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Abstract 
 
Many MLS point cloud application scenarios, such as navigation and localization algorithms, require 

only static environments, but the original MLS data usually inevitably includes many dynamic objects 

such as moving vehicles, bicycles, and pedestrians. Therefore, these dynamic objects need to be 

removed before using MLS point clouds. This thesis designs an efficient and memory-friendly 

Octomap-based dynamic object detection and removal method for MLS data. Firstly, the original MLS 

data is split into multiple data frames based on the timestamp of each capture point. Each data frame 

is inserted into a separate Octomap along with its neighboring data frames. The free points in all 

Octomaps are extracted by setting an occupancy probability threshold. Second, the region of interest 

(ROI) related to the dynamic object is delineated by the MLS sensor mounting height and the local 

large vehicle height limit. Only the free points located within the ROI are retained. Then the free-point 

rate and the multi-return rate are calculated for each free point using a fixed radius spatial search to 

denoise and detect vegetation points. Finally, the KNN spatial search is used to remove vegetation 

points and extract dynamic objects from the free points. The proposed method is tested in four case 

sites in Delft, the Netherlands and its producer’s and user’s weighted average dynamic object 

detection and extraction accuracies are 88.004% and 82.624%, respectively. The weighted average 

overall accuracy is 99.833%. Compared with the original Octomap, the proposed method is 35.472% 

more efficient on average and can be further accelerated by parallel computing, with a maximum 

memory consumption of only 42.437% of the original Octomap. The implementation results and 

accuracy assessment demonstrate that the proposed method can be effectively applied to dynamic 

object detection and extraction tasks in MLS data sets in a compute-friendly and memory-friendly way. 
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Acronyms 
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SHOT: Signature of Histograms of Orientations 

SLAM: Simultaneous Localization and Mapping 

SVM: Support Vector Machines 

TEN: Tetrahedral Network 

TIN: Triangular Irregular Networks 

TLS: Terrestrial Laser Scanning 
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1. Introduction 
 
This chapter first overviews the background information of the dynamic object problem in 

Mobile Laser Scanning (MLS) data and explains the importance of solving this problem for 

MLS point cloud data applications (Section 1.1), then defines the research scope in Section 

1.2, and finally introduces the structure of this thesis in Section 1.3. 

 
 

1.1 Background and Motivation 
 
LiDAR technology provides a revolutionary and efficient way to capture 3D spatial data with 

high geometric accuracy and rich detail in the real world (Che et al., 2019). According to 

different carrying platforms of Light Detection and Ranging (LiDAR) sensors, there are three 

types of mainstream acquisition methods of point cloud data, including MLS, Airborne Laser 

Scanning (ALS), and Terrestrial Laser Scanning (TLS). MLS systems are usually mounted on 

land-based mobile platforms such as vehicles. ALS systems are often deployed on aircraft. 

TLS sensors are usually mounted on static tripods to scan the surrounding area (Hyyppä et 

al., 2013).  

 

Compared with other acquisition methods, MLS has its unique advantages: It can capture the 

data with better visibility, accuracy, and resolution than ALS and has higher collection 

efficiency than static TLS (Williams et al., 2013). These advantages make MLS fit the 

demand for point clouds data in urban scenes, especially in linear road environments (Soilán 

et al., 2019). So in recent years, MLS has been widely used in many urban applications such 

as urban land cover analysis, urban environment monitoring, digital 3D urban modeling, and 

self-driving vehicles (Di Stefano et al., 2021; Y. Wang et al., 2019). MLS data is usually 

integrated with other sensor data to get richer information for their projects in many research 

and commercial applications. For example, one common sensor combination is LiDAR, 

Global Navigation Satellite System (GNSS), Inertial Measurement Unit (IMU), and the RGB 

camera (see Figure 1), which generates accurate data timestamps and sensor movement 

trajectories while collecting MLS data sets. The spatiotemporal information brought by these 

additional sensors often assists MLS data for higher quality and more efficient environmental 

reconstruction (Čerňava et al., 2019; Rodríguez-Cuenca et al., 2015; Williams et al., 2013). 

 
However, some problems with the original MLS data set often causing limitations in several 

application scenarios. One of the most common problems is dynamic objects. According to 

the motion state of objects during scanning, the environment objects in MLS data can be 
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divided into static objects and dynamic objects. Common static objects include roads, 

buildings, trees, and parked vehicles in urban environments. Pedestrians and moving 

vehicles are the main dynamic objects (see Figure 1). Most application scenarios of MLS 

data, like object extraction, change detection, and generating HD-maps to support navigation 

and location services, require only static environment objects (Balado et al., 2019; L. Ma et 

al., 2018). However, due to the data acquisition method of MLS, it is impossible to completely 

avoid dynamic objects in the original point cloud data, especially in areas with large human 

and vehicle flows in cities. On the other hand, the moving route and speed of the MLS sensor 

are restricted by traffic laws, road networks, and other factors (Balado et al., 2020). 

Therefore, the MLS sensor and its nearby dynamic objects (mainly moving vehicles) are 

highly likely to be in the same or opposite moving directions at similar speeds. A more 

serious problem arises in the captured point cloud data if dynamic objects are moving in the 

same direction as the MLS sensor. These dynamic objects accompanying the MLS sensor 

are continuously scanned, which makes them very seriously stretched in the collected point 

cloud data (see Figure 2). In some studies, this phenomenon is named the ghost trail effect 

(Pagad et al., 2020; Pomerleau et al., 2014). So, the problem of dynamic objects in MLS data 

is more severe and complex than in other types of point cloud data.  

 

 

 

Figure 1: A dynamic motorbike, dynamic cars, and static cars in MLS data 

 

Thus, distinguishing and removing dynamic objects from static objects is important in MLS 

data preprocessing in many application tasks, such as localization and navigation. The 

performance of dynamic object detection and removal methods can directly affect the quality 
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of subsequent MLS applications. If dynamic objects cannot be removed accurately, many 

point cloud application algorithms may not work properly. For example, residual dynamic 

objects reduce the location accuracy of point-based HD-map (Endo et al., 2021; Wen et al., 

2021). However, MLS sensors’ speed and moving direction are constantly changing, making 

their relative motion with the surrounding objects more complex. Many detection methods 

based on ALS and TLS data cannot be directly applied to MLS data. So it is more 

challenging to accurately detect dynamic objects in MLS data than in TLS and ALS data.  

 

 
 

Figure 2: The stretched dynamic object in MLS data 

 

To address the problems and challenges caused by dynamic objects in MLS data, the 

research aims to design a dynamic object detection and removal method based on MLS 

data, which can be accelerated with parallel computing. The proposed method first generates 

an Octomap to extract all free points from the MLS data sets. Free points in this thesis refer 

to all points located in the Octomap space whose occupancy probability is less than a given 

probability threshold and usually has a higher probability of being part of a dynamic object 

(See Section 3.1 and Section 4.1 for a more detailed definition of free points and how it 

differs from dynamic points). Then the trajectory of the MLS sensor is used to delimitate the 

Region of Interest (ROI) from all extracted free points. The measurement noise is filtered 

from the free points located in the ROI. Alter that the number of returned LiDAR rays is used 

to remove the vegetation from the remaining free points. Finally, dynamic objects are 

extracted and removed by using spatial search with filtered free points. 
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1.2 Research Questions 
 
The main research question of this thesis is as follows: 

 

“How to detect and remove the dynamic objects from the MLS data?” 

 

From the perspective of data, this problem can be expressed as to how to return a point 

cloud without dynamic objects after giving an MLS data and its corresponding sensor 

movement trajectory? 

 
After defining the main question of this research, some sub-questions are derived from it: 

 

• How to detect and remove dynamic objects and avoid residue? 

• How to avoid detecting and removing static environment objects? 

• What factors affect the detection results? 

• How to use MLS sensor trajectory to assist detection and removal operations? 

• What types of objects often lead to misdetection? 

• How to improve the computational efficiency for large-scale data? 

 

 

1.3 Research Scope 
 
This section is intended to clarify the research scope to help the research focus better on the 

core research issues defined in Section 1.2. 

 
Firstly, the point cloud collection method of this research is MLS. Some studies interpret MLS 

as all LiDAR systems mounted on land-based mobile platforms (including humans), so the 

backpack-MLS (BLS) and handled-MLS (HMLS) are also considered a type of MLS in their 

studies (Hauser et al., 2016). Although there are many similarities between BLS and vehicle-

based MLS, there are still many significant differences between these two systems in sensor 

height and movement speed, which make the point density and visibility of the collected data 

different. This research mainly focuses on object detection in an outdoor environment, such 

as roads. The vehicle-based MLS is the main way of data collection in a large range (such as 

city-scale), so MLS in this study refers specifically to vehicle-based MLS. 

 
Second, this research focuses on dynamic objects. In the real world, dynamic objects exist 

from underwater to high in the sky. Some birds in flight are indeed inadvertently scanned 
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during actual data collection. However, this research only focuses on ground moving objects, 

such as cyclists, vehicles, etc. This is also an important prerequisite for reducing the 

detection region in Section 4.2. In addition, vehicles that are temporarily stopped during the 

whole scanning process due to traffic signals or other reasons are not considered dynamic 

objects. Valid dynamic objects in this study refer to objects that are moving during the whole 

or part of the scanning period, including vehicles that suddenly start or stop during the 

scanning process. 

 
Third, the point cloud processing operation concerned in this research is detecting and 

removing dynamic objects. Although point cloud processing operations such as ground 

extraction and vegetation extraction are also used in the intermediate steps of the proposed 

method. However, due to the relatively limited research time, the performance of these 

methods is not included in the core research questions mentioned in Section 1.2. However, it 

must be acknowledged that the performance of these operations have an impact on the final 

result. Therefore, this thesis will analyze which wrongly detected and removed objects are 

caused by bad ground extraction and vegetation extraction results based on the 

implementation results in Chapter 5 and Chapter 6. These two operations can also be 

replaced with other better-performance ground and vegetation extraction methods. This does 

not affect the overall workflow of the proposed method. 

 

 

1.4 Thesis Structure 
 
The rest of this thesis is organized as follows:  

 

• Chapter 2 reviews previous related research about dynamic object detection and 

change detection in point cloud data, including single-frame data methods and multi-

frame data methods. 

• Chapter 3 shows the theoretical background of Octomap and neighborhood query, 

which are the key concepts involved in this research methodology. 

• Chapter 4 presents the proposed methodology of dynamic object detection and 

removal. It describes the five main sub-steps of the methodology, including extracting 

the free points, reducing the detection area, removing outliers, removing vegetation, 

and extracting dynamic objects in detail. 

• Chapter 5 indicates the implementation details and discusses the running time and 

the memory consumption of the acceleration method used in implementation.  
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• Chapter 6 presents the final implementation results and is devoted to evaluating the 

final results and discussing the performance of the proposed methods.  

• Finally, Chapter 7 gives conclusions and future works of this research.  
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2. Related Work  
 

This chapter summarizes the recent research on dynamic object detection and change 

detection in LiDAR data. The detection and removal of point cloud dynamic objects are of 

great significance in many scenes, such as autonomous driving (Mekala et al., 2021), 3D 

point cloud mapping (Arora et al., 2021), and environmental monitoring (Okyay et al., 2019; 

Teo & Shih, 2013), so many relevant studies have been done in academia. The current 

methods can be divided into single-frame data and multi-frame data methods according to 

whether multiple scans (or continuous scans in MLS) are required, which are respectively 

introduced in Section 2.1 and Section 2.2. Finally, Section 2.3 summarizes the relevant 

research on this issue. 

 

 

2.1 Single-frame Data Methods 
 
The single-frame lidar data refers to the scan data obtained by the sensor in an instant or a 

very short period. ALS and TLS scan results are usually single-frame data. For MLS, the data 

obtained by a single rotation of the sensor (360°) is also considered single-frame data. 

 

 
 

Figure 3: The dynamic object detection based on the background subtraction (T. Zhang & Jin, 2022) 

 

One of the simplest single-frame data methods is to use a prior map for change detection. 

The dynamic object detection is formulated as a background subtraction problem if the prior 

map is prepared in advance. All objects that do not exist in the prior map are considered 

dynamic objects (Kiran et al., 2019). Figure 3 indicates the main idea of a dynamic object 

detection method based on background subtraction: Given a static background, the LiDAR 
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sensor should be able to see the background points closest to it in any direction, so lines of 

sight are created between them (Figure 3. A). If these lines of sight are obscured by an 

object from the real-time scan data, this object is dynamic (Figure 3. B). The representation 

forms of prior point cloud maps are diversified. In addition to the original point cloud data, it 

can also be based on the semantic point cloud map (W.-C. Ma et al., 2019), probability 

occupancy grid (Anderson-Sprecher et al., 2011), or feature map extracted from the original 

point cloud (Yin et al., 2020). 

 

 
 

Figure 4: Relative distances and corresponding histograms of different background objects (Xia et al., 
2022). 



       

17 

 

 

However, it is not easy to construct a prior map in practice. The first issue is that the 

generation and updating of the prior map also need to remove dynamic objects. So prior map 

construction and dynamic object detection are chicken-and-egg problems due to their 

interwoven nature in this method (Kim & Kim, 2020). Another problem is that not all 

environment objects are completely static. It is difficult to accurately represent dynamic 

background objects such as tree crowns and grasslands in the prior map because they are 

not rigid. Figure 4 illustrates the time series of the relative radial distances between the 

LiDAR sensor and different kinds of background objects and their corresponding histograms 

to further indicate this problem. It indicates the difference in the radial distance distributions 

between the dynamic background objects and static background objects. The distance of 

dynamic background objects such as the tree crowns (Figure 4. (a) and (b)) and grasslands 

(Figure 4. (c) and (d)), fluctuate sharply. The distance of static background objects like empty 

concrete road surface (Figure 4. (e) and (f)) slightly fluctuate unless there are vehicles on this 

road (Figure 4. (g) and (h)).  

