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Summary 
Our research aims to leverage Digital Twins (DTs) in creating sustainable urban environments and Positive Energy 
Districts (PEDs), enhancing energy efficiency, integrating renewable energy sources (RESs), and managing energy in 
buildings and districts for a more sustainable and low-carbon future by addressing the following objectives: 

• Establishing a (Spatial) Data/Information Infrastructure that gathers/manages/disseminates the essential 
information to model and manage energy within buildings and districts. 

• Developing data-driven models for predicting energy demand in buildings, taking into consideration factors such 
as building characteristics and weather conditions. 

• Expanding the energy demand model from a building level to a district level. 
• Determining the optimal action sequence regarding energy efficiency, enhancing energy generation from RESs, 

and energy storing/sharing between buildings as a response to buildings’ energy requirement in a district. 
• Undertaking spatial analysis to investigate the potential of districts in integrating RESs. 
• Analysing scenarios and applying multi-objective optimization algorithms at the building level to enhance Energy 

Efficiency (EE) and reduce external energy demand. 
• Analysing scenarios and applying multi-objective optimization algorithms at the district level for energy 

balancing between buildings. 
• The project aims to be designed with a strong focus on practical applicability, aiming for solutions that can be 

readily implemented in the real world to optimize energy management in buildings and districts. 
• The horizon for this research is for 2030 and 2050, providing solutions for balancing energy and minimizing 

burden on the electric grid using the DT. 

Keywords: GIS, Digital Twin, Positive Energy Districts, Energy transition, Data-Driven, Data Infrastructure 

1. Introduction: 
Producing and consuming energy from fossil fuels contributes to the emission of CO2 into the atmosphere which has 
a significant impact on global warming and climate change (Rolnick et al., 2022). A global effort was made by 
countries to reach an agreement to tackle climate change before it transforms our planet irreversibly (Economidou et 
al., 2020). These strategies prioritize enhancing Energy Efficiency (EE) in buildings and increasing the generation of 
Renewable Energy Sources (RESs) as essential measures in climate change mitigation (Harvey, 2009). 

Cities are responsible for consuming about two-thirds of energy consumption and emitting more than 70% of GHGs. 
Also, it is estimated that the building section accounted for more than one-third of the energy consumption (Umbark, 
Alghoul, & Dekam, 2020). With half the global population already urbanized, and expected to rise to 70% by 2050, 
we anticipate more buildings, higher energy demand, and increased GHG emissions (Fausing, 2020). 

In this context, integrating RESs into the urban grid stands as a key solution. This shift towards hybrid energy systems 
from single-source systems offers hope. However, Integrating RESs into the electricity grid can disturb stability of the 
grid since RESs such as wind and solar depend on weather conditions and are not stable in producing energy. 
Therefore, to facilitate integrating RESs in grid, it is vitally important to create a balance between energy demand and 
supply (Ekren & Ekren, 2010). 

Figure 1. System operation logic. Adopted from (Aruta et al., 2023). 
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To manage this balance, techniques like Energy Storage Systems (Voorden, Elizondo, Paap, Verboomen, & Sluis, 
2007), Demand Response Programs (Chen & Liu, 2017), and advanced grid management systems have been 
developed (Rathor & Saxena, 2020). As depicted in Fig. 1, as the complexity of maintaining this balance escalates, 
the need for novel insights and tools to aid decision-makers rise. 

Positive Energy Districts (PEDs) have emerged as a response to the growing energy demand of buildings and the 
complexities of RES integration. PEDs are characterized as energy-efficient and energy-flexible urban zones with an 
excess of renewable energy production and minimum greenhouse gas emissions (Magrini, Lentini, Cuman, Bodrato, 
& Marenco, 2020).  

Developing PEDs has a group of challenges, such as social, technological, spatial planning, regulations, legal matters, 
and economic factors (Krangsås et al., 2021). This research will focus more on technical aspects of PEDs. The 
integration of digital methods can be a solution to the challenges in PEDs (Zhang, Shen, et al., 2021a). Since DT can 
collect and analyse massive amounts of data (energy usage, occupancies patterns, weather data, etc.), provide real-
time monitoring and predictions, and conduct various scenarios to monitor and predict energy 
production/consumption/distribution, operation optimization, energy security, decision-making for energy 
management, and balancing the demand and supply. These features make DT a powerful tool for decision-makers 
seeking managing energy within/between buildings (Rolnick et al., 2022). 

The successful management of energy and implementation of PEDs needs massive data. DTs serve data from multiple 
sources that can create dynamic digital models that can return a virtual mirror of reality at any time. Datasets can be 
created, collected, processed, managed, stored, and visualized in various ways with different coordinate systems, 
formats, models, and standards. The prevailing issue in this field stems from the absence of a structured data 
infrastructure capable of integrating and exchanging a variety of datasets. This problem becomes more pronounced 
when dealing with energy-related datasets in the built environment, where the absence of standardization and 
unification impedes efficient data utilization and exchange. this issue underscores the necessity for data infrastructure. 

Subsequently, to establish a balance between energy demand and supply, we need to comprehend the demand 
requirements, identify the necessary measures to meet these demands and strategize to prioritize these measures based 
on the concept of PED.  

Few studies have attempted to develop models for predicting energy demand of buildings based on historical datasets 
of energy performance (Guo, Zhao, Wang, Shan, & Gong, 2021; Rahman, Srikumar, & Smith, 2018; Yang, Li, & Xun, 
2019), weather conditions (Anđelković & Bajatović, 2020; Sendra-Arranz & Gutiérrez, 2020), building 
interdependency (Hu et al., 2022), occupant behaviour (Fu & Miller, 2022) and electricity price (Guo et al., 2021) 
using white box, grey box and black box models. The problem that arises from the current research landscape is the 
inadequacy of extending the energy demand models from individual buildings to encompass entire districts. Given the 
popularity and proven efficiency of data-driven algorithms, these methodologies can be effectively employed to 
forecast the energy demand of buildings, with the potential to scale this approach to district-level. 

The following challenge that arises in this research involves determining the optimal actions regarding meeting energy 
demand based on the concept of PEDs, with a focus on increasing EE of buildings, enhancing energy generation from 
RESs, and energy storing/sharing between buildings.  

Improving the EE of buildings is a substantial aspect to reduce energy demand of buildings. This research aims to 
identify intervention scenarios and algorithms to prioritize them to be applied to optimize energy performance at both 
building and district levels. Few researchers developed strategies to increase EE of buildings. For example, 
Dirutigliano, Delmastro, and Torabi Moghadam (2018) used Preference Ranking Organization Method for Enrichment 
Evaluation method to provide a guideline for ranking different alternatives of building retrofitting. Sanhudo et al. 
(2018) tried to understand the potential of BIM technology energy retrofitting. In other research, a set of passive design 
measures that can be effective in achieving high building energy performance were found and simulated by  Pajek and 
Košir (2021). Pinzon Amorocho and Hartmann (2022) presented a Multi-criteria decision-making framework covering 
environmental, economic, and social aspects and requirements of the decision-making in buildings’ 



 

 4 

renovation. Therefore, optimization algorithms and scenario analysis can be used to investigate intervention scenarios 
to increase EE of buildings.  

Integrating RESs demands an estimation of potential of district to have RESs. Geospatial multi-criteria analysis is 
used by Elkadeem, Younes, Sharshir, Campana, and Wang (2021) for investigating the potential of integrating solar 
and wind energies in a grid.  Elsner (2019) used spatial analysis for assessing the African offshore wind energy 
potential. Also, Sahoo, Zuidema, van Stralen, Sijm, and Faaij (2022) developed an analytical approach to include 
spatial policy considerations in identifying spatial potentials for renewable energy sources of Groningen Province in 
the northern Netherlands. It can be seen that RESs supply potential are strongly relied on spatial aspects (Ramachandra 
& Shruthi, 2007; Sahoo et al., 2022), therefore, spatial analysis and Geospatial Information System (GIS) can be used 
to map and investigate the renewable energy potential. 

The PED concept includes provisions on the possibility of sharing and saving energy between buildings within a 
district (Salom et al., 2021; Tuerk et al., 2021). Thus, the possibility of sharing and storing energy need to be considered 
when it comes to finding solutions to create a balance between demand and supply.  

Optimization algorithms have high potential to be used for enhancing energy efficiency and effectively managing 
energy sharing between buildings (Beccali, Cellura, Brano, & Marvuglia, 2004; Samadi, Mohsenian-Rad, Schober, & 
Wong, 2012). Utilizing DT, these algorithms can determine the most energy-efficient strategies for achieving balance 
in energy demand and supply at a district level (Tao et al., 2018). These optimization techniques ccan play a critical 
role in decision-making processes, allowing for the evaluation of various energy strategies based on a set of predefined 
performance indicators, such as total energy consumption, the proportion of energy from renewable sources, peak 
demand, and overall emissions (Iqbal, Azam, Naeem, Khwaja, & Anpalagan, 2014). 

This research is part of the 'DATALESS' project, responsible for the WorkPackage3 (WP3), focusing on Green 
Building modeling and DTs. Overall, this research aims to develop a digital twin model which is capable to predict 
energy demand of various types of buildings within a district. With the predictive model in place, the research aims to 
further explore optimization, Scenario and Spatial analysis strategies to enhance energy efficiency, analyse the 
potential of renewable energy sources, and energy sharing between buildings to respond energy requirements. These 
strategies will be tested and fine-tuned to achieve the ultimate goal of creating Positive Energy Districts. 

2. Background Studies: 
This section focuses on the role of PEDs, Digital Twin, and optimization algorithms for energy balancing. We delve 
into the intricacies of these areas, examining the establishment and challenges of PEDs, the promising potential of 
DTs, and the importance of optimization algorithms. 

Supplementary information is provided in the appendix, enriching our understanding of energy trends and policies, 
renewable energy usage, and building characteristics in the Netherlands. Additionally, it further explores the roles and 
challenges of PEDs and provides more insights into DT. Both the main and appendix sections together form a 
comprehensive picture of our research themes.  

2.1. Role of PEDs and ZEBs in the Dutch energy landscape 
The concept of PEDs and ZEBs has emerged as a viable solution to the ever-growing energy use and greenhouse gas 
emission linked with buildings’ sector. PED can be defined as a district with an annual net import of zero energy and 
zero net CO2 emissions, which produce a surplus of renewable energy to integrate it into an urban energy system” 
(Magrini et al., 2020).  

2.1.1. Aspects of establishing PEDs 
In this research three main aspects of developing PEDs will be considered: Energy efficiency measures, Renewable 
energy production, and Energy sharing/storing. 

Energy efficiency measures: the energy-efficiency measures can be classified into two groups including i) 
minimization of building loads by measures such energy efficient design of building envelope, solar shading, energy-
conscious behaviors of occupants, double glazed windows or window-to-wall ratio, and ii) supporting the use of 
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energy-conserving systems and appliances within the building by using energy-efficient equipment such lighting, or 
refrigerator (Omrany et al., 2022; Wu & Skye, 2021). Our focus will be more on the first group. 

Renewable energy production: Producing energy from RESs is a key pillar of PEDs and climate agreements. Solar 
and wind energy has getting popularity among all other sources. Also, it should be considered that to not just rely on 
just one source of RESs. However, the share of energy generation from RESs is still slow and there is a lot of potential 
that needs to be discovered (Dahal, Juhola, & Niemelä, 2018; Omrany et al., 2022). 

Energy sharing/storing: As energy infrastructure becomes complex and decentralised, and renewable energy use 
expands, buildings need to evolve as active participants in the wider district-level energy system. Exploiting peer-to-
peer energy exchange and effective storage in microgrid-connected buildings can optimise on-site generation and 
lower costs, providing a more efficient alternative to exporting electricity to the grid (Vand, Ruusu, Hasan, & Manrique 
Delgado, 2021). 

2.1.2. Challenges of PED 
PEDs are still in their infancy, with a multi-faceted challenges which span across a wide array of disciplines that need 
to be addressed. There are both technical and non-technical challenges to creating an overarching vision and 
framework for PEDs (Omrany et al., 2022). Krangsås et al. (2021) categorized the challenges of implementing PEDs 
into seven groups including Governance, Incentives, Social, Process, Market, Technology, and Context. This research 
aims to deal mainly with the following challenges:  

Data Management and Security: PEDs rely on substantial data for energy management, including usage patterns, 
grid status, and renewable energy production. Ensuring the secure and efficient management of this data is a significant 
challenge (Tsoumanis, Tsarchopoulos, & Ioannidis). 
Scalability and Replicability: Each district has its own unique characteristics, including building types, energy usage 
patterns, and available RESs. Developing solutions that can be scaled and replicated in different contexts is a 
significant challenge.  
Technical Challenges: managing hybrid energy systems with multiple energy source, especially RESs, requires 
sophisticated technologies and systems. Creating balance between demand and supply, grid stability, energy storage, 
and interconnection of various energy systems can be challenging (Ekren & Ekren, 2010).  
Lack of information/data on PED projects: Since most PED projects are currently in the design or execution phase, 
makes it difficult to access the most recent details or data of these projects (Zhang, Penaka, et al., 2021). 

2.2.  Digital Twin 
The concept of DT was developed by Grieves and Vickers (2017) for the first time in 2002, and in 2010 listed as a 
key technology by Nasa. Then, its usage widely expanded into other domains. DTs as a computational model attracted 
ever-growing attention in energy management in building environments in recent years (Rolnick et al., 2022).  

DT is a synergistic method that combines novel modelling and analysing techniques, leveraging massive amounts of 
data along with AI. This tactic brings together the capabilities of a virtual model with functions like data management, 
analysis, simulation, scenario analysis, visual representation, and information sharing (Shen, Saini, & Zhang, 2021).  

Integrating DT can be a solution to the challenges in PEDs since it is capable of analysing and managing massive 
amounts of data, providing predictions, and conducting various scenarios which facilitate energy management in a 
PED. Also, if the decisions and changes that we want to implement in buildings and districts are modeled, analysed 
and tested before they are implemented, We can make more adaptable, efficient, and robust decisions with greater 
effectiveness (Zhang, Shen, et al., 2021a).   

Zhang, Shen, et al. (2021b) classified DT into three tires: (1) an enhanced version of BIM model only, (2) semantic 
platforms for data flow, and (3) big data analysis and feedback operation. Furthermore, Agostinelli, Cumo, Guidi, and 
Tomazzoli (2021) showed that DTs have a high potential to achieve an intelligent optimization and automation system 
for energy management for both one and a cluster of buildings. In another article, a review of DTs application domains 
in smart energy grid is conducted by Cioara et al. (2021). They categorized the most relevant applications into four 
groups: 1) Asset Model (DTs for energy performance assessment and management), 2) Fault Model (DTs for diagnosis 
of faults), 3) Operational Model (DTs for optimal energy distribution and EE), 4) Business Model. 
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Figure 2. The main parts of a DT. 

in Fig. 2 the main parts that a DT should have are shown based on the theoretical definitions that defined for DT  (Tao 
& Qi, 2019). 

