
Vol.:(0123456789)1 3

Journal of Geovisualization and Spatial Analysis (2023) 7:12
https://doi.org/10.1007/s41651-022-00109-x

Generalizing Simultaneously to Support Smooth Zooming: Case Study
of Merging Area Objects

Dongliang Peng1  · Martijn Meijers1 · Peter van Oosterom1

Accepted: 3 May 2022
© The Author(s) 2023

Abstract
When users zoom in or out on a digital map, the map should change correspondingly to present geographical information
at proper levels. A way to help map users better keep track of their interested objects is to change the map smoothly instead
of discretely switching between several levels of detail. This paper focuses on the problem of providing smooth merging
of area objects. We propose to merge multiple areas simultaneously to share their animation durations. In this way, each
merging operation can be prolonged, and it is visually smoother. We present a greedy algorithm to decide which areas should
be merged at each step. The merging process is pre-computed and is recorded into a space-scale cube (SSC). When a user
accesses our web map, the SSC is sent to the client side so that the map can be generated by slicing the SSC in the graphics
processing unit (GPU). We also explain how to snap the zooming to valid states so that the zooming will not stop halfway
of the merging operations. Our case study shows that it is visually smoother to merge simultaneously than to sequentially
merge each pair of areas.

Keywords  Space-scale cube · Vario-scale map · Continuous map generalization · Web map · Simultaneous generalization

Introduction

When users are reading a digital map, they expect different
levels of detail (LoDs) depending on the scale. For example,
they may want to see individual buildings when zooming
in and see built-up areas when zooming out. That is why
depicting geographical information is dependent on the
scale (Müller et al. 1995; Weibel 1997). In order to prepare
map data for different scales, a detailed map is generalized
to generate coarser data for maps at smaller scales, which

is known as map generalization. Mackaness et al. (2016)
gave a taxonomy of generalization algorithms, including
selection, simplification, and aggregation. Often, a multi-
representation database (MRDB) is utilized to store map
data of different scales, and the proper data is sent to clients
on request (e.g., Hampe et al. 2004). As a result, the scale
transition of a map is realized by switching between different
LoDs. However, that strategy often brings large and discrete
changes, which confuse users. In order to provide users with
better experience of zooming, we propose to realize the scale
transition with smooth changes. In other words, each object
on the map should be changed smoothly when the scale
changes. For example, a smooth way to simplify a polyline is
to move some of the vertices to a straight line, and a smooth
way to make a polygon disappear is to fade it out. Because
all the objects are changed smoothly, users can keep track
of their interested objects more easily. The technology to
realize the smooth scale transition is known as continuous
map generalization (CMG). Algorithms of CMG have been
proposed to morph raster maps (e.g., Pantazis et al. 2009b,
a), to morph polylines (e.g., Nöllenburg et al. 2008; Peng
et al. 2013; Deng and Peng 2015; Li et al. 2017a, 2018), to
generalize buildings (e.g., Li et al. 2017; Peng and Touya
2017; Touya and Dumont 2017), to transform road networks

This article belongs to the Topical Collection: Automated map
generalization: emerging techniques and new trends
Guest Editors: Xiang Zhang, Guillaume Touya, Martijn Meijers.

 *	 Martijn Meijers
	 b.m.meijers@tudelft.nl

	 Dongliang Peng
	 D.L.Peng@tudelft.nl

	 Peter van Oosterom
	 P.J.M.vanOosterom@tudelft.nl

1	 GIS Technology, Faculty of Architecture and the Built
Environment, Delft University of Technology, Julianalaan
134, Delft, The Netherlands

http://orcid.org/0000-0001-6848-3545
http://crossmark.crossref.org/dialog/?doi=10.1007/s41651-022-00109-x&domain=pdf

	 Journal of Geovisualization and Spatial Analysis (2023) 7:12

1 3

 12   Page 2 of 19

or river networks (e.g., Šuba et al. 2016; Chimani et al. 2014;
Huang et al. 2017; Peng et al. 2012), and to morph admin-
istrative boundaries (e.g., Peng et al. 2016). Recently, Shen
et al. (2020) proposed a method to progressively collapse
rivers based on superpixels. Furthermore, CMG can be also
used to simulate some temporal evolution of phenomena, for
example, how a flooding submerges the land.

Area objects are important features on maps. When users
zoom out, some area objects become too tiny to be seen,
which results in visual clutter. The clutter can be avoided by
generalizing the area objects. The generalization operators
include merging (e.g., Haunert and Wolff 2010), amalgam-
ating (e.g., Ware et al. 1995), aggregating (e.g., Peng and
Touya 2017), splitting (e.g., Meijers et al. 2016), and col-
lapsing (e.g., Haunert and Sester 2008). However, if zoom-
ing is realized by switching between some levels of map
representations, large and discrete changes usually happen.
This kind of changes may cause users to lose track of their
area objects of interest (Van Kreveld, 2001). In order to solve
this problem, we smoothly and simultaneously generalize
the area objects. In our setting, each of the area objects has
its semantic property, which is also called the class (e.g.,
lake, building, and grassland).

The main contribution of this paper is to generalize
simultaneously, which is the first time that the simultane-
ity is explicitly proposed. Because of the simultaneity,
each generalization operation has more time to take place
and thus expands in more animation frames, which makes
the generalization operation visually smoother. The rea-
soning is as follows, taking merging as an example. For
zooming out, we wish to merge the relatively unimpor-
tant areas into their neighbors to form larger areas. In
order to provide small and smooth changes, this paper
merges a pair of areas by gradually expanding one (win-
ner) over the other (loser). At the same time, the loser
gradually adapts its color to the winner. However, if all
the merging operations happen sequentially, then each
operation has to be processed very fast because the map
user wants to see the map at the target scale rather soon
after applying a zooming. That is to say, each merging
expansion may take place in only one frame, and users
see only discrete changes. In contrast, if some merging
operations happen simultaneously, then they can share
their time duration, and each merging expansion can take
place in many frames. As a result, users really see the
smooth merging.

This paper is organized as follows. The “Related
Work” section reviews some related work. Our methodology
is presented in the “Methodology” section. We show a case
study in the “Case Study” section. Finally, the “Concluding
Remarks” section draws the conclusion and presents the
future work.

Related Work

Merging, amalgamation, and aggregation are three popu-
lar operators of combining area objects. According to Shea
and McMaster (1989), merging combines neighbor objects,
which (visually) share their boundaries, into a single one,
and the result has the same dimension as the merged objects.
Amalgamation is different from merging in that it combines
nearby objects into a single one. In contrast, aggregation
often involves the change of dimension. For example, points
are aggregated to become an area.

Both Su et al. (1997) and Sester (2005) used morpho-
logical operators (e.g., a dilation followed by an erosion) to
amalgamate area objects, where the former article worked
on raster data and the latter worked on vector data. Reg-
nauld (2003) amalgamated area objects by merging, bridg-
ing, flooding, or sampling. Shen et al. (2019) amalgamated
area objects based on the superpixel method of Achanta
et al. (2012). Ware et al. (1995) amalgamated some pairs
of objects based on the constrained Delaunay triangulation
(CDT), where they introduced operators append merge,
direct merge, and snap merge for rectangular objects, as well
as adopt merge for natural objects. Ai and Zhang (2007)
progressively aggregated building clusters, where they found
the building clusters based on the CDT. Peng and Touya
(2017) continuously aggregated buildings to built-up areas
by bridging and growing the buildings. Touya and Dumont
(2017) aggregated buildings by progressively covering them
with blocks.

We have just briefly reviewed the related work of
amalgamation and aggregation. In the remainder of this
section, we will focus on merging because our research
belongs to this topic.

Merging of Area Objects

Cheng and Li (2006), for a target area, proposed three
choices of selecting a neighboring area to merge, i.e., the
neighbor has the largest size, shares the longest boundary
with the target area, or has the closest class to the target area.
Thiemann and Sester (2018) proposed a chain of operators to
generalize a land-cover map. In the chain of processing area
objects, they integrated cleaning, dissolving, splitting, merg-
ing, reclassifying, and simplifying. Both Haunert and Wolff
(2010) and Oehrlein and Haunert (2017) employed integer
linear programs to merge area objects in order to find some
optimal solutions when generating a map at a certain scale.

Gradual Merging of Area Objects

To provide the scale transition with small changes, van Oos-
terom (1995) proposed the generalized area partitioning

Journal of Geovisualization and Spatial Analysis (2023) 7:12 	

1 3

Page 3 of 19  12

(GAP) tree. In the tree, each leaf node represents a simple
area on the map, and each of the other nodes represents a
compound area, where a compound area contains some other
areas. To build the tree, the least important area is found and
merged into its most compatible neighbor. Correspondingly,
the former’s node becomes a child of the latter’s node. This
process repeats until the root node is found. Each level of the
GAP tree corresponds to a scale of the map. As the changes
between two neighboring levels of the tree are small, it is
possible to realize the scale transition with small changes.
Because that method works only on areas without gaps, Ai
and van Oosterom (2002) made an extension to the GAP tree
to allow gaps between areas. They identified gaps based on
the CDT and filled the gaps to connect nearby areas. The
topological GAP (tGAP) structure consists of a face tree and
an edge tree (van Oosterom 2005). The aim of proposing
the tGAP structure is to minimize the redundancy, where
each vertex is recorded only once while it may be presented
in many map representations of different scales. Peng et al.
(2020b) tried to find an optimal sequence to merge area
objects based on the A ⋆ algorithm or an integer linear pro-
gram. Their comparison, also including a greedy algorithm,
showed that the A ⋆ algorithm outperforms the two other
methods in the aspects of minimizing the class changes and
maximizing the area compactnesses. Šuba et al. (2016) con-
tinuously generalized a planar map of road network. In each
step, they process the least important area object. Taking
into account its local condition (e.g., no compatible neigh-
bor at the same side of the road), they may take different
decisions for the least important area object: increasing its
importance, collapsing it, or merging it into an adjacent area.

