From thermal comfort to heat
mitigation action

A reproducable QGIS plugin for calculating the
physiological equivalent temperature in Dutch cities

Marieke van Esch

MSec Thesis Geomatics 2024

From thermal comfort to heat mitigation
action

A reproducable QGIS plugin for calculating the
physiological equivalent temperature in Dutch cities

by
Marieke van Esch

to obtain the degree of Master of Science of Geomatics and Urbanism
at the Delft University of Technology,
to be defended publicly on Wednesday April 17, 2024 at 12:45 PM.

Student number: 4545508
Project duration: February, 2023 — April 17, 2024

Thesis committee: Ir. E. Verbree, TU Delft, 1st supervisor
Dr.Ir. S.van der Spek, TU Delft, 2nd supervisor
Dr.Ir. S. Koopmans, Wageningen University, co-reader
Dr.Ir. S. Kahmedi, Building Technology Department External Comitee

An electronic version of this thesis is available at http: //repository.tudelft.nl/. This work is licensed
under a Creative Commons Attribution 4.0 International License. To view a copy of this license, visit
http://creativecommons.org/licenses/by/4.0/ The plugin developed is viewed on
https://github.com/mariekeve/petplugin and also has a Creative Commons Attribution 4.0
International License. Contact with the creator of the github can be reached through email in the github link.

]
TUDelft

http://repository.tudelft.nl/
http://creativecommons.org/licenses/by/4.0/

Abstract

In the summer of 2023 heatwaves became quite prominent in the south of Europe. The Netherlands Meteo-
rological Institute predicts that heat waves will increase from 26 to a maximum of 47 days by 2050, affecting
also the Netherlands in the future. The main research question was how to propose a strategy for a live-
able environment by designing public spaces while mitigating heat stress for vulnerable target groups in the
context of Bospolder Tussendijken in Rotterdam, the Netherlands. The research included a literature review,
expert consultations, scenario planning, modeling of the urban environment and mapping techniques. The
research on Bospolder Tussendijken aimed to assess its liveability in terms of climate, social conditions and
policies. The climate part of the research focused on creating a reproducible heat stress assessment tool to
identify high-risk areas in public spaces. Factors such as solar radiation, evaporation and wind affect heat
stress in the city, and designers could influence these factors based on their level of intervention at the built
environment scale. Social conditions are divided into spatial mobility and social mobility. The spatial mo-
bility of fast traffic affected the thermal experience of public space and social mobility, especially walking.
Finally, the application of the reproducible PET tool helped to identify the temporal vulnerability to heat
stress. In addition, the accessibility of public spaces for vulnerable groups on a summer day was assessed
despite the range restriction caused by heat stress, and this information was used to inform design strategies
and evaluate the final design. The design guidelines focused on mitigating heat stress, improving walkability
as spatial mobility and enhancing social mobility spaces for vulnerable groups. The research emphasized the
importance of identifying heat stress in public spaces and the need for urgent action to maintain the quality
of life in the future. The spatio-temporal heat stress tool introduced in this study brought a new dynamic
layer to urban planning and could suggest maximum technical improvements to improve the public space
network. The research also proposed a way to calculate the cumulative cost of experiencing the thermal ac-
cessibility of an area, which could open up discussions for health organizations to investigate the thermal
endurance acceptability of different target groups. Ultimately, the research concluded that urban planning
should priorities the network of interventions to be durable and readable for citizens to function in the urban
environment, whilst not being the option to maximize heat mitigation.
Keywords: Physiological Equivalent Temperature, Thermal Accessibility, Liveability, heat mitigation

iii

Acknowledgments

I would like to thank my supervisors Edward Verbree, Stefan van der Spek and Marjolein van Esch. Also the
external supervisors Sytse Koopmans and Gert-Jan Steeneveld from Wageningen University. I would also like
to thank external parties such as Niels van der Vaart for providing the links to Rotterdam. Martijn Meijers for
his time in showing me how to use the API’s of KNMI. Merel Scheltema as urban designer of the municipality
of Rotterdam for sharing her knowledge about the Rotterdam heat plan and Andre de Wit as mobility expert of
the municipality of Rotterdam. Laurens Versluis for sharing his knowledge about Witteveen and Bos. Most of
all, Iwould like to thank my family for supporting me throughout the whole graduation year, also the graduate

group I studied with. I would also like to thank Diego Sieglevulda for his guidance during the first quarter of
the Master’s orientation process.

Preface

The past summer has shown signs of changing climate variability. In Spain, people are already feeling the ef-
fects of heat at the beginning of spring, according to The Guardian [Guardian, 2023]. Due to carbon emissions
over the past decades, the heat will continue to linger in the atmosphere. The government has warned people
to take precautions due to drought and temperatures 7-11 degrees Celsius above the average for this time of
year. They have also highlighted behavioral thermoregulation strategies to cope with the heat [Millyard et al.,
2020]. If emissions continue at the current rate, heat events are likely to occur more frequently in the future,
affecting not only the southern part of Europe but also other regions. It is important to take action in the built
environment to address climate change, which requires a new approach to how we design our surroundings.
Speculative design is necessary to sketch future scenarios with different stakeholders by creating scenarios
and testing them to develop comprehensive designs [Dunne and Raby, 2013]. Climate modeling requires
consideration of the complexity of meteorological and physical factors. The synergy of the social aspect of
public space usage is a key driver for adapting to climate adaptation in the built environment. This report is
part of the joint degree between the studies Geomatics and Urbanism, in which Geomatics form strategies for
urban development. The title of the Geomatics report is: “From thermal comfort to heat mitigation action:
Informed Strategies for Mitigating PET Heat Stress in Public Spaces for Vulnerable Groups — A Rotterdam Case
Study”.

vii

Contents

Abstract

Acknowledgments

Preface

1

Introduction

1.1 Healthatrisk o e
1.2 Heat mitigation research and action in the Netherlands
1.3 Researchgap« . . o i e e e e e
1.4 Researchaim e e e e
1.5 Academic ValueoftheResearch. L o
1.6 Social RelevanceoftheResearch
1.7 Research questions o i e e e e e e e e e e e e
1.8 Structure ofthereport L e e

Thermal comfort models
2.1 Positioningheatstressmodels Lo e
22 Conclusions. L e e

Thermal comfort software

3.1 Requirements. e e e e e e e
3.2 Thermal comfort softwaremodels
3.3 Conclusion e e e e e e e e

Physiological Equivalent Temperature (PET) model
4.1 Physicalmodel L
4.2 Reproducability paper code guidelines Koopmans etal. [2020]

PETs simulator

5.1 Computationalworkflow
5.2 PETsimulator. e e e e e e e e
5.3 Userinterface. e e e e e e e e e e e

Physiological Equivalent Temperature verification

6.1 Winddirection L e e e e e e e
6.2 Blocksize L
6.3 Block size comparison 1000x1000 researcharea.
6.4 Frontalarea. L e e e
6.5 Scalability. e
6.6 Calibrationofthecode L

Physiological Equivalent Temperature application

7.1 PETcalculation. L e
7.2 Applications L e e e
7.3 Testing thedesigninterventions L. L o oo

PETs evaluation
8.1 Reproducability. L e
8.2 Assessmentreproducability.o Lo

Discussions and limitations
9.1 Discussion e e e e e e e e e e e e e e e e e e e
9.2 Limitations e e e e e e e e e e e e e e

X Contents
10 Conclusions 91
10.1 Subresearch questionsanswered L. oo 91
10.2 Conclusion Lo e e e e e 92
10.3 Additional Points of Growth from thisResearch. 93
10.4 Conclusionjointdegree. L L e e 93
11 Future research 95
11.1 Points of improvement L Lo e e e e e e e e 95
11.2 Transferabilityof the Research oo o 97
A Symbols 103
B Python code 105
B.1 python/pet_parameters.pyot e e e e e e e 106
B.2 python/geotiff creator.py. L. 108
B.3 python/pysolarl.py. L e e 110
B.4 python/get svipy. L e 114
B.5 python/fraction_area_buildings_treeregrpy Lo 115
B.6 python/ndvi_infr_large.py 121
B.7 python/vegetation_footprints.py 123
B.8 python/skyview_footprints.py L. e 124
B.9 python/urban_heat.py L 125
B.10 python/pet_calculate.py L 126
B.11 python/pet_simulator.py L. L e 128
C Users manual 145
D Extended research area eastern wind Wageningen 151
E Extended research area eastern wind Rotterdam 159
F Diurnal table 167
G Additional concept figures 169
H Original python code 171
H.1 sytse/fraction_area_buildings_treeregrpy L. 171
H.2 sytse/ndvi_infr_large.py. L e e 181
H.3 sytse/vegetation_footprints.py Lo e 183
H.4 sytse/skyview_footprints.py. L L. e e 186
H.5 sytse/pet_calculate.py L. e e e e e e 188
I MSE wind old 195
J Dates 2023 Rotterdam 197
K Walkability analysis 201

List of Figures

1.1 KNMI climate scenario’s and predictability of amount of warm days and summer days adapted

from [KNMI, 0000] [CAS, 2020] o o vt et e e e e e e e e e e e e e e e
1.2 Stakeholder diagram. Adapted from [Hofman, 2022]
1.3 Stakeholder power interest matrix. Adapted from [Hofman, 2022]
1.4 Placement of this research within the field of knowledge and action. Put in the framework of

Deltaprogramme [Programme, 2018] e
1.5 Flowchart proposed in the Urbanismpart.

2.1 Overviewthermalmodels e

3.1 Reproducability guidelines e
3.2 Reproducability checklist according to [Framework,2022]
3.3 Wind modeling roughness layer retrieved [Cochran and Derickson, 2005] figure4
3.4 Schematic representation of 3d wind flow pattern around a high-rise building retrieved from
Urban Physics: Effect of the micro-climate on comfort, health and energy demand by [Moonen
etal,, 2012] e

4.1 Simplified flowchart as published in [Koopmans etal.,2020]
4.2 Evaluated flowchart considered the code provided by [Koopmans etal.,2020]
4.3 Legendflowchart e

5.1 Flowchartrefactored. e e e
5.2 Legend flowchartrefactored.
5.3 Research area 1000x1000 m white (output), extended research area 1500x2100 m black (input),
and base map RGB 4000x4000 m (data).« v v vttt e e e e e
5.4 Wind averaging footprint from roughness layer to 1.2m wind speed factors field.
5.5 Vegetation fraction and sky view factor averaging footprint for determining the UHI max de-
pendingonthewind direction. L
5.6 Wind direction for the research area of 100x100m.
5.7 Outputfilesonresearcharea. e
5.8 Intermediate output filesonresearcharea. e
5.9 Scaled vegetation fractionwind.
5.10 Scaled sky view fractionwind.
5.11 Urban heat. e e e
512 PET. . . o e
5.13 Qgis plugin screen PET Simulator plugin. L
5.14 Weather stations Netherlands retrieved from.
5.15 T atmospheric temperature for Rotterdam in the months june till september 2023 (Data re-
trieved from KNMI [0000] postprocessed byauthor

6.1 Different wind directions files on research area 100x100m
6.2 Research area 100x100m, eastern wind. o v v i i i it e e e e e
6.3 Trendline time datablocksize5m
6.4 Research area 1000 x 1000 m, easternwind.
6.5 Sensitivity analyses frontal density factor buildings. oL oL 0oL
6.6 Sensitivity analyses frontal density factortrees.
6.7 Percentagetime i i e e e e
6.8 Elapsed time (S) o o i i e e e e e e e e
6.9 Trendline time datablocksize lm e

12

42

44

53

List of Figures

6.10 Trendline time datablocksizebm 61
6.11 Trendline time data blocksize2m 61
6.12 Calibrated frontal density factortrees. e 61
6.13 Outcome Sytse Koopmans e e e 62
7.1 Location of Bospolder Tussendijkenin Rotterdam 63
7.2 Fig. T atmospheric temperature for Rotterdam in the months june till september 2015 (Data
retrieved from KNMI [0000] post-processed byauthor) 64
7.3 Different wind directions files on research area Rotterdam Bospolder Tussendijken 65
74 18:00 . .. e e e 66
7.5 18:00 . .. e e e 67
7.6 Colorclasses of PET onthe 1stofJuly2015 68
77 18:00 . .. e 69
7.8 18:00 . .. e 70
7.9 Colorclassesof PETonthe29thofJune2015. 71
7.10 Cumulative cost of walking with thermal comfort to parks with 500m and 200m thermal comfort
accessibility L 73
7.11 Cumulative cost of walking with thermal comfort to market with 500m and 200m thermal com-
fortaccessibility L 73
7.12 Cumulative cost of walking with thermal comfort to playgrounds with 500m and 200m thermal
comfortaccessibility 74
7.13 Adding greenery and replacing parkingspaceso 75
7.14 Trees added / updated by size L 76
7.15 rgb and infr changed in values on specific streets and visserijplein 77
7.16 Shadow influence at 15:00 77
7.17 Sun pattern over the day with design interventions of adaptation oftrees 78
TAB I8:00 . . o o e e 79
7.19 Color classes of PET on the design interventions on the 1stof July2015 80
720 18:00 . . . e e e 81
721 18:00 . . . e e e e 82
7.22 Comparison of public spaces after heat mitigation measures 83
8.1 Fig. Github page for retrieving the PET simulator plugin repository 86
C.1 Simulation overview of hours and basemapdata 147
C.2 Directorybasemapsinthemapdata 147
C.3 Hour simulation directory of therun Rotterdam 147
C.4 Qgis plugin PETs window 1 static parameters. 148
C.5 Qgis plugin PETs window 2 dynamic parameters. vt v vt v oo, 148
C.6 Qgis plugin PETs window 3 calculationscreen. 149
D.1 DTM . e e 151
D2 DSM. . .o e 152
D.3 DSM-DTM . . . 152
D4 Buildingmask. e e 153
D.5 Buildingheight. e 153
D.6 Buildingmask. e e e e 154
D7 Treemask. e 154
D.8 Skyviewfactor. e e e e 155
D9 Skyviewfactormask. 155
DI0Water mask. e 156
D.IINDVInearinfrared. oo e 156
D.I2NDVIredgreenblue. e e e e 157
D.13Shadow 1200 LST. oo 157
E1 DTM .. e 159

List of Figures 3

E3 DSM-DTM . . . e e e 160
E4 DSM-DTM e e e e e e 161
E.5 Buildingmask. oL 161
E.6 Buildingheight. e 162
E.7 Buildingmask. L 162
E8 Treemask. o e e e 163
E9 Skyviewfactor. e 163
E.10 Skyviewfactormask. L e 164
E 11 Watermask. vttt et e e e e e e e e e e e e e 164
E.I2NDVInearinfrared. e e e e e 165
E.13NDVIredgreenblue. e 165
E.14 Shadow 1200 LST. o o e e e e e e e 166
G.1 NDVIvalues retrieved from [eesa, 2024] o o i i e e 169
G.2 Skyview factor[Himmerle etal., 2011] e 170
I.1 Trendline time datablocksize 5m e 195

J.1 Fig. T atmospheric temperature for Rotterdam in the months june till september 2023 (Data

retrieved from KNMI [0000] postprocessed by author) 197
J.2 Thetwodatesfor2023 e 198
J.3 Output files on research area 25th of June$t2023. 198
J.4 Output files on research area 28th of June$t2023. 199
K.1 Orientation map and H/Wratiobuildings 202

K.2 Attraction betweeness market containing line segment pieces with more than 1000 dwellings as
shortestpathroute e 203

2.1

3.1
3.2

4.1
4.2

5.1
5.2

6.1
6.2
6.3
6.4

7.1
7.2
7.3
7.4

List of Tables

Physiological Equivalent Temperature classification 14
Comparisonsoftwaremodels 23
Comparison softwaretable e 23
The Aand Binterpolationmatrix e 27
Legend flowchart. Values are ranging from 0 minimum towards 3 maximum reproducability . . 31
Table dynamic data Wageningen 1juli2015 48
Temperature and corresponding thermal perception 49
Frontal density factors. L 56
Blocksize 1 wind computing time extrapolated for South-Holland and the Netherlands 59
Blocksize 5 wind computing time extrapolated for South-Holland and the Netherlands 60
Block size 25 wind computing time extrapolated for South-Holland and the Netherlands 60
Table dynamic data Rotterdam 1juli2015. 64
Table dynamic data Rotterdam 29 june 2015 i 64
Temperature and corresponding thermal perception 68
Temperature and corresponding thermal perception 71

Introduction

This chapter introduces the topic of graduation research. Furthermore, the former research will be intro-
duced and the research gap will be acknowledged. The proposal for this research is formulated by the research
aim. The approach will summarize the main research questions. The approach summarizes the methodology
which will set out the sub-research questions related to this topic. At the end of this chapter, the structure of
the report is elaborated.

1.1. Health at risk

A heat wave is defined as a period of at least 5 consecutive summer days with a maximum temperature of 25.0
°C or higher, of which at least three days have a maximum temperature of 30.0 °C or higher, as measured at the
meteorological weather station in De Bilt, the Netherlands. This phenomenon is expected to become more
common as our emissions contribute to climate change. This is further explained in scenarios with high and
low emissions (see Figure 64), which predict an increase in the number of summer days with temperatures
above 25 degrees Celsius.

Days above 20C
degrees

Days above 25C
degrees

2014 2050 2085
Climate high emmision scenario Climate low emmision scenario

Figure 1.1: KNMI climate scenario’s and predictability of amount of warm days and summer days adapted from [KNMI, 0000] [CAS, 2020]

People lack an adaptable response of the human body to a day of 25 Celsius degrees or above and this is
an indicator of the mortality rates of people. This puts the health of citizens at risk. Physiological factors like
heart rate will take some days to adapt to a warmer environment. Another aspect is that people can dress

8 1. Introduction

more for colder situations in contrast to hotter days [Lenzholzer, 2018] . These combinations lead to higher
mortality rates with heat extreme like the occurrence of a summer day of 25 degrees [Daanen, 2023]. This is a
serious issue now and in the future.

1.2. Heat mitigation research and action in the Netherlands

The Delta Plan on Spatial Adaptation [of Infrastructure and Waterboard, 2018] requires all municipal govern-
ments in the Netherlands to conduct a climate stress test addressing flood risk, heat stress, and drought. In
2019, Wageningen University created a report and code for RIVM, and in 2020, Witteveen en Bos released a
PET-heat map for the Netherlands in cooperation with Wageningen University and Climate Adaptive Services
(CAS) [CAS, 2020]. Although this web viewer is publicly available, it does not allow designers to assess spatial
and temporal effects and make design decisions in specific locations. The "Hot Issues" conference at HVA in
2020 highlighted that municipalities are all in the process of reproducing this code themselves [HVA, 2020].

Furthermore, the National Heat Plan has been active since 2015 under the supervision of RIVM, with
multiple stakeholders involved in heat mitigation matters in the Netherlands. These stakeholders are divided
into state, private, and civil society parties, with a distinction made between primarily involved stakeholders
and a wider audience of stakeholders. There are several collaboration formations identified using a power and
interest matrix. The first formation involves health-considered parties, the second involves financial parties,
and the third is particularly interested in the liveability component of society, including immediate residents,
academia, urban planners, and municipalities. Collaborative sharing of knowledge and action based on the
power-interest is crucial for taking care of heat stress mitigation.

Several sources are mapped out below and positioned on the "know, want, and taking action" framework
Figl.4 of the Delta Plan. It is evident that knowledge and action on this subject are fragmented and can be
consolidated from the perspective of urban environment modelers towards the application of action-based
urban design practitioners.

Figure 1.2

Figure 1.2: Stakeholder diagram. Adapted from [Hofman, 2022]

Figure 1.3

1.2. Heat mitigation research and action in the Netherlands 9

Figure 1.3: Stakeholder power interest matrix. Adapted from [Hofman, 2022] .

Figure 1.4: Placement of this research within the field of knowledge and action. Put in the framework of Deltaprogramme [Programme,
2018]

10 1. Introduction

1.3. Research gap

Based on the orientation phase, which involved talking to various parties, two main research gaps have been
identified. One is the lack of an interactive, open-access tool that helps discover knowledge for an action-
based approach. The other gap is the absence of a developed strategy on how to target the most important
public spaces for transformation.

1. Lack of one open platform with knowledge for multiple parties/stakeholders

The PET published there is designed to represent the average conditions from 10:00 UTC to 16:00 UTC
on the first of July. However, it doesn't take into account the spatial-temporal variations throughout
the day, nor does it offer a baseline for typical daily conditions in cities. As a result, it’s not possible
to test any interventions based on this data. To address this, the research opts to model the PET using
the calculation model developed by Koopmans et al. [2020], in line with the reproducability guidelines
advocated by the Agile conference [Framework, 2022]. We will need to provide a more detailed expla-
nation of the PET calculation method using Python for the next steps in the process.

2. Strategy approach missing for intervening in public space

Currently, several municipalities are addressing this issue in their own way. There are no established
guidelines for how municipalities should approach this problem, and their strategies vary widely. Dur-
ing the symposium at the University of Applied Sciences "Hot issues" organized by [Hogeschool van
Amsterdam, 2023], the differences became evident. However, there is no standardized approach to the
strategic implementation of interventions in public space design to make cities more heat-resistant.

1.4. Research aim

The first research aim of this part of the graduation project is to combine an interactive open tool for address-
ing the spatial-temporal behavior of heat stress in urban environments. A second research aim is a strategy
for creating a design to mitigate heat stress with the application case study in the neighborhood of Bospolder
Tussendijken in Rotterdam North.

1.5. Academic Value of the Research

The academic value of [Koopmans et al., 2020] can be enhanced by opening up and restructuring the code.
This will enable the generation, verification, and comparison of intermediate results, facilitating the integra-
tion of research from other disciplines based on a shared knowledge base. As well as spreading awareness
through the expansion of educational opportunities. The academic positioning of the strategy development
and methodology development alongside the work of [van Esch, 2015] and ongoing developments in the
Dutch government places this research as an interesting integration of vulnerable groups which need a more
climate-safe environment.

1.6. Social Relevance of the Research

The research introduces an accessible tool that can help a wide range of people understand the impact of heat
in their local area. This tool can encourage more efficient communication and inspire collaborative efforts
involving various parties to create strategies for mitigating heat stress. The significance of this lies in devising
a plan to revamp public spaces, ultimately enhancing the quality of life for residents.

1.7. Research questions

Main research question: “How can a strategy be developed for mitigating heat stress through Physiologi-
cal Equivalent Temperature model while ensuring a livable environment for vulnerable groups in Bospolder
Tussendijken, Rotterdam, the Netherlands?”

The objective was twofold: to create an interactive tool indicating PET heat stress in urban areas of the
Netherlands and to design a strategy specifically tailored to Bospolder Tussendijken. This part of the joint
thesis focused on reproducable tool to indicate the PET in Dutch cities.

1.8. Structure of the report 11

The main question will be answered using this research question:
"To what extent could a reproducible tool help with identifying spatial-temporality of heat stress through PET
in urban environments and test design interventions?"

1. What is the position of PET next to other thermal comfort models?

2. Which software is available for open use for modeling heat stress?

3. In what way could the reproducability of [Koopmans et al., 2020] be improved?

4. Whatis the sensitivity of the wind computation and how could this model be applied to other locations?

5. How can the PET be applied on in Rotterdam for urban design interventions?

1.8. Structure of the report

The structure of this report will include an analysis of the availability of modeling heat stress. This will be dis-
cussed in Chapter 2: Thermal comfort models. Next, it accesses the available software in Chapter 3: Thermal
comfort models. The physical model of [Koopmans et al., 2020] and the reproducability will be assessed in
Chapter 4: Physiological equivalent temperature model. This reveals the improvement of the code. Chapter 5:
PET simulator showcases the reproducible procedure of the QGIS plug-in developed by the author. Eventu-
ally, in Chapter 6: PET model verification, there will be validation of the model and the potential opportunity
to use it for other use cases. Chapter 7: PET application, shows the application of the Rotterdam case study
and the application of the thermal comfort model to investigate heat stress, thermal accessibility of several
public spaces and testing design interventions. Also chapter Chapter 8 PETs evaluation, looks back on the re-
producability of the plugin for other third-party applications. Chapter 9Discussions and limitations, will dive
into the discussion and limitation of the research. Chapter 10 addresses the conclusions. Lastly, Chapter 11
proposes the future research. This research is part of the joint graduation research with application to the
Rotterdam case study. See Figure 1.5.

12 1. Introduction

GEOMATICS URBANISM
Technical report Spatial report
lack open design tool for population growth climate change health jeopardised
neighbourhood design in cities
How could a strategy be proposed that can mitigate heat stress temporality but also provide a
liveable environment for vulnerable target groups in the context of Bospolder Tussendijken in
Rotterdam, the Netherlands?
mmmmmmmmmm e e e ———— -_—
Stakeholders involved ‘ Liveable environment conditions | LI ﬂ
Y - . N - . - N
. o Environmental quality Social conditions Political / economic condi-
Reproducability guidelines Thermal conditions tions
‘ jiermalsuesimodels } - Built environment[static] - Spatial mobility - current policies and devel-
- Climate [dynamic] - Social mobility opments
‘ Thermal stress software ‘ - Physiological [specific group] - scenario planning feasibility
and assesment
‘ PET model ‘
3
Context sp&aciﬁc l l
Y
What is the current liveability state of Bospolder Tussendijken?
. L Py ey ———
[PET simulator
How could the liveability state be improved?
Sensitivity wind scale ‘ -
—
\ Cost map thermal walkability \
Stay location: market square Movement location:
Visserijplein Intersecting streets Spanjaardstraat
PET simulator
Cost map thermal walkability

Figure 1.5: Flowchart proposed in the Urbanism part.

Thermal comfort models

2.1. Positioning heat stress models

This section positions the heat stress models available related to the researched Physiological Equivalent
Temperature model used by [Koopmans et al., 2020].

For thermoregulation for the heat storage model the energy heat balance model is developed. It holds an
equilibrium for people to function [Havenith, 1999].

6s=M+R+Cy+Cyq—E (2.1)

Metabolic rate (M) is the rate at which the body generates heat internally. Typically, the average metabolic
rate atrest is 70 W, while during extensive exercise it can rise to 700 W. Net radiation (R) is the balance between
the radiation absorbed and emitted by the body. Mean radiant temperature (MRT) characterizes the radiation
field. Convection C, is the transfer of heat by the movement of air and is enhanced by wind. Conduction
C, refers to the transfer of heat between materials in direct contact. Heat loss occurs through evaporation
of sweat and respiration, where exhaled air tends to be warmer and more humid than inhaled air (E). The
thermal balance depends on the weather conditions. Higher net radiation tends to increase heat storage,
while heat loss can occur through sweating or exposure to wind [Matzarakis and Amelung, 2008] and [Hoppe,
1999]. Several thermal indices have been developed to quantify thermal comfort.

Mean Radiant Temperature

The Mean Radiant Temperature (Tmrt) is an effective indicator of thermal stress experienced by the human
body due to the radiant heat emitted by its surrounding environment. Conceptually, Tmrt is the uniform
temperature where the radiant heat transfer from the human body equals the non-uniform enclosure.

Predicted Mean Vote

The Predicted Mean Vote (PMV) is a widely used thermal index for assessing indoor thermal comfort. It
originates from research by Fanger (1970) [Fanger, 1970] and is based on the idea that comfort is achieved
when there is thermal equilibrium without physiological stress. The PMV is based on a steady-state heat
balance model and is evaluated by individuals in a controlled indoor environment. They rate their experience
on a seven-point scale ranging from -3 (cold) to 3 (hot), with 0 representing neutrality.

Munich Energy model

The steady-state model includes the sweat rate as a function of mean skin temperature and core temperature
[Mayer and Hoppe, 1987b]. Heat fluxes are determined by the energy balance equation, from the body core
to the skin, and from the skin through clothing. Additionally, the individual’s age and sex are factored in when
calculating both metabolic rate and sweat rate. This model closely aligns with thermophysiology and is highly
personalized for each individual.

13

14 2. Thermal comfort models

PET Thermal perception | grade of physiological stress
<4°C very cold extreme cold stress

4-8°C cold strong cold stress

8-13°C | cool moderate cold stress

13 -18°C | slightly cool slight cold stress

18 -23°C | comfortable no thermal stress

23-29°C | slightly warm slight heat stress

29-35°C | warm moderate heat stress
35-41°C | hot strong heat stress

>41°C very hot extreme heat stress

Table 2.1: Physiological Equivalent Temperature classification

Physiological Equivalent Temperature

The MEMI was a starting point for the Physiological Equivalent Temperature (PET) developed by [Mayer and
Hoppe, 1987a]. It compares complex outdoor conditions to a typical steady-state indoor setting (MRT = Ta,
v=0.1m/s, VP= 12hPa or RH=50% at Ta=20C) with the age of a 35 year old male. [H6ppe, 1999]. The real out-
door climate is matched with a fictive indoor environment where the same level of temperature discomfort is
experienced. Physiological Equivalent Temperature (PET) is linked with the bio climate of the place. It is cal-
culated by determining the temperature at which the energy balance for indoor conditions is the same as the
mean skin temperature and sweat rate for outdoor conditions. This makes it easier for people to assess the
thermal comfort of a place, as compared to interpreting mean skin temperature values. PET values around
21°C are considered comfortable, while higher values indicate a higher chance of heat stress, and lower val-
ues indicate a too cool environment for comfort see Table2.1 [Mayer and Hoppe, 1987b] [Héppe, 1999] [Fiala
et al,, 2012]. This is an widely used measure around urban planners, and persons not familiar with thermo-
physiology. This semantic representation of spatial temporal influences of built environment as static factors,
physiological factors as static factors and climate factors as dynamic factors give a better understanding for
other disciplines to deal with the effects of heat stress on the public health.

Wet bulb globe temperature

The Wet Bulb Globe Temperature (WBGT) is a measure used to assess heat stress. It combines the readings
from three instruments: the Natural Wet Bulb (NWB), Globe Temperature (GT), and Dry Bulb (DB) ther-
mometers. It was developed during World War II in the military and indicates the amount of exercise a per-
son can handle before experiencing heat stroke. Nowadays, it is a common measure for employees working
outside [RIVM, 2023]. This links metabolic actions to temperature and requires specific materials to obtain
accurate measurements. Shortcomings include the underestimation of humidity and air movement, which
can lead to an unclear understanding of stress in environments with limited evaporation. This inadequacy
exacerbates the existing inconsistencies in effective temperature measurements for two main reasons [Budd,
2008].

UTCI

The Universal Thermal Climate Index (UTCI) is an internationally standardized thermal index developed by
the World Meteorological Organization (WMO). It assesses thermal comfort or stress in both outdoor and
indoor environments by considering various environmental factors such as air temperature, humidity, wind
speed, and radiation from the sun and surrounding surfaces. UTCI estimates the equivalent air temperature
at which the human body would experience thermal stress as it would under the prevailing environmental
conditions. It's widely used for assessing heat stress and thermal comfort in research, policy, and practice
due to its comprehensive and standardized approach that can be applied across different geographic loca-
tions and climates [Blazejczyk et al., 2013].

2.2. Conclusions

15

Static indoor situation PMV ﬁ WBGT
7
MEMI
Static outdoor situation PET |
Climate dependent
Physiological response to enwironmental conditions I'Lr
Climata independant UTCI
Detailed thermoregulation model \

Figure 2.1: Overview thermal models

2.2. Conclusions

Metabolic rate activity incorporated

Several models have evolved from the well-known Physiological Equivalent Temperature (PET) model, rang-
ing from thermostatically PMV and MEMI to a more universally comprehensible PET model across disci-
plines. These models consider three key influences: dynamic climate data, static built environment data,
and standardized physiological performances. Given the standardization of the PET model in the Nether-
lands, it remains the appropriate choice for modeling the thermal comfort of citizens in the country. PET
serves as a comparison between complex outdoor conditions and a typical steady-state indoor environment,
aligning indoor energy balance with outdoor mean skin temperature and sweat rate for simplified thermal
comfort assessment. However, PET is a static model for indoor thermal environments, whereas UTCI and
WBGT incorporate factors such as clothing and metabolic rate, providing more comprehensive overview.

Thermal comfort software

3.1. Requirements

Software requirements

In the previous chapter, various models are discussed for identifying heat stress in urban environments. The
standard measure for the Netherlands is the PET. This chapter examines the available software programs for
this purpose. The selection criteria for the software depend on urban climate factors and the accessibility of
data to users, in line with Agile reproducability guidelines [?].

Reproducability requirements

In the context of knowing, wanting and acting as outlined in the Deltaplan (2018), it is crucial to ensure that
the software is reproducible for a wider audience of users.

With the Agile (2020) reproducability Guidelines document, Figure-E.9 refers to the reproducability as-
sessment of the different stages of reproducing georeferenced material. The aim of this report is that every
step towards higher reproducability counts. Authors should also be aware of the benefits, such as contribut-
ing to a community. The three steps of geo-handling are thus distinguished. First, the input data are assessed,
for example, if the data are open available and well documented. Secondly, the methods are described, i.e. the
software tools for pre-processing the data, methods for analysis and processing, and finally the computing
environment and visualisation of the material. Finally, the results will be evaluated.

17

18 3. Thermal comfort software

Figure 3.1: Reproducability guidelines

3.1. Requirements

19

Figure 3.2: Reproducability checklist according to [Framework, 2022]

20 3. Thermal comfort software

Urban designers climate factors

For urban designers it is important to know what is changeable of the built environment which influences the
climatic dynamic factors in cities. It's important to consider factors such as radiation, air temperature, and
wind computation. The physical built environment, including surface materials, water, and vegetation, can
significantly impact the dynamic values in cities. Additionally, it’s crucial to examine the micro climate, which
can vary based on size. The software should accurately handle fluctuations in the presence of landscaping
elements. The influence of shadow and vegetation patterns is limited to the immediate surroundings of trees
or buildings. Therefore, it is important to capture these mitigating fluctuations [van Esch, 2015]. The software
needs to be able to scale from a small to a large scale, considering various scopes such as neighborhoods or
entire cities. Next to this, the running time of the simulations should be taken care of. When it comes to wind
modeling, it's important to distinguish between methods. One method focuses on the abstraction of wind
flow in one direction with the representation of an averaging method of building height resistance translated
from roughness layer to the ground [Macdonald et al., 1998] (Figure 3.3). However, a more advanced model,
such as the computational fluid dynamics model, does take into account the real behavior of wind [Mirzaei,
2021] (Figure 3.4). In order for the wind computation tool to be effective, it should be easy to operate and
provide results quickly. The time taken to run the tool is a crucial factor that affects the accuracy of the
results, and needs to be considered at all levels of computation to ensure robustness.

Figure 3.3: Wind modeling roughness layer retrieved [Cochran and Derickson, 2005] figure 4

3.2. Thermal comfort software models 21

Figure 3.4: Schematic representation of 3d wind flow pattern around a high-rise building retrieved from Urban Physics: Effect of the
micro-climate on comfort, health and energy demand by [Moonen et al., 2012]

3.2. Thermal comfort software models

Several software options are available for modeling the urban microclimate, including ENVIMET, PET na-
tional map, Urban Microclimate, UMEP and CRC tool. Each of these software options has unique features
that distinguish them from each other."

ENVIMET

ENVIMET is one of the highly accurate climate modeling software and is used by heat experts [met GMBH,
n.d.]. The wind modeling uses computational fluid dynamics. However, this software is not open source. The
software could only be retrieved with a fee subscription. Also due to its high precision this modeling software
the runtime is relatively large and is therefore suitable for calculating small urban areas. A simplification of
this modeling software is also suitable for indicating the micro climate on urban level.

Urban Multi-scale Environmental Predictor

The Urban Multi-scale Environmental Predictor (UMEP) is a climate service tool, designed for researchers
and service providers (e.g. architects, climatologists, energy, health and urban planners) presented as a plugin
for QGIS. It works with different methods like pre-processor, processor and after result. All dependencies
have to be performed sequentially in order to make it working. The modifications of inbetween results are
only suitable for the plugin in order to let it work Lindberg et al. [2018]. The wind modeling is done by a the
Macdonald et al. [1998] method. With the proper knowledge of the plugin it is usable for neighborhood scale
and city scale.

Urban micro climate

Urban micro climate is a widely used climate analysis software among architects ([MIT, 0000]). It is integrated
as a plugin in the Rhino environment, with plugins called Ladybug that read various climate data. The pri-
mary output is the dry bulb temperature, which does not reflect the PET. However, it is adaptable software
environment for designers to make urban environmental differences and test the results. In the input CAD
file, buildings, courtyards, public squares, roads, and trees are represented in poly lines or surfaces. This

22 3. Thermal comfort software

should be regurlary updated and could potentially overestimate the performance of mitigating measures like
evaporative surfaces. These input data are a representation of the real world and need to be generated first by
manually drawing or retrieving from the BAG. Despite this, many urbanists use QGIS to perform geo-spatial
analyses.

PET national map

It is developed for the weather input of the Netherlands, and therefore suitable for Dutch test cases. There
is provided documentation of [Koopmans et al., 2020] on the code. It has an 1-m accuracy which makes
it suitable for modeling fluctuations of shading and evaporative surfaces. The input data is obtained from
publicly available sources and generated for each location in the Netherlands in a seamless manner. The
wind modeling uses the MacDonald method [Macdonald et al., 1998]. It is suitable for urban micro climate
modeling to identify critical areas. The code itself is not publicly available but the steps are documented in
[Koopmans et al., 2020].

CRC tool

CRC tool does not indicate the areas which are endangered by heat stress but only showcases potential miti-
gation elements and measured in costs [Deltares, 2020]. It is a privately developed tool and not transferable
to other interfaces to reproduce the outcome yourself.

3.3. Conclusion

The software requirements were assessed if it was a reproducible manner of retrieving the information with
the connection between knowing, wanting and acting see Table3.2. Therefore it is necessary to indicate the
critic areas and also being able to intervene in the public space. Next to that it should be reproducible for a
broader audience. Therefore the AGILE requirements of reproducability are important which are divided in
input, methods and results. Also the requirements of the influencing factors of the urban environment which
can be changed by the urban designer should be integrated in the software. Small fluctuations of evaporative
surfaces or shadow are important to model. For the usability for multiple users the scalability of the area is
important as well as the runtime of the software. As seen in the inquiry there are different software models
with their own purpose and audience. The PET map developed for the Netherlands does have the poten-
tial to be scaled to other locations in the Netherlands [Koopmans et al., 2020]. It has a scalability potential
for multiple research areas and it can handle the fluctuations of evaporative and shadow patterns. It does
use an abstraction of the wind method to speed up the computation process. In the next chapter the PET
calculations will be addressed and the reproducability will be assessed.

Table 3.1: Comparisonsoftwaremodels

Urba nmicro climate PETkaart ENVIMET CRC(ClimateResilient UMEPtool
City)tool
Open source YES YES NO,against fee NO YES
Adaptabledata YES NO YES YES NO
Publisher MIT Wageningen university, | ENVIMET GMBH Essen | Deltares Fredrik Lindberg,
Witteveen en Bos Germany TingSun,Sue Grimmond,
Yihao Tang, Nils Wallen-
berg
Users Architects Public accessible as viewer | Commercial Public accessible and ad- | Researchers and service
vanced version against | providers(e.g.architects,
fee.Commercial climatologists, energy,
health and urbanplanners)
Website
https://urbanmicroclimate | https://www.klimaateffect | https://www.envi- https://www.deltares.nl/en | https://umep-
.scripts.mit.edu/umc.php atlas.nl/nl/ met.com/ /software/climate- docs.readthedocs.
resilient-city-tool/ io/en/latest/
level 3D 2.5D 2.5D 2.5D land2D
Software Grasshopper and ladybug Viewable online or can be | ENVIMET CRC tool QGIS
retrieved by klimaat effec-
tatlas
Input 3D geometry, Weather data | Weather data KNMI local, | Weather data national Weather data Built environment height
spatial data of built envi- and canopy trees
ronment
Output Dry bulb temperature, en- | PET Mean Radiant Tempera- | Heat reduction, Cost analy- | Shadow, wind, skyviewfac-
ergy consumption ture(MRT), Physiological | sis tor, UHI, Thermal outdoor
Equivalent =~ Temperature comfort
(PET) and Universal Ther-
mal Climate Index (UTCI)
Scope area Micro level Micro, Meso, Macro level Micro level Macro, Meso and Micro | Micro,Meso,Mesolevel
level
Purpose Indicate areas and design Indicating high experi- | Indicate areas and design Indicate areas and design Indicate urban heat island
enced temperatures in and how to mitigate heat
areas
Takes environment into accouBuilt environment Built environ- | Evaporation water and | Built environment, evapo- | Buildings and vegetation

ment,evaporation water

and greenery

greenery and green roofs
and green facades

ration water and greenery

Runtime 1km x 1km

0-10min

100+min

0-10min

0-10min

Table 3.2: Comparison software table

uoisnpuo) ‘¢'¢

€¢

Physiological Equivalent Temperature
(PET) model

4.1. Physical model

The method for the Physiological Equivalent Temperature (PET) calculation is described in Koopmans et al.
[2020]. The formulas used, along with the corresponding variables and units of measure, are provided in the
flowchart of figure 4.1. This chapter provides an overview of the formulas.

