
Mengying Chen
2024

MSc thesis in Geomatics

Formalizing land
indicators for SDGs:
Implementation and
evaluation using
international standards

MSc thesis in Geomatics

Formalizing land indicators for SDGs:
Implementation and evaluation using

international standards

Mengying Chen

October 2024

A thesis submitted to the Delft University of Technology in
partial fulfilment of the requirements for the degree of Master

of Science in Geomatics

Mengying Chen: Formalizing land indicators for SDGs: Implementation and evaluation using
international standards (2024)
cb This work is licensed under a Creative Commons Attribution 4.0 International License.
To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/.

The work in this thesis was carried out in the:

Geo-Database Management Centre
Delft University of Technology

Supervisors: Eftychia Kalogianni
Professor dr. Peter van Oosterom

Co-reader: Assistant Professor dr. Javier Morales Guarin

http://creativecommons.org/licenses/by/4.0/

Abstract

This thesis explores the integration of the Land Administration Domain Model (LADM) with
Sustainable Development Goal (SDG) indicator 1.4.2, which focuses on land tenure security
and the availability of legal documentation. The primary objective is to design and imple-
ment a dynamic database system that simulates real-world land administration changes over
time, incorporating the complexities of land rights transfers, party relationships, and spa-
tial units. The research leverages PostgreSQL and PostGIS to create a flexible and scalable
system capable of managing temporal data and generating SDG 1.4.2 reports.

Through the use of multiple constraints and custom functions, the system ensures data
integrity while dynamically tracking changes in land tenure and ownership. Testing was
conducted using simulated datasets across three years, which modeled evolving land rights,
population changes, and administrative updates. The results were validated by comparing
manual calculations with the system’s automated outputs, demonstrating the accuracy and
reliability of the approach.

The findings highlight the potential of using LADM in SDG indicator calculations and
demonstrate the system’s ability to handle complex, multi-dimensional land administra-
tion scenarios. However, limitations such as the use of artificial data and a focus solely on
SDG 1.4.2 suggest that further work is needed to validate the model with real-world data
and expand its application to other SDG indicators and land-related policies. This thesis
contributes to the ongoing efforts to modernize land administration systems and provides a
scalable solution for tracking land tenure security in line with global sustainability goals.

v

Acknowledgements

I would like to express my heartfelt gratitude to Peter and Eftychia. Collaborating with
and being guided by them has truly been the luckiest part of my journey studying abroad.
Our work on SDGs and LADM began over a year ago during the HPM project, when I
didn’t even know what LADM was. Faced with lengthy ISO documents full of specialized
terminology, I felt completely lost. However, Peter and Eftychia were always patient and
supportive, answering my questions during every meeting without ever making me feel
that my queries were silly. My learning attitude and habits have been reshaped significantly
through working with them. I deeply admire Peter’s research approach—his passion for
LADM is truly remarkable! His mastery and understanding of knowledge are unparalleled.
No matter what ideas I brought forward, Peter always supported me and provided valuable
suggestions.

With the encouragement of Peter and Eftychia, I had the opportunity to present at inter-
national conferences, publish articles in journals, and exchange ideas with other scholars.
Through these experiences, I discovered my true passion for research. I realized how much
I enjoy exploring new knowledge, sharing my thoughts with others, and presenting my
work. I am deeply thankful to Peter for providing me with these opportunities, which
allowed me to uncover my true interests.

The journey of writing this thesis was not without its challenges. I faced several hurdles,
from changing my research topic to unexpected withdrawal of data from the provider, as
well as balancing this thesis with the demands of my second master’s degree. The pressure
was overwhelming at times, but Peter and Eftychia consistently supported me. They helped
me identify my priorities and find ways to maximize my time and energy efficiently.

I also feel extremely fortunate to have had the opportunity to study at TU Delft. The friend-
ships I formed, the professors I learned from—I will deeply miss this period of my life. I
sincerely hope to return to TU Delft in the future.

vii

Contents

1. Introduction 1
1.1. Motivation . 1
1.2. Research objective . 2
1.3. Thesis outline . 3

2. Background 5
2.1. Sustainable Development Goals . 5
2.2. Land Administration and ISO 19152 LADM . 9
2.3. Previous Research Overview . 12

3. Methodology 15
3.1. Research Approach Overview . 15
3.2. Linking LADM and SDGs Using the Four-Step Method 15
3.3. Transition from Conceptual to Physical Model 18
3.4. Conceptual Model for SDG Indicator 1.4.2 . 20

4. Implementation 25
4.1. Overview of Tools Used . 25
4.2. Custom Data Types and Constraints Implementation 26
4.3. Functions and Triggers for Complex Constraints 42
4.4. Functions for Calculation . 48
4.5. Views and Report Generation . 53

5. Testing 57
5.1. Test Dataset Design . 57
5.2. Comparison of Automated and Manual Calculations 60
5.3. Validation of Constraints through Invalid Data Testing 67

6. Conclusion 73
6.1. Research overview . 73
6.2. Contribution . 75
6.3. Limitations . 75
6.4. Future work . 76

A. Reproducibility self-assessment 79
A.1. Marks for each of the criteria . 79
A.2. Self-reflection . 79

B. Complete SQL code 81
B.1. Create Tables . 82
B.2. Create Constraints . 87
B.3. Create Functions . 94
B.4. Test Data . 108

ix

List of Figures

1.1. LADM as a base to support the SDGs, adapted from [Unger et al., 2021] 2

2.1. The 17 Sustainable Development Goals . 5
2.2. A global land administration perspective promotes sustainable development

through efficient land markets and effective land management. [Enemark et al.,
2005] . 7

2.3. The four basic components of land administration [Steudler et al., 2004] 9
2.4. Basic classes of the core LADM [for Standardization , ISO] 10
2.5. the Social Tenure Domain Model (STDM) [Global Land Tool Network, 2014] . 11
2.6. Land administration paradigm and LADM scope ([Kara et al., 2024]; adapted

from [Williamson et al., 2006]). 11
2.7. LADM Edition II Parts 1-5 ([Kalogianni et al., 2023]). 12

3.1. Workflow for Transition from Conceptual Model to Physical Data Model. . . 15
3.2. The Four-Step Method. [Chen et al., 2024] . 16
3.3. Keyword extraction for SDG 1.4.2. 21
3.4. UML Class Diagram for SDG Indicator 1.4.2 Based on the LADM Model). . . 24

4.1. LA Party Class for SDG Indicator 1.4.2 . 35
4.2. Inheritance Relationships in Class LA Party . 36
4.3. Inheritance of Temporal Attributes from VersionedObject in LADM 37
4.4. Association Relationships Between Class LA Party and LA Right 39
4.5. VersionedObject UML Diagram with Lifespan Continuity Constraint 43
4.6. Fraction Data Type Constraints in UML diagram 44
4.7. Share Sum Constraint of LA Right in UML diagram 45
4.8. Multiplicity constraints between LA Party and LA GroupParty in UML 46
4.9. Constraints for VersionedObject and LA Source in UML 47
4.10. Pseudocode of Method countAdult in UML . 48
4.11. Pseudocode of Method computeProportionWithLegalDocumentation in UML 50
4.12. Tables joined diagram for SDG 1.4.2(a) . 51
4.13. Tables joined diagram for SDG 1.4.2(b) . 53
4.14. Pseudocode of Method SDG 1 4 2 Report in UML 54

5.1. Calculation of the percentage of legal land document holdings within the
Complete Test Area in 2000 . 61

5.2. Calculation of the percentage of of adults who perceive their tenure rights as
secure within the Complete Test Area in 2000 62

5.3. Final Report View within the Complete Test Area in 2000 62
5.4. Final Report View within the Complete Test Area in 2001 63
5.5. Final Report View within the Complete Test Area in 2002 64
5.6. Multi-level Governance SDG Report Visualization for Combined and Sub-

regions . 65

xi

List of Figures

5.7. Key SDG Report Maps for Regions 50001 and 50002 66
5.8. Error message caused by check version lifespan continuity constraint 68
5.9. Error message caused by denominator equal to 0 68
5.10. Error messages caused by numerator greater than denominator 69
5.11. Error message due to NULL share value . 69
5.12. Error message due to negative denominator . 70
5.13. Error message due to a group with only one member 70
5.14. Error message due to inconsistency between LA AdministrativeSource infor-

mation and LA Right . 71

A.1. Reproducibility criteria to be assessed. 79

xii

List of Tables

3.1. Attributes added to SDG 1.4.2 UML from an existing LADM class. 23

4.1. Mapping of LADM Attributes to Database Data Types. 30
4.2. Mapping UML Components to SQL Representations 34

xiii

Acronyms

SDGs Sustainable Development Goals . 1
LADM ISO 19152 Land Administration Domain Model 1
MDGs Millennium Development Goals . 5
SDI spatial data infrastructure . 7
DILRMP Digital India Land Records Modernization Programme 8
LRCP Rural Land Registration and Certification Project 8
UML Unified Modeling Language . 10
STDM Social Tenure Domain Model . 11
EA Enterprise Architect . 26
DDL Data Definition Language . 26
DBMS Database Management System . 25

xv

1. Introduction

1.1. Motivation

Land administration plays a crucial role in achieving the Sustainable Development Goals
(SDGs). Effective land administration provides a framework that enhances agricultural sus-
tainability and socio-economic growth by ensuring the clarity and protection of land rights,
thereby reducing land disputes and improving agricultural productivity [Williamson et al.,
2010]. Especially in areas facing environmental change and climatic pressures, as demon-
strated by sustainable agricultural management practices in Central African Congo Basin
countries by [Molua, 2014]. Moreover, sustainability in the land sector is essential to the
successful implementation of multiple SDGs, especially at the national level, where land
administration policies and actions play a key role in the realisation of these goals [Gao
and Bryan, 2017]. Land administration provides the necessary technical, institutional and
organisational support through capacity building in forest management [Carlson et al., 2015;
Katila et al., 2020], agriculture and land restoration [Chigbu, 2023], which provides a global
sustainable development a solid foundation [Bloomfield et al., 2018]. Through effective land
use planning and management, land administration can also contribute to reducing environ-
mental degradation, protecting ecosystems, and advancing the environmental sustainability
objectives of the SDGs.

Monitoring the SDGs is a critical component in assessing global progress toward these goals.
It not only facilitates the evaluation of national advancements in sustainable development
but also identifies gaps and challenges specific to certain targets and indicators, thereby
providing policymakers with scientific evidence to optimize resource allocation. However,
globally, the monitoring of SDG progress faces a number of challenges, such as the lack and
inconsistency of data [Tuholske et al., 2021], the gap between localisation and globalisation
indicators [Chen et al., 2020], and the lack of harmonised monitoring tools. These challenges
make it difficult to accurately assess SDGs progress at the global and local levels. Formal-
ized and standardised indicators present a robust solution to these issues [Unger et al.,
2021]. Firstly, it ensures consistency and clarity, reducing ambiguity in indicator definitions
and calculations, and facilitating clear communication among stakeholders. Secondly, it en-
hances comparability, allowing for consistent comparison across different regions and time
periods. Thirdly, it improves efficiency, enabling automated data processing and indicator
calculation, thus saving time and resources. Finally, it ensures accuracy, providing a more
precise representation of progress towards SDG targets.

In this context, the ISO 19152 Land Administration Domain Model (LADM) [?] offers a
comprehensive framework for land administration that can significantly enhance the mea-
surement and monitoring of SDGs. Its key components—such as LA Party, LA SpatialUnit,
and LA RRR—are widely used in various aspects of land rights, land use and resource
management, as shown in Fig.1.1. In the formalisation and standardisation of SDG indi-
cators, the LADM helps governments and international organisations maintain consistency

1

1. Introduction

Figure 1.1.: LADM as a base to support the SDGs, adapted from [Unger et al., 2021]

in the collection and analysis of land-related data by providing consistent definitions and
structures.

1.2. Research objective

The primary objective of this research is to explore the specific ways in which the ISO 19152
LADM can be implemented to support the formalization and standardization of land-related
indicators within the SDGs. By validating whether the LADM framework can optimize the
calculation and representation of these indicators, the study seeks to ensure their accuracy,
consistency, and applicability across diverse regions and timeframes. The research focuses
on how LADM, through its standardized structure—particularly in terms of data mapping,
indicator calculation, and result comparison—can effectively support the formalization and
standardization of SDG 1.4.2.

1.2.1. Research question

The main research question guiding this study is: ”How can the ISO 19152 Land Admin-
istration Domain Model (LADM) be implemented to support the formalization and stan-
dardization of land-related Sustainable Development Goals (SDGs)?” This question will be
explored by analyzing the alignment between LADM’s standardized structure and the re-
quirements for accurate SDG indicator monitoring, particularly in terms of data mapping,
indicator calculation, and results comparison with existing reports.

To support the main research question, the following subquestions are proposed:

1. How can the conceptual model for SDG 1.4.2 be developed based on its metadata?

2. How can the conceptual model for SDG 1.4.2 be effectively translated into a physical
database implementation?

2

1.3. Thesis outline

3. What added value does this approach bring to the overall monitoring and evaluation
of SDG indicators?

1.2.2. Scope

This research focuses on SDG indicator 1.4.2, which is particularly suitable for demonstrating
the applicability of the LADM due to its two sub-indicators. The first sub-indicator, related
to legally recognized documentation, can be fully expressed using the LADM framework,
while the second sub-indicator, related to the perceived security of land tenure, requires an
external class for support. By focusing on this indicator, the study examines the ability of the
LADM to handle both legal and perceptual aspects of land tenure across a range of scenarios,
providing insights into its broader applicability in other land-related SDG indicators.

Given the sensitivity of cadastral data, the study utilizes synthetic data, generated to model
general cases without specific or exceptional characteristics. This approach ensures that
the findings remain relevant across diverse geographic contexts while avoiding the use of
sensitive or confidential data. The process of data generation and its application is de-
tailed in later chapters, ensuring transparency and replicability in the modeling and analysis
stages.

1.3. Thesis outline

The thesis is organized as follows:

Chapter 2 provides a comprehensive review of the background and related work in the field
of land administration and sustainable development. It explores the foundational concepts
of the LADM, its applications in various land administration processes, and its role in the
formalization of SDGs indicators. The chapter also discusses previous studies that have
implemented LADM for land management and highlights the research gaps that this thesis
aims to address.

Chapter 3 details the methodology used in the research. It describes the transition from
the conceptual model of LADM to a physical data model implemented in PostgreSQL. It
explains the structure and key components of the physical data model, including the use of
custom data types and standardized code lists. The chapter also covers the implementation
of specific functions and triggers needed to ensure data consistency and facilitate indicator
calculation. This section concludes with the process of mapping synthetic data to the LADM
model and describes the calculation methods used for SDG indicator 1.4.2.

Chapter 4 presents the results of applying the LADM-based framework to SDG 1.4.2. It dis-
cusses the testing dataset, designed to simulate dynamic changes in land tenure, ownership,
and administrative updates over time. The results of the automated system calculations
are compared with manual computations to validate accuracy. The chapter also provides
a detailed analysis of the system’s performance in handling different temporal and spatial
scenarios and discusses the reliability and accuracy of the approach.

Chapter 5 summarizes the findings of the research, highlighting the contributions made
to the field of land administration and the monitoring of SDG indicators. It discusses the
potential of the LADM framework for enhancing the formalization and standardization of

3

1. Introduction

land-related indicators. The chapter also identifies limitations encountered during the re-
search, such as the reliance on synthetic data, and proposes directions for future work,
including the application of the model to real-world data and additional SDG indicators.