 

 

 

Figure 5: The ASM alignment of vehicles, mean of samples in blue dashed line (Xiao et al., 2016). 

 

Another idea based on prior knowledge is to extract potential moving objects using feature or 

model matching (Cheng et al., 2014; Ding & Wang, 2021). Common features include object 

dimension (length, width, and height), volumetric features (object surface area, vertical 

projected area, and volume), relative position (maximum relative height and mean relative 

height), and vertical point distribution histogram, etc. (Xiao et al., 2016). In addition to 

defining features for dynamic objects, these target objects can also be modeled directly as 

Active Shape Model (ASM) (Zeeshan Zia et al., 2013). An example of vehicle ASM is shown 

in Figure 5 and the extracted results of this model are shown in Figure 6. Then, based on 
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these models and features, dynamic objects are extracted by classifiers, like Support Vector 

Machines (SVM) (Y.-W. Chen & Lin, 2006) or random forest (Breiman, 2001).  

 

Feature-based and model-based approaches also face some problems. First, in addition to 

vehicles, common dynamic objects also include cyclists and pedestrians. Even just focusing 

on vehicles, the differences between different types of vehicles are very large. Most of the 

previous methods only focused on small vehicles and did not include large vehicles such as 

large trucks or buses. Some cities also have special vehicles such as ground rail vehicles 

and tricycles. To be able to cover various types of dynamic objects, some studies chose to 

increase the number of features. For example, Lin et al. (2018) raised a 26-dimensional 

feature and Guo et al. (2019) raised a 32-dimensional feature to extract vehicles, cyclists, 

and pedestrians. Iqbal et al. (2021) used a transfer learning strategy to extract 128 features 

from the original point cloud. In general, researchers tend to use as many features as 

possible when they lack relevant prior knowledge, which leads to a significant increase in 

computing time and memory requirements (Weinmann et al., 2015). The second problem is 

that even when appropriate features or models are obtained, they are generally only applied 

to static or low-speed objects. As shown in Figure 2, the ghost trail effect makes objects 

which move at high speed cannot match with the model or features of static objects. 

Depending on speed and trajectory (such as moving straight, changing lanes, or turning at 

the corner), the same dynamic object takes on a completely different geometrical shape. 

Therefore, it is difficult to define suitable features and models for dynamic objects. 

 

 

 

Figure 6: The vehicle ASM fitting examples (Xiao et al., 2016). 

 

Some studies attempt to extract the motion state of objects from a single-frame point cloud 

data, although a single-frame data is not generally considered to contain enough motion 

information. Yao et al. (2011) detected moving vehicles in ALS data using motion artifacts 
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caused by ALS sensors moving relative to the static environment. This method approximates 

a static vehicle as a rectangle from a 2D perspective. For moving vehicles, this rectangle will 

be stretched into a parallelogram. The shearing angle 𝜃𝑆𝐴 of this parallelogram is determined 

by the angle 𝜃𝑣 between the movement direction of the vehicle and the ALS sensor. So a 

motion artifacts model illustrated in Figure 7 infers the dynamic state of vehicles based on the 

relative relation between the original rectangle and the stretched parallelogram. Given the 

sensed length (𝑙𝑠) and original length (𝑙𝑣) or the original aspect ratio (𝐴𝑟) and the sensed 

aspect ratio (𝐴𝑟𝑠) of a vehicle in the ALS data. And the velocity of the ALS sensor (𝑣𝐿) and 

angle 𝜃𝑣 are also known. The velocity of the vehicle (𝑣) is calculated in Eq.1 (𝑙𝑠 and 𝑙𝑣 can be 

replaced by 𝐴𝑟𝑠 and 𝐴𝑟). Then shearing angle 𝜃𝑆𝐴 used to compare the velocity of the vehicle 

(𝑣) is obtained in Eq.2. So the dynamic state of the vehicle is recovered with 𝑣 and 𝜃𝑆𝐴. 

 

𝑙𝑠 =
𝑙𝑣⋅𝑣𝐿

𝑣𝐿−𝑣⋅cos(𝜃𝑣)
=

𝑙𝑣

1−
𝑣

𝑣𝐿
⋅cos(𝜃𝑣)

                                              (1) 

𝜃𝑆𝐴 = arctan (
𝑣⋅sin(𝐴)

𝑣𝐿−𝑣⋅cos(𝐴)
) + 90°                                           (2) 

 

 

 

Figure 7: Motion artifacts model (Yao et al., 2010). 

 

Although the motion artifacts model has good results when dealing with vehicle objects in 

ALS, they are not suitable for pedestrians or cyclists because these two kinds of objects do 

not fit well with rectangles and parallelograms. Another problem is that because the ALS 

sensor moves so fast, the scanning time of an area is very short. Therefore, it is easy to 

capture the instantaneous motion state of the moving object. By contrast, MLS sensors are 

limited by the speed of the data acquisition vehicle and traffic rules and spend more time 

scanning the same area. As a result, it is possible to capture the moving state of a dynamic 

vehicle for a long time, resulting in the captured object not moving in a fixed direction, but 

(continuously) changing the direction of motion during the scan (Figure 2). So it is difficult to 
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simply generalize the captured dynamic object as a parallelogram and generate the motion 

artifacts model. 

 

Since the advent of methods such as PointNet (Charles et al., 2017) and VoxelNet (Zhou & 

Tuzel, 2018) in recent years, deep learning has been widely applied to the object detection 

tasks in point cloud data (Ku et al., 2018; Shi et al., 2019). Most of these methods are directly 

applied to the single-frame point cloud data, and show excellent performance in pedestrian, 

cyclist, and vehicle detection tasks. However, the good performance of such methods usually 

requires the support of a high-quality training set. For dynamic object detection tasks, 

although some researchers have made the related data set (Pfreundschuh et al., 2021), the 

relevant high-quality available data sets are still not enough in general. For large open data 

sets such as KITTI (Geiger et al., 2013), training samples are often very imbalanced, 

especially for uncommon moving objects. This may affect the quality of the results of multi-

type object recognition tasks (Wu et al., 2021). 

 

 

2.2 Multi-frame Data Methods 

 
Multi-frame data is a collection of multiple single-frame data, such as the continuously 

scanning MLS data is a typical multi-frame data. Earlier research simply interpreted multi-

frame data as a single frame with more points (Sun et al., 2020) but ignored the relative 

relationship between each data frame. Subsequent studies proved that spatiotemporal 

correlations among consecutive frames provide much useful information especially for 

detection of dynamic objects (Huang et al., 2020; Luo et al., 2018). 

 

A common multi-frame method is object tracking. This method thinks that multi-frame data is 

a time series of single-frame data, so it starts from the first frame data and takes the data of 

the current frame as the reference of the data of the next frame to find the object with 

position change in the next frame. There were many model-based object tracking 

approaches in early research (Petrovskaya & Thrun, 2009; Shackleton et al., 2010). They 

usually apply model-based object detection on each single-frame data (see Figure 8) and 

then use methods such as Kalman Filters (Zhao & Thorpe, 1998) or Signature of Histograms 

of Orientations (SHOT) descriptors (Tombari et al., 2010) to match the same object in 

different data frames. If the position of the detected object changes, this object is dynamic. 

Such methods usually require prior knowledge of the object to be detected and are therefore 

very effective when performing tracking tasks for specific targets, such as the pedestrian 

detection in Figure 8.  
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Figure 8: The model-based object detection in single-frame data (Shackleton et al., 2010).  

 

 

 

Figure 9: Objects segmented with motion cues (Dewan et al., 2016).  

 

However, these model-based dynamic object detection and tracking methods have poor 

generalization ability, so they are not suitable for cases where the types of detected objects 

cannot be predicted completely. To avoid the limitations of prior models, some model-free 

methods are also proposed. For example, Dewan et al. (2016) first used Random Sample 
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Consensus (RANSAC) (Fischler & Bolles, 1981) to estimate the motion model and then 

segmented the point cloud directly with the motion cues. Figure 9 shows objects segmented 

with motion cues. Compared to the model-based method (Figure 8), its segmentation results 

contain a variety of objects.  

 

 

 

Figure 10: The dynamic object removal in SuMa++ (X. Chen et al., 2019).  

 

 

 

Figure 11: The main steps of the mapless and modeless online dynamic object detection method 

designed by Yoon et al. (2019).  
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As recently the semantic classification has been achieved point by point in point cloud data, 

some latest studies have proposed point-based dynamic detection. Therefore, dynamic 

tracing does not need to take the object as the basic unit but can be further achieved at the 

point level. X. Chen et al. (2019) proposed a Simultaneous Localization and Mapping (SLAM) 

method, SuMa++, which first used the Fully Convolutional Neural Network (FCN) (Milioto et 

al., 2019) to provide semantic class labels for each point and then detect and remove 

dynamic objects with the spatial semantic inconsistency (Figure 10). But this method also 

removes some of the static objects (see incomplete static vehicles on both sides of the road 

in Figure 10. (b)). Yoon et al. (2019) designed a point-based online dynamic object detection 

method that does not rely on prior maps or models. The main steps are shown in Figure 11. 

This method first uses the error metrics, which is a common concept in point cloud alignment 

operations, to first compare two point clouds and then extract the potential dynamic points 

from the unaligned points (Figure 11. (a)). Then it checks the free space (the space not 

permanently occupied by static points in the point cloud) by considering the spatial 

relationship between the LiDAR scanning ray and the surface plane that the scanned point 

lies on. The fake dynamic points are labeled as static points again. This step is a simplified 

version of the occupancy voxel grid (Figure 11. (b)). After that, a box filter (Figure 12) is used 

to further move outliers in the potential dynamic points (Figure 11. (c)). Finally, the remaining 

points will be considered as the seed points of the region growth algorithm (Moosmann et al., 

2009) to extract the complete dynamic object (Figure 11. (d)). 

 

 

 

Figure 12: The box filter used to remove the outliers in potential dynamic points (Yoon et al., 2019). 

 

Compared with object-based methods, point-based methods are more susceptible to 

viewpoint occlusions and data sparsity. For the method of ray tracing, another issue is that 

the influence of noise on free space detection is not considered, which results in labeling 

many static points as dynamic by mistake. Therefore, some studies use Octomap to identify 

dynamic objects (Arora et al., 2021; Lim et al., 2021; Pagad et al., 2020; Schauer & Nüchter, 

2018; Ushani et al., 2017). It extracts dynamic objects by exploiting the spatial conflict of 

LiDAR rays between multi-frame data. The theoretical background of Octomap will be 

introduced in Section 3.1. The advantage of Octomap over other multi-frame methods is that 
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instead of simply marking points as static or dynamic, Octomap describes the probability of 

each voxel being occupied, which considers the effect of noise on ray tracing. This allows 

Octomap to obtain more precise free space in the point cloud.  

 

The main problem with Octomap is that it is not a computation-friendly and memory-friendly 

method because Octomap introduces additional 3D grid so that the orientation, resolution, 

and spatial domain of the grid all affect the performance. MLS will generate point cloud data 

of large density and wide range. Thus MLS data results in a very large voxel grid in Octomap. 

Therefore, a large amount of memory is required to perform ray tracing. At present, one of 

the key points and difficulties of Octomap-related research is to reduce the memory burden 

and improve the computing speed of Octomap. One idea is to introduce visibility-based 

approaches (Banerjee et al., 2019; Kim & Kim, 2020). However, visibility-based approaches 

are severely affected by the occlusion problem. 

 

 

2.3 Conclusion of Related Works 
 
In general, although there are many well-performed static target extraction methods for 

single-frame data, the methods for dynamic objects are still not very mature, especially in 

MLS data. But some single-frame methods are instructive for multi-frame methods. For 

example, a single-frame method is integrated into a multi-frame method as a sub-step in 

many research approaches. 

 

In addition to obtaining more points and higher point density, multi-frame data also provides a 

lot of additional information helpful for dynamic object extraction, such as the relative 

spatiotemporal relation between data frames. Among the many multi-frame methods, 

Octomap provides a unique point-by-point ray-tracing solution and had some good results in 

previous studies. But it still needs to be improved in terms of computational efficiency and 

memory consumption.  

 

Compared to previous studies on Octomap-based dynamic object detection, the contribution 

of this thesis is to propose a method to segment the original input MLS point cloud into 

multiple subsets thus avoiding the generation of a huge voxel grid to achieve better efficiency 

and reduced memory requirements. On the other hand, the segmented MLS point cloud can 

more efficiently build Octomaps and extract free points by accelerating with parallel 

computing. 
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3. Theoretical Background 
 
This chapter introduces the theoretical background of the two important concepts, the 

Octomap (Section 3.1) and the point-based neighborhood query (Section 3.2), which are 

used in the methodology of this thesis. 

 

 

3.1 Octomap 
 
Octomap is a 3D occupancy voxel grid mapping approach based on a cell’s octree structure 

(see Figure 13, where free cells are shadowed white and occupied cells are black), which 

was originally developed to implement the maples and modeless 3D geometric environment 

representation in robotics research (Hornung et al., 2013). This mapping approach is inspired 

by the occupancy grid mapping proposed by Moravec and Elfes (1985). Figure 14 compares 

the Octomap with other common 3D representations of LiDAR data. 

 

 

 

Figure 13: The volumetric model (left) and its corresponding octree representation (right) (Hornung et 

al., 2013). 

 

 

 

Figure 14: 3D representations of a tree scanned with a laser range sensor (from left to right): Point 

cloud, elevation map, multi-level surface map, and Octomap (Hornung et al., 2013). 
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Octomap obtains the full representation of space, which means the space is divided into 

three classes: unscanned space, free space, and occupied space. The free space (navigable 

space) and the occupied space (obstacles) are important for safe robot navigation. In 

addition, information about unscanned space is also coded implicitly in the map because it is 

also critical for some tasks such as autonomous robot exploration of an unknown 

environment. For ease of understanding, Figure 15. (a) uses a 2D grid to demonstrate 

Octomap's spatial division logic: First, all voxel cells in the initial Octomap are labeled as 

unscanned space by default. When the MLS sensor moves to position 𝑠1, it emits the first ray 

𝑠1𝑝1  and captures the target point 𝑝1 . The Lidar ray is voxelized in Octomap using 

Bresenham's line algorithm (Bresenham, 1965). The voxel cell 𝑣𝑝1
 where the target point 𝑝1 

is located is considered occupied, while the voxel cell 𝑣𝑠1
 where the MLS sensor 𝑠1is located 

and all the voxel cells between 𝑣𝑝1
 and 𝑣𝑠1

 are free. 