Figure 4.1: Simplified flowchart as published in [Koopmans et al., 2020]

PET (°C) is calculated for a sun, a shade or a night situation. The parameter depends on the air temper-
ature T, (°C), measured at a height of two meters above the land surface, the wet bulb temperature T, (°C),
the global solar radiation Qg (Wm™2), the diffusive radiation Q; (Wm™2) and the latent heat flux. PE Ty, is
expressed by

PETgyn =—-13.26+1.25T,+0.011 Qs —3.371In(u; 2) +0.078 T, + 0.005Q; In (1 2)5.56si n(¢p)

4.1
—0.0103Q;In(uy) sin(¢p) +0.0546 B, +1.94S ¢ @D

where o (5.67-1078 Wm™2K™!) is the Stefan Boltzmann constant, S, r (-) denotes the sky-view factor and ¢
(degrees) denotes the solar elevation angle. The latent heat flux follows from the Bowen ratio By, that relates

25

26 4. Physiological Equivalent Temperature (PET) model

this flux to the sensible heat flux. The latent heat flux follows from evaporation of water from the land surface.
Evaporation is affected by the wind speed, which is measured at a height of 1.2 m u; » (ms™!). PE Thight and
PETghagde are given by

PE Thight shade = —12.14 + 1.25T, — 1.47In(uy 2 +0.060 T, +0.0158, Qu+

. 4.2)
0.0060(1 = Syf)o (T +273.14)

Air temperature and wet bulb temperature

The urban heat island coefficient U H I ;o that is used for calculating the air temperature on a 2-m level. The

coefficient follows from

S| (Tmax — Tenin)®
UHImaxz(z—Syf—Fyeg)d l ma("] - (4.3)

This equation consists of a physical part and a meteorological part. The first part describes the physical
part with the sky-view factor S, r and the vegetation fraction Fy.g within a certain source area. Water bodies
are treated as buildings overnight and as grass during the day. Both parameters are averaged over a source
area of 500 x 1100 m with a resolution of 25 meters. The orientation of this source area depends on the
wind directionHeusinkveld et al. [2014]. The second part consists of a meteorological term S | (Kms™') that
represents the mean downward shortwave radiation and the average wind speed during the day U (ms™1).
The temporal conductivity Tmax - Tmin (°C) is measured between 8:00 UTC and 7:00 UTC the next day. Air
temperature at given hour 7,(h) (°C) follows from

Ta(h) = Trefstation + U HImax - dcycle 0] (4.4)

where Tiefstation (°C) denotes the atmospheric temperature measured at a KNMI weather station at a height
of 1.2 m, dycle corrects U HImax. The diurnal correction factor varies between -0.02 and 1 as can be seen in
Appendix ?2. The table in this appendix was derived from Oke [1982].

The wet bulb temperature T, (k) (°C) follows from the air temperature and the solar elevation angle as

Tw(h) = T,(h) atan (0.151977(¢ + 8.313659)%°) + atan (T, (h) + ¢) —atan (¢ —1.676331)

1.5 (4.5)
+0.00391838 ¢~ atan(0.023101 ¢p) — 4.686035

Wind velocity
For the wind calculation the MacDonald method is used [Macdonald et al., 1998]. The calculation provides a
spacial frontal area density factor A that can be written as

Atot = 0.6Apuildings + 0-3Atrees +0.015 (4.6)

The factor resembles the resistance of buildings and trees on the wind. The resistance depends on the height
of buildings and trees in front of a spatial location and on the variation in height. Heights are considered over
a source area A, (m?) of 280 x 140 m area with a scaled resolution of 35 meters. Frontal areas determine the
perpendicular surfaces towards the wind direction. If there are a lot of buildings in this direction then the
frontal area density will be high which will lead to less wind. The frontal area density factor scales the wind
speed that is measured by KNMI weather stations at a height of 10 meters above land surface u;¢ (m/s). For
the PET calculation a wind speed at a height of 1.2 meters above land surface u; » (m/s) has to be obtained.

With a sufficient frontal surface area (O.G/Ibuﬂdings + ().3/1trees) > 25/ A the wind speed at this level follows
from

U1.2 = UH EXp

9.61 (E - 1” 4.7)
H

where A expresses either Apyildings OF Atrees- The wind speed at roof in case of a building at height H (m) is
written as uy (m/s)

-u* I A+ Bzy) .

ug=——In{———

H="g A+By) "

the parameters A and B are presented by Table-4.1 and z,, (m) denotes the top of the roughness layer. The

friction velocity u* follows from

(4.8)

Ue0
In (607d)

20

u* =04 4.9

4.2. Reproducability paper code guidelines Koopmans et al. [2020] 27

where zj is the surface roughness length, u,, is expressed as

zZw—d

ln(—z0)

u =Ugp—
zZw 60 60—d
20

(4.10)

where the wind at a height of 60 meter follows from the wind speed measured by a weather station ugy =
1.3084u;9. If the frontal surface area is insufficient according to (O'GAbuildingS + 0.3)Ltrees) < 25/ A then the
wind speed directly follows from

Uiz = 0.6350 Uuio (4.11)
Aot diH zy/H 2zy/H A/H B
0.05 (<0.08) 0.07 2.0 0.048 -0.35 0.56

0.11 (0.08till0.135) 0.26 2.5 0.071 -0.35 0.50
0.16 (0.135till0.18) 0.32 2.7 0.084 -0.34 048
0.20 (0.18 till 0.265) 0.42 1.5 0.08 -0.56 0.66
0.33 (=>0.265) 0.57 1.2 0.077 -0.85 0.92

Table 4.1: The A and B interpolation matrix

Diffusive radiation
The diffusive radiation follows from the measured solar radiotion is calculated as

Qs Tq <0.3
Qi=401.6-27,)Q; 03<71,<07 (4.12)
0.2Q; 7,>0.7

The atmospheric transmitivity 7, is given by

Qs

== (4.13)
1367 sin(¢)

Ta

Latent heat flux
In order to retrieve the evaporative surfaces the Normalized Difference Vegetation Index (NDVI) is intro-
duced. This index evaluates the red band of the RGB image and the red band of the infrared image. The
index provides ranges that represents the health and evaporative functioning of the greenery in the urban
environment. For information about the values see Appendix G.

NIR-R

NDV]= ——— (4.14)

NIR+R
If the NDV I exceeds 0.16 then vegetation is assumed to evaporate well and the Bowen ratio is set to 0.4. For
impervious urban surfaces the ratio is set to 3.0 [Oke, 2002].

4.2, Reproducability paper code guidelines Koopmans et al. [2020]

First, the script provided by Sytse Koopmans from Wageningen will be assessed for reproducability according
to the Framework [2022] as named in Figure E.9 and Figure 3.2. Next, the new code for assessing PET on a
city scale will be executed. An analysis was conducted based on the code provided by the author (see Figure
4.2).

open data

open data

open data

not open data

open data

open data

open data

not open data

Input

data preprocessing

method analysis
and processing

ahn DSM 0.5m

ahn DTM 0.5m

. /rasterize

asteriz
building

Methods

computational
environment

UMEP
» shadow
tool

raster window
patprintaverags

fraction area

sk (1

rdsteri
+ / building

ilding mask.#f

building

building

heights
(1m)

heights.tif

location

Results

documented
and available

{menth)—shadew—»YYYMMDD_deeade_ho

tree mask.tif

>
ee mas
> llter tree . /rasterize

boomregister,

iE

rgb pdok

water
geofabrik.de

location
ndvi large vegfra rasterize
ndvi_trees veg_fractionday
ndvi_grass veg_fractionnight

raster

ro d
col an /ést;z\e\
map it to25m

svf_1m_mask

> >

location

wind_direction tf—

wind_E
wind_S
wind_W
wind_N
wind_C
urban
morphology
urban
morphology 25
m

knmi data > excel recalculate ;recalculate s diurnal
create csy Qs Qd table

spatial data
location

PET

PET_shade

PET_sun_noveg

PET_sun_veg

PET_angothour

Y

4.2. Reproducability paper code guidelines Koopmans et al. [2020] 29

Figure 4.3: Legend flowchart

Input data

The input data is focused on the datasets required to run the method in order to conduct the results. The in-
put data is categorised in whenever they are in non-proprietary format, if third party reuse is possible, if the
guidelines are referenced to the data. The datasets provided are in non-proprietary formats and include Geo-
tiff, text, and vector datasets in Geopackage format. The spatial data consists of raster Tiff and vector datasets,
while the climate data is in text format. The text file is derived from [KNMI, 0000] and contains hourly data.
It includes atmospheric temperature (TT), wind speed (FF), wind direction (DD), global solar radiation (Q),
relative humidity (RH), and minimum and maximum temperatures (Tmin and Tmax) between 8:00 UTC and
9:00 UTC of the following hour. It also includes the average daily wind speed (U). The file has been modified
to calculate Qdif, generate Sunalt, activate the Day/Night switch, and display the diurnal factor on an hourly
basis, making it not immediately repeatable for other users. The vector data, including building envelopes,
trees, and water, are derived from [Geofabrik, 2020] and [NEO and Geodan, 2024], saved as geopackages, and
eventually rasterized as Tiffs in QGIS. The spatial dataset is in Tiff format. Geospatial information, which
could be seen as static parameters, are added later for each dataset, such as RGB, Infrared, Sky view factor,
and rasterized vector datasets. These could have been generated immediately by saving the files as Geotiff
and handling them with the metadata properties. Due to the repetition in mentioning these static parameters
and by changing that in each file, inconsistencies can appear which cause incompatabilities. These static pa-
rameters next to the dynamic parameters of the climate should be centralized on a place where each separate
python file could make use of.

The datasets used for third-party purposes are referenced in Figure 10 and can be obtained from various
sources such as PDOK [Kadaster, 2023], geofabrik.de [Geofabrik, 2020], KNMI, and AHN. It’s important to
note that the tree registry data from WUR, NEO, and Geodan is not accessible to the general public. The
research outlines two methods for obtaining tree registry data or determining tree crown height using the
position and height of trees, one of which involves using AHN and NDVI. The paper utilizes accurate tree
registry data.

The paper discusses the authors referenced in the data. All the links are accessible, but the datasets must
be downloaded separately from various web links. The bomen register and Sky View Factor are initially not
available. The bomen register contains high-quality data and requires a subscription. For other locations, a
workaround is needed to make the data publicly accessible. As for the Sky view factor, a script must be written
to derive the datasets of the Sky view factor and the sky view factor mask from [KNMI, 2023].

30 4. Physiological Equivalent Temperature (PET) model

For each Tiff image the georeferencing were done separately.

latarray=np.zeros (shape=(h,w))

lonarray=np.zeros (shape=(h,w))

ymin=171322

ymax=177291

xmin=439813

xmax=445583

latmin=xmin+ (xmax -xmin) /(2*h)
latmax=xmax - (xmax -xmin) / (2*h)
lonmin=ymin+(ymax-ymin) / (2%w)
lonmax=ymax - (ymax -ymin) / (2*w)

##cells=32%48

##create lat and lons

for i in enumerate(lonarray[0]):

lonarrayl[:,i[0]] = lonmin + (lonmax - lonmin) * i[0]/(w-1)
#print (’ lonarray’,lonarray)

for i in enumerate(latarray[:,0]):

latarray[i[0]] = latmax - (latmax - latmin) * i[0]/(h-1)

Methods

The method section is subdivided into pre-processing, method, analysis and processing, and computational
environment. The method to develop the procedure is open data licence. The software code is, however,
only retrieved by the developers themselves. This could be made open and available via GitHub or a plugin
of QGIS. This was due to the lack of amount of money to create reproducible software for third-party use.

The pre-processing reproduction steps are documented in Appendix A of [Koopmans et al., 2020] via the
DOI that is provided https://doi.org/10.1016/j.buildenv.2020.106984. In the paper is a clear connection be-
tween tables, figures, maps and statistical values and the documentation is available in a README file. How-
ever, third-party users are hard to regenerate. Climate data is modified in Excel using a CSV format, and
the climate parameters are referenced multiple times in separate Python computation files. It also involves
generating missing climate parameters such as Qs in the correct units of measure, as well as Qdif, salt, and
diurnal factors. Refactoring the data by centralizing the parameters as dependencies is useful to make it more
operable. For method, analysis, and processing, it is necessary to dive into the software tools/libraries/pack-
ages and computational workflow. The reproduction steps are visible in the flowchart in [Koopmans et al.,
2020] but are a bit oversimplified. Figure 4.2 with legend Figure K.2 shows the elaborated steps necessary to
reproduce the same in-between results and results.

For the method, the approach of calculating the PET is intended to calculate the wind by the MacDonald
method validated for the Dutch context (to be more specific in the Wageningen Herwijnen context). Each
Python code has a README file that explains the use, but not the precise intermediate output results. For
the analysis part, the same in-between output should be generated and reproduced through other parties.
Since the Python files were not directly connected, all the Python file outputs were Tiff-based and of the
format of CSV output per cell a value. Also, the Fveg and Svf were manually averaged over 25m outputs
in QGIS. This led to non-linearity in the generation of the intermediate values, since modifications of the
output files of Python were modified in QGIS. This causes untraceable intermediate step output files of in-
between procedures. To upgrade to ideal, a software package is required with structured metadata, tests, and
an automated workflow if applicable add a link to the running instance of the software. To upgrade to Ideal:
minimum, versioned code repository to upload to GitHub and an open license of the software is required.
The processing involves using Python software for computational steps, along with importing libraries such
as PIL, Pandas, and Numpy. There are 7 separate Python files: ndvi_calculator, svf_footprint, vegfra_footprint,
fraction_area_buildings_treeregr, PET_angothour, and PET_calculate. Unfortunately, these Python files are
not interconnected, leading to disjointed results. The ndvi_calculator is used to calculate areas that qualify as
evaporative surfaces and contain a Bowen ratio. svf_footprint and vegfra_footprint depend on wind direction
to average the values on a 25m resolution. fraction_area_buildings_treeregr is for calculating wind, while
PET_angothour projects climate scenarios for 2050 with high- and low emissions. PET_calculate combines
output files of intermediate steps and climate dynamic data to calculate PET in sunny and shady locations.

For the computational environments, Python was used. Pre-processing values do include actions in soft-
ware like Excel, QGIS basic environment and the UMEP QGIS plugin for generating the shadow patterns of

4.2. Reproducability paper code guidelines Koopmans et al. [2020] 31

buildings and trees. Also as already mentioned the in-between results were modified in QGIS. To properly in-
stall UMEP you need a compatible version of Python in both QGIS and PyCharm. To minimize the amount of
errors the Excel manual procedure could be included in a Python file, which can generate the desired output
per day. The visualization environment is QGIS. This is a graphical environment used by urban designers.

Results

The results of the code have been verified for the Wageningen area, and the names of the services for down-
load are provided. The software has been assessed through interaction with the publishers. One of the re-
quirements is a camera-ready paper. Peer review is conducted in cooperation with Gert-Jan Steeneveld and
Bart Heusinkveld but is not incorporated in the code. If a reproducability review report is published, a DOI
will be included in a template. The report should ensure that all the steps in the workflow are reproducible.
On request the output is available.

Assessment reproducability

This scientific research institute of Wageningen University has included reproducability measures for its ver-
ified research on PET in Wageningen. After this chapter a conclusion assessment has been evaluated as seen
in table 4.2, with 0 as minimum to reproducability measures and 3 as maximum of reproducability. For the
processing part, reproducability can be increased. Many pre-processing steps are needed to handle the good
input data for the code to work. For the method, analysis and processing the method is well documented in
[Koopmans et al., 2020], but due to lack of money this is not funded to make it open software for third parties
to use. For the processing ndvi_calculator, svf_footprint, vegfra_footprint, fraction_area_buildings_treeregr,
PET_angothour, PET_calculate are used, see appendix H. Also there are modifications in QGIS instead of lin-
earity in Python file handling, this hinders the calculation workflow to work fluently. Next, the factorisation
of static parameters such as location and weather values is highly valued instead of filling them into each file.
Also, the Python code is not openly available in a GIT repository for others to see. The computing environ-
ment is QGIS, Python, the UMEP plugin in QGIS and Excel. Python is used for the calculations and Excel
for the weather data parameters. QGIS is used only as a visual environment. The results are documented in
Appendix A in [Koopmans et al., 2020], but the results are only available and documented on request. If you
wish to reproduce the results yourself, the final results should be calibrated against the results of [Koopmans
et al., 2020] to verify the results.

Input data
Methods pre-processing

method, analysis, processing
computational environment
visualisation

N = =] =N

Results

Table 4.2: Legend flowchart. Values are ranging from 0 minimum towards 3 maximum reproducability

PETSs simulator

5.1. Computational workflow

For the improvement of the code of Sytse Koopmans the decision is made to improve the reproducability
for each step of the steps from input datasets, methods and results. The flowchart for the advanced refac-
tored PET calculator is shown in Figure 5.1. The refactored Python code is displayed in Appendix B. In Ap-
pendix H the original code is displayed as a reference. Appendix C showcases the User Manual, and Ap-
pendix 22 presents step-by-step the extended research input files of Wageningen.

Input datasets

For the input files, an upgrade is made through using open-source accessible input. For the calibration of the
code for the Wageningen test case the boomregister is used [NEO and Geodan, 2024]. For the Rotterdam test
case [diensten Rotterdam, 2023] which is an open source of the municipality of Rotterdam. In the future, a
detection method of tree classification could be used. Also, the modifications of the climate data by [KNMI,
0000] can now be generated by the Python script pysolarl.py which are taken as input for pet_parameters.py
and also the retrieval of the Sky view factor geotiff maps are retrieved through the API link through the code
get_svf.py. For the processing part, the decision was made to make an integral user interface to link the
Python files with each other via one driver Python file. With Qt Designer, the link is made to create one
graphical user interface in QGIS since this is the platform urban planners use the most for working at mul-
tiple scales [Lawhead, 2018]. Therefore this report created a QGIS plugin called PET simulator which can be
downloaded via GIT, more explanation is in Appendix C. Therefore the computation kernel, in the code the
Python file is called pet_simulator, is integrated into the QGIS plugin for third-party users to use. The link
between Python and QGIS is made by the graphical user interface supporter Qt designer. Furthermore, there
is a refactoring of the parameters which are used in each Python file which functions as classes. These files
are geotiff transform.py for the georeferencing towards arrays and vice versa. Additionally, pet parameters
are introduced to standardize the input parameters like static factors, such as the research area coordinates
and the cell size and block size of the wind computation, as well as climate dynamic factors retrieved from
the [KNMI, 0000]. This makes it more understandable for other software developers. Through the decision to
integrate the computational workflow with the integration of the visual representation environment of QGIS,
the workflow process is more understandable and can be modified for other test cases in the Netherlands as
well.

33

34

5. PETs simulator

open data

open data

open data

open data

open data

open data

open data

open data

data preprocessing

N

¥
| rasterize
1m and

method analysis
and processing

v

yasterize

osm buildings——— ..
allign raster

files

yasterize

ahn DSM 05— 1M and
allign raster

files

yasterize

ahn DTM 0.5m—»(1M and
allign raster

files

——>»(tilesif)—>»{ nuls)—>»(DSM- —>»{ mean)—»buildings —>»

computational

environmen

documented
t and available

PET simulator.py

building
mask (1m)

zonhal

merge grass r.fill DEM = statistics filter rasterize

building

Hilding mask

+/ building

negessary (bicubic) DTM buildings <2m h((e1|g?:)ts

height

merge grass r.fill

—>»(tilesif —>»<{ nuls

necessary (bicubic)

. /fasterize

"7 heights.tif /|

tree mask.tif,

merge UMEP
—>»{_ftiles if » shadow
necessary tool

| ——Fragtion area buildings

pet_parameterg.py
geotif_transform.py

yasterize
1m and
allign raster
files

boomregister,

yasterize
1m and

7 tree mask

) el filter trees fasterize
rasterized)—>» —>

Mree heights.tif

} >2m tree height
ree area

— 1

rgb pdok allign raster

files

rasterize
1m and
allign raster
files

infrared pdok—>»

yasterize
water 1m and
geofabrik.de allign raster
files

rasterize

Svf KNMI tiles—3(1mand
allign raster

files

— »(tilesif)—>»{ nuls

knmi data » knmidata

merge grass r.fill

\ 4

ndvi large
——
pet_parameterg

ndvi_trees

ndvi_grass

geotif_transform.py

Pind_direction if—————

vegdfra

.py pet_parameters.py

geotif_transform.py
veg_fractionday

<

pg_fractionnight

*lij

yrban heat islan

pet_parametery/py

ge@bhtransform.py
norphology 25
m

necessary (bicubic)

svf_1m_mask

trrenth)—shadew—»YYYMMDD_decade_hour |

PET calculate

pet_parameter

geotif transfor
LST.tif

PET_shade

PET sun_noveg

PET _sun_veg

B.pYy
M.py

spatial data
location

pet

set.csv

parameters.py

geotiftransform

PET_angothour

base map

D/project/run4/data

exxtended
research area

research area

D/project/run4/sim9/input D/project/run

scaled svf,
vegfra, wind

4/sim9/clip D/project/run4/sim9/scaled

output

D/project/run4/sim9/output

marie
Line

36 5. PETs simulator

Figure 5.2: Legend flowchart refactored

Processing

To calculate the urban morphology heat attribution, we need to compute svf averaging fraction, and vegeta-
tion fraction averaging which are depended on the wind direction. Self-evident, this is also required for the
wind computation. This requires handling the necessary input files for extended research outcomes. We will
create clips of the basis maps for the research area needed to compute for each wind direction, which are
called extended research areas. Detailed procedures for the 1000x1000m research area of Wageningen will be
explained in this chapter.

Figure 5.3: Research area 1000x1000 m white (output), extended research area 1500x2100 m black (input), and base map RGB 4000x4000
m (data).

In the program refactoring, the parameterized block size for modeling the vegetation fraction, sky view
fraction, and wind computation is taken into account. Instead of the variable averaging of approximately
25m and 35m, the window frames were adjusted to a standard block size of 25m. The wind averaging window
is shown in Figure 5.4, and the sky view factor averaging window is shown in Figure 5.5.

5.1. Computational workflow 37

Figure 5.4: Wind averaging footprint from roughness layer to 1.2m wind speed factors field.

Figure 5.5: Vegetation fraction and sky view factor averaging footprint for determining the UHI max depending on the wind direction.

38 5. PETs simulator

@ (b) block size 1, N (c)
(d) block size 1, W (e) block size 1, no wind (f) block size 1, E
@ (h) block size 1, S ()

Figure 5.6: Wind direction for the research area of 100x100m.

In pet_simulator this is made possible through

Listing 5.1: clip to extended research area window code snippet

clip to extended research window

outputfile = f’{self.spatial.directory_out}input\\{self.spatial.labell}_{
namel}.tif’

bounds = (self.spatial.xmin-xleft, self.spatial.ymin-ydown, self.spatial.
xmax+xright, self.spatial.ymax+yup)

gdal.Warp (outputfile, intiff, outputBounds=bounds)

Listing 5.2: visualisation tif for in the report code snippet

self .TifToJPG (self.spatial.directory_out, ’input’, f’{self.spatial.labell}_{
namel}’, large=True)

Listing 5.3: writing the array to text file code snippet

T

5.1. Computational workflow

39

if self.dlg.checkBox.checkState():
ArrayWriteG(f’{self.testin}’, f’{self.spatial.label}_{namel}’,
)

f’{outputfile

Listing 5.4: adding layer to QGIS project

raster_layer = QgsRasterLayer (outputfile, f’{namel}’, ’>gdal’)
file

if not raster_layer.isValid():

print (’Error: Invalid raster layer.’)

else:

QgsProject.instance () .addMaplLayer (raster_layer)

input from

Wind calculation

python code: fraction_area_buildings_treeregr

input: buildings_mask, buildings_height, trees_mask, trees_height
output: wind_2d

Original input data building map vector 1(m) https://www.geofabrik.de/ open data lidar height raster
1(m) https://www.ahn.nl/ahn-4 open data tree map vector 1 (m) https://diensten.rotterdam.nl/ar
cgis/rest/services/SB_Infra or bgt download https://app.pdok.nl/1lv/bgt/download-viewer/
open data Input data for code buildings_mask Figure D.4, buildings_height Figure D.5, trees_mask Figure D.7,
trees_height Figure D.6 Output fraction_area_buildings_treeregr wind_2d Figure 5.7 on blocksize scale The

building mask scaled area

Listing 5.5: The building mask scaled area code snippet

building_area = np.mean(mask_building_fine[istart: iend + 1,
1]1)

if building_area > le-2:

jstart: jend +

building_height[i, j] = np.mean(building_height_fine[istart: iend + 1,

jstart: jend + 1]) / building_area
mask_building[i, j] = 1.0
tree_area = np.mean(mask_tree_fine[istart: iend + 1, jstart:
if tree_area > le-2:
tree_height[i, j] = np.mean(tree_height_fine[istart: iend + 1
+ 1]) / tree_area
mask_treel[i, jl = 1

jend + 11)

, jstart: jend

Building weight scaled with wind

Listing 5.6: Building weight scaled with wind code snippet

if wind_on:

if WE: # east-west or west-east wind

for m in range(istart, iemd + 1, 1):

for n in range(jstart, jjend, 1):

building_weight[i, j] += abs(building_height_fine[m, n + 1] -
building_height_fine[m, nl]) * 0.5

tree_weight[i, j] += abs(tree_height_fine[m, n + 1] - tree_he
1) x 0.5

else: # north-south or south-north wind

for n in range(jstart, jend + 1, 1):

for m in range(istart, iiend, 1):

building_weight[i, j] += abs(building_height_fine[m + 1, n] -
building_height_fine[m, nl]) * 0.5

tree_weight[i, j] += abs(tree_height_fine[m + 1, n] - tree_he
1) = 0.5

ight_fine[m, n

ight_fine[m, n

Building weight scaled without wind

https://www.geofabrik.de/
h
https://diensten.rotterdam.nl/arcgis/rest/services/SB_Infra
https://diensten.rotterdam.nl/arcgis/rest/services/SB_Infra
https://app.pdok.nl/lv/bgt/download-viewer/

40 5. PETs simulator

Listing 5.7: Building weight scaled without wind code snippet

else: # no wind

for m in range(istart, iend + 1, 1):

for n in range(jstart, jjend, 1):

building_weight[i, j] += abs(building_height_fine[m, n + 1] -
building_height_fine[m, nl]) * 0.5

tree_weight[i, j] += abs(tree_height_fine[m, n + 1] - tree_height_fine[m, n
1) = 0.5

for n in range(jstart, jend + 1, 1):

for m in range (istart, iiend, 1):

building_weight[i, j] += abs(building_height_fine[m + 1, n] -
building_height_fine[m, nl]) * 0.5

tree_weight[i, j] += abs(tree_height_fine[m + 1, n] - tree_height_fine[m, n
1) * 0.5

Building front computation

Listing 5.8: Building front computation code snippet

calculate building and tree fronts for a cell using its window (1 no
blockage, O fully blocked)

tree_front = 0

building_front = 0

for m in range(istart, iend + 1, 1):

for n in range(jstart, jend + 1, 1):

building_front += building_weight[m, n] * buildingfactor
tree_front += tree_weight[m, n] * treefactor

Figure 5.7: Output files on research area.

Ndvi large calculation

python code: ndvi_infra_large

input: rgb, infr, water_mask, tree_mask

output: ndvi, vegfra, ndvi_crop_mask, ndvi_tree_mask

Original input data aerial photo (RGB) raster 1(m) 0.25 https://www.pdok.nl/ open data, near infrared
(NIR) raster 1(m) 0.25 https://www.pdok.nl/ open data water map vector 1(m) https://www.geofabri
k.de/ Input data code input rgb Figure D.12, infr Figure D.11, water_mask Figure D.10, tree_mask Figure D.7
output NDVI Figure 7.21a, NDVI crop mask Figure 7.21b NDVI tree mask Figure 7.21c, vegetation fraction
Figure 7.21d

lufo_rgb, meta = GeotifToArray(rgb, 3)

https://www.pdok.nl/
https://www.pdok.nl/
https://www.geofabrik.de/
https://www.geofabrik.de/

5.1. Computational workflow 41

lufo_infr, meta = GeotifToArray (infr, 3)

r = lufo_rgb[:, :, 0].astype(int)

g = lufo_rgb[:, :, 1].astype(int)

b = lufo_rgb[:, :, 2].astype(int)

infr = lufo_infr[:, :, 0].astype(int)

ndvi_infr = (infr - r) / (infr + r)

ndvi_infr[ndvi_infr < 0] = 0

arr = ndvi_infr
(a) NDVI (b) NDVI crop mask
(c) NDVI tree mask (d) vegetation fraction

Figure 5.8: Intermediate output files on research area.

Fveg vegetation footprint calculation

python code: vegetation_footprint
input: vegfra
output: vegfra_2d

Input data from ndvi_infra_large Figure 7.21d Output data vegfra_2d Figure 5.9 with blocksize resolution in
this case 25m

42 5. PETs simulator

Figure 5.9: Scaled vegetation fraction wind.

Sky view factor footprint calculation
python code: skyviewfactor_footprint

input: skyview_factor

output: skyview_2d

Original input data Sky-view factor map raster Im https://api.dataplatform.knmi.nl/open-data/
v1 open data with API provided with the code get_skyview.py Input data code skyviewfactor_footprint 1m
resolution Figure D.8 Output data skyview_2d with blocksize resolution in this case 25m Figure 5.10

Figure 5.10: Scaled sky view fraction wind.

Urban heat Island Max calculation
python code: urban_heat

input: vegfra_wind, svf_wind

output: urban_heat

Input data vegfra_wind with 25m resolution from vegetation_footprint Figure 22, svf_wind with 25m reso-
lution from skyviewfactor_footprint Figure 2?2 Output data Urban heat morphology geospatial contribution
Figure 5.11

Listing 5.9: urban heat morphology code snippet

uhi *= 2

https://api.dataplatform.knmi.nl/open-data/v1
https://api.dataplatform.knmi.nl/open-data/v1

5.1. Computational workflow 43

uhi = uhi - vegfra - svf

factor = (S * (Tmax - Tmin) **x 3 / U) *x (1 / 4)
uhi *= factor

im3 = ArrayToGeotif (uhi, meta)

Figure 5.11: Urban heat.

PET calculation

python code: pet_calculate

input: shadow, urban_heat, wind_2d, svf, svf_mask, ndvi_crop_mask, ndvi_tree_mask
output: pets

Input data Shadow Figure D.13, urban_heat Figure 5.11, wind_2d Figure 5.7, svf Figure D.8, svf_mask Fig-
ure D.9, ndvi_crop_mask Figure 7.21b, ndvi_tree_mask Figure 7.21c. Output Hourly Physiological Equivalent
Temperature Figure 5.12 The calculation of the PET could be performed on the day with sun and without sun
areas, as well as on places were there is vegetation present. As well as in the night situation.

Listing 5.10: wet bulb temperature code snippet

Ta = uhi[:] * diurnal + TT

Tw = TT * np.arctan(0.15198 * (RH + 8.3137) #** 0.5) + np.arctan(TT + RH) -
np.arctan(

RH - 1.676) + 0.0039184 * RH ** 1.5 * np.arctan(0.023101 * RH) - 4.686

Listing 5.11: scaling factor multiplied with wind speed 60m height code snippet

wind = ((wind - 0.125) * 0.5829 + 0.125) * FF
wind[wind < 0.5] = 0.5

Listing 5.12: PET calculation day situation code snippet

day

if Q@ > O:

sun_temp, meta = GeotifToArray (iml, 1)
sun = sun_temp * (1 - trees_2m[:])

PETshade = (-12.14 + 1.25 * Tal[:] - 1.47 * np.log(wind[:]) + 0.060 * Tw + 0.015
* svf[:] * Qdif +

0.0060 * (1 - svf[:]) * stef * (Tal[:] + 273.15) **x 4) * (1 - sun[:]) * svf_mask
[:]

PETveg = (-13.26

wind[:]) + 0.078

1.25 * Tal[:] + 0.011 * Q - 3.37 * np.log(

Tw + 0.0055 * Q * np.log(wind[:]) + 5.56 * np.sin(

sunalt / 360 * 2 np.pi) - 0.0103 * Q * np.log(wind[:]) * np.sin(

sunalt / 360 * 2 np.pi) + 0.546 * Bveg + 1.94 % svf[:]) * mask_vegfral[:] x
sun[:] * svf_mask[:]

* ¥ ¥ +

44

5. PETs simulator

PETnoveg = (-13.26 + 1.25 * Tal[:] + 0.011 * Q - 3.37 * np.log(

wind[:]) + 0.078 * Tw + 0.0055 * Q * np.log(wind[:]) + 5.56 * np.sin(

sunalt / 360 * 2 * np.pi) - 0.0103 * Q * np.log(wind[:]1) * np.sin(

sunalt / 360 * 2 * np.pi) + 0.546 * Bnoveg + 1.94 * svf[:]) * (1 - mask_vegfra

PET

[:1) * sun[:] * svf_mask[:]
= PETshade + PETveg + PETnoveg

Listing 5.13: PET calculation night situation code snippet

night

else:

PETshade = (-12.14 + 1.25 * Tal[:] - 1.47 #* np.log(wind[:]) + 0.060 * Tw +
0.015 * svf[:] * Qdif

+ 0.0060 * (1 - svf[:]) * stef * (Tal[:] + 273.15) *%* 4) * (1 - sunl[:]) *
svf_mask [:]

PET = PETshade

Figure 5.12: PET.

5.2. PET simulator

Pet simulator eventually combines all the python files together as shown in Appendix B. It combines geo-
tif.creator places the retrieved arrays as georeferenced tifs in EPSG:28992 - Amersfoort / RD New coordinates
of x and y. pet_parameters which combines the static data of the location and the dynamic weather data of
the generated weather.py csv files see subsection dynamic parameters and static parameters. With addGt-
tiffLayer the link between QGIS and python is made to immediately publish all the in-between results to the
visualisation software of QGIS.

Listing 5.14: Example of invocation of PET calculate in PET simulator.py

from .algorithm.pet_calculate import PET_calculate
flag = []

import geotiff

flag.append(time.perf_counter ())

name = f’Shadow_{self.weather.year}{self.weather .month:02d}{self.weather.
day:02d}_{self.weather.hour:02d}{self.weather.min:02d}_LST’

name = "Shadow_20150701_1400_LST"

iml = self.clipper(self.spatial.directory_out, ’input’, f’{self.spatial.
label}_{name}.tif’) # small

10

5.3. User interface 45

im2 = gdal.Open(f’{self.spatial.directory_out}output\\{self.spatial.label}
_urban_heat.tif’) # small

im3 = gdal.Open(f’{self.spatial.directory_out}output\\{self.spatial.label}
_wind.tif?’) # small

im4 = self.clipper(self.spatial.directory_out, ’input’, f’{self.spatial.
label}_svf.tif?’) # small

imb = self.clipper(self.spatial.directory_out, ’input’, f’{self.spatial.
label}_svf_mask.tif’) # small
im6 = self.clipper (self.spatial.directory_out, ’output’, f’{self.spatial.

label} _ndvi_crop_mask.tif’) # small
im7 = self.clipper(self.spatial.directory_out, ’output’, f’{self.spatial.
label} _ndvi_tree_mask.tif?’) # small

calculate

flag.append(time.perf_counter ())

im8 = PET_calculate(self.spatial, self.weather, iml, im2, im3, im4, im5,
im6, im7) # small #nonetype

add layer and write geotiffs

flag.append(time.perf_counter ())

name = ’pets’

self.addGttiffLayer (f’{self.spatial.directory_out}output\\’, name, im8,
driver, root)

iml = im2 = im3 = im4 = imb = im6 = im7 = None

self.dlg.label_17.setText (’checked’)

flag.append(time.perf_counter ())

self .TifToJPG (self.spatial.directory_out, ’output’, f’{self.spatial.label}
_pets?)

flag.append(time.perf_counter ())

5.3. User interface

Qt designer

The software that is necessary for running the PET simulation is chosen to be Python and QGIS. QGIS is
meant as the graphical user interface for users to visualize the (in-between) results. Python is required to do
the computations. In order to make the link between Python and QGIS, Qt designer is necessary. Qt designer
is developed to create a plugin in QGIS that users can use to create their maps. This will enhance the reprodu-
cability of the (in-between) results for several stakeholders in the process. More in depth explanation is stated
in the user manual Chapter C. Some libraries that are required are GDAL package to make the georeferenced
projections from matrix calculations to the preferred georeference system. For running the script also the
plugin UMERP is still used in QGIS in order to create the shadow files from the DSM-DTM for each hour. In
the plugin installer it is possible to install UMEP and the UMEP processing, see B. In order to create reprodu-
cability the plugin is developed see Figure 5.13. This is created through the Plugin builder tool in QGIS. Each
QGIS version is compiled with Qt designer. Qt Designer is designed to create a graphical user-interface that
is compatible with python and QGIS. For the plugin three windows are developed: first the static parameters
of the built environment location and the reference to the directory of the file locations on the device of the
basis maps. Next window will read the csv files for each run and hour simulation. Also, after clicking on this
window the input files of the extended research area are generated and visualised in QGIS. The third window
will indicate the processing of the several python files for eventually generating the required research area
maps with in-between results and end results.

46 5. PETs simulator

Figure 5.13: Qgis plugin screen PET Simulator plugin.

Parameters for spatial information and weather conditions

In the plugin’s parameter section, both dynamic climate data and static data are utilized. Dynamic data can
be obtained from the URL https://www.knmi.nl/nederland-nu/klimatologie/uurgegevens of a
nearby weather location. Wageningen Herwijnen has been selected as the weather location for Wageningen,
while the weather station Rotterdam is used for Rotterdam (see Figure 5.14). When looking for a summer day
(above 20 °C) or a heatwave day (above 25 °C), an overview of the summer months is needed.

https://www.knmi.nl/nederland-nu/klimatologie/uurgegevens

5.3. User interface 47

Figure 5.14: Weather stations Netherlands retrieved from.

In the case of a heatwave date, the 1st of July is chosen because it is above 25 degrees. For the vali-
dation, it is necessary to have good comparison material. The boxes that need to be checked at the knmi
https://www.knmi.nl/nederland-nu/klimatologie/uurgegevens are YYYYMMDD, TT, FE dd, Q, U.
YYYYMMDD represents the month, day, hour. TT represents the atmospheric temperature (°C). FF represents
the wind speed (in 0.1 m/s) averaged over the last 10 couple of minutes of the past hour. dd represents the
wind direction (°) averaged over the last 10 couple of minutes of the past hour 360=North, 90=East, 180=South,
270=West, 0=calm, 990=changeable. Q represents the Global irradiation (in J/cm2)/h. U represents the Rela-
tive humidity (%). As mentioned earlier, the Python code weather.py generates the CSV files for the dynamic
data used in the script. Table 5.1 is the dynamic weather data necessary for the CSV file.

https://www.knmi.nl/nederland-nu/klimatologie/uurgegevens

48

5. PETs simulator

Figure 5.15: T atmospheric temperature for Rotterdam in the months june till september 2023 (Data retrieved from KNMI [0000] post-

processed by author

Table 5.1: Table dynamic data Wageningen 1 juli 2015

hour | TT FF | dd | Q Qdif sunalt | RH | wind WE winddir | day | diurnal | Tmin | Tmax
9 264 | 5 100 | 711.1111 | 142.2222 | 48 52 TRUE TRUE E day 0.007 21.1 33
10 28 6 100 | 794.4444 | 158.8889 | 55.3 48 TRUE TRUE E day 0.03 21.1 33
11 298 | 6 100 | 855.5556 | 171.1111 | 60.1 44 TRUE | TRUE | E dayt | 0.05 21.1 33
12 312 | 6 130 | 868.0556 | 173.6111 | 60.9 35 TRUE | TRUE | E day | 0.07 21.1 33
13 32.1 | 5 130 | 825 165 57.4 37 TRUE | TRUE | E day | 0.11 21.1 33
14 328 | 4 140 | 743.0556 | 148.6111 | 50.8 35 FALSE | FALSE | S day | 0.16 21.1 33
15 329 | 5 120 | 629.1667 | 125.8333 | 42.5 37 TRUE | TRUE | E day | 0.23 21.1 33
16 33 4 130 | 491.6667 | 144.1848 | 33.4 37 TRUE | TRUE | E day | 0.31 21.1 33
17 332 | 4 120 | 338.8889 | 132.3261 | 24.2 39 TRUE | TRUE | E day | 0.42 21.1 33
18 309 | 3 100 | 130.5556 | 113.7764 | 15.2 45 TRUE | TRUE | E day | 0.56 21.1 33

For the static parameters ymax 442895 xmax 174698 ymin 441895 and xmin 173698 are chosen.