4

2. Background

2.1. Sustainable Development Goals

The SDGs were adopted by the United Nations in 2015 as a global development agenda
aimed at achieving balanced progress in economic, social, and environmental dimensions
by 2030 [Cf, 2015]. As shown in Fig 2.1, the SDGs consist of 17 goals and 169 targets,
addressing a wide range of issues such as poverty eradication, hunger elimination, health
and well-being promotion, quality education, gender equality, access to clean water and
sanitation, economic growth, reducing inequalities, and climate action [Morton et al., 2017].
These goals reflect the core aspirations of global sustainable development, urging not only
national governments but also various sectors of society to contribute to a comprehensive
transformation across social, economic, and environmental domains.

Compared to their predecessor—the Millennium Development Goals (MDGs), which pri-
marily targeted developing countries—the SDGs are more broadly inclusive and clearly
defined [Sachs, 2012]. The SDGs were introduced at the 2012 United Nations Conference on
Sustainable Development, where they received unanimous support from all 193 UN mem-
ber states, as well as a wide array of non-governmental organizations. Unlike the MDGs,
the SDGs emphasize universal applicability, addressing challenges faced by countries at all
levels of development.

2.1.1. SDGs Indicators

To effectively monitor and evaluate the progress of the Sustainable Development Goals, a
comprehensive indicator framework was established. These SDG indicators serve as mea-

Figure 2.1.: The 17 Sustainable Development Goals

5

2. Background

surable benchmarks for governments, international organizations, and other stakeholders to
track progress on the 17 overarching goals and 169 specific targets. Each indicator quantifies
progress toward addressing the social, economic, and environmental challenges outlined in
the SDGs, ensuring a data-driven approach to sustainable development [Hák et al., 2016].

As of 2024, there are 248 indicators (231 unique ones), categorized into three tiers based on
the development of methodologies and the availability of global data [Global SDG Indica-
tors, 2024]. Tier I indicators have established methodologies and are regularly reported by
countries, Tier II indicators have methodologies but lack comprehensive data, while Tier III
indicators initially lacked standardized methodologies but have been fully addressed, with
no Tier III indicators remaining as of March 2024. The indicators are not unchangeable [Kim,
2023; Diaz-Sarachaga et al., 2018]. The Inter-agency and Expert Group on SDG Indicators
(IAEG-SDGs) is responsible for developing and annually reviewing these indicators, de-
termining if replacements, revisions, deletions, or additional indicators are needed [Lyy-
timäki, 2019]. National and local governments use these indicators to assess their progress
in sustainable development and report their findings through voluntary national and local
reviews [Schmidt-Traub et al., 2017].

Each SDG indicator comes with a metadata file, which serves as a critical document for
understanding the indicator. These metadata files include key sections such as ”Indicator
Information,” ”Data Reporter,” ”Definition, Concepts, and Classifications,” ”Data Source
Type and Collection Method,” ”Other Methodological Considerations,” ”Data Availability
and Disaggregation,” ”Comparability/Deviation from International Standards,” and ”Ref-
erences and Documentation.” Specifically:

• Indicator Information outlines the update date of the indicator, corresponding SDG
goals, targets, and any related indicators.

• Data Reporter identifies the organizations responsible for reporting and monitoring
the indicator.

• Definition, Concepts, and Classifications is one of the most important sections, as
it defines key terms and measurement criteria, explaining how the indicator is con-
structed, its scope, and any specific classifications used.

• Data Source Type and Collection Method describes the types of data sources (e.g.,
surveys, censuses) and methods used for collecting the data, specifying any involved
administrative or national statistical systems.

• Other Methodological Considerations addresses key rationales, limitations, and in-
cludes specific formulas used in the indicator’s computation.

• Data Availability and Disaggregation covers data availability, timeliness, and sugges-
tions on how to disaggregate the data (e.g., by gender or region), providing guidance
for reporting classifications.

• Comparability/Deviation from International Standards evaluates any discrepancies
between national and international reporting standards.

• References and Documentation lists key resources, methodologies, and international
frameworks guiding the implementation of the indicator.

6

2.1. Sustainable Development Goals

SDG metadata files are crucial for guiding data collection and ensuring consistent applica-
tion of methodologies across diverse contexts. It’s important to note that the compilation of
SDG indicator metadata files involves various entities, leading to differences in detail and
update frequency.

2.1.2. SDGs Related to Land Administration

As shown in Figure 2.2, land administration plays a critical role in achieving multiple SDGs.
It directly impacts economic growth, social equity, and environmental sustainability. Effec-
tive land administration ensures secure property rights, promotes responsible land use, and
facilitates efficient land markets, all of which are vital for economic growth. Additionally, it
supports environmental sustainability by fostering land-use practices aligned with ecologi-
cal conservation objectives. Through good governance and spatial data infrastructure (SDI),
land administration strengthens decision-making processes, and ensures that development
policies are inclusive, transparent and equitable, which is essential for achieving social eq-
uity [Williamson et al., 2010].

Figure 2.2.: A global land administration perspective promotes sustainable development
through efficient land markets and effective land management. [Enemark et al., 2005]

Specifically, several specific SDGs are closely tied to land administration. For SDG 1 (No
Poverty) [Lawlor et al., 2019], secure land tenure and equitable land distribution empower
individuals by providing them with economic assets, contributing to poverty reduction. In
the context of SDG 2 (Zero Hunger) [Mengesha et al., 2022], well-defined land rights en-
hance agricultural productivity and ensure food security through sustainable farming prac-
tices. SDG 5 (Gender Equality) benefits from land administration by promoting equal land
ownership for women, which fosters economic empowerment and reduces gender-based
inequalities [Agarwal, 2018; Feyertag et al., 2021; Namubiru-Mwaura, 2014]. Furthermore,
for SDG 11 (Sustainable Cities and Communities), effective urban land governance supports
sustainable urbanization and resilient city planning [Mudau et al., 2020]. In terms of SDG
13 (Climate Action), sustainable land management practices help mitigate the impacts of
climate change and promote environmental resilience [Matsumoto et al., 2019]. Lastly, SDG
15 (Life on Land) is advanced by secure land tenure, which is essential for forest conserva-
tion, combating desertification, and preserving biodiversity [Mengesha et al., 2022]. These

7

2. Background

linkages underscore the fundamental importance of land administration in achieving the
economic, social, and environmental dimensions of sustainable development.

Building on these crucial connections between land administration and specific SDGs, global
experiences further illustrate how innovative land administration policies and practices have
successfully advanced sustainable development in various contexts:

1. Optimizing Land Management through Technology to Support Urban Development
and Environmental Protection:
Some countries have leveraged advanced cadastral systems and SDI to optimize land
use, supporting sustainable urban development and environmental protection. For
example, the Netherlands has successfully promoted SDG 11 (Sustainable Cities and
Communities) and SDG 13 (Climate Action) through its well-developed cadastral sys-
tem and SDI [Indrajit, 2019]. Similarly, Germany has implemented a Land Degradation
Neutrality policy, promoting sustainable land and soil management, which supports
SDG 15 (Life on Land) [Wunder et al., 2018].

2. Enhancing Land Tenure Security and Digital Management to Support Poverty Reduc-
tion and Economic Development:
Several developing countries have improved economic development and social eq-
uity through digital land management and land tenure registration. For example,
India’s Digital India Land Records Modernization Programme (DILRMP) has digitized
land records, reducing disputes and supporting SDG 1 (No Poverty) and SDG 2 (Zero
Hunger) [Choudhury and Behera, 2017]. In Ethiopia, the Rural Land Registration and
Certification Project (LRCP) has enhanced land tenure security, promoting SDG 1, SDG
2, and SDG 5 (Gender Equality) [Mengesha et al., 2022]. Rwanda’s national land reg-
istration project has improved economic conditions in rural areas, advancing SDG 8
(Decent Work and Economic Growth) and SDG 10 (Reduced Inequalities) [Bizoza and
Opio-Omoding, 2021; Tan et al., 2021].

3. Addressing Climate Change and Ecosystem Protection through Innovative Land Ad-
ministration:
Land administration plays a critical role in addressing climate change and protect-
ing ecosystems. In Brazil, the Amazon Fund has enforced strict land management
to reduce illegal logging and deforestation, supporting SDG 13 (Climate Action) and
SDG 15 (Life on Land) [Stabile et al., 2020]. Similarly, Greece’s Fit-for-Purpose Land
Administration has improved land management efficiency, promoting land tenure se-
curity and environmental sustainability in urban areas, supporting SDG 1, SDG 2, and
SDG 15 [Kalfas et al., 2023].

4. Using Technology and Policy to Secure Rights to Unregistered Land, Promoting Social
Equity and Environmental Protection:
Some countries have used technology and policy to secure the rights of unregistered
landholders, promoting social equity and environmental protection. For instance,
Kenya has employed remote sensing technology to secure rights to unregistered land,
supporting SDG 1 (No Poverty) and SDG 15 (Life on Land) [Koeva et al., 2020]. In
sub-Saharan Africa, land management has been key in addressing climate change and
ensuring food security, driving progress towards multiple SDGs [Mbow, 2020]. South-
east Asian countries have incorporated land management into their SDG frameworks,
particularly in promoting economic growth and social equity [Tirumala and Tiwari,
2022].

8

2.2. Land Administration and ISO 19152 LADM

These practices demonstrate that land administration plays a critical role in fostering bal-
anced development between economic growth, environmental protection, and social eq-
uity.

2.2. Land Administration and ISO 19152 LADM

Land administration is fundamental to securing land tenure, promoting sustainable land
use, and supporting socio-economic development. The adoption of standardized frame-
works, such as ISO 19152, commonly known as the Land Administration Domain Model
(LADM), enhances the efficiency and interoperability of land administration systems by
providing a unified structure for managing land-related information across various jurisdic-
tions. This section provides an overview of land administration processes and LADM.

2.2.1. Overview of Land Administration

Land administration refers to the processes involved in determining, recording, and dissem-
inating information about land ownership, value, and use, all to implement land manage-
ment policies. It focuses on managing land tenure (ownership), land value (taxation and
valuation), land use (planning), and land development (infrastructure) [Williamson et al.,
2010] which is shown in Figure 2.3. The land administration system(LAS) provides the
infrastructure for implementing land policies and strategies. It includes institutional ar-
rangements, legal frameworks, standards, processes, and technologies for managing land
tenure, value, use, and development [Steudler et al., 2004].

Figure 2.3.: The four basic components of land administration [Steudler et al., 2004]

It is important to distinguish land administration from land management and cadastre, as
these terms are often used interchangeably but have differences. Land management en-
compasses the broader set of policies, strategies, and processes aimed at the sustainable
utilization of land resources. It involves decision-making about how land is used, man-
aged, and developed, often at the policy and strategic levels, and focuses on ensuring that
land resources meet the current and future needs of society, the economy, and the environ-
ment [Dale and McLaughlin, 2000]. The cadastre or cadastral system is an important part
of land management and is a specialised land information system. It records detailed infor-
mation about parcels of land, including their boundaries, ownership and value, and is used
to determine who owns what land, where, when and how. Cadastres can be multi-purpose,
combining judicial, fiscal and regulatory elements. Cadastral systems provide a spatial basis

9

2. Background

for land administration by mapping and registering land units to ensure the legal security
of tenure [Hull et al., 2020]. While cadastral systems typically focus on spatial data and
property boundaries, land administration is broader in scope, encompassing not only the
cadastre but also the legal, institutional and operational processes that govern land tenure
and use.

LAS can be broken down into four main functions: land tenure, land value, land use, and
land development (Figure 2.2. Land tenure refers to the recording and protection of land
rights, ensuring individuals or entities have secure and recognized claims to land. Land
value involves the assessment and taxation of land based on its market worth, providing a
revenue base for governments and contributing to equitable resource allocation. Land use
focuses on planning and regulating how land is utilized, ensuring alignment with broader
social, environmental, and economic goals. Land development governs the construction and
infrastructure projects on land, ensuring sustainable growth and urbanization [Bennett et al.,
2012].

Despite the critical importance of land administration, many countries continue to experi-
ence difficulties in implementing LAS. Outdated land records, inconsistent data and limited
access to land information are common problems, especially in developing countries. In
addition, the land rights of marginalised communities are often not formally recognised,
leading to insecurity and conflict [Bennett et al., 2021]. To address these issues, international
standards, such as ISO 19152, have been developed to provide a structured framework for
land administration to guide the modernisation of land governance systems and to ensure
that they meet global standards of efficiency, transparency and equity.

2.2.2. Introduction to ISO 19152 LADM

The Land Administration Domain Model (LADM) is an international standard designed
to represent the relationships between people and land by offering a common vocabulary
(ontology) and a formal language, namely Unified Modeling Language (UML) [ISO, 2012].
The basic classes of the core LADM are shown in Figure 2.4 LADM plays a key role in
improving interoperability between different land management systems and ensuring that
the same terminology and data structures are used globally.

Figure 2.4.: Basic classes of the core LADM [for Standardization , ISO]

The LADM has been widely embraced by international organizations, such as the United
Nations [Enemark et al., 2016] and the World Bank, providing a unified framework for di-
verse stakeholders, including land surveyors [Aditya et al., 2021], land registrars [BECK
et al., 2021], and land managers [Lisjak et al., 2021]. To date, approximately ten countries,

10

2.2. Land Administration and ISO 19152 LADM

such as Scotland, Indonesia, and Colombia, have either implemented or are in the process
of incorporating LADM into their land administration systems. Additionally, over fifteen
countries have adopted the Social Tenure Domain Model (STDM) [Augustinus, 2010], a re-
lated model focused on informal tenure and also a specialisation of the LADM [Lemmen,
2010], shown in Figure 2.5.

Figure 2.5.: the Social Tenure Domain Model (STDM) [Global Land Tool Network, 2014]

Released in 2012 as ISO 19152, LADM Edition I aimed to standardize land administra-
tion systems by providing a common language and framework. It is limited to the land
tenure component of the land administration paradigm (see the grey circle in Figure 2.6).
Its primary goal is to ensure interoperability between different land administration systems,
allowing various stakeholders to manage and exchange land information effectively. LADM
Edition II aims to extend the scope of Edition I to include land value, land use and land
development (red circle in Figure 2.6 [ISO, 2019]).

Figure 2.6.: Land administration paradigm and LADM scope ([Kara et al., 2024]; adapted
from [Williamson et al., 2006]).

11

2. Background

Currently, LADM Edition II is under development, incorporating feedback and technologi-
cal advancements since the first edition. This revision was prompted by the 2017 UN-GGIM
Expert Group Meeting, which highlighted the need for an updated version to better sup-
port tenure security and expand land administration coverage. The new edition includes
extensions for marine cadastre, 3D/4D cadastres, and refined handling of temporal aspects
and RRR (rights, restrictions, responsibilities). It also aims to align with emerging tech-
nologies such as blockchain, AI, and SDI. This edition will consist of six parts (Figure 2.7),
each addressing specific aspects of land administration. Part 1 offers the overall frame-
work, while Part 2 expands 3D spatial profiles, and Part 3 integrates maritime concepts with
land administration. Part 4 covers land valuation, Part 5 focuses on spatial planning, and
Part 6 provides guidelines for implementation, emphasizing collaboration with the Open
Geospatial Consortium (OGC).The first part of Edition II was recently published [for Stan-
dardization , ISO]. The need for improved interoperability with other standards, enriched
RRR definitions, enhanced survey models, and more detailed spatial unit representations,
including legal spaces in buildings, are key areas addressed in this edition.

Figure 2.7.: LADM Edition II Parts 1-5 ([Kalogianni et al., 2023]).

2.3. Previous Research Overview

In recent years, there has been increasing recognition of the importance of land administra-
tion and its role in supporting the SDGs. As an international standard, LADM primarily
deals with managing rights, restrictions, and responsibilities in land administration sys-
tems, with the core aim of promoting interoperability between land information systems
across different countries and regions.