2.3. The Crucial Role of Data in Energy Management 
When it comes to integrating DT for energy management, data is an invaluable resource. in this project, data serves 
as the backbone for decision-making, planning, predicting and analyzing energy usage patterns, and optimizing energy 
systems. In the domain of energy management, data can be multifaceted. Essential data types include energy related 
data (both real-time and historical), meteorological information, building characteristics data, socioeconomic 
information, occupant related data, building types, indoor environmental data, etc. Each type of data serves specific 
purposes. For instance, energy consumption data is pivotal in understanding and predicting energy demand patterns, 
whereas meteorological data is key to both estimating renewable energy potential and predicting energy demand. 

2.4. Application of Optimization Algorithms for balancing 
Managing the balance between energy demand and supply is a complex task that requires sophisticated solutions. 
Optimization algorithms, owing to their ability to handle multiple variables and constraints, are increasingly being 
employed in this domain (Mariano-Hernández, Hernández-Callejo, Zorita-Lamadrid, Duque-Pérez, & García, 2021). 
These algorithms aid decision-makers in understanding the trade-offs between various energy management strategies, 
thereby facilitating the identification of optimal solutions that efficiently manage the energy balance.  

Optimization algorithms are mathematical tools designed to find the most efficient solution to a complex problem 
given certain constraints. They help balance the way we generate, distribute, and use energy, and find the best solutions 
while working within certain limits. This research aim to define the optimization problem for managing energy. Our 
horizon is for 2030, and solutions are based on the climate agreements and PEDs concepts.  

The primary objective is to achieve a PED. The aim is to minimize burden on the grid by getting independent from 
national electricity grid. Also, while in the PEDs the aim is to maximize the energy surplus in the district, but also 
need to be considered that selling back to the energy can also cause burden on the grid, and these factors need to be 
considered in modelling.  

Being independent of the grid means that the energy demand of buildings in the district (electrical vehicles are also 
part of it based on the climate agreements) ned to be covered through the optimal combination of renewable energy 
generation, energy storage/sharing among buildings, increase energy efficiency of buildings, and other actions. 

2.4.1. Solution Methods: 
Optimization algorithms, which aim to find the best solutions to complex problems, can be classified into several 
categories. The most suitable type for a given problem depends on the nature of the problem and the desired outcomes 
(Fister, Fister Jr, Yang, & Brest, 2013). 

1. Deterministic Methods: These methods are ideal for problems with a small number of decision variables and 
objectives. However, they may not be suitable for energy management since it has many problems, uncertainties, 
and complexities (Bazaraa, Jarvis, & Sherali, 2011). 
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2. Stochastic Methods: These methods introduce randomness, which is useful for handling uncertainties in problem 
parameters. They may not guarantee the exact optimal solution but often find good solutions when faced with 
complex and uncertain problems (Rubinstein & Kroese, 2016). 

3. Heuristic Methods and Meta-heuristics: Heuristic methods, like Genetic Algorithms and Particle Swarm 
Optimization, are capable of providing near-optimal solutions for large-scale and complex problems. Meta-
heuristics, a subset of heuristic methods, guide the search process to explore the search space efficiently and 
include methods such as Simulated Annealing, Tabu Search, and Ant Colony Optimization (Blum & Roli, 2003; 
Coello, Lamont, & Van Veldhuizen, 2007).  

4. Machine Learning Methods: Machine learning methods like Reinforcement Learning can be used for dynamic 
learning and adjustment of energy management strategies, optimizing multiple objectives over many iterations 
(Sutton & Barto, 2018). 

In practice, a combination of these methods can be utilized, leveraging their respective strengths. For example, meta-
heuristics can be used to find a good set of initial solutions, which can then be fine-tuned using deterministic methods 
for better accuracy. Machine learning methods can be integrated to continuously learn and adapt the model based on 
the outcomes of the optimization (Mallipeddi, Suganthan, Pan, & Tasgetiren, 2011). 

When it comes to choosing an appropriate optimization method, several factors must be taken into account. These 
include the problem's complexity, the number of decision variables and objectives, the level of uncertainty in the 
model's parameters, and the available computational resources. Additionally, the presence of multiple conflicting 
objectives - typical in a district-level energy management problem - demands the need for multi-objective optimization 
algorithms (Zhou et al., 2011). 

3. Problem Statement: 
The global mission of carbon-free electricity systems and built environment by 2050 requires integration of RESs and 
increase of EE of buildings. The integration of RESs is crucial for achieving energy sustainability. However, this 
process presents several challenges, especially in terms of creating fluctuation and burden on the electricity grid and 
managing energy within and between buildings (Sandhu & Thakur, 2014). It necessitates a comprehensive 
understanding of energy demand and supply patterns at both building and district levels, and the ability to balance 
these elements effectively.  

Concepts such as PEDs and Zero Energy Buildings are promising in this regard. They emphasize EE, renewable 
energy production, and flexibility in energy management. DT is considered as an effective platform and solution for 
developing PEDs.  

DT technology can create a virtual model of the physical system, providing real-time insights and predictive and 
scenario analytics to optimize system performance. However, leveraging DT technology to achieving these concepts 
remains unclear. 

Therefore, there is a need to explore how DT technology can be effectively utilized to support the concept of PEDs, 
facilitate the integration of RESs in a decentralized manner, and minimize the burden on the grid.  

In the pursuit of developing an effective DT for managing energy within and between buildings, several 
challenges emerge. For example, collecting and integrating diverse data sources due to variations in data 
quality, scale, and format, and developing robust predictive models that accurately forecast energy demand 
and supply based on a wide array of dynamic inputs, such as weather and building occupancy. This complexity 
extends to the creation of optimization algorithms that ensure a balance between energy demand and supply. 

The problem statement, thus, revolves around utilizing DT technology to devise PEDs that can forecast the 
energy requirements of a district. The primary response to these demands is an integrated strategy that 
incorporates RESs supply, enhanced energy efficiency in buildings, and energy sharing/storing between 
buildings. 
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4. Research Proposal: 
4.1. Research Objectives 

The crux of this study is to design an effective model for managing and balancing energy within and between buildings 
through the integration of DT technology and PEDs. The balance we aim to create is to predict and satisfy energy 
demand at the building level with RES supply at the district level, facilitated by DT models. Therefore, addressing the 
problem statement, the main objective of the research is to create a DT model for managing RES and predicting energy 
demand patterns that would be applicable at the building and district level. The objective can be further divided into 
the following sub-objectives: 

1. PED and ZEB Concepts: To explore and comprehend the principles of developing PEDs. 
2. Digital Twin Concepts: To understand the concepts, principles, and technologies of developing DT and its 

capabilities for providing operational feedback and facilitating decision-making. 
3. Data Infrastructure: To develop a data infrastructure that captures, processes, and analyzes diverse datasets 

required for effective energy management in a district. 
4. Energy Prediction: To utilize AI algorithms to predict energy demand of buildings and districts. 
5. Energy Optimization at Building Level: To employ DT technology for simulating energy consumption 

scenarios and analysing different scenarios for implementing intervention scenarios to increase EE of buildings. 
6. Energy Sharing/storing: To examine the potential for energy storing/sharing between buildings at the district 

level using DT technology. 
7. Renewable Energy Integration: To investigate potential of integrating RESs by leveraging the spatial analysis. 
8. Respond to energy requirements: develop strategies to respond to the energy demand of district 
9. Energy Optimization Algorithms: Develop and apply advanced optimization algorithms for efficient, 

sustainable energy management across district. 
10. Framework Development: To create a framework that employs DT technology for the realization of PEDs. 

4.2. Hypothesis 
The successful development and implementation of a DT model, capable of integrating key information, precise 
prediction of energy demand, spatial analysis, and multi-objective optimization algorithms at both building and district 
levels, can effectively balance energy demand and supply in real-time and long-term scales. This approach can 
subsequently facilitate enhancing energy efficiency, increase energy generation from renewable energy sources, and 
facilitate energy sharing between buildings, thereby fostering the transformation towards PEDs. 

4.3. Research Questions 
4.3.1. Main Research Question.   

How can digital twin be designed to facilitate the integration of renewable energy sources in a decentralized 
manner (with minimum burden on the electricity grid) by managing energy within and between buildings (to 
develop positive energy districts )? 

Sub-Research Question 1. How can a comprehensive understanding of Positive Energy Districts be 
established, and in what ways can digital twin technology be utilized to support and enhance the realization of 
this concept? 

Motivation (M): We aim to establish a concrete understanding of PEDs, ZEBs, and DT technology, and explore how 
DT can support and enhance these concepts.  

Challenges (C): Unifying disparate principles and processes of PEDs, ZEBs, and DT technology could pose a 
challenge due to their complex and multifaceted nature. Bridging the gap between theories and their practical 
applications may prove to be a challenging task.  

Approach (A): Our approach is based on conducting a  detailed examination of relevant literature and an analysis of 
related case studies. Based on this, we will design a system architecture and energy model for developing a DT in a 
PED, As part of our methodology, we plan to use the Geodan model as a blueprint, customizing and enhancing it based 
on our findings and the specific requirements of PEDs and ZEBs. 
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Expected Outcomes (E): The expected outcome is a well-designed system architecture and energy model that 
successfully integrates DT technology into the operation and development of PEDs. This architecture would serve as 
a practical guide for leveraging DT technology in the pursuit of PEDs and efficient management of energy in the 
context of PEDs. 

Risk (R): As both PED and DT are nascent and continually evolving fields, keeping up-to-date with their rapidly 
changing landscapes is a challenge. Also, our focus is primarily on the development of a technical model, which means 
I should try to avoid investigating excessive time on just theoretical aspects. Also, getting access to data from related 
case studies is challenging. 

Sub-Research Question 2. How can we design and implement a (spatial) data/information infrastructure 
for efficient handling of complex datasets in Digital Twin technology for energy management in PEDs? 

(M): The aim here is to construct a versatile data infrastructure capable of managing substantial amounts of data for 
energy management in buildings. It is a critical step towards the realization of the DT model, and effective energy 
management in PEDs relies on the efficient processing of large datasets.  This system should be designed to facilitate 
real-time analytics, interoperability, data security, and continuous learning. 

(C): Challenges arise from managing vast data volumes, ensuring real-time analytics, data security, interoperability, 
and synchronization. Additionally, the need for standardizing datasets, identifying and investigating necessary datasets 
for project inclusion, staying updated with evolving data management practices, and maintaining infrastructure 
flexibility to adapt to new data types and energy management needs also pose substantial difficulties. 

(A): We will conduct a detailed analysis of energy management data requirements, followed by the development of a 
comprehensive data/information model that addresses data integration, synchronization, management, 
standardization, and governance. The methodology will entail a collaborative effort with Geodan, leveraging their 
established model as a basis, to ensure the developed model is both grounded in practicality and aligned with advanced 
data infrastructure practices. 

(E): The expectation is to create a data infrastructure and data/information model, tailored to the requirements 
of energy management in buildings and compatible with the current GEODAN model. This framework will address 
data collection, storage, processing, and security needs and will help streamline the operation of a digital twin 
model for efficient energy management. This data infrastructure will serve as a foundation for my next steps and 
even can be used as a reference point for future studies in this domain. 

(R): Risks include the difficulty of acquiring diverse (standardized) datasets from various sources, the rapidly 
changing landscape of data management technologies and practices. Ensuring the proposed framework's flexibility 
and adaptability to changes is a challenge that we need to keep in mind. Crucially, the implementation of data security 
measures and ethical issues may be risky when it comes to handling large amounts of data that includes sensitive 
information. 

Sub-Research Question 3. How can data-driven approaches and spatial analysis be employed to effectively 
predict and investigate energy supply and demand in PEDs? 

This research question investigates the application of data-driven algorithms for energy demand prediction and spatial 
analysis for evaluating RES potential within PEDs. 

Sub Research Question 3.1: How Can data-driven algorithms be used for predicting energy demand 
of different types of buildings and expanding it to a district? 

(M): Our motivation lies in the necessity of understanding energy demand at both the building and district levels to 
facilitate efficient energy management. Utilizing AI algorithms could help us make more precise demand predictions. 

(C): The challenge lies in using AI algorithms that can accurately predict energy demand across different building 
types and extending this model to encompass a district level. The complexity of these predictions is driven by the 
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quality, availability, and suitability of the input data, alongside the diverse nature of buildings and their energy 
consumption patterns in a district, and also the required complexity level of AI algorithm(s). 

(A): The chosen method involves the use of data-driven algorithms designed to predict energy demand, following a 
distinct sequence of steps. Our approach also focuses on scalability and applicability across different building types 
and districts. Additionally, we aim to include both short-term and long-term prediction capabilities in our model. 

(E): The expected outcome of this investigation is a data-driven AI algorithm capable of accurately predicting energy 
demand for various building types and expanding this model to the district level. 

 (R): Our research heavily relies on the accessibility of diverse building datasets to apply data-driven algorithms 
effectively. While we have already gained access to some datasets, our work necessitates more. In the scenario where 
we cannot acquire sufficient data, we may resort to using white or gray box methods for certain types of buildings. 
Additionally, there is a risk that the algorithms we develop may not be universally applicable or scalable across 
different contexts or various types of buildings and districts. 

Sub_Research Question 3.2: How can spatial analysis be utilized to assess and predict the potential of 
Renewable Energy Sources within a district? 

(M): having understanding of potential of districts for integrating RESs is of importance to develop solutions to fulfill 
energy demand. We aim to leverage spatial analysis to assess the potential of different RESs within a district, fostering 
a future where dependence on fossil fuels is significantly reduced. 

(C): Navigating the multi-faceted dimensions of spatial analysis, considering various factors such as environmental 
conditions, available space, and costs, poses a challenge. The accuracy and reliability of these predictions can be 
affected by the availability and quality of historical data and weather conditions. 

(A): We plan to apply spatial analysis to evaluate the potential for energy generation from various RESs in a district. 
This involves taking into account considerations like available space, environmental influences, and costs. The 
research is planned in line with future forecasts for 2030 and 2050. 

(E): The anticipated outcome is a spatial analysis that estimates the renewable energy potential of a district. This will 
include projections of energy generation from different RESs. The model can help guide energy management strategies 
for a district, moving towards a less fossil fuel-reliant future. 

(R): The inherent uncertainties in spatial analysis, coupled with variability in environmental factors and potential 
constraints in accessing comprehensive and timely spatial data, may pose a risk to the accuracy of our potential 
assessments for our targeting RESs.  

Sub-Research Question 4. How can digital twin technology be utilized/designed at the building level to help 
enhance energy efficiency and decrease the overall energy demand in a district? 

(M): the aim is to identify and rank energy efficiency measures across various building types, to reduce the overall 
energy demand within a district, and leverage digital twin technology with it.  

(C): Designing and implementing digital twin technology at a building level involves a myriad of complexities, 
especially when it comes to simulating, predicting and prioritizing energy efficiency measures. Additionally, 
expanding these findings from a building level to an entire district also presents complexities due to variations in 
building types and energy usage patterns. 