To provide real smooth changes of zooming, van
Oosterom and Meijers (2014) developed the concept of
the space-scale cube (SSC). The bottom of the SSC is a
detailed topographic map, then all the area objects extrude
along the z-axis. In the SSC, an area on the map becomes
a polyhedron, and the common boundary of two areas
becomes a vertical wall. Whenever a generalization opera-
tion happens, the extrusions of the involved areas stop;
then, the newly generated areas take over the place and
start to extrude. On this basis, the map at any scale can be
generated by slicing the SSC with a horizontal plane at a
corresponding z-coordinate (e.g., Fig. 1). That is to say, the
scale becomes the third dimension of the map in the SSC.
Furthermore, they represented the smooth tGAP in the
SSC. A typical example of the smooth generalization oper-
ation is that an area merges with another one by gradually
expanding over the latter. In the SSC of the smooth tGAP,
the wall starts to tilt when the expansion begins. To build
such an SSC, Šuba et al. (2014) proposed three methods
to merge a pair of areas in a gradual manner, namely the
Single flat plane, the Zipper, and the Eater. Basically, the
winner area gradually expands over the loser area. We will

use the Eater because it works for all kinds of polygons,
while the other two methods have their limitations for some
cases. For example, the two other methods do not work for
certain concave polygons. The principle of the Eater is as
follows. First, the interior of the loser is triangulated with
a CDT (see Fig. 2a). Second, the triangles are visited start-
ing from the boundary between the winner and the loser: If
there are triangles with two shared edges, then the visiting
starts from the shared vertex of the two edges; otherwise,
it starts from the shared edges. During visiting, the verti-
ces of the triangles are assigned with increasing z-values,
and the tilted triangles are generated, which become the
boundaries of polyhedra in the SSC. When slicing the SSC
with a horizontal plane, the eating process is presented as
shown in Fig. 2b.

Fig. 1   Maps can be obtained by slicing the SSC; taken from Meijers
et al. (2020)

Fig. 2   The principle of the Eater; taken from Šuba et al. (2014). (a)
The space scale cube of a loser area. (b) The eating process

	 Journal of Geovisualization and Spatial Analysis (2023) 7:12

1 3

 12   Page 4 of 19

Merging Considering Semantic Properties

As mentioned in the “Introduction” section, each of the
area objects has its semantic property (i.e., class). When
we merge an area into another area, the semantic property
of the former is changed to that of the latter. It is important
not to cause too much change for two reasons. First, the
generalized map should resemble the base map. Second, big
changes cause users to lose track of their interested areas.

Van Oosterom and Schenkelaars’s (1995) greedy algo-
rithm repeatedly merges the least important area with one
of its neighbors. When choosing the neighbor, the algorithm
considers the compatibility between the least important area
and the neighbor, where the compatibility can be defined
based on the semantic property. Haunert and Wolff (2010)
defined distances between semantic properties and included
those distances into the cost function of their integer linear
program. Peng et al. (2020b) defined the semantic distance
based on a tree of classes, which guarantees that the distance
is a metric (see Fig. 3).

Van Smaalen (2003 Section 4.4.3) mentioned the class-
driven generalization, where if the two classes of two area
objects are under the same super class, then the two area
objects should be merged, and the new area object uses the
super class. van Smaalen (2003 Section 4.5) suggested that
the merging operation should also consider classes that
co-occur spatially. He proposed the class adjacency index
to measure if two classes are often adjacent; if so, the two
objects, with the two classes, should be aggregated, and a
composite class should be used.

Simultaneous Generalization Operators

Many methods of CMG naturally apply multiple generaliza-
tion operators simultaneously. In morphing polylines, the
points of the polylines are moved at the same time (e.g., Nöl-
lenburg et al. 2008; Li et al. 2017a). Li et al. (2017) simul-
taneously generalized individual buildings. Peng and Touya
(2017) and Touya and Dumont (2017) generalized buildings
to built-up areas; however, there is no simple relationship
between their intermediate-scale maps and their source
maps. Therefore, all the intermediate-scale maps of build-
ings have to be sent from the server to the clients, which is
network intensive.

Gradual Transformation in Web Environment

Based on the SSC, Meijers et al. (2020) explained the
principles of implementing a web map of area objects.
They showed how to request only a part of a large dataset
of a vario-scale map. They made chunks of the SSC data
so that they were able to send only the chunks relevant to
users’ interested place. They showed how to efficiently slice
the SSC to output a web map at a given scale using the
GPU at the client side. In addition to slicing the SSC with
a horizontal plane, they also sliced the SSC with a curly
surface to have a locally more detailed map or with a tilted
surface to have a perspective view. Huang et al. (2016)
pointed out that the effort of implementing online maps had
been spent mainly on preparing data on the server side. They
studied the communication of map data between the server
side and the client side. They proposed different strategies of
assigning the work of processing map data according to the
machine abilities of the clients (i.e., thin, medium, or thick
client). Their implementation or option C supports gradual
transformation of objects. For a zooming operation, that
implementation continuously requests data from the server
side and present them on the map until the map of the target
scale is complete. Peng et al. (2020a) presented a tool to
compare two web maps side by side. In order to allow users
to easily access other map information, the tool presents a
multi-scale raster layer as the background. Their example
respectively used a vario-scale and a multi-scale vector layer
as the foregrounds and compared between them.

Methodology

Figure 4 shows three different merging strategies. In
Fig. 4a1–a3, all the changes from a level to the next level
are processed in one go, at a specific point. In Fig. 4b1–b7,
there is only one merging operation from a level to the next
level, and the change is realized by an expanding animation
(see Fig. 4b8). In Fig. 4c1–c5, there can be many merging

Fig. 3   A way of defining distances between the classes; taken from
Peng et al. (2020b)

Journal of Geovisualization and Spatial Analysis (2023) 7:12 	

1 3

Page 5 of 19  12

operations from a level to the next level, and each change
is realized by an expanding animation (see Fig. 4c6). The
first strategy often brings large and discrete changes (see
for example from a1 to a2), which should be avoided. Both
the second one and the third one have the ability to provide
smooth changes. Comparing to the second strategy, the third
one results in longer animation durations for some merging
operations because the changes can share their animation
durations.1 The smooth changes are realized by slicing the

space-scale cubes (SSCs) of Fig. 5 with a moving horizontal
plane. For example, smooth animations of zooming out are
obtained by slicing an SSC from bottom to top. In detail,
Fig. 4b8 is obtained by slicing Fig. 5a at z = 50 . The details
of slicing an SSC are illustrated in Meijers et al. (2020). The
SSCs of Fig. 5 were built based on the Eater of Šuba et al.
(2014). The content of an SSC is stored in an OBJ file, and
the OBJ file can be visualized by software ParaView (see
Fig. 5). In Fig. 5, the z-coordinates are 100 times of the
state values in Fig. 4. We performed this multiplication for
illustrative purpose only so that the contents of the SSC can
be better observed.

The SSCs of Fig. 5a and b respectively serve for the
single smooth merging (Fig. 4b1–b7) and the simultane-
ous smooth merging (Fig. 4c1–c5). The differences of the

Fig. 4   A comparison of differ-
ent scale-transition strategies.
Each arrow inside the subfigures
indicates a merging operation.
The arrow in the right-hand side
indicates the states of zoom-
ing out. Subfigures (a1–a3),
(b1–b7), and (c1–c5) represent
the states at which the zoom-
ing may stop. Subfigures (a4),
(b8), (c6), and (c7) are the map
representations during the scale
transition, where their corre-
sponding states are indicated by
the gray dots. The numbers are
the IDs of the areas. Note that
the colors of the smaller areas
adapt to the colors of the larger
areas during merging

1  A comparison of the single merging and the simultaneous merging
can be found at https://​pengd​lzn.​github.​io/​webma​ps/​2021/​10/​merge/​
eg-7-​compa​rer-​overl​ay-​single-​simul​taneo​us.​html, where the swiper
can be moved to see the differences of the two maps, for example, at
scale 1:11, 832.

https://pengdlzn.github.io/webmaps/2021/10/merge/eg-7-comparer-overlay-single-simultaneous.html
https://pengdlzn.github.io/webmaps/2021/10/merge/eg-7-comparer-overlay-single-simultaneous.html

	 Journal of Geovisualization and Spatial Analysis (2023) 7:12

1 3

 12   Page 6 of 19

two SSCs result in the two different merging processes. For
example, at z = 50 of Fig. 5a, there is only one polyhedron
with the tilted face, hence there is only a pair of polygons
merging in Fig. 4b8. In comparison, there are two polyhedra
with tilted faces at z = 50 of Fig. 5b, and there are two pairs
of polygons merging in Fig. 4c6. Note that the choices of
selecting areas to merge are made in a pre-processing step
and are stored in a database, before users start zooming on
the map. Therefore, the choices are independent of users’
area objects of interest.

We define an event as a single generalization operation,
such as merging an area with a neighbor. For example,
Fig. 4b2 is obtained from Fig. 4b1 by processing one merg-
ing event. Similarly, Fig. 4c2 is obtained from Fig. 4c1 by
processing two merging events. Note that two areas are
neighbors if they share a common boundary with length
larger than 0 (sharing a point does not make the two areas
neighbors). We define a step as a set of events happening at
the same animation duration, for example, from Fig. 4b1 to
b2 or from Fig. 4c1 to c2. In our method, a step is completely
processed before the next step takes place (all sequential).
We define a state as the point when a step starts or finishes.
For example, there are seven states in the merging sequence
of Fig. 4b1–b7 and five states in the merging sequence of
Fig. 4c1–c5 (i.e., states 0, 2, 4, 5, and 6). Note that the value
of a state is also the total number of events processed so far.

There are two benefits of merging simultaneously. First,
the simultaneity avoids unnatural zooming. Without the sim-
ultaneity, generalization operations that are processed all
sequentially may result in no change at some locations in
a zooming duration, which is unnatural (van Oosterom and
Meijers 2014). Therefore, van Oosterom and Meijers (2014)
suggested processing the generalization operations simul-
taneously, but no implementation, testing, or assessment
of the idea was provided. Second, the simultaneity brings
smoother zooming. When showing an animation zoom-
ing, we set 16 as the default value of the frames per second
(FPS). This value is adequate to provide the visual continu-
ity (Read and Meyer 2000, p. 24). If the merging operations
happen sequentially instead of simultaneously, it is more
likely that the time interval between two frames is larger
than that between two states. Then, there is no animation of

smooth merging shown at all. For example, if the consecu-
tive frames are Fig. 4b1, b2, and b3, then users can only see
discrete merging. In contrast, if the consecutive frames are
Fig. 4c1, c7, and c2, then users can see one frame of ongoing
expansion. As a result, the merging expansions are visually
smoother when there are more merging operations processed
simultaneously.