Listing 5.15: Link between Plugin and code for static and dynamic parameters

def importdata(self):

self.spatial.directory_in = self.dlg.lineEdit_3.text ()
self.spatial.directory_out = self.dlg.lineEdit_2.text ()
self.spatial.label = self.dlg.lineEdit_1.text ()

with open(f’{self.spatial.directory_out}set.csv’, ’r’) as fp:

lines = fp.readlines ()
lines = [line.strip() for line in lines]
lines = [line.split(’,’) for line in lines]

self.spatial.station = lines [3][1]
self.spatial.ymax float (lines [4]1[1])
self.spatial.xmax float (lines [51[1])
self.spatial.ymin float (lines [6]1[1])
self.spatial.xmin float (lines [7]1[1])
self.spatial.cellsize = float(lines [8]1[1])
self.spatial.blocksize = float(lines[9][1])
self.spatial.Resize ()

self.weather.TT float (lines [10] [1])
self.weather.FF float (lines [11][1])

5.3. User interface 49

self.weather.dd =
self.weather.wind,
self .weather.dd,

float (lines [12][1])
self .weather .WE,
self.weather.FF)

self.weather.winddir = wind_direction(

self.weather.Q = float(lines[13]1[1])
self.weather.Qdif = float(lines [14][1])
self.weather.sunalt = float(lines [15][1])
self.weather.RH = float(lines [16][1])
self.weather.diurnal = float(lines[21][1])
self.dlg.lineEdit_7.setText (f’{self.spatial.ymax}’) # north
self.dlg.lineEdit_6.setText (f’{self.spatial.xmax}’) # east
self.dlg.lineEdit_b5.setText (f’{self.spatial.ymin}’) # south
self.dlg.lineEdit_4.setText (f’{self.spatial.xmin}’) # west
self.dlg.lineEdit_17.setText (f’{self.spatial.cellsizel}’) # south
self.dlg.lineEdit_16.setText (f’{self.spatial.blocksize}’) # west
self.dlg.lineEdit_3.setText (f’{self.spatial.directory_in}’)
self.dlg.lineEdit_2.setText (f’{self.spatial.directory_out}’)
self.dlg.lineEdit_1.setText (f’{self.spatial.labell}’)
self.dlg.lineEdit_15.setText (f’{self.spatial.station}’)
self.dlg.lineEdit_8.setText (f’{self.weather.TT}’)
self.dlg.lineEdit_9.setText (f’{self.weather.FF}’)
self.dlg.lineEdit_10.setText (f’{self.weather.dd}’)
self.dlg.lineEdit_12.setText (f’{self.weather.Q}’)
self.dlg.lineEdit_13.setText (f’{self.weather.Qdif}’)
self.dlg.lineEdit_14.setText (f’{self.weather.sunalt}’)
self.dlg.lineEdit_11.setText (f’{self.weather.RH}’)
Simulation process

Each layer will be put in the QGIS project to link the computational environment of Python computation
towards the visualization environment of QGIS.

Results

The results of the PET simulator are compared with the model of Koopmans in the next chapter. However, the
end product, the Physiological Equivalent Temperature map, displays heat stress. To communicate the results
properly, the principles from [Bertin, 2011] serve three main functions: recording information, communicat-
ing information, and processing or simplifying information. The recorded information presents calculated
Physiological Equivalent Temperatures. These are the visualization of the calculated maps of PET, which are
in a continuous colored way of 18 degrees to 50 °C PET. To communicate the data effectively to third parties,
classification of the PET for different levels of thermal perception and physiological stress on human beings
is required according to [Hoppe, 1999]. This classification is shown in a table, using semantic coloring to
express slight cold and no thermal stress with cool tones, and the slight to extreme heat stress with warm to
extremely dark colors, reflecting the level of heat stress that people can handle (see Table 5.2).

PET Thermal perception | Grade of physiological stress | color code
13 -18°C | Slightly cool Slight cold stress

18 - 23 °C | Comfortable No thermal stress

23 -29°C | Slightly warm Slight heat stress

29-35°C | Warm Moderate heat stress

35-41°C | Hot Strong heat stress ||

>41°C Very hot Extreme heat stress ||

Table 5.2: Temperature and corresponding thermal perception

Physiological Equivalent Temperature
verification

Sensitivity analyses

A wind sensitivity analysis is carried out to understand the performance of the wind calculation for the scala-
bility of the data for use by urban designers, for the test case of urban environments such as cities. Therefore,
an analysis of the robustness of the newly introduced varying block sizes of 1m, 5m, and 25m of wind is car-
ried out. The frontal area density factors are also tested to validate the block size change as a granularity
option and accuracy validation with the output data from Koopmans. Koopmans used the original 35m block
size for his wind calculations. Runtime and scalability are also discussed for use by urban designers.

6.1. Wind direction

First, the wind direction will be evaluated. The QGIS plugin can generate different outcomes on the Windfield
based on the clip size of the extended areas. A closer look at the wind could be found in the comparison of the
100x100m area as mentioned with the wind direction in the previous chapter Figure 6.1. Figure 6.1b show-
cases wind coming from the North, Figure 6.1c showcases wind coming from the East, Figure 6.1d showcases
wind coming from the South, Figure 6.1e showcases wind coming from the West, Figure 6.1f showcases wind
wind is <2.5m/s therefore no wind.

51

52 6. Physiological Equivalent Temperature verification

(a) rgb image (b) north
(c) east (d) south
(e) west (f) nowind

Figure 6.1: Different wind directions files on research area 100x100m

It is evident that the wind scaling factor varies based on the frontal area from different wind directions.
North, East, and no wind result in a high frontal area, reducing the impact of wind on PET. In the southern
research area, there is less frontal area, leading to higher wind scaling factors. The colors are adjusted to the
minimum and maximum values of each field.

6.2. Block size 53

6.2. Block size

For the robustness of the data and accuracy, the built-in function is the block size, which can vary from 1m,
5m, and 25m approximately. For the area of 100x100m, this is the overview. As can be seen in the figure, the
scale of the values will be averaged in the same manner. Only the 1m is very accurate based on the whole
computation field, which leads to more spikes and fluctuations of the output data, whereas the 5m and 25m
are averaged more, thus containing a smoother field.

(a) rgb image (b) block size 1m
() building height (d) block size 5m
(e) tree height (f) block size 25m

Figure 6.2: Research area 100 x 100 m, eastern wind.

54 6. Physiological Equivalent Temperature verification

The robustness of the block size scale is evaluated by computing the mean square error, root mean square
error, and the r2 value to assess data similarity.

1 N
MSE(y,) = — Y. (i —)* 6.1)
Ni5

Comparing the blocksize between 1 and 5 there was a high correlation with the r2 score of 0.641.

Listing 6.1: MSE between blocksize 1 and blocksize 5 100x100 area

R**2 = 0.9863
MSE = 4.495 x 10%%(-7)
RMSE = 0.00067

Listing 6.2: MSE between blocksize 5 and blocksize 25 100x100 area

R~2 = 0.8999
MSE = 2.0222 * 10x*(-5)
RMSE = 0.004497

Listing 6.3: MSE between blocksize 1 and blocksize 25 100x100 area

R~2 = 0.8558
MSE = 2.119 % 10%x*(-5)
RMSE = 0.004

Figure 6.3: Trendline time data block size 5m

By comparing the different resolutions, it was found that the deviations in MSE are of similar small mag-
nitude. Additionally, a high degree of correlation is observed between the different block sizes, approaching
nearly 1.

6.3. Block size comparison 1000x1000 research area 55

6.3. Block size comparison 1000x1000 research area
For the robustness of the data and the accuracy the built-in function is the block size which can vary from 1m,
5m and 25m approximately. For the area of 1000x1000m this is the overview. As could be seen in the figure
winds the scale of the values will be averaged the same. Only the 1m is very accurate based on the whole
computation field which leads to higher and lower values, whereas Figure 6.4

(a) rgb image (b) block size 1m
() building height (d) block size 5m
(e) tree height (f) block size 25m

Figure 6.4: Research area 1000 x 1000 m, eastern wind.

56 6. Physiological Equivalent Temperature verification

Listing 6.4: MSE between blocksize 1 and blocksize 5 1000x1000 area

R*x*2 = 0.97
MSE = 0.000126688
RMSE = 0.011255589

Listing 6.5: MSE between blocksize 5 and blocksize 25 1000x1000 area

R*x*2 = 0.2978
MSE = 0.046554846
RMSE = 0.21576572

Listing 6.6: MSE between blocksize 1 and blocksize 25 1000x1000 area

R**x2 = 0.2836
MSE = 0.04469523
RMSE = 0.211412447

After comparing the different resolutions, we found that the deviations in mean squared error (MSE) are
of similar small magnitude. Additionally, there is a high degree of correlation between the block sizes of 1m
and 5m, approaching nearly 1. However, the comparisons between 5m and 25m, as well as the comparison
between 1m and 25m, do not show high correlation and have higher MSE and root mean square error (RMSE)
offset.

6.4. Frontal area

Wind sensitivity for different wind surface density factors is seen in Table 6.1. The normal frontal density
factors (fdf) as mentioned in the formula of the wind are 0.6 respectively for the buildings and 0.3 * 0.9 crown
size height for the trees. A comparison is made to validate the outcome of different fdf.

fdf buildings | fdftrees
run8siml16 | 0.6 0.27
run8siml7 | 0.1 0.27
run8sim18 | 0.9 0.27
run8siml19 | 0.6 0.03
run8sim20 | 0.6 0.6
run8sim21 | 0.3 0.27

Table 6.1: Frontal density factors.

This is showcased by the following figures Figure 6.5 for the building fdf and Figure 6.6 for the varying tree
fdf.

6.4. Frontal area

57

(a) PET fdf building 0.1 fdf tree 0.27

(c) PET fdf building 0.6 fdf tree 0.27

(e) PET fdf building 0.9 fdf tree 0.27

Figure 6.5: Sensitivity analyses frontal density factor buildings.

(b) eastern wind fdf building 0.1 fdf tree 0.27

(d) eastern wind fdf building 0.6 fdf tree 0.27

(f) eastern wind fdf building 0.9 fdf tree 0.27

58 6. Physiological Equivalent Temperature verification

(a) PET fdf building 0.6 fdf tree 0.03 (b) eastern wind fdf building 0.6 fdf tree 0.03
(c) PET fdf building 0.3 fdf tree 0.27 (d) eastern wind fdf building 0.3 fdf tree 0.27
(e) PET fdf building 0.6 fdf tree 0.6 (f) easterns wind fdf building 0.6 fdf tree 0.6

Figure 6.6: Sensitivity analyses frontal density factor trees.

The influence of a lower fdf of the buildings is causing much more roughness in the wind calculation and
therefore the PET, in comparison to the fdf for the trees. For the calibration section of this chapter the fdf
of buildings is adjusted because of the difference of blocksize width of 25 meters to the original 35 meters
approxiametely of the code of Koopmans et al. (2020).

6.5. Scalability 59

6.5. Scalability

To talk about the usability of the program for urban planners, the computation time according to the research
area is important. See Figure 6.7 and Figure 6.8. A lot of computing time is spent on the wind computation.
To examine the functionality across various scales, Tables 6.2, 6.3, 6.4 were created with an extrapolation to

Figure 6.7: Percentage time

Figure 6.8: Elapsed time (s)

match the size of Rotterdam.

Table 6.2: Blocksize 1 wind computing time extrapolated for South-Holland and the Netherlands

blocksizel | area (m2) | t(s) t(min) t(h) t(day)
100 259.344 4.3224 0.07204 0.0030017
200 1074.287 | 17.90478 | 0.298413 | 0.0124339
500 5846.292 | 97.4382 1.62397 0.0676654
1000 23250.96 | 387.516 | 6.4586 0.2691083
2000 47847.62 | 797.4603 | 13.29101 | 0.5537919
Rotterdam | 10000 255537.4 | 4258.957 | 70.98261 | 2.9576089

60 6. Physiological Equivalent Temperature verification

Table 6.3: Blocksize 5 wind computing time extrapolated for South-Holland and the Netherlands

blocksize5 | area (m2) | t(s) t(min) t(h) t(day)
100 8.424 0.1404 0.00234 0.0000975
200 12.165 0.20275 0.003379 | 0.0001408
500 28.615 0.476917 | 0.007949 | 0.0003312
1000 107.562 | 1.7927 0.029878 | 0.0012449
2000 211.9064 | 3.531774 | 0.058863 | 0.0024526
Rotterdam | 10000 1103.338 | 18.38897 | 0.306483 | 0.0127701

Table 6.4: Block size 25 wind computing time extrapolated for South-Holland and the Netherlands

block size25 | area (m2) | t(s) t(min) t(h) t(day)
100 24.439 0.407317 | 0.006789 | 0.0002829
200 8.164 0.136067 | 0.002268 | 9.449E-05
500 13.716 0.2286 0.00381 0.0001588
1000 27.198 0.4533 0.007555 | 0.0003148
2000 62.82 1.047 0.01745 0.0007271
Rotterdam 10000 257.718 | 4.2953 0.071588 | 0.0029828

The trend lines for the different block sizes could then be plotted.

blocksize 1 blocksizel
1400 35000
1200 = 157942805 y=307 55elitis |
R -08888 <" 20000 R=08764 [
1000 o 25000 :
_]
T =00 = 20000
n I_.-"'-. z
g eoo E 15000
400 o 10000 -
0 [et 5000 . e
a o R S
a 5000 10000 15000 20000 25000 a 00 00 00 200 1000 17300
Time (s) Area (m2)
(a) rgb changed (b) infr changed

Figure 6.9: Trendline time data block size 1m

6.6. Calibration of the code

61

blocksize5 blocksize5
2500 250
~ y=0.1114x-10952
2000 y=8.3621x+10656 o 00 Rf=09875 .~
R = 0.9875, .
& 1500 w150
- W
3 E P
Z 1000 m = 100
s00 o 50
e - Te
s
0 o =
0 50 100 150 200 250 500 1000 1500 2000 2500
Time (s} Area (m2)
(a) rgb changed (b) infr changed
Figure 6.10: Trendline time data block size 5m
blocksize25 blocksize25
2500 0
e 03865 + 8133 i = JE-05:¢ - 0.0103x + 17.455 @
2000 y=03366:+8.133x + 16548 o 60 ¥ P —0d212 e
RP=0.2434 e =052
_ 50
~ o —_—
g 1500 e T o
o u T
ar - E -
£ 00 . E 20 ..
20
500 . N e
. N .
o o
o 10 20 30 40 50 & 0 500 1000 1500 2000 2500
Time (5} Area (m2)

(a) rgb changed

Figure 6.11: Trendline time data block size 2m

(b) infr changed

As can be seen from the trend lines, block size 25 is the most useful option for larger-scale calculations
as opposed to 1m or 5m. However, at a scale of 100x100m, it will take a little longer to average the data.
However, as can be seen from the accuracy of the data, some precise information will be lost. Therefore, for
sizes smaller than Rotterdam, the block size of 5m will be more favorable for checking the performance of the

public space.

6.6. Calibration of the code

(a) PET fdf building 0.16 fdf tree 0.27

Figure 6.12: Calibrated frontal density factor trees.

(b) Eastern wind fdf building 0.16 fdf tree 0.27

62 6. Physiological Equivalent Temperature verification

(a) PET fdf building 0.6 fdf tree 0.27 (b) Eastern wind fdf building 0.6 fdf tree 0.27

Figure 6.13: Outcome Sytse Koopmans

The updated model was validated using the findings from Koopmans et al. (2020), and adjustments were
made to the five factors based on this validation. Setting the fdf of the buildings to 0.16 and maintaining the
fdf of the trees at 0.27 resulted in a high r2 score in the final PET map.

Listing 6.7: MSE between blocksize 25 and blocksize 35 wind outcome sytse 1000x1000 area

R~2 0.7803
MSE 0.0774
RMSE = 0.2782

Listing 6.8: MSE between blocksize 25 and blocksize 35 PET outcome sytse 1000x1000 area

R~2 0.6399
MSE = 137
RMSE = 11.7

One possible explanation for the discrepancy in the R2 value between the 25m and 35m block sizes, de-
spite a small MSE, is the scaling of wind data values to 0 and 1, respectively. However, there are differences
in the R2 value that may be attributed to adjustments in the fdf of the buildings for the 35m block size. Ad-
ditionally, during the refactoring phase, there may have been a downgrade in the modeling of wind values
to either a 35m or 25m resolution, which could be addressed in future improvements. Therefore the posi-
tive correlation of the PET is not too strong at the moment. To make it better there should be an evaluation
of the other in-between measures as well. The removal or addition of buildings also impacts the generated
PET map, contributing to the MSE deviation in the mean square error. Despite this, the R2 value remains
consistent with the final result.

The wind sensitivity on blocksize resulted different resolutions with high positive correlation. for the
operability for larger scale research areas the wind sensitivity with the blocksize of 25 meter could be easily
used to determine a brief overview of the results. Due to the refactoring the fdf factor of the buildings needed
to be adjusted to a lower value to be calibrated with the end result. Refinement in the fdf building and other
in-between steps in the process are required in order to come to a higher PET resemblance with the code of
Koopmans (2020).

Physiological Equivalent Temperature
application

The flowchart depicting the advanced refactored PET calculator can be found in Figure ?2. The refactored
python code is available in Appendix B, while the User Manual is presented in Appendix C. Additionally,
Chapter E details the step-by-step process of the extended research input files of Rotterdam North, which was
utilized to calculate the PET for Bospolder Tussendijken [van Esch, 2024], see Figure 7.1. Other applications
to determine the walkability of the place are described in Chapter K Walkability.

Figure 7.1: Location of Bospolder Tussendijken in Rotterdam

63

64 7. Physiological Equivalent Temperature application

7.1. PET calculation

For the days to be modeled, an overview is made to depicts the days with a temperature above 20 °degrees
and a day above 25 °C, see Figure 7.2 .

Figure 7.2: Fig. T atmospheric temperature for Rotterdam in the months june till september 2015 (Data retrieved from KNMI [0000]
post-processed by author)

The chosen dates are the 1st of July and the 29th of June, see Table 7.1 and Table 7.2.

Table 7.1: Table dynamic data Rotterdam 1 juli 2015

hour | TT FF | dd | Q Qdif sunalt | RH | wind | WE winddir | day | diurnal | Tmin | Tmax
9 272 | 4 100 | 699.425 | 155.9823 | 48 45 TRUE | TRUE | E day | 0.007 23.7 34
10 29 5 100 | 808.84 154.012 55.3 43 TRUE | TRUE | E day | 0.03 23.7 34
11 303 | 7 90 865.625 | 169.524 60.1 39 TRUE | TRUE | E day | 0.05 23.7 34
12 31.8 | 6 110 | 865.625 | 176.726 60.9 32 TRUE | TRUE | E day | 0.07 23.7 34
13 325 | 5 110 | 821.305 | 169.524 57.4 29 TRUE | TRUE | E day | 0.11 23.7 34
14 33 5 120 | 745.13 158.998 50.8 30 TRUE | TRUE | E day | 0.16 23.7 34
15 338 | 5 120 | 634.33 143.5459 | 42.5 31 TRUE | TRUE | E day | 0.23 23.7 34
16 34 5 130 | 501.37 134.1004 | 33.4 29 TRUE | TRUE | E day | 0.31 23.7 34
17 338 | 5 130 | 351.79 121.1653 | 24.2 33 TRUE | TRUE | E day | 0.42 23.7 34
18 329 | 5 110 | 202.21 95.36945 | 15.2 36 TRUE | TRUE | E day | 0.56 23.7 34

Table 7.2: Table dynamic data Rotterdam 29 june 2015

hour | TT FF | dd | Q Qdif sunalt | RH | wind WE winddir | day | diurnal | Tmin | Tmax
9 205 | 4 270 | 559.54 278.8815 | 48 65 TRUE | TRUE | W day | 0.007 11.3 23.1
10 215 | 4 250 | 704.965 | 243.5441 | 55.3 57 TRUE | TRUE | W day | 0.03 11.3 23.1
11 225 | 4 270 | 738.205 | 261.424 60.1 58 | TRUE | TRUE | W day | 0.05 11.3 | 23.1
12 213 | 4 270 | 735.435 | 271.0638 | 60.9 64 TRUE | TRUE | W day | 0.07 11.3 23.1
13 22 4 290 | 742.36 | 230.7026 | 57.4 64 | TRUE | TRUE | W day | 0.11 11.3 | 23.1
14 21.7 | 3 270 | 646.795 | 245.0592 | 50.8 58 TRUE | TRUE | W day | 0.16 11.3 23.1
15 22 3 320 | 533.225 | 237.4175 | 42.5 53 | TRUE | TRUE | N day | 0.23 11.3 | 23.1
16 212 | 3 350 | 368.41 228.7261 | 334 56 TRUE | TRUE | N day | 0.31 11.3 23.1
17 204 | 3 350 | 271.46 171.3269 | 24.2 57 TRUE | TRUE | N day | 0.42 11.3 23.1
18 199 | 2 350 | 210.52 89.52669 | 15.2 55 FALSE | TRUE | C day | 0.56 11.3 23.1

7.1. PET calculation 65

Possible wind directions
The wind field direction possibilities of Rotterdam Bospolder Tussendijken case study, see Figure 7.3.

(a) rgb image (b) north
(c) east (d) south
(e) west (f) nowind

Figure 7.3: Different wind directions files on research area Rotterdam Bospolder Tussendijken

1st of Juli 2015

First the wind calculation is executed. On the 1st of Juli there is only wind coming from the east, see Figure 7.4.

66 7. Physiological Equivalent Temperature application

(a) 9:00 (b) 12:00

(c) 15:00 (d) vegetation fraction

Figure 7.4: 18:00

The PET is determined with these influences, , see Figure 7.5.

7.1. PET calculation

67

(a) 9:00 (b) 12:00

(c) 15:00 (d) vegetation fraction

Figure 7.5: 18:00

In the color styling of the PET classes, see Figure 7.6. , see Figure 7.3 showcases the legend.

68

7. Physiological Equivalent Temperature application

(a) 9:00

(c) 15:00

Figure 7.6: Color classes of PET on the 1st of July 2015

(d) vegetation fraction

PET Thermal perception | Grade of physiological stress | color code
13 -18°C | Slightly cool Slight cold stress

18 - 23 °C | Comfortable No thermal stress .

23 -29°C | Slightly warm Slight heat stress

29-35°C | Warm Moderate heat stress ||
35-41°C | Hot Strong heat stress .

>41 °C Very hot Extreme heat stress .

Table 7.3: Temperature and corresponding thermal perception

7.1. PET calculation 69

29th of June 2015

First the wind calculation is executed. On the 29th of June 2015 there is only wind coming from the west and
north, see Figure 7.7.

(a) 9:00 (b) 12:00

(c) 15:00 (d) vegetation fraction

Figure 7.7: 18:00

The PET is determined with these influences, see Figure 7.8.

70 7. Physiological Equivalent Temperature application

(a) 9:00 (b) 12:00

(c) 15:00 (d) vegetation fraction

Figure 7.8: 18:00

In the color styling of the PET classes, see Figure 7.9. For the legend see Figure 7.4

7.2. Applications

71

(a) 9:00

(c) 15:00

Figure 7.9: Color classes of PET on the 29th of June 2015

(b) 12:00

(d) vegetation fraction

PET Thermal perception | Grade of physiological stress | color code
13-18°C | Slightly cool Slight cold stress

18 - 23°C | Comfortable No thermal stress

23 -29°C | Slightly warm Slight heat stress

29-35°C | Warm Moderate heat stress

35-41°C | Hot Strong heat stress .

>41°C Very hot Extreme heat stress ||

Table 7.4: Temperature and corresponding thermal perception

7.2. Applications

72 7. Physiological Equivalent Temperature application

Determining thermal accessibility

To see the performance of the accessibility on the PET heat grid, to calculate walking accessibility, the deci-
sion was made to use the generated maps of PET per hour as input. While vector integration could have been
an option, the variation in PET on a small scale means that an average value for a path segment wouldn’t ac-
curately represent the whole picture. Additionally, there is no pedestrian network of line segments available;
therefore, the raster represents the area to traverse. Another decision could be to add the values on a vector
pedestrian network. Due to the limited time and lack of finding a good program to add the values of PET
on a pedestrian network, the raster data was used. Next to that, raster data is also more storage-efficient for
large continuous datasets since it only stores data values at each grid cell, unlike vector data which requires
explicit storage of individual vector features and can be more memory-intensive. Raster data also enables the
creation of visually appealing maps, especially when rendering continuous data for the accessibility of places
in an isochrone manner.

Eventually the tool r.walk is used from the Grass package in QGIS. Input that is given is the DEM on which
people can walk upon. The cost layer is the PET map, but is first translated to a normalized friction cost map.

Listing 7.1: Normalization in QGIS Raster Calculator

(- 21) / (45 - 21)

The preferred accumulation cost will be the temperature experience of 21 PET °C within an estimated
walking distance of 500 m for elderly people and 200 m for young children. The maximum friction cost will
depend on the target groups. It’s possible to adjust this as needed. Starting points are essential, and parks are
provided as an example. However, accessibility can change throughout the day. The r.walk function calculates
the cumulative cost of moving between different geographical locations on an elevation raster map. The
output includes two raster maps: one showing the lowest cumulative cost (time) of moving from each cell
to user-specified starting points, and another illustrating the direction of movement to the subsequent cell
along the path back to the starting point as movement direction. In comparison to r.cost, this function takes
into account not only the friction map but also anisotropic travel time. This considers variations in walking
speed associated with both downhill and uphill movements. Figure 7.10, 7.11, and 7.12 showcase the service
area of the Dakpark and park 1943, the cumsum from the Visserijplein market square, and the cumsum from
several playgrounds in the neighborhood on warm days of the 29th of June and the 1st of July in 2015. It’s
worth noting that the thermal accessibility service area of the market square and the parks are not covered
all the time in the whole neighborhood, and on the 1st of July, they both shrink in area. In contrast, the
playgrounds, which are frequently represented in the neighborhood, are covered the most at all times. This
could be a potential strategy to invest in the nodes along the network before transforming the street network.

7.2. Applications

73

Figure 7.10: Cumulative cost of walking with thermal comfort to parks with 500m and 200m thermal comfort accessibility

Figure 7.11: Cumulative cost of walking with thermal comfort to market with 500m and 200m thermal comfort accessibility

74 7. Physiological Equivalent Temperature application

Figure 7.12: Cumulative cost of walking with thermal comfort to playgrounds with 500m and 200m thermal comfort accessibility

7.3. Testing the design interventions

For the testing of the design interventions, the current situation needs to be modified to the new situation
which need to be tested, see figures 7.13, 7.14. The procedure is written down below.

7.3. Testing the design interventions

75

Figure 7.13: Adding greenery and replacing parking spaces

76

7. Physiological Equivalent Temperature application

Figure 7.14: Trees added / updated by size

For enhancing the model with vegetation, the NDVI and RGB input files need to be modified:

Enhancing the simulation model with vegetation:

1

2

Utilize a shapefile to depict greenery on a separate layer. This can be
achieved by either referencing an RGB image or the bgt wegdeel layer to
match the existing landscape.

Navigate to the menu and select Raster > Conversion > Rasterize (Vector
to Raster).

Within the Rasterize calculator dialog:

a.

b.
c.

Choose the polygon layer intended for rasterization as the input vector
layer and set it to value 1.

Define the output raster size, extent, and resolution.

During rasterization, areas lacking values will be assigned a nodata
value. Thus, it’s essential to employ the raster tool ’Fill NoData
cells’ and assign a value of O.

Proceed by setting the red value of the new layer from 1 to 40 ("Output

raster@l"= 1) * 40.

Subsequently, generate two additional layers filled with 0. Merge the 40
band with the other two layers of 0 using raster > miscellaneous >

7.3. Testing the design interventions 77

merge, opting for the "Place each input file into a separate band"
option.

b. Go to Layer > Create Layer > New Raster Layer from the menu. Specify
dimensions, extent, and resolution for the new raster layer, ensuring
alignment with the existing ndvi_infr image. Designate three bands for
the new raster layer.

c. Utilize the raster calculator tool (accessible from the Processing
Toolbox) and input the expression 40 * (band@l > -1), where band@1
represents the first band of the new raster layer. This expression will

assign a value of 40 to all pixels in the first band. Repeat this
process for the remaining two bands if specific values are required.

4 Combine the new raster layer with existing layers, such as ndvi_infreil
and ndvi_infrz@l, creating a new band named "infrnew_add."

To merge with the existing RGB image and rgb_infr, follow steps 3 to 5 as
outlined above.

These are the adapted rgb and infr input files cropped to the research area, Figure 7.15.

(a) rgb changed (b) infr changed

Figure 7.15: rgb and infr changed in values on specific streets and visserijplein

(a) tree height adapted (b) sun areas at 15:00 from tree height

Figure 7.16: Shadow influence at 15:00

The generated shadow pattern after updating the treemask and tree height with the new trees of 2m radial
see figure 7.17. For artificial constructutions the modifications were made directly in the shadow files. This

78 7. Physiological Equivalent Temperature application

is for the Visserijplein and Schiedamseweg the case.

(a) 9:00 (b) 12:00

(c) 15:00 (d) 18:00

Figure 7.17: Sun pattern over the day with design interventions of adaptation of trees

7.3. Testing the design interventions

79

(a) 9:00 (b) 12:00

(c) 15:00 (d) 18:00

Figure 7.18: Sun pattern over the day with design interventions of adaptation of trees

The generated PETs are in Figure 7.18.

80 7. Physiological Equivalent Temperature application

(a) 9:00 (b) 12:00

(c) 15:00 (d) vegetation fraction

Figure 7.19: 18:00

In the color styling of the PET classes, see Figure 7.19.

7.3. Testing the design interventions 81

(a) 9:00 (b) 12:00

(c) 15:00 (d) vegetation fraction

Figure 7.20: Color classes of PET on the design interventions on the 1st of July 2015

The difference in PETS in comparison before the interventions are marked in figure Figure 7.20.

82 7. Physiological Equivalent Temperature application

(a) 9:00 (b) 12:00

(c) 15:00 (d) vegetation fraction

Figure 7.21: 18:00

The difference in PETS in comparison before the interventions are marked in figure 7.21 on the places of
intervention.

7.3. Testing the design interventions 83

(a) 9:00 (b) 12:00

(c) 15:00 (d) vegetation fraction

Figure 7.22: 18:00

For a better closeup of the public spaces where the interventions took place are Figure 7.22. There is a
mitigating effect on the 1st of July.

84 7. Physiological Equivalent Temperature application

Visserijplein before

Visserijplein after

, oy
Driehoeksplein before E i
Y : n s J .
E f. -?!:' -
Driehoeksplein after E ' e
-.-q’‘,.:__ o A -
Wy o = .
-‘.-'\ ~ . iy N,
- M_’J ﬂ A H '
Schiedamseweg before ‘%S m g %
— ~* i of
.,
Schiedamseweq after e k‘bi tox
- ' A
T I PR
Schippersstraat before i | ¥ " Fr T
r \l- J.
e \ ir / =’
L -Tﬂ F » "-1\._'._
Schippersstraat after 3 - £ - ?‘- ‘f ,f /? e
Ty I,

Figure 7.23: Comparison of public spaces after heat mitigation measures

Design interventions tested with physiological equivalent models offer a powerful means to simulate and
understand how changes to the built environment impact human health. These models allow researchers and
designers to analyze complex interactions between environmental factors and physiological responses in a
controlled setting. This method poses speculative design scenario’s to be tested which will serve the human
comfort and health. At the moment it is possible to adjust the greenery and the tree and building height for
the simulations. The input pre-processing phase can be smoother. Collaboration among architects, planners,
engineers, and health experts is facilitated by these interdisciplinary tools, leading to optimized designs that
benefit diverse populations. Ultimately, integrating physiological equivalent models into design processes
enhances the overall quality and sustainability of built environments, fostering healthier communities.

PETs evaluation

8.1. Reproducability

Input data

The input data is focused on the datasets required to run the method in order to conduct the results. The
input data is categorised in whenever they are in non-proprietary format, if third party reuse is possible, if
the guidelines are referenced to the data. The datasets provided are in non-proprietary formats and include
Geo tiff, text, and vector datasets in Geopackage format. The spatial data consists of raster GeoTiff and vector
datasets, while the climate data is in text format. The text file is derived from [KNMI, 0000] and contains
hourly data. It includes atmospheric temperature (TT), wind speed (FF), wind direction (DD), global solar
radiation (Q), relative humidity (RH), and minimum and maximum temperatures (Tmin and Tmax) between
8:00 UTC and 9:00 UTC of the following hour. It also includes the average daily wind speed (U). The file has
been modified with pysolar.py to calculate Qdif, generate Sunalt, activate the Day/Night switch, and display
the diurnal factor on an hourly basis, making it not immediately repeatable for other users. In addition to
the paper of Koopmans there is an improvement on third party reuse, since two of the input data are now
open access resources. The vector data, including building envelopes, trees, and water, are derived from
[Geofabrik, 2020] and trees from [?], saved as Geo-packages, and eventually rasterized as Tiffs in QGIS. The
workaround for Bomenregister is needed to make it more reproducable. For Rotterdam the data of trees can
be retrieved from https://diensten.rotterdam.nl/arcgis/rest/services/SB_Infra the tree
point coordinates can be retrieved with additional attribute information. Relevant attribute information are
height and crown size. With preparation actions in QGIS the points can be buffered and rasterized according
to half the crown size and the height of the tree_mask can be assigned to the specific rasters. In order to
retrieve the Skyview factor data an API code must be made available. This code for transferring information
of the webservice towards a raster data on their own device requires a script to be written to retrieve this
information. The code get_svf.py retrieves the input values of svf maps needed for the calculation of the
svf calculation. The code to transform the text file to the attributed required parameters is done through
pysolar.py and get_svf.py for retrieving the Sky view factor tiles and the trees with crownsize by [diensten
Rotterdam, 2023].

Methods

The method section is subdivided into pre-processing, method, analysis and processing, and computational
environment. The software is open and available via GitHub or a plugin of QGIS. This was due to the lack of
amount of money to create reproducible software for third-party use. The PET simulator is available through
© 2024 by Marieke van Esch is licensed under CC BY-SA 4.0 (created with https://chooser-beta.creati
vecommons.org/) viahttps://github.com/mariekeve/pet_simulator.git see Figure 8.1, therefore
this reproducible software is for third-party use.

85

https://diensten.rotterdam.nl/arcgis/rest/services/SB_Infra
https://chooser-beta.creativecommons.org/
https://chooser-beta.creativecommons.org/
https://github.com/mariekeve/pet_simulator.git

86 8. PETs evaluation

Figure 8.1: Fig. Github page for retrieving the PET simulator plugin repository

The pre-processing reproduction steps are documented in the User manual Chapter C. As well as the
Wageningen test area and the difference Wageningen test area. All parameters are provided: The parame-
ters are obtained by the spatial and dynamic parameters section. The dynamic section entails the converted
KNMI hourly values. And the static parameters are obtained by giving the wished spatial frame for your out-
put, those are summurised in pet_parameters.py. For the method, the approach of calculating the PET is
intended to calculate the wind by the MacDonald method validated for the Dutch context (to be more spe-
cific in the Wageningen Herwijnen context). https://github.com/mariekeve/pet_simulator.git
contains a README.txt file explaining all the python files separately and their intermediate results. For the
analysis part, the same in-between output should be generated and reproduced through other parties. The
processing involves using Python software for computational steps, along with importing libraries such as
bindings PyQt for Qt designer, geospatial libraries like from osgeo import gdal, osr, ogr. Next up calculation
libraries like numpy, pandas, multiprocessing, datetime, time, matplotlib, PIL, csv and pvlib. There are ex-
tension of Python files: ndvi_calculator, pet_parameter, geotiffcreator, svf_footprint, vegfra_footprint, frac-
tion_area_buildings_treeregr, PET_simulator, urban_heat, get_svf.py, pysolarvl and PET_calculate. These
Python files are interconnected, leading to jointed results. The ndvi_calculator is used to calculate areas
that qualify as evaporative surfaces and contain a Bowen ratio. svf_footprint and vegfra_footprint depend on
wind direction to average the values on a 25m resolution. fraction_area_buildings_treeregr is for calculating
wind. PET_calculate combines output files of intermediate steps and climate dynamic data to calculate PET
in sunny and shady locations. Computational environments are documented and provided: the computa-
tional environment is Python and are documented. Next to this QGIS is used as a visualisation and commu-
nication environment to use for different third parties. This is possible through the QGIS plugin throughQT
designer QGIS plugin developer.

The visualization environment is QGIS. This is an graphical environment used by urban designers. Through
the integration of PyQt the intermediate results are immediately put in the QGIS project. Therefore the
transparancy of the intermediate output files is upgraded for third party users with expertise and not. Ver-
sions of relevant software components (libraries, packages are provided). The version of GDAL 3.7.1 needs
to be installed on both QGIS 3.30 and your Python 3.9 environment. Also the newest version of UMEP 4.0.4
needs to be installed on your device. The run was ran with The HP Zbook with Intel Core i7 delivers high
performance with its powerful CPU, boasting a 2.2 GHz base frequency and up to 4.1 GHz maximum Turbo
Boost frequency across its 6 cores. It has an installed RAM of 16.0 GB which is a substantial amount of running
separate tasks. The permanent storage capacity of the PC is 475GB.

Results

The results of the code have been verified for the Wageningen area, and the names of the services for down-
load are provided. The software has been assessed through interaction with the publishers. A camera-ready
paper will be published after the submission of the thesis. This thesis is reviewed by two other mentors and
is published whilst it was finished. The software is available through the GIT https://github.com/marie
keve/pet_simulator.git.

https://github.com/mariekeve/pet_simulator.git
https://github.com/mariekeve/pet_simulator.git
https://github.com/mariekeve/pet_simulator.git

8.2. Assessment reproducability. 87

Input data
Methods pre-processing

method, analysis, processing
computational environment
visualisation

WIN[W|IN| =[N

Results

8.2. Assessment reproducability.

Table 22 deals with the reproducability of the refactored code and the integration of a QGIS plugin. The main
points of improvement are to improve the accessibility of the input datasets. Unfortunately, modifying input
files to test alternative designs is still an intensive task for third-party use, but not impossible. A description
is given in chapter 7. For the methods, the calculation workflow is more integrated with pet_simulator, the
parameters are in pet_parameters and the geospatial transformations are done in geotiff creator. The result
and intermediate results of all calculations are provided by ndvi_calculator, svf_footprint, vegfra_footprint,
fraction_area_buildings_treeregr, urban_heat, get_svf.py, pysolarvl and PET_calculate. The computing envi-
ronment is minimized to Python and QGIS as the visual environment. The advantage of the plugin is that the
intermediate results are also made available in the QGIS project to do applications like testing the design and
integrating other techniques like testing design interventions after modifying the original input files, street
orientation, attraction betweeness to determine the most walked streets for multiple destinations. The plugin
is publicly available via a GIT publication for use by third parties.