In terms of standardisation research, Stubkjær et al. [2018] highlighted the importance of
LADM’s code list management in internationalisation, especially in terms of multilingual
support and semantic relations, which are factors that must be taken into account when
LADM is applied globally. Similar studies have also shown that the formalisation of code

12

2.3. Previous Research Overview

lists plays a key role in ensuring LADM implementation across jurisdictions and helps to
reduce technical barriers due to regional differences [Kara et al., 2022]. Alattas et al. [2018b]
developed a database model for indoor navigation by integrating LADM with IndoorGML.
Their study addressed key challenges in transforming conceptual models into technical im-
plementations, such as handling primary and foreign keys, constraints, and data types.
Their research underscored that while automated tools were used to convert LADM into
technical models, manual adjustments were still required to ensure accuracy. In the context
of the global implementation of LADM, Kalogianni et al. [2017] proposed an approach based
on the INTERLIS language to integrate legal and physical attributes of 3D spaces, address-
ing semantic interoperability issues when implementing LADM in different countries. They
emphasized the use of Semantic Web technologies, such as RDF and OWL, to enhance the
definition of code lists and constraints, supporting the extension of LADM.

Although there have been attempts to standardise aspects of LADM, such as code lists and
semantic interoperability, there has been little focus on the formalization of land-related SDG
indicators using these standards. Existing research has primarily concentrated on technical
implementations and standardization within land administration systems, but the appli-
cation of these standards to consistently define, structure, and calculate SDG indicators,
remains unexplored. This gap highlights the need for further research on how international
standards like LADM can be leveraged to support the formalization of SDG indicators, en-
suring consistency and comparability across regions. Therefore, this thesis aims to address
this gap by investigating how ISO 19152 LADM can be applied to the formalization of land-
related SDG indicators, making their calculation more systematic.

13

3. Methodology

3.1. Research Approach Overview

The overall approach of this research follows a structured process that first connects the
LADM standard with SDG indicators, and then transitions from a conceptual model to a
physical implementation. As shown in Figure3.1, the connection between LADM and the
SDG indicators is established using the Four-Step Method, which was developed in previous
research. This method will only be briefly introduced in this thesis without detailed analysis.
The Four-Step Method helps to construct a conceptual model by systematically mapping key
elements of the SDG indicators to the core classes and structures of LADM.

Once the conceptual model is built, the focus shifts to its transformation into a physical data
model. This involves implementing the conceptual model using database technologies like
PostgreSQL and PostGIS. The physical model incorporates custom data types, standardized
code lists, as well as triggers and functions to ensure data integrity and handle complex
constraints.

This approach aims to create a seamless transition from conceptual understanding to techni-
cal implementation, ensuring the standardization, consistency, and scalability of land-related
SDG indicator calculations.

Figure 3.1.: Workflow for Transition from Conceptual Model to Physical Data Model.

3.2. Linking LADM and SDGs Using the Four-Step Method

The Four-Step Method, which was developed as part of my previous research in the Honor
Master Program and elaborated in [Chen et al., 2024], provides a structured approach for
formalizing SDG indicators within the ISO 19152 LADM framework. This method simplifies
the transformation of abstract SDG indicators into a more structured form, enhancing data
interoperability and computation for land-related indicators. As shown in Figure 3.2, the
method consists of four key steps: keyword Extraction, Matching with LADM concepts,
Categorization, and finally Creating UML. Since this method has already been thoroughly
analyzed in previous work, only a brief overview will be provided, with further details
available in the original paper.

15

3. Methodology

Indicators

Step 1: Keywords Extraction

a. Identification of Noun Phrases

b. Filtering Redundant Vocabulary

c. Extraction of Keywords

Step 2: Matching with LADM

LA_Source

VersionedObject

LA_Party

LA_SpatialUnitnit

LA_BAUnit

LA_RRR

VM_ValuationUnit

SP_PlanUnit

Step 3: Categorization

Non-Association (Category 0)

Full Computational Association (Category 1)

Partial Computational Association (Category 2)

Indirect Association (Category 3)

Association with Other International Standards (Category 4)

Step 4. Create UML

c. Implementation Method

b. Add Compartment
(Attributes and Operations

a. Represented in UML Diagram

自由主题

Figure 3.2.: The Four-Step Method. [Chen et al., 2024]

3.2.1. Step 1: Keyword Extraction

The first step in the Four-Step Method involves filtering SDG indicators based on core LADM
terminology. The key LADM terms include Land, Party, RRRs (Rights, Responsibilities,
Restrictions), Spatial Units, Marine, Valuation, and Spatial Plan. These terms are defined in
detail according to their roles within the LADM framework. These keywords provide the
foundation for aligning the indicators with the LADM components.

3.2.2. Step 2: Matching with LADM concepts

After extracting the relevant keywords, the next step involves mapping these keywords to
corresponding LADM classes. The process begins with a detailed analysis of the SDG indica-
tor metadata documents, focusing on key sections such as ”Related Indicators,” ”Definition
and Concepts,” ”Data Sources,” and ”Method of Computation.” These sections help clarify
the relationships between indicators, define key concepts, evaluate relevant data sources, and
determine computation methods. Following this, a rigorous alignment process is conducted
to map the SDG indicators to the core LADM classes, including LA Party, LA SpatialUnit,
LA BAUnit, LA RRR, VM ValuationUnit, and SP PlanUnit, all of which are derived from
VersionedObject and are associated with LA Source. This mapping process formalizes the
relationships between the SDG indicators and the core components of the LADM model.
For any data that LADM cannot provide, it is noted that external datasets may be required.
This thorough analysis and matching process ensure the technical accuracy and conceptual
reliability of the selected indicators.

16

3.2. Linking LADM and SDGs Using the Four-Step Method

3.2.3. Step 3: Categorization

After matching the keywords with LADM classes, the method proceeds to categorize the
level of association between the SDG indicators and the LADM components. This step
ensures that the relationships between SDG indicators and the land administration domain
are clearly defined. Indicators are categorized based on whether they can be fully or partially
computed using the existing LADM classes, or if they require additional components, such
as external classes or custom attributes, to accurately represent the SDG requirements.

3.2.4. Step 4: Create UML

In the final step, the formalized SDG indicator is transformed into a UML diagram, pro-
viding a visual representation of how the indicator can be computed within the LADM
framework. This involves creating a complete UML model that includes the core LADM
components and any necessary external classes. The model serves as the foundation for
implementing SDG indicator calculations in a physical data model, ensuring that the for-
malized indicators can be accurately computed and monitored in practice.

Specifically, the UML diagram supports the calculation of the indicator by representing three
types of information: (a) information that can be directly represented by the LADM package,
(b) information that can be connected to other databases via external classes, and (c) infor-
mation that will be output through interface classes. For relevant classes, a dedicated com-
partment is added to perform the calculation operations for the indicator, which includes
parameters such as year and region, allowing for computation across different temporal and
spatial scopes. Additionally, each operation is clearly defined with specific implementation
methods in the UML diagram, with the implementation steps described using programming
languages such as Python, Java, or pseudocode. The final results are aggregated and pre-
sented through interface classes, similar to other classes in LADM used for summarizing
information, such as LA SpatialUnitOverview or LA PartyPortfolio.

This systematic approach ensures a structured and comprehensive documentation of SDG
indicator development and computation, while promoting transparency and clarity in the
calculation processes associated with the LADM framework.

In addition to these core steps, the UML diagram created in the final step helps bridge
the gap between conceptual modeling and physical data implementation. It formalizes the
computational rules and interfaces needed to calculate SDG indicators, while also providing
flexibility for incorporating external data sources and additional parameters. By following
this method, land-related SDG indicators can be systematically integrated into land admin-
istration systems, promoting accurate and efficient data analysis.

For a more comprehensive explanation of the Four-Step Method and its specific application
in SDG indicator calculation, please refer to the author’s previous publication [Chen et al.,
2024], which discusses each step in detail and provides several examples using different
parts of LADM Edition II.

17

3. Methodology

3.3. Transition from Conceptual to Physical Model

In this research, the transition from a conceptual model to a physical model is a crucial
step to ensure that the system can support the calculation and analysis of land-related data.
The physical model is built based on the LADM standard framework and uses database
technologies to manage and analyze land-related data. The following sections describe the
strategies and standards adopted in the process of transitioning from the conceptual model
to the physical model.

3.3.1. Physical Model Requirements

During the transition from the conceptual model to the physical model, the physical model
must meet several key requirements to ensure standardization, consistency, and flexibility
in data processing. These requirements include:

• Data Consistency: The physical model must ensure the consistency of land-related
data during operations such as insertion, updating, and deletion. This requires the
physical model to include comprehensive constraint mechanisms and validation rules
to prevent operations that do not comply with the standards from affecting data accu-
racy.

• Standardization: The model design must conform to the ISO 19152 LADM standard
to ensure global compatibility and interoperability in land data management. By us-
ing standardized data types and class structures, the physical model can seamlessly
integrate with other LADM-based systems.

• Scalability: The design of the physical model should support flexible expansion to
accommodate additional land tenure types, data sources, and future computational
needs. The architecture of the physical model must be capable of handling future data
growth without requiring significant modifications to the fundamental structure.

• Operability: The abstract concepts defined in the conceptual model must be effectively
implemented in the physical model, ensuring that these concepts are operational and
can support efficient data storage, retrieval, and computation in practice.

These requirements ensure that the transition from conceptual to physical models focuses
not only on the accuracy of the model but also on the usability and long-term maintenance
of the system.

3.3.2. Model Transformation Strategy

The design of the physical model involves extracting key elements from the conceptual
model and mapping them into specific data structures and database operations. The follow-
ing strategies were adopted to achieve this transition:

• Class-to-Table Mapping: In the conceptual model, LADM classes (such as LA Party,
LA SpatialUnit, etc.) are defined as abstract class structures. The physical model
translates these classes into concrete database tables, ensuring that data storage and
operations comply with the standard definitions of LADM. Each class is mapped to

18

3.3. Transition from Conceptual to Physical Model

one or more tables, while maintaining the integrity of relationships between classes,
for example, by using foreign key constraints to preserve associations between entities.

• Attribute-to-Column Mapping: Each attribute of an LADM class is mapped to fields
in the database table in the physical model. Standard data types are used to define
these fields in the physical model to ensure compatibility with the LADM model.
Additionally, certain specialized attributes may require custom data types to meet
specific needs.

• Normalization: The design of the physical model follows the principles of database
normalization to reduce data redundancy and ensure efficient data storage. By de-
composing the classes and relationships in the conceptual model into multiple related
tables, the physical model ensures data consistency and integrity.

• Hierarchical Mapping: Some classes in the LADM model have hierarchical relation-
ships (e.g., versioned objects). In the physical model, these relationships are imple-
mented through hierarchical table structures. For example, relationships between de-
rived classes and base classes can be maintained through inheritance mechanisms or
composite primary keys, ensuring consistency and data traceability.

Through these strategies, the physical model successfully translates the theoretical structure
of the conceptual model into an operational database model, while ensuring accuracy and
standardization in the process.

3.3.3. Ensuring Data Consistency and Integrity

Data consistency and integrity are core requirements in the design of the physical model.
To ensure these requirements are met, several methods were adopted during the model
transformation process to safeguard data accuracy:

• Data Constraints: By designing strict constraints in the database (such as primary
keys, foreign keys, unique constraints, and check constraints), the physical model can
ensure the validity of each data entry. For example, each land unit (LA SpatialUnit)
must have a unique identifier, and its related tenure information must conform to
pre-defined logical relationships.

• Hierarchical Data Integrity: Versioned objects in LADM (such as VersionedObject)
require proper management of both historical and current data. Through the design
of hierarchical table structures in the physical model, the traceability of historical data
and the consistency of current data are ensured.

• Transaction Control: The physical model defines a series of transaction operations to
ensure data atomicity and consistency. This means that each operation (e.g., inserting,
updating, or deleting data) must be completed in accordance with integrity constraints,
or the system will roll back the operation to prevent inconsistent data from being saved.

These data consistency and integrity mechanisms ensure that the physical model can reliably
manage land-related data operations, preventing data loss or logical errors.

19

3. Methodology

3.3.4. Scalability and Flexibility

Scalability and flexibility were important considerations during the design of the physical
model. Several measures were taken to ensure that the model can accommodate future
changes in demand:

• Modular Design: The design of the physical model is highly modular. Each LADM
class or component is treated as an independent module that can be expanded or
modified as needed. This design ensures that the system can flexibly add new features
or class structures based on the land administration needs of different countries or
regions without requiring major changes to the existing model.

• Support for External Data Integration: The physical model was designed to accom-
modate the integration of external data sources. For example, some land tenure data
may come from external systems, and the model provides interface classes and for-
eign key references to achieve seamless integration with other databases or external
systems. This flexibility allows the physical model to handle different types of data
inputs and outputs.

• Scalability Consideration: To ensure that the model can handle future data growth,
the physical model adopts a scalable architecture design. Through partitioning tables
and optimizing indexing, the physical model can efficiently manage large datasets
without compromising system performance.

This theoretical framework serves not only as a design principle for the transition from a
conceptual model to a physical model but also as a guiding methodology for standardizing
land administration systems. By adhering to this structured approach, the design ensures
that the physical model remains consistent with international standards while providing the
necessary flexibility and scalability for future expansions. This framework can be applied as
a foundational guideline for the development of land information systems, supporting ro-
bust and reliable data management and computation across various land-related domains.

3.4. Conceptual Model for SDG Indicator 1.4.2

In this thesis, SDG 1.4.2 is used as an example to demonstrate the development of both the
conceptual and physical models. The conceptual model for SDG 1.4.2 had already been
developed in previous research, where it was systematically constructed following the Four-
Step Method. However, the primary focus of this thesis is on the implementation of the
physical model. Nevertheless, to provide a comprehensive overview and to illustrate the
process in a detailed manner, the Four-Step Method is applied again here to develop the
conceptual model for SDG 1.4.2, ensuring that each step is clearly demonstrated in relation
to the chosen indicator.

The decision to focus on SDG 1.4.2 stems from its critical role in assessing land tenure secu-
rity. This indicator not only tracks the proportion of the population with documented own-
ership or legal land use rights but also captures individuals’ perceptions of tenure security,
a key factor in sustainable land governance. By addressing both legal and perceived land
tenure, SDG 1.4.2 aligns directly with the core objectives of land administration. Further-
more, its structure is highly compatible with the ISO 19152 LADM standard, as it integrates

20

3.4. Conceptual Model for SDG Indicator 1.4.2

seamlessly with key LADM components, making it an ideal example for demonstrating the
systematic calculation and analysis of land-related indicators.

3.4.1. Introduction to SDG 1.4.2

SDG Indicator 1.4.2: “Proportion of total adult population with secure tenure rights to land, (a) with
legally recognized documentation, and (b) who perceive their rights to land as secure, by sex and type
of tenure.”

SDG 1.4.2 aims to measure the proportion of the population with secure tenure rights to
land, including those who hold documented ownership or legal land use rights, as well
as the perception of such rights. This indicator plays a crucial role in monitoring progress
towards achieving land tenure security. The key components of SDG 1.4.2 include:

• Documented Land Rights: Refers to the proportion of the population holding formal
documentation that recognizes their rights to land, such as titles, deeds, or other legal
evidence.

• Perceived Security of Tenure: Captures individuals’ perceptions of the security of
their land rights, which is essential for assessing tenure security, even in the absence
of formal documentation.

• Disaggregation: Data for SDG 1.4.2 is often disaggregated by variables such as gender,
age, geographic location, and land type (e.g., agricultural, residential, or communal).

3.4.2. Applying the Four-Step Method to SDG 1.4.2

To construct the conceptual model for SDG 1.4.2, the Four-Step Method is applied, specifi-
cally aligning with Part 2 of the second edition of the LADM, which focuses on land regis-
tration. The following sections outline each step of this process.