When merging simultaneously, we require that the area
objects involved in different merging events of the same step
must not be neighbors. This requirement makes the merging
events independent from each other. In this way, it is easy for
us to maintain the topology of the map. In order to realize the
requirement, we block the pair of areas of a merging event, as
well as their neighbors. These areas become blocked areas.
The areas are free if they are not blocked yet. We develop a
greedy algorithm to find the simultaneous merging events
for each step in the “A greedy Algorithm” section. Then,
we integrate the events into the tGAP database tables
(section “Integrating the Simultaneous Events into the tGAP
Database Tables”), followed by integrating the events into
the SSC (section “Integrating the Simultaneous Events into
the SSC”). In the “Snapping to a Valid State” section, we
show how to snap the zooming to some valid states to avoid
that the merging animation stops halfway. In the “Animation
Duration of a Step” section, we define the animation duration
of zooming from one state to another state. Note that the steps
of the “A greedy Algorithm,” “Integrating the Simultaneous
Events into the tGAP Database Tables,” and “Integrating
the Simultaneous Events into the SSC” sections are done
in a preprocess, and the final results are saved in some files.
Then, the files are sent to the client on request when a user
is browsing the map, where the steps of the “Snapping to a
Valid State” and “Animation Duration of a Step” sections are
done in real time.

A Greedy Algorithm

We use a greedy algorithm to find the simultaneous
merging events for all steps. The merging events will
be stored as records in the tGAP database tables (see
Fig. 6). Some instances of the tables are shown in Table 1
of the “Integrating the Simultaneous Events into the

Fig. 5   In the left SSC, only one
merging event is happening at
a specific state (z-dimension),
while in the right SSC multiple
merging events may happen at
the same state. (a) The SSC of
the single merging of Fig. 4b1-
b7. (b) The SSC of the simulta-
neous merging of Fig. 4c1-c7

Journal of Geovisualization and Spatial Analysis (2023) 7:12 	

1 3

Page 7 of 19  12

tGAP Database Tables” section. To compose a merging
event, we wish to merge the least important area into its
most compatible neighbor. We define the importance
and the compatibility according to van Putten and van
Oosterom (1998). That is, the importance of an area is the
multiplication of its size and its class weight. Currently,
all the class weights are set to 1, which leads to that the
smallest area is the least important. The compatibility value
between a pair of areas is the multiplication of the common
boundary’s length and the class similarity of the two areas.
Appendix 1 shows our implementation of computing the
weight values and the class similarities.

Figure 7 shows the flowchart of our greedy algorithm.
The process starts with a detailed map of area objects.
The map is denoted by Ms , where state s is 0 at this point.
Parameter rsimul

 specifies the proportion (i.e., percentage,
when multiplied by 100) of area objects that are expected to
be merged simultaneously. As a value of percentage, rsimul

is in the range from 0 to 100% , which means rsimul ∈ [0, 1] .
We denote by |Ms| the number of Ms ’s area objects. If there
is more than one area ( |Ms| > 1 ), then the algorithm finds
merging events for a new step. In other words, in each
iteration when we have |Ms| > 1 , a set of merging event for
a step will be defined. We first compute the number of areas
that we expect to merge by

where expression ⌈x⌉ returns the ceiling of x, which is the
smallest integer greater than or equal to x. The ceiling
function guarantees ntarget ≥ 1 . That is to say, the greedy
algorithm finds at least one merging event for each step.

(1)ntarget = ⌈rsimul ⋅ �Ms�⌉,

When ntarget > 1 , however, the greedy algorithm cannot
always find ntarget merging events because some areas may
be blocked (also see Fig. 8). Therefore, we use variable nevent
to represent the number of events that are actually found for
a step.

In Fig. 7, the dashed rectangle marks the process of finding
merging events for a single step. If the process has not found
ntarget events yet ( nevent < ntarget ) and there are still free areas,
then the process continues looking for merging events. In
detail, the greedy algorithm selects the least important area,
aleast , from the free areas. Then, the algorithm finds aleast ’s
most compatible neighbor anbr.

–	 If area anbr is also free, a merging event has been found, con-
sisting of areas aleast and anbr . Consequently, the number of
events, nevent , increases by 1. Then, aleast , anbr , and their neigh-
bors are blocked (see Fig. 8a). Note that if an area shares only
one vertex with aleast and/or anbr , that area will not be blocked.

–	 If area anbr is not free, then it must have been blocked
because of the previously found events. In this case, we
block aleast for now so that areas aleast and anbr may merge
in the next step.

Now, let us move back to the start of finding merging events
for a single step, that is, the condition “ nevent < ntarget and
free areas exist.” If we have found ntarget events or there is no
free area anymore, then finding merging events of the step
finishes. The greedy algorithm merges all the pairs of areas of
the found events to generate new areas, frees all the blocked
areas, increases state s by value nevent , and creates map Ms

 based
on the new areas and the freed areas. Then, finding merging

Fig. 6   The Unified Modeling
Language (UML) diagram
of the classes stored in tGAP
database tables. This diagram is
a slightly improved version of
Meijers (2011b, p. 159). In the
face table, property pip_geom-
etry stores a point (usually the
center) in the face (polygon).
The geometry of a face can
be obtained by calling func-
tion getGeometry(). The face
geometry is not stored because
we want to avoid redundancy,
as the edges already stored the
sequences of the points

	 Journal of Geovisualization and Spatial Analysis (2023) 7:12

1 3

 12   Page 8 of 19

events for the next step starts. This loop of finding completes
when there is only one area left on the map ( |Ms| = 1 ).
Figure 4c1–c5 show a sequence of four merging steps obtained
by our greedy algorithm, where simultaneous parameter rsimul is
set to 0.3 (note that this is an extremely high value, used here to
explain the principle in an artificial simple example).

The ideal situation to apply our method is that small areas
distribute evenly and the areas do not have holes. The reason
is as follows. We wish to use a rather large simultaneous
parameter rsimul

 so that many events can share their merging
durations. However, if the small areas do not distribute
evenly, then some small areas will be blocked and kept while
some larger areas will be merged, which is unreasonable.
If an area has many holes, where each hole is filled with
an area, then each step a hole merging into its surrounding
area will forbid other holes to merge into it. This situation
results in that some holes are merged until the scale is very

small. A typical example is that a built-up area contains
many buildings as holes.

Integrating the Simultaneous Events into the tGAP
Database Tables

Meijers (2011b, p. 159) designed three tables to record the
information of faces, edges, and face hierarchies, which
together form a tGAP (see Fig. 6 the UML diagram of the
tables). Note that both class Face and class Edge inherit the
attributes from superclass tGAPTopolObject. His face table
contains columns face_id, imp_low, imp_high, imp_own,
feature_class, area, and mbr_geometry. We add columns
state_low ( slow ) and state_high ( shigh ) into the table so that
it is easy to see when a face (i.e., an area object) should
appear or disappear (the same is done also for the edge
table). Values slow and shigh of relevant areas in a step are
assigned when all the pairs of areas are merged (see the
step in Fig. 7). In detail, all those pairs of areas that are
merged have shigh = s + nevent , and the generated areas will
have slow = s + nevent . Tables 1a and 1b shows the two new
columns with column face_id. A face appears as a result
of merging two faces during zooming out when the slicing
arrives at the face’s low state. When the slicing arrives at its
high state, the face should have been merged with another
area. Comparing between the tables of single merging
(Fig. 4b1–b7) and simultaneous merging (Fig. 4c1–c5), one
can observe some differences of the values. For example,
the shigh values of faces 1 and 2 are changed from 1 to 2
(see Table 1). Correspondingly, the slow value of face 8 is
changed from 1 to 2 (see Table 1). Note that the face IDs are
defined in Fig. 4. Similarly to the face tables, the columns
and records of both the edge table and the face-hierarchy
table will be changed accordingly.

Integrating the Simultaneous Events into the SSC

Recall that we merge a pair of areas by expanding the win-
ner over the loser. The Eater of Šuba et al. (2014) is used
to triangulate the loser and to tilt the triangles. Then, the
tilted triangles are integrated into the SSC (see Fig. 5) so
that we can slice the SSC to achieve smooth merging. For
the case of single merging, if a pair of areas have state-
high value shigh , then the merging animation always starts
at state smerge = shigh − 1 (see Table 1a). The less important
area completely disappears at state shigh . In the face table, a
row will be added to record the new area, and its slow value
will be the previous shigh value. The new area takes over
the combined place of the pair of areas. Take Fig. 4 as an
example, area 1 is merged into area 2 (Fig. 4b1), and area 8
is generated to take over the combined place (Fig. 4b2). The
tilted triangle is the one that spans from z = 0 to z = 100 in

Table 1   Some columns of the
face tables. Columns slow , smerge ,
and shigh show the states when
the faces appear, when the faces
start to disappear, and when the
faces completely disappear. In
table (b), the different values
from table (a) are underlined.
Column smerge is not really
stored in the database. We show
the column so that it is easy to
see the differences between the
slow values and the smerge values

fid slow smerge shigh

(a) The face table of the
single merging shown in
Fig. 4b1–b7

1 0 0 1
2 0 0 1
3 0 1 2
4 0 4 5
5 0 3 4
6 0 2 3
7 0 2 3
8 1 1 2
9 2 5 6
10 3 3 4
11 4 4 5
12 5 5 6
13 6 — —
(b) The face table of the

simultaneous merging
shown in Fig. 4c1–c7

1 0 0 2
2 0 0 2
3 0 2 4
4 0 4 5
5 0 2 4
6 0 0 2
7 0 0 2
8 2 2 4
9 4 5 6
10 2 2 4
11 4 4 5
12 5 5 6
13 6 — —

Journal of Geovisualization and Spatial Analysis (2023) 7:12 	

1 3

Page 9 of 19  12

Fig. 5a. In Table 1a, the slow value of area 8 is 1, which is
the shigh value of areas 1 and 2.

For the case of simultaneous merging, if a step con-
sists of nevent events and the step finishes at state shigh ,
then the step starts at state smerge = shigh − nevent . The rea-
son is that if the nevent events would happen sequentially
(i.e., single merging), then the first of the nevent events
would start at state shigh − nevent , the second would start
at state shigh − nevent + 1 , and so on. Now that all the nevent
events share their merging durations, all of them can start
at state shigh − nevent . As a result, each of the simultaneous
events has more time to take place than the events would
happen sequentially. In other words, for a merging step, each

of the events has more time to take place if there are more
simultaneous events.

