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Abstract

The production of cocoa beans contributes to 7.5% of European Union (EU) driven deforesta-
tion. For this reason, the recent European Union Deforestation-free Regulation (EUDR) re-
quires producers to perform comprehensive tracking of cocoa farm extents. However, cocoa
crops present unique detection challenges due to their complex canopy structure, spectral
similarity to forest, variable farming methods, and location in frequently cloudy regions.
Previous work employs Multispectral Imagery (MSI) and/or Synthetic Aperture Radar (SAR)
for pixel-based classification of satellite images. Convolutional Neural Network (CNN)s offer
a promising approach to semantic segmentation of cocoa parcels that considers both spectral
and spatial characteristics.

This thesis aims to evaluate the impact of combining SAR and MSI data in the training of
a CNN for cocoa detection, in order to demonstrate the importance of texture, moisture
and canopy characteristics in identifying cocoa canopies. A U-NET is employed to evalu-
ate how prediction results are impacted by the stacking of MSI datasets with different SAR
polarizations, seasons and temporality. The results show that the addition of single-day
and temporal SAR to a single-day MSI image can improve the predictions, reaching an F1
score of 86.62%. This research demonstrates the influence of SAR measurement season and
polarization, and ground truth classes, on the semantic segmentation of cocoa.

Keywords: cocoa farms, SAR, MSI, CNN, U-NET, semantic segmentation
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1. Introduction

Forests play a key role in the functioning of ecosystems at local and global scales, providing
important services including habitat for over 80% of terrestrial biodiversity and the seques-
tration of around 289 Gt of carbon [2]. However, forests are also under significant threat due
to human activities such as commodity extraction, urbanization, and agricultural intensifica-
tion, with severe and long-term impacts on ecological and human well-being including rising
temperatures, habitat destruction, climate change, pollution and soil degradation [2].

One of the major contributing factors to deforestation is agricultural production for export to
the EU [3]. In December 2022, the EU approved the EUDR, which aims to reduce the impact of
EU consumption on global deforestation by banning the import of products that are issued
from deforested areas, with a particular focus on cattle, wood, palm oil, soy, cocoa and coffee
[3]. Due to the due diligence requirements for companies that produce such commodities
and derived products [3], the enforcement of this regulation will require highly accurate and
timely tracking of farm extents using geodata and advanced geospatial analysis.

1.1. Motivation

Around 16% of the world’s forests are located in Africa [4, p. 14], and this continent faces
particularly high rates of deforestation. Between 2015 and 2020, Africa had the highest rate
of deforestation globally, with a total of 4.41 million deforested hectares of land including
1.90 million hectares in Central and Western Africa [4]. The focus of this research is the
detection of cocoa crops, of which West Africa is one of the main producing regions [5] and
which are estimated to cause 7.54 % of EU-driven deforestation [3, p. 27].

While many crops can be detected via the automated classification of MSI [5], cocoa presents
unique challenges. First, West Africa has frequent cloud cover due to its Monsoon climate,
which limits the availability of cloud-free MSI datasets and the temporal resolution of those
datasets [6]. Second, agroforestry land cover, a common practice which integrates shade
trees and other crops to improve growing conditions, has a spectral signature and canopy
structure similar to nearby forest [6, p. 2], and the canopy structure of cocoa can vary widely,
as shown in Figure 1.1.

Researchers have aimed to address these challenges by using machine learning Machine
Learning (ML) algorithms trained with SAR) and/or MSI datasets to identify cocoa crops.
While many of these implementations use pixel-based classifications that do not consider
spatial context, recent work has applied a CNN trained with MSI data and shows promising
results in Ghana and Cote d’Ivoire [8].
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1. Introduction

Figure 1.1.: Cocoa typologies

Source: [7, p. 5]

1.2. Objective and scope

The topic of this thesis emerged from a need identified by Meridia Land B.V., a company
that works to improve data transparency and traceability in smallholder supply chains [9].
Among other datasets, Meridia makes use of cocoa prediction maps in order to evaluate
clients’ compliance with the EUDR. In Ghana, ”over a quarter of agricultural conversion
stems from cocoa expansion” [10, p. 1], and cocoa prediction maps can assist in identifying
discrepancies between client farm data and the reality on the ground. However, the existing
maps from previous studies often do not align in their predictions, as shown in Figure
1.2. This discrepancy raises questions regarding various maps’ reliability and the level of
confidence with which they can be used for compliance tracking.

Figure 1.2.: Comparison of cocoa prediction rasters from three different methodologies.

Sources: [5] [11] [8]
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1.3. Research questions

Meridia is interested in generating a better understanding of the origin of and differences
between existing cocoa maps. It is also in the interest of organizations implicated in the
cocoa industry to work towards more accurate detection of cocoa farm extents for the im-
plementation of the EUDR. The objective of this thesis is to build on existing deep learning
approaches for cocoa detection by using SAR data in the training of a CNN in order to better
understand the impact of inputs on the results of automated cocoa detection. Given the
complexity of detecting cocoa crops and the time-sensitive need for reliable maps for the en-
forcement of the EUDR, this thesis aims to generate insight into the relevance of open-source
satellite datasets in order to inform the future development of cocoa detection models in
academia and industry.

1.3. Research questions

The research conducted in this MSc thesis builds upon existing work on cocoa detection via
ML, with a focus on advancing Deep Learning (DL) approaches. The overarching research
question is as follows:
To what extent can a CNN trained with multispectral and SAR datasets enable the auto-
mated detection of cocoa crops in Ghana?

The sub-questions guiding this research include:

1. How does the combination of MSI and SAR data affect the results of cocoa parcel seg-
mentation trained with data from a single day?

2. How does the combination of MSI and SAR data affect the results of cocoa parcel seg-
mentation trained with temporal datasets?

3. Why does the use of different polarizations (i.e. Vertical-Vertical (VV) or Vertical-Horizontal
(VH)) affect the influence of SAR datasets on the cocoa segmentation results?

4. What is the impact of SAR and MSI training data on the detection of intercrop cocoa?

1.4. Thesis outline

The thesis is composed of eight chapters. In Chapter 2, the theoretical foundations for the
research are explained including key concepts related to ML, semantic segmentation, MSI and
SAR data. Chapter 3 outlines existing research and findings related to ML for cocoa detection.
Chapter 4 provides geographical and practical context for the research and hypotheses based
on the known study area characteristics. The methodology, including data preparation and
experimental set-up, is described in Chapter 5. The implementation tools and procedures
are explained in chapter 6 and the experiment results are shown and described in chapter
7. Finally, a discussion of the results, future work and conclusions can be found in Chapter
8.
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2. Theoretical foundations

2.1. Deep Learning

ML is a field of research that involves training computers to complete specific tasks au-
tonomously and improve performance through learning and responding to patterns in large
datasets [12]. These patterns are learned via networks that enable the computer to make
predictions, measure their accuracy and improve its performance iteratively [12]. In many
ML applications, humans play an important role in selecting and experimenting with fea-
tures of the dataset that they expect to be relevant to the learning process. DL is a subset of
ML that involves a more complex network with a greater number of hidden layers within the
network [12]. Most importantly, humans do not play a direct role in selecting and testing
features of the dataset, and instead rely on architecture and hyperparameter modifications
in order to improve training results. In the field of computer vision, DL has been enabling
unprecedented accuracy in computers’ ability to derive information from images [13].

Figure 2.1.: Neural network

Source: [14]

2.1.1. Neural Networks

The foundation of DL is the Artificial Neural Network (ANN), which has been modelled
after the human brain. Just as a brain contains neurons that receive information and output
signals with varying degrees of influence which inform a person’s understanding or action,
the ANN contains nodes which receive data, activate, and send the signal on to the next layer
of nodes [14]. The complex combination of signals between nodes and layers leads to the
performance of a task. For the purpose of machine vision, an ANN takes an image as input,
with its pixels fully connected to a series of hidden layers. All neurons in the input layer
are connected to all layers in the next layer, and so on. As shown in Figure 2.2, each neuron
applies an activation function to the input x and outputs a value y that is carried forward
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2. Theoretical foundations

to the next layer. The final layer contains neurons indicating the probability of an image
belonging to each possible class.

Each connection between neurons (as seen in Figure 2.1) represents a weight, which indicates
the influence of one node’s activation on the next node. For example, nodes connected to
pixels in a specific region of the image may have more influence on the next set of neurons
than other regions due the magnitude of their weights. The network is initialized with
random weights, and is trained by inputting data and its corresponding class label [15]. The
network aims to optimize the weights and activations across all layers in order to have its
prediction come as close as possible to the true labelled class. By detecting patterns in a
large number of images and generating a series of weights and activations for the neurons
in the hidden layers, the network can then take a new input image, detect the patterns in its
pixels, and output a probability of it belonging to each of the potential classes [15].

Figure 2.2.: Biological neuron and its mathematical model

Source: [14]

2.2. Convolutional Neural Networks

The challenge with a fully connected ANN is that the number of parameters that need to be
computed grows quickly when inputting image datasets, especially when using input im-
ages that have multiple bands (e.g. R,G,B, other satellite bands). To avoid the high compu-
tation cost, a more appropriate model for image processing is the CNN [16]. A CNN enables
the detection of patterns by connecting nodes in one layer with a subset of the nodes in the
previous layer, as shown in Figure 2.7. An additional benefit of CNNs is that the 2D kernels
representing the weights maintain the spatial relationships between pixels.
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2.2. Convolutional Neural Networks

Figure 2.3.: CNN basic architecture

Source: [16]

2.2.1. Convolution layers

A CNN uses a number of filters (matrices containing weights) which represent the rela-
tionship between an input and subsequent layers [17]. A convolutional layer involves the
application of filters to the input image, each filter leading to an activation map for the im-
age. The activation maps are stacked to form a multi-channel output as shown in Figure
2.4. The output image may change in size depending on the dimensions, padding and stride
of the filters. A padded filter enables convolutions to maintain the same input image size,
whereas unpadded filters will progressively make the image smaller as convolutions are
applied. As the convolutional layers are applied, the features and patterns detected become
increasingly abstract. This allows the network to learn both high-level and low-level patterns
which inform the classification of an image [17].

Figure 2.4.: Convolution Layer

Source: [18]

7



2. Theoretical foundations

Activation function

In order to detect characteristics in an input dataset, an ANN applies activation functions
which activate nodes that meet certain criteria, and de-activate those that do not. This
enables the network to focus on the nodes that are deemed ”useful” for the task at hand
and these nodes are used for further learning in deeper layers of the network. In a CNN, the
activation function is generally applied after a convolution layer: activating certain pixels
means that those parts of the image will influence the next convolution layer and this helps
to reduce the computation cost by discarding the values of irrelevant pixels. There are several
possible activation functions for use in CNNs; one of the most common is the Rectified Linear
Unit (ReLU) for its computational efficiency and fast convergence [19]. When ReLU is applied,
pixels with negative values are assigned a value of zero [20], and the next convolutions focus
on the pixels with positive values.

Figure 2.5.: Graph of ReLU function

Source:[16]

2.2.2. Pooling layers

Following convolution layers, pooling layers reduce the dimension of the input image while
keeping the important features resulting from the previous activation. Max pooling layers
are used to downsample the image and increase computation efficiency due to dimension
reduction [16]. The size and stride of the pooling filters influences the size of the output. For
example, with a 2x2 max pooling filter, each downsampling step would involve reducing the
spatial dimension of the image by a factor of 2.

2.2.3. Training and predictions

The process of training a CNN involves initializing its weights, providing an input image for
it to classify (forward pass), comparing the prediction to the ground truth, and updating
the weights of the model through backpropagation [21]. This process is repeated for all
images in the input training dataset for a designated number of repetitions called ”epochs.”
The predictions at the output of a CNN are numerical values that quantify the probability
of belonging to the various classes in the classification. In order to normalize these values
between 0-1 and classify the output, another activation function is applied to the output. In
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Figure 2.6.: Pooling layer example

Source: [18]

the case of multi-class classifications, one commonly used function is Softmax, which takes
the prediction values and forces them into a vector of values between zero and one, which
add up to one [22].

f j(z) = − ezj

∑k ezk
(2.1)

where z is the input vector containing k real numbers.

In order to assign a specific class prediction based on these probabilities, an Argmax oper-
ation is typically applied which identifies the class with the highest probability and assigns
the prediction to that class label.

Loss functions

Once a prediction has been made, a loss function is used to compare the network prediction
to the ground truth in a quantitative way and guide the learning process. The loss function
evaluates the correlation between the model results and the ground truth, and the goal is
to minimize the loss value in order to have the predictions be as close to reality as possible
[22]. Furthermore, loss functions can be designed or adapted to penalize or encourage
certain characteristics of interest. In the case of multi-class classification, categorical cross-
entropy loss is a common loss function that focuses on improving the model’s predictions
by optimizing per-pixel accuracy [23] as cited in [24].