Step 1: Keyword Extraction

The process of “Identification of Noun Phrases–Filtering Redundant Vocabulary–Extraction
of Keywords” was used, as shown in Figure 3.3. The keywords include “legally recognized
documentation”, “adult population”, “sex”, “secure tenure rights”, “rights to land” and
“type of tenure”, and their corresponding LADM core terms are “Source”, “Party” and
“Rights”.

“Proportion of total adult
population with secure tenure
rights to land, (a) with legally

recognized documentation, and (b)
who perceive their rights to land as
secure, by sex and type of tenure”

“Proportion of total adult population”
“secure tenure rights to land”

“legally recognized documentation”
“perceive their rights to land as secure”

“sex”
“type of tenure”

“adult population”
“secure tenure rights ”

“legally recognized documentation”
“perceive”

“rights to land”
“sex”

“type of tenure”

“adult population” - Party
“sex” - Party

Identification of Noun Phrases Filtering Redundant Vocabulary Extraction of Keywords

“secure tenure rights ” - Rights
“rights to land” - Rights
“type of tenure” - Right

“legally recognized documentation” - Source

Figure 3.3.: Keyword extraction for SDG 1.4.2.

21

3. Methodology

Step 2: Matching with LADM concepts

The SDG Indicator 1.4.2 is divided into two parts according to its metadata: (A) the pro-
portion of adults with legally recognized documentation over land, and (B) the proportion
of adults who perceive their land rights as secure. To meet these requirements, three types
of data are needed: (1) the number of adults with legally recognized documentation (de-
rived from LADM-compliant land administration systems), (2) the number of adults who
perceive their rights as secure (collected via surveys or external data), and (3) the total adult
population (from census data).

Part (A) :
People (adult) with legally recognized documentation over land

Total adult population
× 100

Part (B) :
People (adult) who perceive their land rights as secure

Total adult population
× 100

The following LADM components were matched with SDG 1.4.2 concepts:

• LA RRR is related to ”secure tenure rights” and ”type of tenure,” as these reflect the
nature of land rights.

• LA Source corresponds to ”legally recognized documentation,” involving the legal
registration of rights.

• LA Party includes the ”sex” attribute, as it relates to disaggregation by gender.

Step 3: Categorization

SDG 1.4.2 is classified under the “Partial Computational Association (Category 2)”.

Step 4: Create UML

The computation of SDG Indicator 1.4.2 is modeled through a UML diagram based on the
steps outlined in the indicator development process. The main elements are as follows:

1. Represented in the UML Diagram: The UML diagram includes core LADM classes
such as LA Party, LA RRR, LA BAUnit, and LA Source. Two external classes, ExtSe-
cureLandRightAdult and ExtParty, are introduced to represent Part B of the indicator
(perceived tenure security) and to capture additional party-related data.

2. Add Compartment (Attributes and Operations): Each class in the UML diagram is
assigned compartments containing specific attributes and operations necessary for the
computation of the indicator, as outlined in Table 3.1. In addition, new classes specific
to SDG 1.4.2 have been introduced to accommodate the requirements of the indicator:

• ExtParty: This external class includes attributes such as birthday, which is used
to determine adulthood, and the operation countAdult to calculate the total adult
population.

• ExtPartyPerceiveSecureLandRights: This class includes attributes like selfPercep-
tion, which captures the perceived security of land rights (with values of 1 indicat-
ing secure rights and 0 indicating insecurity), sourced from household surveys.

22

3.4. Conceptual Model for SDG Indicator 1.4.2

• Interface Class SDG 1.4.2: This interface aggregates information from LA Party,
LA RRR, and LA Source, and includes operations such as computeProportionWith-
LegalDocumentation and computeProportionPerceivingSecurity. These operations com-
pute the proportions of adults with legally recognized land rights and those who
perceive their rights as secure, respectively.

3. Computation Methods: The methods designed to compute the indicator include com-
puteProportionWithLegalDocumentation, computeProportionPerceivingSecurity, gen-
erateReport, and countAdults. These methods ensure that the theoretical framework
is implemented into practical algorithms to calculate the required proportions and
generate reports. The final UML diagram for SDG 1.4.2 is shown in Figure 3.4.

Existing LADM Class Attributes Used in the Case Notes

LA Party +gender:LA HumanSexesType[0..1] Highlighted to facilitate
gender-based classification
and calculation.

LA Right LA RightType Delineating various land
tenure types, echoing the
”type of tenure” parameter in
the indicator. The specific
right types are detailed in the
”Code List.”

LA AdministrativeSource +type:LA AdministrativeSourceType Signifying ”Legally
recognized documentation.”
Its code list meticulously
enumerates the possible
values, such as agriLease,
deed, and title.

LA BAUnit While not the focal point, it is
outlined to underscore the
indicator’s emphasis on
rights over land.

Table 3.1.: Attributes added to SDG 1.4.2 UML from an existing LADM class.

23

3. Methodology

Figure 3.4.: UML Class Diagram for SDG Indicator 1.4.2 Based on the LADM Model).

24

4. Implementation

The previous sections outlined the overall research approach, specifically detailing the Four-
Step Method in Linking LADM and SDGs Using the Four-Step Method and the transition
process in Transition from Conceptual to Physical Model. These sections provided a compre-
hensive overview of the methodology and summarized the outcomes of previous research,
where the Four-Step Method was applied to specific SDG indicators. In this case, SDG 1.4.2
was chosen as the focal indicator, and the final UML diagram was produced as a result.

This chapter focuses on how to apply the physical model methodology described in the
previous chapter to develop a database specifically for the calculation and management of
SDG 1.4.2. The following sections will describe the implementation process, including the
creation of custom data types, the use of functions and triggers for data integrity, and the
generation of reports using the database.

4.1. Overview of Tools Used

To implement the physical data model, a combination of tools was selected to support
the specific needs of this project. The key tools used include PostgreSQL, PostGIS, and
QGIS, each chosen for their ability to facilitate different stages of the modeling process,
from database creation to spatial data visualization for reporting purposes.

4.1.1. PostgreSQL and PostGIS

For the relational Database Management System (DBMS), PostgreSQL was selected as the
platform for implementing the physical model. The majority of cadastral and land adminis-
tration data are highly structured, making relational data modeling and a relational DBMS
the most suitable choice. Among the widely used options, PostgreSQL/PostGIS and Oracle
Spatial are the most prominent. PostgreSQL was chosen primarily due to its open-source na-
ture and its support for spatial applications via the PostGIS extension. [Shahidinejad et al.,
2024] PostGIS provides robust support for geographic objects, allowing spatial data to be
stored and queried directly within the PostgreSQL environment. This combination seam-
lessly manages both structured data, such as land ownership information, and unstructured
spatial data, such as parcel boundaries, which are critical in land administration. Addition-
ally, PostgreSQL’s open-source nature offers cost-effectiveness and flexibility, making it an
ideal choice for projects requiring ongoing development and adaptation.

25

4. Implementation

4.1.2. QGIS for Spatial Visualization

QGIS was selected for its superior spatial data visualization capabilities, which are essential
for reporting purposes. Since the SDG indicators computed in this study involve spatial data
(e.g., parcels and ownership), the final output includes spatial information related to land
parcels and administrative boundaries, making QGIS the ideal tool for generating maps and
visual reports. Its compatibility with PostgreSQL/PostGIS allows for seamless integration,
enabling the visualization of spatial queries and results. This is particularly important for
ensuring that the final reports, which involve spatial analysis, are not only accurate but also
visually interpretable.

4.1.3. Direct SQL Code Generation from UML Diagram

A critical decision in the database design process was the approach used to generate the
database schema from UML diagrams. While tools such as Database Builder in Enterprise
Architect (EA) offer built-in functionality to generate Data Definition Language (DDL) scripts
directly from UML diagrams [Alattas et al., 2018c,a; Chehrehbargh et al., 2024], this option
was not selected. Instead, SQL code was manually generated based on the UML diagrams.
The primary reason for this choice was the scope and specificity of the project. At this stage,
each SDG indicator has its own dedicated UML diagram, which only utilizes a subset of
the full LADM model. The UML diagrams also include external classes that are not fully
covered by the LADM, meaning that DDL scripts generated from EA would still require
substantial manual adjustments to accommodate these external classes. Given these factors,
generating SQL code directly from the UML diagrams allowed for greater flexibility and
control over the creation of the database schema. This method also facilitated the manual
creation of external classes not included in the LADM, ensuring that all necessary entities
and relationships were accurately represented in the final database schema.

While the overall implementation process applies broadly to any land administration-related
SDG indicator, this study uses SDG Indicator 1.4.2 as a case example to illustrate the detailed
workflow and to validate the feasibility of the previously established conceptual model. The
subsequent sections will focus specifically on the implementation of SDG 1.4.2, demonstrat-
ing how the conceptual model is transformed into a physical database schema, and how the
calculations are conducted. All remaining content in this paper will revolve around SDG
1.4.2, detailing the steps involved in transforming the model into practice.

4.2. Custom Data Types and Constraints Implementation

4.2.1. Custom Data Types

This section focuses on two specialized data types from the LADM model: Oid and Fraction.
These data types are crucial for representing unique spatial objects and allocating shares of
land tenure rights. Since there are no direct equivalents for these types in most database
management systems, they must be manually created and implemented. By utilizing custom
data types and additional constraints, these structures are incorporated into the database
schema to ensure accuracy and integrity of land administration data.

26

4.2. Custom Data Types and Constraints Implementation

Oid

In LADM, the Oid (Object Identifier) is a generalized data type used to ensure the uniqueness
of spatial objects, particularly in Part 1 of the LADM Generic Conceptual Model. This data
type consists of two core attributes: localId (local identifier) and namespace. The localId

is assigned by the data provider and must be unique within a specific namespace, while
the namespace attribute identifies the source of the spatial object. To maintain generality,
both Oid and Fraction are represented as CharacterString data types, allowing flexibility
across different application contexts.

When implementing Oid in a database, this generic data type can be modeled through
a custom data type. However, when creating custom data types, databases generally do
not allow direct constraints such as NOT NULL or UNIQUE within the data type definition.
Therefore, these constraints must be implemented at the table level during the creation of the
entity tables. Custom data types only define attributes and their data types, while constraints
must be added through table-level constraints to ensure non-nullability and uniqueness.

Consider further that in PostgreSQL, it is not permissible to directly use a custom Oid type
as a primary key because PostgreSQL requires primary keys to be a simple data type that is
natively supported by the database. To address this, the localId and namespace attributes
are split into separate fields and combined to form a composite primary key. This approach
ensures uniqueness while adhering to PostgreSQL’s primary key requirements.

For example, the Oid data type can be defined using the following SQL code, containing the
localId and namespace fields:

CREATE TYPE Oid AS (

localId VARCHAR ,

namespace VARCHAR

);

While the database does not permit constraints within the custom data type, table-level
constraints such as NOT NULL and PRIMARY KEY can be added during table creation to enforce
the non-nullability and uniqueness of the localId and namespace attributes. Below is an
example of how the Oid is implemented in the LA Party table:

CREATE TABLE LA_Party (

Pid Oid NOT NULL , -- Uses composite type Oid

Pid_localId VARCHAR NOT NULL , -- Stores localId separately

Pid_namespace VARCHAR NOT NULL , -- Stores namespace

separately

PRIMARY KEY (Pid_localId , Pid_namespace), -- Create

composite primary key

CHECK (Pid_localId IS NOT NULL AND Pid_namespace IS NOT NULL

)

);

In the above code, the Pid field represents an instance of the Oid composite type, while
the localId and namespace attributes are stored separately for subsequent addition of
constraints. The PRIMARY KEY constraint ensures the uniqueness of the combination of

27

4. Implementation

Pid localId and Pid namespace, meeting the LADM requirement for Oid uniqueness. Ad-
ditionally, the CHECK constraint ensures that both attributes are non-null, which further fulfils
its cardinality requirement.

However, in practice, it may not be straightforward to use Oid as a custom composite data
type. In many cases, the localId and namespace attributes are concatenated into a single
string to serve as the object identifier. This approach simplifies database implementation and
enhances data processing efficiency. In this study, the second approach was used during data
validation.

Fraction

In LADM, Fraction is another general data type, which is specifically designed to support
the expression of shares. The Fraction type consists of two core attributes: numerator

and denominator. The denominator must be a positive integer greater than zero, while the
numerator must be a non-negative integer and cannot exceed the value of the denominator.
This representation ensures precise allocation of shares, especially when multiple parties
hold equal or unequal shares.

In database implementation, Fraction can be modeled as a custom data type. However,
since databases cannot directly enforce constraints on the internal attributes of custom types,
trigger functions are used to ensure the validity of the fractions. Specifically, the trigger
function checks whether the numerator and denominator of the fraction meet the basic
constraints during record insertion or update, ensuring that the total share amounts to 1.

The Fraction data type is defined with numerator and denominator attributes:

CREATE TYPE Fraction AS (

numerator INTEGER ,

denominator INTEGER

);

To ensure the validity of the Fraction, a trigger function is implemented to verify that the
numerator and denominator adhere to the required constraints. The trigger function checks
that the denominator is greater than zero, the numerator is non-negative, and the numerator
does not exceed the denominator. This ensures that invalid data does not enter the system.
The details are illustrated in section 4.3.2.

Additionally, to ensure that in cases of joint ownership, the total ownership share sums
to 1 across all parties, another trigger function is implemented. This function dynamically
generates an SQL query to calculate the total share sum by normalizing the fractions and
ensuring that the total sum equals 1. This function is applicable to tables like LA Right and
LA PartyMember, and ensures the accuracy of shares. The core logic for this check is as
follows, more details in sec 4.3.3:

28

4.2. Custom Data Types and Constraints Implementation

CREATE OR REPLACE FUNCTION check_share_sum ()

RETURNS TRIGGER AS $$
BEGIN

-- Calculate the total ownership share sum

-- If the total sum is not equal to 1, raise an exception

IF total_numerator <> total_denominator THEN

RAISE EXCEPTION ’Total share is not equal to 1’;

END IF;

RETURN NEW;

END;

$$ LANGUAGE plpgsql;

After the function has been created, triggers need to be set up for the relevant tables (e.g.
LA Right and LA PartyMember) to automatically perform this check on inserts or updates.
Creating triggers is done in the same way as any other function to ensure that the function
gets called when it needs to, which will be discussed in more detail later in the Constraints
section. Through the design and implementation of these trigger functions, the database
automatically ensures that the Fraction type adheres to LADM constraints and that the
total ownership share across parties is accurate. This approach ensures data consistency and
maintains the integrity of ownership share distributions. While the code provided illustrates
the logic, it is not the final implementation. Full details of the complete code implementation
can be found in the appendix.

In addition to the two custom data types described above, most of the data types required
by LADM are already supported natively in the database system and can be directly used.
The table 4.1 summarizes how LADM attributes map to their corresponding database data
types.

This table outlines the LADM attributes and their corresponding data types within the
database. Attributes such as name for LA Party or ExtParty and timeSpec for LA Right
are easily represented as TEXT fields in the database, while temporal attributes such as
beginLifespanVersion and endRealWorldLifespanVersion are implemented using TIMESTAMPTZ

(timestamp with time zone) to capture the required temporal precision as specified in ISO
19108. The geom attribute, which represents spatial information for LA SpatialUnit, is han-
dled by the GEOMETRY type provided by PostGIS, allowing for efficient storage and query-
ing of spatial data. Additionally, attributes related to code lists, such as humansex or
tenure types associated with LA Party and LA Right, are represented as INTEGER fields in
the database, with associated code list values stored separately in related tables.

