 Heuristics
	4.6 Implementing A*
	4.7 Implementing Theta*
	4.8 Implementing D*-Lite
	4.9 Smarter paths: Time-aware A*

	5 Results
	5.1 Overview
	5.2 A* on a regular grid
	5.3 A* on an Morton grid
	5.4 Theta* on a regular grid
	5.5 Theta* on a Morton grid
	5.6 Smarter Paths
	5.7 Rotating the dataset

	6 Conclusions and Discussion
	6.1 Conclusions
	6.2 Discussion
	6.2.1 Incremental vs. Non-incremental pathfinding
	6.2.2 D*-Lite
	6.2.3 Theta*
	6.2.4 Full vs partial octree
	6.2.5 Rotated dataset
	6.2.6 Multiple Fires
	6.2.7 Actor size
	6.2.8 Using RDBMS
	6.2.9 Multiple exits

	6.3 Future Work
	6.3.1 Extending semantic information
	6.3.2 Path smoothing & map generation
	6.3.3 Dataset size
	6.3.4 Different resolution
	6.3.5 Using a full octree implementation
	6.3.6 A dynamic 3D maze
	6.3.7 Choice of heuristics

	A Appendix A
	B Appendix B