In order to build the SSC for simultaneous merging, we
need the smerge value for each of the merging steps so that
we know from which state the triangles of loser’s ceiling
should be tilted. A simple way is to add a column, say, smerge
into the face table during generating the tGAP, as done in
Table 1. Then, the states of starting merging can be recorded
into the column. However, we would like to avoid unneces-
sary columns to save storage. Therefore, we compute smerge
values based on the shigh values on the fly when building the
SSC. As an event involves two areas, the number of events
finishing at state shigh can be calculated by:

Fig. 7   The flowchart of our
greedy algorithm. This algo-
rithm finds the merging event
for all the steps. The dashed
rectangle marks the process of
finding merging events for a
single step

Fig. 8   The process of finding simultaneous merging events for
a single step. (a) From all the free areas, the least important one is
selected to merge into its most compatible neighbor. Then, the two
areas and the surrounding areas are blocked (marked by the crosses).

(b) Next, the least important area from the remaining free areas is
selected to merge with its most compatible neighbor, and the relevant
areas are also blocked.

	 Journal of Geovisualization and Spatial Analysis (2023) 7:12

1 3

 12   Page 10 of 19

where vector �high denotes the values recorded in column shigh
of the face table (e.g., Table 1b). Expression {s = shigh}
returns 1 if the two values are equal and returns 0 otherwise.
As illustrated before, the state at which the simultaneous
merging starts can be computed by:

Take the case of Table 1b for example, we
have �high = [2, 2, 4, 5, 4, 2, 2, 4, 6, 4, 5, 6] , nevent(4, �high) = 2 ,
and smerge(4, �high) = 2 . Therefore, there are two merging
events finishing at state 4, i.e., the event of merging area
3 into area 8 and the event of merging area 5 into area 10
(also see Fig. 4c2 and c3). The merging animation takes
place from state 2 to state 4. This merging can also be
observed from the two tilted triangles spanning from z = 200
to z = 400 in Fig. 5b. In merging sequence of Fig. 4b1–b7,
the animation of merging area 3 into area 8 takes place
from state 1 to state 2 (also see the tilted triangle spanning
from z = 100 to z = 200 in Fig. 5a), and the animation of
merging area 5 into area 10 takes place from state 3 to state 4
(also see the tilted triangle spanning from z = 300 to z = 400
in Fig. 5a). As a result, the animation duration of merging
area 3 into area 8 of sequence Fig. 4c1–c5 is almost twice
as that of sequence Fig. 4b1–b7. We say almost because the
animation duration is also dependent on the state value of
the map (see the “Animation Duration of a Step” section).

Snapping to a Valid State

For a zooming action based on the SSC, we always snap
the map to a valid state. In this way, users will not see a
merging operation stopping halfway. Take the sequence of
Fig. 4c1–c5 for example, the merging animation is allowed
to stop at Fig. 4c1 or c2, but not at Fig. 4c6 or c7. In this
example, state 1 is invalid because some merging oper-
ations have not completed. Here, the list of valid states
is �valid = [0, 2, 4, 5, 6] . In order to snap to one of the valid
states, we have to communicate them to the client side.
There are multiple options. The simplest one assumes that,
the greedy algorithm can always find the ntarget number of
events in all steps. In that case, we just need to communi-
cate the number of areas and the ratio rsimul . However, this
assumption may be incorrect in case of high value ratios
(e.g., rsimul > 0.01 ). We then have to communicate the valid
states by sending them explicitly. Because this list may get
rather large, we only send exceptions (see Appendix 2 for
more details). As a result, the list of valid states �valid is
generated on the client side.

(2)
nevent(shigh, �high) =

∑

s∈�high

{s = shigh}

2

(3)smerge(shigh, �high) = shigh − nevent(shigh, �high)

According to how much a user has zoomed, the target scale,
say, 1 ∶ St can be computed. Huang et al. (2016) suggested that
the average density of the base map should be preserved for a
smaller-scale map. Their suggestion is based on the assumption
that the area density of the base map is well designed, which
is reasonable. We use variable Areal to denote the total areal
size of all the area objects in reality. Then, the size on screen at
scale 1 ∶ St is Areal

/
S2
t
 . In order to keep the density, we require

where parameter Nb = |M0| is the number of areas on the
base map, parameter Sb is the scale denominator of the base
map, and variable Et is the total number of events processed
from the base map to the map at scale 1 ∶ St (in this case,
an event is that an area is merged into another one). Eq. 4
yields:

In our example of Fig. 4c1–c5, if event number Et ≤ 0 ,
the base map should be presented; if Et ≥ 6 , the map with
the final single area should be presented. Otherwise, if
0 < Et < 6 , we snap event number Et to a value (measured in
events) of list �valid , which is denoted by Et,snap . The snapping
also depends on if the map user is zooming in or out. For
zooming in, Et,snap is the closest value in �valid that is smaller
than or equal to Et . For zooming out, Et,snap is the closest
value in �valid that is larger than or equal to Et . This way of
snapping prevents Et,snap from being the same value before
zooming; otherwise, the map will stand still if the map user
zooms only a little bit. The scale denominator corresponding
to event number Et,snap can be computed by

where this equation is an inverse function of Eq. 5. At the
end of the zooming action, the map will snap to state st,snap
at scale 1 ∶ St,snap . Note that state st,snap always has the same
value as event number Et,snap.

Animation Duration of a Step

When users are zooming from a scale to another scale, some
steps take place to change the state of the map accordingly. We
define the zooming duration as the amount of animation time
that the map reacts to one “rolling click” of the mouse wheel.
The zooming duration often is the sum of the animation
durations of several merging steps. The animation duration
of each event depends on the number of events between the

(4)
Nb

Areal

/
S2
b

=
Nb − Et

Areal

/
S2t

(5)Et = Nb

(

1 −
S2
b

S2t

)

(6)St,snap = Sb

√
Nb

Nb − Et,snap

Journal of Geovisualization and Spatial Analysis (2023) 7:12 	

1 3

Page 11 of 19  12

two states, the zooming factor of the scale, and the zooming
duration. On the one hand, the animation duration should
not be too short as then the animation will be too fast. On
the other hand, if the animation takes too long, the map will
not be interactive, and users will be “frustrated.” Meijers et al.
(2020, Section 4.3) have introduced the zooming factor and
the zooming duration. They allowed users to set the two
parameters, which is also the case in our paper (see Fig. 9).
This section formalizes the relationship of the animation
duration, the zooming duration, the zooming factor, and the
number of events. In a zooming duration, there can be many
merging steps, no matter single merging or simultaneous
merging. The formalization is based on the setting that a
zooming duration is divided equally by its merging steps
(Suba (2017, Section 6.7) showed some other possible
settings). In other words, the steps happen sequentially and
take the same amount of animation duration. Note that the
steps from different zooming durations may have different
animation durations.

Let Nevent be the number of events happening in a zoom-
ing duration. Let nstep be the number of steps happening in
the zooming duration. Let tsingle be the animation duration
of each of the steps, where each step consists of only one
event. Let tsimul be the animation duration of each of the
steps, where each step consists of at least one event. Then,
we have

As Nevent is larger than or equal to nstep , we have
tsimul ≥ tsingle . That is to say, when processing the merging
events simultaneously, each step has more time to take place.
The derivation of Eq. 7 is shown in Appendix 3.

Case Study

We have stored the result of the tGAP as a set of tables
(see the “Integrating the Simultaneous Events into the tGAP
Database Tables” section) in a PostgreSQL database. We
have employed the Eater of Šuba et al. (2014), implemented

(7)tsimul = tsingle
Nevent

nstep

in Python, to generate the elements (vertices, triangulated
faces, and boundaries) of the SSC (van Oosterom et al.
2014) and saved these elements in an OBJ file.2 When a
user visits our website to access the map, some data will be
sent to the client side. On the client side, the received data
will be processed by a map viewer implemented in JavaS-
cript. The processed data and some code based on WebGL
(Web Graphics Library) are submitted to GPU so that the
interactive map with smooth zooming can be output by slic-
ing the SSC.

Figure 10 shows the topographic map of this case study.3
The class codes and the rendering formulas are provided by
the Dutch Kadaster.4 Because the base scale is 1:10, 000,
we have Sb = 10,000 for Eq. 6. The maximum value of
event number Esnap is 13, 237 as there are in total 13, 238
areas. When we zoom out far enough so that Esnap reaches
its maximum value, the scale denominator arrives
at 1, 150, 565 according to Eq. 6. At that moment, all the
areas are merged into one single area. In each step, we want
to simultaneously merge some proportion of the areas. We
tried three cases: 0.1%, 1%, and 10%. That is, simultaneous
parameter rsimul = 0.001, 0.01, and 0.1 (see the “A greedy
Algorithm” section), which are independent of the size of
the map dataset. Fig. 11 shows two examples of our web
map when simultaneous parameter rsimul = 0.01.5

Some statistics of the results when simultaneous
parameter rsimul = 0.001 , 0.01, or 0.1 are shown in Table 2.
According to column Nstep , the number of steps decreases
when the simultaneous parameter increases. This is
reasonable because more areas will be merged in each
step. As explained in the “A greedy Algorithm” section, for

Fig. 9   Our panel of settings.
Among others, one can set how
much to zoom when scrolling
the mouse wheel and set the
zooming duration

2  Wavefront .obj file: https://​en.​wikip​edia.​org/​wiki/​Wavef​ront_.​obj_​
file, accessed on January 14, 2020.
3  Figure 10a is obtained from article 12 Most Beautiful Regions in
the Netherlands; see https://​www.​touro​pia.​com/​regio​ns-​in-​the-​nethe​
rlands-​map/, accessed on October 5, 2021.
4  See the details at http://​regis​ter.​geost​andaa​rden.​nl/​visua​lisat​ie/​
top10​nl/1.​2.0/​BRT_​TOP10​NL_1.​2_​besch​rijvi​ng_​visua​lisat​ie.​xlsx,
accessed on January 15, 2020.
5  The three versions of the map can be browsed online at https://​
pengd​lzn.​github.​io/​webma​ps/​2021/​10/​merge/.

https://en.wikipedia.org/wiki/Wavefront_.obj_file
https://en.wikipedia.org/wiki/Wavefront_.obj_file
https://www.touropia.com/regions-in-the-netherlands-map/
https://www.touropia.com/regions-in-the-netherlands-map/
http://register.geostandaarden.nl/visualisatie/top10nl/1.2.0/BRT_TOP10NL_1.2_beschrijving_visualisatie.xlsx
http://register.geostandaarden.nl/visualisatie/top10nl/1.2.0/BRT_TOP10NL_1.2_beschrijving_visualisatie.xlsx
https://pengdlzn.github.io/webmaps/2021/10/merge/
https://pengdlzn.github.io/webmaps/2021/10/merge/

	 Journal of Geovisualization and Spatial Analysis (2023) 7:12

1 3

 12   Page 12 of 19

each merging step we iteratively select the least important
area and its most compatible neighbor to define a merging
event; then, we block the two areas and their neighbors.
Sometimes, a least important area is already blocked because
of the previously found events. This situation happens 2, 714

times in total for all the steps when simultaneous
parameter rsimul = 0.01 (see column Nblocked of Table 2).

