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Abstract 

This study investigates the feasibility of directly utilizing 3D indoor point clouds for real-time indoor navigation, particularly to 

enhance emergency response processes. Traditional indoor navigation research primarily focuses on creating navigation systems from 

pre-existing indoor models, resulting in a graph representation that simplifies spatial relationships, requires post-processing, and 

delivers results only afterwards, often overlooking real-time obstacles and complex layouts such as those in modern office floors. This 

research proposes an original approach by leveraging real-time generated 3D models using HoloLens 2 sensors, which combine RGB 

images and depth sensor output to create a comprehensive point cloud. The study explores path planning directly within these point 

clouds without the need for extensive preprocessing or segmentation, aiming to provide immediate navigation support with minimal 

delay. Utilizing the Rapidly Exploring Random Trees (RRT) algorithm, the research seeks to minimize preprocessing and swiftly 

visualize navigable paths, evaluating the system's performance in terms of processing time and path viability. This approach addresses 

the limitations of traditional graph-based methods and the challenges posed by outdated or unavailable indoor models, offering a 

promising solution for real-time emergency navigation assistance. 

1. Introduction

Emergency response scenarios demand urgency and precision, as 

the nature of such events often involves saving lives and 

minimizing damage (Kapucu and Garayev, 2011). Navigating an 

unfamiliar location such as a high-rise building without prior 

knowledge, can be a significant challenge for emergency 

responders who need to quickly locate resources like fire 

extinguishers, safe spots, and alternative exits. Even a few 

seconds saved through an improved navigation system could 

have a substantial impact on the outcome of an emergency. 

Current indoor navigation systems primarily rely on satellite 

signals (such as GNSS) and local Wi-Fi or Bluetooth signals for 

positioning, which might offer great accuracy under normal 

circumstances. However, these systems often fail in emergency 

scenarios where power outages or structural damage can disrupt 

local networks and block satellite connections. Furthermore, 

these systems typically depend on pre-existing building data like 

floor plans or Building Information Models (BIM), which may 

be outdated or poorly maintained (Nikoohemat et al., 2020), 

leading to inaccurate and potentially dangerous guidance during 

emergencies. Most indoor navigation solutions represent the 

environment in 2D and simplify the spatial complexity into nodes 

and connecting lines, which is efficient for everyday use but 

inadequate for the intricate layouts and unexpected obstacles 

found in emergency scenarios (Boguslawski et al., 2022). 

This study aims to leverage the capabilities of an existing system 

(Morlighem et al., 2020; Smit et al., 2021; van Schendel, 2022) 

where 3D indoor point clouds are generated and expanded in real-

time as field agents navigate through the environment. We utilize 

visual HoloLens 2’s internal SLAM system for positioning, 

which does not depend on external connectivity other than local 

network connections provided with the system for data transfer. 

This research emerged from an effort to find a methodology that 

could utilize available 3D point cloud data with minimal 

processing to keep up with the real-time data influx. An 

unconventional approach was adopted, using a methodology 

popular in the robotics industry that focuses on speed and 

iterability. Additionally, the study uses data obtained from three 

different scanners: one is the Microsoft HoloLens 2, used to 

evaluate what could be achieved with the current system, and the 

other two are survey-grade mobile laser scanners (MLSs), 

namely GeoSLAM ZEB Horizon RT and Leica BLK2GO. Even 

though their workflows do not fit with the real-time mapping 

system, they are employed in this research to see what is 

achievable if sensors with higher point density and wider fields 

of view become available. 

As sensor technology continues to advance rapidly, the potential 

for integrating higher-quality sensors into real-time navigation 

system becomes increasingly feasible. Notable developments, 

such as the introduction of LiDAR sensors in consumer devices 

like Apple's mobile phones and tablets starting in 2020, highlight 

the trend towards more accessible and powerful sensing 

technologies (Díaz-Vilariño et al., 2022). The recent release of 

Apple's Vision Pro during the course of this research further 

underscores the progress in wearable sensor technology. These 

advancements suggest that features typically reserved for high-

end mobile laser scanners could soon be available in smaller, 

more affordable, and wearable formats. 

Employing the modified bi-directional Rapidly Exploring 

Random Trees (RRT) algorithm for pathfinding, this method 

treats the points in the point cloud as obstacles, using any 

available empty space to establish a path from the start to the 

endpoint. The RRT algorithm is chosen for its efficiency in 

rapidly processing and adapting to new environmental data, 

crucial for navigating dynamically changing indoor 

environments during emergencies.  