(A): the approach involves evaluating, simulating and priorotizing the impact of different energy efficiency measures 
using algorithm including multiple criteria decision analysis, multi objective optimization algorithms and scenario 
analyses. 

(E): The expected result encompasses energy efficiency measures tailored to various building types, along with their 
potential to decrease both building and district-wide energy demand. 
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(R): The identification, prioritization, and implementation of energy efficiency measures pose complexity and 
variability risks, as solutions may differ significantly from one building to another and across districts. Specific 
building types, like historical buildings, might offer limited flexibility for implementing certain energy efficiency 
measures. 

Sub-Research Question 5. How can digital twin be used/designed to create balance in/between buildings by 
integrating RESs in the grid locally, with minimum disturbance in the national grid? 

(M): The aim is to explore the potential of DT technology comprising multi-objective optimization algorithms, in 
facilitating a balanced energy system at the district level. This approach holds promise for developing more resilient 
and sustainable energy systems, driving a shift toward locally managed RESs. 

(C): The primary challenges in achieving this objective lie in the complex nature of integrating DT technology, 
formulating a comprehensive multi-objective optimization algorithm, and dynamically managing the energy within 
the district. The optimization must account for several variables and constraints, such as the variability of renewable 
energy generation, energy demand-supply balance, efficient energy storage and sharing, and minimizing disturbance 
to the national grid. Moreover, incorporating the feedback into DT's to refine their predictive and operational 
capabilities further adds complexity. 

(A): approach involves utilizing optimization algorithms in conjunction with DT to balance energy demand and supply 
at the district level. multi-objective optimization algorithms will be applied to address the aforementioned challenges. 
The algorithm will aim to optimize several objectives, including maximizing energy generation from RESs, enhancing 
energy efficiency, facilitating energy sharing and storage, but the main and important objective is minimizing 
disturbing on the electric grid. 

(E): the project aims to produce a practical tool that stakeholders can use for effective energy management at the 
district level. The optimized Digital Twin model can act as a decision-support tool, providing insights on how to 
balance energy supply and demand, increase use of renewable energy sources, and lead to establish PEDs 

(R): Implementing a fully functional Digital Twin for an entire district's energy management is an ambitious and risky 
endeavor. Formulating the district energy management plan that encapsulates all necessary aspects of energy demand, 
supply, storage, and sharing is a complex and challenging task. In addition to the complexity of problem, 
computational time can be another challenge.  

5. Research Design: 
5.1. Approach and Methodology 

The research will be divided into several interconnected stages, each designed to address a particular aspect of the 
main research question. These stages will guide the structure of the proposed research: 

• Literature Review: The research begins with an in-depth literature review. This stage will cover the concepts of 
(Nearly) Zero/Positive Energy Districts/Buildings, and DT technology. It will also explore current applications of 
DT for energy management of buildings, and how DT’s application can be expanded to develop PEDs. 

• Development of Data Infrastructure: The next stage will focus on the development of a data infrastructure 
essential for creating a DT model. This will involve identifying key data requirements, examining potential data 
sources, and outlining an efficient data management, security, synchronization, and continuous learning. 

• Implementing AI Algorithms for Energy Demand Prediction: Utilizing advanced data-driven algorithms, we 
will predict energy demand patterns at the building and district levels. This prediction model will incorporate a 
diverse range of buildings types. 

• Renewable Energy Supply Analysis: Spatial analysis will be used to assess and predict the potential for energy 
generation from various renewable energy sources within a district. 

• Energy Efficiency of Buildings: We aim to identify, simulate, and prioritize energy efficiency measures of different 
building types. The ultimate goal is to discover the potential of buildings and district to reduce energy demand  

• Multi-Objective Optimization: This phase will delve into the design and application of optimization algorithms 
tailored for efficient energy management across districts. these algorithms will seek to minimize burden on the 
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grid and minimize energy consumption, maximize use of renewable energy, promote energy sharing and storage, 
and limit grid imports. 

• Other Measures - Energy Sharing & Storage: In order to create a more sustainable and balanced energy system, 
measures such as energy sharing and storage within the district will be explored and incorporated into the model. 

• Multi-Objective Optimization: Optimization algorithms will be developed and applied, aiming to balance a 
multitude of objectives. These include maximizing energy generation from RESs, enhancing energy efficiency, 
facilitating energy sharing and storage, and minimizing disturbances to the national grid. 

• Digital Twin Finalization: The final step involves the actualization of the Digital Twin model that encapsulates all 
the previous steps. The DT model will provide a comprehensive view of the energy landscape, serving as a 
decision-support tool for stakeholders. It will ensure a balance between energy demand and supply, thereby 
fostering the establishment of Positive Energy Districts. 

 
5.2. DATALESs Project 

The DATALESs project, designed to tackle energy sector challenges, emphasizes the importance of optimizing local 
energy systems and green buildings to meet the emissions reduction targets set for 2030.  
The quest for a carbon-neutral energy system involves more integration of unpredictable renewable resources, adding 
complexities and control challenges. Lowering energy consumption in buildings and enhancing green buildings are 
integral parts of this project's sustainability strategy. With an increase in distributed RESs, the project calls for 
advanced flexibility analysis and innovative business models, especially for LESs. The DATALESs project seeks to 
digitally enhance the energy system in the Netherlands and China, fostering both nations to meet their Climate 
Agreement's greenhouse gas emissions reduction targets by 2033. 
The DATALESs project brings together a consortium of four academic institutions and four industry partners. TU 
Delft's main contribution to this project is the development of AI and mathematical-based models for LESs control 
and operation (WP1) and green building modelling and digital twins (WP3). The structure of this project is shown in 
Fig. 3. Our group is responsible for WP3. Detailed description of WP3 and its tasks are provided in Fig. 5. 
 

 

Figure 3. DATALESs partners. 
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Figure 4. Concept Methodology of the research. The figure illustrates the interrelation between different sections of 
the study. 
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Figure 5. the schema of Dataless project and tasks of WP 3. 

5.3. Collaboration with Geodan: Digital Twin Model Version 1.0 
In collaboration with Geodan, we successfully developed and launched the first version (1.0) of our Digital Twin 
model. This model, currently accessible at dataless.beta.geodan.nl, lays the groundwork for the project's ultimate 
vision. The screenshot in this figure provides a glimpse into the initial version of our model (Fig. 6). 

 
Figure 6. initial version of DT model for this project available from dataless.beta.geodan.nl 
Our collaboration with Geodan led to the successful development and launch of our Digital Twin model's initial 
version (1.0), available at dataless.beta.geodan.nl, marking a significant project milestone. This first iteration, designed 
using publicly accessible datasets for data privacy and usage rights adherence. The model, as depicted in Figure 6, 
will evolve to incorporate advanced features such as plugins for data analysis, predicting energy demand, scenario 
analysis, and more. Our work with Geodan also extends to workshops where we align objectives, share knowledge, 
identify model gaps, and strategize enhancements to meet scientific standards and the Dataless Project's objectives. 
Furthermore, Geodan's hardware, software, and workspace support, as well as programming methodology workshops, 
have been instrumental in understanding the model's underlying architecture and functionality. 

https://dataless.beta.geodan.nl/
https://dataless.beta.geodan.nl/
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5.4. Timeline 
Table 1. Research timeline 

objectives Q3
Aug Sep Oct Nov Dec Jan Feb Mrt Apr Mei Jun Jul Aug Sep Oct Nov Dec Jan Feb Mrt Apr Mei Jun Jul Aug Sep Oct Nov Dec Jan Feb Mrt Apr Mei Jun Jul Aug Sep Oct Nov Dec Jan Feb Mrt Apr Mei Jun Jul

I: Background Studie
II: Problem Definition and Research Proposal
Go / No GO
III: Systematic Literature Review
Integrating PED and ZEB Concepts with Digital Twin Technology
Principles and Criteria for Positive Energy Districts and Zero Energy Buildings
Digital Twin Technology and its Applications in Energy Management
Integrating Digital Twin Technology in PEDs and ZEBs Development and Operation
Challenges and Opportunities for Digital Twin Integration in PEDs and ZEBs
output
IV: A Data Infrastructure for Energy Management in/between Buildings
Data Preparing/managing
Data modelling/standardization/synchornization
Establish Data/information model.
output
V: Predicting energy demand of buildings using AI algorithms
Real Rata Preparing
Simulated Data Preparing
Develop models for individual buildings
Expand model for a district
output
VI: Digital twin in building level for increasing energy efficiency of buildings
Explore  Intervention Scenarioes
Develop Algorithms to analyse scenarioes
integrete with digital twin
output
VII: Spatial analysis of renewable energy potential and use
Data layers for spatial analysis
RESs possibil ities
Develop algorithms 
output
VIII: Other Measures - Energy Sharing & Storage
Identify strategies to respond energy demand 
IX: Digital twin in district level to facil itate creating balance between demand and supply
Formulating the problem
Develop models and algorithms
Integrate with digital Twin
output
X: Digital Twin for Establishing Positive Energy Districts
Finalising Digital Twin model
WP6

Q1
2022 2023 2024 2025 2025

Q3 Q4 Q1 Q2Q2 Q3 Q4 Q1 Q2 Q3Q4 Q4Q3Q2Q1
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5.5. Research Relevance: 
Expanded Scientific Relevance: The scientific relevance of this research lies in its cross-disciplinary nature, 
combining concepts from GIS, Architecture, computer science, AI, and electric engineering to address energy 
management in buildings and districts. The utilization of DT technology in managing energy demand and supply, and 
enhancing the EE of buildings is an emerging research domain, and this study contributes valuable insights in this 
field. Furthermore, the exploration and integration of various AI algorithms and spatial analysis in predicting energy 
demand and supply in building and district level provide novel scientific insights. This research also elucidates the 
technical complexities involved in creating a data infrastructure for energy management within and between buildings, 
enriching the existing body of knowledge on the subject. 

Expanded Practical Relevance: The research outcomes of integrating DT technology can improvise energy 
management approaches in buildings and districts, providing optimization of energy use and effective incorporation 
of renewable resources. These outcomes could advance the development of DT tools, driving cost savings, efficient 
energy use, and heightened sustainability in the built environment. Furthermore, the synergy between DTs and PEDs 
could catalyze the creation of sustainable and energy-efficient districts. 

5.6. Reflection: 
• Merging DT technology with Positive Energy Districts and Zero Energy Buildings demands broad knowledge across 
multiple disciplines. While this may require expanding my understanding in areas like electricity and architecture, the 
collaborative nature of the DATALESS project ensures access to required expertise. The Discipline-related courses 
that I planned to take are in line with these challenges.   
• Creating a Digital Twin presents technical challenges like complex data management and advanced modeling 
techniques. Yet, our partnership with Geodan, with its expertise in digital twin technologies, provides a firm foundation 
to address these challenges, facilitating an efficient path towards our research goals. 
• The integration of diverse data could pose a challenge, but the thrill of working with big data to solve real-world 
problems is exciting. To handle data effectively, best practices in data handling and robust data analysis tools will be 
utilized. 
• Predicting energy demand across various building types using AI algorithms could be complicated, especially due 
to the difficulty in accessing real data. However, through a strategic combination of real and simulated data, clustered 
modeling, and building-specific models, these challenges will be overcome, thus improving prediction accuracy. 
• Collaboration with different work packages and partners is essential, albeit challenging. However, I plan to turn this 
challenge into an opportunity for networking and synergistic cooperation, reinforced by joint academic publications. 
• The project's scale may pose time management challenges, requiring balance between detailed research and strict 
timelines. A comprehensive schedule, effective resource allocation, constant progress tracking, and regular reports to 
my supervisors will help manage this issue. 
• While I anticipate challenges, each presents an opportunity for growth and innovation. With strategic planning, 
dedication, and resilience, I'm confident these challenges can be effectively addressed. 
 

5.7. Supervision 
The progress of this research project has been steadily guided by my supervisory team through structured and frequent 
meetings. The system we've established entails monthly discussions with my promotor and bi-weekly meetings with 
daily supervisors. If I ever need extra help, they are always ready to have a meeting right away. Moreover, their 
exceptional support extended beyond the boundaries of the project, providing me assistance during personal hurdles 
in the early stages. This support is something I profoundly appreciate. Also, on a monthly basis, I prepare a report that 
outlines my achievements, any obstacles I encountered, and my plans for the upcoming month. Furthermore, after my 
go/no go evaluation, I aim to make regular weekly visits to The Geodan. 
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5.8. Doctoral Education Programme 
Table 2. Doctoral Education Programme 

Courses 
Credit  

finished in progress will take  
Research competences and skills 1 3.5 0 11.5  
R1. RESEARCH MANAGEMENT     
How to select/make a questionnaire and conduct an interview   2   I 
Research Data management 101   2 II 
Research Design   3 II 
R2. ACADEMIC THINKING     
Using creativity to maximize productivity and innovation in your PhD 1.5   I 
Analysis of Interviews and other Unstructured Data   2 III 
R3. ACADEMIC ATTITUDE     
Engineering Ethics   3 IV 
R4. RESEARCH DATA MANAGEMENT     
Research Data management   1.5 II 
Transferable competences and skills 2 13.5 0 15.5  
T1. EFFECTIVE COMMUNICATION     
Designing Scientific Posters and lay-out for Theses with Adobe InDesign 2   I 
Popular Scientific Writing  2   I 
Scientific text processing with Latex   1.5 III 
Presenting scientific research 3   I 
Dutch for foreigners   3 II 
English pronunciation   2 II 
Public speaking training 2   I 
Voice Training   1 III 
Online Scientific Impact   1 III 
Sharing your Research and Work as Simple as a TEDx Talk   1 II 
Academic English 1   3 II 
Academic English 2   3 III 
T2. WORKING WITH OTHERS     
Conversation Skills 2    
T3. TEACHING, SUPERVISING, AND COACHING     
T4. AUTONOMY AND SELF-MANAGEMENT     
PhD Solutions: solving your biggest PhD challenges .5 0.5   I 
PhD Startup Module A 1.5 1.5   I 
PhD Startup Module B Scientific Integrity .5 0.5   I 
Discipline-related skills XX XX XX  
Geo Data Base Management Systems XX Participated as lab assistant  I 

Energy Supply Systems for Buildings  XX EDX II 

Zero Energy Design: An Approach to Make Your Building Sustainable  XX EDX I 

Buildings as Sustainable Energy Systems   XX III 
Need to take a course regarding electricity and grid management from EWI    XX II,III 
Need to take a course regarding the concept of optimization algorithms     
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Background Studies: 
1.1 Energy Trends and Policies in the Netherlands 
The 2017 Coalition Agreement in the Netherlands prioritized greenhouse gas (GHG) emissions reduction 
as the core of their climate and energy policy. The agreement established legally binding targets to 
reduce GHG emissions by 49% by 2030 and by 95% by 2050 (compared to 1990 levels) ("Coalition 
Agreement 'Confidence in the Future',").  