Sometimes, although a least important area is free, its
most compatible neighbor has been blocked because of

Fig. 10   The data used in our case study. (a) A map of the Neth-
erlands. (b) The topographic map used in our case study. There are
13,238 area objects. The map is for scale 1: 10,000

Fig. 11   Two examples of our web map with different scales. (a) A
part of the base map. The place is marked by the red dashed rectangle
in Figure 10b. (b) An overview map. The place is marked by the blue
dashed rectangle in Figure 10b. The overview map is generated from
the base map by siultaneous merging with parameter rsimul = 0.01

Table 2   Some statistics when different simultaneous parameters area
used. Column Nstep records the number of steps to transit from the
base map to the map with a single area. Column Nblocked

 records the
number of times when the least important area was blocked. Col-
umn Nnbr_blocked records the number of times when the most compat-
ible neighbor was blocked

rsimul
Nstep Nblocked

N
nbr_blocked

0.001 3,195 211 72
0.01 544 2,714 1,383
0.1 91 100,617 34,268

Journal of Geovisualization and Spatial Analysis (2023) 7:12 	

1 3

Page 13 of 19  12

the previously found events. This case happens 1, 383
times in total for all the steps when rsimul = 0.01 (see col-
umn nnbr_blocked of Table2).

According to the statistics, we encounter more cases of the
areas blocked when merging a larger proportion of the area
objects. However, we can still reach our target number of
events perfectly for settings of rsimul = 0.01 or rsimul = 0.001 .
Only when pushing beyond the limit (e.g., rsimul = 0.1 ), we
cannot reach the target number of events in a step (and we
need correction information to compute the actual number
of found events). When the target number of events can-
not be met, one could also question the cartographic quality
because there is hardly any free choice when generalizing.

As we can find the target numbers of merging events for
all the steps when simultaneous parameter rsimul = 0.001
or 0.01, the corresponding exceptions lists are empty.
When rsimul = 0.1 , the exception list is

which has 71 pairs of values. In reality, we would not
use rsimul = 0.1 (merging 10% of the current areas in every
step) because it is an unrealistic high value. Using such a
high value results in a multi-scale representation (because
we have only a few valid states or scales), whereas we would
like to have representations at nearly arbitrary scales.

Comparing to the map based on the single merging, the
map based on the simultaneous merging indeed provides
smoother zooming. We set zooming factor fzoom = 1 and
zooming duration tzoom = 1s (see the “Animation Duration
of a Step” section). The map based on the single merging
gives the impression of discrete scale transition, where it is
difficult to see a winner expands over a loser.6 The reason is
that the merging happens too fast, so the time for animation
available is too short. This is also the case when we use
simultaneous parameter rsimul = 0.001.7 We get the feeling
of smooth merging when rsimul = 0.01.8 When rsimul = 0.1 ,
the smooth merging is already obvious.9

Figure 12 shows a problem when we use simultaneous
parameter rsimul = 0.1 . That is, some tiny and relatively
unimportant areas stay until the scale is quite small, where
they should be merged when the scale is larger. This problem
has been mentioned in the “A greedy Algorithm” section.
The reason of the problem is that there are many buildings in

[[1, 1304], [2, 1070],… , [77, 2]], the middle of the figure. When the buildings share the same
surrounding area, they become its holes. In each step, only
one of the buildings can be merged into the surrounding area
because of the blocking. In the meantime, the areas at other
places of the map merge relatively fast because we expect to
merge 10% of the areas in each step. Fortunately, we would
not need to use such a big simultaneous parameter in reality.

Concluding Remarks

Conclusion

This paper has examined the simultaneous processing of
generalization operations, using the merging operation
as a case study. The purpose of having simultaneous
generalization operations is to provide smoother zooming
experience later on (compared to the pure sequenced
individual generalization events) so that users can
better keep track of their interested objects. This paper
developed a greedy algorithm to find simultaneous events
of merging area objects. The simultaneous events were
integrated into the tGAP and the SSC to nicely visualize
the merging animations. To guarantee that the merging
animations are completely shown while zooming, we
managed to snap zooming operations to valid states.
This paper also presented a recipe to define the animation
duration of an event. According to our case study, the
simultaneous merging indeed provides smoother zooming
than the single merging.

Future Work

Many topics related to this research need to be studied further.
Our case study with 13, 238 area objects demonstrated the

Fig. 12   Some tiny areas should be merged when the scale is larger,
where the simultaneous parameter is 0.1

6  See the web map at https://​pengd​lzn.​github.​io/​webma​ps/​2021/​10/​
merge/​limbu​rg-​single-​mergi​ng.
7  See the web map at https://​pengd​lzn.​github.​io/​webma​ps/​2021/​10/​
merge/​limbu​rg-0.​001.​html.
8  See the web map at https://​pengd​lzn.​github.​io/​webma​ps/​2021/​10/​
merge/​limbu​rg-0.​01.​html.
9  See the web map at https://​pengd​lzn.​github.​io/​webma​ps/​2021/​10/​
merge/​limbu​rg-0.​1.​html.

https://pengdlzn.github.io/webmaps/2021/10/merge/limburg-single-merging
https://pengdlzn.github.io/webmaps/2021/10/merge/limburg-single-merging
https://pengdlzn.github.io/webmaps/2021/10/merge/limburg-0.001.html
https://pengdlzn.github.io/webmaps/2021/10/merge/limburg-0.001.html
https://pengdlzn.github.io/webmaps/2021/10/merge/limburg-0.01.html
https://pengdlzn.github.io/webmaps/2021/10/merge/limburg-0.01.html
https://pengdlzn.github.io/webmaps/2021/10/merge/limburg-0.1.html
https://pengdlzn.github.io/webmaps/2021/10/merge/limburg-0.1.html

	 Journal of Geovisualization and Spatial Analysis (2023) 7:12

1 3

 12   Page 14 of 19

efficiency of our prototype. In our case study, all the data of the
SSC is stored in a single file because the tested map is not very
big. The map will display only after the whole file is loaded.
For a topographic map with much more objects, we are also
developing a method that divides the SSC into many parts,
and each part is stored in a file. A file will be dynamically
loaded when the user is reading the relevant place and scale
of the map. This strategy also allows progressive transfer of
data (van Oosterom and Meijers 2014). Furthermore, a file
at the client side will be removed to release main memory if
the corresponding part of map is not browsed for a long time.
With those functionalities, our prototype is able to handle a
map with arbitrary number of area objects.

This paper used a greedy algorithm to find simultaneous
merging events for each step. Alternatively, it is possible
to define merging steps by selecting and combining some
single-event steps of a sequence found by some existing
methods (e.g., the greedy algorithm of van Oosterom (2005)
or the A ⋆ algorithm of Peng et al. (2020b)).

Currently, the merging events distribute randomly on
a map. If we are unlucky, there may be a lot of events
happening in users’ focused region for a zooming duration,
which may cause the users to lose track of their interested
objects; for another zooming duration, there may be no
event happening in the focused region at all. The strategy of
blocking neighboring areas in our greedy algorithm already
mitigates the problem. However, it may be even better if
we explicitly distribute the merging events evenly, then
the workload for a user to follow the events is consistent
during the zooming. To this end, we could divide a map
into many regions using a field-tree-like, multiple-level
grid (van Putten and van Oosterom 1998) or using the road
network. Then, we could find a certain number of events in
each of the regions according to the regions’ sizes, which
should result in an even distribution of events. Finally, we
could compare our greedy algorithm and the algorithm
considering even distribution.

Our current event consists of only the merging opera-
tion, it is also necessary to involve split operation because
sometimes a merging operation results in an unnatural area.
For example, it is weird to merge a long and thin area with
one of the areas that are along it (see Haunert and Sester
2008). Therefore, such kind of long and thin areas should be
split into several parts first. We may integrate a split method
based on the straight skeleton of Haunert and Sester (2008)
or the skeleton obtained from a CDT (Ai and van Oosterom
2002); Meijers et al. (2016). In addition to area features,
we also need to support line features (e.g., roads, river,
rail). In order to apply appropriate generalization operators

for a certain scale, we need to extend and implement the
framework to guide the generalization choices (Meijers
et al. 2018).

To avoid clutter of vertices for zooming out, it is
necessary to simplify the boundaries of the areas.
Many existing methods could be integrated into our
simultaneous paradigm. Meijers (2011a) proposed a
method to simplify the boundaries simultaneously.
The results are topologically safe. Another choice
would be the method of Imai and Iri (1988), which is
able to minimize the number of vertices for a given
error threshold. One more choice would be to construct
compatible triangulations (see Peng (2019), Chapter 3)
for the two levels of topographic maps. In the SSC, we
could build some tilted walls to connect the two levels
of compatible triangulations. When we slice this SSC to
animate a zooming action, the boundaries of the areas are
morphed (moved smoothly and simultaneously) between a
detailed representation and a coarse representation.

This paper develops the technique for smooth zooming
based on simultaneous merging, and we hope that it
allows map users to follow the zooming more easily.
A future work is to examine how much can map users
benefit from our technique. We will conduct some
usability tests based on the experience of Section 6.7,
Šuba (2017), and Midtbø and Nordvik (2007). Another
future work is to find optimal simultaneous parameters
for different kinds of datasets.