29

4. Implementation

Attribute Class LADM Data Format Database Data Format

name
LA Party, ExtParty,
ExtSecureLandRight-
sQuestionnaire

CharacterString TEXT

Four Temporal
Attributes
(beginLifespanVersion,
endLifespanVersion,
beginRealWorldLifes-
panVersion,
endRealWorldLifes-
panVersion)

VersionedObject DateTime (ISO 19108) TIMESTAMPTZ

birthday ExtParty DATE

shareCheck LA Right Boolean BOOLEAN

timeSpec LA Right CharacterString TEXT

geom LA SpatialUnit Geometry GEOMETRY

xx type / humansex /
ExtSecureLandRight-
sQuestionnaire

LA Party,
LA PartyGroup,
LA Right,
LA AdministrativeSource

codelistname INTEGER

Table 4.1.: Mapping of LADM Attributes to Database Data Types.

4.2.2. Standardized and Extensible Code Lists

Code lists play a crucial role in ensuring both standardization and flexibility within the
LADM-based data model. A code list provides a controlled vocabulary for specific attributes,
ensuring that the values used across different systems are consistent and uniform. This
not only enhances semantic interoperability between land administration systems but also
improves the ease of querying and data manipulation within the database.

In the context of a database, code lists are implemented as separate tables, where each entry
represents a possible value for a particular attribute. These code list values are referenced
in other tables to enforce the range of permissible values for certain attributes. For example,
the LA PartyType attribute, which describes whether a party is a natural person, non-natural
person, or a group, uses a code list to ensure that only predefined values are allowed. This
guarantees consistency and avoids data entry errors.

In addition to standardization, code lists also improve operational efficiency within the
database. Since the descriptions of these values are typically longer strings, using integer
identifiers instead simplifies storage and allows for more efficient querying. This separation
of codes and descriptions also simplifies updates to the code list, as new values can be added
or old values modified without impacting the data structure.

The implementation of code lists in PostgreSQL can follow two general approaches, depend-
ing on whether the values are fixed or flexible:

30

4.2. Custom Data Types and Constraints Implementation

1. Fixed Code Lists: For attributes that use predefined, unchanging values, such as gen-
der or land rights perception, a fixed code list is employed. These values are assigned
unique identifiers, which rarely need modification or expansion. For instance, the
LA HumanSexesType code list defines the values for gender as Male, Female, Unknown,
etc., with corresponding integer identifiers:

CREATE TABLE LA_HumanSexesType (

hst_id INTEGER UNIQUE NOT NULL ,

hst_description TEXT NOT NULL

);

INSERT INTO LA_HumanSexesType (hst_id , hst_description)

VALUES

(0, ’unknown ’),

(1, ’Male’),

(2, ’Female ’),

(9, ’doesNotApply ’),

(99, ’other’);

2. Flexible Code Lists: For attributes that require more flexibility or may need to accom-
modate new values over time, such as the types of parties (LA PartyType) or administra-
tive sources, a flexible code list is employed. These tables use an auto-incrementing se-
rial key, allowing new entries to be added dynamically. For instance, the LA PartyType
code list can be defined as follows:

CREATE TABLE LA_PartyType (

pt_id SERIAL PRIMARY KEY ,

pt_description TEXT NOT NULL UNIQUE

);

INSERT INTO LA_PartyType (pt_description) VALUES

(’naturalPerson ’),

(’nonNaturalPerson ’),

(’baunit ’),

(’group ’);

In this case, the pt id is automatically generated and serves as the primary key, while
the pt description holds the textual representation of the party type. This method
allows for future extensibility, enabling jurisdictions to add new types of parties or
administrative entities as needed.

Code Lists as Attribute Constraints

In the LADM model, certain attributes are directly linked to their corresponding code lists,
with the attribute’s value being constrained to the possible values defined within the code
list. For example, the type attribute of the LA Party class refers to the LA PartyType code
list, meaning that its value can only be selected from the predefined types defined in the
LA PartyType table. In the database schema, this relationship is enforced by creating a foreign
key constraint that links the attribute to its code list:

31

4. Implementation

CREATE TABLE LA_Party (

-- Other sql code

p_type INTEGER NOT NULL REFERENCES LA_PartyType(pt_id)

);

Here, the p type attribute in the LA Party table represents the party’s type, and its value is
restricted to the set of valid pt id values in the LA PartyType table. Additionally, because
the cardinality of this attribute in LADM is 1 (i.e., a party must have exactly one type), the
NOT NULL constraint is applied to ensure that every party has a valid type assigned.

This pattern of using integer identifiers from code lists as foreign keys is applied consistently
across the LADM database schema. It ensures that attributes such as gender, tenure type,
and party type are restricted to valid, predefined values, which maintains data integrity and
enforces uniformity across the system.

Flexibility and Extensibility

Although code lists provide a standardized set of values, they are designed to be both
flexible and extensible. Jurisdictions can add local values to the code lists if needed, allowing
the LADM implementation to adapt to specific local or national requirements. This flexibility
is essential for accommodating the diverse legal, administrative, and social systems found
across different regions or countries.

For instance, in the case of LA GroupPartyType, the initial code list might include basic val-
ues such as tribe, association, family, and baunitGroup. However, in some jurisdic-
tions, there may be additional categories of party types that need to be included, such
as farmerCooperation or churchCommunity. Rather than modifying the structure of the
database schema, these new categories can be added directly to the code list, as shown
below:

-- Original code list

CREATE TABLE LA_GroupPartyType(

gpt_id SERIAL PRIMARY KEY ,

gpt_description TEXT NOT NULL UNIQUE

);

-- Insert original values

INSERT INTO LA_GroupPartyType (gpt_description) VALUES

(’tribe’),

(’association ’),

(’family ’),

(’baunitGroup ’);

-- Adding new values

INSERT INTO LA_GroupPartyType (gpt_description) VALUES

(’farmerCooperation ’),

(’churchCommunity ’);

32

4.2. Custom Data Types and Constraints Implementation

In this example, the database schema remains unchanged, and the system can continue
functioning without any interruptions. The new values can now be referenced in the rel-
evant LA GroupPartyType entries, ensuring that the system accurately reflects the legal and
administrative realities of the specific region. This approach maintains the integrity and
consistency of the LADM implementation while allowing for customization to meet local
needs.

This capacity for expansion is particularly important in evolving land administration sys-
tems, where new laws, policies, and land management practices may require updates to the
code lists over time. By utilizing this flexible code list structure, the LADM-based system
ensures that any new classifications or regulations can be incorporated without requiring
disruptive changes to the core database schema.

In conclusion, the combination of standardized code lists and the ability to extend them
as needed ensures that the LADM model is not only robust and interoperable but also
adaptable to the unique and changing requirements of different jurisdictions.

4.2.3. Table(database) for Class(UML)

In the process of converting UML classes to SQL database tables, each UML class is mapped
to a corresponding database table. This transformation is a fundamental step in implement-
ing the physical data model, ensuring that the attributes and relationships defined in the
UML model are accurately reflected in the database schema. Typically, a UML class consists
of several key components, such as class names, attributes, and cardinalities, which are then
mapped to SQL table names, columns, and constraints respectively.

The accompanying Table 4.2 illustrates how the main components of a UML class translate
into SQL database elements.

33

4. Implementation

UML Component SQL Representation Example

Class Name Table Name UML Class: LA Party → SQL
Table: LA Party

Attribute Name Column Name UML Attribute: name → SQL
Column: name

Attribute Type Data Type UML Type: CharacterString →
SQL Type: TEXT

Multiplicity: 1 NOT NULL Constraint UML Multiplicity: 1 → SQL
Constraint: name TEXT NOT
NULL

Multiplicity: 0..1 Allow NULL (No constraint) UML Multiplicity: 0..1 → SQL
Column: name TEXT

Multiplicity: 0..* Many-to-Many Relationship,
Association Table UML Multiplicity: 0..* →

Requires a join table

Unique Identifier PRIMARY KEY Constraint UML Attribute: pID → SQL:
pID INTEGER PRIMARY KEY

Inheritance (usually in italics
in the upper right corner)

INHERITS keyword (for
PostgreSQL) UML: LA Party inherits

VersionedObject → SQL:
INHERITS (VersionedObject)

Visibility
(public/private/protected)

Ignored in SQL, all attributes
accessible N/A

Initial Value DEFAULT Clause UML availabilityStatus: LA
AvailabilityStatusType =
documentAvailable → SQL:
availabilityStatus INTEGER
DEFAULT 1 (the id of
documentAvailable)

Table 4.2.: Mapping UML Components to SQL Representations

Example: Converting LA Party to SQL Table

An example is the LA Party class from the SDG 1.4.2 UML model, which represents parties
involved in land administration as shown in Figure 4.1.

This class has the following attributes:

• pID: The object identifier (Oid) with cardinality 1, representing a non-null unique iden-
tifier for each party.

• extPID: An external party identifier with cardinality 0..*, representing a many-to-many
relationship with external parties.

• name: A character string with cardinality 0..1, representing the party’s name (optional).

34

4.2. Custom Data Types and Constraints Implementation

• humanSex: Linked to a code list representing gender (LA HumanSexesType), with car-
dinality 0..1 (optional).

• type: A required attribute representing the party type, such as naturalPerson or non-
NaturalPerson.

Figure 4.1.: LA Party Class for SDG Indicator 1.4.2

Based on this, the UML class LA Party can be transformed into the following SQL table
structure:

CREATE TABLE LA_Party (

pID INTEGER PRIMARY KEY , -- Primary key representing the

unique identifier of the party

extPID INTEGER REFERENCES ExtParty(extPID), -- Foreign key

referencing ExtParty , representing many -to-many

relationship

name TEXT , -- Optional attribute for the party ’s name

humanSex INTEGER REFERENCES LA_HumanSexesType(hst_id), --

Optional foreign key referencing the gender code list

p_type INTEGER NOT NULL REFERENCES LA_PartyType(pt_id) --

Required foreign key representing the party type

);

Each UML element is mapped to its corresponding SQL component to maintain the class’s
attributes and relationships:

• pID: In SQL, this is represented as pID INTEGER PRIMARY KEY, which enforces both
uniqueness and the requirement for the value to be non-null.

• extPID: In the SQL schema, extPID is implemented as a foreign key (REFERENCES
ExtParty(extPID)) linking to the ExtParty table. This captures the relationship be-
tween LA Party and external parties (e.g., data from a census database). If a many-
to-many relationship needs to be represented (i.e., where a party can be linked to
multiple external identifiers such as ext1 PID, ext2 PID, etc.), an additional associa-
tion table would be required to map the pID from LA Party to multiple external party
identifiers.

• name: The name attribute is simply implemented as a TEXT column, allowing NULL

values since no additional constraints are specified.

35

4. Implementation

• humanSex: In the SQL schema, this is represented by a foreign key referencing the
LA HumanSexesType table (REFERENCES LA HumanSexesType(hst id)). The absence of
the NOT NULL constraint mirrors the optional nature of this attribute in UML.

• p type: In SQL, it is implemented as a foreign key (REFERENCES LA PartyType(pt id)),
linking to the LA PartyType table. The NOT NULL constraint ensures that this attribute
must always have a value, reflecting the UML class’s requirements.

4.2.4. Relationships Between Tables

In a database schema derived from a UML model, the various relationships between tables
are essential to accurately represent the structure and behaviour of the system. These rela-
tionships ensure data integrity and reflect the way different entities interact in the model. In
this section, we will discuss the two main types of relationships used in LADM: inheritance
and association.

Inheritance

Inheritance refers to a relationship where one class inherits the attributes of another class.
In LADM, this structure is widely employed, and a typical example is the requirement that
all land administration and georegulation systems must support bi-temporal data manage-
ment. This is achieved through inheritance from the VersionedObject class (an example in
Figure 4.2). The VersionedObject class provides several temporal attributes that ensure all
classes inheriting from it can record and manage time-related data changes. These temporal
attributes include the start and end of the lifecycle, as well as the real-world valid time.

Figure 4.2.: Inheritance Relationships in Class LA Party

LADM’s bi-temporal system enables a distinction between system time (i.e., when data
is inserted or modified in the database) and real-world time (i.e., the time at which the
event occurred in reality). This mechanism is captured by the beginLifespanVersion and
endLifespanVersion fields for system time, and by beginRealWorldLifespanVersion and

36

4.2. Custom Data Types and Constraints Implementation

endRealWorldLifespanVersion for real-world events. Therefore, inheritance is crucial in
LADM, as it enables the tracking and management of the system’s state at any historical
moment, which is essential for maintaining and auditing historical data.

In the UML model, inheritance is represented by lines with arrows (as shown in Figure 4.3).
For instance, classes such as LA Party, LA RRR, and LA BAUnit all inherit from VersionedOb-
ject, thereby acquiring bi-temporal properties.

Figure 4.3.: Inheritance of Temporal Attributes from VersionedObject in LADM

The following SQL example defines the VersionedObject table, which captures the bi-temporal
attributes:

CREATE TABLE VersionedObject (

beginLifespanVersion TIMESTAMPTZ ,

endLifespanVersion TIMESTAMPTZ ,

beginRealWorldLifespanVersion TIMESTAMPTZ ,

endRealWorldLifespanVersion TIMESTAMPTZ ,

CONSTRAINT chk_version_lifespan CHECK (endLifespanVersion IS

NULL OR endLifespanVersion > beginLifespanVersion),

CONSTRAINT chk_version_realworld_lifespan CHECK (

endRealWorldLifespanVersion IS NULL OR

endRealWorldLifespanVersion >

beginRealWorldLifespanVersion)

);

Classes such as LA Right can inherit from this table, ensuring that they can utilize the bi-
temporal system:

CREATE TABLE LA_Right (

rID INTEGER PRIMARY KEY ,

r_type INTEGER NOT NULL REFERENCES LA_RightType (rt_id),

-- inherited from LA_RRR

suID INTEGER ,

pID INTEGER ,

share fraction ,

shareCheck BOOLEAN ,

37

4. Implementation

timeSpec TEXT

)

-- inherited from VersionedObject

INHERITS (VersionedObject);

The provided SQL code demonstrates two distinct forms of inheritance: temporal attribute
inheritance from the VersionedObject class and attribute inheritance from the LA RRR class,
but these two types of inheritance are handled differently in SQL due to their scope and
applicability.

In this example, LA Right inherits the temporal attributes from VersionedObject using the SQL
INHERITS keyword. This approach is appropriate because bi-temporal attributes are required
across many different classes in LADM (except LA Source and its subclasses), making it effi-
cient to centralize them in a parent table. By doing so, classes like LA Party, LA SpatialUnit,
and LA Right can all share the same set of temporal attributes without redundant code.

On the other hand, LA Right also inherits attributes from theLA RRR class, such as suID,
pID, share, shareCheck, and timeSpec. However, this inheritance is handled differently.
Since in the SDG 1.4.2 UML diagram only the LA Right class inherits from LA RRR, it is
more efficient in SQL to replicate these attributes directly in the LA Right table. This avoids
the overhead of creating a separate table for LA RRR when only one class requires these
attributes. Therefore, the attributes are explicitly written in the LA Right table instead of
using table inheritance.

This distinction between temporal inheritance and attribute inheritance is important in de-
signing efficient databases. Temporal attributes are widely shared across the model, jus-
tifying the use of table inheritance to avoid redundancy. For more specific cases, such as
LA Right inheriting from LA RRR, direct inclusion of the attributes in the table is more ap-
propriate due to the limited scope of the inheritance.

Association

Association represents a relationship between two or more classes, indicating how instances
of these classes are related to each other. In the context of LADM, associations between
classes capture important connections, such as land rights being held by parties or land
units being linked to specific rights and responsibilities. These associations are critical for
expressing the relationships between different land administration entities, allowing for the
modeling of complex interactions in the land tenure system.