2.3. Semantic Segmentation

In many cases, it is equally as important to identify the location of a feature in an image,
not only its class [25]. This technique is called segmentation: it involves pixel-wise classifi-
cation and simultaneous detection of object instances. Garcia-Garcia et al. (2017) provide an
overview of existing datasets and methods which apply DL for semantic segmentation [13].
Most state-of-the-art semantic segmentation is based on the Fully Convolutional Network,
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an architecture developed by Long et al. (2014) which replaces fully connected layers with
convolutional layers [26] and outputs ”spatial maps” indicating per-pixel class labels [13,
p. 9]. CNNs designed with segmentation in mind involve upsampling the spatial maps back
to ”dense per-pixel labeled outputs” [13, p. 9]. This upsampling can take the form of a kind
of ”reverse max pooling” or ”deconvolution filters.”

Figure 2.7.: Convolutional Neural Network

Source: [14]

2.3.1. U-NET architecture

One popular CNN used for image segmentation is the U-NET, which is named based on the
shape of its architecture as seen in Figure 2.8 [25]. The U-NET is an effective network well
suited to land classification, and has been shown to yield improved results compared to the
popular rf! (rf!) algorithm [27]. Due to its symmetrical shape and use of skip-connections to
maintain spatial detail after each convolution, the U-NET outputs segmentation maps at the
same resolution as its input images. In a comparison of oil palm segmentation performance,
the U-NET was shown to lead to accuracy values over 10% greater than that of AlexNet [27].
Furthermore, the U-NET is a popular architecture due to its ability to reach a high accuracy
with a relatively small number of training images [25].

The U-NET takes raw image data as its input, which it carries through two main com-
ponents: the encoder (“contracting path”) and the decoder (“expansive path”) [25]. The
encoder is responsible for detecting the high and low level patterns in the image as de-
scribed for the regular CNN above, therefore progressively convolving the image to a higher
abstraction. Each encoder block is made up of two convolutional + ReLU activation layers fol-
lowed by a max pooling layer to downsample the image and increase computation efficiency
[25]. Prior to max pooling, the convolution output is set aside and saved for future use as it
contains important contextual information that will be used in the decoding process. Each
downsampling step involves reducing the spatial dimension of the image by a factor of 2,
and a doubling of the feature channels [25].

The final level of the encoder (the bottleneck) includes only two convolution and activation
layers and no max pooling. The decoder takes as input the output of the bottleneck and
gradually up-convolves the image while bringing back the spatial context that had been
saved in each level of the encoder. Each expansive step upsamples the image via a 2x2
convolution and halves the feature channels, concatenates the feature map to the results
of the corresponding encoder level, then performs two convolutions [25]. The addition
of spatial context allows for the features in the image to be detected and grouped into
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segments of a class. The final level of the decoder applies 1x1 convolutions for each class
being detected, therefore producing a segmentation map for each class.

Figure 2.8.: U-NET architecture

Source: [25, p. 235]

2.3.2. Training labels

In order to train a network to predict classes, the training dataset must be accompanied with
ground truth labels. The choices and method of preparing ground truth labels have a crucial
part to play in the machine learning process. These labels are created to accompany imagery
and inform the model of the location of various classes in order for the network to learn the
patterns that are most likely to determine the location of a parcel.

Class imbalance

In the case of classification in which classes are not represented equally in the dataset,
there is a risk that the minority class cannot be generalized by the model, leading to poor
classification results and an overprediction of the majority class. There are several ways
to address this imbalance, including undersampling the majority class, oversampling the
minority class via data augmentation or modifying the loss function used by the network
[28].
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Label uncertainty

Another common challenge in creating ground truth datasets is uncertainty. In classification
problems, the ground truth is the optimal class allocation which the network is aiming for
through the training process, and which serves to train and evaluate the model via the
computation of error matrices [29, p. 51]. However, if the reference data cannot be fully
relied upon, this risks negatively influencing the effectiveness of the model.

In some cases, there is uncertainty within the labels as a result of errors in ground truth
data collection, or as a result of the raster representation of objects, which generally has a
lower level of certainty in edge pixels compared to core pixels of an object. In these cases,
adding an uncertainty weight to the loss function (computed per class and/or based on pixel
location) can help reduce the influence of the more uncertain pixels [28].

In other cases, the uncertainty occurs outside the labelled areas, as partially labelled data can
lead to sparse ground truth labels which miss labels for certain classes [30]. This heterogene-
ity can occur due to incomplete datasets that do not contain labels for all objects in an image:
for example, a dataset of cocoa polygons may not contain ground truth for all cocoa farms
in a region, therefore they remain unlabelled in the ground truth dataset. Another scenario
would be the combination of multiple specialized datasets (e.g. one dataset of labelled forest
areas and a separate dataset of labelled cocoa areas) for a multi-class segmentation problem.
The cocoa parcels would be missing from the forest dataset, and vice-versa.

One way to address this challenge is to exclude uncertain regions from the training, and
assign them to an ”unknown” or ”void” class. While this limits the amount of training data
available, it avoids the use of training data that may confuse the model [30].

2.4. Remotely sensed data

CNNs are trained with images, which can be regular RGB photographs, or remotely-sensed
images with additional characteristics beyond the visible light spectrum. The following
section describes the characteristics of two types of remotely sensed satellite data that are
used in this thesis:MSI and SAR data.

2.4.1. Multispectral Imagery

MSI imagery is obtained via passive remote sensing from the energy that is reflected from
the Earth’s surface due to the properties of surface objects [31]. The bands of interest are
typically detected in the visible, Near- and Shortwave-infrared regions of the electromagnetic
spectrum[32]. Different objects reflect the sun’s energy in different ways, which makes it
possible to differentiate between them; for instance, the chlorophyll in vegetation causes it
to reflect visible light in the green part of the spectrum which leads vegetation to appear
green. This phenomenon also occurs in non-visible parts of the spectrum: healthy plants
will reflect more Near Infrared (NIR) radiation than their unhealthy counterparts. Combined,
these surface characteristics give land cover types unique ”spectral signatures” which refers
to amount of radiation they reflect in different parts of the electromagnetic spectrum (see
Figure 2.9) [32]. Different vegetation types will often have different spectral signatures,
enabling, for instance, the identification of different crops. This becomes more challenging
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when nearby land covers have similar signatures, as is the case with cocoa and surrounding
jungle [32].

Considering that MSI relies on reflectance from the Earth’s surface, reflected radiation must
be able to be detected by the sensor. However, in the case of cloud or other atmospheric
characteristics, the radiation may be intercepted and may therefore reduce the amount of
data that is available from the land surface [33]. Some pre-processing steps can reduce the
impact of clouds, such as interpolation to fill data gaps, but this is overall a very challenging
aspect of MSI. To address this effect, it is common to rely on temporal data that will increase
the probability of collecting data on a cloud-free day.

Figure 2.9.: Spectral signatures from a cocoa-producing region in Brazil

Source: [32]

2.4.2. Synthetic Aperture Radar

SAR is an active remote sensing technology that involves sending microwave pulses from
the satellite to the surface of the Earth, and receiving back a signal (backscatter) with a
certain phase and amplitude. The phase provides information on the distance of the surface
objects from the sensor (i.e. height), whereas, as seen in Figure 2.11, the amplitude indicates
the intensity of the signal that is returned, varying based on geometry, surface roughness
and water content [34]. Considering that it captures data related to surface texture, geometry
and moisture, SAR can provide additional information that may further differentiate between
vegetation types when optical spectral signatures are not sufficient. Furthermore, it can offer
a more consistent source of data that is not affected by atmospheric changes [35] as cited in
[33].

Unlike MSI which is captured directly below the satellite, SAR is captured at an angle as
the satellite’s sensor sends pulses to one side as it orbits the Earth. The most widely used
acquisition mode for Sentinel 1 is the Interferometric Wide (IW) mode, which collects data
in 250 km swaths at 5 m by 20 m resolution [36], see Figure 2.10. This characteristic of SAR
means that the direction of orbit should be considered when comparing SAR datasets [37].
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Figure 2.10.: S1 acquisition modes

Source: [36]

Backscatter

Backscatter refers to the amount of energy that is returned to the sensor following the initial
pulse and after having interacted with the Earth’s surface [34]. There are four main types of
mechanisms that affect the intensity of the backscatter:

1. Surface roughness: as the pulse arrives at the surface of the Earth, it interacts with the
texture of the ground. A smoother surface will contribute to more specular reflection,
reflecting the energy away from the sensor. A rougher surface will cause the pulse
to be reflected in different directions, and a portion of the initial pulse energy will be
reflected back toward the sensor (see Figure 2.11) [34].

2. Volume scattering: the pulse encountering a vegetated surface will bounce off the
objects that it encounters before a portion of the initial energy is returned to the sensor.
A less dense vegetation area will cause less volume scattering, meaning that the overall
intensity of the backscatter will be higher. A more dense vegetated area, such as a
forest, will lead to significant volume scattering with the pulse bouncing off many
different branches and leaves before reflecting back to the sensor. This will lead to a
lower intensity backscatter [34].

3. Double bounce: when objects on the surface have a structure that is perpendicular to
the ground, such as buildings or tree trunks, pulses moving towards such objects and
landing on the ground at at certain angles may reflect in a specular way, then bounce
on the perpendicular object before returning to the sensor. This double-bounce effect
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leads to a very high backscatter value as little energy is lost before the pulse is reflected
to the sensor [34].

4. Moisture: combined with the characteristics above, the level of moisture in surface
materials affects the backscatter intensity due to the dielectic constants of surface ma-
terials. The dielectic constant expresses the ability of a material to store electrical
energy. Water has a dielectic constant of around 80, which is much higher than that of
a dry soil (around 4) and therefore materials containing water will absorb more energy
from the pulse, leading to a weaker backscatter [38].

Furthermore, the size of the wavelength determines the types of surface features that will
affect the backscatter: microwaves will penetrate objects smaller than their wavelength, and
reflect off objects of a similar size [39].

Figure 2.11.: SAR types of scattering

Source: [34]

Polarization

The polarization of a radar pulse refers to the direction in which the wave oscillates in
relation to the surface it is imaging (horizontal or vertical) [34]. As shown in Figure ??,
microwave pulses can be sent with Horizontal or Vertical polarization, and the polariza-
tion of the pulse that is transmitted and that which is measured upon return can be the
same (co-polarization, such as vertically transmitted and vertical received [VV]) or opposite
(cross-polarization, such as vertical transmitted and horizontally received [VH]) [34]. The
polarization will have an influence on the types of surface characteristics that are detected
by the sensor based on how the pulse interacts with the surface. For instance, VV will have
the strongest backscatter when interacting with a rough and dry soil surface, HH will have
the highest double-bounce backscatter intensity, and cross-polarized (VH or HV) will have
the greatest intensity as a result of volume scattering [34].
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3. Related work

This section highlights related academic work that employs SAR and/or MSI data and ML to
detect cocoa crops and other vegetation types.

3.1. Pixel-based cocoa detection

The majority of existing cocoa detection studies focus on pixel-based classification by im-
plementing ML algorithms and different combinations of datasets. Some researchers have
considered only MSI (such as Landsat or Sentinel 2 (S2) data), and applied classification al-
gorithms including Maximum Likelihood Algorithm (Overall Accuracy (OA) = 82.6 %) [40],
Random Forest (OA = 89.8 %) [10] and XGBoost, a type of boosted Random Forest (OA =
95.17 %) [32].

Some researchers have focused on classification methods that are based on SAR data only.
SAR-based classification has been implemented using Supervised Maximum-likelihood Clas-
sifier (OA = 89 %) [33], Random Forest combined with Grey-Level Co-occurence Matrix
(GLCM) (OA = 88.1 %) [39], and Multi-Layer Perceptron Neural Networks Regression (Root
Mean Squared Error (RMSE) = 7.18 %) [1].

Figure 3.1.: Classifier using SAR and MSI datasets

Source: [5]
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Two recent articles perform classification on a combination of SAR and MSI data. In a 2021
study to measure the encroachment of cocoa farms on protected forest reserves, Abu et al.
created composite images of each Sentinel 1 (S1) (SAR) and S2 (MSI) datasets, and performed
textural (GLCM) and spectral (Normalized Difference Vegetation Index (NDVI), Tasseled Cap
index) analyses before applying a multi-feature Random Forest classifier [5], see Figure 3.1.
The producer’s accuracy and user’s accuracy were respectively evaluated at 82.9% and 62.2%
[5].

In a 2022 paper, Tamga et al. explore the spatial distribution of classification errors with
a focus on cocoa mapping in Ghana and Côte d’Ivoire [41]. The authors use S1 datasets
acquired with IW swath mode and with VV and VH polarisations as well as red, green, blue,
near-infrared and red-edge bands from S2 multispectral data to perform textural (GLCM) and
spectral analyses before applying a multi-feature Random Forest classifier [41]. The main
differences between the two studies is that Tamga et al. applied seven different vegetation
indices for spectral analysis and they calculated Shannon entropy per pixel to remove pixels
with a high probability of error [41]. The higher producer’s accuracy (88%) and user’s
accuracy (91%) compared to the work by Abu et al. is attributed to the fact that this study
area is considerably smaller and focused only on a cocoa producing region [41].