Appendix 1. Create the table of weights
and the table of compatibility values

This appendix shows how to create the table of weights
and the table of compatibility values in PostgreSQL. The
values of the two tables are used in our greedy algorithm
(see the “A greedy Algorithm” section). Currently,
we have not examined how to define the weight for
a class, so we assign value 1 to the weights of all the
classes. That is to say, the least important area is the one
with the smallest size. The class similarity is defined
based on the class codes as the codes indeed imply a
hierarchy. In table class_weights, field code stores the
codes of the classes, and field weight stores the class
weight. Table class_comp_matrix stores the distances
and the compatibility values between the classes. The
distance is defined based on a tree similar to Fig. 3. The
compatibility value is between 0 and 1. If two areas are
with the same class, then the compatibility value is 1.

Journal of Geovisualization and Spatial Analysis (2023) 7:12 	

1 3

Page 15 of 19  12

	 Journal of Geovisualization and Spatial Analysis (2023) 7:12

1 3

 12   Page 16 of 19

Appendix 2. Communicate valid states

The “Snapping to a Valid State” section shows how to snap
to only valid states to avoid halfway merging. This appendix
illustrates how to communicate valid states from the server
side to the client side. By sending only the exceptions of the
event number, we try to decrease the size of the sent data.

B.1 On the server side

On the server side, we compute the values shown in Table 3.
These values are for merging sequence of Fig. 4c1–c5 (also
see Table 1b), where simultaneous parameter rsimul was set
to 0.3. Note that this parameter value is extremely high, just
used to explain the principle in an artificial simple example.
The computation starts from step 1. At the beginning, there
are 7 areas on the map, i.e., |M0| = 7 . According to Eq. 1, our
target is to process three events simultaneously ( ntarget,1 = 3 ).
However, only two events can be processed in step 1
because some areas are blocked (see Fig. 8b). Therefore, we
have nevent,1 = 2 . We require that the low state is slow,1 = 0 for
the first step. Then, the shigh value can be computed by

That is, we have shigh,1 = 2 (also see the shigh value in
the first row of Table 3). At this point, the computation for
step 1 completes.

For the next step, the number of areas can be computed by

(8)shigh,i = slow,i + nevent,i.

where variable narea,i denotes the number of the areas at
the low state of step i. Furthermore, the state-low value of
step i + 1 (i.e., slow,i+1 ) is the same as the state-high value of
step i (i.e., shigh,i ). Again, the target number of simultaneous
events (i.e., ntarget,i+1 ) is computed by Eq. 1, the number of
actual simultaneous events is obtained from the greedy algo-
rithm, and the state-high value (i.e., shigh,i+1 ) is computed by
Eq. 8. The computation of all the steps starts from step i = 1
and finishes until only one area left on the map. As a result,
we have all the values of Table 3.

Now, we have a column of nevent values. Among them, we
record the exceptions (i.e., when value nevent is different from
value ntarget ) with the corresponding steps in a list. The excep-
tion list is [[1, 2]] for the example of Table 3. For the pair of
values in the inner square brackets, the first one represents the
step, and the second value represents the actual number of
events nevent . The exception list, the number of areas, and the
simultaneous parameter will be sent to the client side.

B.2 On the client side

When a user accesses our web map, the client side receives
the exception list, the number of areas, and the simultaneous
parameter from the server side. Starting from step i = 1 , the cli-
ent side checks if the step is in the exception list. If so, the num-
ber of events associated with step i, from the list, is assigned
to nevent,i ; if not, value ntarget,i is computed by Eq. 1 and assigned
to nevent,i . As a result, the client side has the nevent values (see
column nevent in Table 3). By accumulating the nevent values, the
client side obtains the list of valid states �valid = [0, 2, 4, 5, 6].

Appendix 3. Animation duration of an event

The general idea is as follows. The amount of scale change
is based on the zooming factor. The scale change influences
the number of events. According to the number of events, we

narea,i+1 = narea,i − nevent,i,

Table 3   Some information of the merging sequence shown in
Table 1b. Column narea shows the number of areas at the beginning
of a step

step narea ntarget nevent slow shigh

1 7 3 2 0 2
2 5 2 2 2 4
3 3 1 1 4 5
4 2 1 1 5 6

Journal of Geovisualization and Spatial Analysis (2023) 7:12 	

1 3

Page 17 of 19  12

can compute the number of steps. Finally, all the steps in a
zooming duration have the same merging time.

Let fzoom be the zooming factor, and let tzoom be the zoom-
ing duration. Let 1 ∶ St,snap be the snapped scale before the
zooming operation, and let Et,snap be the number of events
processed from the base map. Let 1 ∶ So be the zoomed out
scale (not snapped yet). For zooming out, we define the rela-
tionship between the two scale denominators as

For scale 1 ∶ So , the number of events that should be pro-
cessed from the base map is

This equation is derived from Eq. 5. As there may be no
valid state corresponding to Eo , we snap the map to a valid
state (see the “Snapping to a Valid State” section), and we have
a snapped value Eo,snap . Then, the scale denominator So,snap is
computed by Eq. 6. According to Eq. 5, we have merged Et,snap
areas when arriving at scale 1 ∶ St,snap . The event number of
zooming out from scale 1 ∶ St,snap to scale 1 ∶ So,snap is

Recall that zooming duration tzoom is for zooming from
scale 1 ∶ St,snap to scale 1 ∶ So . As the map is actually zoom-
ing to 1 ∶ So,snap , we adjust the zooming duration to

That is to say, the Eo,snap − Et,snap events will happen in
time duration tsnap . If the events happen sequentially (each
step consists of a single event), then the animation duration
of each event is

If we process these events simultaneously, then we will
have fewer steps and each event has more time to take place.
Let nstep be the number of steps in a zooming duration. If
we are lucky enough so that expression rsimul ⋅ |Ms| of Eq. 1
always returns an integer, then we do not need the ceiling
function of Eq. 1 (if we are not that lucky, the value of nstep
will be slightly different). We have

where Nt,snap = Nb − Et,snap is the number of areas at
scale 1 ∶ St,snap , and No,snap = Nb − Eo,snap is the number of
areas at scale 1 ∶ So,snap . Then, the number of steps can be
computed by

(9)So = St,snap(1 + fzoom).

Eo = Nb

(

1 −
S2
b

S2
o

)

.

(10)Nevent = Eo,snap − Et,snap.

tsnap = tzoom
Nevent

Eo − Et,snap

.

(11)tsingle =
tsnap

Nevent

=
tzoom

Eo − Et,snap

.

Nt,snap(1 − rsimul)
nstep = No,snap,

Because we require that the steps happen sequentially,
each of the steps in the zooming duration has animation
duration

which is also the animation duration of each of the simul-
taneous events. Putting Eqs. 11 and 12 together, we have

As Nevent is larger than or equal to nstep , tsimul is also larger
than or equal to tsingle.

When we zoom in back from scale So,snap to scale St , we
have

which is the inverse function of Eq. 9. We will be able to
snap to scale 1 ∶ St,snap . We will use the same animation
duration and process the same number of events and steps
as we zoomed out. The difference from zooming out is that,
instead of merging, areas will bubble up.

Acknowledgements  We thank Radan Šuba for partly creating the data
used in our case study.

Funding  This work is part of the research program Maps4Society
with project number 17644, which is (partly) financed by the Dutch
Research Council (NWO).

Declarations  This research work is carried out in compliance with
transparency, moral values, honesty, and hard work. No human par-
ticipation or animals are involved in this research work.

Conflict of Interest  The authors declare no competing interests.

Ethics Approval  As per the literature review, this is neither a repetition
of any work nor copied key data from other’s work. The methodology,
findings, and conclusions made here belong to original research work
as per our knowledge and belief.

Informed Consent  Every step of processing for publication informed
to all co-authors of this paper at the earliest, and everything is carried
out with collective decision and consent.

Open Access  This article is licensed under a Creative Commons Attri-
bution 4.0 International License, which permits use, sharing, adapta-
tion, distribution and reproduction in any medium or format, as long
as you give appropriate credit to the original author(s) and the source,
provide a link to the Creative Commons licence, and indicate if changes
were made. The images or other third party material in this article are
included in the article's Creative Commons licence, unless indicated

nstep = log1−rsimul

No,snap

Nt,snap

.

(12)tsimul =
tsnap

nstep
,

tsimul = tsingle
Nevent

nstep
.

St =
So,snap

(1 + fzoom)
,

	 Journal of Geovisualization and Spatial Analysis (2023) 7:12

1 3

 12   Page 18 of 19

otherwise in a credit line to the material. If material is not included in
the article's Creative Commons licence and your intended use is not
permitted by statutory regulation or exceeds the permitted use, you will
need to obtain permission directly from the copyright holder. To view a
copy of this licence, visit http://​creat​iveco​mmons.​org/​licen​ses/​by/4.​0/.

References

Achanta R, Shaji A, Smith K, Lucchi A, Fua P, Süsstrunk S (2012)
SLIC superpixels compared to state-of-the-art superpixel methods.
IEEE Transactions on Pattern Analysis and Machine Intelligence
34(11):2274–2282. https://​doi.​org/​10.​1109/​TPAMI.​2012.​120

Ai T, van Oosterom P (2002) GAP-tree extensions based on skeletons.
In: Richardson DE, van Oosterom P (eds) Proc. 10th international
symposium on spatial data handling (SDH), Springer Berlin Hei-
delberg, Ottawa, Canada, pp 501–513, https://​doi.​org/​10.​1007/​
978-3-​642-​56094-1_​37

Ai T, Zhang X (2007) The aggregation of urban building clusters
based on the skeleton partitioning of gap space. In: Fabrikant
SI, Wachowicz M (eds) The European information society:
leading the way with geo-information, lecture notes in
geoinformation and cartography, Springer Berlin Heidelberg,
Berlin, Heidelberg, pp 153–170, https://​doi.​org/​10.​1007/​
978-3-​540-​72385-1_9

Cheng T, Li Z (2006) Toward quantitative measures for the semantic
quality of polygon generalization. Cartographica 41(2):487–499.
https://​doi.​org/​10.​3138/​0172-​6733-​227U-​8155

Chimani M, van Dijk TC, Haunert JH (2014) How to eat a graph:
computing selection sequences for the continuous generalization
of road networks. In: Proc. 22nd ACM SIGSPATIAL interna-
tional conference on advances in geographic information systems
(ACMGIS), Dallas, TX, USA, pp 243–252, https://​doi.​org/​10.​
1145/​26663​10.​26664​14

Deng M, Peng D (2015) Morphing linear features based on their entire
structures. Transactions in GIS 19(5):653–677. https://​doi.​org/​10.​
1111/​tgis.​12111