Discussions and limitations

9.1. Discussion
Validation

Due to the reproducability requirements and the refactoring of the computation model, a decision was made
to adopt a fixed block size of 25 meters for the computation, in contrast to the variable block sizes of 25 and
35 meters utilized in the computation model proposed by [Koopmans et al., 2020]. Consequently, the fraction
density factor of buildings needed adjustment to accommodate this newly specified block size. Subsequently,
validation of the data was conducted.

Verification

The validation method resulted in the standardization of the fraction density factor. This model, adapted
from Wageningen, was also applied to the context of Rotterdam. However, to ensure its suitability for this
specific scenario, a verification method could have been employed, such as field measurements, to validate
the model’s appropriateness.

Interactivity of the graphical user interface of the QGIS plugin

The user interface was configured to accommodate the spatial and weather information requirements for
the specific location. Eventually, a screen displays the various Python procedures that have been executed.
Currently, specific directories need to be filled in to read the CSV file with spatial and weather data. It would be
beneficial to have API’s connected to facilitate the immediate creation of base maps for specific information
by a web server. Additionally, the KNMI pysolar is set up solely in Python for creating the .CSV files from the
KNMI .text files. This functionality could also be incorporated.

9.2. Limitations

Accuracy of open data for trees

Due to the restriction on accessing private information from [NEO and Geodan, 2024], the trees, along with
their individual additional information such as tree height and tree crown, were generated from openly ac-
cessible data provided by [diensten Rotterdam, 2023]. In this scenario, the area of the tree crown could po-
tentially be inaccurately represented in size compared to reality.

Computation memory

For run4 for the case study of Rotterdam, 23 GB is reserved for having the base maps for modeling 1 hour. For
the other hour days of the day specifically each 234 KB each have to be generated for the area. It is necessary
to have such amount of space available on your computer. The run was ran with The HP Zbook with Intel
Core which has a RAM of 16GB with 6 cores, with the potential to run calculations separately. The permanent
storage capacity of the PC is 475GB.

89

10

Conclusions

This research aimed to address the question: "How can a strategy be developed for mitigating heat stress
through Physiological Equivalent Temperature model while ensuring a livable environment for vulnerable
groups in Bospolder Tussendijken, Rotterdam, the Netherlands?"

The objective was twofold: to create an interactive tool indicating PET heat stress in urban areas of the Nether-
lands and to design a strategy specifically tailored to Bospolder Tussendijken. This part of the joint thesis
focused on reproducable tool to indicate the PET in Dutch cities..

The tool aims to model the Physiological Equivalent Temperature (PET) for outdoor thermal comfort. An
analysis of available software, particularly the PET developed by Deltaplan at Wageningen University [Pro-
gramme, 2018], was conducted. To enhance reproducability Agile guidelines are integrated. Sharing data via
an open platform was deemed optimal, facilitated by a QGIS plugin opening the Python code. A sensitivity
analysis for wind modulation was performed, and PET was applied to assess thermal comfort in the area.

10.1. Sub research questions answered
1. Which thermal comfort models do express heat stress?

Several models have evolved from the well-known Physiological Equivalent Temperature (PET) model,
ranging from thermostatically PMV and MEMI to a more universally comprehensible PET model across
disciplines. These models consider three key influences: dynamic climate data, static built environ-
ment data, and standardized physiological performances. Given the standardization of the PET model
in the Netherlands, it remains the appropriate choice for modeling the thermal comfort of citizens in
the country. PET serves as a comparison between complex outdoor conditions and a typical steady-
state indoor environment, aligning indoor energy balance with outdoor mean skin temperature and
sweat rate for simplified thermal comfort assessment. However, PET is a static model for indoor ther-
mal environments, whereas UTCI and WBGT incorporate factors such as clothing and metabolic rate,
providing more comprehensive overview.

2. Which software is available for open use for modeling heat stress?

The software requirements were assessed if it was a reproducible manner of retrieving the information
with the connection between knowing, wanting and acting see Table3.2. Therefore it is necessary to
indicate the critic areas and also being able to intervene in the public space. Next to that it should be
reproducible for a broader audience. Therefore the AGILE requirements of reproducability are impor-
tant which are divided in input, methods and results. Also the requirements of the influencing factors
of the urban environment which can be changed by the urban designer should be integrated in the
software. Small fluctuations of evaporation surfaces or shadow are important to model. The usability
for multiple users the scalability of the area is important as well as the runtime of the software.

3. In what way could the reproducability of [Koopmans et al., 2020] be improved?
The Wageningen University scientific research institute has incorporated reproducability measures in
its PET research. A conclusion assessment, rated from 0 to 3 on reproducability, is presented in Table
4.2. To enhance reproducability in input, methods and results. Input datasets are well documented
but not all publicly available. For the methods, various pre-processing steps are necessary for data

91

92 10. Conclusions

preparation. The method and processing steps are well-documented in [Koopmans et al., 2020], yet
due to the lack of funding prohibits making the software open-source for third-party use. Tools like
ndvi_calculator, svf_footprint, and others (detailed in Appendix H) are employed, with QGIS modifi-
cations posing workflow challenges. Parameters are favored for re-factorization. The computing en-
vironment involves QGIS, Python, UMEP plugin, and Excel, with Python for calculations and Excel for
weather data. QGIS is solely utilized for visualization. Results, available in Appendix A of [Koopmans
etal., 2020], are accessible upon request. For input data, as methods as results improvements could be
made. In the context of agile reproducability, each improvement enhances the sharing of information
across multiple disciplines.

4. What is the sensitivity of the wind computation?
The wind sensitivity on block size resulted different resolutions with high positive correlation. for the
operability for larger scale research areas the wind sensitivity with the block size of 25 meter could be
easily used to determine a brief overview of the results. Due to the refactoring the fdf factor of the
buildings needed to be adjusted to a lower value to be calibrated with the end result. Refinement in the
fdf building and other in-between steps in the process are required in order to come to a higher PET
resemblance with the code of Koopmans (2020).

5. How can the PET be applied on in Rotterdam for urban design interventions?

With the QGIS plugin, urban planners can conduct spatial-temporal analysis for areas up to 10 km2.
Various models are used to assess the current situation and test proposed heat mitigation measures
outlined in the spatial report. The PET simulator model of Bospolder Tussendijken is used to simulate
heat stress on both summer and warm days. Additionally, a model is created to determine thermal ac-
cessibility based on a thermal comfort level of 21 PET °C, suggesting mitigation measures for specific
roads. The urban design requirements are tested on the influence of heat mitigation measures, em-
phasizing radiation reduction, evaporative materials and considering scale dependencies. Ultimately,
the PET model and r.walk are used to assess the goals outlined in the spatial report, allowing for sce-
nario planning and serving as a open access communication tool for stakeholders involved in urban
mitigation efforts. Design interventions can be tested by modifying base map input data. However, this
process requires a good understanding of adapting the input base maps, which are well documented
in this thesis.

10.2. Conclusion

The utilization of thermal comfort models, including the Physiological Equivalent Temperature (PET) model
and its variations, plays a crucial role in expressing heat stress. These models incorporate dynamic climate
data, static built environment data, and standardized physiological performances to assess thermal comfort.
While PET remains a standard choice for modeling thermal comfort in the Netherlands due to its standard-
ization and comparison between indoor and outdoor environments, models like UTCI and WBGT provide a
more comprehensive overview by considering factors such as clothing and metabolic rate.

Regarding available software for open use in modeling heat stress, the reproducability of the software is
essential for broader accessibility and intervention in public spaces. Software should meet AGILE require-
ments for reproducability, considering input, methods, and results, as well as integrate factors influencing
the urban environment that can be modified by urban designers. Usability for multiple users, scalability of
the area, and runtime of the software are also crucial factors to consider.

While efforts have been made to incorporate reproducability measures in PET research, improvements
are needed in input, methods, and results to enhance reproducability further. This includes making input
datasets publicly available, documenting pre-processing steps for data preparation, and addressing chal-
lenges in software accessibility due to funding constraints.

The wind sensitivity on block size resulted different resolutions with high positive correlation. for the
operability for larger scale research areas the wind sensitivity with the block size of 25 meter could be easily
used to determine a brief overview of the results. Due to the refactoring the fdf factor of the buildings needed
to be adjusted to a lower value to be calibrated with the end result. Refinement in the fdf building and other
in-between steps in the process are required in order to come to a higher PET resemblance with the code of
Koopmans (2020).

Spatial-temporal modeling using tools like QGIS plugin enables urban planners to analyze areas for heat
stress and assess proposed mitigation measures. By simulating heat stress and determining thermal acces-

10.3. Additional Points of Growth from this Research 93

sibility, intervention areas in public spaces can be identified and tested for effectiveness. Design interven-
tions focused on radiation reduction, wind promotion, and evaporative materials can be evaluated using PET
models, facilitating scenario planning and communication among stakeholders involved in urban mitigation
efforts.

In conclusion, a reproducible PET tool can significantly aid in testing and designing for heat mitigation
by providing comprehensive assessments of thermal comfort, identifying intervention areas in public spaces,
and evaluating the effectiveness of mitigation measures. However, continuous improvements in software re-
producability, sensitivity analysis, and spatial-temporal modeling are necessary to enhance the tool’s utility
and accessibility for urban planning and design. Also other influences next to solar radiation, evaporation
and wind as mentioned in [van Esch, 2015] could be implemented to enhance other mitigation measures. It
evaluates urban designs using the Physiological Equivalent Temperature plugin, with future potential appli-
cations in modeling PET night urban heat island simulations and improving communication among stake-
holders. The research aligns with field Geomatics, using GIS and spatial analysis techniques to address urban
environmental challenges. The project contributes to understanding the health implications of urban mi-
cro climates and the potential effects of temperature increases, informing policymakers and urban planners
about creating healthy and sustainable urban environments.

10.3. Additional Points of Growth from this Research

Through this thesis, I have also learned to interact with various experts in the field, including academics
from Wageningen, Sytse Koopmans, and Gert-Jan Steeneveld. The networking event at the HvVA symposium
"Hot Issues" also contributed to the perspective of different municipalities and their approach to heat man-
agement in their cities [Hogeschool van Amsterdam, 2023]. Additionally, discussions with researchers at the
municipality of Rotterdam, such as Merel Scheltema, and advisor Andre de Wit at Witteveen en Bos, provided
an interesting interdisciplinary mix of information alongside my interdisciplinary background in the study
Geomatics and Urbanism on this issue. Noteworthy in this report is also the alternation of research by de-
sign. Through my interaction with the evidence-based modeling of PET, there is a significant analytical aspect
to this research. The design partly awaited the outcomes of the PET. Therefore, the design part entered the
process later. This allowed me to discover firsthand how research by design took place in the design.

10.4. Conclusion joint degree

The aim was to develop an reproducible spatial-temporal tool for indicating thermal comfort in urbanized
areas in the Netherlands, as well as to create a strategic design for the context-specific area for Bospolder
Tussendijken in Rotterdam. The research was part of a cycle of 3 steps (see figure 8.1). First the development
of the PET simulator tool which made it possible to have reproducability for third-party use. Second it cre-
ated the PET heat stress maps for analysis for the urban design. Third step were the urbanism requirements
for design and the creation of the design. Third part was the reflection for further development of the PET
tool and future work. The PET simulator tool helped eventually to model the heat stress in the application
case study of Rotterdam. Through the analysis of the input datasets, methods and results, it emerged that
the methods should be publicly available with integration of computational environment. A plugin has been
created in QGIS to open the Python code to a larger audience. A sensitivity analysis has been carried out for
the wind modulation. Ultimately, the PET was made readable and applied to the accessibility of the area.
For designing the urbanism part formulated liveability requirements for design implementations. From the
literature liveability is subdivided in physical liveability and social liveability. The physical liveability is ac-
cessibility should be guaranteed despite the increase of days above 25 degrees for vulnerable groups. Next to
that the continuity of the mitigation measures are the most effective since it is scale dependent. Also to keep
the mitigating effects functioning it is important that the mitigation measures are durable depended on the
practical implementations. To make it social appropriate a walk able environment should be supported and
enough social spaces should be available for vulnerable groups. Thirdly the tool evaluated the design imple-
mentations on their effectiveness which leads to additional research of the design and future work. At the
moment shadow is the most contributing factor for heat mitigation. Future work to improve heat mitigation
is the integration of additional heat mitigation measures, next to solar radiation, and vegetation, measures
or improving the wind in the PET simulator design could enhance its performance. In addition, PET simu-
lator should be better design and analysis integrated without too much effort for modifying the input files
for the designer, in order to make it more third-party use proof. The plugin has great prospects for future
potential applications in modeling PET such as night urban heat island simulations and improving commu-

94 10. Conclusions

nication among stakeholders. The research aligns with field Geomatics and Urbanism, using GIS and spatial
analysis techniques to address urban environmental challenges. The project contributes to understanding
the health implications of urban micro climates and the potential effects of temperature increases, informing
policymakers and urban planners about action for creating healthy and sustainable urban environments.

Future research

The identification of areas for improvement and the emergence of new research questions serve as the basis
for generating recommendations for future research. This section delves into these recommendations and
proposes potential inquiries for each of the identified research topics.

11.1. Points of improvement

Refinement input data trees

This research is based on reproducability. Another open source was used for the trees. Since the area has an
influence on the frontal density area for the wind, a more accurate representation of trees would be suitable.
Through point cloud segmentation of trees this could be achieved.

- To what extent could tree point cloud segmentation result in calculating an accurate and open accessi-

ble PET?

Refinement wind

The current wind modeling only takes into account four wind directions and no wind. However, it’s possible
that diagonal wind flows may occur. By following upcoming steps, the horizontal and vertical components of
a given wind direction are determined.

1. Calculate Components:
. . . (0
Horizontal Component = Magnitude x sin ﬁf[

Vertical Component = Magnitude x cos ﬁ”)

2. Magnitude Calculation (if needed):

Magnitude = \/ Horizontal Component? + Vertical Component?

3. Normalization (if needed): If you want to normalize the resulting vector to have a unit magnitude:

. Component
Normalized Component = ——
Magnitude
The current software models only take into account the effect of wind based on the variations in slope of
buildings and trees within a large averaged area using the Macdonald method (Macdonald, 1998). However,
this approach does not accurately represent the real wind flow. Incorporating computational fluid dynam-
ics into the research would provide a more accurate model of real wind flows. In de Jongh's master thesis
[de Jongh, 2021], he suggests a method to integrate a Voronoi approach to estimate the computational fluid

95

96 11. Future research

dynamic model of wind flow in a QGIS environment. His research is also based in Rotterdam. Implementing
this calculation method could lead to a more accurate modeling of wind flow through streets by accounting
for skimming flows which are described in several literature of urban design requirements [van Esch, 2015]
and [Lenzholzer, 2018].

- To what extent could (voronoi) CFD modeling improve the wind calculation in the PET simulator?

Health experts integrated in research

This research could have more of a societal value if there were a link between health experts and the under-
standing of a better urban environment. This research attempted to research accessibility based on thermal
comfort. If there is a link between to what extent people can endure heat there would be more of a scientific
use of the PET modeling. Right now, ENVI-MET developed a pedestrian dynamic comfort linking multiple
models like PET and WBGT to model the thermo-physiological experience to the urban environment. [Bruse,
2023].

— To what extent could participants validate the endure times of different PET values in the urban envi-
ronment?

Sky view factor updated design model

The comparison between shadow and no shadow in the street using Sandra Lenzholzer’s model helps deter-
mine whether design decisions should focus on public spaces or be addressed with buildings [Lenzholzer,
2018]. The creation of shadows and obstruction of the sky lead to higher heat storage in the streetscape.
Currently, only the shadows are being updated, not the skyview factor.

— How could the skyview factor have influence on the calculation of the urban morphology calculation
for updating design interventions?

Pedestrian walking choice based on heat exposure in the street

The research aimed to reduce heat on the most frequently used routes in the neighborhood, focusing on the
shortest path to the destination. However, pedestrians may not always choose the shortest route. Therefore,
further research is required to understand the factors that influence pedestrians’ decisions when choosing
which streets to walk. This understanding could help identify pedestrian preferences for implementing heat
reduction methods.

— How are pedestrians influenced in order to take/change roads towards destinations on a summer day
in comparison to a warm day?

Climate scenarios integrated in research
The code provided by [Koopmans et al., 2020] also had an prediction for the possible different climate sce-
narios. This was left out in the research.

— What is the remarkable change in climate data with the KNMI climate scenarios in contrast to current
situation?

Computation larger areas

When dealing with larger areas, Python may not provide sufficient computational capabilities. In such cases,
using C++ can be highly beneficial for dividing the computation task of computing Physiological Equivalent
Temperature (PET) for larger regions, like the Netherlands. By incorporating parallel processing techniques,
it becomes necessary to divide the Netherlands into smaller tiles or regions, with each tile representing a
manageable portion of the entire area.

C++ offers robust support for multi-threading, enabling the creation and management of multiple threads
of execution within a single program. Leveraging this capability, multi-threading can be employed to dis-
tribute the computation of PET across numerous tiles concurrently. Each thread can then independently
compute PET for a specific tile, thereby utilizing the multi-core architecture of modern CPUs to significantly
enhance performance.

This approach not only speeds up the computation process but also optimally utilizes the available com-
putational resources. Additionally, it allows for efficient scaling, enabling the handling of even larger areas or

11.2. Transferability of the Research 97

datasets with minimal additional effort. By seamlessly integrating parallel processing techniques, C++ em-
powers researchers and practitioners to tackle complex computational tasks with unparalleled efficiency and
effectiveness.

- To what extent could C++ improve the computation time of the PET calculation?

Geospatial database

Storing files directly on the device can be challenging when handling large files and can limit functionality.
QGIS faces difficulties in effectively managing and storing raster data. According to [Langran, 1989], GIS
architecture issues include storage, modeling spatial changes, clustering, data access, algorithms, and system
design individuality.

GIS architecture is inefficient for storage and management tasks. Updating files for spatial modeling re-
quires manual effort and is not understandable by all third party users. GIS still has inefficient clustering
techniques, which hinder parallel processing and indexing. Implementing improvements in this area could
enhance scalability and performance in large-scale temporal GIS applications. Efficient algorithms are cru-
cial for quick data access and responsive query times. Unlike GIS, geospatial databases are available and
can be integrated to achieve spatial-temporal accuracy. Geospatial databases have the capability to store
and manage data more effectively. Integrating the current plugin involves writing Python code to establish
connections with geospatial databases like PostGIS. Storing data in such databases makes it possible to seam-
lessly update spatial and temporal information for multiple users. Consequently, QGIS plugins can effectively
operate with the data stored in these databases. Steps to integrate this in the QGIS plugin would be:

1. Establishing Connection with PostGIS: Utilize Python along with the psycopg? library to establish a
connection with your PostGIS database from within your QGIS plugin. Ensure you have the connection
parameters such as host, database, username, and password.

2. Retrieving and Visualizing Data: Upon successfully connecting to the PostGIS database, execute SQL
queries to retrieve the desired raster data. Subsequently, visualize this data in QGIS by adding them as
layers to the map canvas.

3. Adding Interaction: Enhance the functionality of your QGIS plugin by incorporating interaction capa-
bilities, such as data filtering, conducting analyses, or editing data within the PostGIS database.

4. Publishing Changes to PostGIS: If your QGIS plugin allows for editing data retrieved from PostGIS, en-
sure that you send any modifications back to the database. This may involve executing SQL update or
insert queries to enact the changes.

Future research could implement this strategy.

— In what way can POSTGIS be connected to PET Simulator plugin in order to improve the computation
of the scalability of the modeling area?

Performance of vegetation for urban heat

Through satellite imagery data the performance of vegetation, NDVI in urban environments could be mea-
sured throughout the summer period and its potential influence on cooling the urban environment. In order
to take a more holistic approach, design interventions are also needed to take a more holistic approach to
maintaining the health of this vegetation.

11.2. Transferability of the Research

The findings of the research can be applied to other areas in the Netherlands. The reproducability is increased
and therefore better to execute on other location, with the required input files. Therefore this research holds
great prospects for other applications such as modeling the night situation of urban heat island effect. How-
ever, it must be said to be a good design tool several steps in the pre-processing must be adapted.

Bibliography

Jacques Bertin. Semiology of Graphics. Esri Press, 1 2011.

Krzysztof Blazejczyk, Gerd Jendritzky, Peter Brode, Dusan Fiala, George Havenith, Yoram Epstein, Agnieszka
Psikuta, and Bernhard Kampmann. An introduction to the universal thermal climate index (utci). Ge-
ographia Polonica, 86(1):5-10, 2013.

Daniela Bruse. Dynamic thermal comfort model for pedestrians, jun 2023. URLhttps://wuw.envi-met.c
om/new-bio-met-dynamic-thermal-comfort/.

Grahame M. Budd. Wet-bulb globe temperature (wbgt)—its history and its limitations. Journal of Science
and Medicine in Sport, 11(1):20-32, jan 2008. ISSN 14402440. doi: 10.1016/j.jsams.2007.07.003. URL
https://linkinghub.elsevier.com/retrieve/pii/S1440244007001478.

CAS. Kaartviewer - klimaateffectatlas, 2020. URLhttps://www.klimaateffectatlas.nl/nl/.

Leighton Cochran and Russ Derickson. Low-rise buildings and architectural aerodynamics. Architectural
Science Review, 48(3):265-276, sep 2005. ISSN 0003-8628, 1758-9622. doi: 10.3763/asre.2005.4833. URL
http://www.tandfonline.com/doi/abs/10.3763/asre.2005.4833.

H. Daanen. Hete hangijzers: plenaire gedeelte. In Hete hangijzers: plenaire gedeelte, Amsterdam, Nether-
lands, jul 2023. Hogeschool van Amsterdam.

W. de Jongh. Urban morphological analysis for wind potential, 2021. URL https://repository.tudelft
.nl/islandora/object/uuid%3Afdbff288-fede-4796-9972-54627af0db77.

Deltares. Crc tool - climate resilient cities deltares, 2020. URLhttps://www.deltares.nl/en/software-a
nd-data/products/crc-tool-climate-resilient-cities.

diensten Rotterdam. Sb infra bomen mapserver, 2023. URLhttps://diensten.rotterdam.nl/arcgis/r
est/services/SBInfra/Bomen/MapServer.

Anthony Dunne and Fiona Raby. Speculative Design: Design, Fiction, and Social Dreaming. MIT Press, Cam-
bridge, MA, 2013.

eesa. Vegetation indices and their interpretation: Ndvi, gndvi, msavi2, ndre, and ndwi, 2024. URL https:
//www.auravant.com/en/articles/precision-agriculture/vegetation-indices-and-their-i
nterpretation-ndvi-gndvi-msavi2-ndre-and-ndwi/.

Poul O. Fanger. Thermal comfort: Analysis and applications in environmental engineering. Danish Technical
Pr, Copenhagen, 1970. ISBN 9788757103410.

Dusan Fiala, George Havenith, Peter Brode, Bernhard Kampmann, and Gerd Jendritzky. Utci-fiala multi-
node model of human heat transfer and temperature regulation. International Journal of Biometeorology,
56(3):429-441, may 2012. ISSN 0020-7128, 1432-1254. doi: 10.1007/s00484-011-0424-7. URL http:
//link.springer.com/10.1007/s00484-011-0424-7.

Open Science Framework. Agile reproducible paper guidelines. https://osf.io/cb7z8/, 2022.
Geofabrik. Geofabrik // home, 2020. URLhttps://www.geofabrik.de/.

Guardian. Spain braced for record april temperature of 39°c as extreme heat causes misery, 2023. URLhttps:
//www.theguardian.com/world/2023/apr/27/spain-braced-for-record-april-temperature-o
f-39c-as-heatwave-causes-misery.

99

https://www.envi-met.com/new-bio-met-dynamic-thermal-comfort/
https://www.envi-met.com/new-bio-met-dynamic-thermal-comfort/
https://linkinghub.elsevier.com/retrieve/pii/S1440244007001478
https://www.klimaateffectatlas.nl/nl/
http://www.tandfonline.com/doi/abs/10.3763/asre.2005.4833
https://repository.tudelft.nl/islandora/object/uuid%3Afdbff288-fede-4796-9972-54627af0db77
https://repository.tudelft.nl/islandora/object/uuid%3Afdbff288-fede-4796-9972-54627af0db77
https://www.deltares.nl/en/software-and-data/products/crc-tool-climate-resilient-cities
https://www.deltares.nl/en/software-and-data/products/crc-tool-climate-resilient-cities
https://diensten.rotterdam.nl/arcgis/rest/services/SBInfra/Bomen/MapServer
https://diensten.rotterdam.nl/arcgis/rest/services/SBInfra/Bomen/MapServer
https://www.auravant.com/en/articles/precision-agriculture/vegetation-indices-and-their-interpretation-ndvi-gndvi-msavi2-ndre-and-ndwi/
https://www.auravant.com/en/articles/precision-agriculture/vegetation-indices-and-their-interpretation-ndvi-gndvi-msavi2-ndre-and-ndwi/
https://www.auravant.com/en/articles/precision-agriculture/vegetation-indices-and-their-interpretation-ndvi-gndvi-msavi2-ndre-and-ndwi/
http://link.springer.com/10.1007/s00484-011-0424-7
http://link.springer.com/10.1007/s00484-011-0424-7
https://osf.io/cb7z8/
https://www.geofabrik.de/
https://www.theguardian.com/world/2023/apr/27/spain-braced-for-record-april-temperature-of-39c-as-heatwave-causes-misery
https://www.theguardian.com/world/2023/apr/27/spain-braced-for-record-april-temperature-of-39c-as-heatwave-causes-misery
https://www.theguardian.com/world/2023/apr/27/spain-braced-for-record-april-temperature-of-39c-as-heatwave-causes-misery

100 Bibliography

G Havenith. Heat balance when wearing protective clothing. The Annals of Occupational Hygiene, 43(5):289—
296, jul 1999. ISSN 00034878. doi: 10.1016/S0003-4878(99)00051-4. URLhttps://linkinghub.elsevie
r.com/retrieve/pii/S0003487899000514.

Bert G. Heusinkveld, G. J. Steeneveld, L. W. A. Van Hove, C. M.]. Jacobs, and A. A. M. Holtslag. Spatial variabil-
ity of the Rotterdam urban heat island as influenced by urban land use. Journal of Geophysical Research:
Atmospheres, 119(2):677-692, jan 2014. ISSN 2169-897X, 2169-8996. doi: 10.1002/2012JD019399. URL
https://agupubs.onlinelibrary.wiley.com/doi/10.1002/2012JD019399.

J. Hofman. Keep your hague cool: Mitigating heat stress and the urban heat island effect through urban
design, 2022. URLhttp://resolver.tudelft.nl/uuid:17£937a9-b5eb5-4fde-b149-4b1dc004eabl.

Hogeschool van Amsterdam. Terugblik: Hitte in de stad symposium, 2023. URL https://www.hva.nl/cit
y-net-zero/gedeelde-content/nieuws/nieuwsberichten/2023/07/terugblik-hitte-in-de-s
tad-symposium.html. Accessed: February 23, 2024.

HVA. Coolkit - hva, 2020. URLhttps://www.hva.nl/kc-techniek/gedeelde-content/contentgroep/
klimaatbestendige-stad/resultaten/coolkit.html.

Martin Himmerle, Tamds G4l, J. Unger, and Andreas Matzarakis. Introducing a script for calculating the sky
view factor used for urban climate investigations. ACTA CLIMATOLOGICA ET CHOROLOGICA, 44-45:83-92,
01 2011.

P. Hoppe. The physiological equivalent temperature - a universal index for the biometeorological assessment
of the thermal environment. International Journal of Biometeorology, 43(2):71-75, October 1999. ISSN
0020-7128, 1432-1254. doi: 10.1007/s004840050118. URL http://link.springer.com/10.1007/s004
840050118.

Kadaster. Pdok download viewer, 2023. URL https://app.pdok.nl/1v/bgt/download-viewer/.

Kadaster. Introductie pdok, 2024. URLhttps://www.pdok.nl/introductie/-/article/basisregistr
atie-topografie-brt-topnl.

KNMI. Uurwaarden van weerstations, 0000. URL https://daggegevens.knmi.nl/klimatologie/uurge
gevens.

KNMI. Sky view factor of the netherlands - knmi data platform, 2023. URL https://dataplatform.knmi.
nl/dataset/access/svf-nl-3.

S. Koopmans, B.G. Heusinkveld, and G.]J. Steeneveld. A standardized physical equivalent temperature ur-
ban heat map at 1-m spatial resolution to facilitate climate stress tests in the netherlands. Building and
Environment, 181:106984, aug 2020. ISSN 03601323. doi: 10.1016/j.buildenv.2020.106984. URL
https://linkinghub.elsevier.com/retrieve/pii/S0360132320303644.

G. Langran. A review of temporal database research and its use in gis applications. International journal of
geographical information systems, 3(3):215-232, jul 1989. ISSN 0269-3798. doi: 10.1080/0269379890894150
9. URLhttp://www.tandfonline.com/doi/abs/10.1080/02693798908941509.

Joel Lawhead. QGIS Python Programming Cookbook - Second Edition: Automating Geospatial Development.
Packt Publishing, 2018. ISBN 1787124835.

S. Lenzholzer. Weather in the city. NAI booksellers, 2018. ISBN 9789462081987.

Fredrik Lindberg, C.S.B. Grimmond, Andrew Gabey, Bei Huang, Christoph W. Kent, Ting Sun, Natalie E.
Theeuwes, Leena Jarvi, Helen C. Ward, I. Capel-Timms, Yuanyong Chang, Per Jonsson, Niklas Krave, Dong-
wei Liu, D. Meyer, K. Frans G. Olofson, Jianguo Tan, Dag Wéstberg, Lingbo Xue, and Zhe Zhang. Urban
multi-scale environmental predictor (umep): An integrated tool for city-based climate services. Environ-
mental Modelling and Software, 99:70-87, Januari 2018. ISSN 13648152. doi: 10.1016/j.envsoft.2017.09.020.
URLhttps://linkinghub.elsevier.com/retrieve/pii/S1364815217304140.

R.W. Macdonald, R.E Griffiths, and D.J. Hall. An improved method for the estimation of surface roughness of
obstacle arrays. Atmospheric Environment, 32(11):1857-1864, jun 1998. ISSN 13522310. doi: 10.1016/S135
2-2310(97)00403-2. URLhttps://linkinghub.elsevier.com/retrieve/pii/S1352231097004032.

https://linkinghub.elsevier.com/retrieve/pii/S0003487899000514
https://linkinghub.elsevier.com/retrieve/pii/S0003487899000514
https://agupubs.onlinelibrary.wiley.com/doi/10.1002/2012JD019399
http://resolver.tudelft.nl/uuid:17f937a9-b5e5-4fde-b149-4b1dc004ea51
https://www.hva.nl/city-net-zero/gedeelde-content/nieuws/nieuwsberichten/2023/07/terugblik-hitte-in-de-stad-symposium.html
https://www.hva.nl/city-net-zero/gedeelde-content/nieuws/nieuwsberichten/2023/07/terugblik-hitte-in-de-stad-symposium.html
https://www.hva.nl/city-net-zero/gedeelde-content/nieuws/nieuwsberichten/2023/07/terugblik-hitte-in-de-stad-symposium.html
https://www.hva.nl/kc-techniek/gedeelde-content/contentgroep/klimaatbestendige-stad/resultaten/coolkit.html
https://www.hva.nl/kc-techniek/gedeelde-content/contentgroep/klimaatbestendige-stad/resultaten/coolkit.html
http://link.springer.com/10.1007/s004840050118
http://link.springer.com/10.1007/s004840050118
https://app.pdok.nl/lv/bgt/download-viewer/
https://www.pdok.nl/introductie/-/article/basisregistratie-topografie-brt-topnl
https://www.pdok.nl/introductie/-/article/basisregistratie-topografie-brt-topnl
https://daggegevens.knmi.nl/klimatologie/uurgegevens
https://daggegevens.knmi.nl/klimatologie/uurgegevens
https://dataplatform.knmi.nl/dataset/access/svf-nl-3
https://dataplatform.knmi.nl/dataset/access/svf-nl-3
https://linkinghub.elsevier.com/retrieve/pii/S0360132320303644
http://www.tandfonline.com/doi/abs/10.1080/02693798908941509
https://linkinghub.elsevier.com/retrieve/pii/S1364815217304140
https://linkinghub.elsevier.com/retrieve/pii/S1352231097004032

Bibliography 101

Andreas Matzarakis and Bas Amelung. Physiological equivalent temperature as indicator for impacts of cli-
mate change on thermal comfort of humans. In Madeleine C. Thomson, Ricardo Garcia-Herrera, and Mar-
tin Beniston, editors, Seasonal Forecasts, Climatic Change and Human Health, pages 161-172. Springer
Netherlands, Dordrecht, 2008. ISBN 9781402068768 9781402068775. doi: 10.1007/978-1-4020-6877-5_10.
URLhttp://link.springer.com/10.1007/978-1-4020-6877-5_10.

H. Mayer and P. Hoppe. Thermal comfort of man in different urban environments. Theoretical and Applied
Climatology, 38(1):43-49, 1987a. ISSN 0177-798X, 1434-4483. doi: 10.1007/BF00866252. URL http:
//link.springer.com/10.1007/BF00866252.

H. Mayer and P. Hoppe. Thermal comfort of man in different urban environments. Theoretical and Applied
Climatology, 38(1):43-49, 1987b. ISSN 0177-798X, 1434-4483. doi: 10.1007/BF00866252. URL http:
//1link.springer.com/10.1007/BF00866252.

ENVI met GMBH. High-resolution 3d modeling of urban microclimate with envi-met software, n.d. URL
https://www.envi-met.com/.

A. Millyard, J. D. Layden, D. B. Pyne, A. M. Edwards, and S. R. Bloxham. Impairments to thermoregulation
in the elderly during heat exposure events. Gerontol Geriatr Med, 6:2333721420932432, Jan-Dec 2020. doi:
10.1177/2333721420932432. URL https://doi.org/10.1177/2333721420932432. Published online
2020 Jun 15.

Parham A. Mirzaei. Cfd modeling of micro and urban climates: Problems to be solved in the new decade.
Sustainable Cities and Society, 69:102839, June 2021. ISSN 22106707. doi: 10.1016/j.scs.2021.102839. URL
https://linkinghub.elsevier.com/retrieve/pii/S$2210670721001293.

MIT. ud software development urban microclimate, 0000. URL https://urbanmicroclimate.scripts.
mit.edu/umc.php.

Peter Moonen, Thijs Defraeye, Viktor Dorer, Bert Blocken, and Jan Carmeliet. Urban physics: Effect of the
micro-climate on comfort, health and energy demand. Frontiers of Architectural Research, 1(3):197-228,
sep 2012. ISSN 20952635. doi: 10.1016/j.foar.2012.05.002. URL https://linkinghub.elsevier.com/re
trieve/pii/S2095263512000301.

Wageningen University NEO and Geodan. Boomregister, 2024. URL http://boomregister.nl/.

Ministery of Infrastructure and Waterboard. Deltaplan en ruimtelijke adaptatie. December 2018. URLhttps:
//www.deltaprogramma.nl/themas/ruimtelijkeadaptatie/deltaplan.

T. R. Oke. The energetic basis of the urban heat island. Quarterly Journal of the Royal Meteorological Society,
108(455):1-24, jan 1982. ISSN 0035-9009, 1477-870X. doi: 10.1002/qj.49710845502. URL https://rmets.
onlinelibrary.wiley.com/doi/10.1002/qj.49710845502.

Timothy R Oke. Boundary layer climates. Routledge, 2002.
Delta Programme. Delta programme, 2018. URL https://www.deltaprogramma.nl/deltaprogramma.

RIVM. Achtergronddocument WGBT en PHS bij GGD-richtlijn mmk: hitte en gezondheid | RIVM, 2023. URL
https://www.rivm.nl/documenten/achtergronddocument-wgbt-en-phs-bij-ggd-richtlijn-m
mk-hitte-en-gezondheid.

Gianna Stavroulaki, Daniel Koch, Ann Legeby, Lars Hilding Marcus, Alexander Stéhle, and Meta Berghauser
Pont. Documentation pst 20191122, 2019. URL http://rgdoi.net/10.13140/RG.2.2.25718.55364.

Marieke van Esch. From thermal comfort to heat mitigation necessity: Informed strategies for mitigating pet
heat stress in public spaces for vulnerable groups — a rotterdam case study, 2024. URLhttps://www.tude
1ft.nl/.