Figure 3.2.: Pixel-based cocoa detection

Source: [41, p. 9]

As can be seen in Figure 3.2, the results of pixel-based classifications can lead to a ”salt and
pepper” effect, even when smoothing filters are applied [41]. In both articles, the authors
conclude that the classification output could be improved with the use of deep learning,
with one paper specifically suggesting the use of ”semantic image segmentation” [5].
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3.2. Object-based cocoa detection

A landscape is composed of class patches, not only pixels [6] which can vary greatly in
appearance [42] as cited in [6, p. 3]. Therefore, when classifying land cover, it is important
to consider not only the spectral characteristics of pixels, but spatial pattern characteristics
within the landscape. This approach can be implemented via algorithms that first detect
image objects and then classify them [6].

One early example of such an approach combines optical and dual-polarimetric radar satel-
lite data to map rice and cocoa parcels in Indonesia [43]. The authors detect image objects
from a panchromatic dataset, then use a time series of co- and cross-polarized SAR datasets
at a resolution of 15 meters and MSI datasets at a resolution of 30 meters for classification
of each object [43]. This study makes use of an object-based nearest neighbour classifier
and applies it to different combinations of datasets, and the highest OA (89%) is obtained by
using MSI and cross-polarized SAR data [43].

Another more recent example of object-based classification is a study from 2020 which aims
to detect and differentiate between open forest and agroforestry cocoa [6]. The authors
first detect image objects from combined SAR and MSI datasets using the Multiresolution
Segmentation algorithm, and then apply Random Forest classification to three experimental
datasets: MSI only (OA = 79.02%), MSI and SAR (OA = 80.49%), and finally MSI, SAR and image
objects (OA = 89.76) [6].

As shown in Figure 3.3, not only is the accuracy of the object-based classification higher,
but the visual output is also a more realistic representation of the spatial characteristics of
cocoa parcels on the ground. One challenge of object detection is the importance of selecting
an object scale that is relevant to the dataset; furthermore, incorrectly defined image objects
will cause the mis-classification of all pixels in that object [6, p. 11].
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Figure 3.3.: Visual Comparison of pixel-based and object-based classification results

Source: [6, p. 10]

3.3. Semantic segmentation of cocoa parcels

CNNs offer the possibility to detect and classify cocoa parcels by considering spectral and
spatial characteristics in a deep learning architecture by automating feature selection [8].
Filella (2018) adapts the U-NET architecture to detect cocoa based on S2 imagery (using
bands 2-8, 11 and 12) in Ghana and Ecuador in order to measure the impact of different
inputs on the detection of full-sun and agroforestry cocoa [44]. By training the U-NET
in Figure 3.4 with MSI images and an Ecuadorean ground-truth polygon dataset (full-sun
cocoa), the final recall is 93%, the final precision is 98% , and the IoU is 92% .

Results are less reliable for agroforest cocoa, shown in Figure 3.5, for which the U-NET is
trained using 12 farm polygons and a time-series of 4 multispectral images from December
2017 to January 2018. In order to measure the impacts of under-sampling and temporal
data on segmentation outputs, the U-NET is trained and validated separately with temporal
and non-temporal data, and different levels of undersampling. Non-temporal data provides
the worst results across all metrics, with undersampling leading to an Intersection over
Union (IoU) of 47.2%. The use of temporal data performs better: the highest IoU of 58.2%
is achieved with a batch size of 64 and a minimum of 100 cocoa pixels. Attempting to
reduce batch size to increase the proportion of cocoa is not effective: the model predicts
forested areas rather than cocoa crops, which is attributed to a lack of background (”non-
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3.3. Semantic segmentation of cocoa parcels

Figure 3.4.: U-NET for cocoa detection

Source: [44]

cocoa”) labels. While the author concludes that their model is effective for full-sun cocoa
segmentation, the study is inconclusive regarding agroforestry cocoa. Some of the key areas
of future research mentioned in this paper include training the network with a larger dataset
and a longer time series, improving the labelling of non-cocoa data, detecting and processing
clouds separately, and implementing a more powerful network.

In another paper by Kalischek et al. (2022), a CNN is trained using 100,000 cocoa farm
polygons, 10,000 non-cocoa polygons and a time-series of 10 S2 images collected from each
6-month time period between October 2018 and December 2021. As part of the data pre-
processing, cloud-covered samples are marked as “nodata” and the authors choose input
patches that are at least 10% labelled. In order to save time and provide additional data,
the authors train a deep learning network with S2 and canopy height Light Detection and
Ranging (LiDAR) data, then feed the predicted height values into the CNN. The output of
this model is a probability map that indicates, for each pixel, the probability of that pixel
containing cocoa (between 0 and 1). This probability map can be converted to binary map
based on desired level of confidence; in Figure 3.7, 65% probability is used as the minimum
threshold for symbolizing a pixel as ”cocoa.”

The authors create 10 replicas of the network using the same data but with different random
initializations. The results of the segmentation are shown in Figure 3.8; compared to the
pixel-based classification implemented to map cocoa at a similarly large scale [5], this DL
approach improved ”precision and recall by more than 26% and 4% respectively” [8, p. 2].
While the implementation of this CNN had good results, it requires the use of time-series
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3. Related work

Figure 3.5.: Visualization of validation batch for agroforest cocoa prediction

Source: [44, p. 46]

Figure 3.6.: Influence of undersampling on segmentation

Source: [44, p. 42]

datasets due to the limitations of MSI data when dealing with cloud cover. Therefore, the
authors suggest that integrating the use of SAR datasets could allow for monthly or even
weekly cocoa mapping updates [8].

3.4. SAR for vegetation detection

SAR has been used in a range of studies related to vegetation monitoring, such as differentiat-
ing between forest types [45] and estimating biomass [46]. A higher amount of biomass leads
to more volume scattering [1], causing a higher intensity of cross-polarized backscatter [45].
One team of researchers developed a platform that issues deforestation alerts based on S1 VV
and VH Ground Range Detected (GRD) datasets: forest disturbances are identified based on
a backscatter image from a single day, and are gradually validated or rejected via imagery
from subsequent days. This enables the near-real-time detection of forest disturbances of 0.2
ha or larger with a high level of certainty [47].

Beyond a certain amount of biomass, this difference is no longer detectable [1] and spatial
distribution of vegetation becomes more relevant. Specifically, SAR is able to detect the
presence of gaps in the canopy, where backscatter over bare ground has a high contrast with
the surrounding vegetation [1], and tree trunks at the edges of the gaps can cause the double-
bounce scatter [1, p. 21]. Numbisi, F. N., & Van Coillie, F. (2020) evaluate the influence of SAR
datasets on the prediction of canopy gaps in cocoa agroforestry systems in Cameroon [1]. As
shown in Figure 3.9, the importance of different datasets in the Random Forest regression
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3.4. SAR for vegetation detection

Figure 3.7.: Related work cocoa prediction map

Source: [8, p. 3]

are measured using the Gini importance coefficient, and the VV polarization is found to have
the greatest influence on predictions [1, p. 23].

SAR can capture the temporal variation in vegetated land cover and for different vegetation
and crop types [46]. More detailed and frequent time series are likely to provide a more
precise delineation of crop types, however a land classification with >85% accuracy can
be achieved with the use of two polarizations from four days over the course of one year
[48]. Numbisi et al. (2018) compare the effectiveness of a Random Forest model trained
with temporal SAR and MSI in detecting agroforestry cocoa, Overall, the GLCM derived from
SAR from multiple seasons are found to more reliably classify vegetated areas, whereas the
MSI datasets led to a higher classification of non-vegetated areas. The authors conclude
that temporal SAR provides sufficient information to distinguish between agroforests and
transition forests [49], and that GLCM derived from co- and cross-polarization SAR leads to a
better classification compared to the use of MSI data with or without indices.

It is important to note that the detection and classification of vegetation depends on the
sensor’s wavelength, polarization, spatial resolution and incidence angle [1]. While longer
wavelength SAR bands, such as L-band (24 cm) are able to penetrate into the understorey
and soil of a forested area, C-band has a shorter wavelength of 5 cmand therefore only
penetrates into the upper canopy before scattering [1], therefore it is not as commonly used
for vegetation monitoring such as tropical deforestation [47]. However, the high temporal
resolution of some satellite measurements can compensate for their limited spatial resolution
for the tracking of forest disturbances [46].

To conclude this section, existing research has demonstrated the potential for CNNs to detect
the extent of cocoa farms based on MSI data; however, neither of the CNN-based cocoa de-
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3. Related work

Figure 3.8.: Evaluation of cocoa segmentation

Source: [8, p.4]

tection studies found in the literature integrate SAR datasets as input to their deep learning
network. Therefore, this research builds on opportunities for further research that integrates
a larger ground-truthing dataset in the implementation of a U-NET architecture and evalu-
ates the impact of SAR data on the segmentation of cocoa parcels.

Figure 3.9.: Importance of SAR polarization in canopy gap predictions [1, p. 23]
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4. Background and context

The following section provides context on the geography of the study area and cocoa crop
characteristics in order to formulate hypotheses that respond to the research questions.

4.1. Study area

This research focuses on detecting cocoa crops in Ghana. The study area is delineated
by a 110x110 km S2 tile located in central south Ghana shown in Figure4.1. The tile was
selected for having a diversity of land cover, including forest reserves, monocrop cocoa and
intercrop cocoa polygons. The region has a semi-equatorial climate consisting of dry and
rainy seasons, including a major rainy season (from April – July), and a minor rainy season
(from September–October) [50, p. 2]. Considering that cocoa requires a high amount of
precipitation in order to grow, these rainy seasons are respectively referred to “main crop”
and “light crop” cocoa seasons [50, p. 2]. During the main crop season, the high levels of
rainfall, high relative humidity and low temperatures lead to a higher production of cocoa.
During the light crop season, the semi-drought conditions lead to a lower productivity and
a change in canopy structures as deciduous trees lose their foliage [50].

4.2. Cocoa crop characteristics

After Cote D’Ivoire, Ghana has become the second largest producer of cocoa globally [51].
The cocoa plant is a small evergreen tree which produces pods containing cocoa beans
which are dried and processed. It grows best in temperatures between 18–30 °C, above
which its photosynthetic abilities are impeded [52]. Unlike many seasonal crops that are
fully harvested and replaced from one year to the next, cocoa trees grow and produce over
several years, ranging in size from around 1m to a maximum height of around 8m [8] as
shown in Figure4.2 [53]. Overall, the plant requires a shaded environment: ranging from
70% shade for trees 0-3 years old, and 30–40% shade for older trees [54] as cited in [52, p.
1]. Cocoa farms are 1-5 hectares on average [52], and considering the lifespan of the plant, a
farm can contain trees with a wide range of ages, heights and levels of productivity.

Most commonly, cocoa is grown as a homogeneous crop which integrates large trees that
provide shade for the plants, although in recent years there has been a shift towards full-sun
cultures [52]. Both shaded and full-sun cultures are referred to as ”monocrop cocoa” in
this thesis. Alternatively, cocoa can be grown alongside other crops, ranging from distinct
plots on a farm, to small plants (e.g. tam, plantain) below the cocoa trees [52] to complex
agroforestry: ”deliberate integration of regenerated or planted forest or fruit tree species
in cocoa farms for ecological and socio-economic benefits” [50, p. 2]. These varieties of
mixed-crop practices is referred to as ”intercrop cocoa” in this thesis.
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4. Background and context

Figure 4.1.: Study area map

Agroforestry offers many benefits for the cocoa crop productivity and the local ecosystem,
including enhanced soil fertility, pest and disease management, biodiversity and carbon
sequestration [50, p. 2]. The traditional method of agroforestry establishment is to thin the
understory of the forest and replace it with cocoa plants [55], but it can also be established
by planting diverse and complementary trees and other plants which will grow into an
agroforest in the longer term [56].

4.3. Cocoa detection challenges

One of the challenging aspects about detecting and tracking cocoa crop extents is the di-
versity of practices described above, which limits the definition of cohesive, homogeneous
and strictly defined cocoa land cover classes. For example, even within monocrop cultures,
the shade tree species used across different farms will vary widely based on the farmers’
preferences and the pre-existing ecology of the site, leading to canopies with different tree
sizes, morphologies and spectral characteristics [50]. Furthermore, while organizations such
as the Cocoa Research Institute of Ghana (CRIG) issue recommendations and best practices,
these are not followed unanimously. For example, the CRIG advises farmers to maintain
16–18 shade trees per hectare spaced around 24 m x 24 m apart and having a height above
12 m in order to provide permanent shade to 30–40% of the crown cover [56, p. 2]; however,
it is estimated that only 25–42% of the 1.6 million hectares of cocoa crop in Ghana is grown
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4.4. Ground truth datasets

Figure 4.2.: Cocoa tree characteristics

adapted from [53, p. 4]

under sufficient shade [52]. Moreover, official sources recommend maintaining 1730 cocoa
plants per hectare, however cocoa plant density in Ghana ranges from 1000 to 2500 trees per
hectare [55].