In the Netherlands, GHG emissions were around 160 Mt CO2-eq in 1990. The Climate Act mandates that 
these emissions must be reduced to below 113 Mt CO2-eq by 2030 and under 11 Mt CO2-eq by 2050 
("Netherlands: CO2 Country Profile,"). [Netherlands: CO2 Country Profile - Our World in Data]. In Fig. 1, 
the Netherlands’ annual CO2 emissions is represented. 

 

Figure 1. Annual CO2 emissions in Netherlands between 1846-2021 with the targets for 2030 and 2050 

The Climate Act mandates the government to create a Climate Plan every five years, outlining a ten-year 
climate policy. The first Climate Plan, adopted in April 2020, covers the 2021-30 period. The 2021-30 
Climate Plan incorporates policy measures designed to meet the Climate Act's targets, the 2017 
Coalition Agreement, and relevant EU directives. The Climate Plan primarily builds upon the 2019 
Climate Agreement, which was developed through extensive negotiations involving over 100 
stakeholders. The Climate Agreement focuses on five sectors: electricity, industry, the built environment, 
mobility, and agriculture and the natural environment. Our focus is on investigating RESs and built 
environment. in Fig.2, we can see the Climate Agreement's 2050 goals and 2030 targets ("National 
Climate Agreement - The Netherlands,").  

 

Figure 2. Climate Agreement Goals and Targets for electricity and built environment Sectors 

https://ourworldindata.org/co2/country/netherlands#what-are-the-country-s-annual-co2-emissions
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1.2 Renewable Energy in the Netherlands 
After examining the international agreements targeting the use of RESs, we have analyzed data to 
assess the progress of the Netherlands in this area (Fig. 3).  

 
Figure 3. share of energy generation from different sources in Netherlands 

The data demonstrates a steady increase in the percentage of energy derived from renewables, with 
12.37% of the country's equivalent primary energy coming from these sources in 2021. Additionally, the 
share of electricity production from renewables has seen substantial growth, reaching 33.28% in 2021.  

The promising future of wind and solar power in the Netherlands is evident from the country's consistent 
growth in renewable energy usage. Additionally, the recent headlines emphasize the Netherlands' 
commitment to renewable energy and regional collaboration. The €28 billion investment for the 2030 
climate targets, the joint efforts of nine North Sea countries to develop 300 GW offshore wind by 2050, 
and the 1.8 GW cross-border interconnector project between the UK and Netherlands demonstrate the 
nation's dedication to a sustainable future 1 2 3. 

Considering the significant developments and commitments to RESs in the Netherlands and surrounding 
regions, it is crucial to include RES in my research. incorporating RES in the project will enable us to 
anticipate future energy supply, facilitate informed decision-making, and contribute to the development 
of effective strategies to meet the growing need for clean, sustainable energy in the Netherlands. 

Predicting the supply from RESs and evaluating the potential of districts and buildings to accommodate 
RES is a critical element of our research. Such predictions not only provide a solid foundation for 
understanding the dynamics of energy production and consumption but also guide the optimal 
integration of RES within the built environment. 

With the increasing volatility of weather patterns due to climate change, understanding and predicting 
RES supply becomes even more crucial for ensuring energy security and resilience. 

Moreover, assessing the potential of districts and buildings for harnessing RES offers a blueprint for 
transitioning towards sustainable and decentralized energy systems.  

1.3 Buildings in Netherlands 
The escalating energy demand in the building sector, which accounted for 29% of global final energy 
use in 2020, underscores the pressing need for energy-efficient building designs and operations. As 
projections suggest increase in building energy consumption, it is important to focus on the building 
sector in driving sustainable energy transitions (Omrany et al., 2022). 

https://www.enerdata.net/publications/daily-energy-news/netherlands-will-invest-eu28bn-measures-reach-its-2030-climate-goal.html
https://www.enerdata.net/publications/daily-energy-news/uk-and-netherlands-plan-18-gw-cross-border-interconnector-project.html
https://www.enerdata.net/publications/daily-energy-news/nine-north-sea-countries-aim-develop-300-gw-offshore-wind-2050.html
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To gain insights into the current challenges and potential opportunities for energy efficiency (EE) in the 
Dutch built environment, we make a look at status of age and usage of buildings in the Netherlands (Fig. 
4 and Fig. 5). Data relating to the age and usage of buildings are extracted from ("Dataset: 
Basisregistratie Adressen en Gebouwen (BAG),"). 

 

Figure 4. shows the number of built in different year ranges. 

While the new buildings are designed to be more efficient, the challenge, however, is not limited to new 
buildings. In fact, the building stock is inexorably aging, composed of 67% buildings built before 1990 
(Fig. 5), with a renewal rate around 1.2% (according to the EU Building Stock Observatory) (Magrini et 
al., 2020).  

Also in Fig. 5, we can see frequency of buildings based on their statuses in the Netherlands. It can be 
seen that the percentage of residential buildings is extensively high.  

 

Figure 5. Top 15 statuses of buildings in the Netherlands 

https://www.sciencedirect.com/topics/engineering/observatories


 24 

The Netherlands is aimed to adapt its buildings by exploiting the digital technology concepts and new 
protocols such as Nearly Zero Energy Building (NZEB) and PED objective to stimulate the sustainable 
energy transition of the built environment. Moving to high-performance green buildings needs a 
structured, integrated and innovative approach embedded in the city’s overall vision, requires a 
departure from perceived notions of building design and operation, and necessitates the inclusion of 
more sophisticated methods and tools in the design and implementation phases (Simhachalam et al., 
2021). 

1.4 Role of PEDs and ZEBs in the Dutch energy landscape 
The concept of PEDs and ZEBs are emerged as a viable solution to the ever-growing energy use and 
greenhouse gas emission linked with buildings’ sector. PED can be defined as a district with an annual 
net import of zero energy and zero net CO2 emissions, which produce a surplus of renewable energy to 
integrate it into an urban energy system” (Magrini et al., 2020). PEDs are further steps of zero and 
positive energy buildings. These buildings has a very high energy performance, and the low energy 
required by this buildings are significantly covered by RESs (Magrini et al., 2020).  

a PED is an innovative concept to promote the sustainable development of urban energy systems on a 
district scale with significant impact on the development of our future cities, which are committed to a 
sustainable and low-carbon pathway.(Neumann, Hainoun, Stollnberger, Etminan, & Schaffler, 2021) 

The key importance of PED’s concept lies in reducing dependency on fossil fuels by improving EE of 
building and promoting integrating RES usage (Omrany et al., 2022). In 2017, the EU launched the 
"Positive Energy Districts and Neighbourhoods for Sustainable Urban Development " programme as part 
of the SET Plan Action 3.2 "Smart Cities and Communities" (Magrini et al., 2020). 

The goal of the SET Plan Action is to establish 100 PEDs by 2025, with the assistance of 20 Member 
States (Magrini et al., 2020). 

In the report, we can see the list of PED projects in EU. This version of booklet includes 61 cases in 19 
different EU countries. The highest number of projects are located in Norway (9), Italy (8), Finland (7), 
Sweden (6), and The Netherlands (6). In table 1 we can see the list of PED projects in Netherlands.  

Table 1. List of PED projects in Netherlands 

City Project name  Link 
Alkmaar PoCiTYF  
Amsterdam ATELIER https://smartcity-atelier.eu/  
Groningen MAKING City http://makingcity.eu/  
Hoogeveen Hydrogen district Hoogeveen https://www.en-tran-ce.org/  
Arnhem Community-focused Energy 

Transition 
https://www.han.nl/onderzoek/z
waartepunten/see/  

Amsterdam, Noordoostpolder, Appingedam, 
Wageningen, Pekela, Tilburg, Loppersum, Zoetermeer, 
Brunssum, Middelburg, Tytsjerksteradiel, Delfzijl, Katwijk, 
Den Haag, Purmerend, Hengelo, Utrecht, Sittard-Geleen, 
Groningen, Assen, Sliedrecht, Rotterdam, Oldambt, 
Drimmelen, Eindhoven, Nijmegen, Vlieland, Rotterdam 

Program Natural-Gas Free 
Neighbourhoods 

http://www.aardgasvrijewijken.nl 

 

 

 

 

 

https://smartcity-atelier.eu/
https://www.en-tran-ce.org/
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1.5 Challenges of PED 
Other Challenges: In addition to technical and data management challenges, PEDs also may face other 
challenges such as economic, social and regulatory challenges. Regulatory challenges are due to 
energy regulations are often not designed for decentralized systems. Economically, the cost of installing 
RESs, increasing building EE, and deploying smart grid technologies can be challenging. Furthermore, 
Achieving a PED requires buy-in from a wide range of stakeholders (Uspenskaia, Specht, Kondziella, & 
Bruckner, 2021).  

The focus of this research will be more on technology aspects of PEDs, however, the providing solutions 
may cover other challenges including Social and Governance aspects. DT is identified as a solution to 
tackle PEDs challenges.  The illustration 8 indicates briefly the challenges for PEDs and DTs  

1.6 Digital Twin 
Fig. 6 shows some big moments in the evolution of DT (development in the USA and how its application 
expanded to energy management in the world and Netherlands). 

  
Figure 6. Milestones of DT technology development. 

in Fig. 7 the main parts that a DT should have are shown based on the theoretical definitions that defined 
for DT  (Tao & Qi, 2019). We adopted the DT for energy management, and it can be classified into two 
Main parts and sub-parts:  

1) Technology 

1.1. Data Collection: DTs are powered by combining data/models from different knowledge domains 
such as Internet of Things (IoT), GIS, Building Information Model (BIM) and Remote Sensing (RS). 
1.2. Computation: the datasets will be pre-processed and exploited by artificial intelligence (AI) 
algorithms and other data analysis techniques to obtain information from a database. 
1.3. Visualization: Web based technologies will be used for 3D visualizing the findings 
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2) functions  

2.1. Real-time monitoring: integrating real-time data from sensors and other sources, can provide a 
comprehensive understanding of buildings' energy performance.  
2.2. Prediction: having a prediction of energy demand and supply is an important tool to create a 
balance between energy demand and supply.  
2.3. Responding: Beyond the capabilities of predicting energy dynamics, the DT model is conceived as 
a proactive system intended to maintain a harmonious balance within the Energy Demand and Supply. 
In its responsive role, the DT will be programmed to provide operational feedback that encompass 
optimization, scenario and spatial analysis strategies to enhance energy efficiency, analyse the potential 
of renewable energy sources, and energy sharing between buildings 
2.4. Optimization: Involves creating and applying algorithms to balance energy demand and supply 
efficiently, accounting for short-term operations and long-term planning. 

 
Figure 7. The main parts of a DT. 
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Figure 8. Challenges of PEDs and DTs  
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1.7 Boundary Conditions 
To streamline the scope of this research and control variability, the following boundary conditions are 
specified: 

Location: The study is limited to buildings typical of urban areas in the Netherlands. 

Climate: The research will focus on strategies tailored to the temperate maritime climate of the 
Netherlands, considering its effect on energy consumption and potential for RES. 

Building Types: The diversity in buildings will be limited to their functionality, occupancy, construction 
that influence energy consumption and production potential. 

Energy Systems: The study will focus solely on local decentralized energy systems, involving RES 
integration and energy management via DTs. However, this research will not encompass the broader 
national grid and its operations. 

Horizon: Our horizon for this research is 2030 and 2050.  

DT Development: Given the numerous factors that affect the development and deployment of DTs, such 
as data acquisition methods, model complexity, and computational resources, this study will firmly 
adhere to established standards and practices. We will collaborate closely with Geodan, a leading 
company in this field, utilizing their existing software and DT frameworks. This collaboration allows us to 
keep the research process consistent and manageable, while also helping us identify potential gaps in 
current practices. Our goal is to use web technology and adapt their technology, striving to improve and 
fill any identified gaps. In doing so, we hope to optimize and enhance the application of DTs in the 
context of energy management within and between buildings.  

2. Research Design: 
2.1 Research Questions 
More details on sub research questions 1, 2, 3 are added.  

Sub Research Question 1. How can a comprehensive understanding of Positive Energy Districts 
be established, and in what ways can digital twin technology be utilized to support and enhance 
the realization of this concept? 

The aspects and topics that will be investigated in this literature review is shown in Fig. 9. Also one of the 
outputs of this step will be developing a system architecture for the digital twin based on the concepts of 
PEDs. However, the model will be based on the current model of Geodan (Fig. 10).  
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Figure 9. The design for literature review 

 
Figure 10. system architecture from GEODAN 
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Sub Research Question 2. How can we design and implement a (spatial) data/information 
infrastructure for efficient handling of complex datasets in Digital Twin technology for energy 
management in PEDs? 

DT technology offers a powerful approach for optimizing PEDs, by treating them as intricate multi-
physics systems, enabling real-time simulations and data-driven enhancement of performance (Shen et 
al., 2021). However, developing an effective digital twin system for PEDs entails various challenges that 
need to be carefully addressed.  

One of the most significant challenges of developing a DT is handling and analysis of large-scale data 
sets. Digital twin models for PEDs must integrate an extensive range of data from various sources, 
including information about weather conditions, building materials, indoor air quality, inhabitant behavior, 
energy demand, and RES supply data, etc.  (Khajavi, Motlagh, Jaribion, Werner, & Holmström, 2019)  
(Omrany et al., 2022) . Moreover, guaranteeing data security presents significant challenges in the 
deployment of digital twin technology (Aloraini & Hammoudeh, 2017). 

Overall, Overcoming the challenges of handling extensive data, providing real-time analytics, ensuring 
interoperability, securing data, data synchronization and promoting continuous learning can pave the 
way for maximizing digital twins' benefits, such as boosting system resilience, enhancing resource 
efficiency, and fostering better stakeholder collaboration (Aloraini & Hammoudeh, 2017). (Omrany et al., 
2022). 

Solution to the afore-mentioned challenges lies in the development of a data infrastructure. This 
infrastructure can provide the necessary framework for efficient data collection, storage, processing, 
and security measures. 

Aim: The aim of this chapter is to elucidate the necessary components and data infrastructure required 
for developing a DT model to effectively manage energy within and between buildings. 

Outline: 

• Overview of data requirements for energy management in buildings. 
  Frequency of datasets used in energy management.  
  Analyze the importance of involving these datasets in data-driven models (datasets we 

must/should/not necessary/ good to have) 
  Availability and source of potential datasets (open-sources/available but need to be 

processed/need to be collected (field-work, interview, etc.)/ not free/other sources) 
• Establish data/information model:  
• Data integration: integrating data from different sources and formats.  
• Data synchronization: updating the DT with real-time data from buildings and energy system for 

accurate monitoring and analysing. 
• Data management: organizing, storing, and governing of data. 
• Data standardization: It will be tried to understand: 

• The standardization models that are developed in the field of energy management of 
buildings. 