Marjolein van Esch. Designing the urban microclimate. A+BE Architecture and the Built Environment, pages
1-308 Pages, june 2015. doi: 10.7480/ABE.2015.6.905. URL https://journals.open.tudelft.nl/abe
/article/view/pijpers.

http://link.springer.com/10.1007/978-1-4020-6877-5_10
http://link.springer.com/10.1007/BF00866252
http://link.springer.com/10.1007/BF00866252
http://link.springer.com/10.1007/BF00866252
http://link.springer.com/10.1007/BF00866252
https://www.envi-met.com/
https://doi.org/10.1177/2333721420932432
https://linkinghub.elsevier.com/retrieve/pii/S2210670721001293
https://urbanmicroclimate.scripts.mit.edu/umc.php
https://urbanmicroclimate.scripts.mit.edu/umc.php
https://linkinghub.elsevier.com/retrieve/pii/S2095263512000301
https://linkinghub.elsevier.com/retrieve/pii/S2095263512000301
http://boomregister.nl/
https://www.deltaprogramma.nl/themas/ruimtelijkeadaptatie/deltaplan
https://www.deltaprogramma.nl/themas/ruimtelijkeadaptatie/deltaplan
https://rmets.onlinelibrary.wiley.com/doi/10.1002/qj.49710845502
https://rmets.onlinelibrary.wiley.com/doi/10.1002/qj.49710845502
https://www.deltaprogramma.nl/deltaprogramma
https://www.rivm.nl/documenten/achtergronddocument-wgbt-en-phs-bij-ggd-richtlijn-mmk-hitte-en-gezondheid
https://www.rivm.nl/documenten/achtergronddocument-wgbt-en-phs-bij-ggd-richtlijn-mmk-hitte-en-gezondheid
http://rgdoi.net/10.13140/RG.2.2.25718.55364
https://www.tudelft.nl/
https://www.tudelft.nl/
https://journals.open.tudelft.nl/abe/article/view/pijpers
https://journals.open.tudelft.nl/abe/article/view/pijpers

A

Symbols

103

104 A. Symbols
symbol description unit
A parameter for interpolation wind profile -
B parameter for interpolation wind profile -
By bowen ratio (sensible heat flux / latent heat flux) -
d zero-plane displacement m
FF10 10-m wind at reference station ms™!
Fyeg vegetation fraction -
) zero-plane displacement m
Abuilding ~ frontal area density for buildings -
Atree frontal area density for trees -
Atot total frontal area density -
H building height m
I infrared value of aerial photo (INFR) -
PET Physiological Equivalent Temperature °C
0 relative humidity at reference station %
Qu diffuse irradiation Wm2
Qs solar irradiation at reference station Wm2
R red value of aerial photo (RGBI) -
o Stefan-Boltzmann constant Wm2K*
S daily average solar irradiation (in kinematic units) Kms™
Svf sky view factor -
Ta transmissivity -
T, air temperature °C
Tgem daily average air temperature °C
Tinax daily average maximum temperature °C
Tin daily average minimum temperature °C
Tret air temperature at reference station °C
Tyw wet bulb temperature °C
U daily average wind speed at reference station ms~!
ne wind reduction at 1.2 m relative to u;p = 1 ms™! ms™!
Uio reference normalized wind of 1 ms™! representative for open terrain ms™!
Ugo wind at 60-min height (relative to u;g =1 ms™!), mesowind ms™!
UHI urban heat island °C
UHInhax daily maximum urban heat island °C
u* friction velocity ms™~!
up wind speed at roof height ms™!
A (surface) roughness length m
Zw top of the roughness layer m

B

Python code

105

106 B. Python code

B.1. python/pet_parameters.py

#from IPython import get_ipython
#get_ipython () .magic(’reset -sf’)

import numpy as np
from .pet_parameters import window_footprint
from .geotiff_creator import ArrayToGeotif, GeotifToArray, GeotifWrite

petcalculate
purpose: calculate the PET
input: shadow, urbanheat, wind, svf, svf_mask, ndvi_crop_mask, ndvi_tree_mask

H OH H R

output: pets

def PET_calculate(stat, dyn, iml, im2, im3, im4, imb, im6, im7):

TT = dyn.TT #TT: Temperatuur (in 0.1 graden Celsius) op
1.50 m hoogte tijdens de waarneming

FF = dyn.FF #FF : Windsnelheid (in 0.1 m/s) gemiddeld
over de laatste 10 minuten van het afgelopen uur

Q = dyn.Q #Q: Global solar irradiationGlobale
straling (in J/cm2) per uurvak

Qdif = dyn.Qdif #Qdif : Difuse radiation

sunalt = dyn.sunalt #sunalt:solar elevation angle

RH = dyn.RH #RH: Relative Humidity

diurnal = dyn.diurnal #diurnal correction factor UHI for Ta

print (’PET.Calculator?’)
Bveg = 0.4
Bnoveg = 3
stef = 5.67 * 10 ** -8

sun, meta = GeotifToArray(iml, 1) # added anders geen ref in shadow
urban, meta = GeotifToArray(im2, 1)

wind, meta = GeotifToArray(im3, 1)

svf, meta = GeotifToArray(im4, 1)

svf_mask, meta = GeotifToArray(im5, 1)

mask_vegfra, meta = GeotifToArray (im6, 1)

trees_2m, meta = GeotifToArray (im7, 1)

with open("D:\\tmp\\test.txt", ’wt?’) as f:

.write(f"sun, meta {sun, metal}\\n")

.write (f"urban, meta {urban, metal}\\n")
.write(f"wind, meta {wind, metal}\\n")

.write(f"svf, meta {svf, metal}\\n")
.write(f"svf_mask, meta {svf_mask, metal}\\n")
.write (f"mask_vegfra, meta {mask_vegfra, metal}\\n")

#
#
#
#
#
#
#
.write(f"trees_2m, meta {trees_2m, metal}\\n")

Hh Hh Hh Hh Hh Hh b

Ta = urban[:] * diurmal + TT

Tw = TT * np.arctan(0.15198 * (RH + 8.3137) ** 0.5) + np.arctan(TT + RH) -
np.arctan (
RH - 1.676) + 0.0039184 * RH *x 1.5 * np.arctan(0.023101 * RH) - 4.686

wind = ((wind - 0.125) * 0.5829 + 0.125) x FF
wind [wind < 0.5] = 0.5

wind_temp = np.ravel(wind)

#wind_res = np.array(wind_temp) .transpose ()

B.1. python/pet_parameters.py 107
day
if @ > O:
sun_temp, meta = GeotifToArray (iml, 1)
sun = sun_temp * (1 - trees_2m[:])
PETshade = (-12.14 + 1.25 * Ta[:]1 - 1.47 * np.log(wind[:]1) + 0.060 * Tw
+ 0.015 * svf[:] * Qdif +
0.0060 * (1 - svf[:]) * stef * (Tal:] + 273.15) =*x* 4) * (1
- sunl[:]) * svf_mask[:]
PETveg = (-13.26 + 1.25 * Ta[:] + 0.011 * Q - 3.37 * np.log(
wind[:]) + 0.078 * Tw + 0.0055 * Q * np.log(wind[:]) + 5.56 * np.
sin(
sunalt / 360 * 2 * np.pi) - 0.0103 * Q * np.log(wind[:]) * np.sin(
sunalt / 360 * 2 * np.pi) + 0.546 * Bveg + 1.94 * svf[:]) =*
mask_vegfral[:] * sun[:] * svf_mask[:]
PETnoveg = (-13.26 + 1.25 x Tal[:] + 0.011 * Q - 3.37 * np.log(
wind[:]) + 0.078 * Tw + 0.0055 * Q * np.log(wind[:]) + 5.56 * np.
sin(
sunalt / 360 * 2 * np.pi) - 0.0103 * Q * np.log(wind[:]) * np.sin(
sunalt / 360 * 2 * np.pi) + 0.546 * Bnoveg + 1.94 * svf[:]) * (1 -
mask_vegfral[:]) #* sun[:] * svf_mask[:]
PET = PETshade + PETveg + PETnoveg
night
else:
PETshade = (-12.14 + 1.25 * Ta[:]1 - 1.47 * np.log(wind[:]1) + 0.060 * Tw
+ 0.015 * svf[:] * Qdif
+ 0.0060 * (1 - svf[:]) * stef * (Tal:] + 273.15) *x 4) *
(1 - sun[:]) * svf_maskl[:]
PET = PETshade
im8 = ArrayToGeotif (PET, meta)
sun = urban = wind = svf = svf_mask = mask_vegfra = trees_2m = PET = None

return im8

108 B. Python code

B.2. python/geotiff_creator.py

#from IPython import get_ipython
#get_ipython () .magic(’reset -sf’)

import numpy as np
from .pet_parameters import window_footprint
from .geotiff_creator import ArrayToGeotif, GeotifToArray, GeotifWrite

petcalculate
purpose: calculate the PET
input: shadow, urbanheat, wind, svf, svf_mask, ndvi_crop_mask, ndvi_tree_mask

H OH H R

output: pets

def PET_calculate(stat, dyn, iml, im2, im3, im4, imb, im6, im7):

TT = dyn.TT #TT: Temperatuur (in 0.1 graden Celsius) op
1.50 m hoogte tijdens de waarneming

FF = dyn.FF #FF : Windsnelheid (in 0.1 m/s) gemiddeld
over de laatste 10 minuten van het afgelopen uur

Q = dyn.Q #Q: Global solar irradiationGlobale
straling (in J/cm2) per uurvak

Qdif = dyn.Qdif #Qdif : Difuse radiation

sunalt = dyn.sunalt #sunalt:solar elevation angle

RH = dyn.RH #RH: Relative Humidity

diurnal = dyn.diurnal #diurnal correction factor UHI for Ta

print (’PET.Calculator?’)
Bveg = 0.4
Bnoveg = 3
stef = 5.67 * 10 ** -8

sun, meta = GeotifToArray(iml, 1) # added anders geen ref in shadow
urban, meta = GeotifToArray(im2, 1)

wind, meta = GeotifToArray(im3, 1)

svf, meta = GeotifToArray(im4, 1)

svf_mask, meta = GeotifToArray(im5, 1)

mask_vegfra, meta = GeotifToArray (im6, 1)

trees_2m, meta = GeotifToArray (im7, 1)

with open("D:\\tmp\\test.txt", ’wt?’) as f:

.write(f"sun, meta {sun, metal}\\n")

.write (f"urban, meta {urban, metal}\\n")
.write(f"wind, meta {wind, metal}\\n")

.write(f"svf, meta {svf, metal}\\n")
.write(f"svf_mask, meta {svf_mask, metal}\\n")
.write (f"mask_vegfra, meta {mask_vegfra, metal}\\n")

#
#
#
#
#
#
#
.write(f"trees_2m, meta {trees_2m, metal}\\n")

Hh Hh Hh Hh Hh Hh b

Ta = urban[:] * diurmal + TT

Tw = TT * np.arctan(0.15198 * (RH + 8.3137) ** 0.5) + np.arctan(TT + RH) -
np.arctan (
RH - 1.676) + 0.0039184 * RH *x 1.5 * np.arctan(0.023101 * RH) - 4.686

wind = ((wind - 0.125) * 0.5829 + 0.125) x FF
wind [wind < 0.5] = 0.5

wind_temp = np.ravel(wind)

#wind_res = np.array(wind_temp) .transpose ()

B.2. python/geotiff_creator.py 109
day
if @ > O:
sun_temp, meta = GeotifToArray (iml, 1)
sun = sun_temp * (1 - trees_2m[:])
PETshade = (-12.14 + 1.25 * Ta[:]1 - 1.47 * np.log(wind[:]1) + 0.060 * Tw
+ 0.015 * svf[:] * Qdif +
0.0060 * (1 - svf[:]) * stef * (Tal:] + 273.15) =*x* 4) * (1
- sunl[:]) * svf_mask[:]
PETveg = (-13.26 + 1.25 * Ta[:] + 0.011 * Q - 3.37 * np.log(
wind[:]) + 0.078 * Tw + 0.0055 * Q * np.log(wind[:]) + 5.56 * np.
sin(
sunalt / 360 * 2 * np.pi) - 0.0103 * Q * np.log(wind[:]) * np.sin(
sunalt / 360 * 2 * np.pi) + 0.546 * Bveg + 1.94 * svf[:]) =*
mask_vegfral[:] * sun[:] * svf_mask[:]
PETnoveg = (-13.26 + 1.25 x Tal[:] + 0.011 * Q - 3.37 * np.log(
wind[:]) + 0.078 * Tw + 0.0055 * Q * np.log(wind[:]) + 5.56 * np.
sin(
sunalt / 360 * 2 * np.pi) - 0.0103 * Q * np.log(wind[:]) * np.sin(
sunalt / 360 * 2 * np.pi) + 0.546 * Bnoveg + 1.94 * svf[:]) * (1 -
mask_vegfral[:]) #* sun[:] * svf_mask[:]
PET = PETshade + PETveg + PETnoveg
night
else:
PETshade = (-12.14 + 1.25 * Ta[:]1 - 1.47 * np.log(wind[:]1) + 0.060 * Tw
+ 0.015 * svf[:] * Qdif
+ 0.0060 * (1 - svf[:]) * stef * (Tal:] + 273.15) *x 4) *
(1 - sun[:]) * svf_maskl[:]
PET = PETshade
im8 = ArrayToGeotif (PET, meta)
sun = urban = wind = svf = svf_mask = mask_vegfra = trees_2m = PET = None

return im8

110 B. Python code

B.3. python/pysolarl.py

Importing packages

import pvlib

from datetime import datetime as dt
from datetime import timedelta
import pandas as pd

import numpy as np

Loading in total knmi file

df _tot = pd.read_csv(’Rotterdam_1juli_2015_knmi.csv’, parse_dates=[’YYYYMMDD ’])
substracting the last line

df _KNMI = df_tot[df_tot.H < 24]

print (df _KNMI)

B oo
Setting date with hour values

date_time = []

solar_elevation = np.zeros(len(df_KNMI.index))

calculating the solar altitude and the diffuse irradiation
Location coordinates for Amsterdam (latitude, longitude)

for i in range(len(df_KNMI.index)):
date_time.append (
dt (df _KNMI[>YYYYMMDD °].iloc[i].year, df_KNMI[’YYYYMMDD ’].iloc[i].month,
df _KNMI[’YYYYMMDD °].iloc[i].day,
df _KNMI[’H’].iloc[il, 0, 0))

latitude = 52.3667
longitude = 4.8945

solar_position = pvlib.solarposition.get_solarposition(date_time, latitude,
longitude)

Extract solar elevation angle
solar_elevation = solar_position[’elevation’].values

Calculating the average Watt per square meter from the Q
Qs_av = np.zeros (len(df_KNMI.index))

for i in range(len(df_KNMI.index) - 1):
Qs_av[i]l = 10000 / 3600 * ((4df_KNMI[’ Q’].iloc[i + 1] - d4f_KNMI[® Q
>].iloc[il) / 2 + df_KNMI[’ Q’].iloc[il])

Calculating atmospheric transmissivity (tau_a)
tau_a = Qs_av / (1367.0 * np.sin(solar_elevation * np.pi / 180))

Calculating the diffuse irradiation
Qd = np.zeros(len(df_KNMI. index))

for i in range(len(df_KNMI.index)):
if tau_al[i] < 0.3:
Qd[i] = Qs_av[il
elif tau_al[i] > 0.7:
Qd[i] = 0.2 * Qs_av[i]
else:

Qd[il]

(1.6 - 2 * tau_al[i]) * Qs_av[i]

B.3. python/pysolarl.py

111

calulating the wind, WE and wind direction
def wind_direction(dd, FF):
if FF >= 1.5:
wind = True
else:
wind = False
wind = FF >= 1.5
if dd < 45 or dd > 315:
WE = False
winddir = ’N?
elif dd < 135:
WE = True
winddir = ’E?
elif dd < 225:
WE = False
winddir = ’§°?
elif dd < 315:
WE = True
winddir = ’W?
else:
winddir = °C?
return wind, WE, winddir

addind the wind, WE and wind direction into pandas series through lists

windlist = []
WElist = []
windirlist = []

for i in range(len(df_KNMI.index)):

wind, WE, winddir = wind_direction (df _KNMI[’ DD’].iloc[i],

’].iloc[i]l / 10)
windlist.append (wind)
WElist.append (WE)
windirlist.append(winddir)

df _KNMI[’wind’] = windlist
df _KNMI[’WE’] = WElist
df _KNMI[’winddir’] = windirlist

Adding the station names

df _KNMI[’station’] = [’Rotterdam’] * len(df_KNMI.index)
drop unnecessary columns like STN and U

df _KNMI = df_KNMI.drop(columns=[’STN’])

converting the wind and temperature columns

df _KNMI[® FF’] = df_KNMI[’ FF’] / 10
df _KNMI [’ T’] = df_KNMI[’ T°] / 10
B o m el

Diurnal calculation
df _UHI = pd.read_csv(’UHI_factors.csv’)

def day_night (dates_KNMI, hour_KNMI):

df _KNMI[> FF

dateslist = [dt(year=dates_KNMI.year, month=4, day=1), dt(year=dates_KNMI.

year, month=4, day=13),

116

112 B. Python code

dt (year=dates_KNMI.year, month=4, day=20), dt(year=dates_KNMI.
year, month=5, day=20),
dt (year=dates_KNMI.year, month=5, day=26), dt(year=dates_KNMI.
year , month=7, day=11),
dt (year=dates_KNMI.year, month=7, day=31), dt(year=dates_KNMI.
year , month=8, day=22),
dt (year=dates_KNMI.year, month=8, day=31), dt(year=dates_KNMI.
year, month=9, day=25),
dt (year=dates_KNMI.year, month=9, day=28), dt(year=dates_KNMI.
year , month=9, day=30)]
UHIlist = [°5/18°, °5/19°, *4/19°, °4/20°, °3/20°, ’4/20°, ’4/19°, °’5/197,
’6/18°, ’5/17°, °6/17°]
for i in range(len(dateslist) - 1):
if dates_KNMI >= dateslist[i] and dates_KNMI < dateslist[i + 11]:
diurnal = df _UHI[UHIlist[i]][hour KNMI]
sunrise, sunset = UHIlist[il.split(’/?)
print (sunrise, sunset)
if hour_KNMI >= int(sunrise) and hour_KNMI <= int (sunset):
daynight = ’day’
break
else:
daynight = ’night’
diurnal = 1

return daynight, diurnal

addind the wind, WE and wind direction into pandas series through lists
daynightlist = []
diurnallist = []

for i in range(len(df_KNMI.index)):
daynight, diurnal = day_night (df _KNMI[’YYYYMMDD’].iloc[il]l, df _KNMI[’H’].
iloc[il)
daynightlist.append(daynight)
diurnallist.append(diurnal)

df _KNMI[’daynight’] = daynightlist
df _KNMI[’diurnal’] = diurnallist

def min_max (df _KNMI, date_time):
date = date_time[0]

list_temperature_inperiod = []
list_wind_inperiod = []
list_max_temp = []
list_min_temp = []
list_av_wind = []

for j in range (0, len(df_KNMI.index), 24):
date = date_timel[j]
print (f’date {datel}’)

av_wind_cum = 0
temperature_inperiod = []
wind_inperiod = []

for i in range(len(df_KNMI.index)):

201

205

207

209

210

B.3. python/pysolarl.py 113

Calculate period start
period_start = dt(year=date.year, month=date.month, day=date.day,
hour=9)

Calculate period end
period_end = date + timedelta(days=1)
period_end = period_end.replace (hour=38)

if date_time[i] >= period_start and date_time[i] <= period_end:
temperature_inperiod.append (df _KNMI [’ T’].iloc[il)
wind_inperiod.append (df _KNMI [’ FF’].iloc[i])
av_wind_cum += df_KNMI[® FF?’].iloc[i]

print (date, wind_inperiod)
max_temp = np.max(np.array([temperature_inperiod]))
min_temp = np.min(np.array([temperature_inperiod]))
av_wind = av_wind_cum / len(wind_inperiod)

list_max_temp.append (max_temp)
list_min_temp.append (min_temp)
list_av_wind.append(av_wind)
list_temperature_inperiod.append(temperature_inperiod)
list_wind_inperiod.append(wind_inperiod)
print (’length’, list_wind_inperiod)
return list_max_temp, list_min_temp, list_av_wind

list_max_temp, list_min_temp, list_av_wind = min_max (df _KNMI, date_time)

for i, max_temp in enumerate(list_max_temp):
Filter timestamps for the current day
mask = (df_KNMI[’>YYYYMMDD ’].dt.date == df_KNMI.loc[i * 24, ’YYYYMMDD ’].date
O)
Assign the daily maximum temperature to all hourly timestamps for the
current day
df _KNMI.loc[mask, ’Tmax’] = max_temp

for i, min_temp in enumerate(list_min_temp):
Filter timestamps for the current day
mask = (df_KNMI[’YYYYMMDD ’].dt.date == df_KNMI.loc[i * 24, ’YYYYMMDD’].date
O
Assign the daily maximum temperature to all hourly timestamps for the
current day
df _KNMI.loc[mask, ’Tmin’] = min_temp

for i, av_wind in enumerate(list_av_wind):
Filter timestamps for the current day
mask = (df _KNMI[’>YYYYMMDD’].dt.date == df_KNMI.loc[i * 24, ’YYYYMMDD ’].date
O)
Assign the daily maximum temperature to all hourly timestamps for the
current day
df _KNMI.loc[mask, ’FFavg’] = av_wind

Writing the csv away
df _KNMI.to_csv(’Qd_results.csv’)

114

B. Python code

B.4. python/get_svf.py

import requests
import sys

def

def

if

download_file_from_temporary_download_url (download_url, filename):
try:
with requests.get(download_url, stream=True) as r:
r.raise_for_status ()
with open(filename, "wb") as f:
for chunk in r.iter_content (chunk_size=8192):
f.write (chunk)
except Exception:
sys.exit (1)

print (f"Successfully downloaded dataset file to {filenamel}")

main () :

Parameters

base_url = "https://api.dataplatform.knmi.nl/open-data/v1i"

api_key ="
eyJvcmciOiI1ZTUINGUxOTI3NGESN jAwMDEYYTN1Y{jEiLCJpZCI6ImE3NDAjMjVjMWRINTQ3
n

dataset_name = "SVF_NL"

dataset_version = "3"

files = [
"37EZ2.tif",
"37FZ1.tif",
"3TFZ2.tif",
"37GN2.tif",
"37HN1.tif",
"37THN2.tif",

for filename in files:
filename = filename.lower ()
filename = "SVF_r" + filename

get temporary download url

endpoint = f"{base_url}/datasets/{dataset_name}/versions/{
dataset_version}/files/{filename}/url"

print (endpoint)

get_file_response = requests.get (endpoint, headers={"Authorization":
api_key})
j = get_file_response. json()

url = j[’temporaryDownloadUrl’]

with the url download the file
download_file_from_temporary_download_url(url, filename)

name ==

main ()

ZjdhMiM3Zm

B.5. python/fraction_area_buildings_treeregr.py

115

B.5. python/fraction_area_buildings_treeregr.py

import numpy as np

from PIL import Image

import multiprocessing as mp

from .pet_parameters import window_footprint, writer, wind_direction

from .geotiff_creator import ArrayToGeotif, GeotifToArray, GeotifWrite,
ArrayWrite

fractionareabuildingstreeregr
purpose: calculate wind speed ul.2
input: buildings_mask, buildings_height, trees_ahn, trees_mask

H o R

output: wind_direction

def meancal(a, size):

mean = 0

for j in range(size):
mean += alj]

return mean / size

def myMean (A):

m,n = A.shape

pool = mp.Pool ()

rowMean = [pool.apply(meancal, args=(A[i,:], n)) for i in range(m)]
mean = meancal (rowMean, m)

pool.close ()
return mean

def FaBuildingTree(stat, dyn, iml, im2, im3, im4):
print (’FaBuildingTree.Calculator’)
#f = open(’d:/tmp/aab.dat’, ’wt’)

parameters

k = 0.4

z0_grass = 0.03

refwind = 1 / 0.63501

red_grass = np.round(refwind * np.log(l1.2 / zO_grass) / np.log(10 /
z0_grass), 2)

red_60_10 = np.log(10 / zO_grass) / np.log(60 / zO_grass)

buildingfactor = 0.2 #was 0.6

treefactor = 0.27 #was 0.27

winddir = dyn.winddir
WE = dyn.WE
wind_on = dyn.wind

FF = dyn.FF

fine scale extended area = research area + boundary
size must by the same for iml, im2, im3, im4
building_height_fine, metal = GeotifToArray(iml, 1)
mask_building_fine, meta2 = GeotifToArray(im2, 1)
tree_height_fine, meta3 = GeotifToArray(im3, 1)
mask_tree_fine, meta4 = GeotifToArray(im4, 1)
metafine = metal

116 B. Python code

56 # check fine scale extended area

57 for i in range (metafine [3]):

58 for j in range (metafine [4]):

59 if building_height_finel[i,j] < 1le-3:
60 building_height_finel[i, jl = 0
61 else:

62 mask_building_finel[i, jl =1

63 if tree_height_fine[i,j] < 1le-3:

6 tree_height_finel[i, jl = 0

65 else:

66 mask_tree_fine[i, j] = 1

220

69 metafine = [3,5,1,16,18]

0 building_height = np.zeros((metafine[3],metafine[4])) #nrow,ncol y,x
71 mask_building = np.zeros((metafine[3] ,metafine[4]))

7 tree_height = np.zeros((metafine[3],metafine[4]))

7 mask_tree = np.zeros ((metafine[3],metafine[4]))

7 building_height_fine [5,3] = 20

75 mask_building_fine[5,3] = 1

76 tree_height_fine[5,3] = 20

77 mask_tree_fine[5,3] = 1

78 building_height_fine[6, 6] =
79 mask_building_fine[6, 6] = 1
80 tree_height_fine[6, 6] = 10
81 mask_tree_fine[6, 6] = 1

82 building_height_fine[8, 51 = 30
3 mask_building_fine[8, 5] = 1

| tree_height_fine[8, 5] = 30

85 mask_tree_fine[8, 5] = 1

8 stat.nrow = 4

87 stat.ncol = 6

88 stat.cellsize = 1

89 stat.blocksize = 2

90 stat.xmin = 9

91 stat.ymin = 11

92 dyn.winddir = °’E’

93 dyn.upwind = 6

9 dyn.sidewind = 2

95 dyn.downwind = 4

96 dyn.nowind = 100

20

10

99 # transform fine scale extended area to coarse scale extended area

100 scale = int(stat.blocksize / stat.cellsize)

101 nrow = int (metafine[3] / scale)

102 ncol = int(metafine[4] / scale)

103 meta = [metafine[0], metafine[1], stat.blocksize, nrow, ncol]

104 building_height = np.zeros((metal[3], metal[4]))
105 mask_building = np.zeros((metal[3], metal[4]))

106 tree_height = np.zeros((meta[3], metal[4]))

107 mask_tree = np.zeros ((metal[3], metal[4]))

108 building_weight = np.zeros((metal[3], metal[4]))
109 tree_weight = np.zeros((meta[3], metal[4]))

110

m for i in range(meta[3]):

12 istart = i * scale

113 iend = istart + scale - 1
1 iiend = iend

115 if i < metal[3] - 1:

116 iiend = iend + 1

150

B.5. python/fraction_area_buildings_treeregr.py 117

for j in range (metal[4]):
jstart = j * scale
jend = jstart + scale - 1
jjend = jend
if j < metal[4] - 1:
jjend = jend + 1

building_area = np.mean(mask_building_fine[istart: iend + 1, jstart
jend + 11)
if building_area > le-2:
building_height[i,j] = np.mean(building_height_fine[istart:
iend + 1, jstart: jend + 1]) / building_area
mask_building[i, jl = 1.0
tree_area = np.mean(mask_tree_fine[istart: iend + 1, jstart: jend +
11)
if tree_area > le-2:
tree_height[i, j] = np.mean(tree_height_fine[istart: iend + 1,
jstart: jend + 1]) / tree_area
mask_tree[i, j] = 1

if wind_on:
if WE: # east-west or west-east wind
for m in range(istart, iend + 1, 1):
for n in range (jstart, jjend, 1):
building_weight[i, j] += abs(building_height_finel[m
, n + 1] - building_height_fine[m, n]) * 0.5
tree_weight[i, j] += abs(tree_height_fine[m, n + 1]
- tree_height_fine[m, n]) * 0.5

else: # north-south or south-north wind
for n in range(jstart, jend + 1, 1):
for m in range (istart, iiend, 1):
building_weight[i, j] += abs(building_height_finel[m
+ 1, n] - building_height_fine[m, n]) * 0.5
tree_weight[i, j] += abs(tree_height_fine[m + 1, n]
- tree_height_fine[m, n]) * 0.5

else: # no wind
for m in range(istart, iemnd + 1, 1):
for n in range(jstart, jjend, 1):
building_weight[i, j] += abs(building_height_fine[m, n
+ 1] - building_height_fine[m, nl]) * 0.5
tree_weight[i, j] += abs(tree_height_fine[m, n + 1] -
tree_height_fine[m, n]) * 0.5

for n in range(jstart, jend + 1, 1):
for m in range (istart, iiend, 1):
building_weight[i, j] += abs(building_height_fine[m +
1, n] - building_height_fine[m, n]) * 0.5
tree_weight[i, j] += abs(tree_height_fine[m + 1, n] -
tree_height_fine[m, n]) * 0.5

#f.write(£’1 {i} j {j} -> {istart} {iend} - {jstart} {jend} ->
building {building_weight[i, jl} tree {tree_weight[i, jl}\n’)

research area coarse

nrow = int(stat.nrow / scale)

ncol = int(stat.ncol / scale)

metadata = [stat.xmin, stat.ymin, stat.blocksize, nrow, ncoll]

169

118

B. Python code

wind_2d = np.zeros ((nrow, ncol))

(moving) footprint area coarse

jleft, jright, iup, idown = window_footprint (dyn.winddir, dyn.upwind, dyn.
sidewind, dyn.downwind, dyn.nowind, stat.blocksize)

total_area = (jleft + jright + 1) * (iup + idown + 1) * scale**2 # number
of large blocks in footprint area

upper left cell of the research area in extended research area

coordinates
iref = int((stat.ymin - meta[1]) / metal[2])
jref = int((stat.xmin - metal[0]) / metal2])

calculate wind scaling map
for i in range (nrow):
istart = i + iref - idown
iend = i + iref + iup
for j in range(ncol):
jstart = j + jref - jleft
jend = j + jref + jright

switch = False

building_area = np.mean(mask_building[istart: iend + 1, jstart:
jend + 11)

tree_area = np.mean(mask_tree[istart: iend + 1, jstart: jend + 1])

if building_area > O:
building_height_mean = np.mean(building_height[istart: iend +
1, jstart: jend + 1]) / building_area
switch = True
else:
building_height_mean = 0

if tree_area > 0:
tree_height_mean = np.mean(tree_height[istart: iend + 1, jstart
jend + 1]) / tree_area
tree_height_regr = np.max(7.721 * tree_height_mean ** 0.5, 0)

switch = True
else:
tree_height_mean = 0
tree_height_regr = 0
if switch == True:
height_com_pre = max((building_height_mean * building_area +
tree_height_regr * tree_area * treefactor /
buildingfactor) / (building_area +
tree_area * treefactor /
buildingfactor), 4)
else:

height_com_pre = 4.0

calculate building and tree fronts for a cell using its window (1
no blockage, 0 fully blocked)

tree_front = 0

building_front = 0

for m in range (istart, iend + 1, 1):
for n in range(jstart, jend + 1, 1):

building_front += building_weight[m, n] * buildingfactor

260

B.5. python/fraction_area_buildings_treeregr.py 119

tree_front += tree_weight[m, n] * treefactor

fit for ahn tree to treefile (bomenbestand)
tree_regr = 45.45 * (tree_front #** 0.5)
front_regr = building_front + tree_regr

if front_regr > 25 and switch: # was 25 ©bij hele kleine
oppervlakten gewoon op O laten, moet hoogte hebben zit ook in
BW script
height_com = max(height_com_pre, 4)
lambdal = min(front_regr / total_area + 0.015, 0.33)

frontal surface density

if lambdal < 0.08:
z0 = 0.048 * height_com # (surface roughness length)
d = 0.066 * height_com # (zero-plane displacement)
zw = 2 * height_com # (top of the roughness layer)

A = -0.35 * height_com # parameter for interpolation wind
profile
B = 0.56 # parameter for interpolation wind profile

elif lambdal < 0.135:
z0 = 0.071 * height_com
d = 0.26 * height_com
zw = 2.5 * height_com
A = -0.35 * height_com
B = 0.50

elif lambdal < 0.18:
z0 = 0.084 * height_com
d = 0.32 * height_com
zw = 2.7 * height_com

= -0.34 * height_com

= 0.48

elif lambdal < 0.265:
z0 = 0.08 * height_com
d = 0.42 * height_com

A
B

zw = 1.5 * height_com

A = -0.56 * height_com
B = 0.66

else:

z0 = 0.077 * height_com
d = 0.57 * height_com
zw = 1.2 * height_com

A = -0.85 * height_com
B = 0.92

some additional computations

ustar = refwind / red_60_10 * k / np.log((60 - d) / z0)

uzw = ustar / k * np.log((zw - d) / z0)

uh = uzw - ustar / B * np.log((A + B * zw) / (A + B *
height_com))

wind_2d[i, j] = min(uh * np.exp(9.6 * lambdal * (1.2 /
height_com - 1)), red_grass)

else:
wind_2d[i, j] = red_grass

im = ArrayToGeotif (wind_2d, metadata)
building_height = tree_height = mask_tree = mask_building = wind_2d =

wind_notree_2d = wind_tree_2d = None

#f.close ()

120 B. Python code

return im

B.6. python/ndvi_infr_large.py 121

B.6. python/ndvi_infr_large.py

import numpy as np
from .geotiff_creator import ArrayToGeotif, GeotifToArray, GeotifWrite

ndvi_infra_large

purpose: create the ndvi from rgb and infr imagery

input: lufo_rgb, lufo_infr, water_mask, tree_mask

output: ’ndvi’, ’vegfra’, ’ndvi_crop_mask’, ndvi_tree_mask’

B o o L L e mmmmmmmmmmoo 2

def Ndvi_infr_large(stat_parameters, dyn_parameters, rgb, infr, water_mask,
tree_mask) :

print (’Ndvi_infr_large.Calculator ’)

wind_2d = np.zeros (shape=(0, 3))

xmin = stat_parameters.xmin
Xmax = stat_parameters.xmax
ymin = stat_parameters.ymin
ymax = stat_parameters.ymax

ndvi_infr_2d = np.zeros(shape=(0, 3))
lufo_rgb, meta = GeotifToArray(rgb, 3)
lufo_infr, meta = GeotifToArray (infr, 3)

r = lufo_rgb[:, :, 0].astype(int)

g = lufo_rgb[:, :, 1].astype(int)

b = lufo_rgb[:, :, 2].astype(int)
infr = lufo_infr[:, :, 0].astype(int)
ndvi_infr = (infr - r) / (infr + r)
ndvi_infr[ndvi_infr < 0] = 0

arr = ndvi_infr

iml1 = ArrayToGeotif (arr, meta)

h = metal3]
w = meta[4]

water_mask, meta = GeotifToArray(water_mask, 1)
day = np.zeros((h, w), dtype=float)
night = np.zeros((h, w), dtype=float)
for i in range(h):
for j in range (w):
if arr[i, j]l > 0.16:

night[i, jl = 1
dayl[i, jl1 =1
if water_mask[i, j] == 1:

night[i, jl = 0
dayl[i, jl1 =1

if dyn_parameters.daynight == ’day’:

im2 = ArrayToGeotif (day, meta)
elif dyn_parameters.daynight == ’night’:

im2 = ArrayToGeotif (night, meta)
tree_mask, meta = GeotifToArray(tree_mask, 1)

crop = np.copy(night)
tree = np.copy(night)

122

B. Python code

for i in range (h):
for j in range (w):
if night[i, j] == 1:
if tree_mask[i, j]
cropli, jl = 0
else:
treel[i, jl = 0

im3 = ArrayToGeotif (crop, meta)
im4 ArrayToGeotif (tree, meta)

arr = day = night = tree = crop =
return iml, im2, im3, im4

None

B.7. python/vegetation_footprints.py 123

B.7. python/vegetation_footprints.py

import numpy as np

from .pet_parameters import window_footprint

from .geotiff_creator import ArrayToGeotif, GeotifToArray, GeotifWrite
from numba import jit, prange

vegetation_footprint

purpose: vegetation footprint calculation for urban heat map
input: vegfra

output: vegfra_2d

H o H R

#Q@jit (parallel=True)
def Vegetation_footprints(stat, dyn, im):

print (’Vegetation_footprints.Calculator’)

f = open(’d:/tmp/veg.dat’, ’wt?’)

vegfra, meta = GeotifToArray(im, 1) # analyse gebied met randen
nrow = int(stat.nrow * stat.cellsize / stat.blocksize)

ncol = int(stat.ncol * stat.cellsize / stat.blocksize)

metadata = [stat.xmin, stat.ymin, stat.blocksize, nrow, mncol]

jleft, jright, iup, idown = window_footprint(dyn.winddir, dyn.upveg, dyn.
sideveg, dyn.downveg, dyn.noveg, stat.blocksize)

iref = int((stat.ymin - meta[1]) / metal[2])

jref = int((stat.xmin - meta[0]) / metal[2])

f.urite(f’{metadatal[0]} {metadatal[1]l} {metadatal[2]} {metadatal[3]} {metadata

[413\n?)
f.write(f’{nrow} {ncol} {metal[0]} {metal[1]} {metal[2]} {meta[3]} {metal[4]}\n
?)
f.write(f’{jleft} {jright} {iup} {idown} {iref} {jrefl}\n?’)
f.close ()
vegfra_2d = np.zeros ((nrow, ncol))
for i in range (nrow):
istart = i + iref - idown
iend = i + iref + iup

for j in range(ncol):
jstart = j + jref - jleft
jend = j + jref + jright
vegfra_2d[i, j] = np.mean(vegfralistart: iend+1, jstart: jend+1])

iml = ArrayToGeotif (vegfra_2d, metadata)
vegfra_2d = None

return imil

124

B. Python code

B.8. python/skyview_footprints.py

import numpy as np

from .pet_parameters import window_footprint
from .geotiff_creator import ArrayToGeotif, GeotifToArray, GeotifWrite
B oo]
skyview_footprint
purpose: skyview footprint calculation for urban heat map
input: skyview
output: skyview_2d
B oo]
def Skyview_footprints(stat, dyn, im):
print (’SkyView.Calculator ’)
svf_2d = np.array(im)
svf, meta = GeotifToArray (im, 1) #

analyse gebied met randen

nrow = int(stat.nrow * stat
ncol = int(stat.ncol * stat
metadata = [stat.xmin, stat
jleft, jright, iup, idown =

sideveg, dyn.downveg,

dyn.noveg,

.cellsize / stat.blocksize)
.cellsize / stat.blocksize)
.ymin, stat.blocksize,
window_footprint (dyn.winddir,
stat.blocksize)

ncol]
dyn.upveg,

nrow,
dyn.

iref = int((stat.ymin - meta[1]) / metal[2])

jref = int((stat.xmin -
h = nrow
w = ncol

mean_svf =

np.zeros ((h, w))

meta [0]) / metal2])

for i in range(h):
istart = i + iref - idown
iend = i + iref + iup
for j in range (w):
jstart = j + jref - jleft

jend = j + jref + jright

perc = (np.mean(svf[istart: iend+1, jstart: jend+1]) > 0) / (np.sum
(svf[istart: iend+1, jstart: jend+1]) > -1)

if perc >= 0.2:
mean_svf[i, j] = np.mean(svf[istart: iend+1l, jstart: jend+1])

elif perc >= 0.1:
executed above
mean_pre_svf =

mean_svf[i, j]
perc - 0.1)

else:
mean_svf[i, j]

iml =

mean_svf = None

return imil

ArrayToGeotif (mean_svf,

linearize between svf=1 for 0.1 and svf as

np.mean(svf[istart: iend+l, jstart: jend+1])

= ((perc - 0.1) / 0.1) * mean_pre_svf + (1 - (
/ 0.1) * 1

=1

metadata)

B.9. python/urban_heat.py

B.9. python/urban_heat.py

import numpy as np
from .pet_parameters import window_footprint

from .geotiff_creator import ArrayToGeotif, GeotifToArray,

import pandas as pd

#o o oo __
urbanheat

python code: urban_heat

input: vegfra_wind, svf_wind
output: urban_heat

def Urban_heat(stat, dyn, iml, im2):
print (’Urban_heat.Calculator ’)

S = dyn.S
U = dyn.U
Tmin = dyn.Tmin
Tmax = dyn.Tmax

vegfra, meta = GeotifToArray(iml, 1)
svf, meta = GeotifToArray(im2, 1)

h = np.shape(vegfra) [0] # y

w = np.shape(vegfra) [1] # x

uhi = np.ones ((h, w))

uhi *= 2

uhi = uhi - vegfra - svf

factor = (S * (Tmax - Tmin) ** 3 / U) *x*
uhi *= factor

im3 = ArrayToGeotif (uhi, meta)
vegfra = svf = None

return im3

17 4

GeotifWrite

126 B. Python code

B.10. python/pet_calculate.py

#from IPython import get_ipython
#get_ipython () .magic(’reset -sf’)

import numpy as np
from .pet_parameters import window_footprint
from .geotiff_creator import ArrayToGeotif, GeotifToArray, GeotifWrite

petcalculate
purpose: calculate the PET
input: shadow, urbanheat, wind, svf, svf_mask, ndvi_crop_mask, ndvi_tree_mask

H OH H R

output: pets

def PET_calculate(stat, dyn, iml, im2, im3, im4, imb, im6, im7):

TT = dyn.TT #TT: Temperatuur (in 0.1 graden Celsius) op
1.50 m hoogte tijdens de waarneming

FF = dyn.FF #FF : Windsnelheid (in 0.1 m/s) gemiddeld
over de laatste 10 minuten van het afgelopen uur

Q = dyn.Q #Q: Global solar irradiationGlobale
straling (in J/cm2) per uurvak

Qdif = dyn.Qdif #Qdif : Difuse radiation

sunalt = dyn.sunalt #sunalt:solar elevation angle

RH = dyn.RH #RH: Relative Humidity

diurnal = dyn.diurnal #diurnal correction factor UHI for Ta

print (’PET.Calculator?’)
Bveg = 0.4
Bnoveg = 3
stef = 5.67 * 10 ** -8

sun, meta = GeotifToArray(iml, 1) # added anders geen ref in shadow
urban, meta = GeotifToArray(im2, 1)

wind, meta = GeotifToArray(im3, 1)

svf, meta = GeotifToArray(im4, 1)

svf_mask, meta = GeotifToArray(im5, 1)

mask_vegfra, meta = GeotifToArray (im6, 1)

trees_2m, meta = GeotifToArray (im7, 1)

with open("D:\\tmp\\test.txt", ’wt?’) as f:

.write(f"sun, meta {sun, metal}\\n")

.write (f"urban, meta {urban, metal}\\n")
.write(f"wind, meta {wind, metal}\\n")

.write(f"svf, meta {svf, metal}\\n")
.write(f"svf_mask, meta {svf_mask, metal}\\n")
.write (f"mask_vegfra, meta {mask_vegfra, metal}\\n")

#
#
#
#
#
#
#
.write(f"trees_2m, meta {trees_2m, metal}\\n")

Hh Hh Hh Hh Hh Hh b

Ta = urban[:] * diurmal + TT

Tw = TT * np.arctan(0.15198 * (RH + 8.3137) ** 0.5) + np.arctan(TT + RH) -
np.arctan (
RH - 1.676) + 0.0039184 * RH *x 1.5 * np.arctan(0.023101 * RH) - 4.686

wind = ((wind - 0.125) * 0.5829 + 0.125) x FF
wind [wind < 0.5] = 0.5

wind_temp = np.ravel(wind)

#wind_res = np.array(wind_temp) .transpose ()

B.10. python/pet_calculate.py 127
day
if @ > O:
sun_temp, meta = GeotifToArray (iml, 1)
sun = sun_temp * (1 - trees_2m[:])
PETshade = (-12.14 + 1.25 * Ta[:]1 - 1.47 * np.log(wind[:]1) + 0.060 * Tw
+ 0.015 * svf[:] * Qdif +
0.0060 * (1 - svf[:]) * stef * (Tal:] + 273.15) =*x* 4) * (1
- sunl[:]) * svf_mask[:]
PETveg = (-13.26 + 1.25 * Ta[:] + 0.011 * Q - 3.37 * np.log(
wind[:]) + 0.078 * Tw + 0.0055 * Q * np.log(wind[:]) + 5.56 * np.
sin(
sunalt / 360 * 2 * np.pi) - 0.0103 * Q * np.log(wind[:]) * np.sin(
sunalt / 360 * 2 * np.pi) + 0.546 * Bveg + 1.94 * svf[:]) =*
mask_vegfral[:] * sun[:] * svf_mask[:]
PETnoveg = (-13.26 + 1.25 x Tal[:] + 0.011 * Q - 3.37 * np.log(
wind[:]) + 0.078 * Tw + 0.0055 * Q * np.log(wind[:]) + 5.56 * np.
sin(
sunalt / 360 * 2 * np.pi) - 0.0103 * Q * np.log(wind[:]) * np.sin(
sunalt / 360 * 2 * np.pi) + 0.546 * Bnoveg + 1.94 * svf[:]) * (1 -
mask_vegfral[:]) #* sun[:] * svf_mask[:]
PET = PETshade + PETveg + PETnoveg
night
else:
PETshade = (-12.14 + 1.25 * Ta[:]1 - 1.47 * np.log(wind[:]1) + 0.060 * Tw
+ 0.015 * svf[:] * Qdif
+ 0.0060 * (1 - svf[:]) * stef * (Tal:] + 273.15) *x 4) *
(1 - sun[:]) * svf_maskl[:]
PET = PETshade
im8 = ArrayToGeotif (PET, meta)
sun = urban = wind = svf = svf_mask = mask_vegfra = trees_2m = PET = None

return im8

128 B. Python code

B.11. python/pet_simulator.py

-*- coding: utf-8 -*x-
nnn
/) 3k sk ok ok ok ok sk ok ok ok sk ok ok ok ok ok ok ok ok sk ok sk ok ok ok ok ok ok sk ok ok o ok ok ok ok ok ok ok ok ok ok ok ok sk ok ok ok sk ok ok ok ok ok ok ok ok sk ok ok o ok ok ok ok ok ok ok ok ok ok ok K ok
PetUi
A QGIS plugin
Physiological Equivalent Temperature Simulator
Generated by Plugin Builder: http://g-sherman.github.io/Qgis-Plugin-Builder/

begin : 2023-08-02

git sha : $Format:%HS$

copyright : (C) 2023 by Marieke van Esch, student TU Delft,
the Netherlands

email : marieke.vanesch@gmail.com

3k K ok K ok K ok K ok ok K ok K ok K K Kk ok Kk ok ok ok Kk sk ok R ok R ok Kk Kk ok Kk sk ok R ok Rk Kk kR k Kk kR kK kR Rk Kk Kk kK kK kkk kK kxk /
/% % %k % sk %k ok ok ok Kk K ok %k ok K ok ok ok Kk ok ok ok %k 3k K % ok % ok K ok ok %k ok K ok %k 5k K %k ok % ok Kk ok ok ok %k k Kk ok ok k K kK ok K kK ok Kk

*
This program is free software; you can redistribute it and/or modify *
it under the terms of the GNU General Public License as published by =
the Free Software Foundation; either version 2 of the License, or *
(at your option) any later version. *

*

*

3K % ok K 3k K ok K ok K 3k K K oK K ok K koK K ok K 3k ok K ok %k 3k K kK %k ok K 3k ok K ok K ok K K K K ok K 3k K 3 ok K 3k K K ok %k ok K K K K ok K 3k K Kk K kK

/

from qgis.PyQt.QtCore import QSettings, QTranslator, QCoreApplication #Qdate
from qgis.core import QgsRasterLayer

from qgis.PyQt.QtGui import QIcon

from qgis.PyQt.QtWidgets import QAction

from qgis.core import QgsProject, QgsRectangle

from osgeo import gdal, osr, ogr

Initialize Qt resources from file resources.py
from .resources import *

Import the code for the dialog

from .pet_simulator_dialog import PetUiDialog
import os.path

import numpy as np

import pandas as pd

import datetime

import time

import matplotlib.pyplot as plt

from datetime import datetime

import matplotlib.image as mpimg

from .algorithm.pet_parameters import StatParameters, writer

from .algorithm.pet_parameters import DynParameters

from .algorithm.pet_parameters import window_footprint, wind_direction

from .algorithm.geotiff_creator import ArrayToGeotif, GeotifToArray,
GeotifWrite, ArrayWrite, ArrayWriteG

class PetUi:
"""QGIS Plugin Implementation."""

def __init__(self, iface):
"""Constructor.