 

 
 

Figure 15: Spatial classification based on ray tracing and its possible spatial conflicts. 

 
As shown in Figure 15. (a), when only one ray is inserted into the Octomap, all voxel cells are 

explicitly classified as unscanned, occupied, or free space. However, the situation becomes 

much more complicated when multiple rays are inserted. Some rays may have space 

conflicts with each other. Figure 15. (b) shows an example of a space conflict: After emitting 

ray 𝑠1𝑝1, the MLS sensor continues to move in the direction 𝑠1𝑠2. When the sensor reaches 

position 𝑠2, it emits the second ray 𝑠2𝑝2 and captures the target point 𝑝2. Since 𝑝2 is a point 

on the ray 𝑠1𝑝1, there is a contradiction between 𝑠1𝑝1 and 𝑠2𝑝2. For 𝑠1𝑝1, the voxel cell 𝑣𝑝2
 , 

which contains the target point 𝑝2 , is free. But for 𝑠2𝑝2 , 𝑣𝑝2
 is occupied. There are three 

possible reasons for this inconsistency in voxel occupancy. The first is that 𝑝2 is a dynamic 

point, so when the sensor emits the first ray 𝑠1𝑝1, 𝑝2 is moving towards but not yet at 𝑣𝑝2
. So, 

the ray 𝑠1𝑝1 is not occluded by 𝑝2. Based on this assumption, the actual case of 𝑣𝑝2
 should 

be free (Figure 15. (c)). The second possibility is that the conflict is caused by a 
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measurement error in LiDAR. 𝑝1 in Figure 15. (b) may be the noise generated during the 

measurement, so its position is not correct. An assumption is made that the real position of 

𝑝1 in the actual environment is shown in Figure 15. (d). Based on this assumption, we draw 

an opposite conclusion: in the real world, 𝑣𝑝2
 is occupied. The last possibility is that the object 

being scanned is a non-rigid static object or has a sparse structure. Typical examples are 

tree crowns and grasslands. In Figure 15. (b), if 𝑝2 comes from a non-rigid object, then it is 

possible for voxels 𝑣𝑝1
 and 𝑣𝑝1

 to be occupied space at the same time. In a real MLS data 

set, the above three conditions may exist simultaneously. This makes it difficult to analyze 

what causes spatial conflict cell by cell. Therefore, it is impossible to directly classify voxel 

cells with spatial conflict without knowing the true environment. 

 

To avoid the classification uncertainty caused by space conflicts of rays, Octomap does not 

directly mark the occupation status of each voxel cell but calculated the occupation 

probability. For each voxel cell, find all the rays that intersect it in space. If one ray is 

reflected within the voxel cell, this voxel cell is observed to be occupied once. If one ray 

traverses the voxel cell, this voxel cell is observed to be free once. The occupancy probability 

is obtained by calculating the ratio of the number of times the voxel cell is occupied to the 

total number of observations. This is very similar to the hit-and-miss approach proposed by 

Kelly et al. (2006). 

 

Octomap also provides a convenient way to update probabilities. From the insertion of the 

second ray, the latest occupancy probability of the voxel cell is derived from the previous 

probability, rather than having to traverse all the inserted rays each time to obtain statistical 

information. For the voxel cell 𝑛, given 𝑡 times sensor measurements 𝑧1:𝑡 , its occupancy 

probability 𝑃(𝑛|𝑧1:𝑡) is obtained in Eq.3. In this update formula (Eq.3), 𝑧𝑡 means the current 

measurement. 𝑃(𝑛) is the prior probability and 𝑃(𝑛|𝑧1:𝑡−1) is the previous estimate. 𝑃(𝑛|𝑧𝑡) is 

the probability of voxel n to be occupied given the measurement 𝑧𝑡. 

 

𝑃(𝑛|𝑧1:𝑡) = [1 +
1−𝑃(𝑛|𝑧𝑡)

𝑃(𝑛|𝑧𝑡)
⋅

1−𝑃(𝑛|𝑧1:𝑡−1)

𝑃(𝑛|𝑧1:𝑡−1)
⋅

1−𝑃(𝑛)

𝑃(𝑛)
]

−1
                                (3) 

 

After determining the final occupancy probability of each voxel cell, a threshold value 

𝑡ℎ𝑟𝑒𝑠𝑜𝑐𝑐𝑢𝑝𝑖𝑒𝑑 is set to label the voxel cells with a probability greater than the threshold as 

occupied space, and the other scanned as free space. Unscanned cells have no probabilities 

and are not explicitly added to the octree structure to reduce computation and memory 

consumption. The 3D environment representation obtained in this way takes full account of 

the effects of dynamic objects, non-rigid static objects or objects with a sparse structure, and 
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measured noise. It is also the theoretical basis for extracting free points in Section 4.1 of this 

thesis. 

 

 

3.2 Point-based Neighborhood Query 
 
In several sub-steps of the methodology proposed in this paper, such as removing noise, 

removing vegetation, and finally extracting dynamic objects, point-based local neighborhood 

queries are required.  

 

 

 

Figure 16: 4-connectivities (a) and 8-connectivities (b) of the raster data (Kampffmeyer et al., 2019). 
 

 

 

Figure 17: 6-connectivities (a), 12-connectivities (b), 18-connectivities, and 26-connectivities of the 

voxel data (Sánchez-Cruz et al., 2013). 
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For raster data, its neighborhood is usually defined by connectivity (Gonzalez & Woods, 

2008). Figure 16 illustrates the two main types of connectivity for raster data: 4-connectivities 

which only focus on the vertical and horizontal directions and 8-connectivities which focus on 

horizontal, vertical, and diagonal directions. The neighborhood of a voxel object can also be 

similarly defined by connectivity. Figure 17 illustrates several major connectivity modes of 

voxel objects. However, point cloud data is discrete, so the adjacency relation between 

points is implicit, which means that the neighborhood definition based on connectivity cannot 

be directly applied to the point cloud. Therefore, it is necessary to specially define the 

neighborhood of point cloud data. Otepka et al. (2013) proposed that for point 𝑝𝑖 from the 

point cloud, all points with a distance to 𝑝𝑖  less than a certain threshold or the nearest 𝑘 

points of 𝑝𝑖 are regarded as its neighborhood. There are two points to note in this definition. 

First, 𝑝𝑖 does not need to be a real point element in the point cloud, in other words, it can be 

a virtual point such as the geometric center of the point cloud. Second, there is no restriction 

on the type of distance in the definition, so it could be 3D distance, 𝑥𝑦-plane distance, 𝑧-axis 

distance, or Manhattan distance. Some researchers defined the point cloud neighborhood 

based on triangulation or tetrahedralization (Gorte, 2002; Maas & Vosselman, 1999). 

However, these two methods require additional processing steps, such as constructing 

Triangular Irregular Networks (TIN) or Tetrahedral Networks (TEN), which cannot be directly 

applied to the original point cloud.  

 

 

 

Figure 18: An example of 2D points (left) with their corresponding KD-tree structure (right) (Bentley, 

1975). 

 

The point cloud neighborhood definition proposed by Otepka et al. (2013) corresponds to two 

commonly used point-based local neighborhood query methods: fixed radius search and 

KNN search. These two methods can be efficiently implemented based on KD-tree (Bentley, 

1975) structure (Figure 18). But in practice, many people are unaware of the difference in 

effect between these two neighborhood query methods. The wrong choice of neighborhood 

query method may affect the performance of many point cloud processing tasks. Otepka et 
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al. (2021) analyzed this problem with a generic spatial search framework: When the point 

distribution in the point cloud is isotropic and homogeneous, there is no obvious difference 

between the two neighborhood query methods. However, in the actual point cloud data, due 

to the influence of scan mechanics (Figure 19) and other factors, the point distribution is 

usually anisotropic and inhomogeneous. For example, areas far from the center of the scan 

usually have a lower density of captured points. The main advantage of fixed radius search is 

that it provides a symmetrical neighborhood, but KNN search does not. A symmetrical 

neighborhood means that all points are mutual neighbors under the neighborhood. Figure 20 

illustrates examples of the symmetrical neighborhood from a fixed radius search (Figure 20. 

(a)) and the non-symmetrical neighborhood from a KNN search (Figure 20. (b)). In Figure 20. 

(a), the blue point and all orange points are mutual neighbors. In Figure 20. (b), the orange 

point is a neighbor of the blue point, but the blue point is not a neighbor of the orange point. 

For some point cloud processing tasks, such as performing region growth algorithms or 

calculating local point densities, symmetric neighborhoods are explicitly specified. But points 

in the symmetric neighborhood may be non-symmetrical. Although KNN search provides a 

non-symmetrical neighborhood, it has better neighborhood search ability in the region with 

density change, such as the boundary region far from the sensor in MLS data (Pfeifer et al., 

2021). 

 

 

 

Figure 19: Some scan mechanics and their scan pattern on a horizontal planar surface (Otepka et al., 

2021).  

 

Based on the above analysis, this research takes point-based space search as the main 

means to query the point cloud neighborhood and selects different search strategies in 
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different sub-steps according to the task objectives, to achieve better performance of the 

proposed method. 

 

 

 

Figure 20: The symmetrical neighborhood from a fixed radius search (a) and the non-symmetrical 

neighborhood from a KNN search (b). 
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4. Methodology 
 
This chapter discusses the methodology of this research. Implementation details of this 

method, such as typical values for all involved parameters, are given in Chapter 5. The main 

task of this proposed method is to use the MLS data and its corresponding sensor trajectory 

to move the dynamic objects from the original input MLS point clouds and only keep the 

static objects. As shown in Figure 21, the workflow is divided into five sub-steps:  

 

(1) Extract the free points from the input MLS point cloud using Octomap (Section 4.1).  

(2) Delimtate the ROI by removing the ground surface and the high-altitude space 

(Section 4.2).  

(3) Remove noise with free-point rate from free points (Section 4.3).  

(4) Remove the vegetation areas from free points using the number of returned LiDAR 

rays (Section 4.4).  

(5) Use the filtered free points as seed points to extract the dynamic objects (Section 4.5). 

 

 

 

Figure 21: The main workflow of this method. 
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4.1 Free Point Extraction 
 
This section describes how to extract free points from Octomap in a more efficient Octomap 

manner then the original Octomap method using MLS data and its corresponding sensor 

trajectory data. Free points here are defined as all points located in the Octomap space 

whose occupancy probability is less than a given threshold 𝑡ℎ𝑟𝑒𝑠𝑜𝑐𝑐𝑢𝑝𝑖𝑒𝑑. As shown in Figure 

22, the workflow of this step begins by splitting the entire MLS data into multiple data frames. 

Each data frame and its neighbor data frames are merged into one group and inserted into 

an independent Octomap. Free points are extracted from each Octomap based on an 

occupancy probability threshold and then merged. Finally, the expected free points are 

obtained after removing the redundant points. The rest of this section will introduce these 

operations in detail. 

 

 

 

Figure 22: The workflow of free points extraction. 

 

Octomap is generally not considered computation-friendly and memory-friendly. This problem 

is more prominent when dealing with high point density MLS data, especially when Octomap 

is set to a very small voxel size. Therefore, before generating Octomap and performing ray 

tracing, it is necessary to consider how to make this operation as efficient as possible. The 

solution used here is to split the entire MLS data into multiple sections (data frames). This 

avoids generating a very large voxel grid but instead generates multiple relatively small voxel 

grids and excludes rays emitted from very far away in each small voxel grid, thus reducing 

the computational effort and memory requirements. Figure 23 uses an example to further 

explain this idea: Octomap is built based on ray tracing. For the target section (see Figure 23. 

(b) and. the green box area in Figure 23. (a)), most of its intersected rays are emitted when 

the MLS sensor is located between points 𝑝1 and 𝑝2. When the MLS sensor is located at 
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other positions, some rays also reach the target section, but in very small quantities. 

Moreover, these rays have lower measurement accuracy because they are emitted by the 

sensor at a distance far from the target section (Pfeifer et al., 2021). Thus, when the 

Octomap is used to represent the target section shown in Figure 23. (b), the data collected 

by the sensor from positions 𝑝2 to 𝑝1 provides most of the highly accurate rays associated 

with this target area. 

 

 

 

Figure 23: A section (b) from the whole MLS data (a). 

 

 

 

Figure 24: Data frames segmentation. 

 

The detailed flow of data frames segmentation is given in Figure 24: Given a continuous scan 

of MLS data from moment 𝑡𝑠𝑡𝑎𝑟𝑡 to moment 𝑡𝑒𝑛𝑑, and a time interval 𝑡𝑖𝑡𝑣𝑙. The original MLS 
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data is split into 𝑛 data frames (𝑛 = ⌈(𝑡𝑒𝑛𝑑 − 𝑡𝑠𝑡𝑎𝑟𝑡) ∕ 𝑡𝑖𝑡𝑣𝑙⌉), each with a scan time of 𝑡𝑖𝑡𝑣𝑙 (the 

scan time of the last frame may be less than 𝑡𝑖𝑡𝑣𝑙).  