•  How we can implement these standards in this research  
• What aspects are missing and need to define new standards 

• Data governance policies: Implement data security measures to protect sensitive information. 
• Provide data access  

Tools and Methods: 
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• Steps toward developing Data Infrastructure Is visualized in Fig. 11. 
• MongoDB, Postgres, POSTGIS, … for data management  
• TimescaleDB  PostgreSQL++ for time series 
• Improve and adopt the current system architecture of GEODAN 
• Develop energy model inspired by ESDL Home (esdl.nl), and adopt to our project 

Outcome: 

• Data Infra is Identified as an essential components required to develop a DT model for energy 
management. 

• Energy Model 
• The data infrastructure will be developed in line with the current model of Geodan which can be 

seen in figure 12. This is just a simple version of the data infrastructure of Geodan. Wi will try to 
improve that and make it in line with DATALESS project.  

 
Figure 11. steps toward developing our data infrastructure  

 

https://www.esdl.nl/


 32 

 
Figure 12. current sketch of data infrastructure from Geodan 

Sub Research Question 3.1: How Can data-driven algorithms be used for predicting energy 
demand of different types of buildings and expanding it to a district? 

Energy prediction models are important tools for analyzing energy usage in building sector and 
developing various strategies to create a balance between demand and supply including (Sun et al., 
2020; Yang et al., 2022):  

• Quantify energy saving potential of buildings. 
• Designing and choosing proper energy intervention models to increase energy efficiency of 

buildings. 
• Optimize energy distribution planning. 
• Identify measures to respond the demand 

Aim: The aim of this chapter is to delve into the use of AI algorithms for predicting energy demand in 
buildings (having prediction of the demand of buildings and district is an essential operational feedback 
that a DT should provide to balance energy in/between buildings). 

Outcome: 

• Having a prediction of energy demand for different types of buildings 
• Expanding the energy demand model from a building level to a district level. 

Methods:  

To develop a data-driven algorithm for predicting energy demand, the following steps need to be 
followed.  

1) data collection,  

Predicting energy consumption of buildings remains challenging task since a variety of factors have 
effect on the consumption such as weather conditions, building characters, occupant behavior energy 
consumption data, and other contextual data such as the location and the time of day(Amasyali & El-
Gohary, 2018). It is important to ensure the quality and completeness of the collected data, as 
inaccurate or incomplete data can affect the accuracy. Although Data-driven model requires high-quality 
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data sets, these models are adaptable and can be optimized and updated with new data (Yu, Chang, & 
Dong, 2022). In chapter 2, this requirements will be covered.    

2) data preprocessing, 

Data preprocessing is an essential step for data-driven approaches to deal with invalid incomplete, 
incorrect, inaccurate, irrelevant or noisy inconsistent data that can cause error during analysis. Data 
preprocessing includes Data integration, Data transformation, Data reduction, Data merging, Data 
cleaning, Data conversion, Data Normalization:  (Dong, Liu, Liu, Li, & Li, 2021) (Olu-Ajayi, Alaka, 
Sulaimon, Sunmola, & Ajayi, 2022) (Amasyali & El-Gohary, 2018).  

3) Feature engineering,  

A data-driven model forecasts energy demand based on a set of features. Feature Selection is essential 
for optimum model performance since all features are not impactful, or some irrelevant features can 
have significant impact when are used with other features (Dong et al., 2021; Olu-Ajayi et al., 2022). 
Feature Selection can decrease computation-time of model without sacrificing accuracy of model, and it 
is considered as the final step of data preparing which try to solve data irrelevance, redundancy, and 
mismatch (Wang, Xia, Yuan, Srinivasan, & Song, 2022). Based on (Sun, Haghighat, & Fung, 2020), the 
common feature selection methods in this context are as follow: Variable ranking, Filter and wrapper 
methods, Embedded method, Principal component analysis (PCA), Autoencoder 

4) model selection and training,  

There are various AI algorithms that are used for predicting energy demand. it is still a complex task to 
conclude which algorithm is better than the other, and to have a comparison of algorithms. Therefore, 
they need to be implemented and analyzed on the same datasets (Olu-Ajayi et al., 2022). In table 1, the 
more common algorithms in energy demand prediction are shown. The purpose of prediction, building 
type, input parameters can vary in various studies.  

AI algorithms that have been used repetitively in previous several researche includes Linear regression 
(LR), Multiple Linear Regression (MLR), Time series analysis, Support Vector Machine (SVM), Support 
Vector Regression (SVR), decision tree, Regression tree (RT), random forests (RF), extreme gradient 
boosting (XGBoost), Artificial neural network (ANN), K-Nearest Neighbour (kNN), Deep learning and 
Ensemble methods. Depending on different model integration strategies, ensemble learning can be 
divided into three categories: bagging, boosting and stacking. 

In a review by (Dong et al., 2021), found that ANN and SVR are effective methods that  widely used for 
energy Demand prediction. Additionally, in other review by (Sun et al., 2020), ANN, SVR and LR are 
found as most popular models, while there is less concentration on time series analysis and RT. 

5) model validation and evaluation  

Data-driven models need to be tested to evaluate their performance in predicting energy demand. There 
are various standard evaluation measures that can be used to compare the actual and predicted values 
(Amasyali & El-Gohary, 2018). Based on (Sun et al., 2020) the commonly-used evaluation measures of 
energy consumption prediction models are, Mean Absolute Error (MAE), Mean Absolute Percentage 
Error (MAPE), Mean Bias Error (MBE), Normalized MBE (NMBE), Mean Squared Error (MSE), Root Mean 
Square Error (RMSE), Coefficient of Variation of the Root Mean Square Error (CV(RMSE)) and R Square 
(R2). (Olu-Ajayi et al., 2022) identified Mean Absolute Error (MAE), Mean Squared Error (MSE), Root 
Mean Squared Error (RMSE) and  R-Squared (R2) as the most often used evaluation measures. In other 
research, mean absolute error (MAE), coefficient of variation (CV), mean bias error (MBE), mean 

https://www.sciencedirect.com/topics/engineering/root-mean-squared-error
https://www.sciencedirect.com/topics/engineering/root-mean-squared-error
https://www.sciencedirect.com/topics/engineering/mean-absolute-error
https://www.sciencedirect.com/topics/engineering/coefficient-of-variation
https://www.sciencedirect.com/topics/engineering/mean-bias-error
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absolute percentage error (MAPE), mean squared error (MSE), R-squared (R2), and error rate 
(δ)and root mean square error (RMSE) introduced as relevant evaluation measures, and CV, MAPE, and  
RMSE as the most commonly used method. CV is one of the evaluation measures that recommended by 
ASHRAE for evaluating energy consumption prediction models (Amasyali & El-Gohary, 2018). 
Additionally, the time needed for training is another index that are used to compare AI algorithms.  

Table 2. common algorithms in energy demand prediction 
   
Linear regression (LR) 
 

It is one of the traditional statistical approaches  that 
fit a linear equation to find association among 
variables (Olu-Ajayi et al., 2022) (Sun et al., 2020) 

LR is easy to use and understand. Generally it cannot find nonlinear 
relationships between inputs and outputs, but extended LR can 
solve nonlinear problems Multiple Linear Regression 

(MLR) 
Time series analysis 
 

Auto Regressive Moving Average (ARMA) and Auto 
Regressive Integrated Moving Average (ARIMA) are 
the most commonly used models for time series 
analysis (Sun et al., 2020) 
 

the effect of historical data can be considered in this model 

Support Vector Machine (SVM) A machine learning method that developed by 
Vapnik three decades ago (Olu-Ajayi et al., 2022; Yu 
et al., 2022). 
 

It can be used for both nonlinear and linear classifications, and it is one of 
the top accurate models among data mining algorithms (Amasyali & El-
Gohary, 2018). 

Support Vector Regression 
(SVR) 

SVR is a regression application of SVM The prediction performance of SVR is not sensitive to the noisy data, and 
the dimension of feature space doesn’t determine the SVR’s computational 
complexity (Sun et al., 2020). 
Selecting a proper Kernel function is one of the challenges of SVR ince it 
needs a kernel function for nonlinier regression problems (Sun et al., 2020) 

decision tree It uses tree-like flowchart to partition data into 
groups (Olu-Ajayi et al., 2022). 

Decision tree is a supervised machine learning algorithm that can be used 
for both classification and regression problems. 
(Amasyali & El-Gohary, 2018) The classification and regression trees, chi-
squared automatic interaction detector, random forest , and boosting trees 
(BT) are decision tree methods that widely used in energy demand 
prediction.  

Regression tree (RT) RT is a type of decision tree with continuous target 
variables (Sun et al., 2020) 
 

RT is used for regression problems and predict a continuous numerical 
value. 

random forests (RF) RF is an ensemble technique (Olu-Ajayi et al., 2022) 
that is based on decision tree models 

The predicted value of RF is the average results of several decision tree 
models, and it can reduces overfitting (Yu et al., 2022) 

extreme gradient boosting 
(XGBoost) 

(Olu-Ajayi et al., 2022) XGBoost is is a decision-tree-
based ensemble algorithm that by combining weak 
and simple models which form a stronger model.  

It uses a gradient boosting framework, and unlike the RF model , is a 
sequential model that each subsequent tree is dependent on the outcome 
of the last. (Olu-Ajayi et al., 2022) [53]  (Yu et al., 2022) 
 

Artificial neural network (ANN) ANN is a nonlinear algorithm that has a structure 
similar to biological neural networks.  

(Olu-Ajayi et al., 2022) “Artificial Neural Networks are the most broadly 
utilized for predicting building energy consumption  
ANN is widely used for forecasting energy demand of buildings and can 
deal with nonlinear problems easily. (Olu-Ajayi et al., 2022) 
 

   
K-Nearest Neighbour (kNN)  KNN is a non-parametric ML method that uses proximity to make a 

prediction or classification of an individual data (Olu-Ajayi et al., 2022) 
   
Deep learning (Olu-Ajayi et al., 2022) Deep learning unlike ANN has 

more layers of neural network and can be more 
accurate.  

deep neural networks (DNN), convolutional neural networks (CNN) and 
recurrent neural networks (RNN) are deep larning models that can be used 
in the area of energy demand prediction of buildings  
 

Ensemble methods (Sun et al., 2020) (Dong et al., 2021) Ensemble 
learning is an advanced data-driven method that 
combines two or more models to have a better 
prediction performance.   

based on the combination strategies, ensemble learning can be categorized 
into three groups: bagging (parallel homogeneous), boosting (sequential 
homogeneous) and stacking models (heterogeneous).  

Depending on different model 
integration strategies, 
ensemble learning can be 
divided into three categories: 
bagging, boosting and stacking. 

(Sun et al., 2020) bagging, boosting and stacking 
models (also called parallel homogeneous, 
sequential homogeneous and heterogeneous 
ensemble methods). 

Bagging concentrates on getting an ensemble model with less variance 
than its components, while boosting will mainly get a strong model with 
less bias than the underlying model. The advantage of the stacking strategy 
is that it can significantly improve the overall predicted effect of the model, 
rather than focusing on the variance or bias.” 
 

https://www.sciencedirect.com/topics/engineering/mean-squared-error
https://www.sciencedirect.com/topics/engineering/root-mean-square-error
https://www.sciencedirect.com/topics/engineering/nonlinear-problem
https://www.sciencedirect.com/topics/engineering/deep-neural-network
https://www.sciencedirect.com/topics/engineering/convolutional-neural-network
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Sub Research Question 5. 
Objective. We aim to maximize energy efficiency, RES integration, and energy storage/sharing, and 
minimize the reliance on the national grid. The energy surplus needs to be maximized without causing 
burden on the grid. Mathematically, the multi-objective function could be formulated as follows: 

Minimize: 

burden on the electricity grid: 

��[𝛿𝛿 ∗ |𝐺𝐺𝑖𝑖(𝑡𝑡)| − 𝛼𝛼 ∗ 𝑅𝑅𝑅𝑅𝑅𝑅𝑘𝑘(𝑡𝑡) − 𝛽𝛽 ∗ 𝐸𝐸_𝑒𝑒𝑒𝑒𝑖𝑖(𝑡𝑡) − 𝛾𝛾 ∗ 𝐸𝐸_𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑗𝑗(𝑡𝑡) −𝜔𝜔 ∗ 𝐸𝐸_𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑚𝑚(𝑡𝑡) + 𝐷𝐷𝑖𝑖(𝑡𝑡) 

Balance: 

��𝐷𝐷𝑖𝑖(𝑡𝑡) − [𝛼𝛼 ∗ 𝑅𝑅𝑅𝑅𝑅𝑅𝑘𝑘(𝑡𝑡) + 𝛽𝛽 ∗ 𝐸𝐸𝑒𝑒𝑒𝑒𝑖𝑖(𝑡𝑡) + 𝛾𝛾 ∗ 𝐸𝐸_𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑗𝑗(𝑡𝑡) + 𝜔𝜔 ∗ 𝐸𝐸𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑚𝑚(𝑡𝑡) + 𝛿𝛿 ∗ 𝐺𝐺𝑖𝑖(𝑡𝑡)]  

Variables 

The components of the objective function are: 

The constants α, β, γ, 𝜔𝜔, and 𝛿𝛿 are the weights assigned to each objective, which represent their relative 
importance. The weights can be adjusted to reflect the priorities or preferences of the decision-makers. 

𝐺𝐺𝑖𝑖(𝑡𝑡): energy from grid 

𝑅𝑅𝑅𝑅𝑅𝑅𝑘𝑘(𝑡𝑡): Energy supply from RES K 

𝐸𝐸_𝑒𝑒𝑒𝑒𝑖𝑖(𝑡𝑡): The amount of energy demand can be reduced through energy efficiency measures in building 
i at time t 

𝐸𝐸_𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑗𝑗(𝑡𝑡): Energy available from storage k 

𝐸𝐸_𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑚𝑚(𝑡𝑡): Energy available for sharing from other buildings 

𝐷𝐷𝑖𝑖(𝑡𝑡): The energy demand of building i at time t. 