:param iface: An interface instance that will be passed to this class

B.11. python/pet_simulator.py 129

which provides the hook by which you can manipulate the QGIS
59 application at run time.

60 :type iface: QgsInterface

nnn

62 # Save reference to the QGIS interface

63 self.iface = iface

64 # initialize plugin directory

65 self.plugin_dir = os.path.dirname(__file__)

66 # initialize locale

67 locale = QSettings () .value(’locale/userLocale’) [0:2]
68 locale_path = os.path.join(

69 self.plugin_dir,

70 ’i18n’,

7 ’PetUi_{}.qm’.format (locale))

if os.path.exists(locale_path):

7 self.translator = QTranslator ()

75 self.translator.load(locale_path)

76 QCoreApplication.installTranslator (self.translator)

78 # Declare instance attributes
79 self.actions = []
80 self .menu = self.tr(u’&PET Simulator ’)

Check if plugin was started the first time in current QGIS session
Must be set in initGui() to survive plugin reloads
8 self.first_start = None

86 self .weather = DynParameters (Date=20150701, decade=1, hour=12, min=0,
TT=28, FF=6, dd=100, Q=794.444, Qdif=158.88,
sunalt=55.3, RH=48, diurnal=0.03, Tmin= 24, Tmax

34, U = 6)

89 self.spatial = StatParameters (xmin=172075, xmax=172075 + 6, ymin
=440675, ymax=440675 + 5, cellsize=1,

90 station=’herwijnen’, station_lat=51.859,
station_lon=5.146)

92 # noinspection PyMethodMayBeStatic
9 def tr(self, message):
94 """Get the translation for a string using Qt translation API.

96 We implement this ourselves since we do not inherit QObject.

98 :param message: String for translation.
99 :type message: str, (String

101 :returns: Translated version of message.

102 :rtype: QString

nnn

104 # noinspection PyTypeChecker ,PyArgumentlList ,PyCallByClass
105 return QCoreApplication.translate(’PetUi’, message)

108 def add_action (

109 self s

110 icon_path,

111 text,

112 callback,

113 enabled_flag=True,
114 add_to_menu=True,

115 add_to_toolbar=True,

159

160

161

130

B. Python code

def

def

def

status_tip=None,
whats_this=None,
parent=None) :

icon = QIcon(icon_path)

action = QAction(icon, text, parent)
action.triggered.connect (callback)
action.setEnabled(enabled_flag)

if status_tip is not None:
action.setStatusTip(status_tip)

if whats_this is not None:
action.setWhatsThis (whats_this)

if add_to_toolbar:
Adds plugin icon to Plugins toolbar
self.iface.addToolBarIcon (action)

if add_to_menu:
self.iface.addPluginToMenu (
self .menu,
action)

self.actions.append(action)
return action

initGui (self):
"""Create the menu entries and toolbar icons inside the QGIS GUI."""

icon_path = ’:/plugins/pet_simulator/icon.png’
self.add_action (
icon_path,
text=self.tr (u’PETS’),
callback=self.run,
parent=self.iface.mainWindow ())

will be set False in run()
self.first_start = True

unload (self):
"""Removes the plugin menu item and icon from QGIS GUI."""
for action in self.actions:
self.iface.removePluginMenu (
self.tr (u’&PET Simulator’),
action)

self.iface.removeToolBarIcon(action)
clipping(self):

self.exportdata() # read data from line edits

root = QgsProject.instance().layerTreeRoot ()
for i in range(11):
if i == 0:
name = ’ahn’
elif i == 1:
name = ’building_height’
elif i == 2

name = ’building_mask’

206

207

208

209

B.11. python/pet_simulator.py 131

elif i == 3
name = ’ndvi_infr’
elif i == 4
name = ’ndvi_rgb’
elif i == 5:
name = ’Shadow_20150701_0900_LST’ #Shadow_20150701_1000_LST #
Shadow_20150701_1200_LST
elif i == 6
name = ’svf’
elif i == 7
name = ’svf_mask’
elif i == 8
name = ’tree_height’
elif i == 9
name = ’tree_mask’
elif i == 10:
name = ’water_mask’

intiff = gdal.Open(f’{self.spatial.directory_in}{namel}.tif’) #
input from file

up = max (self.weather.upwind, self.weather.upveg)

side = max(self.weather.sidewind, self.weather.sideveg)

down = max(self.weather.downwind, self.weather.downveg)

now = max(self.weather.nowind, self.weather.noveg)

ileft, iright, iup, idown = window_footprint(self.weather.winddir,
up, side, down, now, self.spatial.cellsize)

xleft = ileft * self.spatial.cellsize

xright = iright * self.spatial.cellsize

yup = iup * self.spatial.cellsize

ydown = idown * self.spatial.cellsize

clip to maximal extended window

outputfile = f’{self.spatial.directory_out}input\\{self.spatial.
label}_{namel}.tif’

bounds = (self.spatial.xmin-xleft, self.spatial.ymin-ydown, self.
spatial.xmax+xright, self.spatial.ymax+yup)

gdal.Warp (outputfile, intiff, outputBounds=bounds) # output to
file

self .TifToJPG (self.spatial.directory_out, ’input’, f’{self.spatial.
label}_{name}’, large=True)

if self.dlg.checkBox.checkState():
ArrayWriteG(f’{self.testin}’, f’{self.spatial.label}_{name}’, f
>{outputfile}’)

intiff = None
raster_layer = (QgsRasterLayer (outputfile, f’{namel}’, ’gdal’) #
input from file
if not raster_layer.isValid():
print (’Error: Invalid raster layer.’)
else:
QgsProject.instance () .addMapLayer (raster_layer)
#layer = QgsProject.instance () .mapLayersByName (f’{namel}’) [0]
#myLayerNode = root.findLayer (layer.id())
#myLayerNode.setExpanded (False)
#myLayerNode.setItemVisibilityChecked (False)

132

B. Python code

def

def

def

addGttifflLayer (self, directory, name, im, driver, root):

outputfile = f’{directory}{self.spatial.label}_{name}.tif’
driver.CreateCopy (outputfile, im, strict=0)
raster_layer = (QgsRasterLayer (outputfile, f’{namel}’, ’gdal’) # input
from file
if not raster_layer.isValid():
print (’Error: Invalid raster layer.’)
else:
QgsProject.instance () .addMaplayer (raster_layer)
layer = QgsProject.instance () .mapLayersByName (f’{namel}’) [0]
myLayerNode = root.findLayer (layer.id())
myLayerNode.setExpanded (False)
myLayerNode.setItemVisibilityChecked (False)

clipper (self, basedirectory, subdirectory, filename):

intiff = gdal.Open(f’{basedirectory}{subdirectory}\\{filenamel}’)

outputfile = f’{basedirectory}clip\\{filename}”’

bounds = (self.spatial.xmin, self.spatial.ymin, self.spatial.xmax, self
.spatial.ymax) #small

gdal.Warp (outputfile, intiff, outputBounds=bounds)

outtiff = gdal.Open(outputfile)

return outtiff

TifToJPG(self, basedirectory, subdirectory, filename, binary=False,
ticks= not None, large=False):

tif = gdal.Open(f’{basedirectory}{subdirectory}\\{filenamel}.tif’)
tifArray = tif.ReadAsArray ()

data, metadata = GeotifToArray (tif, 1)

#[xmin, ymin, cellsize, nrow, ncoll]

extent = metadata[0], metadata[0] + metadata[4] * metadata[2], metadata
[1], metadata[l] + metadata[3] *metadata[2]

if binary is True:
plt .matshow(tifArray, cmap=’gray’, extent=extent)
colorarr = np.linspace(np.min(tifArray), np.max(tifArray), 11)
plt.colorbar(ticks=colorarr)

else:
plt.matshow(data, cmap=’rainbow’, extent=extent)
colorarr = np.linspace(np.min(tifArray), np.max(tifArray), 11)
plt.colorbar(ticks=colorarr, shrink=0.8)

plt.title(filename)

plt.xlabel(’x’) #lon

plt.ylabel(’y’) #lat

plt.axis (’equal?)

plt.gca() .xaxis.tick_bottom()
plt.ticklabel _format (useOffset=False)

if large:
plt.savefig(f’{basedirectory}tif\\{filename}_large. jpg’,
bbox_inches=’tight ’)
else:
plt.savefig(f’{basedirectory}tif\\{filename}. jpg’, bbox_inches=’
tight?)
#plt.show ()

def timecalculator (self, timers, name, flag):

B.11. python/pet_simulator.py

133

elapsed_time_flagl flag[1]l - flaglo0]

elapsed_time_flag?2 flag[2] - flagl[1]

elapsed_time_flag3 = flag[3] - flagl[2]

elapsed_time = elapsed_time_flagl + elapsed_time_flag2 +
elapsed_time_flag3

timers [f’Elapsed time {name} (s)’] = elapsed_time

timers[f’--- flagl {name} read (s)’] = elapsed_time_flagl
timers[f’--- flag2 {name} calculate (s)’] = elapsed_time_flag?2
timers[f’--- flag3 {namel} write (s)’] = elapsed_time_flag3

def timewriter (self, filename, timers):

with open(filename, ’w’) as f:
sum = timers.items () [1].sum()
suml = sum(timers.values())/2
for key, value in timers.items():
sum += value

f.write(f’{key:35} : {value:6.3f} : {((value / suml) * 100)

:6.2f} % \n?)
f.write(f’Total time (s): {suml:.6f}’)

def toTif (self, basedirectory):

for i in range(11):

if i == 0:

name = ’ahn’
elif i == 1

name = ’building_height’
elif i == 2

name = ’building_mask’
elif i == 3

name = ’ndvi_infr’
elif i == 4

name = ’ndvi_rgb’
elif i == 56

name = ’Shadow_20150701_0900_LST’
elif i == 6:

name = ’svf’
elif i == 7

name = ’svf_mask’
elif i == 8

name = ’tree_height’
elif i == 9

name = ’tree_mask’
elif i == 10:

name = ’water_mask’

name = f’{self.spatial.label}_{namel}.tif’

image = gdal.Open(f’{self.spatial.directory_out}clip\\{namel}’)

data, metadata = GeotifToArray(image, 1)
only for testing
#ArrayWrite (f’{self.spatial.directory_out}tif\\{namel}’,
metadata)
def calculate(self):

self.exportdata ()

root = QgsProject.instance().layerTreeRoot ()
driver = gdal.GetDriverByName (’GTiff ’)

data,

134

B. Python code

timers = dict ()

from .algorithm.fraction_area_buildings_treeregr import FaBuildingTree

flag = []

import geotiffs

flag.append(time.perf_counter ())

iml = gdal.Open(f’{self.spatial.directory_out}input\\{self.spatial.
label}_building_height.tif’) # large

im2 = gdal.Open(f’{self.spatial.directory_outl}input\\{self.spatial.
label}_building_mask.tif’) # large

im3 = gdal.Open(f’{self.spatial.directory_outl}input\\{self.spatial.
label} _tree_height.tif’) # large

im4 = gdal.Open(f’{self.spatial.directory_out}input\\{self.spatial.
label} _tree_mask.tif’) # large

#calculate

flag.append(time.perf_counter ())

#if not os.path.isfile(f’{self.spatial.directory_out}output\\wind.tiff
7

imb = FaBuildingTree(self.spatial, self.weather, iml, im2, im3, im4) #
large

upscale coarse to fine

name = ’wind_coarse’

self.addGttiffLayer (f’{self.spatial.directory_out}scale\\’, name, im5,
driver, root) # test

scaled = f’{self.spatial.directory_out}output\\{self.spatial.label}
_wind.tif’> # large

#gdal.Warp(scaled, imb, xRes=self.spatial.cellsize, yRes=self.spatial.
cellsize, outputType=gdal.GDT_Float32, resampleAlg="average")

#imb = gdal.Open(scaled)

downscale coarse to fine

data_type = gdal.GDT_Float32

driver = gdal.GetDriverByName (’GTiff ’)

in_band = imb5.GetRasterBand (1)

out_ds = driver.Create(scaled, self.spatial.ncol, self.spatial.nrow,
bands=1, eType=data_type)

out_ds.SetProjection(imb.GetProjection())

geotransform = list(im5.GetGeoTransform())

geotransform[1] /= self.spatial.blocksize / self.spatial.cellsize

geotransform[5] /= self.spatial.blocksize / self.spatial.cellsize

out_ds.SetGeoTransform(geotransform)

data = in_band.ReadAsArray(buf_xsize=se1f.spatial.ncol,buf_ysize=se1f.
spatial.nrow)

out_band = out_ds.GetRasterBand (1)

out_band.WriteArray (data)

imb = out_ds

#add layer and geotifs

name = ’wind’

flag.append(time.perf_counter ())

self.addGttiffLayer (f’{self.spatial.directory_out}output\\’, name, im5,
driver, root)

iml = im2 = im3 = im4 = imb = None

self.dlg.label_18.setText (’checked’)

100

101

403

104

105

106

107

116

B.11. python/pe

t_simulator.py 135

#sel
self

f.dlg.show ()
.clipper(self.spatial.directory_out, ’input’, f’{self.spatial.label

} _building_height.tif’)

self

.clipper(self.spatial.directory_out, ’input’, f’{self.spatial.label

}_building_mask.tif’)

self

.clipper(self.spatial.directory_out, ’input’, f’{self.spatial.label

}_tree_height.tif’)

self

.clipper(self.spatial.directory_out, ’input’, f’{self.spatial.label

}_tree_mask.tif?’)

self

.TifToJPG(self.spatial.directory_out, ’clip’, f’{self.spatial.label

}_building_height ’)

self

.TifToJPG(self.spatial.directory_out, ’clip’, f’{self.spatial.label

}_building_mask’, binary=True)

self

.TifToJPG(self.spatial.directory_out, ’clip’, f’{self.spatial.label

}_tree_height ?)

self

.TifToJPG(self.spatial.directory_out, ’clip’, f’{self.spatial.label

}_tree_mask’, binary=True)

self

.TifToJPG(self.spatial.directory_out, ’output’, f’{self.spatial.
label}_wind?)

flag.append(time.perf_counter ())

array write (only with testing)
if self.dlg.checkBox.checkState ():

self

ArrayWriteG(f’{self.testout}’, f’{self.spatial.label}_{namel}’, £’{
self.spatial.directory_out}output\\{self.spatial.labell} _wind.
tif %)

.timecalculator (timers, name, flag)

from .algorithm.ndvi_infr_large import Ndvi_infr_large
flag = []

#import geotiffs
flag.append(time.perf_counter ())

iml

im?2

im3

im4

= gdal.Open(f’{self.spatial.directory_out}input\\{self.spatial.
label} _ndvi_rgb.tif’) # large

= gdal.Open(f’{self.spatial.directory_out}input\\{self.spatial.
label}_ndvi_infr.tif’) # large

= gdal.Open(f’{self.spatial.directory_out}input\\{self.spatial.
label} _water_mask.tif’) # large

= gdal.Open(f’{self.spatial.directory_out}input\\{self.spatial.
label}_tree_mask.tif ’) # large

calculate
flag.append(time.perf_counter ())

imb,

im6, im7, im8 = Ndvi_infr_large (self.spatial, self.weather, iml,
im2, im3, im4) # large

add tif and layer
flag.append(time.perf_counter ())

name = ’ndvi’
self.addGttiffLayer (f’{self.spatial.directory_out}output\\’, name, im5,

driver, root)

name = ’vegfra’
self.addGttiffLayer (f’{self.spatial.directory_out}output\\’, name, im6,

driver, root)

140

146

150

160

161

136 B. Python code

name = ’ndvi_crop_mask’

self.addGttiffLayer (f’{self.spatial.directory_out}output\\’, name,
driver, root)

name = ’ndvi_tree_mask’

self.addGttiffLayer (f’{self.spatial.directory_out}output\\’, name,
driver, root)

iml = im2 = im3 = im4 = imb = im6 = im7 = im8 = None

self.dlg.label_13.setText (’checked’)

self.clipper(self.spatial.directory_out, ’input’, f’{self.spatial.
}_ndvi_rgb.tif ?)

self.clipper(self.spatial.directory_out, ’input’, f’{self.spatial.
}_ndvi_infr.tif?)

self.clipper(self.spatial.directory_out, ’input’, f’{self.spatial.
} _water_mask.tif?)

im7 ,

im8,

label

label

label

self.clipper(self.spatial.directory_out, ’output’, f’{self.spatial.

label}_ndvi.tif’)
self.clipper(self.spatial.directory_out
label} _vegfra.tif ’)

-

output’, f’{self.spatial.

self.clipper(self.spatial.directory_out, ’output’, f’{self.spatial.

label} _ndvi_crop_mask.tif’)
self.clipper(self.spatial.directory_out
label} _ndvi_tree_mask.tif’)

M

self .TifToJPG (self.spatial.directory_out, ’clip’, f’{self.spatial.
}_ndvi_rgb?’)

self .TifToJPG (self.spatial.directory_out
} _ndvi_infr?)

self .TifToJPG (self.spatial.directory_out, ’clip’, f’{self.spatial.
} _water_mask’, binary=True)

self .TifToJPG (self.spatial.directory_out
}_ndvi?)

self .TifToJPG (self.spatial.directory_out, ’clip’, f’{self.spatial.
}_vegfra’)

self .TifToJPG(self.spatial.directory_out
}_ndvi_crop_mask’)

self .TifToJPG (self.spatial.directory_out, ’clip’, f’{self.spatial.
}_ndvi_tree_mask’)

flag.append(time.perf_counter ())

’clip?’, f’{self.spatial.

’clip’, f’{self.spatial.

’clip’, f’{self.spatial.

write array (omnly for testing)
if self.dlg.checkBox.checkState ():
ArrayWriteG(f’{self.testout}’, f’{self.spatial.label}_ndvi’,

’output’, f’{self.spatial.

label

label

label

label

label

label

label

f>{self.spatial.directory_out}output\\{self.spatial.

label} _ndvi.tif?)
ArrayWriteG(f’{self.testout}’, f’{self.spatial.label}_vegfra’,

f>{self.spatial.directory_out}output\\{self.spatial.

label} _vegfra.tif ’)
ArrayWriteG(f’{self.testout}’, f’{self.spatial.label}
_ndvi_crop_mask.tif’,

f’{self.spatial.directory_out}output\\{self.spatial.

label} _ndvi_crop_mask.tif’)
ArrayWriteG(f’{self.testout}’, f’{self.spatial.label}
_ndvi_tree_mask’,

f>{self.spatial.directory_out}output\\{self.spatial.

label} _ndvi_tree_mask.tif?)

self.timecalculator (timers, name, flag)

B.11. python/pet_simulator.py 137

169 from .algorithm.vegetation_footprints import Vegetation_footprints
170 flag = [1

71 #import geotiffs

172 flag.append(time.perf_counter ())

473 iml = gdal.Open(f’{self.spatial.directory_out}output\\{self.spatial.
label}_vegfra.tif’) # large

175 # upscale to blocksize fine to coarse

176 scaled = f’{self.spatial.directory_out}scale\\{self.spatial.label}
_vegfra.tif’

177 gdal.Warp (scaled, iml, xRes=self.spatial.blocksize, yRes=self.spatial.
blocksize, resamplelAlg="average")

478 iml1 = gdal.Open(scaled)

180 #calculate
181 flag.append(time.perf_counter ())
182 im2 = Vegetation_footprints(self.spatial, self.weather, iml) # small

18 #downscale coarse to fine

185 data_type = gdal.GDT_Float32

186 driver = gdal.GetDriverByName (’GTiff ’)

187 in_band = im2.GetRasterBand (1)

188 out_ds = driver.Create(scaled, self.spatial.ncol, self.spatial.nrow,
bands=1, eType=data_type)

489 out_ds.SetProjection(im2.GetProjection())

190 geotransform = list(im2.GetGeoTransform())

191 geotransform[1] /= self.spatial.blocksize / self.spatial.cellsize

492 geotransform[5] /= self.spatial.blocksize / self.spatial.cellsize

193 out_ds.SetGeoTransform(geotransform)

194 data = in_band.ReadAsArray (buf_xsize=self.spatial.ncol, buf_ysize=self.
spatial.nrow)

195 out_band = out_ds.GetRasterBand (1)

196 out_band.WriteArray (data)

197 im2 = out_ds

199 #add layer and geotiffs

500 flag.append(time.perf_counter ())

501 name = ’vegfra_wind’

502 self.addGttiffLayer (f’{self.spatial.directory_out}output\\’, name, im2,
driver, root)

503 iml = im2 = None

504 self.dlg.label_14.setText (’checked’)

505 self.clipper(self.spatial.directory_out, ’output’, f’{self.spatial.
label}_vegfra.tif ’)

506 self .TifToJPG(self.spatial.directory_out, ’clip’, f’{self.spatial.label
} _vegfra’)

507 self .TifToJPG (self.spatial.directory_out, ’output’, f’{self.spatial.
label}_vegfra_wind’)

508 flag.append(time.perf_counter ())

510 # write array (omnly for testing)

511 if self.dlg.checkBox.checkState ():

512 ArrayWriteG(f’{self.testout}’, f’{self.spatial.label}_vegfra_wind?’,
513 f>{self.spatial.directory_out}output\\{self.spatial.labell}
_vegfra_wind.tif’)

515 self.timecalculator (timers, name, flag)

565

566

138

B. Python code

from .algorithm.skyview_footprints import Skyview_footprints
flag = []

#import geotif

flag.append(time.perf_counter ())

iml = gdal.Open(f’{self.spatial.directory_outl}input\\{self.spatial.
label}_svf.tif’) # large

scale to blocksize

scaled = f’{self.spatial.directory_out}scale\\{self.spatial.label}_svf.
tif?

gdal.Warp (scaled, iml, xRes=self.spatial.blocksize, yRes=self.spatial.
blocksize, resamplelAlg="average")

iml1 = gdal.Open(scaled)

calculate
flag.append(time.perf_counter ())
im2 = Skyview_footprints(self.spatial, self.weather, iml) # small

downscale coarse to fine

data_type = gdal.GDT_Float32

driver = gdal.GetDriverByName (’GTiff ’)

in_band = im2.GetRasterBand (1)

out_ds = driver.Create(scaled, self.spatial.ncol, self.spatial.nrow,
bands=1, eType=data_type)

out_ds.SetProjection(im2.GetProjection())

geotransform = list(im2.GetGeoTransform())

geotransform[1] /= self.spatial.blocksize / self.spatial.cellsize

geotransform[5] /= self.spatial.blocksize / self.spatial.cellsize

out_ds.SetGeoTransform(geotransform)

data = in_band.ReadAsArray (buf_xsize=self.spatial.ncol, buf_ysize=self.
spatial.nrow)

out_band = out_ds.GetRasterBand (1)

out_band.WriteArray (data)

im2 = out_ds

#add layer and write geotiffs

flag.append(time.perf_counter ())

name = ’svf_wind’

self.addGttiffLayer (f’{self.spatial.directory_out}output\\’, name, im2,
driver, root)

iml = im2 = None
self.dlg.label_15.setText (’checked’)
self .TifToJPG (self.spatial.directory_out, ’output’, f’{self.spatial.

label}_svf_wind’)
flag.append(time.perf_counter ())

#write array (only for testing)
if self.dlg.checkBox.checkState():
ArrayWriteG(f’{self.testout}’, f’{self.spatial.label}_svf_wind’,
f>{self.spatial.directory_out}output\\{self.spatial.labell}
_svf_wind.tif ’)

self.timecalculator (timers, name, flag)

B.11. python/pet_simulator.py 139

567 from .algorithm.urban_heat import Urban_heat
568 flag = []

570 # import geotiff

571 flag.append(time.perf_counter ())

572 iml = gdal.Open(f’{self.spatial.directory_out}output\\{self.spatial.
label}_vegfra_wind.tif’) # small

573 im2 = gdal.Open(f’{self.spatial.directory_out}output\\{self.spatial.
label}_svf_wind.tif’) # small

574 self.dlg.label_16.setText (’imported’)

575 #self.dlg.show() refresh 7?77

577 # calculate

578 flag.append(time.perf_counter ())

579 im3 = Urban_heat (self.spatial, self.weather, iml, im2)
580 end_time_flag2 = time.perf_counter ()

add layer and write geotiffs

flag.append(time.perf_counter ())

58 name = ’urban_heat’

565 self.addGttiffLayer (f’{self.spatial.directory_out}output\\’, name, im3,
driver, root)

586 iml = im2 = im3 = None

587 self.dlg.label_16.setText (’checked’)

588 self .TifToJPG (self.spatial.directory_out, ’output’, f’{self.spatial.
label} _urban_heat ’)

569 flag.append(time.perf_counter ())

591 # write array (only for testing)

592 if self.dlg.checkBox.checkState():

593 ArrayWriteG(f’{self.testout}’, f’{self.spatial.label}_urban_heat’,
59 f’{self.spatial.directory_out}output\\{self.spatial.labell}
_urban_heat.tif ’)

596 self.timecalculator (timers, name, flag)

600 from .algorithm.pet_calculate import PET_calculate
601 f1l ag = []

602
603 # import geotiff

604 flag.append(time.perf_counter ())

605 name = f’Shadow_{self.weather.year}{self.weather .month:02d}{self.
weather.day:02d}_{self.weather.hour:02d}{self.weather.min:02d}_LST’
606 name = "Shadow_20150701_0900_LST"

607
608 iml = self.clipper(self.spatial.directory_out, ’input’, f’{self.spatial
.label}_{name}.tif ’) # small

609 im2 = gdal.Open(f’{self.spatial.directory_out}output\\{self.spatial.
label}_urban_heat.tif’) # small

610 im3 = gdal.Open(f’{self.spatial.directory_out}output\\{self.spatial.
label}_wind.tif’) # small

611 im4 = self.clipper(self.spatial.directory_out, ’input’, f’{self.spatial
.label}_svf.tif’) # small

612 imb = self.clipper(self.spatial.directory_out, ’input’, f’{self.spatial
.label} _svf_mask.tif?’) # small

61

640

641

642

140

B. Python code

def

im6é = self.clipper (self.spatial.directory_out, ’output’, f’{self.
spatial.label} _ndvi_crop_mask.tif’) # small
im7 = self.clipper (self.spatial.directory_out, ’output’, f’{self.

spatial.label}_ndvi_tree_mask.tif’) # small

calculate

flag.append(time.perf_counter ())

im8 = PET_calculate(self.spatial, self.weather, iml, im2, im3, im4, imb
, im6, im7) # small #nonetype

add layer and write geotiffs

flag.append(time.perf_counter ())

name = ’pets’

self.addGttiffLayer (f’{self.spatial.directory_out}output\\’, name, im8,
driver, root)

iml = im2 = im3 = im4 = imb = im6 = im7 = None

self.dlg.label_17.setText (’checked’)

flag.append(time.perf_counter ())

self .TifToJPG (self.spatial.directory_out, ’output’, f’{self.spatial.
label} _pets?)

flag.append(time.perf_counter ())

write array (only for testing)
if self.dlg.checkBox.checkState ():
ArrayWriteG(f’{self.testout}’, f’{self.spatial.label}_svf.tif’,
f’{self.spatial.directory_out}clip\\{self.spatial.label
}_svf.tif ?)
ArrayWriteG(f’{self.testout}’, f’{self.spatial.label}_pets’,
f’{self.spatial.directory_out}output\\{self.spatial.
label} _pets.tif’)

self.timecalculator (timers, name, flag)
self.timewriter (f’{self.spatial.directory_out}timewritervl.txt’, timers

importdata (self):

self.spatial.directory_in = self.dlg.lineEdit_3.text ()
self.spatial.directory_out = self.dlg.lineEdit_2.text ()
self.spatial.label = self.dlg.lineEdit_1.text ()

with open(f’{self.spatial.directory_outl}set.csv’, ’r’) as fp:

lines = fp.readlines ()
lines = [line.strip() for line in lines]
lines = [line.split(’,’) for line in lines]

self.spatial.station = lines[3][1]
self.spatial.ymax = float(lines [4][1])
self.spatial.xmax = float(lines [5]1[1])
self.spatial.ymin = float (lines[6]1[1])
self.spatial.xmin = float(lines [7][1])
self.spatial.cellsize = float(lines[8][1])
self.spatial.blocksize = float (lines[9]1[1])
self.spatial.Resize ()

self.weather.TT float (lines [10] [1])
self.weather .FF float (lines [11][1])
self.weather.dd float (lines [12] [1])

694

695

697

698

B.11. python/pet_simulator.py

141

self.weather.wind, self.weather.WE, self.weather.winddir =
wind_direction(self.weather.dd, self.weather.FF)

self.weather.Q = float(lines[13]1[1])

self.weather.Qdif = float(lines[14][1])

self.weather.sunalt = float(lines[15][1])

self.weather .RH = float(lines[16][1])

self.weather.diurnal = float(lines[21][1])

self.dlg.lineEdit_7.setText (f’{self.spatial.ymax}’) # north
self.dlg.lineEdit_6.setText (f’{self.spatial.xmax}’) # east
self.dlg.lineEdit_5.setText (f’{self.spatial.ymin}’) # south

self.dlg.lineEdit_4.setText (f’{self.spatial.xmin}’) # west
self.dlg.lineEdit_17.setText (f’{self.spatial.cellsizel}’) # south
self.dlg.lineEdit_16.setText (f’{self.spatial.blocksize}’) # west
self.dlg.lineEdit_3.setText (f’{self.spatial.directory_in}’)
self.dlg.lineEdit_2.setText (f’{self.spatial.directory_out}’)
self.dlg.lineEdit_1.setText (f’{self.spatial.label}’)
self.dlg.lineEdit_15.setText (f’{self.spatial.station}’)
self.dlg.lineEdit_8.setText (f’{self.weather.TT}’)
self.dlg.lineEdit_9.setText (f’{self.weather .FF}’)
self.dlg.lineEdit_10.setText (f’{self.weather.dd}’)
self.dlg.lineEdit_12.setText (f’{self.weather.Q}’)
self.dlg.lineEdit_13.setText (f’{self.weather.Qdif}’)
self.dlg.lineEdit_14.setText (f’{self.weather.sunalt}’)
self.dlg.lineEdit_11.setText (f’{self.weather.RH}’)

f = open(’D:\\tmp\\aba.txt’, ’wt?)

df _KNMI = pd.read_csv(f’{self.spatial.directory_in}\\knmi_results.csv’)

yyyymmdd = f’{self.dlg.dateTimeEditl.date ()}’

f.write(f’ yyyymmdd {type(yyyymmdd)} {yyyymmdd}\n’)

hhmmss = f’{self.dlg.dateTimeEditl.time ()}’

f.write(f’ hhmmss {type (hhmmss)} {hhmmss}\n?’)

station = self.dlg.lineEdit_15.setText (f’{self.spatial.station}’)

original_format = "4YYYY-/mm-%dd"
parsed_date = datetime.strptime(yyyymmdd, original_format)
desired_format = "J)dd//mm/%YYYY"

parsed_time = datetime.strptime (hhmmss, "%H:%M:%S")
hour = parsed_time.hour

formatted_date = parsed_date.strftime(desired_format)

date_string = self.dlg.dateTimeEditl.date ()

parsed_date = eval(date_string) # Evaluate the string to create a

QDate object

year = parsed_date.year ()
month = parsed_date.month ()
day = parsed_date.day ()

f.write(f’ yearmonthday {year} {month} {day}\n’)

142

B. Python code

def

def

importknmi (self):

knmi file -> self.weather

df _KNMI = pd.read_csv(f’{self.spatial.directory_in}\\knmi_results.csv?’)
yyyymmdd = f’{self.dlg.dateTimeEditl.date ()}’

hhmmss = f’{self.dlg.dateTimeEditl.time ()}’

station = self.dlg.lineEdit_15.setText (f’{self.spatial.station}’)

f = open(’D:\\tmp\\aba.txt’, ’wt?)
f.write(f’{type(yyyymmdd)} {yyyymmdd}\n’)

original_format = "%Y-%m-%4"

parsed_date = datetime.strptime(yyyymmdd, original_format)

desired_format = "%d/%m/%Y"

parsed_time = datetime.strptime (hhmmss, "%H:%M:%S")

hour = parsed_time.hour

formatted_date = parsed_date.strftime(desired_format)

condition = (df_KNMI[’YYYYMMDD’] == formatted_date) & (df_KNMI[’H’] ==
hour) & (df_KNMI[’station’] == station)

filtered_rows = df_KNMI[condition]

nnn

self.dlg.lineEdit_8.setText (f’{self.weather.TT}’)
self.dlg.lineEdit_9.setText (f’{self.weather .FF}’)
self.dlg.lineEdit_10.setText (f’{self.weather.dd}’)
self.dlg.lineEdit_12.setText (f’{self.weather.Q}’)
self.dlg.lineEdit_13.setText (f’{self.weather.Qdif}’)
self.dlg.lineEdit_14.setText (f’{self.weather.sunalt}’)
self.dlg.lineEdit_11.setText (f’{self.weather.RH}’)
nnn

self.dlg.lineEdit_8.setText (filtered_rows [>TT’])
self.dlg.lineEdit_8.setText (filtered_rows [’FF’])
self.dlg.lineEdit_8.setText (filtered_rows[’dd’])
self.dlg.lineEdit_8.setText (filtered_rows[’Q’])
self.dlg.lineEdit_8.setText (filtered_rows [’Qdif ’])
self.dlg.lineEdit_8.setText (filtered_rows[’sunalt’])
self.dlg.lineEdit_8.setText(filtered_rows [’RH’])

exportdata (self):

self.spatial.ymax = float(self.dlg.lineEdit_7.text())
self.spatial.xmax = float(self.dlg.lineEdit_6.text()) # east
self.spatial.ymin = float(self.dlg.lineEdit_5.text()) # south
self.spatial.xmin = float(self.dlg.lineEdit_4.text()) # west
self.spatial.cellsize = float(self.dlg.lineEdit_17.text()) # south
self.spatial.blocksize = float(self.dlg.lineEdit_16.text()) # west
self.spatial.directory_in = self.dlg.lineEdit_3.text ()
self.spatial.directory_out = self.dlg.lineEdit_2.text ()
self.spatial.label = self.dlg.lineEdit_1.text ()
self.spatial.station = self.dlg.lineEdit_15.text ()
self.spatial.Resize ()

#self.weather = DynParameters ()
self.weather.TT = float(self.dlg.lineEdit_8.text())

800

801

802

804

805

806

808

809

810

B.11. python/pet_simulator.py

143

def

def

self.weather .FF = float(self.dlg.lineEdit_9.text ())
self.weather.dd = float(self.dlg.lineEdit_10.text ())
self.weather.wind, self.weather.WE, self.weather.winddir =
wind_direction(self.weather.dd, self.weather.FF)
self.weather.Q = float(self.dlg.lineEdit_12.text ())
self.weather.Qdif = float(self.dlg.lineEdit_13.text())
self.weather.sunalt= float(self.dlg.lineEdit_14.text ())
self.weather .RH = float(self.dlg.lineEdit_11.text())

with open(f’{self.spatial.directory_out}set.csv’, ’wt’) as f:

.write (f’directory_in ,{self.spatial.directory_in}\n’)
.write (f’directory_out ,{self.spatial.directory_out}\n’)
.write (f’label ,{self.spatial.label}\n’)

.write (f’station,{self.spatial.station}\n’)

.write (f’ymax ,{self.spatial.ymax:2.2f}\n?)