Unlike traditional navigation systems that simplify 

environmental data into 2D maps, this solution maintains the 

three-dimensional complexity of the environment. This approach 
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allows for effective navigation through and around physical 

obstacles within complex indoor settings, which is essential in 

emergency scenarios where environments are prone to sudden 

alterations such as obstructions from debris or changes in 

accessible paths. 

For example, in emergency scenarios requiring navigation 

through complex and altered indoor layouts, traditional graph-

based navigation systems might not swiftly adapt to such 

changes. These systems often require time-consuming 

reprocessing of environmental data to reflect new conditions. In 

contrast, the use of a real-time 3D model in this research enables 

the immediate adaptation of navigation paths to the current state 

of the environment, providing responders with up-to-date and 

reliable routing. 

The proposed navigation system can swiftly adapt to the 

dynamically changing environment of an emergency. By 

enhancing decision-making processes and providing efficient 

paths to safety or to other agents in distress, the system optimizes 

the use of real-time data with minimal processing. 

This navigation solution thus offers an alternative to conventional 

methods by leveraging advanced scanning technology and 

pathfinding algorithms, facilitating more effective and reliable 

navigation in complex indoor environments during emergency 

responses. 

 

2. Related Works 

Indoor navigation is often considered under few main topics: 

indoor positioning, and pathfinding, mapping (modelling), and 

communication of the found path. The indoor positioning aspect 

of this project has been addressed by preceding studies 

(Morlighem et al., 2020; Smit et al., 2021; van Schendel, 2022). 

Therefore, our study will focus on the latter. This section follows 

the natural progression of indoor navigation: first, modelling; 

second, pathfinding; and lastly, navigation 

support/communication. Each of these subsections will be 

considered from the perspective of emergency response. 

 

2.1 3D Indoor Mapping Techniques 

The importance of accuracy in indoor modelling has been 

previously emphasized; there is a need for an up-to-date model, 

whether it be a floor plan, BIM, or 3D model. An up-to-date 2D 

floor plan would still represent a complex office floor as a single 

room. Therefore, the requirement is an up-to-date, 3D indoor 

model. Building Information Models (BIMs) could be an option. 

However, a case study by the European Commission (Carbonari 

et al., 2020) indicated that out of 21 building logbook initiatives, 

only 8 require updates after renovations, and only 3 are 

digitalized and accessible. Consequently, even if an up-to-date 

3D model exists, it might not be available. To summarize, 2D 

models are inadequate for representing complexity, and existing 

3D models could be inaccessible or outdated. Therefore, real-

time 3D reconstruction appears to be the most viable option for 

emergency response scenarios. 

 

2.2 3D Path Planning 

Using a 3D model for navigation is often achieved with a 

navigation graph. This method requires segmenting and 

classifying the 3D model to extract the navigable surface of the 

floor plane. An example is the work of Balado et al., (2019), 

where they use a 3D point cloud to calculate the route. While this 

is a robust methodology, it takes computational time. Flikweert 

et al., (2019) proposed a methodology that automates the process 

from point clouds to navigation graphs, which can perform even 

better with high-capacity hardware. However, simplifying the 

obstacles and navigable surface into a 2D representation is not 

feasible in a dynamic environment such as emergency response. 

Another approach by Broersen et al., (2016) proposes extracting 

the 3D empty space and structuring it into a graph to achieve 

pathfinding. This also requires time and processing, but their 

implementation of an octree approach allows them to quickly 

index their graph, even though it is a 3D structure. Lastly, the 

work of Fichtner et al., (2018) combines the use of octree and 

navigation graphs to streamline the process even more. However, 

these methodologies would require reprocessing as the dataset 

expands in real-time and depend on a secondary product. 

Therefore, we sought a method that could work with an 

unstructured, unprocessed point cloud. 

Path planning methodologies for humans, in contrast to robotics, 

require much more structure and classification to be understood 

by the end-user, which does not fit with our objective. Therefore, 

we adopted a methodology that emerged in the field of robotics: 

Rapidly Exploring Random Trees (LaValle, 1998). This simple 

algorithm is not computationally demanding yet effective. In 

addition to the base algorithm there are various studies that 

proposed improvements such as bi-directional search, target 

oriented exploration and adaptive extension (Wang et al., 2022; 

Zheng et al., 2022). 