 

The next step is to specify the Octomap voxel size by setting the parameter 𝑠𝑖𝑧𝑒𝑣𝑜𝑥𝑒𝑙 and 

then build Octomaps using the segmented data frames. If each data frame is inserted directly 

into a separate Octomap, a problem arises: the start and end moments of each data frame 

(e.g., moment 𝑡2 and moment 𝑡3 for the second data frame in Figure 24) are missing a lot of 

data compared to the other scan moments because the start moment lacks preceding scan 

data and the end moment lacks subsequent scan data. These missing data are split into their 

neighbor data frames. Thus a relatively poor reconstruction result is obtained at the start and 

end moments of each data frame, due to the relative lack of scan data. To cope with this 

problem, the solution given here is to pack each data frame with its neighbor data frames and 

then insert them together into an Octomap, so that the missing data at the start and end 

moments of each data frame is filled with its neighbor data frames. Thus each Octomap build 

is fed three consecutive frames of data (the first and last Octomap are only fed two 

consecutive frames of data). 

 

The principle and method of Octomap construction have been described in detail in Section 

3.1, so this section will skip this part and discuss the free point extraction steps after 

Octomap construction is completed. By setting an occupancy probability threshold 

𝑡ℎ𝑟𝑒𝑠𝑜𝑐𝑐𝑢𝑝𝑖𝑒𝑑 , the scanned space in each Octomap is classified into two discrete states, 

occupied and free (see Eq.4). All points from the two or three inserted consecutive frames 

that lie in the free voxel space are free points. The free points from all Octomaps are 

extracted and combined into one data to obtain the free points of the complete scan area. 

Since neighbor data frames are added in each Octomap construction, this means that each 

data frame is inserted into at least two Octomaps. Therefore, inevitably the free points from 

different Octomaps are partially duplicated, which cause unnecessary computation in 

subsequent steps. In addition, redundant points also cause the local density of free points to 

be greater than the local density of the original MLS data at the corresponding location, thus 

resulting in problems in the noise removal phase. So, redundant points need to be removed 

from the combined free points in the final operation of this section. The redundant points of 

each point are found by applying the fixed radius spatial search with a very small radius 

(close to 0) in a KD-tree structure. 

 

𝑠𝑝𝑎𝑐𝑒 𝑜𝑐𝑐𝑢𝑝𝑎𝑛𝑐𝑦 𝑠𝑡𝑎𝑡𝑒 = {
𝑜𝑐𝑐𝑢𝑝𝑖𝑒𝑑: 𝑖𝑓 𝑜𝑐𝑐𝑢𝑝𝑎𝑛𝑐𝑦 𝑝𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦 ≥  𝑡ℎ𝑟𝑒𝑠𝑜𝑐𝑐𝑢𝑝𝑖𝑒𝑑  

𝑓𝑟𝑒𝑒: 𝑖𝑓 𝑜𝑐𝑐𝑢𝑝𝑎𝑛𝑐𝑦 𝑝𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦 <  𝑡ℎ𝑟𝑒𝑠𝑜𝑐𝑐𝑢𝑝𝑖𝑒𝑑
       (4) 
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Finally, it is important to emphasize that the free points obtained here are only considered as 

potential dynamic points and not directly as dynamic points. As analyzed in Section 3.1, free 

points can be caused by non-rigid objects, objects with sparse structure, or measurement 

errors (noise), in addition to dynamic objects. In a real-world LiDAR data collection 

environment, these three influencing factors are often difficult to avoid. Therefore, only after 

removing all free points due to non-rigid objects, objects with sparse structure, and potential 

measurement noise (outliers), the remaining free points are considered as a subset of all 

dynamic objects. The related processing methods will be described in the subsequent part of 

this chapter. 

 
 

4.2 ROI Delimitation 
 
This section aims to use the sensor trajectory, sensor mounting height, and local vehicle 

height restriction information to extract Region of Interest (ROI) that is relevant for land-

based dynamic objects to reduce the amount of calculation in subsequent steps. ROI is 

defined as the space between the height of the ground surface and the maximum allowable 

height of a large vehicle in this research (excluding the ground). The final output data is the 

ROI containing the potential dynamic points. The workflow of ROI delimitation is illustrated in 

Figure 25. 

 

 

 

Figure 25: The workflow of ROI delimitation. 

 

Ground removal is a common operation in dynamic object detection tasks (Choi et al., 2013; 

Postica et al., 2016; L. Zhang et al., 2013). This is based on two main reasons: The first 

reason is that the ground is usually dense and does not have any dynamic objects in the 

MLS data. So removing the ground reduces the computational cost of the subsequent steps 

without affecting the final result. Another reason is that the land-based dynamic objects are in 

contact with the ground, and if the ground points are not removed it is difficult to avoid 
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extracting some of the ground points as part of dynamic objects by accident. Thus, the 

integrity of the static environment might be destroyed. By removing the ground points, the 

objects are not connected by the ground surface, so they are more easily segmented into 

separate objects for detection and tracking tasks (Arora et al., 2021). 

 

There have been many studies on ground extraction from MLS data, and most of them 

require a series of processing steps of the point cloud data (Che et al., 2019). However, to 

obtain the ground rapidly, an efficient ground extraction method based only on the sensor 

mounting height without additional processing of the point cloud is proposed here. Given a 

3D position of MLS sensor 𝑠𝑖 (𝑥𝑦𝑧 coordinates: 𝑥𝑠𝑖
, 𝑦𝑠𝑖

, ℎ𝑠𝑖
) from the sensor trajectory and the 

mounting height of the sensor ℎ𝑠𝑚, the height of local ground surface ℎ𝑚𝑖𝑛𝑖
 is calculated by 

ℎ𝑚𝑖𝑛𝑖
= ℎ𝑠𝑖

− ℎ𝑠𝑚. If the sensor captures a point 𝑝𝑖 (𝑥𝑦𝑧 coordinates: 𝑥𝑝𝑖
, 𝑦𝑝𝑖

, ℎ𝑝𝑖
) at position 𝑠𝑖 

and the ground height does not change within a certain range, the ground height 

corresponding to 𝑝𝑖  is also ℎ𝑚𝑖𝑛𝑖
. So, Eq.5 determines whether the captured point 𝑝𝑖  is a 

ground point by comparing ℎ𝑚𝑖𝑛𝑖
 and ℎ𝑝𝑖

.  

 

𝑔𝑟𝑜𝑢𝑛𝑑 𝑝𝑜𝑖𝑛𝑡 = {
𝑡𝑟𝑢𝑒: 𝑖𝑓 ℎ𝑚𝑖𝑛𝑖

 ≥  ℎ𝑝𝑖
 

𝑓𝑎𝑙𝑠𝑒: 𝑖𝑓 ℎ𝑚𝑖𝑛𝑖
<  ℎ𝑝𝑖

                                              (5) 

 
While most studies related to dynamic object detection have mentioned ground removal, few 

studies have focused on the high-altitude space in MLS data. The high-altitude space in this 

context means the space above the common land-based dynamic objects, such as large 

vehicles. The high-altitude space in the MLS data does not include any land-based dynamic 

objects but may include the upper part of some street-facing buildings and the crowns of 

some tall trees, which cause obstacles to dynamic object detection and extraction. Therefore, 

removing the high-altitude space not only reduces the computational cost of the subsequent 

steps by decreasing the number of free points but also reduces the difficulty of dynamic 

object detection and extraction.  

 

One of the difficulties in removing high-altitude space is that, unlike the obvious boundary 

between ground and non-ground space, the boundary between high-altitude and non-high-

altitude spaces usually relies on artificial settings. Since MLS data focuses on roads and their 

surroundings, large vehicles are usually the largest dynamic objects in MLS data. The 

governing bodies of a region or country usually set the height restriction for local large 

vehicles in the form of regulations. Vehicles that exceed the height restriction may not be 

able to safely pass-through local transportation facilities such as tunnels. Therefore, the 
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height restriction of large vehicles is a reasonable boundary between high-altitude and non-

high-altitude spaces in MLS data. 

 

Given the height restriction of large vehicles ℎ𝑣𝑟 , the height of boundary between high-

altitude and non-high-altitude spaces at position 𝑠𝑖 (ℎ𝑚𝑎𝑥𝑖
) is calculated by ℎ𝑚𝑎𝑥𝑖

= ℎ𝑚𝑖𝑛𝑖
+

ℎ𝑣𝑟 . Thus, Eq.6 determines whether the captured point 𝑝𝑖  is a high-altitude point by 

comparing ℎ𝑚𝑎𝑥𝑖
 and ℎ𝑝𝑖

. 

 

ℎ𝑖𝑔ℎ − 𝑎𝑙𝑡𝑖𝑡𝑢𝑑𝑒 𝑝𝑜𝑖𝑛𝑡 = {
𝑓𝑎𝑙𝑠𝑒: 𝑖𝑓 ℎ𝑚𝑎𝑥𝑖

>  ℎ𝑝𝑖
 

𝑡𝑟𝑢𝑒: 𝑖𝑓 ℎ𝑚𝑎𝑥𝑖
≤  ℎ𝑝𝑖

                                     (6) 

 

Eq.5 and Eq.6 are further integrated into a single discriminant (Eq.7). Figure 26 shows this 

complete spatial discriminant model with three example points (𝑝𝑖−1, 𝑝𝑖−2, and 𝑝𝑖−3). Based 

on Eq.7, it is known that 𝑝𝑖−1, belongs to the ground, 𝑝𝑖−2 belongs to the high-altitude space, 

and only 𝑝𝑖−3 belongs to the target space. So only 𝑝𝑖−3 is kept after extracting the ROI. 

 

𝑠𝑝𝑎𝑐𝑒 𝑐𝑎𝑡𝑒𝑔𝑜𝑟𝑦 = {

𝑔𝑟𝑜𝑢𝑛𝑑: 𝑖𝑓 ℎ𝑚𝑖𝑛𝑖
≥ ℎ𝑝𝑖

 

𝑡𝑎𝑟𝑔𝑒𝑡 𝑠𝑝𝑎𝑐𝑒: ℎ𝑚𝑖𝑛𝑖
< ℎ𝑝𝑖

< ℎ𝑚𝑎𝑥𝑖

ℎ𝑖𝑔ℎ − 𝑎𝑙𝑡𝑖𝑡𝑢𝑑𝑒 𝑠𝑝𝑎𝑐𝑒: 𝑖𝑓 ℎ𝑚𝑎𝑥𝑖
≤ ℎ𝑝𝑖

                               (7) 

 

 

 

Figure 26: Spatial segmentation discriminant model. 

 

Finally, it should be noted that the order of the ROI delimitation operation in this study is 

different from many other dynamic object detection studies in the whole workflow. For most 

related studies, ROI delimitation is performed before dynamic object detection to reduce the 
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detection difficulty as well as the computational cost. However, for the Octomap-based 

dynamic detection method, the ROI delimitation must be done after the extraction of free 

points. The reason is that although ground and high-altitude spaces do not contain dynamic 

objects, they still contain LiDAR rays that are helpful for Octomap to calculate the occupancy 

probability of the target space more accurately. Figure 27 shows how ground points and 

high-altitude points reduce the occupancy probability of the space which contains the vehicle 

in Octomap. Therefore, they must be retained during the construction of the Octomap stage. 

 

 

 

Figure 27: Ground and high-altitude space allow for a more accurate occupancy probability of the 

target space in Octomap. 

 

 

4.3 Noise Removal 
 
This section focuses on the removal of noise caused by measurement errors from the free 

points based on the free-point rate. Figure 28 illustrates the workflow of noise removal. 

 

The measurement error of MLS is one of the potential causes of free points in Octomap. 

Therefore, to obtain the dynamic points from the free points, noise caused by measurement 

errors must be removed first. The causes of measurement errors are diverse and divided into 

instrument noise and environmental noise. The former includes detector noise, electronic 

noise, and other noise caused by the instrument itself. The latter includes optical scattering, 

atmospheric scattering, background light, and the different reflectivity caused by the color, 
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texture, and material of the object (Arisholm et al., 2018; Xu et al., 2015). However, direct 

denoising of the free point data based on density or fixed-radius neighborhood search is 

undesirable because the overall point distribution of the MLS data is anisotropic and 

inhomogeneous. Such methods may indistinguishably remove all dynamic points and noise 

in low-density areas, such as in the border regions away from the sensor in MLS data. 

 

 

 

Figure 28: The workflow of noise removal. 

 

 

 

Figure 29: The relationship between the local density of free points and the local density of original 

MLS data (r=1m). 

 

The noise removal method used in this section is based on a hypothesis that there is a 

difference between the proportions of noise and dynamic points to the object in which they 
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are located. This hypothesis is further explained as noise generally accounts for only a small 

fraction of the object in which it is located, while most of the points of a dynamic object are 

dynamic points. This hypothesis is evidenced in Figure 29, which shows the relationship 

between the local point density of 1,000 dynamic points, 1,000 noise points, and 1,000 

vegetation points randomly selected from all free points in all free points and their local point 

density in the original MLS point cloud. These 3,000 points have been manually classified 

and labelled in advance. Since vegetation is not the focus of this subsection, only the noise 

and dynamic points are analyzed here. Both noise and dynamic points show a certain linear 

relationship, with the linear relationship of dynamic points being particularly obvious. The 

slope of the line fitted by the dynamic points is close to 1, which is significantly larger than the 

slope of the line fitted by the noise points. Since the slope values of the two fitted lines in 

Figure 29 are equivalent to the average proportion of dynamic and noisy points in their 

respective corresponding objects. So, this proves the hypothesis made at the beginning of 

this paragraph that in an ideal state the proportion of dynamic points in dynamic objects 

should be close to one hundred percent, much larger than the proportion of noise points in 

their corresponding objects. Based on the difference in slope of the two fitted lines, a free-

point rate threshold 𝑡ℎ𝑟𝑒𝑠𝑓𝑝 (see red line in Figure 29, free-point rate means the ratio of the 

number of free points to the number of all scanned points in a certain neighborhood) is used 

to distinguish the noisy and non-noisy free points.  

 

 

 

Figure 30: The relationship between the local density of free points and the local density of original 

MLS data in low-density areas (r=1m). 