.write (f’xmax ,{self.spatial.xmax:2.2f}\n”)

.write (f’ymin,{self.spatial.ymin:2.2f}\n”)

.write (f’xmin ,{self.spatial.xmin:2.2f}\n?)
.write(f’cellsize ,{self.spatial.cellsize:2.0f}\n’)
.write (f’blocksize ,{self.spatial.blocksize:2.0f}\n’)
.write(f’TT,{self.weather .TT:2.2f}\n?)

.write (f’FF,{self.weather .FF:2.2f}\n?)
.write(f’dd,{self.weather.dd:2.2f}\n?)
.write(f’Q,{self.weather.Q:2.2f}\n’)

.write (f°Qdif ,{self.weather.Qdif:2.2f}\n?)
.write(f’sunalt ,{self.weather.sunalt:2.2f}\n?)
.write(f’RH,{self.weather.RH:2.2f}\n’)
.write(f’wind,{self.weather.wind}\n?)
.write(f’WE,{self.weather.WE}\n?)

.write(f’winddir ,{self.weather.winddir}\n’)

.write (f ’daynight ,{self.weather.daynight}\n’)
.write(f’diurnal ,{self.weather.diurnal}\n’)
.write(f’Tmin,{self.weather.Tmin}\n?)
.write(f’Tmax ,{self.weather.Tmax}\n’)
.write(f’U,{self.weather.U}\n?)

.write (f’upwind ,{self.weather.upwind}\n’)
.write(f’sidewind ,{self.weather.sidewind}\n’)
.write(f’downwind ,{self.weather.downwindl}\n’)
.write(f’nowind ,{self.weather.nowind}\n?)

.write (f’upveg ,{self.weather.upvegl}\n’)

.write (f’sideveg ,{self.weather.sidevegl}\n’)
.write (f’downveg ,{self.weather.downvegl}\n’)
.write (f’noveg ,{self.weather.noveg}\n’)

H OH H B B H H K Hh Hh Hh Hh b Hh Hh Hh o Hh Hh Hh Hh Hh Hh Hh Hh Hh Hh Hh Hh Hh Hh b Hh Hh

Fh Hh Hh kb Fh Hh Hh Hh

weatherknmi (self):
self.importknmi ()
self.exportdata ()

run(self):
"""Run method that performs all the real work"""

Create the dialog with elements (after translation) and keep
reference

Only create GUI ONCE in callback, so that it will only load when the

plugin is started

if self.first_start == True:
self.first_start = False
self.dlg = PetUiDialog()

self.dlg.lineEdit_3.setText (f’{self.spatial.directory_in}’)

144

B. Python code

self.testin = f’{self.spatial.directory_outl}in.txt’
f = open(self.testin, ’wt’)

f.close ()

self.testout = f’{self.spatial.directory_outl}out.txt’
f = open(self.testout, ’wt?)

f.close ()

self.dlg.label_18.setText (’’)
self.dlg.label_13.setText (’?)
self.dlg.label_14.setText (’?)
self.dlg.label_15.setText (’?)
self.dlg.label_16.setText (’?)
self.dlg.label_17.setText (’?)

show the dialog
self.dlg.show ()

self.dlg.pushButtonl.clicked.connect (self.importdata)
self.dlg.pushButton2.clicked.connect (self.clipping)
#self.dlg.pushButton4.clicked.connect (self.weatherknmi)
self.dlg.pushButton3.clicked.connect(self.calculate)

result = self.dlg.exec_()
See if 0K was pressed
if result:

a=1

Users manual

User Manual: Installation Requirements

The software required to run the PET simulator includes QGIS, Python, and the UMEP QGIS plugin. Addi-
tionally, Excel and Notepad are useful if the option to write text files from the generated in-between files and
output files is checked.

1. Installation of QGIS on Windows

(a) Visit the QGIS website and go to the download page. Preferably, choose the OSGEO4W Network
Installer (64-bit) and start the installation.

(b) To install the latest version (3.x), begin the installation and choose Express Desktop Install. Note
that the plugin works on QGIS 3.30.1. Visit www.qgis.org for installation instructions on other
operating systems.

2. Install the UMEP plugin

(@) Goto:Plugins -> Manage and Install Plugins... in QGIS Desktop.

(b) Under the All tab, search for UMEP. Click on UMEP and then click Install Plugin. We recommend
clicking OK to the popup question below to avoid troubles later on.

3. Adding missing Python libraries and other OSGEO functionalities

(a) Operating system and installation instructions

i. Windows: As Windows does not include a Python installation, QGIS makes use of a separate
Python installation added during QGIS installation on your PC. There are two options avail-
able:

A. (Try this first) Run the osgeo4w-setup-x86_64.exe (0r osgeodw-setup-x86_64.exe
depending on your system) executable. This can be found using the Windows search
bar. Select Advanced Install -> Install from Internet. When prompted to se-
lect packages, search for the required package (e.g., pandas) and click on Skip until you
see a version number of pandas. Finish the installation.

B. Alternatively, use pip in the OSGeo4W shell provided with QGIS to install desired Python
libraries.

For other operating systems such as MAC OS X, Linux, or other platforms, refer to the UMEP
documentation: https://umep-docs.readthedocs.io/en/latest/Getting_Started.html.

4. Installation of PyCharm
(a) Download PyCharm

* Go to the official PyCharm website: https://www. jetbrains.com/pycharm/download/

145

146 C. Users manual

¢ Choose the edition (Community or Professional) and click on the corresponding download
button for Windows.

¢ Once downloaded, locate the installer file (. exe) on your computer.
(b) Run the installer

¢ Double-click on the installer file to start the installation process. Windows may prompt you
to allow changes to your system.

 Follow the setup wizard prompts to configure the installation, choosing installation location
and additional components as needed.

(c) Complete the installation

¢ After configuring installation options, click "Install" to start the process. The installer will
copy necessary files and configure PyCharm.

(d) Launch PyCharm
¢ Once installed, launch PyCharm either from the Start menu or desktop shortcut.
(e) Activate PyCharm (Professional Edition)

* If using the Professional Edition, activate it using a license key or JetBrains account creden-
tials.

(f) Set up Python interpreter

* Upon first launch, configure a Python interpreter. Choose an existing installation or install
Python from within PyCharm if needed.

(g) Start using PyCharm

» Explore PyCharm features and tools for Python development.
5. Downloading PET simulator from GitHub

e The PET simulator directory should be added to the file location of plugins in the directory of
QGIS.

¢ Examplelocation: C: \Users\marie\AppData\Roaming\QGIS\QGIS3\profiles\default\python\plugins

Listing C.1: Tifs necessary for retrieving SVF files from knmi api

files = [

Figure 22

Downloading the plugin

The open link to the PET simulator plugin ishttps://github. com/mariekeve/pet_plugin. Here you can

find the pet_simulator directory which need to be placed in the directory of python plugins in QGIS. An exam-
pleisC:\Users\marie\AppData\Roaming\QGIS\QGIS3\profiles\default\python\plugins\pet_simulator.
Next to this you can find an example file of run10 which showcases the run directory. An example where to

put the directory in order to let it run should be in D: \project see Figure C.1. If you are in the directory of

arun for example there is a data directory containing the base maps see Figure C.1 . In each hour simulation

Figure C.3 showcases the directories created like clip, input, output, scale and tif. Also a txt file is created for

the computation time and a set.csv is there for the climate and static parameters.

https://github.com/mariekeve/pet_plugin

147

Figure C.1: Simulation overview of hours and base map data

Figure C.2: Directory base maps in the map data

Figure C.3: Hour simulation directory of the run Rotterdam

PET simulator QGIS plugin

Goto: Plugins -> Manage and Install Plugins... in QGIS Desktop. Under the All tab, search for PET
simulator. Click on PET simulator and then click Install Plugin. We recommend clicking OK to the popup
question below to avoid troubles later on. The figures below show the outlook of the different screens of the

148 C. Users manual

plugin. Figure C.5 showcases the second screen of the plugin. This window needs the input directories of
the base maps and the set.csv directory. Input is for example D: \project \runl10O \data \ and output is
D:\project \runl0 \sim25 \ and the labelis run10sim25.

Figure C.4: Qgis plugin PETs window 1 static parameters.

The following figure C.5 showcases the second screen of the plugin. All the climate parameters are visible.

Figure C.5: Qgis plugin PETs window 2 dynamic parameters.

Figure C.6 showcases the third screen of the plugin. Here you can run the program. Check buttons will
appear if one of the python calculation files are well excuted.

149

Figure C.6: Qgis plugin PETs window 3 calculation screen.

Eventually the results are stored as geotiffs in the directories clip, input, output, scale and tif. Input is the
extended research area of the research area. Scale are the scaled wind, svf and fveg for the averaging windows.
Output showcases the in-between results and endresults. Tif directory outputs tifs for report documentation.

Libraries required

The required installment of running the code are the packages gdal in python as well as in QGIS python
environment. This can be installed with downloading a wheel. The wheel can be retrieved by https://gith
ub.com/cgohlke/geospatial-wheels/releases/tag/v2023.7.16

Listing C.2: Mean Squared Errors 1000x1000 m gebied

import pip

def install_whl (path):
pip.main ([, pathl)

install_whl()

https://github.com/cgohlke/geospatial-wheels/releases/tag/v2023.7.16
https://github.com/cgohlke/geospatial-wheels/releases/tag/v2023.7.16

Extended research area eastern wind
Wageningen

Figure D.1: DTM

151

152 D. Extended research area eastern wind Wageningen

Figure D.2: DSM

Figure D.3: DSM - DTM

153

Figure D.4: Building mask.

Figure D.5: Building height.

154 D. Extended research area eastern wind Wageningen

Figure D.6: Building mask.

Figure D.7: Tree mask.

155

Figure D.8: Sky view factor.

Figure D.9: Sky view factor mask.

156 D. Extended research area eastern wind Wageningen

Figure D.10: Water mask.

Figure D.11: NDVI near infrared.

157

Figure D.12: NDVI red green blue.

Figure D.13: Shadow 1200 LST.

Extended research area eastern wind
Rotterdam

Figure E.1: DTM

159

160 E. Extended research area eastern wind Rotterdam

Figure E.2: DSM

Figure E.3: DSM - DTM

161

Figure E.4: DSM - DTM

Figure E.5: Building mask.

162 E. Extended research area eastern wind Rotterdam

Figure E.6: Building height.

Figure E.7: Building mask.

163

Figure E.8: Tree mask.

Figure E.9: Sky view factor.

164 E. Extended research area eastern wind Rotterdam

Figure E.10: Sky view factor mask.

Figure E.11: Water mask.

165

Figure E.12: NDVI near infrared.

Figure E.13: NDVI red green blue.

166 E. Extended research area eastern wind Rotterdam

Figure E.14: Shadow 1200 LST.

F

Diurnal table

167

168

E Diurnal table

O© 0 NO O~ Wi —= O

e
i)

NN NN = e e e el e e
W= O OWONO Ok Wiy

17-Jun
0.748
0.667
0.602
0.525
0.449
0.281
0.127
0.063
0.019
-0.015
-0.02

0.03

0.065
0.117
0.205
0.335
0.532
0.747
0.906
0.975

0.931
0.849

17-May
0.782
0.64
0.573
0.49
0.355
0.15
0.078
0.025
-0.013
-0.02
-0.001
0.025
0.056
0.09
0.165
0.27
0.413
0.6
0.803
0.92
0.978

0.925
0.83

18-May
0.807
0.704
0.617
0.533
0.435
0.227
0.095
0.032
-0.009
-0.02
-0.003
0.02
0.048
0.08
0.136
0.215
0.325
0.485
0.662
0.849
0.932
0.979

0.918

19-May
0.91
0.78
0.675
0.59
0.49
0.32
0.12
0.04
-0.005
-0.02
-0.004
0.016
0.042
0.071
0.111
0.176
0.27
0.386
0.546
0.716
0.877
0.941
0.981
1

19-Apr
0.9
0.757
0.71
0.543
0.413
0.15
0.057

-0.02
-0.005
0.013
0.037
0.063
0.09
0.15
0.222
0.318
0.45
0.6
0.762
0.89
0.95
0.982
1

20-Apr

0.888
0.728
0.609
0.49

0.256
0.079
0.007
-0.02
0.006
0.01

0.033
0.056
0.082
0.128
0.184
0.27

0.366
0.506
0.651
0.803
0.901
0.958
0.983

20-Mar

0.866
0.69
0.56
0.38
0.107
0.015
-0.02
-0.007
0.007
0.029
0.05
0.074
0.108
0.161
0.228
0.312
0.424
0.556
0.695
0.838
0.911
0.964
0.984

Additional concept figures

Figure G.1: NDVI values retrieved from [eesa, 2024]

169

G. Additional concept figures

3
’/>/‘/£//A M

SVF =1 SVF <1

Original python code

H.1. sytse/fraction_area_buildings_treeregr.py

from IPython import get_ipython
get_ipython () .magic(’reset -sf?’)

import numpy as np
from PIL import Image
#from osgeo import gdal

#ds = gdal.Open(’D:/DGRW/UHImax95_denhaag_zoetermeer.tif’)
#channel = np.array(ds.GetRasterBand (1) .ReadAsArray())

#im = Image.open(’D:/DGRW/denhaag/CID/vegfraction_denhaag_zoetermeer_2040green.
tif?)

#im = Image.open(’D:/DGRW/denhaag/CID/larger/
vegfraction_denhaag_zoetermeer_2040_1p.tif’)

im = Image.open(’C:/Users/koopm043/0neDrive - WageningenUR/Userdata/koopm043/
NL_heatmap/Wageningen/output/buildings_meanheight_2.tif?)

im2 = Image.open(’C:/Users/koopm043/0neDrive - WageningenUR/Userdata/koopm043/
NL_heatmap/Wageningen/output/buildings_mask_mean_2.tif’)

#im3b = Image.open(’C:/Users/koopm043/0neDrive - WageningenUR/Userdata/koopm043
/NL_heatmap/Wageningen/output/trees/treegrid.tif’)

im3= Image.open(’C:/Users/koopm043/0neDrive - WageningenUR/Userdata/koopm043/
NL_heatmap/Wageningen/output/trees/trees_ahn.tif ’)

im4= Image.open(’C:/Users/koopm043/0neDrive - WageningenUR/Userdata/koopm043/
NL_heatmap/Wageningen/output/trees/tree_mask.tif ’)

bheights = np.array(im)

trees = np.array(im3)*0.9
#trees_ahn=np.array(im3b) *0.9
mask_tree=np.array(imé4)

mask = np.array(im2)
w=np.shape (im) [1]
h=np.shape (im) [0]

#print tree_height

#np.savetxt (’C:/Users/koopm043/0neDrive - WageningenUR/Userdata/koopm043/
NL_heatmap/Wageningen/output/wind/tree_effect/base/tree_height.csv’,trees,
delimiter=’,’,fmt="%10.5f’)

#np.savetxt (’C:/Users/koopm043/0neDrive - WageningenUR/Userdata/koopm043/
NL_heatmap/Wageningen/output/wind/tree_effect/ahn/tree_height_ahn.csv’,

171

172 H. Original python code

trees_ahn,delimiter=’,’,fmt=%10.5f"’)

#

latarray=np.zeros (shape=(h,w))

lonarray=np.zeros (shape=(h,w))

ymin=172075

ymax=176425

xmin=440675

xmax=444815

latmin=xmin+(xmax -xmin) / (2%*h)

latmax=xmax - (xmax -xmin) / (2#*h)

lonmin=ymin+(ymax -ymin) / (2*w)

lonmax=ymax - (ymax -ymin) / (2*w)

##cells=32%48

##create lat and lons

for i in enumerate(lonarray[0]):
lonarray[:,i[0]] = lonmin + (lonmax - lonmin) * i[0]/(w-1)

#print (’lonarray’,lonarray)

for i in enumerate(latarray[:,0]):
latarray[i[0]] = latmax - (latmax - latmin) * i[0]/(h-1)

#print (’latarray’,latarray)

for j in enumerate (latarray[i[0]]):
print (i [0], j[0])

for j in enumerate(latarray[il]):
print (i, j)

H O ®

#vegfra_array=np.zeros (shape=(h/4,(w+1)/4,3))
#urban_2d=np.zeros (shape=(cells,3))
height_2d=np.zeros (shape=(0,3))
area_2d=np.zeros (shape=(0,3))
building_tree_2d=np.zeros (shape=(0,4))
lambda_2d=np.zeros (shape=(0,3))
front_2d=np.zeros (shape=(0,3))
front_tree_2d=np.zeros (shape=(0,3))
wind_2d=np.zeros (shape=(0,3))
wind_notree_2d=np.zeros (shape=(0,3))
wind_tree_2d=np.zeros (shape=(0,3))
mean_area_2d=np.zeros (shape=(0,3))
tree_area_2d=np.zeros (shape=(0,3))
##urban_new=[[]]

#for i in range(50,len(heights) -50,10):

for j in range (50,len(heights[0]) -50,10):

item=[np.round (latarray[i, j],4) ,np.round(lonarray([i,j],4) ,np.mean(
heights [i-50:i+50,j-50:j+50])]

area=[np.round(latarray[i,j],4) ,np.round(lonarray[i,j],4) ,np.mean (mask

[i-50:1+50,3j-50:3j+50])1]

z0_grass=0.03
k=0.4

refwind=1/0.63501
red_grass=np.round (refwind*np.log(1l.2/z0_grass)/np.log(10/z0_grass) ,2)
red_60_10=np.log(10/z0_grass)/np.log(60/z0_grass)

#trees

#CS=0.003 from Raupach 1994.

#CR=0.3

winddir=True # True is winddirection, False is no wind direction
WE=True #WE= True means West or east, False, north or south

verspringend=False
unbc=140 #positive is east or south, negative is west or north

100

101

H.1. sytse/fraction_area_buildings_treeregr.py 173

width=140
length=280
#height _thres=10

cellsize=1
if winddir:
if WE:
horc=length
verc=width
unbwc=unbc
unbnc=0
else:
horc=width
verc=length
unbnc=unbc
unbwc=0
else:
horc=175
verc=175
unbnc=35
unbwc =35
unbc=0

#outsize=1

unbw=int (unbwc/cellsize/2)
unbn=int (unbnc/cellsize/2)
hor=int (horc/cellsize/2)
ver=int (verc/cellsize/2)
out=abs (int (unbc/cellsize/4))
#for i in range (945,1050,0ut):
total_area=hor*2*xver *2
buildingfactor=0.6
treefactor=0.5%0.6

for i in range(ver-unbn,len(bheights)-ver-unbn,out):
#for i in range(ver-unbn,350,out):
#for i in range (2000,2900, out):
print (i)
for j in range (hor-unbw,len(bheights [0]) -hor-unbw,out):
for j in range (hor-unbw,350,out):
for j in range (1500,2400, out):
print (j)
for j in range (hor-unb,len(heights [0])-hor-unb,int (unb/2)):
area=[np.round(latarray[i,j] ,4) ,np.round(lonarrayl[i,j],4) ,np.sum(mask([
i-ver:i+ver,j-hor+unb: j+hor+unb])]
switch=False
mean_area=[np.round(latarray[i,j],4) ,np.round(lonarray[i, j],4) ,np.mean(
mask [i-ver+unbn:i+ver+unbn, j-hor+unbw: j+hor+unbw])]
tree_area=[np.round(latarray([i,j],4) ,np.round(lonarray[i,j],4) ,np.mean(
mask_tree[i-ver+unbn:i+ver+unbn, j-hor+unbw: jt+hor+unbw])]

H OB H B

if mean_area[2]>0:
building_height=[np.round(latarray[i,j],4) ,np.round(lonarrayl[i,j
1,4) ,np.mean(bheights[i-ver+unbn:i+ver+unbn,j-hor+unbw: j+hor+
unbw]) /mean_area [2]]
switch=True
else:
building_height=[np.round(latarray([i,j],4) ,np.round(lonarrayl[i,j
1.,4) ,0]
if tree_areal[2]>0:
tree_height=[np.round(latarray[i, j],4) ,np.round(lonarrayl[i,j],4) ,np
.mean (trees[i-ver+unbn:i+ver+unbn, j-hor+unbw: j+hor+unbw])/

174 H. Original python code

tree_area[2]]
tree_height_regr=[np.round(latarray[i, j],4) ,np.round(lonarrayl[i, j
1,4) ,np.max(7.721*tree_height [2]**0.5,0)]
switch=True
else:
tree_height=[np.round(latarray([i,j],4) ,np.round(lonarray([i,j]l,4) ,0]
tree_height_regr=[np.round(latarray[i, j],4) ,np.round(lonarrayl[i, j
1.,4) ,0]
if switch:
#weigh heights from trees en buildings
height_com_pre=[np.round(latarray[i, j],4) ,np.round(lonarrayl[i, j
1,4) ,max((building_height [2]*mean_area[2]+tree_height [2]*tree_area[2]*
treefactor/buildingfactor)/(mean_area[2]+tree_area[2]*treefactor/
buildingfactor) ,4)]
height_com_pre=[np.round (latarray[i,j],4) ,np.round(lonarrayl[i,j],4)
,max ((building_height [2]*mean_area[2]+tree_height_regr [2]*
tree_area[2]*treefactor/buildingfactor)/(mean_area[2]+tree_area
[2]*treefactor/buildingfactor) ,4)]
height_com=[np.round(latarray[i,j],4) ,np.round(lonarrayl[i,j]l,4),
max (max (height [2] ,tree_height [2]) ,4)]

front=0

tree=0

building=0

#easterly wind

if wind:
if winddir:
if WE:
for m in range(i-ver+unbn,i+ver+unbn-1,1):
for n in range (j-hor+unbw, j+hor+unbw-1,2):
if bheights[m,n+2]-bheights[m,n]!=0:
front+=abs (bheights [m,n+2] -bheights [m,n]) *0.5%

buildingfactor
building+=abs (bheights [m,n+2] -bheights [m,n]) *0.5%
buildingfactor
elif trees[m,n+2] -trees[m,n]!=0:
front+=abs(trees[m,n+2] -trees[m,n]) *0.5«treefactor
treet+=abs (trees[m,n+2] -trees[m,n]) *0.5*xtreefactor
elif trees[m,n+4]-trees[m,n]!=0:
front+=abs (trees[m,n+4] -trees[m,n]) *0.5*xtreefactor
treet+t=abs (trees[m,n+4] -trees[m,n]) *0.5*xtreefactor
else:
j=1085
for n in range(j-hor+unbw, j+thor+unbw-1,1):
for m in range (i-ver+unbn,i+ver+unbn-1,2):
if bheights[m+2,n]-bheights[m,n]!=0:
front+=abs (bheights [m+2,n]-bheights[m,n]) *0.5%
buildingfactor
building+=abs (bheights [m+2,n]-bheights [m,n]) *0.5%*
buildingfactor
elif trees[m+2,n]-trees[m,n]!=0:
front+=abs (trees[m+2,n]-trees[m,n]) *0.5*treefactor
tree+=abs (trees[m+2,n]-trees[m,n]) *0.5*%treefactor
print (m,n,abs (heights [m+1,n]-heights[m,n]))
else:
print (’no wind’)

for m in range (i-ver+unbn,i+ver+unbn-1,1):
for n in range (j-hor+unbw, j+hor+unbw-1,2):
if bheights[m,n+2]-bheights[m,n]!=0:

H.1. sytse/fraction_area_buildings_treeregr.py 175

191 front+=abs (bheights [m,n+2] -bheights [m,n]) *0.25%
buildingfactor

192 building+=abs (bheights [m+2,n]-bheights[m,n]) *0.25%
buildingfactor

193 elif trees[m,n+2]-trees[m,n]!=0:

19 front+=abs (trees[m,n+2] -trees[m,n]) *0.25*treefactor
195 tree+=abs (trees[m,n+2] -trees[m,n]) *0.25*treefactor
196 for n in range (j-hor+unbw, j+hor+unbw-1,1):

197 for m in range(i-ver+unbn,i+ver+unbn-1,2):

198 if bheights[m+2,n]-bheights[m,n]!=0:

199 front+=abs (bheights [m+2,n] -bheights [m,n]) *0.25%
buildingfactor

200 building+=abs (bheights [m+2,n]-bheights[m,n]) *0.25*
buildingfactor

201 elif trees[m+2,n]-trees[m,n]!=0:

202 front+=abs (trees[m+2,n]-trees[m,n]) *0.25*xtreefactor
203 treet+t=abs (trees[m+2,n]-trees[m,n]) *0.25*«treefactor

206 | # print ("")
print (i, j,front/total_area)
s | # print (" ")

8
+*

210 #fit for ahn tree to treefile (bomenbestand)
211 tree_regr= 45.45%x(tree**0.5)

213 front_regr= building + tree_regr
214 building_tree=[np.round(latarray[i,j],4) ,np.round(lonarrayl[i,j],4),
building/total_area,tree/total_areal

216 if front_regr> 25 and switch == True: # bij hele kleine oppervlakten
gewoon op O laten, moet hoogte hebben zit ook in BW script
27 | # 1ambda1_pre=front/total_area

218 height_com=[np.round(latarray[i,j],4) ,np.round(lonarray[i,j],4) ,max
(height_com_pre[2],4)]
219 lambdal=[np.round(latarray[i,j],4) ,np.round(lonarray[i,j],4) ,min(
front_regr/total_area+0.015,0.33)]
220 frontl=[np.round(latarray[i,j],4) ,np.round(lonarrayl[i,j],4),
front_regr]
221 frontl_tree=[np.round(latarray[i,j],4) ,np.round(lonarrayl([i,j],4),
tree_regr]
222 lambda_tree=min(tree/total_area ,0.33)
223 if switch is False:
04 raise "fix front height issue"
s | # height2=np.array ([8,16,24])
226 if lambdal[2] < 0.08:
227 if verspringend:
228 z0=0.075*height_com[2]
229 d=0.078*height_com[2]
230 zw=2*height_com[2]
231 =-0.41xheight_com[2]
B=0.59
33 else:
234 z0=0.048*height_com[2]
235 d=0.066*height_com[2]
236 zw=2*height_com[2]
237 =-0.35xheight_com[2]
B=0.56

240 elif lambdal[2] <0.135:
241 if verspringend:

176

H. Original python code

z0=0.140*height_com[2]
d=0.26*height_com[2]
zw=1.9*height_com[2]
=-0.45xheight_com[2]
B=0.58
else:
z0=0.071*height_com[2]
d=0.26*height_com[2]
zw=2.5*height_com[2]
=-0.35xheight_com[2]
B=0.50

elif lambdal[2] <0.18:
if verspringend:
z0=0.150*height_com[2]
d=0.32*height_com[2]
zw=1.4*height_com[2]
=-0.73xheight_com[2]
B=0.83
else:
z0=0.084*height_com[2]
d=0.32*height_com[2]
zw=2.7+*height_com[2]
=-0.34xheight_com[2]
B=0.48
elif lambdal[2] <0.265:
if verspringend:
z0=0.140*height_com[2]
d=0.47+*height_com[2]
zw=1.3*height_com[2]
=-0.82xheight_com[2]
B=0.88
else:
z0=0.08*height_com[2]
d=0.42*height_com[2]
zw=1.5*height_com[2]
A=-0.56xheight_com[2]
B=0.66
else:
if verspringend:
z0=0.084*height_com[2]
d=0.65*height_com[2]
zw=1.3*height_com[2]
A=-0.62xheight_com[2]
B=0.68
else:
z0=0.077*height_com[2]
d=0.57*height_com[2]
zw=1.2%height_com[2]
A=-0.85*xheight_com[2]
B=0.92

if height_com > height_thres:
ustar=refwind/red_60_10*k/np.log ((60-d)/z0)

#uzw= refwind/red_60_10#*np.log((zw-d)/z0)/np.log((60-d)/z0) #uh ~=
uzw otherwise uh is too low. In reality use 17.8 and fill zw in

Z.

uzw= ustar/k#*np.log((zw-d)/z0) # same as previous statement
uh=uzw-ustar/B*np.log ((A+B*zw)/(A+B*height_com[2]))

300

301

H.1. sytse/fraction_area_buildings_treeregr.py 177

wind=[np.round (latarray[i,j],4) ,np.round(lonarray[i,j],4) ,min (uh*
np.exp (9.6*xlambdal [2]*(1.2/height_com[2]-1)) ,red_grass)] #redundant but
safe meausure, reduntant because uh cannot be larger than red_grass

wind=[np.round (latarray[i,j],4) ,np.round(lonarray[i,j],4) ,min (uh*
np.exp (9.6*lambdal [2]*(1.2/height_com[2]-1)) ,red_grass-lambda_tree/
treefactor)]

wind=[np.round(latarray[i,j],4) ,np.round(lonarray[i, j],4) ,min (uh*np
.exp(9.6xlambdal [2]*(1.2/height_com[2]-1)) ,red_grass)]

wind_notree=[np.round(latarray([i,j],4) ,np.round(lonarrayl[i,jl,4),
min (uh*np.exp (9.6*building/total_area*(1.2/height_com[2]-1)),
red_grass)]

wind_tree=[np.round(latarray[i,j],4) ,np.round(lonarrayl[i,j],4) ,uhx*
np.exp (9.6*tree/total_area*(1.2/height_com[2]-1))]

wind_notree_2d=np.append(wind_notree_2d,[wind_notreel],axis=0)

if lambdal_pre/0.0025 < height_com_pre[2]:

print (np.round(latarray[i,j],4) ,np.round(lonarrayl[i,jl,4),
lambdal_pre/0.0025,uh,wind [2])

if wind[2]==1:

stop

if tree_regr > 25:
wind_tree_2d=np.append(wind_tree_2d,[wind_tree],axis=0)

else:
else:
wind=[np.round(latarray[i,j],4) ,np.round(lonarray[i,j],4) ,red_grass
]
height_com=[np.round(latarray[i,j]l,4) ,np.round(lonarrayl[i,jl,4) ,0]

lambdal=[np.round(latarray([i,j]l,4) ,np.round(lonarrayl[i,jl,4) ,0]
frontl=[np.round(latarray[i,j],4) ,np.round(lonarray[i,j],4) ,0]
frontl_tree=[np.round(latarray[i,j],4) ,np.round(lonarrayl[i,j],4) ,0]

wind_2d=np.append(wind_2d,[wind],axis=0)
wind_notree_2d=np.append(wind_notree_2d,[wind_notree],axis=0)
wind_tree_2d=np.append(wind_tree_2d,[wind_tree],axis=0)
height_2d=np.append (height_2d,[height_com] ,axis=0) #note the [] around
item, this ensures that dimensions are the same

area_2d=np.append (area_2d,[areal,axis=0)
building_tree_2d=np.append (building_tree_2d,[building_tree],axis=0)
lambda_2d=np.append (lambda_2d,[lambdal],axis=0)
front_2d=np.append(front_2d,[frontl],axis=0)
front_tree_2d=np.append(front_tree_2d,[frontl_treel,axis=0)
mean_area_2d=np.append(mean_area_2d,[mean_area],axis=0)
tree_area_2d=np.append(tree_area_2d,[tree_area],axis=0)

if winddir:
if WE:
if unbc >0:
np.savetxt (’C:/Users/koopm043/0neDrive - WageningenUR/Userdata/
koopm043/NL_heatmap/Wageningen/output/wind/tree_effect/ahnédregr
/wind_E.csv’,wind_2d ,delimiter=’,’,fmt=%10.5f"’)
#output for research, not necessary for creation PET heat map

np.savetxt (’C:/Users/koopm043/0neDrive - WageningenUR/Userdata/
koopm043/NL_heatmap/Wageningen/output/wind/tree_effect/ahndregr/front.csv’,
front_2d ,delimiter=’,’,fmt="%10.5f?)

np.savetxt (’C:/Users/koopm043/0neDrive - WageningenUR/Userdata/
koopm043/NL_heatmap/Wageningen/output/wind/tree_effect/ahnd4regr/front_tree.
csv’,front_tree_2d,delimiter=’,’,fmt="%10.5f")

np.savetxt (’C:/Users/koopm043/0neDrive - WageningenUR/Userdata/
koopm043/NL_heatmap/Wageningen/output/wind/tree_effect/ahn4regr/H_E.csv’,

348

349

178 H. Original python code
height_2d ,delimiter=’,’,fmt="%10.5f7)

np.savetxt (’C:/Users/koopm043/0neDrive - WageningenUR/Userdata/
koopm043/NL_heatmap/Wageningen/output/wind/tree_effect/ahnd4regr/lambda_E.
csv’,lambda_2d ,delimiter=’,’ ,fmt=%10.5f?)

#

np.savetxt (’C:/Users/koopm043/0neDrive - WageningenUR/Userdata/
koopm043/NL_heatmap/Wageningen/output/wind/tree_effect/ahnédregr/
wind_E_notree.csv’,wind_notree_2d ,delimiter=’,’,fmt=2%10.5f)

np.savetxt (’C:/Users/koopm043/0neDrive - WageningenUR/Userdata/
koopm043/NL_heatmap/Wageningen/output/wind/tree_effect/ahnd4regr/wind_E_tree
.csv’,wind_tree_2d ,delimiter=’,’,fmt="%10.5f")

np.savetxt (’C:/Users/koopm043/0neDrive - WageningenUR/Userdata/
koopm043/NL_heatmap/Wageningen/output/wind/tree_effect/ahnédregr/
building_tree_E.csv’,building_tree_2d ,delimiter=’,’,fmt="%10.5f’)

np.savetxt (’C:/Users/koopm043/0neDrive - WageningenUR/Userdata/
koopm043/NL_heatmap/Wageningen/output/wind/tree_effect/ahné4regr/
plan_area_fraction_E.csv’,mean_area_2d,delimiter=’,’,fmt=’%10.5f")

np.savetxt (’C:/Users/koopm043/0neDrive - WageningenUR/Userdata/
koopm043/NL_heatmap/Wageningen/output/wind/tree_effect/ahné4regr/
tree_area_fraction_E.csv’,tree_area_2d,delimiter=’,’,fmt="%10.5f")

else:

np.savetxt (’D:/UserData/koopm043/NL_heatmap/Wageningen/output/wind/
H_W.csv’,height_2d,delimiter=",’,fmt="%10.5f7)

np.savetxt (’D:/UserData/koopm043/NL_heatmap/Wageningen/output/wind/
lambda_W.csv’,lambda_2d ,delimiter=’,’ ,fmt="%10.5f’)

np.savetxt (’D:/UserData/koopm043/NL_heatmap/Wageningen/output/wind/
wind_W.csv’,wind_2d ,delimiter=’,’,fmt="%10.5f"’)

np.savetxt (’D:/UserData/koopm043/NL_heatmap/Wageningen/output/wind/
wind_W.csv’,wind_2d ,delimiter=’,’,fmt="%10.5f’)

np.savetxt (’D:/UserData/koopm043/NL_heatmap/Wageningen/output/wind/
wind_W_notree.csv’,wind_notree_2d ,delimiter=’,’,fmt=2%10.5f?)

np.savetxt (’D:/UserData/koopm043/NL_heatmap/Wageningen/output/wind/
wind_W_tree.csv’,wind_tree_2d ,delimiter=’,’,fmt=2%10.5f?)

np.savetxt (’D:/UserData/koopm043/NL_heatmap/Wageningen/output/wind/
building_tree.csv’,building_tree_2d ,delimiter=’,’,fmt="%10.5f’)

np.savetxt (’D:/UserData/koopm043/NL_heatmap/Wageningen/output/wind/
plan_area_fraction.csv’,mean_area_2d ,delimiter=’,’,fmt="%10.5f’)

np.savetxt (’D:/UserData/koopm043/NL_heatmap/Wageningen/output/wind/
tree_area_fraction.csv’,tree_area_2d,delimiter=’,’,fmt="%10.5f"’)

else:

if unbc >0:

np.savetxt (’C:/Users/koopm043/0neDrive - WageningenUR/Userdata/
koopm043/NL_heatmap/Wageningen/output/wind/test/wind_S.csv’,wind_24d,
delimiter=’,’,fmt="%10.5f’)

np.savetxt (’C:/Users/koopm043/0neDrive - WageningenUR/Userdata/
koopm043/NL_heatmap/Wageningen/output/wind/test/H_S.csv’,height_2d,
delimiter=’,’,fmt="%10.5f’)

np.savetxt (’C:/Users/koopm043/0neDrive - WageningenUR/Userdata/
koopm043/NL_heatmap/Wageningen/output/wind/test/lambda_S.csv’,lambda_2d,
delimiter=’,’,fmt="%10.5f’)

np.savetxt (’C:/Users/koopm043/0neDrive - WageningenUR/Userdata/
koopm043/NL_heatmap/Wageningen/output/wind/test/wind_S_notree.csv’,
wind_notree_2d ,delimiter=’,’ ,fmt=’%10.5f’)

np.savetxt (’C:/Users/koopm043/0neDrive - WageningenUR/Userdata/
koopm043/NL_heatmap/Wageningen/output/wind/test/wind_S_tree.csv’,
wind_tree_2d ,delimiter=’,’ ,fmt=%10.5f?)

np.savetxt (’C:/Users/koopm043/0neDrive - WageningenUR/Userdata/

koopm043/NL_heatmap/Wageningen/output/wind/test/building_tree_S.csv’,
building_tree_2d ,delimiter=’,’,fmt=2%10.5f’)

380

390

H.1. sytse/fraction_area_buildings_treeregr.py 179

np.savetxt(’C:/Users/koopm043/0neDrive - WageningenUR/Userdata/
koopm043/NL_heatmap/Wageningen/output/wind/test/plan_area_fraction_S.csv’,
mean_area_2d ,delimiter=’,’,fmt=2%10.5f’)

np.savetxt (’C:/Users/koopm043/0neDrive - WageningenUR/Userdata/
koopm043/NL_heatmap/Wageningen/output/wind/test/tree_area_fraction_S.csv’,
tree_area_2d ,delimiter=’,’ ,fmt=)10.5f?)