Hampe M, Sester M, Harrie L (2004) Multiple representation databases
to support visualization on mobile devices. In: Proc. 20th ISPRS
congress, international archives of photogrammetry, remote
sensing and spatial information sciences, vol XXXV (B4: IV),
pp 135–140. http://​cites​eerx.​ist.​psu.​edu/​viewd​oc/​summa​ry?​doi=​
10.1.​1.​184.​3303. Accessed 22 Apr 2023

Haunert JH, Sester M (2008) Area collapse and road centerlines based
on straight skeletons. GeoInformatica 12(2):169–191. https://​doi.​
org/​10.​1007/​s10707-​007-​0028-x

Haunert JH, Wolff A (2010) Area aggregation in map generalisation
by mixed-integer programming. International Journal of Geo-
graphical Information Science 24(12):1871–1897. https://​doi.​
org/​10/​c8v8s2

Huang L, Meijers M, Šuba R, van Oosterom P (2016) Engineering
web maps with gradual content zoom based on streaming vec-
tor data. ISPRS Journal of Photogrammetry and Remote Sensing
114:274–293. https://​doi.​org/​10.​1016/j.​isprs​jprs.​2015.​11.​011

Huang L, Ai T, van Oosterom P, Yan X, Yang M (2017) A matrix-
based structure for vario-scale vector representation over a wide
range of map scales: the case of river network data. ISPRS Inter-
national Journal of Geo-Information 6(7), https://​doi.​org/​10.​3390/​
ijgi6​070218

Imai H, Iri M (1988) Polygonal approximations of a curve—formulations
and algorithms. In: Toussaint GT (ed) Machine intelligence and pat-
tern recognition, computational morphology: a computational geo-
metric approach to the analysis of form, vol 6. Elsevier, pp 71–86.
https://​doi.​org/​10.​1016/​B978-0-​444-​70467-2.​50011-4

Li J, Ai T, Liu P, Yang M (2017a) Continuous scale transformations of
linear features using simulated annealing-based morphing. ISPRS
International Journal of Geo-Information 6(8), https://​doi.​org/​10.​
3390/​ijgi6​080242

Li J, Li X, Xie T (2017b) Morphing of building footprints using a
turning angle function. ISPRS International Journal of Geo-Infor-
mation 6(6), https://​doi.​org/​10.​3390/​ijgi6​060173

Li J, Liu P, Yu W, Cheng X (2018) The morphing of geographical fea-
tures by fourier transformation. PLOS ONE 13(1):1–13. https://​
doi.​org/​10.​1371/​journ​al.​pone.​01911​36

Mackaness WA, Burghardt D, Duchêne C (2016) Map generalization.
In: International encyclopedia of geography: people, the earth,
environment and technology, John Wiley & Sons, pp 1–16, http://​
doi.​org/​cx89

Meijers M (2011a) Simultaneous & topologically-safe line
simplification for a variable-scale planar partition. In: Geertman
S, Reinhardt W, Toppen F (eds) Advancing geoinformation
science for a changing world, Springer Berlin Heidelberg,
Berlin, Heidelberg, pp 337–358, https://​doi.​org/​10.​1007/​978-
3-​642-​19789-5_​17

Meijers M (2011b) Variable-scale geo-information. phdthesis, Delft
University of Technology. http://​www.​gdmc.​nl/​publi​catio​ns/​2011/​
Varia​ble-​scale_​Geo-​infor​mation.​pdf. Accessed 22 Apr 2023

Meijers M, Savino S, van Oosterom P (2016) SplitArea: an algorithm
for weighted splitting of faces in the context of a planar partition.
International Journal of Geographical Information Science
30(8):1522–1551. https://​doi.​org/​10.​1080/​13658​816.​2016.​
11407​70

Meijers M, van Oosterom P, Šuba R, Peng D (2018) Towards a scale
dependent framework for creating vario-scale maps. ISPRS -
International Archives of the Photogrammetry, Remote Sensing
and Spatial Information Sciences XLII-4:425–432, https://​doi.​org/​
10.​5194/​isprs-​archi​ves-​XLII-4-​425-​2018

Meijers M, van Oosterom P, Driel M, Šuba R (2020) Web-based dis-
semination of continuously generalized space-scale cube data for
smooth user interaction. International Journal of Cartography
6(1):152–176. https://​doi.​org/​10.​1080/​23729​333.​2019.​17051​44

Midtbø T, Nordvik T (2007) Effects of animations in zooming and
panning operations on web maps: a web-based experiment. The
Cartographic Journal 44(4):292–303. https://​doi.​org/​10.​1179/​
00087​0407X​241845

Müller JC, Weibel R, Lagrange JP, Salgé F (1995) Generalization:
state of the art and issues. In: Müller JC, Lagrange JP, Weibel
R (eds) GIS and generalization: methodology and practice, no 1
in GISDATA. Taylor & Francis, London, UK, chap 1, pp 3–17

Nöllenburg M, Merrick D, Wolff A, Benkert M (2008) Morphing
polylines: a step towards continuous generalization. Computers,
Environment and Urban Systems 32(4):248–260, https://​www.​
scien​cedir​ect.​com/​scien​ce/​artic​le/​pii/​S0198​97150​80003​31

Oehrlein J, Haunert JH (2017) A cutting-plane method for contiguity-con-
strained spatial aggregation. Journal of Spatial Information Science
15:89–120. https://​doi.​org/​10.​5311/​JOSIS.​2017.​15.​379

Pantazis D, Karathanasis B, Kassoli M, Koukofikis A, Stratakis P
(2009a) Morphing techniques: towards new methods for raster
based cartographic generalization. In: Proc. 24th International
cartographic conference (ICC). Santiago, Chile. https://​icaci.​org/​
files/​docum​ents/​ICC_​proce​edings/​ICC20​09/​html/​refer/​19_5.​pdf.
Accessed 22 Apr 2023

Pantazis D, Koukofikis A, Karathanasis B, Kassoli M (2009b) Are the
morphing techniques useful for cartographic generalization? In:
Urban and regional data management, CRC Press, pp 195–204,
https://​doi.​org/​10.​1201/​97802​03869​352.​ch18

Peng D (2019) An optimization-based approach for continuous map
generalization. PhD thesis, University of Würzburg, https://​doi.​
org/​10.​25972/​WUP-​978-3-​95826-​105-1

http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1109/TPAMI.2012.120
https://doi.org/10.1007/978-3-642-56094-1_37
https://doi.org/10.1007/978-3-642-56094-1_37
https://doi.org/10.1007/978-3-540-72385-1_9
https://doi.org/10.1007/978-3-540-72385-1_9
https://doi.org/10.3138/0172-6733-227U-8155
https://doi.org/10.1145/2666310.2666414
https://doi.org/10.1145/2666310.2666414
https://doi.org/10.1111/tgis.12111
https://doi.org/10.1111/tgis.12111
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.184.3303
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.184.3303
https://doi.org/10.1007/s10707-007-0028-x
https://doi.org/10.1007/s10707-007-0028-x
https://doi.org/10/c8v8s2
https://doi.org/10/c8v8s2
https://doi.org/10.1016/j.isprsjprs.2015.11.011
https://doi.org/10.3390/ijgi6070218
https://doi.org/10.3390/ijgi6070218
https://doi.org/10.1016/B978-0-444-70467-2.50011-4
https://doi.org/10.3390/ijgi6080242
https://doi.org/10.3390/ijgi6080242
https://doi.org/10.3390/ijgi6060173
https://doi.org/10.1371/journal.pone.0191136
https://doi.org/10.1371/journal.pone.0191136
http://doi.org/cx89
http://doi.org/cx89
https://doi.org/10.1007/978-3-642-19789-5_17
https://doi.org/10.1007/978-3-642-19789-5_17
http://www.gdmc.nl/publications/2011/Variable-scale_Geo-information.pdf
http://www.gdmc.nl/publications/2011/Variable-scale_Geo-information.pdf
https://doi.org/10.1080/13658816.2016.1140770
https://doi.org/10.1080/13658816.2016.1140770
https://doi.org/10.5194/isprs-archives-XLII-4-425-2018
https://doi.org/10.5194/isprs-archives-XLII-4-425-2018
https://doi.org/10.1080/23729333.2019.1705144
https://doi.org/10.1179/000870407X241845
https://doi.org/10.1179/000870407X241845
https://www.sciencedirect.com/science/article/pii/S0198971508000331
https://www.sciencedirect.com/science/article/pii/S0198971508000331
https://doi.org/10.5311/JOSIS.2017.15.379
https://icaci.org/files/documents/ICC_proceedings/ICC2009/html/refer/19_5.pdf
https://icaci.org/files/documents/ICC_proceedings/ICC2009/html/refer/19_5.pdf
https://doi.org/10.1201/9780203869352.ch18
https://doi.org/10.25972/WUP-978-3-95826-105-1
https://doi.org/10.25972/WUP-978-3-95826-105-1

Journal of Geovisualization and Spatial Analysis (2023) 7:12 	

1 3

Page 19 of 19  12

Peng D, Touya G (2017) Continuously generalizing buildings to built-
up areas by aggregating and growing. In: Proc. 3rd ACM SIGSPA-
TIAL workshop on smart cities and urban analytics (UrbanGIS),
ACM, Redondo Beach, CA, USA., https://​doi.​org/​10.​1145/​31521​
78.​31521​88

Peng D, Deng M, Zhao B (2012) Multi-scale transformation of river
networks based on morphing technology. Journal of Remote Sens-
ing 16(5):953–968. http://​www.​jors.​cn/​jrs/​ch/​reader/​view abstr​act.​
aspx?​file no=​r1127​2&​flag=1

Peng D, Haunert JH, Wolff A, Hurter C (2013) Morphing polylines
based on least squares adjustment. In: Proc. 16th ICA Workshop
on generalisation and multiple representation (ICAGM). https://​
karto​graph​ie.​geo.​tu-​dresd​en.​de/​downl​oads/​ica-​gen/​works​hop20​
13/​genem​appro​2013_​submi​ssion_6.​pdf. Accessed 22 Apr 2023

Peng D, Wolff A, Haunert JH (2016) Continuous generalization of
administrative boundaries based on compatible triangulations. In:
Sarjakoski T, Santos YM, Sarjakoski TL (eds) Proc. 19th AGILE
Conference on Geographic Information Science, Geospatial Data
in a Changing World, Springer, Helsinki, Finland, Lecture Notes
in Geoinformation and Cartography, pp 399–415, 10/c5kh