 

Figure 30 further illustrates the situation in the low-density areas: the noise removing method 

based on the threshold 𝑡ℎ𝑟𝑒𝑠𝑓𝑝 removes most of the noise in the low-density areas at the 
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cost of a small loss of dynamic points, if the value of 𝑡ℎ𝑟𝑒𝑠𝑓𝑝 is reasonable. Figure 31 shows 

the free-point rates for 1000 random dynamic points and 1000 random noise. The red line in 

the figure (i.e., the free-point rate threshold) splits the two curves in a good way, thus also 

demonstrating the feasibility of the proposed noise removal method. 

 

The detailed process for distinguishing between noise and non-noise using the free-point rate 

threshold 𝑡ℎ𝑟𝑒𝑠𝑓𝑝 is as follows: First, extract the ROI from the original MLS point cloud data 

using the method described in Chapter 4.2, and keep only the target space containing 

dynamic objects. Then for each free point 𝑝𝑖 , all its neighbor points are searched in the 

processed original MLS pint cloud with a radius 𝑟𝑛𝑠, and the number of its neighbor points 

(𝑛𝑢𝑚𝑛𝑏𝑖
) is counted. After that, the number of free points (𝑛𝑢𝑚𝑛𝑏−𝑓𝑝𝑖

) in its neighbor points is 

counted. The free-point rate of point 𝑝𝑖  ( 𝑟𝑎𝑡𝑒𝑓𝑝𝑖
) is obtained from 𝑟𝑎𝑡𝑒𝑓𝑝𝑖

= 𝑛𝑢𝑚𝑛𝑏−𝑓𝑝𝑖
/

𝑛𝑢𝑚𝑛𝑏𝑖
. Given the free-point rate threshold 𝑡ℎ𝑟𝑒𝑠𝑓𝑝, the point 𝑝𝑖 is classified as a noisy or 

non-noisy point based on Eq.8, by comparing 𝑟𝑎𝑡𝑒𝑓𝑝𝑖
 and 𝑡ℎ𝑟𝑒𝑠𝑓𝑝. 

 

𝑛𝑜𝑖𝑠𝑒 = {
𝑡𝑟𝑢𝑒: 𝑖𝑓 𝑟𝑎𝑡𝑒𝑓𝑝𝑖

< 𝑡ℎ𝑟𝑒𝑠𝑓𝑝 

𝑓𝑎𝑙𝑠𝑒: 𝑖𝑓 𝑟𝑎𝑡𝑒𝑓𝑝𝑖
≥ 𝑡ℎ𝑟𝑒𝑠𝑓𝑝

                                              (8) 

 

 

 

Figure 31: Free-point rates of noise and dynamic points (r=1m). 
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By this method, the free-point rate is calculated point by point, and then the areas with high 

free-point rates are extracted from the free points. These extracted free points are 

considered to have removed most of the noise caused by LiDAR measurement errors. 

Finally, it should be mentioned that the 3000 free points used in this section to demonstrate 

the solution are not taken from the four case sites used in Chapter 5. Therefore these 3000 

points do not affect the validation of the generalization ability of the proposed noise removal 

method in Chapter 5. 

 

 

4.4 Vegetation Removal 
 
The purpose of this section is to remove vegetation from free points using the number of 

returned LiDAR rays. This is also the last processing step to obtain dynamic seed points from 

the free points. Figure 32 points out the workflow of the vegetation removal. 

 

 

 

Figure 32: The workflow of vegetation removal. 

 
As analyzed in Section 3.1, non-rigid objects and sparsely structured objects also contribute 

to free points, and the most common objects that fit these two characteristics in the MLS data 
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are vegetation. In addition, the very large dispersion in the distribution of vegetation points in 

Figure 29 means that the denoising results based on the free point rate threshold may 

inevitably include some vegetation points, because the slope values of some vegetation 

points in Figure 29 may be greater than the given threshold. These vegetation points 

interfere with the final dynamic point extraction, so they must be removed in advance. 

 

There have been many related studies focusing on using LiDAR data for vegetation 

extraction in urban environments (Q. Guo et al., 2021). Several previous studies have 

demonstrated that the number of returned LiDAR rays and vegetation are closely related 

(Balado et al., 2018; Dalponte et al., 2009; Gupta et al., 2020). The reason for multiple 

returns from LIDAR is that when the sensor emits multiple rays, a captured object may not be 

able to completely block all of the LiDAR rays due to its structure or material, allowing some 

of the rays to pass through this object and capture other objects behind it. Thus, the sparse 

structure of the vegetation can easily produce multiple returns in the LiDAR data. Specifically, 

a laser pulse may half-hit a leaf or branch and cause multiple returns. But vegetation is not 

the only object that generates multiple returns. For example, glass, which is widely used in 

buildings and vehicles, can also generate multiple returns. This poses a challenge for 

extracting vegetation directly using the number of returned LiDAR rays. 

 

Although multiple objects can produce multiple returns, the proportion of points with multiple 

returns varies across objects. For example, glass that generates multiple returns usually 

represents only a small portion of the entire building or vehicle, while for vegetation, such as 

tree crowns and grasses, almost all parts generate multiple returns. So, the ratio of the 

number of multi-returned points to the number of points in the original MLS data (i.e., the 

multi-return rate) is calculated in the same neighborhood using a method similar to the noise 

removal method in Section 4.3. Then a multi-return rate threshold 𝑡ℎ𝑟𝑒𝑠𝑚𝑟 is used to extract 

the vegetation seed points and used KNN search (set the number of nearest neighbors as 

𝑘𝑣𝑔) to detect and remove all vegetation points in free points. 

 

The detailed process for distinguishing between vegetation and non-vegetation point using 

the multi-return rate threshold 𝑡ℎ𝑟𝑒𝑠𝑚𝑟 is as follows: First, extract all multi-returned points 

from the original MLS data which has been delimitated the ROI. Then for each multi-returned 

point 𝑝𝑖, all its neighbor points are searched in the processed original MLS point cloud with a 

radius 𝑟𝑣𝑔, and the number of its neighbor points (𝑛𝑢𝑚𝑛𝑏𝑖
) is counted. After that, the number 

of multi-returned points (𝑛𝑢𝑚𝑛𝑏−𝑚𝑟𝑖
) in its neighbor points is counted. The multi-return rate of 

point 𝑝𝑖 (𝑟𝑎𝑡𝑒𝑚𝑟𝑖
) is obtained from 𝑟𝑎𝑡𝑒𝑚𝑟𝑖

= 𝑛𝑢𝑚𝑛𝑏−𝑚𝑟𝑖
/𝑛𝑢𝑚𝑛𝑏𝑖

. Given the multi-return rate 
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threshold 𝑡ℎ𝑟𝑒𝑠𝑚𝑟, the point 𝑝𝑖 is confirmed whether it is a vegetation seed point based on 

Eq.9, by comparing 𝑟𝑎𝑡𝑒𝑚𝑟𝑖
 and 𝑡ℎ𝑟𝑒𝑠𝑚𝑟. 

 

𝑣𝑒𝑔𝑒𝑡𝑎𝑡𝑖𝑜𝑛 𝑠𝑒𝑒𝑑 = {
𝑡𝑟𝑢𝑒: 𝑖𝑓 𝑟𝑎𝑡𝑒𝑚𝑟𝑖

< 𝑡ℎ𝑟𝑒𝑠𝑚𝑟 

𝑓𝑎𝑙𝑠𝑒: 𝑖𝑓 𝑟𝑎𝑡𝑒𝑚𝑟𝑖
≥ 𝑡ℎ𝑟𝑒𝑠𝑚𝑟

                                  (9) 

 

After getting the vegetation seed points, all vegetation points are extracted based on 

Algorithm 1. The final task of this section is to remove all vegetation points from free points. 

But the free points are sparser compared to the original MLS points and the denoising 

operation in Section 4.3 may further affect the neighborhood relationship of some vegetation 

points. Therefore, it is difficult to directly extract all vegetation points from free points using 

vegetation seed points. A better choice is to firstly extract the vegetation from the original 

MLS data compared to the free points. The first step can be performed before Section 4.1. 

Then the second step is to find the intersection of the extracted vegetation points and the 

free points and remove this intersection from the free points to obtain the non-vegetation free 

points. The second step needs to be performed after Section 4.3 to avoid the interference of 

noise in the free points. 

 

Algorithm 1. Object Extraction with KNN Spatial Search 

Input: Points to be extracted {𝑃𝑖𝑛𝑝𝑢𝑡}, seed points {𝑃𝑠𝑒𝑒𝑑𝑠}, number of nearest neighbors 𝑘 

Output: Extracted points {𝑃𝑒𝑥𝑡𝑟𝑎𝑐𝑡𝑒𝑑} 

// Define a global point list {𝑃𝑐ℎ𝑒𝑐𝑘𝐿𝑖𝑠𝑡} 

𝑖 = 0  

For 𝑝𝑠𝑒𝑒𝑑 in 𝑃𝑠𝑒𝑒𝑑𝑠 do 

    // Define a local point list {𝑃𝑜𝑏𝑗𝑒𝑐𝑡} in the for-loop 

    {𝑃𝑐ℎ𝑒𝑐𝑘𝐿𝑖𝑠𝑡} ← 𝑝𝑠𝑒𝑒𝑑 

While {𝑃𝑐ℎ𝑒𝑐𝑘𝐿𝑖𝑠𝑡} is not empty do 

    𝑝𝑐ℎ𝑒𝑐𝑘 ← {𝑃𝑐ℎ𝑒𝑐𝑘𝐿𝑖𝑠𝑡}. 𝑙𝑎𝑠𝑡𝑃𝑡 

    {𝑃𝑐ℎ𝑒𝑐𝑘𝐿𝑖𝑠𝑡}. 𝑝𝑜𝑝𝑏𝑎𝑐𝑘() 

    {𝑃𝑘𝑛𝑛} ← the 𝑘 nearest neighbors of 𝑝𝑐ℎ𝑒𝑐𝑘 in {𝑃𝑖𝑛𝑝𝑢𝑡} 

    For 𝑝𝑛𝑒𝑖𝑔ℎ𝑏𝑜𝑟 in 𝑃𝑘𝑛𝑛 do 

        If𝑝𝑛𝑒𝑖𝑔ℎ𝑏𝑜𝑟 . 𝑖𝑠𝑉𝑖𝑠𝑖𝑡𝑒𝑑 =  𝐹𝑎𝑙𝑠𝑒 do 

            𝑝𝑛𝑒𝑖𝑔ℎ𝑏𝑜𝑟 . 𝑖𝑠𝑉𝑖𝑠𝑖𝑡𝑒𝑑 ← 𝑇𝑟𝑢𝑒 

                {𝑃𝑐ℎ𝑒𝑐𝑘𝐿𝑖𝑠𝑡} ← 𝑝𝑛𝑒𝑖𝑔ℎ𝑏𝑜𝑟 

                {𝑃𝑜𝑏𝑗𝑒𝑐𝑡} ← 𝑝𝑛𝑒𝑖𝑔ℎ𝑏𝑜𝑟 

            End if 

        End for 

End while 

If {𝑃𝑜𝑏𝑗𝑒𝑐𝑡} is not empty do 
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    For 𝑝𝑜𝑏𝑗 in 𝑃𝑜𝑏𝑗𝑒𝑐𝑡 do 

        𝑝𝑜𝑏𝑗 . 𝑜𝑏𝑗𝑒𝑐𝑡𝐼𝑛𝑑𝑒𝑥 ← 𝑖 

            {𝑃𝑒𝑥𝑡𝑟𝑎𝑐𝑡𝑒𝑑} ← 𝑝𝑜𝑏𝑗 

        End for 

        𝑖 ← i + 1 

    End if 

End for 

Return {𝑃𝑒𝑥𝑡𝑟𝑎𝑐𝑡𝑒𝑑} 

 

 

4.5 Dynamic Objects Extraction 
 
This section describes the last step of the proposed method, i.e., how to extract dynamic 

objects from the original MLS point cloud using filtered free points as seed points with KNN 

spatial search. Figure 33 illustrates the workflow for extracting dynamic objects. 

 

 
 

Figure 33: The workflow of dynamic objects extraction. 

 
After the previous series of filtering processes, the remaining free points are regarded as a 

subset of all dynamic objects, so they are used as the seed points for extracting all dynamic 

objects from the original MLS data. The original MLS data needs to be advanced to extract 

the ROI, including ground and high-altitude areas, using the method described in Section 4.2 

to better implement the dynamic object extraction. The specific KNN search-based extraction 

method is detailed in Algorithm 1, and the number of nearest neighbors is set to 𝑘𝑑𝑜.  

 

Although the previous noise and vegetation filtering operations have removed most of the 

vegetation and noise points from the free points, a very small amount of non-dynamic points 

may inevitably remain in the remaining free points. These residual non-dynamic points may 
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lead to two kinds of fake dynamic objects: (1) returning an object that contains only a few 

points, or (2) returning an object with a small proportion of seed points. The reason for the 

first result may be that several non-dynamic free points in relatively proximity are identified as 

a micro-object. For such extraction results, a minimum point limit 𝑛𝑢𝑚𝑚𝑖𝑛 is set for a single 

dynamic object. Only the extracted object whose point number is greater than the limit 

𝑛𝑢𝑚𝑚𝑖𝑛 is a valid dynamic object. The second type of fake dynamic object is mainly caused 

by a small number of non-dynamic points falling near the vegetation. These non-dynamic 

points act as seed points to misidentify a connected grassland or urban forest as a large 

dynamic object. For this type of extracted object, the seed points are only a small fraction of 

all points. So, the proportion of seed points (i.e., seed-point rate 𝑟𝑎𝑡𝑒𝑠𝑝𝑖
) is computed for 

each extracted dynamic object candidate 𝑜𝑖 and then a threshold of seed point proportion 

𝑡ℎ𝑟𝑒𝑠𝑠𝑝 is set to filter real dynamic objects from all extracted objects (see Figure 34).  

 

 

 

Figure 34: The objects with the high seed-point rate (left) and low seed-point rate (right). 