Another challenging aspect is the detection of cocoa in the more complex intercrop culti-
vation environments, such as agroforestry farms. These farms are generally composed of
a variety of shade trees above 5 m tall that make up a stratified canopy that provides at
least 10% shade cover [1]. While the practice offers numerous ecological benefits mentioned
above, the characteristics are much more challenging to track with the use of MSI data and
can be mistaken for transition forests [57] as cited in [49, p. 339].

However, there are some subtle differences that may enable the differentiation between agro-
forestry cocoa and forest. First of all, forest ecosystems usually have a more dense and intact
tree canopy, whereas agroforests generally have a lower density of trees and are more likely
to have canopy gaps [1, p. 339]. Another key difference is that while forest canopy remains
rather stable over time due to the persistence of evergreen trees in the natural ecosystem,
agroforest canopy characteristics exhibit seasonal changes such as the loss of shade tree
foliage during the dry season [1, p. 340].

Depending on the farm characteristics, vegetation height can provide additional insight into
the nature of different land cover types. In monocrop farms, shade trees can vary in crown
shape and height, with some species’ canopies partially within the cocoa foliage, and others
having crowns that are much higher and distinct from the cocoa trees as shown in Figure4.3
[58]. In the case of agroforestry that is established below pre-existing tropical forest, the
height difference between vegetation types can be significant: cocoa grows to a maximum of
8m tall [8], in contrast with tropical forest trees in Ghana which can grow from 5m to over
50m with a mean height of around 20m [59].

4.4. Ground truth datasets

As a result of the collaboration with Meridia, three cocoa polygon datasets were available
for training and testing purposes, totalling 88,975 polygons. The data was collected by
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4. Background and context

Figure 4.3.: Low- and Elevated-canopy shade trees

adapted from [58, p. 2]

Meridia’s field agents in Ghana, who mapped the farms alongside farmers, farm owners
or their representatives with an average accuracy of 2m between 2017-2022. The polygons
range in size from <1 hectare to >10 hectares, although the vast majority of polygons have
an area under 3 hectares as shown in Figure 4.4.

Figure 4.4.: Cocoa parcel size, Meridia ground truth dataset

Each polygon dataset contains attributes that were collected during specific field visits based
on the best estimates of farmers or their representatives, such as cultivation type, tree age,
density, and farm productivity. The meaning of different attributes was clarified by one of
Meridia’s data engineers, however there remained some ambiguity in terms of definitions,
and some contradictions (e.g. some polygons were indicated as ”entire” cocoa cover while
listing other crop types grown on the farm). The most consistent and clear attribute across
all datasets was that of cultivation type: monocrop, intercrop, sparse, both, or unknown.
Farmers could indicate whether their farms were ”Mostly mono-cropped cocoa” or ”Mostly
intercropped cocoa.” This wording suggests that the categories are fuzzy, e.g. that a mostly
cocoa-producing farm may contain a small section of other crop(s) as shown in Figure 4.7,
therefore it is important to note that there is a degree of labelling uncertainty in the dataset.
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4.4. Ground truth datasets

For the purposes of this research, only cocoa polygons labelled as monocrop or intercrop
and located within the study area were considered for training purposes.

Figure 4.5.: Satellite imagery showing (1) Monocrop cocoa, (2) Intercrop cocoa and (3) Forest

Meridia also provided access to a 2019 forest reserve dataset issued from the Ghana Forestry
Commission, as well non-cocoa crop polygons. While forest reserves are technically pro-
tected under national, regional or international agreements, a reserve designation does not
guarantee that such areas are undisturbed forest as this is dependent on the enforcement
of the protected area. Cocoa producers are increasingly encroaching on protected areas
due to environmental and social pressures [5], [8]. As can be seen in Figure 4.6, numerous
cocoa polygons in the Meridia datasets overlap with protected area polygons. This is an
important indication of the limitation of using forest reserves as forest ground truth labels.
However, considering the importance of distinguishing between forest and cocoa and the
limited time to create more accurate forest labels, the labels were deemed sufficient for this
thesis research.

Figure 4.6.: Examples of overlap between cocoa and forest ground truth.

The non-cocoa crop polygons in the study are varied, including tree crops (cashew, oil palm,
mango) and smaller crops (maize, cassava and beans). Some of these crops are can be rec-
ognized relatively easily through satellite observation as shown in Figure 4.7, which enables
a qualitative analysis of the labelling data and the model predictions.
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4. Background and context

Figure 4.7.: Satellite imagery showing non-cocoa crops

(1) Mango, (2) Yam cassava, (3) Cashew, (4) Oil palm, (5) Beans and (6) Beans + mango

4.5. Hypotheses

Overall, the use of SAR is expected to provide more clear differentiation between land types
and across seasons, as shown in Figure 4.9. Examples of the GRD S1 SAR imagery are shown
in Figure 4.8. Considering the characteristics of cocoa, results from related work and the
features of S1 SAR data:

1. The combination of SAR and MSI is expected to lead to improvement in monocrop cocoa
predictions compared to training without the use of SAR.

2. The addition of SAR temporal stacks covering the wet and dry seasons is expected to
improve the results in comparison with MSI + single day SAR training.

3. The addition of SAR is expected to enable the detection of cocoa in intercrop polygons
where MSI-training would predict forest.

4. The addition of SAR is expected to improve predictions in cloudy images because of
SAR’s ability to penetrate cloud cover.

5. Combining both polarizations of SAR is expected to yield better results than a single
polarization as it will capture the effects of volume scattering, surface scattering and
double bounce.
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4.5. Hypotheses

Figure 4.8.: SAR imagery in different polarizations over study area

Figure 4.9.: SAR backscatter variability

Dark colour arrow = VV, Light colour arrow = VH
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5. Methodology

This section provides an overview of the steps involved in the research for this thesis, as well
as their theoretical and practical underpinnings. The steps are illustrated in the flowchart
presented in Figure 5.1.

5.1. Satellite data preparation

After defining the study area, the first step is to retrieve satellite data for the area. The
Sentinel datasets are frequently used for their open-source availability and wide coverage,
both spatially, spectrally and temporally.

5.1.1. Multispectral Imagery

Considering that this research focuses on the addition of SAR to MSI datasets for semantic
segmentation of cocoa parcels, the MSI dataset plays an important role as ”reference” dataset.
S2 captures MSI imagery in 13 bands, ranging from 442 nm (visible light) to 2202 nm (Short-
wave Infrared) [60]. Considering the typical size of cocoa parcels, the lowest resolution S2
datasets (60m) are likely to generalize details along the borders of parcels and potentially
decrease the effectiveness of the segmentation. Therefore, in accordance with the method-
ology of Kalichek et al. (2022), the S2 bands of 10m and 20m resolution MSI are used for
this analysis, which include those listed in Table 5.1.1 [8]. The 20m resolution images are
resampled to 10m using bilinear interpolation in order to be able to stack images using a
consistent resolution [6].

Band Resolution Wavelength Description
B2 10 m 490 nm Blue
B3 10 m 560 nm Green
B4 10 m 665 nm Red
B5 20 m 705 nm Visible and Near Infrared (VNIR)
B6 20 m 740 nm Visible and Near Infrared (VNIR)
B7 20 m 783 nm Visible and Near Infrared (VNIR)
B8 10 m 842 nm Visible and Near Infrared (VNIR)

B8a 20 m 865 nm Visible and Near Infrared (VNIR)
B11 20 m 1610 nm Short Wave Infrared (SWIR)
B12 20 m 2190 nm Short Wave Infrared (SWIR)

Table 5.1.: MSI bands used in this research
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5. Methodology

While most studies described in Chapter 3 correct or exclude clouded areas via pre-processing,
this research is interested in the impact of SAR data on the presence of clouds. Therefore,
MSI data is retrieved at level 1-C, which means that the imagery contains ”orthorectified
Top-Of-Atmosphere (TOA) reflectance, with sub-pixel multispectral registration” [60] and
limiting the cloud cover threshold to 15%.

5.1.2. Synthetic Aperture Radar

SAR data is collected differently than MSI data, therefore its raw form is not compatible and
stackable with MSI. This study makes use of Level 1 GRD S1 (C-band) datasets from ascend-
ing orbit that have already been processed, multi-looked and projected using the WGS84
coordinate reference system [36] with a pixel resolution of 10 m and a spatial resolution of
20 m × 22 m [61].

As seen in [47], the SAR values used in this research are gamma0 backscatter in decibels,
in order to calibrate the values to the logarithmic scale which normalizes the values and
increases contrast between features on the ground [1].

5.1.3. Stacking images

In order to input combined datasets into the U-NET, the rasters must be aligned and stacked
into a 3-dimensional matrix in which each of the image pixels has a vector of reflectance
and/or backscatter values from each of the dataset bands, as described in [8] and [6]. The
bands used differ depending on the experiment; some possible combinations are illustrated
in Figure 5.2.

5.1.4. Data normalization

Once all bands have been stacked, a normalization process is applied to each band inde-
pendently in order to increase the speed of model convergence [62]. Typically, imagery for
semantic segmentation training is normalized in order for the mean to be centered at 0 and
to have a standard deviation of 1 [62]. Although this works when distribution of values
is normal, this is not the case for satellite reflectance values: distributions for reflectance
are long tailed and 0-bounded, and typical normalization risks being influenced by outlier
reflectance values. Therefore, normalization is instead applied using the following equation
for linear scaling [62].

valout = (valin − c)(
b − a
d − c

) + a (5.1)

where valout is the normalized pixel value, valin the original pixel index, a and b are the
lower and upper values of the desired range, and c and d are the lower and upper values of
the original range. c and d can be set to the minimum and maximum values of the original
range, or to the first and last quartile in order to further prevent the influence of outlier
values. For this research, a and b are set to 0 and 1, and c and d are set to the minimum and
maximum of each band.
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5.2. Ground truth labels

5.2. Ground truth labels

The majority of the studies described in Chapter 3 use the following labels: cocoa, non-cocoa
and unknown/void. Since forest and cocoa have many similarities as described in Chapter
4, forest polygons are used as ”non-cocoa” regions in order to encourage their differentiation
by the model.

The ground truth and satellite must be converted to a format that can be accepted by the U-
NET: small image patches with a uniform size. While the U-NET can process square images
of different sizes, the dimensions must be divisible by 8 as they undergo 5 convolutions
(each applying a 2x2 filter and therefore dividing the original dimensions by 22), and they
must be consistent across the entire dataset.

As the unknown class is largely overrepresented in this dataset, an undersampling method
is applied by setting the minimum of labelled pixels (cocoa or forest) to 10%, as seen in [44].
In order to address the research questions, two labelled datasets are created:

1. Monocrop dataset (for training, validation and testing): at least 10% of the pixels are
labelled as monocrop cocoa or forest

2. Intercrop dataset (for testing only): contains labelled intercrop cocoa and no labelled
monocrop or forest pixels

5.3. Data split

In order to test the effectiveness of a classification model, a high-quality reference map
must be generated against which the predictions will be compared [63]. 10% of the training
dataset is set aside to be used for an independent testing of the predictions for images that
the model has not previously seen.

In order to get a more robust estimate of the model’s performance and determine whether
it is consistent across different splits of the data, a 10-fold cross-validation approach is used.
This method divides the dataset into ten folds, and trains the network ten times, each time
using a different fold as the validation dataset.

5.4. U-NET Segmentation

The U-NET employed in this research is adapted from the code described in [64] based on
the original U-NET architecture. It is composed of five encoder blocks and five decoder
blocks using ReLU as its activation function and ”same” padding. The random weights are
initialized using the He normal distribution, the Adam optimizer and the Sparse Categorical
Cross Entropy loss function are used for training, and a 0.3 dropout probability is applied
to prevent overfitting. In addition, following the work of Filella (2018), the mini-batch size
is set to 32, the learning rate to 10−5 and an L2 regularization rate of 10−2 [44]. For each
experiment, the model with the best validation loss value is saved using checkpoints and
used for testing. In order to prevent overfitting, early stopping is used to automatically stop
the training when there has not been validation loss improvement for 10 epochs.
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To generate reference results, the U-NET is trained with single day and multi-day stacks
of MSI data. It is also trained separately with single- and multi-day SAR datasets. Next,
experiments are conducted which involve stacking SAR data (single- and multi-day rasters)
onto MSI datasets in order to observe the impacts on evaluation metrics and visual output.
A summary of all experimental datasets is depicted in Table 6.1 of Chapter 6.

5.4.1. Weighted loss function

In order to avoid relying on undersampling forest labels to balance the ground truth classes,
the class imbalance is rectified via a weighted loss function. The weights are determined
based on the ”inverse proportion of class frequencies” [65]: the proportion of labels from
each class is calculated in order to increase the influence of the minority class (i.e. cocoa) on
the loss computation, as depicted in the following equation:

wc =
1
nc
N

(5.2)

where c is a given class, n is the number of labels in this class and N is the total number of
labels in the dataset. Any pixel without a ground truth label is assigned a weight of zero,
therefore not having any influence on the training. These weights are integrated into the
categorical cross entropy function as shown below.