#

else:

np.savetxt (’C:/Users/koopm043/0neDrive - WageningenUR/Userdata/
koopm043/NL_heatmap/Wageningen/output/wind/H_N.csv’,height_2d,delimiter
=2, ,fmt="7%10.5f")

np.savetxt (’C:/Users/koopm043/0neDrive - WageningenUR/Userdata/
koopm043/NL_heatmap/Wageningen/output/wind/lambda_N.csv’,lambda_2d,
delimiter=’,’,fmt="%10.5f’)

np.savetxt (’C:/Users/koopm043/0neDrive - WageningenUR/Userdata/
koopm043/NL_heatmap/Wageningen/output/wind/wind_N.csv’,wind_2d,delimiter
=2, ,fmt="7%10.5f")

np.savetxt (’C:/Users/koopm043/0neDrive - WageningenUR/Userdata/
koopm043/NL_heatmap/Wageningen/output/wind/wind_N_notree.csv’,
wind_notree_2d ,delimiter=’,’,fmt="%10.5f"’)

np.savetxt (’C:/Users/koopm043/0neDrive - WageningenUR/Userdata/
koopm043/NL_heatmap/Wageningen/output/wind/wind_N_tree.csv’,wind_tree_2d,
delimiter=’,’,fmt="%10.5f’)

np.savetxt (’C:/Users/koopm043/0neDrive - WageningenUR/Userdata/
koopm043/NL_heatmap/Wageningen/output/wind/building_tree_N.csv’,
building_tree_2d ,delimiter=’,’,fmt="%10.5f’)

np.savetxt (’C:/Users/koopm043/0neDrive - WageningenUR/Userdata/
koopm043/NL_heatmap/Wageningen/output/wind/plan_area_fraction_N.csv’,
mean_area_2d ,delimiter=’,’,fmt="%10.5f"’)

np.savetxt (’C:/Users/koopm043/0neDrive - WageningenUR/Userdata/
koopm043/NL_heatmap/Wageningen/output/wind/tree_area_fraction_N.csv’,
tree_area_2d ,delimiter=’,’,fmt="%10.5f)

#else:

#

np.savetxt (’C:/Users/koopm043/0neDrive - WageningenUR/UserData/koopm043/
NL_heatmap/Wageningen/output/wind/H_C.csv’,height_2d,delimiter=’,’, fmt
=2%10.5£?)

np.savetxt (’C:/Users/koopm043/0neDrive - WageningenUR/UserData/koopm043/
NL_heatmap/Wageningen/output/wind/lambda_C.csv’,lambda_2d,delimiter=’,’,fmt
=2%10.5£?)

np.savetxt (’C:/Users/koopm043/0neDrive - WageningenUR/UserData/koopm043/
NL_heatmap/Wageningen/output/wind/wind_C.csv’,wind_2d,delimiter=’,’,fmt
=2%10.5£?)

np.savetxt (’C:/Users/koopm043/0neDrive - WageningenUR/UserData/koopm043/
NL_heatmap/Wageningen/output/wind/wind_C_notree.csv’,wind_notree_2d,
delimiter=’,’,fmt="%10.5f’)

np.savetxt (’C:/Users/koopm043/0neDrive - WageningenUR/UserData/koopm043/
NL_heatmap/Wageningen/output/wind/wind_C_tree.csv’,wind_tree_2d,delimiter
=2, ,fmt="%10.5f")

np.savetxt (’C:/Users/koopm043/0neDrive - WageningenUR/UserData/koopm043/
NL_heatmap/Wageningen/output/wind/building_tree_C.csv’,building_tree_2d,
delimiter=’,’,fmt="%10.5f’)

np.savetxt (’C:/Users/koopm043/0neDrive - WageningenUR/UserData/koopm043/
NL_heatmap/Wageningen/output/wind/plan_area_fraction_C.csv’,mean_area_2d,
delimiter=’,’,fmt="%10.5f’)

np.savetxt (’C:/Users/koopm043/0neDrive - WageningenUR/UserData/koopm043/
NL_heatmap/Wageningen/output/wind/tree_area_fraction_C.csv’,tree_area_2d,
delimiter=’,’,fmt="%10.5f’)

#

##get boundaries

180

H. Original python code

##xmin= lonmin+(lonmax-lonmin)/(w-1)*(10-2)
##xmax= lonmin+(lonmax-lonmin)/(w-1)*(934+2)
##ymin= latmax-(latmax-latmin)/(h-1)*(10-2)
##ymax= latmax-(latmax-latmin)/(h-1)*(610+2)
##xspace= (lonmax-lonmin)/(w-1) *4

##yspace= (latmax-latmin)/(h-1) x4

#

H.2. sytse/ndvi_infr_large.py 181

H.2. sytse/ndvi_infr_large.py

from IPython import get_ipython
get_ipython () .magic(’reset -sf?’)

import numpy as np

from PIL import Image

imO_rgb = Image.open(’C:/Users/koopm043/0neDrive - WageningenUR/Userdata/
koopm043/NL_heatmap/Wageningen/vegfra/ndvi_large/ndvi_rgb_merge.tif ’)

imO_infr= Image.open(’C:/Users/koopm043/0neDrive - WageningenUR/Userdata/
koopm043/NL_heatmap/Wageningen/vegfra/ndvi_large/ndvi_infr_merge.tif’)

im=imO_rgb

w=np.shape (im) [1]
h=np.shape (im) [0]

#

latarray=np.zeros (shape=(h,w))
lonarray=np.zeros (shape=(h,w))

ymin=171223
ymax=177323
#ymax=176223
#ymin=ymax -1990
xmin=439783
xmax=445683

#xmax=444657
#xmin=xmax -2000

latmin=xmin+0.
latmax=xmax -0.
lonmin=ymin+0.
lonmax=ymax -0.
out=1
##cells=32%48
##create lat and lons
for i in enumerate(lonarray[0]):

lonarray[:,i[0]] = lonmin + (lonmax - lonmin) * i[0]/(w-1)
print (’lonarray’,lonarray)
for i in enumerate(latarrayl[:,0]):

latarray[i[0]] = latmax - (latmax - latmin) * i[0]/(h-1)

oo oo

lufo_rgb=np.array(im0O_rgb)
lufo_infr=np.array(imO_infr)
ndvi_img=np.array (imO_infr)

r=lufo_rgb[:,:,0].astype(int)
g=lufo_rgb[:,:,1].astype(int)
b=lufo_rgb[:,:,2].astype (int)
infr=1lufo_infr[:,:,0].astype(int)
#ndvi=g/(r+g+b)
ndvi_infr=(infr-r)/(infr+r)
ndvi_infr [ndvi_infr<0]=0
#vari=(g-r)/(g+r-b)
#vari[vari<0]=0
#tgi=(g-0.39+r-0.61%b) /g
#tgil[tgi<0]=0

#lufol[:,:,1]1=255
#img = Image.fromarray(lufo)
#ndvi=0.55

182 H. Original python code

#red=(1-ndvi**0.5) *255
#green=ndvi**0.5%255

ndvi_imgl[:,:,0]=infr
ndvi_imgl[:,:,1]=0
ndvi_imgl[:,:,2]=0

#ndvi_2d_temp=[np.ravel (latarray[:]) ,np.ravel (lonarray[:]) ,np.ravel(ndvi[:])]

#ndvi_2d=np.array(ndvi_2d_temp) .transpose ()

ndvi_infr_temp=[np.ravel (latarray[:]) ,np.ravel(lonarray[:]) ,np.ravel(ndvi_infr
[:1)1

ndvi_infr_2d=np.array(ndvi_infr_temp).transpose ()

img = Image.fromarray(ndvi_img)

np.savetxt (’C:/Users/koopm043/0neDrive - WageningenUR/Userdata/koopm043/
NL_heatmap/Wageningen/vegfra/ndvi_large/ndvi_infr_merge.csv’,ndvi_infr_24d,
delimiter=’,’,fmt="%5.3f"’)

#img.save(’E:/NL_heatmap/Wageningen/vegfra/ndvi/ndvi_infr_0.tif’)

H.3. sytse/vegetation_footprints.py

183

H.3. sytse/vegetation_footprints.py

from IPython import get_ipython
get_ipython () .magic(’reset -sf?’)

import numpy as np
from PIL import Image
#from osgeo import gdal

day=False

wind=False # True is winddirection, False is no wind direction
WE=True #WE= True means West or east, False, north or south
unbc=-900 #positive is east or south, negative is west or north
width=500

length=1100

if day:
im = Image.open(’D:/UserData/koopm043/NL_heatmap/Wageningen/vegfra/
vegfraction_water_cropland_day_28992_Wageningen_begroeidbgt.tif ’)
else:
im = Image.open(’D:/UserData/koopm043/NL_heatmap/Wageningen/vegfra/
vegfraction_water_cropland_28992_Wageningen_begroeidbgt.tif ’)
vegfra = np.array(im)
w=np.shape (im) [1]
h=np.shape (im) [0]
#
latarray=np.zeros (shape=(h,w))
lonarray=np.zeros (shape=(h,w))
ymin=171322
ymax=177291
xmin=439813
xmax=445583
latmin=xmin+(xmax -xmin) / (2#*h)
latmax=xmax - (xmax -xmin) / (2%*h)
lonmin=ymin+(ymax -ymin) / (2%*w)
lonmax=ymax - (ymax -ymin) / (2*w)
##cells=32%48
##create lat and lons
for i in enumerate(lonarray[0]):
lonarray[:,i[0]] = lonmin + (lonmax - lonmin) * i[0]/(w-1)
#print (’lonarray’,lonarray)
for i in enumerate(latarrayl[:,0]):
latarray[i[0]] = latmax - (latmax - latmin) * i[0]/(h-1)
vegfra_2d=np.zeros (shape=(0,3))
area_2d=np.zeros (shape=(0,3))
lambda_2d=np.zeros (shape=(0,3))
cellsize=25
outsize=25
if wind:
if WE:
horc=length
verc=width
unbwc=unbc
unbnc=0
else:
horc=width
verc=length
unbnc=unbc
unbwc=0
unbw=int (unbwc/cellsize/2)
unbn=int (unbnc/cellsize/2)

99

100

101

102

103

184 H. Original python code

else:
horc=700
verc=700
unbw=0
unbn=0

hor=int (horc/cellsize/2)
ver=int (verc/cellsize/2)
out=int (outsize/cellsize)
for i in range(ver-unbn,len(vegfra)-ver-unbn,out):
for j in range (hor-unbw,len(vegfra[0])-hor-unbw,out):
mean_vegfra=[np.round(latarray[i,j],4) ,np.round(lonarray[i, j],4) ,np.sum(
vegfra[i-ver+unbn:i+ver+unbn, j-hor+unbw: j+hor+unbw])/np.sum(vegfrali
-ver+tunbn:i+ver+unbn, j-hor+unbw: j+thor+unbw]>0)]
print (i, j)
print (hor, unbw, j-hor+unbw)
vegfra_2d=np.append(vegfra_2d,[mean_vegfral,axis=0) #note the [] around
item, this ensures that dimensions are the same

if wind:
if WE:
if umnbc >0:
if day:
np.savetxt (’D:/UserData/koopm043/NL_heatmap/Wageningen/vegfra/
vegfra2bE_day.csv’,vegfra_2d,delimiter=’,’ ,fmt="%10.5f)
else:
np.savetxt (’D:/UserData/koopm043/NL_heatmap/Wageningen/vegfra/
vegfra2bE_night.csv’,vegfra_2d,delimiter=’,’,fmt="%10.5f")
else:
if day:
np.savetxt (’D:/UserData/koopm043/NL_heatmap/Wageningen/vegfra/
vegfra2bW_day2.csv’,vegfra_2d,delimiter=",’,fmt="%10.5f7)
else:
np.savetxt (’D:/UserData/koopm043/NL_heatmap/Wageningen/vegfra/
vegfra2bW_night2.csv’,vegfra_2d,delimiter=",’,fmt="%10.5f")
else:
if unbc >0:
if day:
np.savetxt (’D:/UserData/koopm043/NL_heatmap/Wageningen/vegfra/
vegfra2bS_day.csv’,vegfra_2d ,delimiter=’,’,fmt="%10.5f)
else:
np.savetxt (’D:/UserData/koopm043/NL_heatmap/Wageningen/vegfra/
vegfra2bS_night.csv’,vegfra_2d,delimiter=’,’,fmt="%10.5f’)
else:
if day:
np.savetxt (’D:/UserData/koopm043/NL_heatmap/Wageningen/vegfra/
vegfra2bN_day2.csv’,vegfra_2d,delimiter=",’,fmt="%10.5f7)
else:
np.savetxt (’D:/UserData/koopm043/NL_heatmap/Wageningen/vegfra/
vegfra25N_night2.csv’,vegfra_2d,delimiter=",’,fmt="%10.5f")
else:
if day:

np.savetxt (’D:/UserData/koopm043/NL_heatmap/Wageningen/vegfra/
vegfra2b_calm_day2.csv’,vegfra_2d,delimiter=’,’,fmt="%10.5f7)
else:
np.savetxt (’D:/UserData/koopm043/NL_heatmap/Wageningen/vegfra/
vegfra2b_calm_night2.csv’,vegfra_2d,delimiter=’,’,fmt="%10.5f")
#np.savetxt (’E:/NL_heatmap/Wageningen/output/wind/Ad.csv’,area_2d,delimiter
=2,?,fmt="7%10.5f")
#np.savetxt (’E:/NL_heatmap/Wageningen/output/wind/lambda.csv’,lambda_2d,
delimiter=’,’,fmt="%10.5f’)

105

106

108

109

110

H.3. sytse/vegetation_footprints.py 185

#np.savetxt (’E:/NL_heatmap/Wageningen/output/wind/wind.csv’,wind_2d,delimiter
=2,?,fmt="%10.5f7)

#get boundaries

#xmin= lonmin+(lonmax-lonmin)/(w-1)*(10-2)
#xmax= lonmin+(lonmax-lonmin)/(w-1) *(934+2)
#ymin= latmax -(latmax-latmin)/(h-1)*(10-2)
#ymax= latmax-(latmax-latmin)/(h-1)*(610+2)
#xspace= (lonmax-lonmin)/(w-1)*4

#yspace= (latmax-latmin)/(h-1)*4

186 H. Original python code

H.4. sytse/skyview_footprints.py

from IPython import get_ipython
get_ipython () .magic(’reset -sf?’)

import numpy as np
from PIL import Image

im = Image.open(’C:/Users/koopm043/0neDrive - WageningenUR/Userdata/koopm043/
NL_heatmap/Wageningen/Nynke/urban_morphology/SVF_Wageningen_mean25.tif ’)
svf = np.array(im)
w=np.shape (im) [1]
h=np.shape (im) [0]
#
latarray=np.zeros (shape=(h,w))
lonarray=np.zeros (shape=(h,w))
ymin=171322
ymax=177291
xmin=439813
xmax=445583
latmin=xmin+(xmax -xmin) / (2%*h)
latmax=xmax - (xmax -xmin) / (2%*h)
lonmin=ymin+(ymax -ymin) / (2%w)
lonmax=ymax - (ymax -ymin) / (2*w)
##cells=32%48
##create lat and lons
for i in enumerate (lonarray[0]):
lonarray[:,i[0]] = lonmin + (lonmax - lonmin) * i[0]/(w-1)
#print (’lonarray’,lonarray)
for i in enumerate(latarray[:,0]):
latarray[i[0]] = latmax - (latmax - latmin) * i[0]/(h-1)

svf_2d=np.zeros (shape=(0,3))
area_2d=np.zeros (shape=(0,3))
lambda_2d=np.zeros (shape=(0,3))
wind_2d=np.zeros (shape=(0,3))

wind=True # True is winddirection, False is no wind direction
WE=True #WE= True means West or east, False, north or south
unbc=900 #positive is east or south, negative is west or north
width=500
length=1100
cellsize=25
outsize=25
if wind:
if WE:
horc=length
verc=width
unbwc=unbc
unbnc=0
else:
horc=width
verc=length
unbnc=unbc
unbwc=0
unbw=int (unbwc/cellsize/2)
unbn=int (unbnc/cellsize/2)
else:
horc=700
verc=700
unbc=0

H.4. sytse/skyview_footprints.py 187

unbw=0
unbn=0
hor=int (horc/cellsize/2)
ver=int (verc/cellsize/2)
out=int (outsize/cellsize)
for i in range (ver-unbn,len(svf)-ver-unbn,out):
print (i)
for j in range (hor-unbw,len(svf [0])-hor-unbw,out):
perc= np.sum(svf[i-ver+unbn:i+ver+unbn, j-hor+unbw:j+hor+unbwl>0)/np.sum
(svf[i-ver+unbn:i+ver+unbn, j-hor+unbw: j+hor+unbw]>-1)
if perc >= 0.2:
mean_svf=[np.round(latarray[i, j],4) ,np.round(lonarrayl[i,j],4) ,np.
sum(svf [i-ver+unbn:i+ver+unbn, j-hor+unbw:j+hor+unbw]) /np. sum/(
svf[i-ver+unbn:i+ver+unbn, j-hor+unbw: j+thor+unbw]>0)] #
elif perc >= 0.1: #linearize between svf=1 for 0.1 and svf as executed
above
print (’elif’,i,j)
mean_pre_svf=np.sum(svf[i-ver+unbn:i+ver+unbn, j-hor+unbw: j+hor+unbw
1)/np.sum(svf[i-ver+unbn:i+ver+unbn, j-hor+unbw:j+hor+unbw]>0)
mean_svf=[np.round(latarray[i,j],4) ,np.round(lonarray[i,j],4) , ((
perc-0.1) /0.1) *mean_pre_svf+(1-(perc-0.1)/0.1) *1]
print (perc ,mean_pre_svf ,mean_svf [2])
else:
print (’else?’,i, j)
mean_svf=[np.round(latarray[i, j],4) ,np.round(lonarrayl[i,j],4) ,1]
svf_2d=np.append(svf_2d,[mean_svf],axis=0) #note the [] around item,
this ensures that dimensions are the same

if wind:
if WE:
if umnbc >0:
np.savetxt (’C:/Users/koopm043/0neDrive - WageningenUR/Userdata/
koopm043/NL_heatmap/Wageningen/Nynke/urban_morphology/svf25E.
csv’,svf_2d,delimiter=’,’,fmt="%10.5f’)
else:
np.savetxt (’D:/UserData/koopm043/NL_heatmap/Wageningen/svf/svf25W.
csv?’,svf_2d,delimiter=’,’,fmt="%10.5f"’)
else:
if unbc >O0:
np.savetxt (’D:/UserData/koopm043/NL_heatmap/Wageningen/svf/svf25S.
csv’,svf_2d,delimiter=’,’,fmt="%10.5f"’)
else:
np.savetxt (’D:/UserData/koopm043/NL_heatmap/Wageningen/svf/svf25N.
csv’,svf_2d,delimiter=’,’,fmt="%10.5f"’)
#else:
np.savetxt (’D:/UserData/koopm043/NL_heatmap/Wageningen/svf/svf25C.csv’,

svf_2d,delimiter=’,’,fmt="%10.5f’)

20

188 H. Original python code

H.5. sytse/pet_calculate.py

from IPython import get_ipython
get_ipython () .magic(’reset -sf?’)

import pandas as pd
import numpy as np
import gdal

from PIL import Image

scenario="def"
Nynke=True

#get meteofile and put in panda table

obs_headernames=[’YYYYMMDD ’, >month’,’decade’,’hour’,’TT’,’FF?’,°dd’,’Q?,’Qdif’,°’
sunalt’,’rh’,’diurn’,’UHImax ’]

FDATA = pd.read_table(’D:/Ddrive/koopm043/NL_heatmap/Wageningen/Herwijnen/
Herwijnen_1juli2015_10_16UTC_%s.csv’> %(scenario) ,sep =",", skiprows=1,
names=obs_headernames, engine=’python’)

#FDATA = pd.read_table(’D:/Ddrive/koopm043/NL_heatmap/Wageningen/Herwijnen/
Herwijnen_2 -3aug2013_4_4UTC_%s.csv’ %(scenario),sep =",", skiprows=1, names
=obs_headernames, engine=’python?)

#get GIS static data Wageningen

im4= Image.open(’D:/Ddrive/koopm043/NL_heatmap/Wageningen/svf/svf_1im_allign.tif
”)

imb= Image.open(’D:/Ddrive/koopm043/NL_heatmap/Wageningen/svf/
svf_1m_mask_allign.tif’)

im6 = Image.open(’D:/Ddrive/koopm043/NL_heatmap/Wageningen/vegfra/ndvi/
ndvi_infr_masko.16_a11ign.tif’)

im7= Image.open(’D:/Ddrive/koopm043/NL_heatmap/Wageningen/vegfra/ndvi/
trees_2m_allign.tif’)

firsttime=True

Bveg=0.4

Bnoveg=3
stef=5.67*10%*-8
svf = np.array(im4)

svf_mask=np.array (im5)
mask_vegfra=np.array (im6)
trees_2m=np.array (im7)

w=np.shape (im4) [1]
h=np.shape (im4) [0]

#

latarray=np.zeros (shape=(h,w))
lonarray=np.zeros (shape=(h,w))

ymin=172323
ymax=176223
xmin=440883
xmax=444583

latmin=xmin+(xmax -xmin) /(2%*h)
latmax=xmax - (xmax -xmin) / (2%h)
lonmin=ymin+(ymax -ymin) / (2%*w)
lonmax=ymax - (ymax -ymin) / (2*w)
out=1

##create lat and lons
for i in enumerate (lonarray[0]):

H.5. sytse/pet_calculate.py 189

lonarray[:,i[0]] = lonmin + (lonmax - lonmin) * i[0]/(w-1)
print (’lonarray’,lonarray)
for i in enumerate(latarrayl[:,0]):

latarray[i[0]] = latmax - (latmax - latmin) * i[0]/(h-1)

PET_2d=np.zeros (shape=(0,3))

PETshade=np.zeros (shape=(len(latarray),len(latarray[0])))
PETveg=np.zeros (shape=(len(latarray),len(latarray[0])))
PETnoveg=np.zeros (shape=(len(latarray),len(latarray[0])))

#run through timeseries and get time dependent GIS/meteofields like shadow/sun,
wind and urban morphology (winddependent UHI equation Natalie Theeuwes)

for t in range(2,3,1):

#for t in range (0,len(FDATA)):

month= FDATA[’month’].iloc[t]
decade= FDATA[’decade’].iloc[t]
hour= FDATA[’hour’].iloc[t]
sunalt= FDATA[’sunalt’].iloc[t]
T=FDATA[’TT’].iloc[t]
print (t,hour)
if sumnalt > O:
if month == T7:
if decade == 1:
=6:
im = Image.open(’D:/Ddrive/koopm043/NL_heatmap/Wageningen/
radiation/julyhour/shadow_20140706_0600_LST.tif ’)
elif hour == T7:
im = Image.open(’D:/Ddrive/koopm043/NL_heatmap/Wageningen/
radiation/julyhour/shadow_20140706_0700_LST.tif ’)
elif hour == 8:
im = Image.open(’D:/Ddrive/koopm043/NL_heatmap/Wageningen/
radiation/julyhour/shadow_20140706_0800_LST.tif ’)
elif hour == 9:
im = Image.open(’D:/Ddrive/koopm043/NL_heatmap/Wageningen/
radiation/julyhour/shadow_20140706_0900_LST.tif ’)
elif hour == 10:
im = Image.open(’D:/Ddrive/koopm043/NL_heatmap/Wageningen/
radiation/julyhour/shadow_20140706_1000_LST.tif ’)
elif hour == 11:
im = Image.open(’D:/Ddrive/koopm043/NL_heatmap/Wageningen/
radiation/julyhour/shadow_20140706_1100_LST.tif ’)
elif hour == 12:
im = Image.open(’D:/Ddrive/koopm043/NL_heatmap/Wageningen/
radiation/julyhour/shadow_20140706_1200_LST.tif ’)
elif hour == 13:
im = Image.open(’D:/Ddrive/koopm043/NL_heatmap/Wageningen/
radiation/julyhour/shadow_20140706_1300_LST.tif ’)
elif hour == 14:
im = Image.open(’D:/Ddrive/koopm043/NL_heatmap/Wageningen/
radiation/julyhour/shadow_20140706_1400_LST.tif)
elif hour == 15:
im = Image.open(’D:/Ddrive/koopm043/NL_heatmap/Wageningen/
radiation/julyhour/shadow_20140706_1500_LST.tif ’)
elif hour == 16:
im = Image.open(’D:/Ddrive/koopm043/NL_heatmap/Wageningen/
radiation/julyhour/shadow_20140706_1600_LST.tif ’)
elif hour == 17:

if hour =

100

101

102

103

10

106

107

190 H. Original python code

im = Image.open(’D:/Ddrive/koopm043/NL_heatmap/Wageningen/
radiation/julyhour/shadow_20140706_1700_LST.tif ’)
elif hour == 18:
im = Image.open(’D:/Ddrive/koopm043/NL_heatmap/Wageningen/
radiation/julyhour/shadow_20140706_1800_LST.tif ’)
elif hour == 19:
im = Image.open(’D:/Ddrive/koopm043/NL_heatmap/Wageningen/
radiation/julyhour/shadow_20140706_1900_LST.tif ’)
elif month == 8:
if decade == 1:
if hour ==5:
im = Image.open(’D:/Ddrive/koopm043/NL_heatmap/Wageningen/
radiation/augusthour/shadow_20140806_0500_LST.tif’)
elif hour == 6:
im = Image.open(’D:/Ddrive/koopm043/NL_heatmap/Wageningen/
radiation/augusthour/shadow_20140806_0600_LST.tif’)
elif hour == 7:
im = Image.open(’D:/Ddrive/koopm043/NL_heatmap/Wageningen/
radiation/augusthour/shadow_20140806_0700_LST.tif’)
elif hour == 8:
im = Image.open(’D:/Ddrive/koopm043/NL_heatmap/Wageningen/
radiation/augusthour/shadow_20140806_0800_LST.tif’)
elif hour == 9:
im = Image.open(’D:/Ddrive/koopm043/NL_heatmap/Wageningen/
radiation/augusthour/shadow_20140806_0900_LST.tif’)
elif hour == 10:
im = Image.open(’D:/Ddrive/koopm043/NL_heatmap/Wageningen/
radiation/augusthour/shadow_20140806_1000_LST.tif’)
elif hour == 11:
im = Image.open(’D:/Ddrive/koopm043/NL_heatmap/Wageningen/
radiation/augusthour/shadow_20140806_1100_LST.tif’)
elif hour == 12:
im = Image.open(’D:/Ddrive/koopm043/NL_heatmap/Wageningen/
radiation/augusthour/shadow_20140806_1200_LST.tif’)
elif hour == 13:
im = Image.open(’D:/Ddrive/koopm043/NL_heatmap/Wageningen/
radiation/augusthour/shadow_20140806_1300_LST.tif’)
elif hour == 14:
im = Image.open(’D:/Ddrive/koopm043/NL_heatmap/Wageningen/
radiation/augusthour/shadow_20140806_1400_LST.tif’)
elif hour == 15:
im = Image.open(’D:/Ddrive/koopm043/NL_heatmap/Wageningen/
radiation/augusthour/shadow_20140806_1500_LST.tif’)
elif hour == 16:
im = Image.open(’D:/Ddrive/koopm043/NL_heatmap/Wageningen/
radiation/augusthour/shadow_20140806_1600_LST.tif’)
elif hour == 17:
im = Image.open(’D:/Ddrive/koopm043/NL_heatmap/Wageningen/
radiation/augusthour/shadow_20140806_1700_LST.tif’)
elif hour == 18:
im = Image.open(’D:/Ddrive/koopm043/NL_heatmap/Wageningen/
radiation/augusthour/shadow_20140806_1800_LST.tif)
elif hour == 19:
im = Image.open(’D:/Ddrive/koopm043/NL_heatmap/Wageningen/
radiation/augusthour/shadow_20140806_1900_LST.tif’)
im = Image.open(’D:/UserData/koopm043/NL_heatmap/Wageningen/
radiation/august/shadow_20140826_1800_LST.tif’)
FF= FDATA[’FF’].iloc[t]
dd= FDATA[’dd’].iloc[t]
sunalt= FDATA[’sunalt’].iloc[t]
print (dd)

165

166

168

H.5. sytse/pet_calculate.py 191

if FF >= 1.5: #0-1bft
if dd <=45:
if sunalt > O:
im2 = Image.open(’D:/Ddrive/koopm043/NL_heatmap/Wageningen/
output/urban_morphology_25m_day_N_allign.tif’) #to do
else:
im2= Image.open(’D:/Ddrive/koopm043/NL_heatmap/Wageningen/
output/urban_morphology_25m_night_N_allign.tif’)
im3= Image.open(’D:/UserData/koopm043/NL_heatmap/Wageningen/
output/wind/wind_N.tif ’)
elif dd<135:
if sunalt > O:
if Nynke:
im2 = Image.open(’D:/Ddrive/koopm043/NL_heatmap/Wageningen/
Nynke/urban_morphology/
urban_morphology_25m_day_E_a11ign.tif’)
print (> Nynke ’)
else:
im2 = Image.open(’D:/Ddrive/koopm043/NL_heatmap/Wageningen/
output/urban_morphology_25m_day_E_allign.tif’) #to do
else:
im2 = Image.open(’D:/Ddrive/koopm043/NL_heatmap/Wageningen/
output/urban_morphology_25m_night_E_allign.tif’) #to do
print (’E ’,hour)
im3= Image.open(’D:/Ddrive/koopm043/NL_heatmap/Wageningen/output/
wind/wind_E.tif?)
elif dd<225:
if sunalt > O:
im2 = Image.open(’D:/Ddrive/koopm043/NL_heatmap/Wageningen/
output/urban_morphology_25m_day_S_allign.tif’) #to do
else:
im2= Image.open(’D:/Ddrive/koopm043/NL_heatmap/Wageningen/
output/urban_morphology_25m_night_S_allign.tif)
im3= Image.open(’D:/Ddrive/koopm043/NL_heatmap/Wageningen/output/
wind/wind_S.tif)
print (>S ’,hour)
elif dd<315:
if sunalt > 0:
im2 = Image.open(’D:/Ddrive/koopm043/NL_heatmap/Wageningen/
output/urban_morphology_25m_day_W_allign.tif’) #to do
else:
im2= Image.open(’D:/Ddrive/koopm043/NL_heatmap/Wageningen/
output/urban_morphology_25m_night_W_allign.tif’)
im3= Image.open(’D:/UserData/koopm043/NL_heatmap/Wageningen/output/
wind/wind_N.tif ?)
else:
if sunalt > 0:
im2 = Image.open(’D:/Ddrive/koopm043/NL_heatmap/Wageningen/
output/urban_morphology_25m_day_N_allign.tif’) #to do
else:
im2= Image.open(’D:/Ddrive/koopm043/NL_heatmap/Wageningen/
output/urban_morphology_25m_night_N_allign.tif’)
im3= Image.open(’D:/UserData/koopm043/NL_heatmap/Wageningen/
output/wind_N.tif)
else:
if sunalt > O:
im2 = Image.open(’D:/Ddrive/koopm043/NL_heatmap/Wageningen/
output/urban_morphology_25m_day_C_allign.tif’) #to do
else:
im2= Image.open(’D:/Ddrive/koopm043/NL_heatmap/Wageningen/
output/urban_morphology_25m_night_C_allign.tif’)

210

192 H. Original python code

im3= Image.open(’D:/UserData/koopm043/NL_heatmap/Wageningen/output/wind
/wind_C.tif?)

urban=np.array (im2)
Ta=urban[:]*FDATA[’UHImax ’].iloc [t]*FDATA[’diurn’].iloc[t]+T

Qgl= FDATA[’Q’].iloc[t]
Qdif= FDATA[’Qdif’].iloc[t]
sunalt= FDATA[’sunalt’].iloc[t]

rh=FDATA[’rh’].iloc[t]

Tw=T*np.arctan(0.15198*(rh+8.3137) **x0.5) +np.arctan(T+rh) -np.arctan(rh
-1.676) +0.0039184*rh**1.5*xnp.arctan (0.023101*rh) -4.686 #use station T

wind = ((np.array(im3)-0.125) *0.5829+0.125) *FF #substitutie S$.13 en S.14
wind [wind<0.5]=0.5 #minimum wind speed is 0.5 m/s
wind_temp=np.ravel (latarray[:]) ,np.ravel (lonarray[:]) ,np.ravel (wind)
wind_res=np.array (wind_temp) .transpose ()

np.savetxt (’D:/UserData/koopm043/NL_heatmap/Wageningen/verification/
wind_2aug2013_%s_0.5.csv’ Y (hour) ,wind_res,delimiter=’,’,fmt="%6.2f")

#1=sun O=shadow
PETsun does not exist at nighttime and a simpler routine is followed in
the night, i.e in the night PETshade is calculated everywhere
if Qgl > 0 and sunalt > 0: #QDir < 120W is shadow #beam
sun_temp = np.array(im)
sun=sun_temp [74:-6,90:1*(1-trees_2m)
np.savetxt (’D:/UserData/koopm043/NL_heatmap/Wageningen/radiation/sun.
tif ,ndvi_infr_2d,delimiter=’,’,fmt=’%5.3f’)

PETshade=(latarray[:],lonarray[:],-12.14+1.25%Ta[:]-1.47*np.log(wind
[:1)+0.060%Tw+0.015*xsvf [:]1*Qdif+0.0060*(1-svf[:]) *stef*(Ta
[:1+273.15) **4)*(1-sun[:]) *svf_mask[:]

PETveg=(latarray[:],lonarray[:],-13.26+1.25%Ta[:]+0.011*xQgl-3.37*np.log
(wind [:]1)+0.078*Tw+0.0055*Qgl*np.log(wind[:])+5.56*np.sin(sunalt
/360*2*np.pi) -0.0103*Qgl*np.log(wind[:]) *np.sin(sunalt/360%2*np.pi)
+0.546*xBveg+1.94*svf [:]) *mask_vegfral[:]J*sun[:]*svf_mask[:]

PETnoveg=(latarray[:],lonarray[:]1,-13.26+1.25*%Ta[:]1+0.011%Qgl-3.37*np.
log(wind[:])+0.078*Tw+0.0055*%Qgl*np.log(wind[:]) +5.56*np.sin(sunalt
/360*2*np.pi) -0.0103*Qgl*np.log(wind[:]) *np.sin(sunalt/360%2*np.pi)
+0.546*Bnoveg+1.94*svf [:]) *(1-mask_vegfral[:])*sun[:]*svf_mask[:]

PET_tiff=PETshade [2] +PETnoveg [2]+PETveg [2]
[cols,rows]=[np.shape (PET_tiff) [0] ,np.shape (PET_tiff) [1]1]

else:
PETshade=(latarray[:],lonarray[:],-12.14+1.25%Ta[:]-1.47*np.log(wind
[:1)+0.060*%Tw+0.015*%svf[:]*Qdif+0.0060*(1-svf[:])*stef*(Ta
[:1+273.15) **4) *xsvf _mask[:]

PET_tiff=PETshade [2]
[cols,rows]=[np.shape (PET_tiff) [0] ,np.shape (PET_tiff) [1]]

#create georeferenced Tiff
im= gdal.Open(’C:/Users/koopm043/NL_heatmap/avgPET_1july2015_Herw.tif’) #
pas op deze link is anders dan D:/Drive, dit bestand is verstuurd onder
onder Imme/Ddrive/koopm043/NL_heatmap
obj=im.GetRasterBand (1)
obj_array=obj.ReadAsArray ()

H.5. sytse/pet_calculate.py 193

driver = gdal.GetDriverByName ("GTiff")

outdata = driver.Create(’D:/Ddrive/koopm043/NL_heatmap/Wageningen/output2/
PET_2aug_tiff_Ys_test_Imme.tif’ %(hour), cols, 1, gdal.GDT_UInt16)

outdata = driver.Create(’D:/Ddrive/koopm043/NL_heatmap/Wageningen/output2/
PET_1July2015_Herw_12UTC.tif’> %(hour), rows, cols, 1, gdal.GDT_UInt16)
outdata = driver.Create(’D:/Ddrive/koopm043/NL_heatmap/Wageningen/output2/

PET_1July2015_Herw_12UTC.tif’> %(hour), cols, 1, gdal.GDT_Float32)
outdata.SetGeoTransform(im.GetGeoTransform()) ##sets same geotransform as
input
im= None
outdata.GetRasterBand (1) .WriteArray (PET_tiff)
outdata.FlushCache ()

rows,

rows,

MSE wind old

Listing I.1: MSE between blocksize 1 and blocksize 5 100x100 area

R~2 = 0.6411

Comparing the blocksize between 5 and 25 there was a high correlation with the 12 score of 0.973.

Listing I.2: MSE between blocksize 5 and blocksize 25 100x100 area

1 ’ R~2 = 0.973

But the accuracy of the data declines by comparing the blocksize between 1 and 25 there was a low corre-
lation with the 12 score of -0.04.

Listing I.3: MSE between blocksize 1 and blocksize 25 100x100 area

I ’ R~2 = 0.5923

Figure I.1: Trendline time data block size 5m

195

Dates 2023 Rotterdam

Figure J.1: Fig. T atmospheric temperature for Rotterdam in the months june till september 2023 (Data retrieved from KNMI [0000]
postprocessed by author)

197

198 J. Dates 2023 Rotterdam

Figure J.2: The two dates for 2023

(a) 9:00 (b) 12:00

(c) 15:00 (d) 18:00

Figure J.3: Output files on research area 25th of Junest 2023.

199

(a) 9:00 (b) 12:00

(c) 15:00 (d) 18:00

Figure J.4: Output files on research area 28th of JuneSt 2023.

10

Walkability analysis

Application network betweeness

To analyze the most frequently used routes, we will use angular choice analysis on the street network of
Bospolder Tussendijken, which was generated by the tool developed by [Stavroulaki et al., 2019]. Angular
choice analysis is a method used to identify the most commonly used paths based on their geometry. First,
we need to normalize the data to highlight the importance of different routes and the urgency of using those
paths. We will consider a distance of 500 meters as a neighborhood distance, which represents the distance an
elderly person can walk within 15 minutes. For a regular person, a distance of 1000 meters will be considered,

and for a biking distance of 15 minutes, a distance of 2500 meters will be used.

[language=SQL, caption={SQL statement for angular choice}, label=1st:casel]

CASE

when ("ac_500_norm" > "ac_1000_norm" AND "ac_500_norm"

then ’local’

> "ac_2500_norm")

when ("ac_2500_norm" > "ac_500_norm" AND "ac_2500_norm" > "ac_1000_norm")

then ’city’

when (abs("ac_1000_norm" - "ac_2500_norm") <= 0.02) then ’intermediate’

when ("ac_500_norm" < 0.1 AND "ac_1000_norm" < 0.1 AND
0.1) then ’irrelevantlocal’?

else ’overig’

END

"ac_2500_norm" <

Determining the orientation of the streets

For determining the orientation of the streets the TOPNL [Kadaster, 2024] will be used. Next to this an excel

table is linked to the names of the streets by a join by field attribute:

Listing K.1: SQL statement for orientation streets

CASE

WHEN >= 337.5 OR < 22.5 THEN
WHEN >= 22.5 AND < 67.5 THEN
WHEN >= 67.5 AND < 112.5 THEN
WHEN >= 112.5 AND < 157.5 THEN
WHEN >= 157.5 AND < 202.5 THEN
WHEN >= 202.5 AND < 247.5 THEN
WHEN >= 247.5 AND < 292.5 THEN
WHEN >= 292.5 AND < 337.5 THEN
ELSE NULL

END

201

202 K. Walkability analysis

By adding an additional table with the Height Width ratios of the streets there could be a determination if the
solution ought to be sought in the public space or could be transformed by the architecture of buildings.

Figure K.1: Orientation map and H/W ratio buildings

Determining the attraction betweeness of certain locations in order to determine the
streets to interfere in

As a guiding tool which routes are used the most based on dwellings and their destination points, the follow-
ing procedure is set up to count the amount of shortest paths on line segments. The line segments network
are from Dataset: Basic Topography Registration (BRT) TOPNL [Kadaster, 2024] . The set-up is as follows:

10

203

1 Bag dwellings create centroid points

2 QGIS network analysis shortest path for all the dwellings towards the
preferred location

A. Explode lines

Al1. Clean from A the multiple geometries > buffer 1m with 0.1 tolerance (
buffer hull)

- Bufferhul create new attribute buffered \$id

3 Then A \& Al intersect by location

- Virtual layer with bufferid from Al

- Virtual layer with buffer count how many times A is intersected in Al

- In python a table is created with how many times A is in Al matching
bufferid with count

4 Then link buffercount and bufferid to geometry A1l.

Figure K.2: Attraction betweeness market containing line segment pieces with more than 1000 dwellings as shortest path route

	flowchartmariekee
	flowchartsytseee.drawio
	thesis2_mariekevanesch
	Abstract
	Acknowledgments
	Preface
	Introduction
	Health at risk
	Heat mitigation research and action in the Netherlands
	Research gap
	Research aim
	Academic Value of the Research
	Social Relevance of the Research
	Research questions
	Structure of the report

	Thermal comfort models
	Positioning heat stress models
	Conclusions

	Thermal comfort software
	Requirements
	Thermal comfort software models
	Conclusion

	Physiological Equivalent Temperature (PET) model
	Physical model
	Reproducability paper code guidelines koopmans2020

	PETs simulator
	Computational workflow
	PET simulator
	User interface

	Physiological Equivalent Temperature verification
	Wind direction
	Block size
	Block size comparison 1000x1000 research area
	Frontal area
	Scalability
	Calibration of the code

	Physiological Equivalent Temperature application
	PET calculation
	Applications
	Testing the design interventions

	PETs evaluation
	Reproducability
	Assessment reproducability.

	Discussions and limitations
	Discussion
	Limitations

	Conclusions
	Sub research questions answered
	Conclusion
	Additional Points of Growth from this Research
	Conclusion joint degree

	Future research
	Points of improvement
	Transferability of the Research

	Symbols
	Python code
	python/pet_parameters.py
	python/geotiff_creator.py
	python/pysolar1.py
	python/get_svf.py
	python/fraction_area_buildings_treeregr.py
	python/ndvi_infr_large.py
	python/vegetation_footprints.py
	python/skyview_footprints.py
	python/urban_heat.py
	python/pet_calculate.py
	python/pet_simulator.py

	Users manual
	Extended research area eastern wind Wageningen
	Extended research area eastern wind Rotterdam
	Diurnal table
	Additional concept figures
	Original python code
	sytse/fraction_area_buildings_treeregr.py
	sytse/ndvi_infr_large.py
	sytse/vegetation_footprints.py
	sytse/skyview_footprints.py
	sytse/pet_calculate.py

	MSE wind old
	Dates 2023 Rotterdam
	Walkability analysis