 

Finally, after removing the above two types of fake dynamic objects, the real dynamic objects 

are obtained. 
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5. Implementation 
 
This chapter is concerned with the implementation details of the method proposed in this 

thesis. Firstly, Section 5.1 presents the dataset used in this study and introduces the 

information about the four case sites. Then Section 5.2 lists the values of the relevant 

parameters set in this implementation. Finally, Section 5.3 presents the relevant tools used in 

this research.  

 

 

5.1 Dataset 
 

 

 
Figure 35: Cyclomedia's mobile data acquisition vehicle (source: Cyclomedia). 

 

The MLS data and corresponding sensor trajectories used in this research were collected by 

CycloMedia1, a Dutch environmental visualization data provider, in Delft, the Netherlands, in 

July 2021. The LiDAR sensor used to acquire this dataset is Velodyne's HDL-32E2, which 

has an accuracy of ±2 cm (one sigma at 25 m), a detection range of 80 m to 100 m, a 360° 

 
1 https://www.cyclomedia.com/ 

2 https://velodynelidar.com/products/hdl-32e/ 



       

50 

 

horizontal FOV, a +10° to -30° vertical FOV, and multiple returns. The sensor rotates at a 

rate of 20 Hz during acquisition, i.e., 0.05 seconds to complete a 360° scan of the 

surrounding environment. By integrating MLS sensors with IMU and GNSS into Cyclomedia's 

mobile data acquisition platform (Figure 34), it is also possible to obtain temporal information 

and match the captured MLS point cloud with the corresponding sensor trajectory. The 

original MLS point clouds and sensor trajectories are all provided in LAZ format1. 

 
The MLS data provided by Cyclomedia includes additional information such as intensity, 

GNSS time, and the number of returns, in addition to 3D spatial coordinate information. The 

sensor trajectory data records information about the sensor's position in 3D space during the 

scanning process. The capture points in the MLS data are in one-to-one correspondence 

with the sensor positions in the trajectory data by the order of storing the points, i.e., the first 

capture point in the MLS data corresponds to the first sensor position in the trajectory data, 

the second capture point corresponds to the second sensor position, and so on. Each MLS 

capture point and its corresponding sensor trajectory point form a line segment representing 

the LiDAR ray. 

 

 

 

Figure 36: Positions of the four case sites. 

 

 
1 https://laszip.org/ 
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Figure 37: MLS data (left column) rendered in height, corresponding sensor trajectories (middle 

column) colorized in the purple, and satellite images (right column) from Google Map of the four case 

sites. 

 

In the implementation phase, four case sites are selected for this research (see Figure 36 for 

their positions). They are all located at road junctions and have bicycle lanes, so it is easier 

to find different types of dynamic objects, such as vehicles and bicycles. The road network at 

the road junctions is more complex and influenced by traffic signals, so dynamic objects with 

different speeds and different moving directions can be observed in these areas. In 

summary, the above four positions are well suited as the case sites for this research. Each 

case site was scanned continuously for 10 seconds in one direction. Due to differences in the 
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environment, the number of points obtained for the same scan time is different for each case 

site and ranges from 3637969 to 4684840 (see Table 1). Figure 37 shows the MLS scan data 

for the four case sites and their corresponding sensor trajectory data. 

 

 

Table 1: Point numbers of the four case sites. 

 
 

5.2 Parameters 
 
This section lists all the values of the parameters involved in the method proposed in this 

thesis (see Table 2) and then analyzes the basis for the values of each parameter. 

 

 
Table 2: Values of implementation parameters. 

 
Firstly, for Octomap, a larger 𝑡𝑖𝑡𝑣𝑙 value means that more LiDAR rays are inserted to estimate 

the occupancy probability more accurately, while a smaller 𝑠𝑖𝑧𝑒𝑣𝑜𝑥𝑒𝑙 allows the construction 

of a higher resolution voxel grid in Octomap, which in turn avoids the creation of some hybrid 

voxel cells (voxel cells that include both static and dynamic points). However, this also leads 

to larger computation and memory requirements. To strike a balance between high accuracy 

results and low computational and memory burden, 𝑡𝑖𝑡𝑣𝑙 is set to 0.75 sec (14 data frames) 

and 𝑠𝑖𝑧𝑒𝑣𝑜𝑥𝑒𝑙 is set to 0.2 m.  

Case Site Full Name of the Case Site Scan Time (sec) Number of Points 

Position A 
The junction of Voorhofdreef, Tanthofdreef, 

and Kruithuisweg 
10 3637969 

Position B 
The junction of Voorhofdreef, Menno Ter 
Braaklaan, and Bosboom-Toussaintplein 

10 4616356 

Position C 
The junction of Voorhofdreef, J.J. 

Slauerhofflaan, and Frederik van Eedenlaan 
10 4666430 

Position D 
The junction of Tanthofdreef and 

Forensenweg 
10 4684840 

Full Name of the Parameter Parameter Value 

Time interval for data frame segmentation 𝑡𝑖𝑡𝑣𝑙 0.75 sec 

Octomap voxel size 𝑠𝑖𝑧𝑒𝑣𝑜𝑥𝑒𝑙 0.2 m 

Occupancy probability threshold 𝑡ℎ𝑟𝑒𝑠𝑜𝑐𝑐𝑢𝑝𝑖𝑒𝑑  0.7 

Sensor mounting height ℎ𝑠𝑚 2 m 
Height restriction of large vehicles ℎ𝑣𝑟 4 m 

Free-point rate threshold 𝑡ℎ𝑟𝑒𝑠𝑓𝑝 0.9 

Neighborhood radius used to calculate the free-point rate 𝑟𝑛𝑠 1 m 

Multi-return rate threshold 𝑡ℎ𝑟𝑒𝑠𝑚𝑟 0.3 

Neighborhood radius used to calculate the multi-return rate 𝑟𝑣𝑔 1 m 

Number of nearest neighbors used to extract all vegetation 
points 

𝑘𝑣𝑔 5 

Number of nearest neighbors used to extract all dynamic 
points 

𝑘𝑑𝑜. 5 

Minimum point number limit for dynamic objects 𝑛𝑢𝑚𝑚𝑖𝑛 15 

Threshold of seed point proportion 𝑡ℎ𝑟𝑒𝑠𝑠𝑝 0.03 
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For the upper and lower boundaries of the target space, ℎ𝑠𝑚 (2 m) is obtained by directly 

measuring the mounting height of the sensor and ℎ𝑣𝑟 (4 m) is taken based on the height limit 

of large vehicles in the Netherlands, which is got from the official document of the European 

Union1.  

 

Based on some previous studies, 0.7 is considered an appropriate threshold for occupancy 

probability 𝑡ℎ𝑟𝑒𝑠𝑜𝑐𝑐𝑢𝑝𝑖𝑒𝑑 when the voxel size of Octomap takes a range of values from 0.05 m 

to 0.45 m (Oršulić et al., 2021; C. Wang et al., 2017). The free-point rate threshold 𝑡ℎ𝑟𝑒𝑠𝑓𝑝 is 

assigned to 0.9 based on the analysis results shown in Figure 29 to Figure 31. For the 

multiple-return rate 𝑡ℎ𝑟𝑒𝑠𝑚𝑟, some previous similar research (Ussyshkin & Theriault, 2011; 

Xu et al., 2012) usually set the threshold between 0.2 and 0.4 for detecting vegetation, so 

this parameter is set to 0.3 in this thesis.  

 

Some influencing factors also need to be considered in setting parameters in neighboring 

queries. For fixed radius search, too small a radius may result in the neighborhood being 

easily affected by outliers, while too large a radius may easily lead to no strong spatial 

consistency of the points in the neighborhood. To take these two factors into account at the 

same time, both 𝑟𝑛𝑠 and 𝑟𝑣𝑔 are set to 1 m. For the KNN search in the vegetation removal and 

dynamic object extraction steps, too small a value of 𝑘 may fail to extract the complete target 

object, and too large a value of 𝑘 may identify several neighbor objects as one object and 

then extract them together. To balance these two points, both 𝑘𝑣𝑔 and 𝑘𝑑𝑜 are set to 5.  

 

In the final dynamic object extraction, two constraints are used to filter the valid dynamic 

objects: (1) The minimum number of points within the object 𝑛𝑢𝑚𝑚𝑖𝑛 must be greater than 

𝑘𝑑𝑜 to remove some abnormal objects that are too small. It is set to 15 in the implementation 

of this research. (2) The proportion of seed points within the object 𝑡ℎ𝑟𝑒𝑠𝑠𝑝 must be greater 

than 0.03 to prevent the false detection of large-area vegetation caused by a few noise 

points. 

 

 

5.3 Tools 
 
This section begins with a description of the tools used to implement the proposed method 

and then concludes with a summary of the collaboration pipeline between these tools. 

 
1 https://eur-lex.europa.eu/eli/dir/1996/53/2019-08-14 
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The main workflow of the method proposed in this thesis is based on a C++ implementation. 

The C++ code was run on an AMD Ryzen 9 CPU 3.30 GHz with 16 GB RAM. The 

implementation of Octomap in this study relies on the Octomap Library developed by Kai M. 

Wurm and Armin Hornung from the University of Freiburg1. Other point cloud operations such 

as building KD-trees, spatial neighborhood queries, etc. are dependent on PCL2, which is a 

large-scale open-source point cloud processing project. 

 
The format conversion before data processing and the visualization of the final output is done 

in CloudCompare3, which is an open-source point cloud viewing, processing, and editing 

software. In terms of data transfer convenience, the original MLS point cloud data and sensor 

trajectory data are stored in LAZ format and need to be converted to PCD format in 

CloudCompare for reading by C++ libraries such as PCL. The final implementation results 

are also visualized with built-in display and rendering modules of CloudCompare. 

 

Figure 38 illustrates the collaboration pipeline between the above-mentioned tools. 

 

 

 

Figure 38: The collaboration pipeline between all used tools in this research. 

 

  

 
1 https://github.com/OctoMap/octomap 
2 https://github.com/PointCloudLibrary/pcl 
3 https://github.com/CloudCompare/CloudCompare 
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6. Results and Discussion 
 
This chapter first shows the implementation results of four case sites (Section 6.1), then 

assesses the detection accuracy of the four implementation results, after that discusses the 

factors that affect the accuracy of the implementation results (Section 6.2). Finally, this 

chapter analyzes the proposed method in terms of running time and memory consumption 

and compares its performance with the original Octomap method. 

 

 

6.1 Implementation Results 
 
Figure 39 to Figure 42 show the dynamic object detection and extraction results for positions 

A to D. All points in the high-altitude space and ground area are labeled as static points. So 

only the detection and extraction results of the points in ROI are shown in these four figures. 

 

 
 
 

Figure 39: The detection and extraction results of dynamic objects with corresponding sensor 

trajectory in position A. 
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Figure 40: The detection and extraction results of dynamic objects with corresponding sensor 

trajectory in position B. 
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Figure 41: The detection and extraction results of dynamic objects with corresponding sensor 

trajectory in position C. 
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Figure 42: The detection and extraction results of dynamic objects with corresponding sensor 

trajectory in position D. 
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6.2 Performance Analysis 
 
This section first evaluates the accuracy of dynamic object detection and extraction using 

confusion matrices (Subsection 6.2.1). Then, the factors that affect the accuracy of the 

results are analyzed (Subsection 6.2.2). Finally, this section compares the advantages of 

parallel computing over serial computing in terms of runtime (Subsection 6.2.1). 

 

 

6.2.1 Accuracy Assessment 
 
Dynamic object detection and extraction is essentially a point cloud binary classification 

issue. Therefore, this subsection first manually labels the dynamic objects on the data of the 

four case sites, and then builds confusion matrices for each of the four implementation 

results. Finally, four indicators are introduced to evaluate the accuracy of the proposed 

method: user’s accuracy, producer’s accuracy, overall accuracy, and Cohen's kappa 

coefficient. The user’s accuracy here is the percentage of points in each category (dynamic 

object and static object) of the implementation result that are correctly detected as dynamic 

points or static points. The producer’s accuracy infers the percentage of points in each 

category of the ground truth (manually labelled data) that are correctly detected as dynamic 

points or static points. The overall accuracy means the sum of correctly detected dynamic or 

static points as a percentage of all MLS capture points. The kappa coefficient is an 

assessment of the consistency of the detection results, and its value is generally between 0 

and 1, with closer to 1 indicating higher detection accuracy. Compared to the overall 

accuracy, the kappa coefficient considers the imbalance between objects. Table 3 shows the 

standard 2-by-2 confusion matrix with the corresponding user’s accuracy and producer’s 

accuracy. Table 4 shows the equations of the overall accuracy and kappa coefficient. 

 

 
Dynamic Points in 

Ground Truth 
Static Points in 
Ground Truth 

User’s Accuracy (𝑼𝑨) 

Dynamic Points in 
Implementation 

Result 
𝑋11 𝑋12 

𝑋11

𝑋11 + 𝑋12

⋅ 100% 

Static Points in 
Implementation 

Result 
𝑋21 𝑋22 

𝑋22

𝑋11 + 𝑋12

⋅ 100% 

Producer’s Accuracy 
(𝑷𝑨) 

𝑋11

𝑋11 + 𝑋21

⋅ 100% 
𝑋22

𝑋12 + 𝑋22

⋅ 100%  

 
Table 3: The standard 2-by-2 confusion matrix with the corresponding user’s accuracy and producer’s 

accuracy. 
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Overall Accuracy (𝑶𝑨) Kappa Coefficient (𝑲𝑪) 

𝑋11 + 𝑋22

𝑋11 + 𝑋21 + 𝑋12 + 𝑋22

⋅ 100% 
𝑂𝐴 −

(𝑋11 + 𝑋21) ⋅ (𝑋11 + 𝑋12) + (𝑋21 + 𝑋22) ⋅ (𝑋12 + 𝑋22)
(𝑋11 + 𝑋21 + 𝑋12 + 𝑋22)2

1 −
(𝑋11 + 𝑋21) ⋅ (𝑋11 + 𝑋12) + (𝑋21 + 𝑋22) ⋅ (𝑋12 + 𝑋22)

(𝑋11 + 𝑋21 + 𝑋12 + 𝑋22)2

 

 
Table 4: The equations of the overall accuracy and kappa coefficient. 