 

2.3 Visualization and Path Communication 

The final part of this section involves the visualization and 

communication of the path. We use the term "communication" 

because the output of our pathfinding methodology is a list of 

coordinates, which might be adequate for an autonomous drone 

but not for a field agent. Our end user, a field agent, has limited 

time and resources to comprehend complex data. Patel and 

Grewal, (2022) conducted a user study comparing augmented 

reality (AR)-based indoor navigation with traditional 2D maps. 

Most users found the AR-based method to be less mentally and 

physically tiring and were able to reach their objectives faster. 

The study noted that a limitation was the need for users to hold a 

mobile phone in front of them for navigation support. The authors 

proposed the use of an AR-headset as a further improvement, 

which could enhance the user experience by allowing hands-free 

navigation. Additionally, preceding studies related to this project 

(Morlighem et al., 2020; Smit et al., 2021) utilized the Unity 

game engine for visualizing 3D graphics, and the current 

workflow is optimized around this system. Therefore, we decided 

to visualize the path in Unity in a way that can be overlaid onto 

the real world using the HoloLens's mixed reality view. This 

approach ensures that the path is easily understandable and can 

be followed by the field agent in real-time, enhancing their 

navigation efficiency during emergency responses.  

 

3. Methodology 

3.1 System Overview 

Diagram and overall explanation of the system is seen in Figure 

1 below. Point cloud processing and coordinate picking actions 

are only applicable for the proof of concept and are due to the 

limitations of mobile laser scanners and the development 

environment. The 3D modelling system that this project is 

designed for can provide point clouds as well as the location of 

field agents (initial coordinates) and allows for the selection of 

goal coordinates. Therefore, the pre-processing section will not 

be required. 
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Figure 1. Methodology Flowchart 

 

3.2 Data Collection Equipment and Environments 

Our study employed the HoloLens 2 and two mobile laser 

scanners, the GeoSLAM Zeb Horizon RT and Leica BLK2GO, 

across three environments: an office building, an apartment 

complex, and a basement. The office environment was selected 

for its complex layout and reflective surfaces like glass and 

monitors, which pose challenges for scanning accuracy. The 

apartment complex and basement, chosen for their simpler 

structures and minimal pedestrian traffic, facilitated a focused 

evaluation of the system's routing and visualization capabilities 

under controlled conditions. All environments were scanned with 

the appropriate permissions to comply with data privacy 

regulations, ensuring GDPR (General Data Protection 

Regulation) compliance. 

 

3.3 Scanning Workflows and Data Preprocessing 

The HoloLens 2 was used to represent real-time 3D modelling 

system, capturing RGB and Depth images along with the 

scanner's pose. This data was stored in an SQL database and 

processed at the edge server into point clouds, though specific 

details remain outside the scope of this document due to 

proprietary restrictions. The mobile laser scanners required initial 

preprocessing using their respective software suites to convert 

proprietary data formats into standard files (.ply, .las), necessary 

for subsequent visualization and analysis. This preprocessing 

included noise filtering and SLAM processing, streamlined to 

mirror potential future scenarios where more advanced sensors 

might be used without extensive manual intervention. 

Furthermore, preprocessing included coordinate picking prior to 

path finding. This is an additional step required in the 

development process in contrary to the 3D modelling framework 

where initial location will be the field agent’s location and goal 

location will be determined from the system interface (Figure 2). 

 

 
Figure 2. POI and Field agent view from 3D modeling system 

 

3.4 Data Handling and Processing 

While this research did not focus on sensor fusion, it emphasized 

the individual capabilities and data processing workflows of each 

scanner type. The HoloLens 2 and mobile scanners operated 

independently, capturing distinct datasets that were used to 

evaluate the system's performance across different technological 

capabilities and environmental complexities. 

 

3.4.1 Data Structuring: As mentioned in previous chapters, 

high computational demand of 3D point clouds is often a 

bottleneck. In this study we addressed this in a similar method to 

Fichtner et al., (2018) and Broersen et al., (2016). An octree was 

used to structure the search space, enhancing the steering and 

collision checks, while the search trees of the RRT algorithm 

were structured with a KD-tree to achieve feasible iteration 

speeds. 

 

3.4.2 Pathfinding and Route Planning: Pathfinding was 

conducted using a modified bi-directional Rapidly Exploring 

Random Trees (RRT) algorithm. Inputs included initial and goal 

coordinates, accompanied by the point cloud file either directly 

exported from the 3D modelling system or acquired with mobile 

laser scanners and pre-processed. The following sections explain 

the functions involved in path planning. The generalized process 

is illustrated in the flowchart below (Figure 6). 