In UML diagrams, associations are typically represented by a line connecting two classes,
with multiplicities at each end, indicating the number of instances involved in the relation-
ship. For instance, in the UML diagram for SDG 1.4.2, the LA Party class is associated with
the LA Right class, which captures the idea that parties hold specific rights over land. The
multiplicity of this association might indicate, for example, that a party can hold one or
more land rights, and that a land right must be associated with exactly one party as shown
in Figure 4.4.

38

4.2. Custom Data Types and Constraints Implementation

Figure 4.4.: Association Relationships Between Class LA Party and LA Right

In SQL, associations are usually implemented through foreign keys. A foreign key is a field
(or collection of fields) in one table that uniquely identifies a row in another table. This cre-
ates a direct link between two tables, ensuring that the associated entities remain connected
and their relationships are maintained. For example, the association between LA Party and
LA Right is represented by adding a foreign key in the LA Right table, referencing the pri-
mary key of the LA Party table.

The following example shows how an association between LA Party and LA Right can be
implemented in SQL:

CREATE TABLE LA_Party (

pID INTEGER PRIMARY KEY , -- Primary key of LA_Party

-- rest of other attributes

);

CREATE TABLE LA_Right (

rID INTEGER PRIMARY KEY , -- Primary key of

LA_Right

pID INTEGER REFERENCES la_party(pid) -- Foreign key

referencing LA_Party

-- rest of other attributes

);

In this example, the pID attribute in LA Right serves as a foreign key, linking each record in
LA Right to a corresponding record in LA Party. This enforces the association between the
two tables, ensuring that each land right is held by a valid party. The foreign key constraint
maintains referential integrity, ensuring that only valid pID values from LA Party can be
entered in the LA Right table.

The multiplicity of the association in UML (e.g., 1..* or 0..1) can also influence how the
foreign keys are implemented. For instance, if the association is one-to-many (i.e., one party
can hold many rights), a foreign key in LA Right referencing LA Party is sufficient. However,
when the association is many-to-many, such as the relationship between extaddress and
LA SpatialUnit in the context of SDG 1.4.2, an additional join table is required. In this case,
multiple extaddress instances can be associated with multiple LA SpatialUnit instances.
This is because an extaddress can be categorized in various ways, such as by region or
urban/rural classification, while a LA SpatialUnit can correspond to multiple extaddress

instances. To represent this many-to-many relationship, a join table, extaddress suid relation,
is used to store the associations, as shown below:

39

4. Implementation

CREATE TABLE extaddress_suid_relation (

extaddressid INTEGER NOT NULL ,

suid INTEGER NOT NULL ,

suid_geom geometry NOT NULL ,

PRIMARY KEY (extaddressid , suid),

FOREIGN KEY (suid) REFERENCES la_spatialunit(suid)

);

This table maintains the many-to-many relationship between extaddress and LA SpatialUnit,
ensuring that each extaddress can be linked to multiple spatial units and vice versa.

4.2.5. Constraints

In database design, constraints play a critical role in ensuring data integrity and consistency.
They restrict data entry or updates to ensure that the information stored in the database
adheres to predefined rules. Some constraints have already been mentioned in previous sec-
tions, this section will provide a comprehensive summary of the various types of constraints
used in the database model for SDG 1.4.2.

Primary Key

In database design, primary keys are not only used to uniquely identify each record but
also reflect the uniqueness constraints between entities as depicted in UML diagrams. Each
instance of a class in a UML diagram requires a unique identifier, which is enforced through
primary keys in the physical database. A primary key ensures that each record in the table
has a unique identifier that cannot be duplicated or set to NULL. For example, in the LA Party
table, pID serves as the primary key, uniquely identifying each party entity. The syntax is
straightforward, with the primary key constraint added directly to the relevant column.

CREATE TABLE LA_Party (

pID INTEGER PRIMARY KEY

-- Other attributes

);

Foreign Key

In database design, a foreign key enforces relationships between tables, ensuring that a field
in one table corresponds to the primary key of another table. This constraint guarantees
referential integrity, meaning that relationships between records are valid and consistent.
Foreign keys help establish links between entities, enforcing the logical connections defined
in the conceptual model.

In a UML diagram, foreign key relationships are depicted as associations between different
classes. These associations represent connections where one entity is related to another. The
association between classes in the UML diagram is mapped to a foreign key in the physical
database, where one class (entity) references the primary key of another.

40

4.2. Custom Data Types and Constraints Implementation

In SQL, foreign keys are explicitly defined using the FOREIGN KEY constraint, which links a
column in one table to the primary key in another table. This ensures that the value in the
foreign key column always matches a valid record in the referenced table. For example, in
the LA PartyMember table, pID is a foreign key that references the pID in the LA Party table,
establishing a relationship between party members and parties:

CREATE TABLE LA_PartyMember (

pmID INTEGER PRIMARY KEY ,

pID INTEGER REFERENCES LA_Party(pID), -- Foreign key linking

to the LA_Party table

pgID INTEGER REFERENCES LA_PartyGroup(groupID) -- Foreign

key linking to the LA_PartyGroup table

-- Other attributes

);

Alternatively, foreign keys can be defined separately after all columns are listed. For exam-
ple:

CREATE TABLE LA_PartyMember (

mpID INTEGER PRIMARY KEY ,

pID INTEGER , -- Foreign key defined separately

pgID INTEGER , -- Foreign key defined separately share

NUMERIC ,

FOREIGN KEY (pID) REFERENCES LA_Party(pID), -- Separate

foreign key definition

FOREIGN KEY (pgID) REFERENCES LA_PartyGroup(groupID) --

Separate foreign key definition

);

Other Types of Constraints

In addition to primary and foreign keys, other constraints in database design ensure data
integrity and enforce specific rules. These include:

1. CHECK
The CHECK constraint ensures that values in columns satisfy specific conditions. For
example, in the VersionedObject table, to avoid generating invalid time intervals, rules
exist: the end time must be later than the start time, or the end time must be null (i.e.,
the object still exists or the life cycle has not ended).

CREATE TABLE VersionedObject (

beginLifespanVersion TIMESTAMPTZ ,

endLifespanVersion TIMESTAMPTZ ,

beginRealWorldLifespanVersion TIMESTAMPTZ ,

endRealWorldLifespanVersion TIMESTAMPTZ ,

CONSTRAINT chk_version_lifespan CHECK (

endLifespanVersion IS NULL OR endLifespanVersion

> beginLifespanVersion),

41

4. Implementation

CONSTRAINT chk_version_RealWorldLifespan CHECK (

endRealWorldLifespanVersion IS NULL OR

endRealWorldLifespanVersion >

beginRealWorldLifespanVersion)

);

2. UNIQUE and NOT NULL
The UNIQUE and NOT NULL constraints are often used together to ensure both the
uniqueness and mandatory nature of certain attributes. In UML, this often corre-
sponds to the description field in code lists, which must be distinct and not empty. For
instance, in the LA RightType table:

CREATE TABLE LA_RightType (

rt_id SERIAL PRIMARY KEY ,

rt_description TEXT NOT NULL UNIQUE

);

4.3. Functions and Triggers for Complex Constraints

In previous sections, simple constraints (such as primary key, foreign key, and check con-
straints) were introduced, and they are usually sufficient to enforce basic rules, like unique-
ness or nullability of fields. However, in complex systems like the Land Administration
Domain Model, there are some rules and relationships that cannot be fully enforced by basic
constraints alone. This is where complex constraints come into play.

Complex constraints are rules that go beyond simple field-level validation and require ad-
vanced logic to ensure data integrity across multiple records, tables, or transactions. For
example, versioning is an important part of tracking the lifecycle of land rights. This re-
quires complex constraints to ensure that the lifecycle of each version of a record is con-
tinuous, with no gaps or overlaps in time. The complex constraints in land tenure change
management ensure the accuracy and long-term validity of land tenure records.

PostgreSQL supports the enforcement of such complex constraints through the use of functions
and triggers. Functions can encapsulate the logic required to enforce advanced validation
rules. Triggers are mechanisms that automatically invoke these functions before or after cer-
tain database operations, such as inserting or updating records. This combination of func-
tions and triggers allows for the dynamic validation of complex constraints during database
transactions, ensuring that the integrity of the data is maintained in accordance with the
LADM’s specific business rules.

Below are examples of how complex constraints are implemented in practice.

4.3.1. check version lifespan continuity

The check version lifespan continuity constraint ensures that object versions in the sys-
tem adhere to the temporal consistency requirements defined by LADM. Each version of
a record must have clearly defined start and end times, and for any given entity, the end

42

4.3. Functions and Triggers for Complex Constraints

time of the previous version should match the start time of the next version. This ensures
continuity and prevents gaps in the records, preserving the historical integrity of the data.

In the UML class diagram for LADM, the VersionedObject class contains the attributes beginLifespanVersion
and endLifespanVersion, which represent the system timestamps for when a record begins
and ends. The constraint that governs the continuity of these versions is often represented
in the UML diagram using a constraint note, as shown in Figure 4.5. This constraint ensures
that the endLifespanVersion of one record (n-1) must match the startLifespanVersion of
the next record (n).

Figure 4.5.: VersionedObject UML Diagram with Lifespan Continuity Constraint

In SQL, the check version lifespan continuity constraint is implemented through a trig-
ger function to ensure temporal continuity between records. This trigger function is au-
tomatically triggered when a new record is inserted or an existing record is updated, and
checks whether the beginLifespanVersion of the new record matches the endLifespanVersion
of the previous version.

When a new record is inserted or an existing record is updated, the trigger checks if the
beginLifespanVersion is non-null and if the endLifespanVersion of the previous record
matches this value. If there is a discontinuity (i.e., the beginLifespanVersion of the new
record does not match the endLifespanVersion of the previous version), the function raises
an exception, preventing the insertion or update of the record. This approach ensures that
the system maintains a continuous and accurate historical record, preventing any gaps or
inconsistencies in the versioned data.

The function dynamically generates an SQL query to check the continuity between records,
using the primary key of the record to identify the corresponding version and ensure tem-
poral consistency. By raising exceptions when discrepancies are found, the system prevents
the introduction of invalid temporal data.

In SQL, the check version lifespan continuity constraint is enforced through a trigger
function, ensuring the continuity of versioned data. The logic of this implementation is as
follows:

• When a new record is inserted or an existing record is updated, the trigger function dy-
namically generates an SQL query to check if the current record’s beginLifespanVersion
is not null and whether the previous version’s endLifespanVersion matches the cur-
rent record’s beginLifespanVersion.

43

4. Implementation

• If the continuity check fails, the function raises an exception, preventing the data from
being inserted or updated, thus maintaining the integrity and consistency of the ver-
sioned data.

The SQL implementation consists of several key steps:

1. First, the function extracts the primary key value of the current record and gen-
erates an SQL query using the format function to check if the previous version’s
endLifespanVersion matches the current version’s beginLifespanVersion.

2. If the match fails, an exception is raised using RAISE EXCEPTION, specifying which
record’s lifecycle continuity is problematic.

3. If the new record is an initial insertion (i.e., endLifespanVersion is null), no version
continuity check is performed, and the record is directly returned.

To automate the enforcement of this constraint, triggers are created for each table inheriting
from VersionedObject. These triggers ensure the function is executed automatically before
any insert or update operation, maintaining the temporal consistency of the data. The full
code and trigger implementation are provided in the appendix.

4.3.2. check fraction validity

In LADM, multiple parties can share rights to the same parcel of land. In such cases, it
is essential to ensure that the share distribution among parties is fair and legally valid.
Therefore, as discussed in Section 4.2.1, the Fraction data type is subject to several constraints
to guarantee the validity of the share values. These constraints are clearly defined in the
UML model, as illustrated in the figure 4.6

Figure 4.6.: Fraction Data Type Constraints in UML diagram

Specifically:

• The denominator must be greater than zero: This ensures that the lower bound of the
fraction is positive, which is a fundamental requirement for a valid fraction.

• The numerator must be non-negative: The numerator cannot be less than zero to
prevent negative shares from being assigned.

44

4.3. Functions and Triggers for Complex Constraints

• The numerator must not exceed the denominator: The value of the numerator cannot
be greater than the denominator to avoid having a fraction that exceeds 1.

In the SQL implementation, a series of conditional statements (IF...THEN) are used within
the trigger function to validate whether the fraction values conform to the constraints de-
fined in the LADM model. The approach involves the following steps:

• The first check ensures that the share field is not NULL. If it is, an exception is raised
using the statement IF NEW.share IS NULL THEN.

• The second check, IF (NEW.share).denominator ≤ 0 THEN, ensures that the denom-
inator is greater than zero.

• The next condition, ELSIF (NEW.share).numerator < 0 THEN, validates that the nu-
merator is non-negative, preventing the storage of invalid negative shares.

• Finally, the condition ELSIF (NEW.share).numerator> (NEW.share).denominator THEN

ensures that the numerator does not exceed the denominator.

4.3.3. check share sum

The check share sum constraint ensures that when multiple parties hold rights to the same
land unit, the total sum of these rights must equal 1, preventing errors such as a party hold-
ing more rights than allowed. This constraint applies to the share attribute in the LA Right
class, as shown in the Figure 4.7. The shareCheck attribute indicates whether this sum con-
straint is enforced for a specific type of right. When shareCheck is set to true, the system
must verify that the total sum of rights equals 1; otherwise, the check is skipped. In the
UML model, this constraint is expressed as an invariant, meaning it applies to all instances
where shareCheck is enabled.

Figure 4.7.: Share Sum Constraint of LA Right in UML diagram

In the SQL implementation, the check share sum function is used to verify that the total
share for all LA Right records equals 1, provided that the shareCheck is set to true. The logic
is as follows:

45

4. Implementation

1. Condition check: First, the function checks if shareCheck is true or NULL. If shareCheck
is false, no further checks are performed, and the new or updated record is returned
directly. This ensures that the share constraint is only applied when necessary.

2. Query construction: If shareCheck is true, the function dynamically constructs a query
to retrieve all relevant share values from the LA Right table, filtering by spatial unit
(suid), right type (r type), and beginRealWorldLifespanVersion. This ensures that
only records pertaining to the same spatial unit and right type are considered.

3. Summation: The function then iterates through the query results, converting all shares
to a uniform denominator to facilitate summation. This ensures that the shares from
different records can be accurately combined.

4. Validation: After adding the share of the current record to the total, the function checks
if the sum equals 1. If the sum does not equal 1, an exception is raised, preventing the
insertion or update of the record.

4.3.4. check minimum group members

This function enforces a constraint to ensure that each PartyGroup must have at least two
members, as indicated by the multiplicity of 2..* between LA Party and LA GroupParty in
Figure 4.8. This constraint is critical for Group Parties, as any PartyGroup must consist of
at least two individuals; otherwise, the group would not qualify as a valid entity in land
administration.

Figure 4.8.: Multiplicity constraints between LA Party and LA GroupParty in UML

In the UML model, this constraint is represented by the 2..* multiplicity on the association
line between LA Party and LA GroupParty. This means that each group must contain at least
two members.

Although this constraint applies to the relationship between LA Party and LA GroupParty,
the actual constraint check is performed on the LA PartyMember table in SQL. This is because
the records of group members are stored in the LA PartyMember table, which represents the
individual members within a group. The trigger is also created on the LA PartyMember table,

46

4.3. Functions and Triggers for Complex Constraints

ensuring that each time a member is added or removed from a PartyGroup, the check for
the minimum number of members is automatically executed.

In SQL, the check minimum group members function verifies whether this condition is met by
counting the number of members associated with a given PartyGroup in the LA PartyMember
table. Specifically, it checks the pgID (PartyGroup ID) to match the newly inserted or up-
dated group record. The function raises an exception if the member count is less than two.