 
Table 5 and Table 6 show the confusion matrices and values of the corresponding four 

accuracy assessment indicators for positions A to position D obtained from the template 

provided in Table 3 and Table 4. The four case sites have very high user’s accuracy and 

producer’s accuracy for static object detection (>99.9%). Since dynamic and static objects in 

MLS data are usually very imbalanced (i.e., the number of static points is much larger than 

the number of dynamic points), the overall accuracy is more likely to be affected by the 

detection accuracy of static objects. Therefore, the overall accuracy of all four case sites is 

also very high (>99.5%). However, for the producer’s accuracy and user’s accuracy as well 

as the kappa coefficients of the dynamic object detection focused by this thesis, a large 

difference is shown in the implementation results of these four case sites. The 

implementation result of position C has the highest dynamic object detection user’s accuracy 

(94.429%), producer’s accuracy (93.753%), and kappa coefficient (0.936). While position B has 

the lowest user’s accuracy (75.361%) for dynamic object detection, which means that many 

static objects are incorrectly detected and extracted as dynamic objects. The lowest 

producer’s accuracy (74.345%) and kappa coefficient (0.674) of dynamic object detection are 

found at position D, which means that many dynamic objects are not successfully detected 

and extracted. The low kappa coefficient of position D is mainly caused by the low 

percentage of dynamic points in the ground truth. The percentage of dynamic points in 

position D, which has the lowest kappa coefficient, is only 0.196% and in position B, which 

has the second-lowest kappa coefficient, is 0.274%. In contrast, the two case sites with high 

kappa coefficients, position A and position C, have relatively high dynamic point percentages 

(1.591% and 0.766%). Therefore, a few incorrectly detected points more significantly 

decrease the kappa coefficient of position D compared to the other three case sites. 

 
 

 
Dynamic Points 
in Ground Truth 

Static Points in 
Ground Truth 

User’s Accuracy 
(𝑼𝑨) 

 
Dynamic Points in 

Implementation Result 
57705 15408 78.926% 

Position 
A 

Static Points in 
Implementation Result 

188 3564668 99.995% 

 
Producer’s Accuracy (𝑷𝑨) 99.675% 99.570%  
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Dynamic Points in 

Implementation Result 
11002 3597 75.361% 

Position 
B 

Static Points in 
Implementation Result 

1665 4600092 99.964% 

 
Producer’s Accuracy (𝑷𝑨) 86.856% 99.922%  

 
Dynamic Points in 

Implementation Result 
33529 1978 94.429% 

Position 
C 

Static Points in 
Implementation Result 

2234 4628689 99.952% 

 
Producer’s Accuracy (𝑷𝑨) 93.753% 99.957%  

 
Dynamic Points in 

Implementation Result 
6813 1951 77.738% 

Position 
D 

Static Points in 
Implementation Result 

2351 4673725 99.950% 

 
Producer’s Accuracy (𝑷𝑨) 74.345% 99.958%  

 
Table 5: The confusion matrix with the corresponding user’s accuracies and producer’s accuracies of 

the four case sites. 

 
The weighted average producer’s and user’s accuracies for dynamic object detection and 

extraction among these four case sites are 88.004% and 82.624%, respectively. The 

weighted average overall accuracy is 99.833%. For the producer’s accuracy of dynamic 

object detection, its weight is the number of dynamic points in the ground truth in each case 

site. For the user’s accuracy of dynamic object detection, its weight is the number of dynamic 

points in the implementation result in each case site. 

 
Position Overall Accuracy (𝑶𝑨) Kappa Coefficient (𝑲𝑪) 

A 99.571% 0.878 
B 99.886% 0.780 
C 99.910% 0.936 
D 99.908% 0.674 

Weighted 
Average Value 

99.833% 0.814 

 
Table 6: The overall accuracies and kappa coefficients of the four case sites. 

 

 

6.2.2 Influence Factors 
 
This subsection analyzes which factors significantly affect the detection results and to which 

factors the proposed method is insensitive, based on the visualization of the implementation 

results and the accuracy assessment. 
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Figure 43: The detected moving bicycles. 

 

 

 

Figure 44: The detected braking vehicle. 

 

In previous research on dynamic object detection, the speed of the object is an important 

factor that affects the detection results. The detection of low-speed objects can be more 

challenging than high-speed objects (Dewan et al., 2016). However, the speed of dynamic 

objects does not significantly affect the results of the proposed method in the observed 

results. Most low-speed objects such as moving bicycles (Figure 43) and vehicles that are 

braking can be correctly detected (see the upper left corner of Figure 44). The size of the 

dynamic objects is another factor of concern. In the four case sites of this study, most of the 

small dynamic objects (e.g., bicycles in Figure 43) are identified. However, no pedestrians 

are found in these four case sites, so whether this method is also applicable to detecting 

pedestrians of small size and low speed will need to be further explored in the future. 
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Whether the movement direction of the dynamic object with respect to the MLS sensor 

affects the detection results is also analyzed. Since all four case sites are located near road 

junctions, objects moving along different directions can be observed. Figure 45 illustrates 

several objects that move in directions different from the MLS sensor. The dynamic objects in 

Figure 45.(a) and Figure 45.(b) are moving perpendicular to the MLS sensor trajectory while 

the dynamic objects in Figure 45.(c) and Figure 45.(d) are moving in the opposite direction of 

the sensor motion. These dynamic objects do not fail to be detected due to their different 

moving directions. Another noticeable phenomenon is that the dynamic object does not 

produce a significant lateral stretch when it moves perpendicular to the sensor trajectory. Its 

shape is also not compressed when it moves in the opposite direction to the sensor. For the 

four case sites, the ghost trail effect (i.e., being stretched along its own direction of motion) is 

observed regardless of the direction of motion of the dynamic object. 

 

 

 

Figure 45: Objects moving in directions different from the MLS sensor. 

 

But some factors can significantly affect the performance of the proposed method. Two of the 

most important factors are the performance of the vegetation and noise removal methods 

since most static objects that are incorrectly detected as dynamic objects are vegetation (see 

Figure 46). These mis-detected vegetation are mainly caused by the residual vegetation 

points and noisy points in the free points. The performance of the ground filtering method 

also affects the detection and extraction results. The ground extraction operation in Section 

4.2 assumes that the ground is a flat surface and does not vary significantly in height within a 

certain range, but some surfaces in the real world do not conform to this assumption. There 

are two ground areas in position A that are not successfully removed due to their uneven 

surfaces. These two ground areas are detected as dynamic objects (see Figure 47.(a)). Only 

part of the points in these two ground areas are detected as dynamic points and do not leave 

significant voids in the ground. Therefore, these mis-detected ground points do not break the 

ground connectivity (Figure 47.(b)). However, they inevitably change some geometric 
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properties of these ground areas, such as local ground height and point density. In addition, 

the mis-detected objects include a small number of remnant buildings and pole-like objects 

such as streetlights, traffic lights, and traffic signs (Figure 48). 

 

 

 

Figure 46: The mis-detected vegetation. 

 

 

 

Figure 47: The mis-detected ground points (a) and their corresponding ground surface (b). 
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Figure 48: The mis-detected remnant building and various mis-detected pole-like objects. 

 

The main reason why some dynamic objects in the implementation results are not 

successfully detected is the distance from the dynamic object to the MLS sensor. When the 

dynamic object is too far away from the MLS sensor, it generates many problems such as 

low point density (see Figure 49), which can lead to incomplete detection or failed detection 

of dynamic objects. Conversely, the detection accuracy is higher if the dynamic objects are 

closer to the MLS sensor. The main reason for the high detection accuracy of the 

implementation result in position C is that most of its dynamic objects are very close to the 

MLS sensor and have similar motion trajectories to the MLS sensor. But this can be solved 

by adding previous or next data frames if this object is located on the sensor's trajectory. 

 

 

 

Figure 49: Sparse dynamic objects that are not detected completely. 
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Figure 50: The user’s accuracy (a) and the producer’s accuracy (b) of dynamic objects, and the overall 

accuracy (c) of the whole results using different 𝑘𝑑𝑜 values. 

 

 

 

Figure 51: The detection results of position A when 𝑘𝑑𝑜 is set to 2 (a) and 11 (b). 
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The last influencing factor is the choice of parameter values. In this thesis, the number of 

nearest neighbors used to extract dynamic objects (𝑘𝑑𝑜) is chosen as a test case among all 

parameters using captured data from position A. This value is the core parameter for the last 

part of the whole method, so the impact of adjusting this parameter value can be reflected 

very intuitively in the final detection results. This value is the core parameter for the last step 

of the whole method, so the impact of adjusting this parameter value can be more directly 

and intuitively reflected in the final detection results. In the test, the values of 𝑘𝑑𝑜 are set to 2, 

5, 8, and 11, respectively. The results showed that as the value of 𝑘𝑑𝑜 increased, the user’s 

accuracy decreased from 79.137% to 74.325% (Fugure 50.(a)), while the producer’s 

accuracy increased from 98.580% to 99.888% (Fugure 50.(a)). Setting the 𝑘𝑑𝑜  value too 

small will result in many dynamic points not being recognized correctly (see the green boxes 

in Figure 51.(a)), while setting it too large will incorrectly recognize many static points as 

dynamic points (see the green boxes in Figure 51.(b)). So finally the value of 𝑘𝑑𝑜 is set to 5 in 

this thesis to obtain the highest overall accuracy (99.320%, see Figure 50.(c)). 

 

 

6.2.3 Running Time and Memory Consumption 
 

This subsection first analyzes the running time required for the implementation of the 

proposed optimized Octomap method and the acceleration effect using parallel computing. 

Then the time and memory spent in extracting free points between this method and the 

original Octomap method are compared. 

 
One of the challenges in point cloud processing is the conflict between massive amounts of 

data and efficient data processing (Hu et al., 2013). Therefore, for point cloud data, a parallel 

computation implements a more efficient point cloud processing than serial computation 

using a single thread (Najdataei et al., 2018; Sugumaran et al., 2011). 

 

The parallel computation in this implementation is done by asynchronous tasks created by 

std::future and std::async in C++ with four threads enabled. The proposed optimized 

Octomap method splits the original MLS data into several data frames based on the 

timestamp. The data frames are independent of each other, so that most operations of the 

proposed optimized Octomap method in this thesis are compatible with parallel computation 

to improve efficiency. However, due to the limitations of C++'s built-in std::future and 

std::async functions, the two operations of merging free points extracted from different 

Octomaps and removing redundant points are not parallelized in this method.  
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Case 

Site 

Point 

Number 

Optimized 

Octomap 1 

Thread (sec) 

Optimized 

Octomap 2 

Threads (sec) 

Optimized 

Octomap 3 

Threads (sec) 

Optimized 

Octomap 4 

Threads (sec) 

Total 

Speed-up 

Position 

A 
3637969 1042 765.5 637 525 98.476% 

Position 

B 
4616356 1415 1132 977.5 882 60.488% 

Position 

C 
4666430 1331 1033 904 649 105.085% 

Position 

D 
4684840 1342 1143 1051 870 54.253% 

 

Table 7: Running time of the proposed optimized Octomap based on different number of threads in 

four case sites. 

 

 

 

Figure 52: Running time of the optimized Octomap based on different number of threads in four case 

sites. 

 

Figure 52 and Table 7 show the running time based on different numbers of threads for the 

four case sites. All four case sites were scanned for 10 seconds. Their number of MLS points 

collected range from 3637969 to 4684840 due to differences in the spatial environment. Four 

threads are on average 79.545% more efficient than a single thread. The results show that 

enabling multiple threads for parallel computation can improve the efficiency of the proposed 

optimized Octomap method compared to single-threaded serial computation in the same 

running environment. 

 

Then the proposed optimized Octomap method is compared with the original Octomap 

method to check whether it has better performance in terms of computational efficiency as 
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well as memory consumption. Since the operations in Section 4.2 to Section 4.5 are not 

related to Octomap, only comparing the running time and the maximum memory 

consumption of the two methods when constructing probabilistic voxel grids and extracting 

the free points (i.e., the operations described in Section 4.1). 

 

Case 

Site 

Point 

Number 

Original 

Octomap 

(sec) 

Optimized 

Octomap 1 

Thread 

(sec) 

Optimized 

Octomap 2 

Threads 

(sec) 

Optimized 

Octomap 3 

Threads 

(sec) 

Optimized 

Octomap 4 

Threads 

(sec) 

Position 

A 
3637969 973.5 721.5 507.5 399 302.5 

Position 

B 
4616356 1562.5 958.5 725.5 535.5 385.5 

Position 

C 
4666430 1361.5 995.5 755.5 627.5 403.5 

Position 

D 
4684840 791 738 612.5 503 410.5 

 

Table 8: Running time of voxel grids generation and free points extraction. 

 

 

 

Figure 53: Running time of voxel grids generation and free points extraction. 

 

As shown in Figure 53 and Table 8, the proposed optimized Octomap method (under a single 

thread) is computationally more efficient than the original Octomap method in generating 

probabilistic voxel grids and in extracting free points. As more threads are enabled, the 

computational efficiency advantage of the proposed optimized Octomap method becomes 

more apparent. Table 9 shows that the proposed method accelerates on average 35.472% 

over the original Octomap in the four case sites when single thread is enabled. With 2 to 4 
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threads enabled, the proposed optimized Octomap method accelerates 79.137%, 127.499%, 

and 214.313%, respectively, over the original Octomap method.  

 

Case Site 1 thread 2 threads 3 threads 4 threads 

Position A 34.927% 91.823% 143.985% 221.818% 

Position B 63.015% 115.369% 191.783% 305.318% 

Position C 36.765% 80.212% 116.972% 237.423% 

Position D 7.182% 29.143% 57.256% 92.692% 

Average Speed-up 35.472% 79.137% 127.499% 214.313% 

 

Table 9: The computational speed-up of the proposed optimized Octomap method compared to the 

original Octomap method. 