Lcross−entropy(ŷ, y) = − 1
N

N

∑
j

M

∑
c

wcyc,j ln(ŷc,j) (5.3)

where N is the number of labeled samples, and M is the number of classes, yc,j is a binary
indicator (0 or 1) of a pixel belonging to a certain class c and ŷc,j) is the predicted probability
of pixel belonging to a certain class c.

5.4.2. Probability and prediction

The output of the U-NET is a n-dimensional matrix in which n is the number of classes and
each channel contains the probability that a pixel belongs to the given class. The Softmax
activation function is applied in order to squeeze these vectors to have values between 0 and
1 [44] [24].. This output enables a visualization of the per-pixel cocoa probability map. This
continuous raster enables a choice in visualization as the user can establish a probability
threshold that is most suiTable to their needs, such as visualizing as ”cocoa” areas that
are predicted with a probability above 65% as shown in [8]. The U-NET also outputs a
prediction mask which is generated by the Argmax function, which identifies for each pixel
the class with the highest probability. This raster contains discrete labels, which enable the
computation of evaluation metrics described in the following section.
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5.5. Evaluation

In order to evaluate the segmentation outputs for each of the experiments, satellite images
from the test datasets are provided to the U-NET and the predicted masks are compared
to the ground truth labels, excluding the ”unknown” regions. The following metrics are
observed to evaluate the effectiveness of the model:

1. Loss: measures the difference between the ground truth of each pixel and the proba-
bilities predicted for each class. The loss values are averaged for all labelled pixels in
all test images.

2. IoU: measures the degree of similarity between the predicted mask and ground truth,
and is computed only for the Cocoa class [66, p. 8].

IOU =
Areao f Overlap
Areao f Union

=
TP

TP + FP + FN
(5.4)

3. Recall: calculates the proportion of correctly predicted ground truth cocoa, also re-
ferred to as Producer’s Accuracy [66, p. 10]

PA =
TP

TP + FN
(5.5)

4. Precision: calculates the proportion of true cocoa predictions, also referred to as User’s
accuracy [66, p. 10]

UA =
TP

TP + FP
(5.6)

5. F1: the harmonic mean of Precision and Recall [66, p. 10]

F1 =
2 ∗ UA ∗ PA

UA + PA
(5.7)

The metric means across all experiment folds are plotted in order to observe the differences
between dataset trainings and identify any significant trends. In the case that the means
appear very similar, or that a particular comparison is deemed crucial for addressing the
research questions, additional box plots are created in order to observe the spread of the
data and any statistically significant differences between datasets.

Two challenges arise from the exclusion of large unknown areas. One challenge is that a
model which overpredicts cocoa will have very good metrics, as the ground truth poly-
gons will contain high probability cocoa predictions, but so will other regions in the image.
Another challenge is that there is missing information from the majority of most images
where the prediction accuracy is not quantified or estimated. These two challenges can be
addressed via visual observation of the predicted masks and probabilities. By viewing the
predicted maps, it can be identified whether cocoa is predicted across most of the image.
Furthermore, by comparing the predictions to satellite imagery, it is possible to estimate
qualitatively the likelihood that certain predictions are correct (e.g. by visually identifying
crops, urban areas, water and other features that are visible to the human eye).
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5. Methodology

Figure 5.1.: Methodology flowchart
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5.5. Evaluation

Figure 5.2.: Possible stacking combinations of MSI and SAR datasets.
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6. Implementation

6.1. Data preparation

6.1.1. Satellite rasters

S1 and S2 datasets are downloaded via the WEkEO JupyterHub (Earth Observation Server)
using the WEkEO Harmonized Data Access API [67]. The MSI datasets (Level 2A) are filtered
to contain less than 15% cloud cover and efforts are made to select imagery distributed
across the wet and dry seasons (see figure 6.1). The year 2020-2021 is selected because it
contains datasets that match as closely as possible to an even distribution across the seasons,
and because this timeline overlaps with the ground truth dataset collection dates. The SAR
datasets (Level 1C) are filtered to IW mode and GRD products only. For the dry season stack,
the images are selected as close as possible to the dates of MSI data.

Figure 6.1.: Seasons of southern Ghana and distribution of datasets over one year.

After downloading the datasets, the following steps are implemented using QGIS:

1. Project MSI data to UTM zone 30N and re-sample all 20 m resolution bands to 10 m
resolution using bi-linear interpolation

(a) January 2020 (b) March 2020 (c) December 2020 (d) January 2021

Figure 6.2.: Imagery included in the MSI temporal stack
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6. Implementation

2. Project SAR to UTM zone 30N, re-sample to 10 m resolution and clip to study area

3. Stack MSI and SAR in various virtual rasters with each file saved as a separate band.

6.1.2. Ground truth polygons

After collecting the ground truth polygons from Meridia, the following steps are conducted
using QGIS:

1. Quality-control ground truth polygons: conduct visual checks on cocoa ground truth
to check for possible misclassification, such as overlaps between cocoa and non-cocoa
ground truth

2. Cocoa polygons: remove any polygons classified as ”sparse,” ”unknown” or ”both”
to keep only ”intercrop” and ”monocrop” cultivation types. Remove any intercrop
polygons intersecting with monocrop polygons and vice-versa.

3. Forest polygons: remove any polygons that intersect with cocoa polygons and apply a
500m internal buffer to exclude the forest reserve edges.

4. Merge cocoa and forest polygons into one layer, then rasterize with label values (0 =
unknown, 1 = monocrop cocoa, 2 = forest, 3 = intercrop cocoa)

Note: the labelling process described above is repeated to create a separate dataset composed
of a more varied ”Not cocoa” class which also contains non-cocoa crop polygons and is used
in some of the experiments described in chapter 7.

6.2. Creating patches

Using the label and satellite rasters described in the previous section, the following steps are
implemented using a custom Python script with the help of the following libraries: rasterio,
geopandas, shapely, pandas, numpy, and fiona.

1. Initialize moving window at top left of study area (i.e. 128 x 128 pixels)

2. Move window across entire tile with a stride that is equal to the window size, in order
to ensure no duplication of data between train and test datasets. For each location,
check if labels satisfy the monocrop or intercrop dataset requirements.

3. If so, crop and save a copy of the label raster, save a corresponding cropped portion of
the masked virtual raster.

When following the above steps for the cocoa and forest label dataset, the study area gen-
erates 56 images with intercrop-only labels and 496 images containing a minimum of 10%
monocrop cocoa and/or forest labels. The monocrop dataset labelled pixels consist of 13.38%
cocoa and 86.62% forest. When removing clouded areas from this dataset, the study area
generates 56 images with intercrop-only labels and 537 images containing a minimum of
10% monocrop cocoa, forest and/or non-cocoa crop. The monocrop dataset labelled pixels
consist of 20.30% cocoa and 79.70% forest.

When following the above steps for the cocoa and non-cocoa (forest+other crop) label dataset,
the study area generates 57 images with intercrop-only labels and 556 images containing a

42



6.3. Data split

minimum of 10% monocrop cocoa, forest and/or non-cocoa crop. The monocrop dataset
labelled pixels consist of 18.44% cocoa and 82.46% non-cocoa.

6.3. Data split

The patches are uploaded to a AWS Studio Lab workspace to be further processed via a
custom Studio notebook that is scripted in Python [68]. The datasets are loaded and the 10%
test split is applied using the sci-kit learn library (train test split function). Considering that
the cocoa class is the primary class of interest, and that it is underrepresented compared
to the forest class, the aim is to increase the proportion of cocoa in the test dataset. There-
fore, 10 different randomizations are applied and the one with the greatest proportion of
cocoa (21.58%) is kept as the test dataset. The 10-fold validation and training data split is
implemented using the sci-kit learn k-fold function.

6.4. UNET

The U-NET architecture is adapted from the cocoa segmentation work of [44] and the Jupyter
notebook U-NET implementation by [64] with the following parameters:

• Input: 128x128x[number of bands]

• Number of filters: 32

• Number of classes: 3

• Encoder: 5 blocks of two Conv Layers (3x3 filters, ’same’ padding) with relu activation
and HeNormal initialization, max pooling

• Decoder: 4 blocks of transpose convolution, concatenate with skip connection from
encoder, two Conv layers (3x3 filters, ’same’ padding)

• Model output: one Conv layer (3x3 filters, ’same’ padding) followed by one 1x1 con-
volution layer to get image to same size as input.

The following table summarizes the experiments carried out, and the dataset combinations
used for each:
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Set # MSI Data SAR Data Season
1 1 December N/A Dry

2 March N/A Dry
3 Jan, March, December, Jan N/A Dry
4 N/A May - VV Wet
5 N/A May - VH Wet
6 N/A May - VV VH Wet
7 N/A Jan - VV Dry
8 N/A Jan - VH Dry
9 N/A Jan - VV VH Dry
10 N/A Jan, March, December, Jan - VV Dry
11 N/A Jan, March, December, Jan - VH Dry
12 N/A Jan, March, December, Jan - VV VH Dry
13 N/A May, August, November, Jan - VV Multi
14 N/A May, August, November, Jan - VH Multi
15 N/A May, August, November, Jan - VV VH Multi
16 December Jan - VV Dry
17 December Jan - VH Dry
18 December Jan - VV VH Dry
19 December May - VV Multi
20 December May - VH Multi
21 December May - VV VH Multi
22 December May, August, November, Jan - VV Multi
23 December May, August, November, Jan - VH Multi
24 December May, August, November, Jan - VV VH Multi
25 Jan, March, December, Jan May - VV Multi
26 Jan, March, December, Jan May - VH Multi
27 Jan, March, December, Jan May - VV VH Multi
28 Jan, March, December, Jan May, August, November, Jan - VV Multi

2 29 December (label change) N/A Dry
30 December May Multi
31 December May, August, November, Jan Multi

3 32 December (cloudless) N/A Dry
33 December May Multi
34 December May, August, November, Jan Multi

Table 6.1.: List of experiments indicating dataset stacks and seasonality
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7. Results and analysis

The following section first describes metrics from reference experiments that involve the
use of only one kind of data (i.e. SAR or MSI), followed by experiments stacking different
combinations of datasets. These initial experiments are referred to as ”Set 1.”

Several experiments are repeated with an extended ”Not cocoa” class (”Set 2”), and with the
removal of clouded areas (”Set 3”). Finally, observations on the detection of intercrop cocoa
are explained. All metrics are recorded in Appendix A. Note: a low Loss value indicates a
more effective prediction model.

7.1. Reference training with MSI

When comparing the results of training with single-day MSI from March (end of the Dry
season) and December (beginning of the dry season), March imagery leads to better results,
with a higher IoU and lower loss value, as shown in Figure 7.2. This may be due to the fact
that over the course of the Dry season, vegetation cover undergoes more significant changes
in agricultural areas compared to natural forest, leading to more distinguishable spectral
differences by the end of the Dry season. For the single-day MSI experiments described later
in this chapter, the December imagery is used as the reference in order to evaluate whether
the addition of SAR may improve its results.

Training the U-NET with a temporal stack of MSI imagery from four days across the Dry
season leads to improved results compared to both of the single-day datasets. The use of
temporal images enables the changes in vegetation to inform the training of the model.
Furthermore, visual comparisons show that the December- and March-trained models are
predicting clouded areas as forest. On the other hand, training with the temporal imagery

(a) December MSI (b) March MSI (c) Multi-season MSI

Figure 7.1.: Loss curves for MSI-only reference experiments
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increases the amount of False Positives, which could suggest that the model is instead as-
sociating clouded areas with cocoa fields. This is possibly due to the fact that clouds cover
different fields on different days in the temporal stack (see Figure 7.3).

(a) IoU (b) Loss

Figure 7.2.: MSI-only metrics

Figure 7.3.: MSI-only maps
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7.2. Reference training with SAR

7.2. Reference training with SAR

7.2.1. Single day SAR

Overall, the results from the January dataset (Dry season) are better than those trained with
May data (Wet season) (see Figure 7.6). This may be attributed to the fact that during the Dry
season, differences in the canopy structure and moisture are likely more significant between
the classes compared to the Wet season.

(a) May VV (b) May VH (c) May VV VH

Figure 7.4.: Loss curves for single-day SAR-only reference experiments (May)

Figure 7.5.: Single-day SAR maps

When comparing the results from different polarizations of data captured on the same day,
VH offers the best results, followed by combined VV and VH, with VV leading to the poorest
metrics. When comparing the prediction maps for different polarizations in January, VV is
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more likely to predict forest in cocoa polygons (see Figure 7.5). This may be influenced by
the density of vegetation in some areas of cocoa fields which prevent co-polarized ground
backscatter.

(a) IoU

(b) Loss

Figure 7.6.: Single-day SAR metrics

7.2.2. Multi-day SAR

The reference multi-day SAR experiments compare the training of the UNET using a stack
of SAR datasets from across the Dry season, and another that is composed of four images
distributed over the Wet and Dry seasons (referred to as ”multi-season”).