Constraints: 

Energy balance:  𝐷𝐷𝑖𝑖(𝑡𝑡) <= 𝑅𝑅𝑅𝑅𝑅𝑅𝑘𝑘(𝑡𝑡) + 𝐸𝐸_𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑗𝑗(𝑡𝑡)+ 𝐸𝐸_𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑚𝑚(𝑡𝑡)+ 𝐸𝐸_𝑒𝑒𝑒𝑒𝑖𝑖(𝑡𝑡) + 𝐺𝐺𝑖𝑖(𝑡𝑡) 

Energy generation:  0 <= 𝑅𝑅𝑅𝑅𝑅𝑅𝑘𝑘(𝑡𝑡)<= 𝑅𝑅𝑅𝑅𝑅𝑅𝑚𝑚𝑚𝑚𝑚𝑚 

Energy storage:   0 <= 𝐸𝐸_𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑗𝑗(𝑡𝑡)<= 𝐸𝐸_𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑚𝑚𝑚𝑚𝑚𝑚 

Energy sharing:   0 <= 𝐸𝐸_𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑚𝑚(𝑡𝑡)<= 𝐸𝐸_𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑚𝑚𝑚𝑚𝑚𝑚 

Energy efficiency:  𝐸𝐸_𝑒𝑒𝑒𝑒𝑚𝑚𝑚𝑚𝑚𝑚<= 𝐸𝐸_𝑒𝑒𝑒𝑒𝑖𝑖(𝑡𝑡) <= 𝐸𝐸_𝑒𝑒𝑒𝑒𝑚𝑚𝑚𝑚𝑚𝑚 

Grid interaction:   𝐺𝐺𝑚𝑚𝑚𝑚𝑚𝑚<= 𝐺𝐺𝑖𝑖(𝑡𝑡)<= 𝐺𝐺𝑚𝑚𝑚𝑚𝑚𝑚 

Incorporating multi-objective optimization models into the DT platform, algorithms will be designed to 
generate optimized energy management solutions. Using real-time and historical data, the DT evolves to 
make informed decisions for long-term planning. It also provides visual feedback on district-wide energy 
performance, highlighting areas for improvement. As the DT learns and adapts from decision outcomes, 
it guides strategic investments towards energy self-sufficiency, making it a critical tool for sustainable 
energy management. 
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Abstract. As the world rapidly transitions towards 
renewable energy sources, the concept of Positive Energy 
Districts (PEDs) has emerged as a promising framework 
to foster energy transition. This research proposal 
explores the integration of digital twin technology into 
PEDs to manage energy more efficiently within and 
between buildings, and minimize the burden on the 
electricity grid. An exploration of how digital twin can be 
designed and developed to enhance the practical 
realization of this concept will be established. The 
architecture includes predictive energy demand features, 
multi-objective decision-making models, and addresses 
potential challenges. The results of this research could 
serve as a practical guide for leveraging digital twin 
technology in the development and operation of PEDs, 
and the establishment of sustainable urban environments. 

Keywords. GIS, Digital Twin, Positive Energy Districts, 
Energy transition, Data-Driven, Data Infrastructure 

1. Introduction 

Cities are responsible for consuming about two-thirds of 
energy consumption and emitting more than 70% of 
GHGs. Also, it is estimated that the building section 
accounted for more than one-third of the energy 
consumption (Umbark, Alghoul, & Dekam, 2020). With 
half the global population already urbanized, and 
expected to rise to 70% by 2050, we anticipate more 
buildings, higher energy demand, and increased GHG 
emissions (Fausing, 2020). 

A global effort was made by countries to reach an 
agreement to tackle climate change before it transforms 
our planet irreversibly (Economidou et al., 2020). These 

strategies prioritize enhancing Energy Efficiency (EE) in 
buildings and increasing the generation of Renewable 
Energy Sources (RESs) as essential measures in climate 
change mitigation (Harvey, 2009). 

However, Integrating RESs into the electricity grid can 
disturb stability of the grid since RESs such as wind and 
solar depend on weather conditions and are not stable in 
producing energy. Therefore, to facilitate integrating 
RESs in grid, without disturbing grid, it is vitally 
important to create a balance between energy demand and 
supply (Ekren & Ekren, 2010). 

Positive Energy Districts (PEDs) have emerged as a 
response to the growing energy demand of buildings and 
the complexities of RES integration. PEDs are 
characterized as energy-efficient and energy-flexible 
urban zones with an excess of renewable energy 
production and minimum greenhouse gas emissions 
(Magrini, Lentini, Cuman, Bodrato, & Marenco, 2020). 

Developing PEDs has a group of challenges, such as 
social, technological, spatial planning, regulations, legal 
matters, and economic factors (Krangsås et al., 2021). The 
integration of digital methods can be a solution to the 
technical challenges in PEDs (Zhang et al., 2021a). Since 
DT has capability to collect and analyse massive amounts 
of data, provide real-time monitoring and predictions, and 
conduct various scenarios to monitor and predict energy 
production/consumption/distribution, operation 
optimization, decision-making for energy management, 
and balancing the demand and supply. These features 
make DT a powerful tool for decision-makers seeking 
managing energy within/between buildings (Rolnick et 
al., 2022). 



Our objective, therefore, is to design and understand how 
we can integrate the PED concept with digital twin 
technology, providing the necessary operations to 
establish a PED (Zhang et al., 2021a). Our horizon is for 
2030 and 2050. To achieve this, several operational 
requirements are identified, such as the prediction of 
energy demand at both the building and district levels and 
identifying ways to meet this demand. 

Meeting the energy demand is a multifaceted task that 
involves increasing the energy efficiency of buildings to 
decrease the demand, harnessing more energy from RESs, 
obtaining energy from other positive energy buildings, 
and implementing energy storage and battery solutions. 
All these measures are geared towards reducing the 
burden on the grid and moving towards grid independence 
(Guo, Zhao, Wang, Shan, & Gong, 2021; Rahman, 
Srikumar, & Smith, 2018; Salom et al., 2021; Tuerk et al., 
2021; T. Yang, Li, & Xun, 2019). 

To manage these tasks effectively, multi-objective 
decision-making models will be employed. These will 
evaluate various energy strategies based on a set of 
predefined performance indicators, such as total energy 
consumption, the proportion of energy from renewable 
sources, peak demand, and overall emissions (Iqbal, 
Azam, Naeem, Khwaja, & Anpalagan, 2014). The 
ultimate goal is the creation of PEDs that can sustainably 
manage their energy demand and contribute to a more 
resilient urban energy system. 

The paper is organized as follows: Section 1 introduces 
the concept of PEDs and Digital Twins. Section 2 presents 
the energy trends and status of buildings in the 
Netherlands. Section 3 delves into Digital Twins for 
energy management, particularly for establishing PEDs. 
Section 4 explores optimization algorithms for balancing 
energy. Section 5 outlines the expected results of the 
project, and Section 6 discusses the findings and 
challenges. 

2. Energy trends in Netherlands 

The 2017 Coalition Agreement in the Netherlands 
prioritized greenhouse gas (GHG) emissions reduction as 
the core of their climate and energy policy. The agreement 
established legally binding targets to reduce GHG 
emissions by 49% by 2030 and by 95% by 2050 
(compared to 1990 levels) ("Coalition Agreement 
'Confidence in the Future',") 

The Climate Agreement focuses on five sectors: 
electricity, industry, the built environment, mobility, and 
agriculture and the natural environment. Our focus is on 
investigating RESs and built environment. in Fig.1, we 
can see the Climate Agreement's 2050 goals and 2030 
targets ("National Climate Agreement - The 
Netherlands,")..  
2.1. Renewable status Energy in the Netherlands 

After examining the international agreements targeting 
the use of RESs, we have analyzed data to assess the 
progress of the Netherlands in this area (Fig. 2). The data 
demonstrates a steady increase in the percentage of energy 
derived from renewables. 

 
Figure 2. share of energy generation from different sources 
in Netherlands 

2.2. Buildings status in Netherlands 

The escalating energy demand in the building sector, 
which accounted for 29% of global final energy use in 
2020, underscores the pressing need for energy-efficient 

Figure 1. Climate Agreement Goals and Targets for electricity and built environment Sectors 



building designs and operations. As projections suggest 
increase in building energy consumption, it is important 
to focus on the building sector in driving sustainable 
energy transitions (Omrany et al., 2022). 

To gain insights into the current challenges and potential 
opportunities for EE in the Dutch built environment, we 
make a look at status of age and usage of buildings in the 
Netherlands (Fig.3). Data are extracted from ("Dataset: 
Basisregistratie Adressen en Gebouwen (BAG),"). 

While the new buildings are designed to be more efficient, 
the challenge, however, is not limited to new buildings. In 
fact, the building stock is inexorably aging, composed of 
67% buildings built before 1990 (Fig. 5), with a renewal 
rate around 1.2% (according to the EU Building Stock 
Observatory) (Magrini et al., 2020). 
2.3. Role of PEDs in the Dutch energy landscape 
The concept of PEDs and ZEBs has emerged as a viable 
solution to the ever-growing energy use and greenhouse 
gas emission linked with buildings’ sector. PED can be 
defined as a district with an annual net import of zero 
energy and zero net CO2 emissions, which produce a 
surplus of renewable energy to integrate it into an urban 
energy system” (Magrini et al., 2020). In this research 
three main aspects of developing PEDs will be 
considered: Energy efficiency measures, Renewable 
energy production, and Energy sharing/storing. 

In 2017, the EU launched the "Positive Energy Districts 
and Neighbourhoods for Sustainable Urban Development 
" programme as part of the SET Plan Action 3.2 "Smart 
Cities and Communities" (Magrini et al., 2020). 

The goal of the SET Plan Action is to establish 100 PEDs 
by 2025, with the assistance of 20 Member States 
(Magrini et al., 2020). 

In the report, we can see the list of PED projects in EU. 
This version of booklet includes 61 cases in 19 different 
EU countries. The highest number of projects are located 
in Norway (9), Italy (8), Finland (7), Sweden (6), and The 
Netherlands (6). In table 1 we can see the list of PED 
projects in Netherlands.  

Table 1. List of PED projects in Netherlands 

City Project name  Link 

Alkmaar PoCiTYF  

Amsterdam ATELIER https://smartcity-
atelier.eu/  

Groningen MAKING City http://makingcity.eu
/  

Hoogeveen Hydrogen district 
Hoogeveen 

https://www.en-
tran-ce.org/  

Arnhem Community-
focused Energy 
Transition 

https://www.han.nl/
onderzoek/zwaartep
unten/see/  

 Program Natural-
Gas Free 
Neighbourhoods 

http://www.aardgas
vrijewijken.nl 

Amsterdam, Noordoostpolder, Appingedam, Wageningen, 
Pekela, Tilburg, Loppersum, Zoetermeer, Brunssum, 
Middelburg, Tytsjerksteradiel, Delfzijl, Katwijk, Den Haag, 
Purmerend, Hengelo, Utrecht, Sittard-Geleen, Groningen, Assen, 
Sliedrecht, Rotterdam, Oldambt, Drimmelen, Eindhoven, 
Nijmegen, Vlieland, Rotterdam 

 

Figure 3. shows the number of built in different year ranges. 

https://smartcity-atelier.eu/
https://smartcity-atelier.eu/
https://www.en-tran-ce.org/
https://www.en-tran-ce.org/


3. Digital Twin for energy management  

DTs as a computational model attracted ever-growing 
attention in energy management in building environments 
in recent years (Rolnick et al., 2022). Fig. 4 shows some 
big moments in the evolution of DT (development in the 
USA and how its application expanded to energy 
management in the world and Netherlands.  

Zhang et al. (2021b) classified DT into three tires: (1) an 
enhanced version of BIM model only, (2) semantic 
platforms for data flow, and (3) big data analysis and 
feedback operation. Furthermore, Agostinelli, Cumo, 
Guidi, and Tomazzoli (2021) showed that DTs have a 
high potential to achieve an intelligent optimization and 
automation system for energy management for both one 
and a cluster of buildings. In another article, a review of 
DTs application domains in smart energy grid is 
conducted by Cioara et al. (2021). They categorized the 
most relevant applications into four groups: 1) Asset 
Model (DTs for energy performance assessment and 
management), 2) Fault Model (DTs for diagnosis of 
faults), 3) Operational Model (DTs for optimal energy 
distribution and energy efficiency), 4) Business Model. 
3.1. Architecting a Digital Twin for establishing 

PEDs  

based on the theoretical definitions that defined for DT by 
Tao and Qi (2019), a digital twin has two aspects, 

technology of development and functions that can provide 
feedback for the aim that it is developed. in Fig. 5 the main 
parts that a DT should have are shown.    

 
Figure 5. The main parts of a DT. 

3.1.1. Technology 

DT technology offers a powerful approach for optimizing 
PEDs, by treating them as intricate multi-physics systems, 
enabling real-time simulations and data-driven 
enhancement of performance (Shen, Saini, & Zhang, 
2021). However, developing an effective digital twin 
system for PEDs entails various challenges that need to be 
carefully addressed.  

One of the most significant challenges of developing a DT 
is handling and analysis of large-scale data sets. Digital 
twin models for PEDs must integrate an extensive range 
of data from various sources, including information about 
weather conditions, building materials, indoor air quality, 
inhabitant behavior, energy demand, and RES supply 
data, etc.  (Khajavi, Motlagh, Jaribion, Werner, & 

Figure 4. Milestones of DT technology development. 



Holmström, 2019)  (Omrany et al., 2022) . Moreover, 
guaranteeing data security presents significant challenges 
in the deployment of digital twin technology (Aloraini & 
Hammoudeh, 2017). 

Overall, Overcoming the challenges of handling extensive 
data, providing real-time analytics, ensuring 
interoperability, securing data, data synchronization and 
promoting continuous learning can pave the way for 
maximizing digital twins' benefits, such as boosting 
system resilience, enhancing resource efficiency, and 
fostering better stakeholder collaboration (Aloraini & 
Hammoudeh, 2017). (Omrany et al., 2022). 

Solution to the afore-mentioned challenges lies in the 
development of a data infrastructure. This infrastructure 
can provide the necessary framework for efficient data 
collection, storage, processing, and security measures. 

Steps toward developing Data Infrastructure can be 
defined as follow:  
1. Overview of data requirements for energy 

management in buildings. 
1.1.  Frequency of datasets used in energy management.  
1.2.  Analyze the importance of involving these datasets 

in data-driven models (datasets we must/should/not 
necessary/ good to have) 

1.3.  Availability and source of potential datasets (open-
sources/available but need to be processed/need to be 
collected (field-work, interview, etc.)/ not free/other 
sources) 

2. Establish data/information model:  
3. Data integration: integrating data from different 

sources and formats.  
4. Data synchronization: updating the DT with real-time 

data from buildings and energy system for accurate 
monitoring and analysing. 

5. Data management: organizing, storing, and 
governing of data. 

6. Data standardization: It will be tried to understand: 
6.1. The standardization models that are developed in the 

field of energy management of buildings. 
6.2.  How we can implement these standards in this 

research  
6.3. What aspects are missing and need to define new 

standards 
7. Data governance policies: Implement data security 

measures to protect sensitive information. 
8. Provide data access  

3.1.2. Functions  

the functions that we need to define for the DT need to be 
based on the concept of PED and the horizon for 2030. 
We aim to reduce the pressure on the power grid. To do 
this, we need to balance energy supply and demand while 
relying less on the grid. To achieve this balance, we first 
need to predict how much energy we'll need, and then 

figure out ways to meet this need without using too much 
energy from the grid. 

3.1.2.1. Predicting Energy Demand 

Energy prediction models are important tools for 
analyzing energy usage in building sector and developing 
various strategies to fulfil this demand (Sun, Haghighat, 
& Fung, 2020; X. e. Yang et al., 2022):  

• Quantify energy saving potential of buildings. 

• Designing and choosing proper energy intervention 
models to increase energy efficiency of buildings. 

• Fault diagnosis of buildings. 

• Optimize energy distribution planning. 