4.3.5. check administrative source constraints

The chec administrative source constraints function ensures that the data in the LA AdministrativeSource
remains consistent with the corresponding records in the LA Right. This constraint is criti-
cal because each VersionedObject must maintain temporal consistency with its corresponding
LA Source, as shown in Figure 4.9. Specifically for this function, each administrative source
(LA AdministrativeSource) must align with the legal rights (LA Right) in land administration.
The function verifies that the lifecycle timestamps and acceptance dates between the two
tables are synchronized during insert or update operations.

Figure 4.9.: Constraints for VersionedObject and LA Source in UML

In the SQL implementation:

1. Matching Administrative Source and Right Records: The function begins by checking
if a record with the same asid already exists in the LA AdministrativeSource table. This
helps to differentiate between insert and update operations. It also queries the LA Right
table for the corresponding rID to ensure that every administrative source is tied to a
valid right record.

2. Timestamp Validation:

• For Acceptance Date: The acceptance field in LA AdministrativeSource must match
the beginRealWorldLifespanVersion in LA Right. This ensures that the adminis-
trative source reflects the correct real-world starting point of the associated right.

• For Lifespan Timestamps: Depending on whether the operation is an insert or
an update, different timestamps are validated:

– Insert Operation: The lifeSpanStamp in LA AdministrativeSource must match
the beginLifespanVersion in LA Right, ensuring that the source document
is aligned with the start of the right’s system lifespan.

47

4. Implementation

– Update Operation: The lifeSpanStamp must match the endLifespanVersion
in LA Right, ensuring that any updates to the source are correctly synchro-
nized with the end of the right’s system lifespan.

4.4. Functions for Calculation

4.4.1. countAdult

According to the SDG 1.4.2 metadata, in Definition section, the adult population of a coun-
try is measured using census data or surveys based on an adequate sampling frame. In
terms of data sources, the metadata identifies census data as a primary source, though it
includes individuals of all age groups. Therefore, accurately filtering and counting the adult
population is essential for subsequent calculations. This forms the basis of the countAdult

function. In the methodology section of SDG 1.4.2, it is stated that the indicator is composed
of two parts: Part (A) measures the proportion of adults with legally recognized documen-
tation of land; Part (B) measures the proportion of adults who perceive their land rights as
secure. Both parts rely on accurate adult population data, making the selection and counting
of adults a crucial step.

In the UML model pseudocode, as illustrated in Figure 4.10, the countAdult function op-
erates by calling the getPeopleInArea function to retrieve all individuals within a specified
geographic area. It then compares their birthdates with a given reference date to calculate
their age. If an individual is 18 years or older, they are counted as part of the adult popula-
tion. This logic iterates over each individual, calculates their age, and ultimately returns the
total count of adults that meet the criteria.

Figure 4.10.: Pseudocode of Method countAdult in UML

48

4.4. Functions for Calculation

The SQL implementation of this logic is more detailed and structured to ensure geograph-
ical consistency, accurate age calculation, time validity, and deduplication of individual
records.

• Input Parameters: CA begindate (date type) to specify the reference date for calculat-
ing age, and CA area (geometry type) representing the geographic area.

• Geographical Filtering: This function is handled by the PostGIS function ST Contains,
which ensures that only individuals located within the specified geographic region
(CA area) are selected. By using the suid geom geometry field from the extaddress suid relation

table, the function matches individuals’ addresses to the specified geographic area.
The condition ST Contains(CA area, esr.suid geom) ensures that only individuals
within the defined spatial boundaries are considered in the count.

• Age Calculation: Use PostgreSQL’s age function, combined with EXTRACT(YEAR FROM

age(...)) to extract the age of each individual. Specifically, age(CA begindate,

e.birthday) calculates the age of an individual on the specified CA begindate. The
condition EXTRACT(YEAR FROM age(...))>= 18 ensures that only individuals who are
18 years or older on the given date are included. This logic guarantees that the final
count accurately reflects the adult population.

• Time Validity Checks: Use the begindate and enddate fields to ensure that the
records are valid on the specified reference date. The condition e.begindate <=

CA begindate ensures that the record for each individual was valid by the reference
date, while (e.enddate IS NULL OR e.enddate >= CA begindate) ensures that the
record had not ended by that date or is still ongoing (indicated by a NULL enddate).

• Data de-duplication and counting: Use DISTINCT ON (e.extpid) to ensure that each
individual (identified by extpid) is counted only once. This deduplication process
is based on the unique individual identifier (extpid), ensuring that each person is
included in the count only once, even if they appear multiple times in the dataset. The
total number of adults meeting these conditions is then computed using COUNT(*) and
returned.

This comprehensive SQL implementation ensures that the countAdult function accurately
filters and counts the adult population, providing a reliable foundation for further compu-
tations. The full code is provided in the appendix.

4.4.2. computeProportionWithLegalDocumentation

According to the metadata of SDG 1.4.2, part A focuses on calculating the proportion of the
adult population that holds legally recognized land documentation. The metadata defines
”Legally recognized documentation” as government-recognized legal documents related to
land rights, such as title deeds or lease agreements. The specific types of legally recognized
land documentation vary by country, as they depend on national legal regulations. The
metadata also indicates that administrative data reported by national land agencies, often
from land registries or cadastral systems, can be used for this calculation. These systems
provide information on adults granted legal rights to land, along with details about the
location of these rights. When these systems are fully electronic, the data can be updated
annually.

49

4. Implementation

Figure 4.11.: Pseudocode of Method computeProportionWithLegalDocumentation in UML

The UML model’s computeProportionWithLegalDocumentation function is illustrated in
Figure 4.11, showing its pseudocode logic. First, the function calls the countAdults func-
tion to determine the total adult population in a specific geographic area. It then filters
for individuals who possess legally recognized land documentation. The computation is
categorized by gender and land tenure type, associating these classifications with records
through a GenderTenureKey. In the pseudocode, if a record matches the classification key,
the function tallies the number of adults with legal documentation. Finally, the function
calculates the proportion by dividing the number of adults with legal documentation by the
total adult population.

In the SQL implementation, the computeProportionWithLegalDocumentation function is
designed to combine geospatial filtering (using PostGIS) with demographic filtering to com-
pute the proportion of adults holding legally recognized land documentation within a spe-
cific area and time frame. The design logic is as follows:

1. Input Parameters: To allow analysis for any area or time period, the function accepts
three parameters: a start date (input begin), an end date (input end), and a geometric
object (input area) representing the geographic boundary. PostGIS’s GEOMETRY type
enables spatial operations, ensuring that only individuals located within the specified
area are counted.

2. Return Type: The function returns a table with the following fields:

• category: Indicates the type of classification (e.g., total population, gender, or
tenure type).

• subcategory: Specifies the specific subclass (e.g., male or female, but formatted
as the corresponding number in the codelist).

• proportion: Represents the proportion of adults holding legal land documenta-
tion.

50

4.4. Functions for Calculation

3. Total Population Proportion Calculation: The function first calls the countAdults

function to calculate the total number of adults within the specified geographic area
and time range. If the total number of adults is greater than zero, the function proceeds
to calculate the number of adults holding valid land ownership documents. Specifi-
cally, this is done by joining multiple tables (shown in Figure 4.12) and filtering the
data based on certain conditions. The filtering criteria ensure that the individual’s
address is within the specified geographic area (ST Contains), their records are valid
within the specified time range (beginLifespanVersion and endLifespanVersion),
and they are at least 18 years old on the reference date (calculated using the birthday
field). Additionally, the function ensures that the associated administrative document
is valid, meaning that the as type, pid, and suid fields in the la administrativesource
table are not null, thus identifying adults who hold valid land ownership documents.

Figure 4.12.: Tables joined diagram for SDG 1.4.2(a)

totalAdultsCount := countAdults(input_begin ::DATE ,

input_area);

IF totalAdultsCount > 0 THEN

SELECT COUNT (*) INTO adultsWithDocumentationCount

FROM (...) AS unique_adultsWithDocumentationCount;

The function computes the proportion of the total adult population that holds legal
documentation by performing a simple division, which is returned as the first result.

4. Gender Categorization: To further analyze the data, the function classifies adults by
gender. It queries the LA Party table’s humansex field to retrieve the list of genders.
For each gender group, the function applies similar logic to that used for the total
population, calculating the proportion of individuals in each gender group who hold
legal documentation.

FOR gender IN SELECT DISTINCT humansex FROM la_party LOOP

SELECT COUNT (*) INTO adultsWithDocumentationCount

FROM (...) AS unique_adultsWithDocumentationCount;

RETURN QUERY SELECT ’gender ’ AS category , gender ::TEXT ,

adultsWithDocumentationCount

:: FLOAT /

51

4. Implementation

totalAdultsCount :: FLOAT

AS proportion;

END LOOP;

5. Tenure Type Categorization: Following the gender classification, the function catego-
rizes the adult population by land tenure type. This categorization is based on the
r type field in the LA Right table, which indicates the type of land tenure held by an
individual. By applying this classification, the function can analyze the distribution of
legal documentation across different tenure types.

FOR tenureType IN SELECT DISTINCT r_type FROM la_right LOOP

SELECT COUNT (*) INTO adultsWithDocumentationCount

FROM (...) AS unique_adultsWithDocumentationCount;

RETURN QUERY SELECT ’tenure_type ’ AS category ,

tenureType ::TEXT ,

adultsWithDocumentationCount

:: FLOAT /

totalAdultsCount :: FLOAT

AS proportion;

END LOOP;

6. Output Results: The final output of the function is a table containing three classifica-
tions (total population, gender, and tenure type) and the corresponding proportion for
each subclass. It is worth noting that while the proportions output by this code are
suitable for use in SDG reporting, in practice they are modified in small parts to in-
clude counts (e.g., total adults or adults with legal documents) for validation purposes
by comparing the system output with the results of manual calculations.

computeProportionPerceivingSecurity

Similar to the computation of the proportion of adults with legal land documentation, the
computeProportionPerceivingSecurity function calculates the proportion of adults who
perceive their land rights as secure. This corresponds to Part B of SDG 1.4.2, which aims to
measure the subjective perception of land tenure security among the adult population.

In the UML model, the computeProportionPerceivingSecurity function follows a simi-
lar logic to the computeProportionWithLegalDocumentation function. However, instead of
filtering for adults with legal documentation(in la administrativesource), it filters based on
those adults who, according to survey data, perceive their land rights as secure(in extsecure-
landrightsquestionnaire). Like before, it first calls the countAdults function to obtain the total
adult population in a specific geographic area. Then, it filters the data based on gender and
tenure type to identify those who perceive their land rights as secure.

The SQL implementation also follows a similar approach to the legal documentation func-
tion, with the main difference being the tables that are joined (as shown in Figure 4.13).
Since the overall logic remains consistent, it will not be repeated here, and the full im-
plementation can be found in the appendix. The final output is also similar to that of
computeProportionWithLegalDocumentation, providing three main classifications (total adult
population, gender, and tenure type) and returning the proportion or count of adults who
perceive their land rights as secure within each subclass.

52

4.5. Views and Report Generation

Figure 4.13.: Tables joined diagram for SDG 1.4.2(b)

4.5. Views and Report Generation

In databases, a view is a virtual table generated by querying and combining data from mul-
tiple tables. For SDG 1.4.2 reporting, the SDG 1 4 2 Report function produces detailed data
on land documentation and tenure security, while views enhance data readability by map-
ping coded values to descriptive labels. Views allow users to quickly access formatted and
aggregated information without directly modifying the underlying data, providing strong
support for decision-making and analysis within land management systems.

4.5.1. SDG 1 4 2 Report

The design rationale behind the SDG 1 4 2 Report function is to simplify the process of
generating reports for SDG 1.4.2 indicators. This function efficiently integrates previously
developed calculation functions, reducing the complexity of manual intervention. It allows
users to automatically generate comprehensive reports by simply inputting a time range
and geographical area. This eliminates the need for users to call individual functions sepa-
rately, thus improving the efficiency and accuracy of report generation while helping land
administration systems more effectively meet the requirements of SDG 1.4.2.

In the UML model, the design logic of the SDG 1 4 2 Report function demonstrates how
to generate a comprehensive report that analyzes the proportion of adults holding legally
recognized land documentation and their perceived tenure security in a specific time period
and geographical area. The function calculates the relevant proportions by iterating over
all combinations of gender and land tenure types, ensuring all possible classifications are
covered. As shown in Figure 4.14, the pseudocode illustrates the core steps of the func-
tion, which include initializing the report object, calculating the proportions of adults with
legal documentation and perceived tenure security, and recording the results in the report.
By calling the computeProportionWithLegalDocumentation and computeProportionPerceiv-
ingSecurity functions, the function can generate detailed analytical results for each gender
and land tenure type combination. This modular design makes the function easy to expand
and maintain, ensuring it can quickly adapt to additional data dimensions in the future.

53

4. Implementation

Figure 4.14.: Pseudocode of Method SDG 1 4 2 Report in UML

In SQL, the main implementation steps of the SDG 1 4 2 Report function align with the
pseudocode structure in the UML model. Its design logic involves transforming the input
geographical area using the ST Transform function to ensure spatial consistency. Then, the
countAdults function is called to calculate the total number of adults in the specified area,
serving as the baseline for subsequent proportion calculations.

The data returned by the function is structured into a table containing fields for time, area,
category, subcategory, and two types of proportions (proportion of adults with legal docu-
mentation and proportion of adults perceiving security). The entire calculation process is
divided into three parts: first, calculating the overall population proportion; second, divid-
ing the population by gender and calculating the proportion of adults within each gender
group who hold legal land documentation and perceive security; and finally, classifying
the population by land tenure type and calculating the corresponding proportions for each
tenure type.

At each stage, the proportions are computed via subqueries that call two independent calcu-
lation functions, computeProportionWithLegalDocumentation and computeProportionPer-
ceivingSecurity, which compute the proportion of adults holding legal documentation and
the proportion perceiving tenure security, respectively. Through nested queries and group-
ing operations, the function outputs detailed proportions for each category and subcategory
of the adult population. The final report provides multidimensional data, covering overall,

54

4.5. Views and Report Generation

gender-based, and land tenure type-based statistics, offering detailed data support for land
tenure analysis.

4.5.2. Create View

The creation of views is essential for transforming the raw data output of functions like
SDG 1 4 2 Report into a structured and readable format, conducive to the reporting require-
ments of SDG 1.4.2 indicators. The raw output from these functions is typically populated
with coded values, such as identifiers for gender or tenure type. These codes, while efficient
for data processing, are not user-friendly for stakeholders or policymakers who require
detailed and understandable reports. Views are implemented to merge the output from
SDG 1 4 2 Report with relevant codelists, which contain descriptive labels that replace the
coded values with more interpretable terms. This method significantly enhances the clarity
and usability of the data by providing stakeholders with a report that is both informative
and accessible.

The following example demonstrates the process of creating a view using data from the
SDG 1 4 2 Report function:

CREATE OR REPLACE VIEW SDG_1_4_2_Report_View_2000_all AS

WITH report_data AS (

SELECT *

FROM SDG_1_4_2_Report(’2000 -01 -01 00:00:00 ’, ’2001 -01 -01

00:00:00 ’, (SELECT geom FROM test_area WHERE id = 1))

)

SELECT

report_begindate ,

report_enddate ,

report_region ,

report_category ,

CASE

WHEN report_category = ’gender ’ THEN hst.hst_description

WHEN report_category = ’tenure_type ’ THEN rt.

rt_description

ELSE report_subcategory

END AS report_subcategory ,

report_totalAdultsCount ,

report_proportionPerceivingSecurity ,

report_proportionWithLegalDocumentation

FROM

report_data r

LEFT JOIN

la_humansexestype hst ON CAST(hst.hst_id AS TEXT) = r.

report_subcategory AND r.report_category = ’gender ’

LEFT JOIN

la_righttype rt ON CAST(rt.rt_id AS TEXT) = r.

report_subcategory AND r.report_category = ’tenure_type ’;

In this SQL view:

55

4. Implementation

1. Data Selection: Data is retrieved for a specified time frame and geographic area by
invoking the SDG 1 4 2 Report function.