Overall, the training results for the multi-season stacked are better than Dry season only (see
Figure 7.9). This is likely due to the additional insight into seasonal changes that is provided
by the Wet season imagery, such as the loss of foliage of cocoa shade trees compared to the
more seasonally stable forest canopies.
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7.2. Reference training with SAR

(a) Multi-season VV (b) Multi-season VH (c) Multi-season VV VH

Figure 7.7.: Loss curves for multi-day SAR-only reference experiments (multi-season)

When comparing polarization metrics, the use of VV leads to significantly worse results in
both temporal stacks compared to VH or VV+ VH which have similar results. It may be due
to the fact that seasonal changes in ground backscatter alone is not sufficient to distinguish
between different vegetation types. A comparison of prediction maps of single day SAR
stacks for January and May to multi-season SAR in the same polarization (VH), January
and multi-season have visually similar results, predicting more cocoa than the May trained
model, which predicts forest in most of the cocoa polygons (see Figure 7.8).

Figure 7.8.: Multi-day SAR maps
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(a) IoU

(b) Loss

Figure 7.9.: Multi-day SAR metrics

7.3. Experiment results

7.3.1. Single day MSI and SAR

This subsection investigates whether the stacking of SAR on the single-day December MSI
can improve training metrics, analyzing the influence of season(s) and polarization.

Single day MSI and single-day SAR

The seasonality of datasets affects the effectiveness of different SAR polarizations. When
stacking VV data with MSI, imagery from the Dry season (the same season as the MSI im-
agery) leads to better metrics (see Figure 7.12). This may be due to the fact that during
the Dry season, cocoa is likely to have more canopy gaps and therefore a higher contrast in
ground backscatter compared to forest.
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7.3. Experiment results

(a) VV (b) VH (c) VV VH

Figure 7.10.: Loss curves for December MSI + May SAR

In contrast, stacking VH data leads to better results when working with Wet season SAR data.
A comparison of the loss box plots (Figure 7.13) shows that the difference is statistically
significant. This may be attributable to the fact that combining a Dry season MSI image with
a Wet season SAR provides temporal information about the canopy that is not available when
both datasets originate from the same season. By comparing prediction maps in Figure 7.11,
it can be observed that the VH May dataset predicts the least amount of cocoa in the forest
compared to the two other polarization stacks. When combining VV and VH, the result is
similar across seasons. Overall, stacking December MSI with May VH SAR leads to the lowest
loss value.

Figure 7.11.: Single-day MSI + single-day SAR maps
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(a) IoU

(b) Loss

Figure 7.12.: Single-day MSI + single-day SAR metrics

Figure 7.13.: Single-day MSI + single-day SAR loss box plot
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Single day MSI and multi-day SAR

(a) VV (b) VH (c) VV VH

Figure 7.14.: Loss curves for December MSI + multi-season SAR

In these experiments, the December MSI imagery is stacked with the multi-seasonal SAR data
in order to compare the use of different polarizations. As shown in Figure 7.15, the IoUs
for all three experiments are nearly identical, and visual observation of the prediction maps
indicate that all three have a large amounts of False Positives. However, when comparing
the Loss values, VV has the best result, followed by VV+VH, then VH. In Figure 7.16, it can
be observed that there is patch of possibly clear-cut or agricultural land; this area is most
effectively differentiated from the forest by the VV stack. While cocoa is not the correct class
for this patch, it does provide insight into the potential for temporal VV combined with
single-day MSI to differentiate between vegetated areas with differing amounts of canopy
cover.

(a) IoU (b) Loss

Figure 7.15.: Single-day MSI + Multi-day SAR metrics
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Figure 7.16.: Single-day MSI + Multi-day SAR maps

Figure 7.17 compares the predictions for the best results from single-day MSI, single-day MSI
+ single-day SAR and single-day MSI + multi-day SAR by focusing on an easily-identifiable
crop: oil palm. Looking outside of the labelled cocoa polygons, it is visually evident where
palm oil crops are located because they have a distinct texture. When comparing the proba-
bility maps, the single-day MSI + single-day SAR experiment has the best results as cocoa has
the lowest probability in the palm field. One possible reason is that palm and cocoa may be-
have more similarly across the seasons in contrast with forest (e.g. less dense canopy, more
exposed ground) which makes the co-polarized backscatter less effective at differentiating
them, but palm and forest have similarly dense canopies in the wet season, and therefore
similar levels of cross-polarized backscatter.
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Figure 7.17.: Single-day MSI + SAR maps

7.3.2. Multi-day MSI and SAR

Multi-day MSI and single day SAR

When stacking May SAR with the temporal MSI stack, the resulting IoUs are plotted in Figure
7.19 showing very slight differences. In both Loss and IoU metrics, VH has a slightly better
result, followed closely by VV+VH, then VV. The prediction maps in Figure 7.20 indicate
cocoa in many parts of the images, including a high number of False Positives, but there
some alignments between boundaries of the ground truth polygons and surrounding forest
predictions in the probability and prediction maps.

(a) VV (b) VH (c) VV VH

Figure 7.18.: Loss curves for multi-day MSI + May SAR
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(a) IoU (b) Loss

Figure 7.19.: Multi-day MSI + Single-day SAR metrics

Figure 7.20.: Multi-day MSI + Single-day SAR maps
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Multi-day MSI and multi-day SAR

The U-NET was trained with one dataset of multi-day MSI stacked with a multi-day SAR
dataset in VV polarization. Co-polarization is selected for this experiment considering that
the single-day MSI + multi-day SAR yields the best results in VV.

Figure 7.21.: Loss curve for multi-day MSI + multi-season SAR VV

When comparing these results with multi-day MSI alone and multi-day MSI stacked with
single-day SAR, the IoUs are nearly identical (see Figure 7.22). However the loss score shows
a slightly worse result when stacking a single day of SAR, and a slightly improved result
when stacking a multi-day SAR dataset. By comparing the predictions (Figure 7.23), it can be
observed that the use of temporal SAR excludes the urban area from the cocoa class, whereas
single day SAR and MSI label this area as cocoa.

(a) IoU (b) Loss

Figure 7.22.: Multi-day MSI + SAR metrics
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Figure 7.23.: Multi-day MSI + SAR maps

Comparison of predictions from multi-day MSI stacked with single-day and multi-day SAR,
showing the detection of an urban area.
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7.3.3. Overview of Set 1 experiments

The metrics of the best results from each experiment in Set 1 are plotted in Figure 7.24.
The multi-day MSI datasets have the best results, and the SAR-only datasets have the worst
results. This is not surprising, as the combination of temporal and multi-band data can
provide significantly more insight into the differences between land cover type compared to
backscatter only.

(a) IoU

(b) Loss

Figure 7.24.: Comparison of IoU and Loss for best results from each experiment.
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Figure 7.25.: Box plot comparison of loss metric values from original 10-fold experiments.

Based on Figure 7.24, it appears that the addition of single-day and multi-season SAR both
improve the results for multi-day MSI data. This is also the case when stacking single-day
MSI with temporal SAR. However, adding single-day SAR to single-day MSI appears to lead
to slightly worse results. By looking closer at the distribution of the loss values across the
10-fold experiments, it becomes clear that an outlier is affecting the loss average for the
December MSI and Multi-day MSI experiments.

Therefore, comparing the box plots provides a more accurate assessment of the experiment
results as shown in Figure 7.25. Single-day MSI results are improved slightly with the ad-
dition of single day SAR and also reduce the spread of the data, suggesting that the model
is less sensitive to the split of the training and validation data and is therefore more robust.
This spread is further reduced with the use of multi-season SAR, and the median loss value
is improved in a statistically significant way. In the case of multi-day MSI, the results are
less conclusive. While they are indeed better than any single-day experiment, the addition
of SAR from a single day or from across the seasons does not significantly improve the loss
results.

7.4. Intercrop detection

Considering the uncertainty of intercrop labels, the use of quantitative metrics does not pro-
vide meaningful insight into the effectiveness of the models. Efforts were made to observe
visually whether certain experiments led to more accurate intercrop detection.

In the case of the original training labels (cocoa and forest), a comparison of predictions
overlaid on an intercrop polygon does offer some insight (see Figure 7.26. The stacked multi-
day MSI and single-day SAR, which has the highest loss metric (least effective monocrop
cocoa prediction) predicts cocoa in the entire polygon with a high certainty and uniformity.
This prediction is unlikely considering that the defining characteristic of ”intercrop” is the

60



7.4. Intercrop detection

Figure 7.26.: Multi-day MSI + SAR intercrop maps

combination of different crop types. In contrast, the multi-day MSI stack predicts a lower
cocoa probability in the top half of the polygon where a more dense tree canopy is visible
on the satellite image. Finally, the multi-day MSI and multi-day SAR stack has a lower cocoa
probability in the top half and lower right corner of the polygon, where a line of large trees
is visible. While it is not possible to determine the exact location of cocoa in the imagery at
this resolution, it can be observed that the addition of multi-seasonal SAR enables the model
to be sensitive to some vegetation differences that are not detected by MSI only.

Another observation from the intercrop imagery is the influence of shadow on cocoa de-
tection, in addition to cloud cover. In Figure 7.27, the majority of the image is under the
shadow of a cloud in the bottom right of the image. The MSI-trained model predicts forest
in the clouded and shaded region covering nearly the entire intercrop polygons, likely af-
fected by the lower reflectance in this portion of the image. However, the addition of SAR
from a single day and multi-day reduces the amount of forest predicted in the image and
does not follow the shadow outline, suggesting that additional data supports the model in
overcoming the atmospheric interference with the spectral signatures of vegetation.
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Figure 7.27.: Single-day MSI + SAR intercrop maps

7.5. Set 2 experiments: Impact of labelling

Several experiments are repeated with a more comprehensive dataset. The cocoa class is not
changed, but the ”non-cocoa” class that previously included only forest reserves, is supple-
mented with non-cocoa crops. These experiments lead to some different results shown in
Figure 7.28, and all metrics are reported in Table A.2.
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(a) Loss averages

(b) Loss box plot

Figure 7.28.: Comparison of loss from 10-fold experiments with (1) original labels (Cocoa
and Forest) and (2) modified labels (Cocoa and Not Cocoa)

In the case of single-day MSI data, the loss value is significantly lower, and slightly lower in
the case of single-day MSI stacked with single-day VH SAR, therefore indicating improved
results in both cases. The loss metric for the single-day MSI stacked with multi-season VV
SAR is higher, indicating less effective predictions. Unlike the original experiment, the ex-
periment with modified labels does have an outlier in the single day MSI + single day SAR
plot. This can be explained by the fact that the non-cocoa crops made up a relatively small
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portion of the total ground truth data, therefore in the case that the random split excludes
any of these areas from training, the predictions may be negatively affected.

By observing the predicted maps, it can indeed be observed that the single-day MSI + single-
day SAR is frequently labelling oil palm crops as cocoa (see for example Figure 7.29), whereas
the single-day MSI + multi-day SAR identifies these areas as ”not cocoa.” These results are
reversed in comparison with training using only cocoa and forest labels described in the
previous section (illustrated in Figure 7.17).

Figure 7.29.: Single-day MSI + Multi-day SAR

Single-day MSI (December, dry season) stacked with single and multi-season SAR datasets
showing impact on palm crop differentiation when training with non-cocoa crop labels
(white dotted polygon).

A possible explanation for these differences is the characteristics of the palm vegetation.
Palm and cocoa are both evergreen, however cocoa has deciduous shade trees above the
canopy, which palm does not have. Both are likely to have some ground scattering; during
the Dry season, cocoa will have less shade foliage therefore a higher intensity of VV, whereas
palm will exhibit a small increase in VV due to a dryer soil and forest will have a consistently
low intensity of VV backscatter. Both vegetation types have a rather high amount of volume
scattering, although palm appears to have a more lush canopy with fewer gaps, therefore
the VH intensity of palm is likely more similar to forest, and higher than that of cocoa.

When training the model with only forest and cocoa labels, with palm included in the ”un-
known” class, the seasonal variation in palm ground backscatter may appear more similar
to that of cocoa, causing better results with the temporal VV stack. In contrast, the single day
VH training will group together forest and palm because they both have higher amounts of
volume backscatter due to canopy structure.
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When training the model with cocoa and non-cocoa classes (the latter of which contains
forest and non-cocoa crops including palm), the seasonal variation in palm is less likely to
be confused for cocoa, and instead the model will learn to better differentiate between their
seasonal patterns. However, the wide range of crop types and canopies in the non-cocoa
class may create a less clear distinction between cocoa canopy and other canopies, therefore
explaining why the single day VH predicts most vegetated areas as cocoa.

7.6. Set 3 experiments: Impact of clouds

The results described above are generated using training data that is partially cloudy. In
the case of the Cocoa/Forest experiment, 12% of the labelled data is covered by cloud. The
single-day MSI + SAR stack experiments are repeated with the exclusion of clouded areas,
and all metrics are reported in Table A.3. The removal of cloudy training data leads to
overall lower loss values and higher IoUs as shown in Figure 7.30. These results suggests
that the relevance of SAR is more important in the case of partially cloudy MSI.