Our motivation lies in the necessity of understanding 
energy demand at both the building and district levels to 
facilitate efficient energy management. Utilizing AI 
algorithms can help to make more precise demand 
predictions. Data-driven approaches received significant 
attention in building energy prediction (Sun et al., 2020). 
To have a prediction of demand of a district the plan is to 
develop models to predict energy demand of most 
frequent types of buildings, then expand it to the district.  

Based on Amasyali and El-Gohary (2018), the steps of 
developing a data-driven model for energy demand 
prediction are 1) Data collection; 2) Data preprocessing; 
to deal with invalid incomplete, incorrect, inaccurate, 
irrelevant or noisy inconsistent data that can cause error 
during analysis (Olu-Ajayi, Alaka, Sulaimon, Sunmola, & 
Ajayi, 2022), 3) Feature Selection: to decrease 
computation-time of model without sacrificing accuracy 
of model, and to solve data irrelevance, redundancy, and 
mismatch (Wang, Xia, Yuan, Srinivasan, & Song, 2022), 
4) model selection and training; AI algorithms need to be 
implemented and analyzed on the same datasets to 
conclude which algorithm is better than the other (Olu-
Ajayi et al., 2022). Sun et al. (2020) found that Artificial 
Neural Networks, Support Vector Regression are popular 
models, 5) model validation and evaluation; Data-driven 
models need to be tested to evaluate their performance in 
predicting energy demand. Additionally, the time needed 
for training is another index that is used to compare AI 
algorithms.  

3.1.2.2. Predicting Energy supply 

The horizon of this research is for 2030 and 2050 when it 
is supposed that there will be no place for fossil fuels and 
energy requirements are covered by RESs. Having 
understanding of potential of districts for integrating 
RESs is of importance to develop solutions to fulfil 
energy demand. Integrating RESs demands an estimation 
of potential of district to have RESs. Geospatial multi-
criteria analysis is used by Elkadeem, Younes, Sharshir, 
Campana, and Wang (2021) for investigating the potential 



of integrating solar and wind energies in a grid.  Elsner 
(2019) used spatial analysis for assessing the African 
offshore wind energy potential. Also, Sahoo, Zuidema, 
van Stralen, Sijm, and Faaij (2022) developed an 
analytical approach to include spatial policy 
considerations in identifying spatial potentials for 
renewable energy sources of Groningen Province in the 
northern Netherlands. It can be seen that RESs supply 
potential are strongly relied on spatial aspects 
(Ramachandra & Shruthi, 2007; Sahoo et al., 2022), 
therefore, spatial analysis and Geospatial Information 
System (GIS) can be used to map and investigate the 
renewable energy potential. 

3.1.2.3. Energy sharing/storing 

As energy infrastructure becomes complex and 
decentralised, and renewable energy use expands, 
buildings need to evolve as active participants in the wider 
district-level energy system. Exploiting peer-to-peer 
energy exchange and effective storage in microgrid-
connected buildings can optimise on-site generation and 
lower costs, providing a more efficient alternative to 
exporting electricity to the grid (Vand, Ruusu, Hasan, & 
Manrique Delgado, 2021). Semeraro et al. (2023) 
classified Energy Storing Systems into five main groups: 
mechanical energy storage, electrochemical energy 
storage, thermal energy storage, chemical energy storage, 
and electromagnetic energy storage. However there still 
some challenges including high price of these systems that 
prevent Storing Systems to be used widely (Y. Yang, 
Bremner, Menictas, & Kay, 2018).  

4. Application of Optimization Algorithms  

Managing the balance between energy demand and 
supply is a complex task that requires sophisticated 
solutions. Optimization algorithms, owing to their ability 
to handle multiple variables and constraints, are 
increasingly being employed in this domain (Mariano-
Hernández, Hernández-Callejo, Zorita-Lamadrid, Duque-
Pérez, & García, 2021). These algorithms aid decision-
makers in understanding the trade-offs between various 
energy management strategies, thereby facilitating the 
identification of optimal solutions that efficiently manage 
the energy balance.  

Optimization algorithms are mathematical tools designed 
to find the most efficient solution to a complex problem 
given certain constraints. They help balance the way we 
generate, distribute, and use energy, and find the best 
solutions while working within certain limits. This 
research aim to define the optimization problem for 
managing energy. Our horizon is for 2030, and solutions 
are based on the climate agreements and PEDs concepts.  

The primary objective is to achieve a PED. The aim is to 
minimize burden on the grid by getting independent from 
national electricity grid. Also, while in the PEDs the aim 
is to maximize the energy surplus in the district, but also 
need to be considered that selling back to the energy can 
also cause burden on the grid, and these factors need to be 
considered in modelling.  

Being independent of the grid means that the energy 
demand of buildings in the district (electrical vehicles are 
also part of it based on the climate agreements) ned to be 
covered through the optimal combination of renewable 
energy generation, energy storage/sharing among 
buildings, increase energy efficiency of buildings, and 
other actions. 

Objective. We aim to maximize energy efficiency, RES 
integration, and energy storage/sharing, and minimize the 
reliance on the national grid. The energy surplus needs to 
be maximized without causing burden on the grid. 
Mathematically, the multi-objective function could be 
formulated as follows: 

Minimize: 

burden on the electricity grid: 

��[𝛿𝛿 ∗ |𝐺𝐺𝑖𝑖(𝑡𝑡)| − 𝛼𝛼 ∗ 𝑅𝑅𝑅𝑅𝑅𝑅𝑘𝑘(𝑡𝑡) − 𝛽𝛽 ∗ 𝐸𝐸_𝑒𝑒𝑒𝑒𝑖𝑖(𝑡𝑡) − 𝛾𝛾

∗ 𝐸𝐸_𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑗𝑗(𝑡𝑡) − 𝜔𝜔
∗ 𝐸𝐸_𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑚𝑚(𝑡𝑡) + 𝐷𝐷𝑖𝑖(𝑡𝑡) 

Balance: 

��𝐷𝐷𝑖𝑖(𝑡𝑡) − [𝛼𝛼 ∗ 𝑅𝑅𝑅𝑅𝑅𝑅𝑘𝑘(𝑡𝑡) + 𝛽𝛽 ∗ 𝐸𝐸𝑒𝑒𝑒𝑒𝑖𝑖(𝑡𝑡) + 𝛾𝛾

∗ 𝐸𝐸_𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑗𝑗(𝑡𝑡) + 𝜔𝜔 ∗ 𝐸𝐸𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑚𝑚(𝑡𝑡)
+ 𝛿𝛿 ∗ 𝐺𝐺𝑖𝑖(𝑡𝑡)]  

Variables 

The components of the objective function are: 

The constants α, β, γ, 𝜔𝜔, and 𝛿𝛿 are the weights assigned to 
each objective, which represent their relative importance. 
The weights can be adjusted to reflect the priorities or 
preferences of the decision-makers. 

𝐺𝐺𝑖𝑖(𝑡𝑡): energy from grid 

𝑅𝑅𝑅𝑅𝑅𝑅𝑘𝑘(𝑡𝑡): Energy supply from RES K 

𝐸𝐸_𝑒𝑒𝑒𝑒𝑖𝑖(𝑡𝑡): The amount of energy demand that can be 
reduced through energy efficiency measures in building i 
at time t. 

𝐸𝐸_𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑗𝑗(𝑡𝑡): Energy available from storage k 

𝐸𝐸_𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑚𝑚(𝑡𝑡): Energy available for sharing from 
other buildings 

𝐷𝐷𝑖𝑖(𝑡𝑡): The energy demand of building i at time t. 

Constraints: 



Energy balance: 

𝐷𝐷𝑖𝑖(𝑡𝑡) <= 𝑅𝑅𝑅𝑅𝑅𝑅𝑘𝑘(𝑡𝑡) + 𝐸𝐸_𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑗𝑗(𝑡𝑡)+ 𝐸𝐸_𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑚𝑚(𝑡𝑡)+ 
𝐸𝐸_𝑒𝑒𝑒𝑒𝑖𝑖(𝑡𝑡) + 𝐺𝐺𝑖𝑖(𝑡𝑡) 

Energy generation: 

0 <= 𝑅𝑅𝑅𝑅𝑅𝑅𝑘𝑘(𝑡𝑡)<= 𝑅𝑅𝑅𝑅𝑅𝑅𝑚𝑚𝑚𝑚𝑚𝑚 

Energy storage:  

0 <= 𝐸𝐸_𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑗𝑗(𝑡𝑡)<= 𝐸𝐸_𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑚𝑚𝑚𝑚𝑚𝑚 

Energy sharing:  

0 <= 𝐸𝐸_𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑚𝑚(𝑡𝑡)<= 𝐸𝐸_𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑚𝑚𝑚𝑚𝑚𝑚 

Energy efficiency: 

𝐸𝐸_𝑒𝑒𝑒𝑒𝑚𝑚𝑚𝑚𝑚𝑚<= 𝐸𝐸_𝑒𝑒𝑒𝑒𝑖𝑖(𝑡𝑡) <= 𝐸𝐸_𝑒𝑒𝑒𝑒𝑚𝑚𝑚𝑚𝑚𝑚 

Grid interaction:  

𝐺𝐺𝑚𝑚𝑚𝑚𝑚𝑚<= 𝐺𝐺𝑖𝑖(𝑡𝑡)<= 𝐺𝐺𝑚𝑚𝑚𝑚𝑚𝑚 

Incorporating multi-objective optimization models into 
the DT platform, algorithms will be designed to generate 
optimized energy management solutions. Using real-time 
and historical data, the DT evolves to make informed 
decisions for long-term planning. It also provides visual 
feedback on district-wide energy performance, 
highlighting areas for improvement. As the DT learns and 
adapts from decision outcomes, it guides strategic 
investments towards energy self-sufficiency, making it a 
critical tool for sustainable energy management. 

5. Deliverable Results 

In this section, we unveil the preliminary design of our 
Digital Twin, a web-based system devised with a vision 
of creating PEDs. As illustrated in Fig. 6, the initial 

version of our DT, which is accessible at 
dataless.beta.geodan.nl, was developed in a collaborative 
with Geodan. 

This first iteration, designed using publicly accessible 
datasets for data privacy and usage rights adherence. The 
model, as depicted in Figure 6, will evolve to incorporate 
advanced features such as plugins for data analysis, 
predicting energy demand, scenario analysis, and more. 

6. Discussion and Conclusion 

Buildings are one of the main users of energy, and RESs 
has the potential to provide the energy need of building 
sector. However, integrating RESs into energy system can 
disturb the balance of the power grid. DTs have emerged 
as a high-potential technique for supporting decision-
making, enhancing performance and operation, and 
lowering operation costs in many fields including energy 
management of buildings.  

This article tried to architect and design a digital twin to 
establish PEDs, and in this section we discuss challenges 
and risks associated with this aim.  

One of the first obstacles we encounter is the task of 
reconciling the disparate principles and processes of 
PEDs and DT technology. The complexity and 
multifaceted nature of these concepts, combined with the 
ever-evolving landscapes of PED and DT fields, pose a 
significant challenge. Furthermore, accessing relevant 
case study data is also a noted challenge. 

Moving into the domain of data management, challenges 
are multifold. Managing vast data volumes, ensuring real-
time analytics, data security, interoperability, and 
synchronization, all become aspects of concern. The need 
to standardize datasets, identify and investigate the 

Figure 6. initial version of DT model for this project available from dataless.beta.geodan.nl. 



necessary datasets for project inclusion, stay updated with 
evolving data management practices, and maintain 
infrastructure flexibility to adapt to new data types and 
energy management needs, are substantial difficulties. 
Furthermore, issues of data security and ethical 
considerations become critical when handling large 
amounts of sensitive data. 

With respect to the methodology employed, DT heavily 
relies on the accessibility of diverse building datasets to 
apply data-driven algorithms effectively. Risks arise 
when we are unable to acquire sufficient data, forcing us 
to resort to using white or gray box methods for certain 
types of buildings. Furthermore, there is the risk that the 
algorithms we develop may not be universally applicable 
or scalable across different contexts or various types of 
buildings and districts. 

In the realm of spatial analysis, inherent uncertainties, 
coupled with variability in environmental factors and 
potential constraints in accessing comprehensive and 
timely spatial data, may pose a risk to the accuracy of our 
assessments. 

When expanding from a building level to an entire district, 
challenges multiply. Designing and implementing DT 
technology at this scale brings with it complexities when 
it comes to simulating, predicting, and prioritizing energy 
efficiency measures. There are also risks associated with 
the variability in solutions for different building types and 
across districts, especially for buildings like historical 
ones, where flexibility for implementing certain energy 
efficiency measures might be limited. 

Lastly, the ambitious goal of integrating DT technology 
for district-wide energy management brings with it a host 
of challenges and risks. These range from the complexity 
of integrating DT technology, formulating a 
comprehensive multi-objective optimization algorithm, 
and dynamically managing the energy within the district. 
There are numerous variables and constraints to account 
for, such as the variability of renewable energy 
generation, energy demand-supply balance, efficient 
energy storage and sharing, and minimizing disturbance 
to the national grid. Further complexities arise when 
trying to incorporate the feedback into DT's to refine their 
predictive and operational capabilities. Implementing a 
fully functional Digital Twin for an entire district's energy 
management is ambitious, and managing the 
computational time for this complex task is a significant 
challenge. 

In conclusion, the pathway to designing a Digital Twin 
aimed at establishing Positive Energy Districts presents 
both substantial challenges and risks. However, it is 
through understanding and navigating these complexities 
that we can truly make strides towards a more sustainable 

future. We aim to meet these challenges head-on, learning 
and adapting as we progress in our research..  

Acknowledgement 
This research received funding from the Dutch Research 
Council (NWO) and National Natural Science Foundation 
of China (NSFC) in the framework of the Cooperation 
China-The Netherlands programme. We would also like 
to express our gratitude to the team members of the 
DATALESs project for their valuable assistance 
throughout the project. We are also thankful for Geodan’s 
expertise and guidance in developing the digital twin. 

References 

Agostinelli, S., Cumo, F., Guidi, G., & Tomazzoli, C. 
(2021). Cyber-physical systems improving 
building energy management: Digital twin and 
artificial intelligence. Energies, 14(8), 2338.  

Aloraini, A., & Hammoudeh, M. (2017). A survey on data 
confidentiality and privacy in cloud computing. 
Paper presented at the Proceedings of the 
international conference on future networks and 
distributed systems. 

Amasyali, K., & El-Gohary, N. M. (2018). A review of 
data-driven building energy consumption 
prediction studies. Renewable and Sustainable 
Energy Reviews, 81, 1192-1205. 
doi:https://doi.org/10.1016/j.rser.2017.04.095 

Cioara, T., Anghel, I., Antal, M., Salomie, I., Antal, C., & 
Ioan, A. G. (2021). An overview of digital twins 
application domains in smart energy grid. arXiv 
preprint arXiv:2104.07904.  