Peng D, Meijers M, van Oosterom P (2020a) Multi-layer vario-scale
web map comparer with dynamic transitions and visual analytical
tool. In: Proc. 23rd ICA workshop on generalisation and multiple
representation (ICAGM), Delft, The Netherlands, pp 1–8

Peng D, Wolff A, Haunert JH (2020b) Finding optimal sequences for
area aggregation—A* vs. integer linear programming. ACM
Transactions on Spatial Algorithms and Systems 7(1):1–40.
https://​doi.​org/​10.​1145/​34092​90

Read P, Meyer MP (2000) Restoration of motion picture film. Else-
vier. https://​www.​elsev​ier.​com/​books/​resto​ration-​of-​motion-​pictu​
re-​film/​read/​978-0-​08-​051619-6. Accessed 22 Apr 2023

Regnauld N (2003) Algorithms for the amalgamation of topographic
data. In: Proc. 21st International cartographic conference, Durban,
South Africa, pp 222–234

Sester M (2005) Optimization approaches for generalization and data
abstraction. International Journal of Geographical Information
Science 19(8–9):871–897. https://​doi.​org/​10.​1080/​13658​81050​
01611​79

Shea KS, McMaster RB (1989) Cartographic generalization in digital
environment:when and how to generalize. In: Proc. Auto-Carto
9, American Congress onSurveying and Mapping, Fall Church,
pp 56–67

Shen Y, Ai T, Li W, Yang M, Feng Y (2019) A polygon aggregation
method with global feature preservation using superpixel segmen-
tation. Computers, Environment and Urban Systems 75:117–131.
https://​doi.​org/​10.​1016/j.​compe​nvurb​sys.​2019.​01.​009

Shen Y, Ai T, Li J, Huang L, Li W (2020) A progressive method for the
collapse of river representation considering geographical charac-
teristics. International Journal of Digital Earth 13(12):1366–1390.
https://​doi.​org/​10.​1080/​17538​947.​2020.​17154​95

Su B, Li Z, Lodwick G, Muller JC (1997) Algebraic models for the
aggregation of area features based upon morphological opera-
tors. International Journal of Geographical Information Science
11(3):233–246. https://​doi.​org/​10.​1080/​13658​81972​42374

Šuba R (2017) Design and development of a system for vario-scale
maps. phdthesis, Delft University of Technology, https://​doi.​org/​
10.​7480/​abe.​2017.​18.​1877

Šuba R, Meijers M, Huang L, van Oosterom P (2014) An area merge
operation for smooth zooming. In: Huerta J, Schade S, Granell C
(eds) Proc. 17th AGILE Conference on geographic information
science, connecting a digital europe through location and place,
Springer, Cham, Lecture Notes in Geoinformation and Cartogra-
phy, pp 275–293, https://​doi.​org/​10.​1007/​978-3-​319-​03611-3_​16

Šuba R, Meijers M, van Oosterom P (2016) Continuous road network
generalization throughout all scales. ISPRS International Journal
of Geo-Information 5(8), https://​doi.​org/​10.​3390/​ijgi5​080145

Thiemann F, Sester M (2018) An automatic approach for generalization
of land-cover data from topographic data. In: Behnisch M, Meinel
G (eds) Trends in spatial analysis and modelling: decision-support
and planning strategies, geotechnologies and the environment, vol
19. Springer, chap 10, pp 193–207. https://​doi.​org/​10.​1007/​978-
3-​319-​52522-8_​10

Touya G, Dumont M (2017) Progressive block graying and landmarks
enhancing as intermediate representations between buildings
and urban areas. In: Proc. 20th ICA workshop on generalisation
and multiple representation (ICAGM). https://​karto​graph​ie.​geo.​
tu-​dresd​en.​de/​downl​oads/​ica-​gen/​works​hop20​17/​genem​r2017_​
paper_1.​pdf. Accessed 22 Apr 2023

van Kreveld M (2001) Smooth generalization for continuous zoom-
ing. In: Proc. 5th ICA workshop on generalisation and multiple
representation (ICAGM). Beijing, China. http://​www.​staff.​scien​
ce.​uu.​nl/​~kreve​101/​papers/​smooth.​pdf. Accessed 22 Apr 2023

van Oosterom P (1995) The GAP-tree, an approach to on-the-fly map
generalization of an area partitioning. In: Mueller JC, Lagrange
JP, Weibel R (eds) GIS and generalization: methodology and prac-
tice. Taylor & Francis, pp 120–132

van Oosterom P (2005) Variable-scale topological data structures suit-
able for progressive data transfer: the GAP-face tree and GAP-
edge forest. Cartography and Geographic Information Science
32(4):331–346, https://​www.​tandf​online.​com/​doi/​abs/​10.​1559/​
15230​40057​75194​782

van Oosterom P, Meijers M (2014) Vario-scale data structures
supporting smooth zoom and progressive transfer of 2D and
3D data. International Journal of Geographical Information
Science 28(3):455–478. https://​doi.​org/​10.​1080/​13658​816.​
2013.​809724

van Oosterom P, Schenkelaars V (1995) The development of an inter-
active multi-scale GIS. International Journal of Geographical
Information Systems 9(5):489–507. https://​doi.​org/​10.​1080/​02693​
79950​89020​52

van Oosterom P, Meijers M, Stoter J, Šuba R (2014) Data structures
for continuous generalisation: tGAP and SSC. In: Burghardt D,
Duchêne C, Mackaness W (eds) Abstracting geographic informa-
tion in a data rich world: methodologies and applications of map
generalisation, lecture notes in geoinformation and cartography.
Springer, Cham, chap 4, pp 83–117. https://​doi.​org/​10.​1007/​
978-3-​319-​00203-3_4

van Putten J, van Oosterom P (1998) New results with generalized area
partitionings. In: Proc. 8th International symposium on spatial
data handling (SDH). Vancouver, Canada, pp 485–495. www.​
gdmc.​nl/​ooste​rom/​sdh98.​pdf. Accessed 22 Apr 2023

van Smaalen J (2003) Automated aggregation of geographic objects.
phdthesis, Wageningen University, The Netherlands

Ware JM, Jones CB, Bundy GL (1995) A triangulated spatial model
for cartographic generalisation of areal objects. In: Frank AU,
Kuhn W (eds) Spatial information theory a theoretical basis
for GIS. Springer, Berlin Heidelberg, Berlin, Heidelberg, pp
173–192

Weibel R (1997) Generalization of spatial data: principles and selected
algorithms. In: van Kreveld M, Nievergelt J, Roos T, Widmayer P
(eds) Algorithmic foundations of geographic information systems,
lecture notes in computer science, vol 1340. Springer, chap 5, pp
99–152. https://​doi.​org/​10.​1007/3-​540-​63818-0_5

Publisher's Note  Springer Nature remains neutral with regard to
jurisdictional claims in published maps and institutional affiliations.

https://doi.org/10.1145/3152178.3152188
https://doi.org/10.1145/3152178.3152188
http://www.jors.cn/jrs/ch/reader/view%20abstract.aspx?file%20no=r11272&flag=1
http://www.jors.cn/jrs/ch/reader/view%20abstract.aspx?file%20no=r11272&flag=1
https://kartographie.geo.tu-dresden.de/downloads/ica-gen/workshop2013/genemappro2013_submission_6.pdf
https://kartographie.geo.tu-dresden.de/downloads/ica-gen/workshop2013/genemappro2013_submission_6.pdf
https://kartographie.geo.tu-dresden.de/downloads/ica-gen/workshop2013/genemappro2013_submission_6.pdf
https://doi.org/10.1145/3409290
https://www.elsevier.com/books/restoration-of-motion-picture-film/read/978-0-08-051619-6
https://www.elsevier.com/books/restoration-of-motion-picture-film/read/978-0-08-051619-6
https://doi.org/10.1080/13658810500161179
https://doi.org/10.1080/13658810500161179
https://doi.org/10.1016/j.compenvurbsys.2019.01.009
https://doi.org/10.1080/17538947.2020.1715495
https://doi.org/10.1080/136588197242374
https://doi.org/10.7480/abe.2017.18.1877
https://doi.org/10.7480/abe.2017.18.1877
https://doi.org/10.1007/978-3-319-03611-3_16
https://doi.org/10.3390/ijgi5080145
https://doi.org/10.1007/978-3-319-52522-8_10
https://doi.org/10.1007/978-3-319-52522-8_10
https://kartographie.geo.tu-dresden.de/downloads/ica-gen/workshop2017/genemr2017_paper_1.pdf
https://kartographie.geo.tu-dresden.de/downloads/ica-gen/workshop2017/genemr2017_paper_1.pdf
https://kartographie.geo.tu-dresden.de/downloads/ica-gen/workshop2017/genemr2017_paper_1.pdf
http://www.staff.science.uu.nl/%7ekreve101/papers/smooth.pdf
http://www.staff.science.uu.nl/%7ekreve101/papers/smooth.pdf
https://www.tandfonline.com/doi/abs/10.1559/152304005775194782
https://www.tandfonline.com/doi/abs/10.1559/152304005775194782
https://doi.org/10.1080/13658816.2013.809724
https://doi.org/10.1080/13658816.2013.809724
https://doi.org/10.1080/02693799508902052
https://doi.org/10.1080/02693799508902052
https://doi.org/10.1007/978-3-319-00203-3_4
https://doi.org/10.1007/978-3-319-00203-3_4
http://www.gdmc.nl/oosterom/sdh98.pdf
http://www.gdmc.nl/oosterom/sdh98.pdf
https://doi.org/10.1007/3-540-63818-0_5

	Generalizing Simultaneously to Support Smooth Zooming: Case Study of Merging Area Objects
	Abstract
	Introduction
	Related Work
	Merging of Area Objects
	Gradual Merging of Area Objects
	Merging Considering Semantic Properties
	Simultaneous Generalization Operators
	Gradual Transformation in Web Environment

	Methodology
	A Greedy Algorithm
	Integrating the Simultaneous Events into the tGAP Database Tables
	Integrating the Simultaneous Events into the SSC
	Snapping to a Valid State
	Animation Duration of a Step

	Case Study
	Concluding Remarks
	Conclusion
	Future Work

	Appendix 1. Create the table of weights and the table of compatibility values
	Appendix 2. Communicate valid states
	B.1 On the server side
	B.2 On the client side

	Appendix 3. Animation duration of an event
	Acknowledgements
	References