 

From Figure 54, Table 10, and Table 11, the maximum memory consumption of the 

proposed optimized Octomap method is only on average 42.437% of that of the original 

Octomap with a single thread, and the maximum memory consumption is close to that of the 

original Octomap method only when 3 threads are enabled. Therefore this designed method 

is more memory friendly than the original Octomap method. 

 

 

 

Figure 54: Maximum memory consumption of voxel grids generation and free points extraction. 

 

Case 
Site 

Original 
Octomap 

Optimized 
Octomap 1 
thread (MB) 

Optimized 
Octomap 2 

threads (MB) 

Optimized 
Octomap 3 

threads (MB) 

Optimized 
Octomap 4 

threads (MB) 

Position 
A 

845.605 394.277 704.848 879.809 1127.91 

Position 
B 

1063.09 414.039 738.555 1018.26 1297.99 

Position 
C 

971.066 415.516 742.594 1057.86 1294.83 

Position 
D 

762.496 315.547 518.109 716.641 904.512 

 

Table 10: Maximum memory consumption of voxel grids generation and free points extraction. 
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Case Site 
Optimized 

Octomap 1 thread 
Optimized 

Octomap 2 threads 
Optimized 

Octomap 3 threads 
Optimized 

Octomap 4 threads 

Position A 46.627% 83.354% 104.045% 133.385% 

Position B 38.947% 69.472% 95.783% 122.096% 

Position C 42.790% 76.472% 108.938% 133.341% 

Position D 41.383% 67.949% 93.986% 118.625% 

Average 
Values 

42.437% 74.312% 100.688% 126.862% 

 

Table 11: The maximum memory consumption of the proposed optimized Octomap method as a 

percentage of the original Octomap. 
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7. Conclusions and Future Work 
 
This chapter first reviews the research questions and gives the corresponding conclusions in 

Section 7.1, then lists contributions of this thesis in Section 7.2, and finally analyzes some 

future work in Section 7.3. 

 

 

7.1 Research Conclusions 
 
This thesis focuses on one main research question: How to detect and remove dynamic 

objects from MLS data? To address this main research question, this thesis proposes a 

method to detect and remove dynamic objects in MLS data using Octomap. The proposed 

method first splits the original MLS data into multiple data frames based on timestamps. 

Each data frame and its neighbor data frames are merged into one group and inserted into 

an independent Octomap, which generates multiple smaller Octomaps to avoid generating a 

very huge Octomap. The free points can be obtained from all Octomaps by setting an 

occupancy probability threshold. Then, the ROI is reduced by removing the free points 

located in the ground and the high-altitude space. Next, the vegetation points and noise in 

the free points are removed by calculating the free-point rate and the multi-return rate. 

Finally, the remaining free points are used as seed points to detect and extract dynamic 

objects from the original MLS data using KNN spatial search. All operations of this proposed 

method are compatible with parallel computation to improve efficiency, except for the two 

operations of merging free points extracted from different Octomaps and removing redundant 

points.  

 

The method is tested with four case sites and its producer’s and user’s weighted average 

dynamic object detection and extraction accuracies are 88.004% and 82.624%, respectively. 

The weighted average overall accuracy is 99.833%. The implementation results and 

accuracy assessment demonstrate that the proposed method can be effectively applied to 

dynamic object detection and extraction tasks in MLS data sets and has advantages over the 

original Octomap method in terms of computational efficiency and memory consumption 

through parallel computing. 

 

The research results of this thesis also answer the other sub-questions listed in Section 1.2: 

 

(1) How to detect and remove dynamic objects and avoid residue? 
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The dynamic object detection in this thesis is based on Octomap's free point extraction. The 

LiDAR rays are first reconstructed in Octomap, and the spatial conflicts between the rays are 

counted to calculate the occupation probability of each voxel space. The points located in the 

low occupancy probability space (i.e., free space) are free points. Then for removing noise 

and vegetation points from free points, the free-point rate and multi-return rate are calculated 

by using a fixed radius spatial search. After that dynamic object detection and extraction are 

achieved by using KNN spatial search with filtered free points as seed points.  

 

The weighted average producer’s accuracy for dynamic object detection is 88.004% in the 

implementation results of the four case sites, which means that the proposed method hardly 

produces incomplete dynamic object extraction. The very few incomplete dynamic object 

detection and extraction occur mainly on sparse objects far from the MLS sensor. 

 

(2) How to avoid detecting and removing static environment objects? 

 

The free points in Octomap are used as seed points for detecting and extracting dynamic 

objects in this method. However, the initial free points are inevitably mixed with some static 

points. So, this method first delimits the ROI to remove the static-free points located on the 

ground and at high altitudes. Then the static-free points are further removed using vegetation 

and noise removal operations so that the final free points include only dynamic points as 

much as possible.  

 

The weighted average user’s accuracy for dynamic object detection is 82.624% in the 

implementation results of the four case sites. This means that most of the detection results 

are correct for dynamic objects, including only a small number of static points, such as 

vegetation, remaining buildings, streetlights, traffic lights, and traffic signs. 

 

(3) What factors affect the detection results? 

 

The main cause of misdetection is the performance of the vegetation and noise removal 

methods. The minor cause is the performance of the ground filtering method. Remaining 

ground points, vegetation points, noise points, and pole-like objects in the free points can 

cause some static objects to be incorrectly detected as dynamic objects. 
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The main reason why dynamic objects are not successfully detected is the distance of the 

object from the MLS sensor. A dynamic object that is too far from the MLS sensor causes its 

captured points to be too sparse and thus difficult to be detected completely. 

 

In addition, the choice of parameter values also affects the final test results. For example, the 

number of nearest neighbors used to extract dynamic objects ( 𝑘𝑑𝑜) is set to a very small 

value can lead to some dynamic objects not being detected correctly, while too large a 𝑘𝑑𝑜 

value can lead to misdetection. 

 

Compared with the above factors, the size, speed, and movement direction of the dynamic 

object are not observed to have a significant effect on the detection results in the 

implementation. 

 

(4) How to use MLS sensor trajectory to assist detection and removal 

operations? 

 

In this method, the MLS sensor trajectory has two main roles: (1) to reconstruct the LiDAR 

rays in Octomap with corresponding MLS capture points, and (2) to delimit the upper and 

lower boundaries of the ROI by obtaining the MLS sensor height from the trajectory. 

 

(5) What types of objects often lead to misdetection? 

 

The most common mis-detected objects in the implementation results are vegetation, and 

other less common mis-detected objects include some small ground areas, remnant 

buildings, pole-like objects such as streetlights, traffic lights, and traffic signs.  

 

(6) How to reduce the computational time and the memory requirement for 

processing large-scale data? 

 

Computational efficiency and memory requirement have been major challenges for MLS 

point cloud data processing. This problem was further exacerbated in the previous Octomap-

based dynamic object detection approaches. So, the proposed method takes three initiatives: 

(1) Reduce the computation and memory requirements by generating multiple smaller 

Octomaps to avoid generating a very huge Octomap. (2) Obtain a smaller ROI by removing 

the ground area and the high-altitude space to reduce the computation cost in subsequent 

steps. (3) Most steps of the whole processing workflow can be accelerated with parallel 

computing.  
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Using parallel computing, the proposed method with 4 threads enabled achieves an average 

73.496% improvement in computational efficiency over single thread. Compared to the 

original Octomap method, the proposed method has an average efficiency improvement of 

35.472% under a single thread. The efficiency can be further improved when more threads 

are enabled. The computational efficiency of proposed method under 4 threads is improved 

up to 214.313% compared to the original Octomap. In terms of memory consumption, the 

average memory requirement of the proposed method is only 42.437% of the original 

Octomap under a single thread, and the memory consumption only reaches a similar level of 

the original Octomap method when 3 threads are enabled. 

 
 

7.2 Research Contributions 
 
Compared with previous Octomap-based dynamic object detection methods, the method 

proposed in this paper has the following contributions: 

 

First, the previous Octomap-based approaches usually require the generation of a very huge 

voxel grid, and thus are only applicable to sparse point clouds or require a large amount of 

computation and memory. The proposed method in this thesis segments the initial MLS point 

cloud into several data frames and inserts only two or three neighbor data frames into a 

single Octomap at a time, avoiding the generation of a huge Octomap by generating multiple 

smaller Octomaps, thus increasing efficiency and reducing memory requirements. Compared 

with the original Octomap method, the proposed method in this thesis is improved in terms of 

computational efficiency as well as memory saving. 

 

Second, many previous studies defined non-ground space as the ROI for point cloud 

dynamic object detection tasks. Such ROI has only one explicitly defined lower boundary. 

Based on this, this thesis defines the local vehicle height restriction as the upper boundary of 

the ROI, further narrowing the ROI of dynamic object detection and extraction to reduce the 

computational effort in subsequent steps. 

 
Third, the compatibility of the present method with parallel computing is demonstrated. A 

foundation is laid for further improving the efficiency of this method using some advanced 

parallel computing technologies in the future. 
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7.3 Future Work 
 
Due to the limited research time, many of the new problems and ideas encountered during 

the study could not be further explored. Therefore, this section lists some directions for 

improvement and optimization of this thesis in the future. 

 

Self-adaptive threshold values: The setting of the threshold values can have an impact on 

the detection result. In this research, operations such as free point extraction, noise removal, 

vegetation removal, and fake dynamic object filtering from Octomap require a series of 

reasonable thresholds to be set in advance. Taking the denoising operation as an example, if 

the threshold is set too large, many dynamic free points will be lost. If the threshold value is 

set too small, many noise points will remain in the result. Both above scenarios will affect the 

quality of the result. In the currently proposed method, all these thresholds are fixed. 

However, in the subsequent research, the MLS point cloud can be sampled first, and then 

the optimal threshold values for the current input data can be estimated self-adaptively based 

on the sampled points. With the introduction of adaptive thresholds, some expected changes 

in the environment can be handled automatically when the application scenario changes 

without extensive modifications to the method, thus improving the robustness of the 

proposed method.  

 

Detection methods optimized for sparse dynamic objects: To solve the problem that 

some of the sparse dynamic objects in the implementation results cannot be detected 

completely, the future research can try to modify the parameters of the point-based spatial 

neighborhood query algorithm based on the distance from the MLS capture point to the 

sensor or the local point density of the object to achieve better detection results. 

 

Extension to more application scenarios: The four case sites used in the implementation 

phase of this thesis are all located in several adjacent road sections in Delft, the Netherlands. 

So, there are many similarities in the overall environment among these four case sites. The 

performance of the proposed method can be further tested in the future in more 

environments, including highways and rural areas, to verify the generalizability of the method. 

Since no pedestrians are found in the case site data used in this study, the method needs to 

be subsequently validated for pedestrian detection in areas with high pedestrian traffic such 

as pedestrian streets, popular tourist spots, and commercial areas. In addition, the ROI in 

this thesis does not include high-altitude space, so it is also a worthwhile research to try 

whether this method can also be applied to the detection of moving objects such as birds, 

airplanes, and drones at high altitude. 
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Integration of better static object detection methods: Most mis-detected static objects 

are vegetation, so it is necessary to introduce more advanced vegetation detection 

algorithms to remove the remnant vegetation. For the ground extraction algorithm, local 

height changes need to be considered to obtain a more complete ground surface, especially 

when the terrain is not very flat. In addition, the well-performed pole-like object detection 

algorithm needs to be integrated into the workflow to exclude static objects such as 

streetlights, traffic lights, and traffic signs. 

 

Speed detection and direction tracking: Octomap can only detect changes in the 

environment, but it cannot calculate the speed of dynamic objects and track the directions of 

them. But in many scenarios, such as autonomous driving, the moving direction of a dynamic 

object as well as its speed is also very important information. Therefore, the subsequent 

research can focus on how to obtain further motion information of dynamic objects after they 

are detected, including their direction and speed. 

 

More realistic LiDAR ray simulation: The construction of Octomap is based on ray 

reconstruction. LiDAR rays are usually idealized to be a straight line in space. However, in 

the real environment the LiDAR ray may form a very small cone because of scattering and 

other factors. This means that the ray beam will end up hitting multiple voxel cells. Therefore, 

in future research, the intersection volume of the LiDAR ray and each hit voxel cell can be 

calculated first, and then the occupancy probability of this ray can be assigned to each hit 

voxel cell in proportion to the intersection volume. 

 

Replacing the voxel grid with point-based structures: Using Octomap means introducing 

additional voxel grids in addition to the original MLS data, which increases the computational 

effort and memory consumption. Another problem is that in Octomap the probabilities of all 

points from one voxel cell are considered as the same by default. A follow-up idea for 

improvement is to replace the voxel grid structure in Octomap using a point-based structure 

such as an axis aligned bounding box tree (AABB tree)1. First construct a spherical or cube-

shaped neighborhood for each point first, then calculate the number of rays hitting that 

neighborhood and directly calculate the probability of occupancy for each point. This 

improves the voxel cell-based occupancy probability to a point-based occupancy probability. 

 

 
1 https://doc.cgal.org/latest/AABB_tree/index.html 
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GPU-accelerated computation: For MLS data with a large number of points, using GPU-

based parallel accelerated computing is more efficient than CPU-based computing. The 

method proposed in this thesis can be integrated with GPU technologies such as CUDA in 

subsequent research to achieve more efficient parallel computing. 

 

Integration with DBMS: The Database Management Systems (DBMS) is well suited for 

managing and processing massive data like point clouds. The parallel operation of removing 

duplicate points that is not achieved in this thesis, but these duplicate points can be sorted 

and removed efficiently in the DBMS. The massive parallel computing technology in DBMS 

can improve the processing efficiency of point cloud data. So how to integrate this research 

with DBMS to further improve performance is also a topic well worth exploring in the future.  
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