 

3.4.3 Collision Check: One of the most crucial functions of 

the algorithm is collision checking. In most RRT 

implementations, obstacles are depicted as 'regions,' so the 

collision check involves determining if the sample coordinates 

fall within these obstacle limits. However, in this 

implementation, obstacles are the points of the point cloud, 

representing an indoor environment. Therefore, the aim is to stay 

'in' the obstacle. 

To achieve this, an axis-aligned bounding box that roughly 

represents the size of an average adult human is used to check if 

there are 'points' in the path. Another challenge is defining the 

threshold for a collision. Since the data was not cleaned or 

filtered, noise in the scans could result in false collisions. Thus, 

we calculated the density of the obstacles to decide on this 

threshold. This density is sensor-specific and should be adjusted 

according to the data source. 
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3.4.4 Target-Bias: In standard RRT, sampling is uniformly 

random across the search space, which can result in inefficiencies 

in large spaces or narrow openings. A performance-enhancing 

solution is target-biased sampling. The algorithm still randomly 

explores but, with a probability of 𝑝, the tree is expanded from 

the nearest node to the goal, in the direction of the goal. 

 

3.4.5 Step Size: Defined as the distance between current node 

(n) and sample node (nsample), step size is set as the width of the 

bounding box used for collision checking. As the algorithm 

checks for collisions around nsample, which is at the center of 

the bounding box, the previous check for 𝑛 ensures the first half 

of the step is obstacle-free. Therefore, checking for nsample, 

results in a clear path. Bounding boxes and step size is seen in 

Figure 3Error! Reference source not found.. 

 

 
Figure 3. Bounding box and step size. 

 

3.4.6 Bi-Directional Search: Search process involves two 

RRT trees: Tree A (TA) and Tree B (TB). TA starts the search 

from initial coordinates and expands towards the goal coordinates 

(due to bias). Meanwhile, TB starts at the goal coordinates and 

expands to the latest node of TA in a sequential search process. 

 

3.4.7 Path Optimization, Normalization & Export: When a 

connection is established between initial and goal points, 

rewiring is executed which then checks if there is a path with 

lower cost. Furthermore, as the path represents a connection 

between crucial points of collision check bounding boxes, the 

coordinates are normalized to the floor level by reducing the Z 

component by 0.7 meters (Figure 4). This process is done to 

optimize the visualization results. Lastly, the coordinate list of 

nodes is exported in a plain text file. 

 

 
Figure 4. Normalized path illustration 

 

 

3.4.8 Visualization: The user interface of the real-time 3D 

modelling system is developed with a game engine, which is also 

used for visualizing the 3D model. Consequently, the path 

visualization is done within the same environment. A C# script 

that accepts the resulting text file from the path planning is used 

to visualize the path. Since the path shares the same coordinate 

system with the point clouds, the final path, after normalization, 

appears approximately 0.2 meters above the surface and provides 

visual guidance that does not require additional directions (Figure 

5).  

 

 
Figure 5. Path visualized over the dataset in game engine. 

 

 

Figure 6. Path Planning Flowchart. 

The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XLVIII-4/W11-2024 
19th 3D GeoInfo Conference 2024, 1–3 July 2024, Vigo, Spain

This contribution has been peer-reviewed. 
https://doi.org/10.5194/isprs-archives-XLVIII-4-W11-2024-175-2024 | © Author(s) 2024. CC BY 4.0 License.

 
178



 

 

 

4. Results & Discussion 

 

4.1 System Performance and Future Directions 

The system's effectiveness was primarily measured by the speed 

and success of the pathfinding process, with the RRT algorithm 

tailored to prioritize rapid, safe route generation over finding the 

shortest path. This approach was chosen to reflect the urgent need 

for emergency navigation, where conditions can change 

unpredictably. The current implementation serves as a proof of 

concept, with plans for future tests to validate and refine the 

system under a broader range of real-world conditions. The 

aample results for the longest test path is given below. 