Coalition Agreement 'Confidence in the Future'. 
Retrieved from 
https://www.government.nl/documents/publicat
ions/2017/10/10/coalition-agreement-
confidence-in-the-future 

Dataset: Basisregistratie Adressen en Gebouwen (BAG). 
Retrieved from 
https://www.pdok.nl/introductie/-
/article/basisregistratie-adressen-en-gebouwen-
ba-1 

Economidou, M., Todeschi, V., Bertoldi, P., D'Agostino, 
D., Zangheri, P., & Castellazzi, L. (2020). 
Review of 50 years of EU energy efficiency 
policies for buildings. Energy and Buildings, 
225, 110322. 
doi:https://doi.org/10.1016/j.enbuild.2020.1103
22 

Ekren, O., & Ekren, B. Y. (2010). Size optimization of a 
PV/wind hybrid energy conversion system with 
battery storage using simulated annealing. 
Applied Energy, 87(2), 592-598. 

https://doi.org/10.1016/j.rser.2017.04.095
https://www.government.nl/documents/publications/2017/10/10/coalition-agreement-confidence-in-the-future
https://www.government.nl/documents/publications/2017/10/10/coalition-agreement-confidence-in-the-future
https://www.government.nl/documents/publications/2017/10/10/coalition-agreement-confidence-in-the-future
https://www.pdok.nl/introductie/-/article/basisregistratie-adressen-en-gebouwen-ba-1
https://www.pdok.nl/introductie/-/article/basisregistratie-adressen-en-gebouwen-ba-1
https://www.pdok.nl/introductie/-/article/basisregistratie-adressen-en-gebouwen-ba-1
https://doi.org/10.1016/j.enbuild.2020.110322
https://doi.org/10.1016/j.enbuild.2020.110322


doi:https://doi.org/10.1016/j.apenergy.2009.05.
022 

Elkadeem, M. R., Younes, A., Sharshir, S. W., Campana, 
P. E., & Wang, S. (2021). Sustainable siting and 
design optimization of hybrid renewable energy 
system: A geospatial multi-criteria analysis. 
Applied Energy, 295, 117071. 
doi:https://doi.org/10.1016/j.apenergy.2021.117
071 

Elsner, P. (2019). Continental-scale assessment of the 
African offshore wind energy potential: Spatial 
analysis of an under-appreciated renewable 
energy resource. Renewable and Sustainable 
Energy Reviews, 104, 394-407. 
doi:https://doi.org/10.1016/j.rser.2019.01.034 

Fausing, K. (2020). ‘Climate Emergency: How Our Cities 
Can Inspire Change. Paper presented at the 
World Economic Forum, available at 
https://www. weforum. 
org/agenda/2020/01/smart-and-thecity-working-
title/(accessed 20th October, 2021). 

Guo, X., Zhao, Q., Wang, S., Shan, D., & Gong, W. 
(2021). A short-term load forecasting model of 
LSTM neural network considering demand 
response. Complexity, 2021.  

Harvey, L. D. D. (2009). Reducing energy use in the 
buildings sector: measures, costs, and examples. 
Energy Efficiency, 2(2), 139-163. 
doi:10.1007/s12053-009-9041-2 

Iqbal, M., Azam, M., Naeem, M., Khwaja, A., & 
Anpalagan, A. (2014). Optimization 
classification, algorithms and tools for 
renewable energy: A review. Renewable and 
Sustainable Energy Reviews, 39, 640-654.  

Khajavi, S. H., Motlagh, N. H., Jaribion, A., Werner, L. 
C., & Holmström, J. (2019). Digital twin: vision, 
benefits, boundaries, and creation for buildings. 
IEEE access, 7, 147406-147419.  

Krangsås, S. G., Steemers, K., Konstantinou, T., Soutullo, 
S., Liu, M., Giancola, E., . . . Maas, N. (2021). 
Positive Energy Districts: Identifying 
Challenges and Interdependencies. 
Sustainability, 13(19), 10551. Retrieved from 
https://www.mdpi.com/2071-1050/13/19/10551 

Magrini, A., Lentini, G., Cuman, S., Bodrato, A., & 
Marenco, L. (2020). From nearly zero energy 
buildings (NZEB) to positive energy buildings 
(PEB): The next challenge - The most recent 
European trends with some notes on the energy 
analysis of a forerunner PEB example. 
Developments in the Built Environment, 3, 
100019. 
doi:https://doi.org/10.1016/j.dibe.2020.100019 

Mariano-Hernández, D., Hernández-Callejo, L., Zorita-
Lamadrid, A., Duque-Pérez, O., & García, F. S. 

(2021). A review of strategies for building 
energy management system: Model predictive 
control, demand side management, optimization, 
and fault detect & diagnosis. Journal of Building 
Engineering, 33, 101692.  

National Climate Agreement - The Netherlands. 
Retrieved from 
https://www.klimaatakkoord.nl/documenten/pu
blicaties/2019/06/28/national-climate-
agreement-the-netherlands 

Olu-Ajayi, R., Alaka, H., Sulaimon, I., Sunmola, F., & 
Ajayi, S. (2022). Building energy consumption 
prediction for residential buildings using deep 
learning and other machine learning techniques. 
Journal of Building Engineering, 45, 103406. 
doi:https://doi.org/10.1016/j.jobe.2021.103406 

Omrany, H., Chang, R., Soebarto, V., Zhang, Y., 
Ghaffarianhoseini, A., & Zuo, J. (2022). A 
bibliometric review of net zero energy building 
research 1995–2022. Energy and Buildings, 262, 
111996. 
doi:https://doi.org/10.1016/j.enbuild.2022.1119
96 

Rahman, A., Srikumar, V., & Smith, A. D. (2018). 
Predicting electricity consumption for 
commercial and residential buildings using deep 
recurrent neural networks. Applied Energy, 212, 
372-385. 
doi:https://doi.org/10.1016/j.apenergy.2017.12.
051 

Ramachandra, T. V., & Shruthi, B. V. (2007). Spatial 
mapping of renewable energy potential. 
Renewable and Sustainable Energy Reviews, 
11(7), 1460-1480. 
doi:https://doi.org/10.1016/j.rser.2005.12.002 

Rolnick, D., Donti, P. L., Kaack, L. H., Kochanski, K., 
Lacoste, A., Sankaran, K., . . . Waldman-Brown, 
A. (2022). Tackling climate change with 
machine learning. ACM Computing Surveys 
(CSUR), 55(2), 1-96.  

Sahoo, S., Zuidema, C., van Stralen, J. N. P., Sijm, J., & 
Faaij, A. (2022). Detailed spatial analysis of 
renewables’ potential and heat: A study of 
Groningen Province in the northern Netherlands. 
Applied Energy, 318, 119149. 
doi:https://doi.org/10.1016/j.apenergy.2022.119
149 

Salom, J., Tamm, M., Andresen, I., Cali, D., Magyari, Á., 
Bukovszki, V., . . . Gaitani, N. (2021). An 
Evaluation Framework for Sustainable Plus 
Energy Neighbourhoods: Moving Beyond the 
Traditional Building Energy Assessment. 
Energies, 14(14), 4314. Retrieved from 
https://www.mdpi.com/1996-1073/14/14/4314 

Semeraro, C., Olabi, A. G., Aljaghoub, H., Alami, A. H., 
Al Radi, M., Dassisti, M., & Abdelkareem, M. 

https://doi.org/10.1016/j.apenergy.2009.05.022
https://doi.org/10.1016/j.apenergy.2009.05.022
https://doi.org/10.1016/j.apenergy.2021.117071
https://doi.org/10.1016/j.apenergy.2021.117071
https://doi.org/10.1016/j.rser.2019.01.034
https://www/
https://www.mdpi.com/2071-1050/13/19/10551
https://doi.org/10.1016/j.dibe.2020.100019
https://www.klimaatakkoord.nl/documenten/publicaties/2019/06/28/national-climate-agreement-the-netherlands
https://www.klimaatakkoord.nl/documenten/publicaties/2019/06/28/national-climate-agreement-the-netherlands
https://www.klimaatakkoord.nl/documenten/publicaties/2019/06/28/national-climate-agreement-the-netherlands
https://doi.org/10.1016/j.jobe.2021.103406
https://doi.org/10.1016/j.enbuild.2022.111996
https://doi.org/10.1016/j.enbuild.2022.111996
https://doi.org/10.1016/j.apenergy.2017.12.051
https://doi.org/10.1016/j.apenergy.2017.12.051
https://doi.org/10.1016/j.rser.2005.12.002
https://doi.org/10.1016/j.apenergy.2022.119149
https://doi.org/10.1016/j.apenergy.2022.119149
https://www.mdpi.com/1996-1073/14/14/4314


A. (2023). Digital twin application in energy 
storage: Trends and challenges. Journal of 
Energy Storage, 58, 106347. 
doi:https://doi.org/10.1016/j.est.2022.106347 

Shen, J., Saini, P. K., & Zhang, X. (2021). Machine 
learning and artificial intelligence for digital 
twin to accelerate sustainability in positive 
energy districts. Data-driven Analytics for 
Sustainable Buildings and Cities: From Theory 
to Application, 411-422.  

Sun, Y., Haghighat, F., & Fung, B. C. (2020). A review 
of the-state-of-the-art in data-driven approaches 
for building energy prediction. Energy and 
Buildings, 221, 110022.  

Tao, F., & Qi, Q. (2019). Make more digital twins. 
Nature, 573(7775), 490-491.  

Tuerk, A., Frieden, D., Neumann, C., Latanis, K., 
Tsitsanis, A., Kousouris, S., . . . Ramschak, T. 
(2021). Integrating Plus Energy Buildings and 
Districts with the EU Energy Community 
Framework: Regulatory Opportunities, Barriers 
and Technological Solutions. Buildings, 11(10), 
468. Retrieved from 
https://www.mdpi.com/2075-5309/11/10/468 

Umbark, M. A., Alghoul, S. K., & Dekam, E. I. (2020). 
Energy Consumption in Residential Buildings: 
Comparison between Three Different Building 
Styles. Sustainable Development Research, 2(1), 
p1-p1.  

Vand, B., Ruusu, R., Hasan, A., & Manrique Delgado, B. 
(2021). Optimal management of energy sharing 
in a community of buildings using a model 
predictive control. Energy Conversion and 
Management, 239, 114178. 
doi:https://doi.org/10.1016/j.enconman.2021.11
4178 

Wang, Z., Xia, L., Yuan, H., Srinivasan, R. S., & Song, 
X. (2022). Principles, research status, and 
prospects of feature engineering for data-driven 
building energy prediction: A comprehensive 
review. Journal of Building Engineering, 58, 
105028. 
doi:https://doi.org/10.1016/j.jobe.2022.105028 

Yang, T., Li, B., & Xun, Q. (2019). LSTM-Attention-
Embedding Model-Based Day-Ahead Prediction 
of Photovoltaic Power Output Using Bayesian 
Optimization. IEEE Access, 7, 171471-171484. 
doi:10.1109/ACCESS.2019.2954290 

Yang, X. e., Liu, S., Zou, Y., Ji, W., Zhang, Q., Ahmed, 
A., . . . Zhang, S. (2022). Energy-saving potential 
prediction models for large-scale building: A 
state-of-the-art review. Renewable and 
Sustainable Energy Reviews, 156, 111992. 
doi:https://doi.org/10.1016/j.rser.2021.111992 

Yang, Y., Bremner, S., Menictas, C., & Kay, M. (2018). 
Battery energy storage system size 
determination in renewable energy systems: A 
review. Renewable and Sustainable Energy 
Reviews, 91, 109-125. 
doi:https://doi.org/10.1016/j.rser.2018.03.047 

Zhang, X., Shen, J., Saini, P. K., Lovati, M., Han, M., 
Huang, P., & Huang, Z. (2021a). Digital Twin 
for Accelerating Sustainability in Positive 
Energy District: A Review of Simulation Tools 
and Applications. Frontiers in Sustainable 
Cities, 3. doi:10.3389/frsc.2021.663269 

Zhang, X., Shen, J., Saini, P. K., Lovati, M., Han, M., 
Huang, P., & Huang, Z. (2021b). Digital twin for 
accelerating sustainability in positive energy 
district: a review of simulation tools and 
applications. Frontiers in Sustainable Cities, 3, 
35.  

 

 

https://doi.org/10.1016/j.est.2022.106347
https://www.mdpi.com/2075-5309/11/10/468
https://doi.org/10.1016/j.enconman.2021.114178
https://doi.org/10.1016/j.enconman.2021.114178
https://doi.org/10.1016/j.jobe.2022.105028
https://doi.org/10.1016/j.rser.2021.111992
https://doi.org/10.1016/j.rser.2018.03.047

	Contents
	Figures
	Summary
	1. Introduction:
	2. Background Studies:
	2.1. Role of PEDs and ZEBs in the Dutch energy landscape
	2.1.1. Aspects of establishing PEDs
	2.1.2. Challenges of PED

	2.2.  Digital Twin
	2.3. The Crucial Role of Data in Energy Management
	2.4. Application of Optimization Algorithms for balancing
	2.4.1. Solution Methods:


	3. Problem Statement:
	4. Research Proposal:
	4.1. Research Objectives
	4.2. Hypothesis
	4.3. Research Questions
	4.3.1. Main Research Question.


	5. Research Design:
	5.1. Approach and Methodology
	5.2. DATALESs Project
	5.3. Collaboration with Geodan: Digital Twin Model Version 1.0
	5.4. Timeline
	5.5. Research Relevance:
	5.6. Reflection:
	5.7. Supervision
	5.8. Doctoral Education Programme

	References
	Appendix 20230703.pdf
	Background Studies:
	1.1 Energy Trends and Policies in the Netherlands
	1.2 Renewable Energy in the Netherlands
	1.3 Buildings in Netherlands
	1.4 Role of PEDs and ZEBs in the Dutch energy landscape
	1.5 Challenges of PED
	1.6 Digital Twin
	1.7 Boundary Conditions

	2. Research Design:
	2.1 Research Questions
	Sub Research Question 1. How can a comprehensive understanding of Positive Energy Districts be established, and in what ways can digital twin technology be utilized to support and enhance the realization of this concept?
	Sub Research Question 2. How can we design and implement a (spatial) data/information infrastructure for efficient handling of complex datasets in Digital Twin technology for energy management in PEDs?
	Sub Research Question 3.1: How Can data-driven algorithms be used for predicting energy demand of different types of buildings and expanding it to a district?
	Sub Research Question 5.


	References

	Conferance 20230703.pdf
	1. Introduction
	2. Energy trends in Netherlands
	2.1. Renewable status Energy in the Netherlands
	2.2. Buildings status in Netherlands
	2.3. Role of PEDs in the Dutch energy landscape

	3. Digital Twin for energy management
	3.1. Architecting a Digital Twin for establishing PEDs
	3.1.1. Technology
	3.1.2. Functions
	3.1.2.1. Predicting Energy Demand
	3.1.2.2. Predicting Energy supply
	3.1.2.3. Energy sharing/storing



	4. Application of Optimization Algorithms
	5. Deliverable Results
	6. Discussion and Conclusion
	References