7.7. Overview of all experiments

Figure 7.31 depicts the metrics from each of the experiment sets.
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(a) Loss averages

(b) IoU averages

Figure 7.30.: Comparison of loss from 10-fold experiments with (1) original labels (Cocoa
and Forest) and (2) original labels without clouded areas
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7.7. Overview of all experiments

(a) IoU

(b) Loss

Figure 7.31.: Comparison of metrics for experiments from Sets 1, 2 (varied non-cocoa class),
and 3 (cloudless)
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8.1. Discussion

In this section, each of the hypotheses are addressed in the context of the related work
described in Chapter 3 and the research questions outlined in 1.

Firstly, the combination of SAR and MSI was expected to improve the model predictions for
monocrop cocoa compared to MSI-only training. The results show that the addition of SAR
to single-day MSI can improve the accuracy of the model, depending on the seasonality and
polarization of the dataset introduced. In the case of a single-day image from December (Dry
season), the addition of single-day VH Wet season imagery slightly improved the loss metrics,
and it was found that less cocoa was predicted in forested areas and in visibly identifiable
oil palm fields, suggesting an improved distinction between vegetation canopies. Repeating
the training with modified labels (Cocoa and Not Cocoa, containing non-cocoa crops) led
to improved metrics but a less effective differentiation between cocoa and oil palm, per-
haps attributable to the similarities between these crop canopies. This insight suggests that
careful labelling and fine-tuning of the model could potentially lay the foundation for co-
coa predictions at a higher temporal frequency than is possible with multi-temporal dataset
analyses.

Furthermore, the addition of temporal stacks of SAR data covering the wet and dry seasons
was expected to lead to better results in comparison with adding single-day SAR. The addi-
tion of multi-seasonal VV data to single-day MSI was indeed found to cause the most significant
improvement, decreasing the average loss value from 0.76 to 0.69, as well as reducing the
spread of the 10-fold loss values and the vulnerability of the model to imbalanced data splits.
This improvement is in line with the findings presented in [1] which identify multi-temporal
VV SAR as having the greatest importance in cocoa detection via Random Forest Regression.
Nevertheless, closer observation of the predicted images outside of the labelled polygons
indicated that the model was identifying some non-cocoa crops (such as oil palm) as cocoa,
a mistake that is not captured in the metrics. Repeating the training with modified labels
(Cocoa and Not Cocoa, containing non-cocoa crops) led to a higher loss value but a more
effective differentiation between cocoa and oil palm.

Regarding the combination of SAR with multi-day MSI datasets, the experiments suggest
slightly improved results but the box plot analysis indicates that these differences are not
statistically significant. While the metrics are inconclusive, it was observed that some land
cover types outside of the ground truth polygons (e.g. urban areas) were detected by the
model trained by stacked multi-day MSI and multi-day SAR which was not the case for other
models. Further investigation using a more extensive ”Not cocoa” class would provide more
insight into this phenomenon. Therefore, it can be concluded that the addition of single- and
multi-day SAR can improve the differentiation between cocoa and other vegetation types, but
is very sensitive to the underlying MSI dataset, the classes used in the training of the model,
as well as the SAR seasonality and polarization.
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Secondly, the addition of SAR to MSI was expected to enable the detection of cocoa on in-
tercrop polygons where MSI-training would predict only forest. While the nature of the
intercrop cocoa labels do not lend themselves to the use of the metrics applied for monocrop
cocoa polygons, visual observation of prediction masks does suggest some improvement in
the model’s effectiveness as there is more differentiation between vegetation types within an
intercrop polygon. Due to the lack of attribute data specifying the location of agroforestry
cocoa, it is not clear whether the addition of SAR would improve the detection of this type
of cocoa crop.

The addition of SAR was expected to improve predictions in images with cloud cover on a
single day measurement where MSI reflectance is inhibited. While this was not observed
equally across all samples, seasons and polarizations, it was observed that the stacking
of May SAR in combined VV and VH polarization lessened the influence of clouds on the
resulting predictions. It is likely that a larger training dataset with a lower proportion of
cloud cover could improve such results as the model would have additional positive samples
from which to learn combined reflectance and backscatter characteristics.

Combining both polarizations of SAR was expected to yield better results than a single po-
larization as it was expected to capture the effects of volume scattering, surface scattering
and double bounce, all of which provide insight into the type of land cover. In the case of
SAR only trainings (both single-day and multi-day), the combined polarizations did indeed
generate the highest cocoa F1 score and the lowest loss value, indicating the best results.
This is in line with the results presented in [49] and [39] which indicate that the use of
GLCM derived from combined co- and cross-polarized SAR data led to the best classification
of land cover types. However, there is not a clear tendency for the combined polarizations
to improve predictions when combined with MSI. In the case of single-day MSI + single-
day SAR, single-day MSI + temporal SAR, and temporal MSI + temporal SAR, the loss values
of combined polarizations were consistently between that of the best result and the worst
result. The reason for this difference in results is not immediately clear, but it is possible
that the strength of the reflectance patterns and high volume of MSI data combined with a
higher volume of SAR data causes more noisy datasets and impedes the effectiveness of the
model.

It is challenging to compare the results of the present research with previous research on the
detection of cocoa using ML considering the wide range of methods used, the limited time
and attention devoted to hyperparameter tuning in this thesis and the limited temporal and
spatial scope of datasets used for the model training. Furthermore, as discussed throughout
the results section, the quantitative metrics do not fully capture the effectiveness of the
different training datasets. However, it can be helpful to observe trends in the metrics of
different studies, therefore the present research results are compared to those of the two
previous semantic segmentation studies for cocoa detection presented in [8] and [44]. The
experiment yielding the best metrics in this thesis was the one trained with multi-day MSI
stacked with May (wet season) VH SAR data and is compared with other studies in table
8.1.

The comparison shows that, in all three cases, the recall score is lower than the precision
score, suggesting that it remains challenging to detect all of the cocoa that is present in an
area, likely due to complexities such as canopy cover which often mask the presence of cocoa
below. Furthermore, the precision values reported by [44] and the current research are both
extremely high, which may suggest a tendency in both cases for the model to over-predict
cocoa across vast areas of all images. Through visual observation of predicted maps, it
appears that this is likely to generate a high number of False Positives outside of the ground
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Source Accuracy Precision* Recall* F1* IoU*
Filella, 2018 [44] 75.7 99.7 61.1 75.8 58.2

Kalischek et al., 2022 [8] 85.9 88.5 87.2 87.3 n/a
Current study 95.1 98.1 83.2 90.0 78.7

Table 8.1.: Comparison with related work metrics

*cocoa only

truth areas. However, since the metrics are computed only on labelled ground truth, this is
not immediately evident in the metrics.

Considering that [44] also acknowledges a low number of non-cocoa ground truth polygons,
neither a very high precision value, nor the F1 score that is derived from it, is sufficient to
confirm the reliability of either model. With these considerations in mind, it is important to
acknowledge the limitations of quantitative metrics in evaluating cocoa detection strategies
and emphasize the importance of qualitative evaluation and ground-truth verification of
such models if they are to be used for future enforcement of the EUDR.

8.2. Limitations

A number of limitations were encountered in this thesis, regarding the labels used for net-
work training, the satellite imagery involved in the research and the processing steps applied
in the methodology.

Label classes. For the purpose of clarity, two classes are used (forest and cocoa), however
this excludes a very large portion of the land cover types in the study area such as other
crops, water bodies, urban areas etc. As a result, the network is limited in its ability to
differentiate between other classes and can therefore not be immediately applied to predict
cocoa in regions that are not known cocoa or forest parcels. The additional experiments
undergone with the Cocoa and Not cocoa classes (containing non-cocoa crops) do improve
the predictions, but a significant number of classes are still missing from the ground truth,
such as urban areas, water, and other vegetation types.

Label uncertainty. The forest labels are reserves, which does not guarantee that the poly-
gons contain pure forest without encroaching cocoa crops. Therefore, the network may be
mistakenly trained with illegal cocoa or other crops. Furthermore, there was some uncer-
tainty in the label data provided by Meridia: within intercrop farms, the exact location of
cocoa is not known and can therefore not be compared to predictions with a high level of
certainty. The cocoa dataset does not contain specific attributes related to the type of in-
tercrop farms, which limits conclusions related to agroforest cocoa detection. It would be
helpful for further analysis to identify intercrop type during the field visit survey. Finally,
due to the use of forest reserve polygons and restricting the study to one S2 tile, there are no
masks used for training or testing purposes that contain both forest and cocoa. Considering
that patterns along the borders of such land types are complex and likely difficult to distin-
guish, it would be helpful to collect additional polygons of smaller forest patches adjacent
to cocoa parcels during field visits.
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Metrics. The labelling challenges described above limit the relevance of the metrics used to
evaluate cocoa crop predictions. Furthermore, the metrics are computed after the applica-
tion of the Argmax function, which means that predictions with cocoa probabilities above
50% are considered ”cocoa” predictions, which does not reflect the difference in levels of cer-
tainty between different experiments. Computing metrics from predictions above a certain
threshold (e.g. 80%) would offer more meaningful comparisons between experiments.

Satellite data. The 10m resolution of S1 and S2 datasets is likely not sufficient to detect many
important details that differentiate between intercrop cocoa and forest. For instance, a lower
resolution can increase the uncertainty along boundaries between forested and non-forested
areas [69] as cited in [61, p. 5]. Another limitation is that the datasets are pre-processed by
the data provider, reducing the amount of control over the steps taken in pre-processing and
potential loss of information (e.g. when converting S1 data from Single Look Complex (SLC)
to GRD).

Temporal resolution. The temporal stacks were limited to four images per year; a higher
temporal resolution would increase the amount of information available to inform the train-
ing. Furthermore, the temporal resolution of the MSI is limited to the dry season in order
to avoid the use of imagery with >15% cloud cover. This limits the effectiveness of training
with MSI temporal stack and could be improved by spreading out the data evenly across the
year while masking cloudy areas.

Variety of data. Finally, additional steps in preparing the data for training could maximize
the use of the datasets, such as rotating and translating the imagery in order to increase the
ability of the U-NET to identify land cover classes from different angles. Increasing the study
area would also allow for a more diverse representation of cocoa and forest from different
regions.

8.3. Conclusion

This section addresses each of the research sub-questions and concludes by drawing conclu-
sions on the main research question for this thesis.

• How does the combination of MSI and SAR data affect the results of cocoa parcel seg-
mentation trained with MSI data from a single day?

The results of Chapter 7 demonstrate how using different combinations of datasets for train-
ing can influence the effectiveness of the same U-NET in detecting cocoa crops. Compared
to a reference MSI-only experiment, the combination of wet season single-day SAR in VH
polarization and dry season single-day MSI is shown to produce slightly improved F1 score
and loss metrics, and demonstrates an improvement in the ability for the U-NET to dif-
ferentiate between forest and cocoa. Furthermore, the combination of multi-seasonal SAR
in VV polarization and dry season single-day MSI led to an even greater improvement in
the model’s abilities to differentiate cocoa from forest. Additional experiments including
non-cocoa ground truth led these results to be reversed. However, it was observed that the
ability of a specific polarization and season of SAR to distinguish cocoa from palm oil crop
was dependent on the labels included in the dataset.

• How does the combination of temporal MSI and SAR data affect the results of cocoa
parcel segmentation?
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The experimental results suggest that, while there was a slight improvement in the average
loss value for stacked multi-day MSI and single or multi-day SAR, this difference is not
statistically significant. The spread of the loss values across experimental folds is slightly
reduced, suggesting that the model may be more robust in the face of different data splits
due to the additional characterization of crops based on texture and moisture. Furthermore,
based on observations of the prediction maps, the combination of multi-day MSI and multi-
day SAR has potential to improve differentiation with other class types that were not included
in this research.

• Why does the use of different polarizations (i.e. VV or VH) affect the influence of SAR
datasets on the cocoa segmentation results?

The use of different polarizations of SAR enables the model to learn from different character-
istics of surface features. Considering that different types of vegetation will lead to different
intensities of co- and cross-polarized backscatter, and that these intensities will vary differ-
ently over time, it is important to use data that is relevant to the specific land cover types
being considered. The importance of different polarizations varies depending on whether
they are stacked with MSI or not. This is likely due to the fact that MSI already contains a
significant amount of data related to different spectral signatures, and the addition of SAR
should be selected to complement this data. When stacking a single-day dry season MSI
imagery, SAR data from the Wet season is has the most positive impact on results when
considering VH polarization as it will provide the most insight into canopy structure, and
therefore volume backscatter, during the productive season. Temporal SAR added to MSI of-
fers the best results when using the VV polarization, likely because it offers more insight into
canopy gaps and ground texture and moisture, which change in more distinct ways between
forest and cocoa compared to biomass. The different results observed between experiments
also indicate that different vegetation types have more or less similarity in co- and/or cross
polarized data, therefore the labels used for training must be carefully selected as they can
influence the effectiveness of the model.

• What is the impact of SAR andMSI training data on the detection of intercrop cocoa?