 

Testing hardware: 

• Processor: Intel i7-10850H CPU @ 2.70GHz 

• RAM: 32 GB DDR4 

• GPU: NVIDIA Quadro T1000 4 GB DDR6 

Dataset: 

• Environment: Basement (Figure 7) 

• Sensor: GeoSLAM Zeb Horizon RT 

• Point Cloud Size: 1,407,430 points 

• Path Length: 83 meters 

• Average Time per 1000 Iterations: 0.61 seconds 

• Total Run Time (octree generation and ~15,000 

iterations): 11.89 seconds 

Note that the hardware capacity used in testing is significantly 

lower than that of the edge computer. Therefore, we consider 

these rates promising. 

 

 
 

 

4.2 Challenges 

4.2.1 Sensor limitations: On one hand, it is possible to 

generate a point cloud in real-time. However, the resulting point 

cloud often has gaps where the algorithm ends up leaving the 

point cloud, or there are obstacles that are not completely 

scanned, hence considered as viable openings. On the other hand, 

some sensors can quickly scan the environment with much higher 

coverage, resulting in a dataset that is perfect for this 

methodology. However, it is not yet possible to access the point 

cloud without preprocessing. A comparison of the same 

environment with different scanners is shown below (Figure 8). 

Due to field of vision limitations, the ceiling is not covered by 

the HoloLens scan. 

 

 
Figure 8 Office environment with Mobile Laser Scanner (top), 

Hololens 2 (bottom). 

 

4.2.2 Step size: As mentioned in the methodology (3.4.2), the 

step size is set to 0.5 meters to accommodate the bounding box 

for collision checks. While this is effective for collision checking, 

a small step size negatively affects performance in large areas 

(e.g., the basement dataset). Variable step size implementations 

have proven to be useful in such scenarios (Zhang et al., 2019). 

However, using a variable step size would cause the collision 

check method to fail. 

 

4.2.3 Target bias: Another method to overcome the 

challenges of large areas is introducing a target bias. This 

improves performance in simpler layouts; however, the bias 

probability also introduces a failure probability in complex 

layouts. As seen in Figure 9 below, both trees quickly advanced 

to their objective yet resulted in a failure due to iterating towards 

opposite sides of a wall and not being able to connect. The red 

and yellow dots represent the nodes that are closest to each other 

(0.2 meters apart). This challenge is especially evident in 

scenarios with multiple floors. 

 

 
Figure 9. Faile due to biased sampling. 

 

4.3 Discussion 

Results show that it is possible to achieve efficient path planning 

by direct use of 3D indoor point clouds. However, it is not 

feasible with the current 3D modelling system due to limitations 

of the sensors. First of all, coverage of the HoloLens 2 FOV (field 

of view) and Range is inadequate for this methodology as 

HoloLens 2 data has gaps and unscanned obstacles which is then 

considered as empty space and used for path planning by the RRT 

search. Second, data acquired by mobile laser scanners were 

suitable for search. On the other hand, streaming the point clouds 

in real-time with these devices is not yet possible. 

Figure 7. Basement dataset (Scale bar = 25 m). 
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Another aspect to mention is the existence of drift in the scans. 

Especially with the HoloLens 2 and BLK2GO scans. Loop 

closure is practiced with Zeb Horizon RT scans while BLK2GO 

scans conducted without it to observe the effects. There is visible 

drift even in comparably short scans (>1 m drift in scans less than 

10 minutes). For our methodology it does not effect the results as 

the path finding and visualization share the positioning and 

coordinate system of the point cloud. However, it could result in 

inaccuracies if georeferencing is required. 

 

4.4 Future works 

4.4.1 Parallel Processing / Multithreading: Processing the 

search from both trees simultaneously instead of the current 

sequential methodology could yield greater improvements in 

performance.  

 

4.4.2 Continuous and Variable Collision Check: In our 

research bounding box hence, the collision check is limited to a 

large rectangle box. In a scenario where there is an opening that 

only allows the user to crawl through, our method will fail. 

However, using a smaller bounding box that represents the 

minimum space required to pass could result in an unfeasible path 

(e.g. a path that requires to crawl under tables when there is an 

opening large enough to walk next to it). Implementing a variable 

method that changes the size after certain amount of failed 

iterations could solve this problem. In addition, a method that can 

check around the proposed path constantly instead of bound 

based controls (without hindering the performance) can facilitate 

variable step size and provide performance increase. 

 

4.4.3 Visualization Improvements: Implementing gaussian 

splatting to the point clouds could result in a visual that is much 

easier to comprehend for the observers (commanding agents) 

compared to the unstructured and semi-transparent look of the 

point clouds. 
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