As described in Chapter 7, the effect of SAR data on intercrop cocoa detection is challenging
to quantify due to labelling limitations, and difficult to observe visually due to the challenge
of identifying intercrop cocoa from satellite imagery. However, by comparing map predic-
tions, it could be observed that intercrop areas are not homogeneously predicted as either
forest or cocoa, which suggests some improvement in the sensitivity of the model. Therefore,
more detailed labels indicating the exact location of cocoa would need to be used to evaluate
the effectiveness of stacked MSI and SAR in more depth. Furthermore, given the complexity
of agroforestry cocoa and the spatial resolution of GRD SAR at 20 x 22 m, this kind of dataset
is not sufficient for the detection of cocoa within complex and dense canopies with a high
level of certainty.

Conclusion on the main research question:

• To what extent can a Convolutional Neural Network trained with multispectral and
SAR datasets enable the automated detection of cocoa crops in Ghana?

This thesis aims to evaluate the influence of introducing SAR datasets into MSI on the ability
for a CNN to detect cocoa. The research carried out with a U-NET combines different stacks
of data and compares the resulting predictions and metrics. Quantitative and qualitative
evaluations of the results suggest that the addition of SAR can improve predictions when
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that additional data is selected carefully to provide additional information (i.e. by making
use of relevant seasons and polarizations). Furthermore, the research has demonstrated the
need for high quality labels and a careful choice of classes used in the classification in order
to generate results that are relevant to the purpose of the cocoa map. Whereas this research
offers insight into the effect of SAR in differentiating between cocoa, forest and other crops,
it is expected that the conclusions drawn in this thesis are relevant to cocoa classification
with a greater number of ”non-cocoa” ground truth classes. Finally, whereas evaluating the
potential for combined dataset to better detect intercrop cocoa was an important motivation
for this thesis, the lack of precise ground truth polygons makes it difficult to draw clear
conclusions on this subject. Visual analysis suggests that SAR does improve the distinction
between vegetation types. However, the lower resolution of SAR datasets and the complexity
of agroforestry land cover suggest that it may not be suitable for detecting cocoa plants
within the agroforest canopy.

8.4. Contribution

This thesis contributes to a more in-depth understanding of the potential, limitations and
complexity of combining S1 and S2 datasets for cocoa crop detection. In particular, the
findings address the following topics:

Temporal data: the research provides an exploration into the the importance of temporal
datasets that capture changes in reflectance, moisture and biomass of different land cover
types over the seasons. It suggests ways to combine temporal SAR data with single day MSI
(and vice-versa) in order to improve predictions and potentially reduce the amount of data
needed to identify cocoa.

Polarization: the research demonstrates the importance of carefully choosing SAR polariza-
tions when stacking with MSI data by showing the outcome of different dataset stacks de-
pending on the scenario (e.g. SAR alone, temporal SAR and MSI, single-day SAR and MSI).

Labelling: in this work, the complexity of labelling decisions and uncertainty has been de-
scribed in detail and contributes an improved understanding of the necessity for high accu-
racy cocoa and forest ground truth with detailed attributes.

8.5. Future work

As the reporting requirements for cocoa producers continue to grow in response to the
threat of deforestation, future work on the use of ML and remotely sensed data will play
an important role in producing more reliable cocoa maps. There are several directions for
future research to be considered.

First, considering the high cost of commercial remotely sensed data, it is important to further
explore the potential for detecting cocoa using DL and open-source S1 and S2 data as has been
done in this thesis. The first step to deepen this research would be to apply hyperparameter
tuning in order to optimize the results using the current architecture and datasets. Another
way to build on the current research would be to increase the temporal resolution of the
dataset stacks in order to improve the models ability to detect land cover changes over the
seasons, and during a longer timespan. Considering the improvements introduced by a more
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varied ”Not Cocoa” ground truth class, it would also be beneficial to conduct additional
experiments with a more extensive ”Not Cocoa” class in order to observe the impacts on
trainings with different datasets.

Feature extraction and selection can reduce the amount of data that must be processed by the
model, and can sometimes improve classification results [5]. Furthermore, some previous
ML cocoa detection algorithms have made use of vegetation indices (e.g. NDVI) and texture
metrics (e.g. GLCM). Considering that texture is considered in the U-NET kernels, it may be
useful to employ similar analyses prior to the CNN in order to guide the network towards
identifying meaningful patterns. For example, the SAR datasets could be pre-processed by
applying the GLCM [39]. MSI can be further processed using vegetation indices which can
identify unique characteristics of different vegetation types [70]. One commonly used vege-
tation index is the NDVI, and a previous study has applied the Tasseled Cap Analysis (TCA)
which uses more bands than NDVI and combines characteristics of brightness, greenness and
wetness [5]. One solution to reduce the effect of the soil moisture is the Cross Ratio (CR),
the ratio between VH and VV, which increases alongside biomass [46, p. 13]. Future research
could explore the impact of using vegetation indices and metrics on the training speed and
effectiveness of the U-NET.

Considering that cocoa trees and tropical forest trees and shade trees can have a significant
difference in height [8] and additional collected or inferred vegetation height data could be
integrated with MSI and SAR to further improve model predictions.

Another way to develop this research would be to refine the training process by employing
a more appropriate loss function, such as Lovasz loss function, which optimizes the IoU
rather than focusing on individual pixels [24, p. 1463], or the Dice loss, which aims to
optimize the F1 score [8]. It is possible that the U-NET, although one of the most popular
networks for semantic segmentation, is not the best network for this use case. Other CNN
architectures may provide more adapted convolutional layers [8]. Therefore, carrying out
similar experiments with a more complex architecture may yield improved results.

Considering the limitations of S1 and S2 datasets described previously, including the spatial
resolution and rather short wavelength of C-band SAR data, future research could explore
the potential of semantic segmentation of cocoa using more precise remotely sensed data.
One possible avenue of research would be exploring the use of longer wavelengths (such
as L- and P-bands) which can penetrate deeper into the canopy in combination with S2
MSI. Another avenue would be the exploration of higher resolution MSI and hyperspectral
imagery in combination with SAR in order to explore the potential for such datasets to enable
deep learning to detect cocoa in complex ecosystems such as agroforestry crops. Finally, it
would be beneficial to analyze the role of spatial resolution in the segmentation outputs for
different forms of cocoa crops.
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A. Metrics

DS = Dry Season
MS = Multi Season
*cocoa metric

# label time (s) loss accuracy IoU* precision* recall* F1*
1 Dec MSI 624.89 1.0304 0.9249 0.7086 0.8923 0.7975 0.8423
2 March MSI 797.97 0.7622 0.9384 0.7670 0.9496 0.8115 0.8752
3 Temp MSI 735.07 0.5254 0.9501 0.7842 0.9803 0.8320 0.9001
4 May VV 1216.9988 1.6587 0.5063 0.1087 0.4891 0.2069 0.2908
5 May VH 1148.9945 1.5931 0.6019 0.2251 0.5923 0.3105 0.4074
6 May VV VH 957.91 1.6066 0.5599 0.1543 0.5263 0.2427 0.3322
7 Jan VV 1038.0268 1.5291 0.6744 0.3106 0.6597 0.3823 0.4840
8 Jan VH 938.9624 1.6129 0.7213 0.6819 0.6819 0.4369 0.5325
9 Jan VV VH 893.8322 1.4008 0.7195 0.3630 0.7074 0.4357 0.5393
10 Temp VV (DS) 689.24 1.5482 0.5284 0.2645 0.7401 0.3231 0.4498
11 Temp VH (DS) 774.93 1.3449 0.7095 0.3908 0.7592 0.4581 0.5714
12 Temp VV VH (DS) 757.40 1.3028 0.7654 0.4138 0.7336 0.4946 0.5908
13 Temp VV (MS) 779.66 1.4572 0.6932 0.3291 0.6745 0.4081 0.5085
14 Temp VH (MS) 802.28 1.2549 0.7840 0.4422 0.7695 0.5158 0.6176
15 Temp VV VH (MS) 666.53 1.2191 0.7776 0.4405 0.7819 0.5072 0.6153
16 Dec MSI + Jan VV 841.14 0.7875 0.9310 0.7319 0.9217 0.8008 0.8570
17 Dec MSI + Jan VH 820.53 0.9741 0.7928 0.5137 0.9315 0.5292 0.6749
18 Dec MSI + Jan VV VH 749.13 0.8758 0.9287 0.7279 0.9334 0.7876 0.8543
19 Dec MSI + May VV 738.84 0.8556 0.9223 0.7130 0.9318 0.7721 0.8445
20 Dec MSI + May VH 793.41 0.7809 0.9263 0.7230 0.9275 0.7862 0.8511
21 Dec MSI + May VV VH 761.57 0.8352 0.9256 0.7226 0.9401 0.7775 0.8511
22 Dec MSI + Temp VV 800.59 0.6919 0.9323 0.7379 0.9331 0.7997 0.8613
23 Dec MSI + Temp VH 724.16 0.7971 0.9359 0.7473 0.9172 0.8205 0.8662
24 Dec MSI + Temp VV VH 756.44 0.7725 0.9293 0.7320 0.9185 0.7998 0.8550
25 Temp MSI + May VV 723.67 0.5432 0.9464 0.7697 0.9767 0.8200 0.8915
26 Temp MSI + May VH 771.41 0.4989 0.9506 0.7869 0.9814 0.8320 0.9005
27 Temp MSI + May VV VH 743.04 0.5147 0.9503 0.7849 0.9791 0.8331 0.9002
28 Temp MSI + Temp VV 731.36 0.5066 0.9492 0.7796 0.9793 0.8278 0.8972

Table A.1.: Set 1 experiment results: average metrics across all folds
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A. Metrics

# label time (s) loss accuracy IoU* precision* recall* F1*
29 Dec MSI 671.23 0.7296 0.9298 0.6499 0.9355 0.6816 0.7887
30 Dec MSI + May VH 712.4836 0.6857 0.9379 0.6771 0.9440 0.7024 0.7885
31 Dec MSI + Temp VV 502.6102 0.7783 0.9312 0.6450 0.8799 0.7163 0.7444

Table A.2.: Set 2 experiment results: modified labels with more varied ”Not cocoa” class

# label time (s) loss accuracy IoU* precision* recall* F1*
32 Dec MSI 875.7600 0.5202 0.9520 0.7761 0.9744 0.7933 0.8640
33 Dec MSI + May VH 705.9654 0.5712 0.9426 0.7412 0.9640 0.7644 0.8380
34 Dec MSI + Temp VV 688.5537 0.5600 0.9527 0.7737 0.9534 0.8055 0.8542

Table A.3.: Set 3 experiment results: original labels with clouds removed
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B. Plots and graphs

(a) Jan VV (b) Jan VH (c) Jan VV VH

Figure B.1.: Loss curves for single-day SAR-only reference experiments (January)
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B. Plots and graphs

(a) Multi-day VV (b) Multi-day VH (c) Multi-day VV VH

Figure B.2.: Loss curves for multi-day SAR-only reference experiments (dry season)

(a) Dec MSI + Jan VV (b) Dec MSI + Jan VH (c) Dec MSI + Jan VV VH

Figure B.3.: Loss curves for December MSI + January SAR

Figure B.4.: Loss curve for single-day MSI-trained model
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C. Reproducibility self-assessment

C.1. Marks for each of the criteria

Figure C.1.: Reproducibility criteria.

category criteria grade
1. Input data Satellite imagery 3

Ground truth polygons 0
2. Methods Pre-processing 2

Analysis & processing 2
Computational environment 3

3. Results 1

Table C.1.: Evaluation of reproducibility criteria
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C. Reproducibility self-assessment

C.2. Reflection on reproducibility

Input data
The S1 and S2 datasets are openly available via the WEkEO platform in the pre-processed for-
mats. It can also be obtained directly via the European Space Agency’s Copernicus Data Hub
and processed via the European Space Agency’s Sentinel Application Platform (SNAP).

The ground truth polygons obtained from Meridia for this thesis are confidential and pro-
prietary data collected from or about the company’s clients and cannot be made available.
Furthermore, cocoa ground truth is a commercial resource that is not openly available and
is challenging to collect.

Methods
The implementation of this research is described in detail in Chapter 5 and Chapter 6. All
tools for pre-processing are open source and available.

The pre-processing and post-processing scripts were implemented in Visual Studio Code
and are available via Github. QGIS is an open-source GIS software that was used for visual-
ization and pre-processing purposes.

The CNN implementation was carried out via AWS Studio Lab, a free version of AWS Sage-
maker which makes use of Jupyter notebooks and cloud-based storage. Studio Lab provides
access to a GPU runtimes for 8 hours per day (each runtime lasts a maximum of 4 hours) and
15 GB of persistent storage. These resources were sufficient to carry out 1-2 experiments
in one 24 hour cycle. The Jupyter notebook used in this research (including the U-NET
architecture, data splits and experiment folds, and visualization) are available via Github.

Results
The results are documented and described in Chapter 7 in the form of maps, tables and
graphs. A summary of all experiment metric averages can be found in Appendix A, and
additional plots and maps are included in Appendix B and ??.
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