2. Code Translation: The LEFT JOIN operations map the report subcategory field’s codes
(such as gender and tenure type) to their descriptive labels from the la humansexestype

and LA Righttype codelists.

3. Output Formatting: The final output is a formatted table where coded categories
are substituted with meaningful descriptions, enhancing the report’s readability and
relevance.

This approach not only automates the data transformation process necessary for SDG re-
porting but also ensures that the reports are consistent, reducing the need for manual ad-
justments. The use of views streamlines data presentation and supports the generation of
comprehensive reports that are readily understandable by a broad audience, thereby facili-
tating effective decision-making and policy formulation.

56

5. Testing

During the testing phase, the focus of this chapter is to validate the process of generat-
ing the SDG 1.4.2 indicator report by simulating land administration system data that is
aligned with LADM. To ensure that the system can handle various scenarios in a real data
environment, the test dataset is carefully designed to include both valid and invalid inputs.
By simulating real-world operations, the insertion of test data in sequence verifies the cor-
rectness and effectiveness of the constraints, triggers, and functions implemented in SQL.
The testing covers all stages of data insertion and updates, ensuring the system accurately
captures changes in land tenure and generates an SDG 1.4.2 report in compliance with the
established standards.

5.1. Test Dataset Design

5.1.1. Logic of Data Design

In reality, land administration systems are dynamic, with land rights, population, and spatial
units changing over time. This dynamic nature was taken into account during the database
design process, and thus, the test dataset is designed to accurately simulate the temporal
changes of these elements. The data design logic is based on multi-dimensional time series
data, including birth and death of individuals, transfer of land rights, and changes in spatial
units. By using beginLifespanVersion and endLifespanVersion to manage the lifecycle of
each record, the test data can faithfully reflect the dynamic changes of these elements at
different points in time. The specific design considerations are as follows:

Geographic Dimension

The geographic dimension is a crucial part of the data design. The dataset contains three
levels of geographic data:

• Base Land Parcel: The lowest level is represented by suid, which denotes individual
land parcels, simulating the smallest spatial unit in reality.

• Aggregated Region: The next level is formed by aggregating several base land parcels
into regions, denoted by extid.

• Complete Test Area: The highest level consists of all regions aggregated together,
represented by test area with id = 1.

The hierarchical geographic relationships are stored in the extaddress suid relation table,
reflecting the connections between different geographic layers. This design simulates real-
world scenarios where SDG indicator reports can be generated at various geographic scales,
from national to local levels.

57

5. Testing

Temporal Dimension

The temporal dimension is the core of the data design, simulating the dynamic changes in
land rights, population, and spatial units over time. The test data spans three years, with
each year representing updates based on different changes to these elements. This design
allows for a realistic replication of events and developments in a real system.

Year 1: System Initialization
The first year serves as the initialization phase, with population, land rights, and spatial unit
data being set up. The design of the dataset reflects the demographic and spatial elements
of the system, ensuring that the test data can accurately simulate real-world dynamics. The
initial setup can be broken down as follows:

• Party Data: In total, the census records 22 individuals, of which 20 reside within the
designated area and 2 are outside. As of January 1, 2000, 17 of these individuals are
adults, while 3 are minors. This information is recorded in the extparty table, since the
census is updated every ten years, the data in this table remain constant.. Of the 17
adults, 8 are recorded in the land administration system, with their information stored
in the la party table. These 8 individuals consist of 4 males and 4 females, which is
also reflected in the la party table.

• Spatial Data: The spatial dimension consists of 13 parcels, organized into two re-
gions, with spatial information stored in the la spatialunit table. Among the 8 adults
with land ownership, 7 individuals each own one parcel, while 1 individual owns two
parcels. The remaining 4 parcels are owned by the government, and this information
is stored in the la right and la administrativesource tables.

• Land Rights and Legal Documentation: The land rights of the 8 adults and the 4
government-owned parcels are recorded in the la right table. For each right, there is a
corresponding legal document registered in the la administrativesource table, ensuring
that the legal basis for each land right is properly documented.

• Secure Land Rights Questionnaire: In addition, the extsecurelandrightsquestionnair
table contains survey data for 10 individuals regarding their perception of land tenure
security, reflecting data collected from the local population.

Year 2: Land Rights Transfer and Formation of a Cooperative
In the second year, changes in land rights and the formation of a cooperative are introduced
to simulate more complex dynamics:

• Land Rights Transfer: Ownership of land parcel suid=30004 is transferred from pid=1004
to pid=10013. This change is recorded in multiple tables:

– A new record for pid=10013 is added to the la party table.

– The la right table reflects the transfer, where the original owner pid=10004 has
their rights (identified by rid=20004) terminated, and a new right (identified by
rid=20014) is created for the new owner pid=10013.

– A new legal document for this transfer is added to the la administrativesource
table.

58

5.1. Test Dataset Design

• Formation of a Cooperative: Three individuals form the farmerCooperation coopera-
tive, with related information stored in the la partygroup and la partymember tables.
This simulates group land management rights.

Year 3: Changes in Cooperative Membership and Land Leasing
In the third year, changes in cooperative membership and land leasing activities introduce
further dynamics:

• Changes in Cooperative Membership: Membership in the cooperative changes, with
some members leaving and new members joining. Additionally, the cooperative leases
a parcel of land (suid=30013) from the government. This collective land leasing activity
is recorded in the la right table as a single record.

• Individual Land Leasing: In contrast to the cooperative, individuals (pid=10016,
10017, 10018, 10020) also lease the same parcel of land from the government, with each
individual’s lease recorded separately in the la right table. This distinction highlights
the difference between collective and individual leasing.

• Legal Document Updates: The la administrativesource table is updated accordingly,
recording both collective and individual land leases.

• External Data Update: Since secure land rights surveys are conducted every three
to five years, the extsecurelandrightsquestionnair table is updated in the third year,
adding records for three more individuals. According to the record of birthday, the
number of minors decreases over time, from three in the first year, to two in the second
year, and one in the third year.

By integrating both geographic and temporal dimensions, the test data effectively simulates
the dynamic changes in land rights, population, and spatial units over time. This design
ensures that the test data can accurately reflect real-world dynamics at different points in
time, providing a robust foundation for subsequent functionality testing.

5.1.2. Data Insertion Order and Handling of Foreign Key Constraints

When inserting data into the database, the complex foreign key constraints require careful
adherence to the dependency relationships between tables. For instance, when inserting
data into the la administrativesource table, several other related tables must have their data
inserted first to satisfy the foreign key dependencies. Specifically, the following fields in the
la administrativesource table are constrained by foreign keys:

• suid references the la spatialunit table.

• rid references the la right table.

• pid references the la party table.

• as type references the la administrativesourcetype table.

Thus, before inserting data into the la administrativesource table, the corresponding records
in la spatialunit, la right, la party, and la administrativesourcetype must be present in the
database.

To ensure proper handling of foreign key constraints, the insertion of data follows this se-
quence: first, spatial data are inserted into the la spatialunit table, followed by the insertion

59

5. Testing

of address and population data into the extaddress suid relation and extparty tables. Then,
data are inserted into the LA Party, la right, and finally the la administrativesource tables.
The questionnaire data in the extsecurelandrightsquestionnaire table is inserted last. This
insertion sequence ensures that all foreign key dependencies are properly addressed, pre-
venting violations of constraint rules.

When updating existing data and inserting new records, especially during the second and
third years of data operations, the following sequence must be observed:

• Update existing data first: Before inserting new records, any updates to existing
records, particularly those involving the endLifespanVersion field, must be completed.
This is crucial because many of the system’s constraints depend on records where
the endLifespanVersion field is still NULL. By updating the existing data first, these
constraints will not interfere with subsequent operations.

• Group insertion of new data: When inserting new records, group them based on their
relationships. For instance, when inserting new records into the la right table, records
with the same suid and r type should be inserted together. This approach ensures data
consistency and minimizes potential conflicts with foreign key constraints.

By carefully organizing the data insertion sequence, foreign key constraints are maintained,
ensuring that all relationships within the system remain consistent.

5.2. Comparison of Automated and Manual Calculations

In this section, the results of the automated calculations performed by the database system
over the three years are compared with the manually calculated outcomes. This comparison
aims to validate the accuracy and consistency of the database implementation, ensuring that
the complex constraints, functions, and relationships between tables work as intended to
reflect the dynamic changes in land rights, population, and spatial units over time.

5.2.1. First Year

During the first year, the system generated the initial population and land rights data based
on the inserted test dataset. The total adult population, the number of land parcels, and the
corresponding land rights were calculated and stored. Manual calculations were performed
to verify the following key results for the entire study area:

• Total adult population: The census dataset contained 22 records in total, out of which
20 individuals were located within the designated area. Among these 20 individuals,
17 were classified as adults, having reached the age of 18 by the reference date of
January 1, 2000. The remaining 3 individuals were classified as minors, not yet 18
years old. This information was drawn from the extparty table.

• Legally documented land rights: Out of the 17 adults, 8 individuals—4 men and 4
women— all held ownership rights on land. These individuals had legal documen-
tation for their land parcels, with all ownership rights recorded in the la party and
la right tables. The 8 individuals only has one type of right, namely ownership. All
this information, including the ownership structure, was confirmed in the la right and
la administrativesource tables.

60

5.2. Comparison of Automated and Manual Calculations

• Perceived tenure security: According to the questionnaire data stored in the extse-
curelandrightsquestionnaire table, 10 individuals participated in the perceived tenure
security survey. Of these 10 respondents, 8 (equally divided between 4 men and 4
women) reported feeling secure about their land rights. The remaining 2 individuals
expressed uncertainty or insecurity regarding their tenure.

In summary, manual calculations yielded the following results: Of the total adult population
in the designated areas, 23.53% of males and 23.53% of females had legally recognised land
documents according to gender, and 47.06% had ownership on land according to tenure of
type.When analysing the sense of security of tenure, 47.06% of the of the respondents said
that they feel secure, with equal percentages of men and women.

The following are the results of the database calculations, generated by running the rel-
evant compute functions. First, the computeProportionWithLegalDocumentation number
function is run to calculate the proportion of the adult population with legal land documen-
tation.

SELECT *

FROM computeProportionWithLegalDocumentation_number(

’2000 -01 -01 00:00:00 ’,

’2001 -01 -01 00:00:00 ’,

(SELECT geom FROM test_area WHERE id = 1)

);

By running this function for the complete test area in 2000, it provides a breakdown of the
percentage of individuals who meet this criterion. The query results give insights into the
extent of land documentation within the designated region for that time frame. The figure
5.1 shows the result of the computation, indicating the proportion of the adult population
with legally documented land rights for the year 2000.

Figure 5.1.: Calculation of the percentage of legal land document holdings within the Com-
plete Test Area in 2000

The next step is to use computeProportionPerceivingSecurity number function calculating
the proportion of adults who perceive their tenure rights as secure. The figure 5.2 show the
results of the computation.

61

5. Testing

Figure 5.2.: Calculation of the percentage of of adults who perceive their tenure rights as
secure within the Complete Test Area in 2000

From these initial results, it can already be observed that the output matches the manually
compiled statistics. The calculation of legally documented land rights and the perceived
tenure security align with the manual count, confirming the accuracy of the functions.

Next, the SDG 1 4 2 Report View 2000 all is executed to generate a comprehensive report,
synthesizing the various metrics into a unified output. The report consolidates the data on
legal documentation and tenure security, presenting it in a structured, readable format. By
creating the view and comparing its output with the manually calculated results, the con-
sistency and reliability of the automated database calculations can be further confirmed.

Figure 5.3.: Final Report View within the Complete Test Area in 2000

Once the view is created, the final report can be generated by querying the view and com-
paring the results with the manually calculated figures. These results are consistent with the
manually verified data and confirm the validity and accuracy of the system’s calculations.

5.2.2. Second Year

In the second year, significant changes occurred in both land rights and the composition
of party groups, including the introduction of party groups (e.g., a farmer cooperation)
and land ownership transfers. As with the first year, the database calculations were cross-
referenced with manually compiled results for validation.

• Total adult population: The census dataset contained 22 records in total, out of which
20 individuals were located within the designated area. Among these 20 individuals,
17 were classified as adults, having reached the age of 18 by the reference date of
January 1, 2000. The remaining 3 individuals were classified as minors, not yet 18
years old. This information was drawn from the extparty table.

62

5.2. Comparison of Automated and Manual Calculations

• Legally documented land rights: Out of the 17 adults, 8 individuals—4 men and 4
women— all held ownership rights on land. These individuals had legal documen-
tation for their land parcels, with all ownership rights recorded in the la party and
la right tables. The 8 individuals only has one type of right, namely ownership. All
this information, including the ownership structure, was confirmed in the la right and
la administrativesource tables.

• Perceived tenure security: According to the questionnaire data stored in the extse-
curelandrightsquestionnaire table, 10 individuals participated in the perceived tenure
security survey. Of these 10 respondents, 8 (equally divided between 4 men and 4
women) reported feeling secure about their land rights. The remaining 2 individuals
expressed uncertainty or insecurity regarding their tenure.

In summary, manual calculations yielded the following results: Of the total adult population
in the designated areas, 23.53% of males and 23.53% of females had legally recognised land
documents according to gender, and 47.06% had ownership on land according to tenure of
type.When analysing the sense of security of tenure, 47.06% of the of the respondents said
that they feel secure, with equal percentages of men and women.

• Total adult population: The census dataset still included 22 records, with 20 individ-
uals residing in the designated area. By January 1, 2001, one person (extpid=110015,
birthday is on 1982/2/17) reached adulthood, increasing the number of adults to 18.
The remaining 2 individuals were minors, under 18.

• Legally documented land rights: Among the 18 adults, 9 individuals (4 men and 5
women) held ownership rights over land, representing 50% of the adult population.
Specifically, men accounted for 22.22% and women for 27.78% of those with docu-
mented ownership rights. All land rights were classified as ownership.

• Perceived tenure security: Of the 10 respondents to the tenure security survey, 8
individuals (4 men and 4 women) felt secure about their land rights, comprising 44.44%
of the total adult population. Both men and women equally represented 22.22% of
those who reported feeling secure.

Summary: The second year’s data reflects a slight increase in the adult population to 18,
with 50% holding legal ownership rights and 44.44% reporting a sense of security in their
land tenure. The results align closely with the first year’s outcomes, maintaining a stable
proportion of those feeling secure about their land rights.

Set the time range to ’2001-01-01 00:00:00’ to ’2002-01-01 00:00:00’, with the geographical area
still selected as the entire test area. The results from the SDG 1 4 2 Report View 2001 all are
as follows:

Figure 5.4.: Final Report View within the Complete Test Area in 2001

Also, match with manually calculated results.

63

5. Testing

5.2.3. Third Year

As above, the database calculations were cross-referenced with manually compiled results
for validation.

• Total adult population: The total population did not change, but one additional in-
dividual (extpid=110022, born on December 3, 1983) reached adulthood, bringing the
total number of adults to 19. This change slightly adjusted the demographics and
affected the subsequent calculations regarding land rights and tenure security.

• Legally documented land rights: Out of the 19 adults, 12 individuals held legally
documented land rights, representing 63.16% of the adult population. This group was
composed of 4 men and 8 women, with percentages of 21.05% and 42.11%, respectively.
When categorized by the type of rights, 9 individuals held ownership rights (47.37%
of the total adult population), while 4 individuals had lease rights (21.05%).

• Perceived tenure security: The third year saw an addition of three new perceived
tenure security records, of which two indicated a sense of security. This brought the
total number of individuals perceiving their rights as secure to 10. However, only 9
of these individuals actually held legal rights to the land (extpid=110012 perceived
security but did not possess any rights). Breaking it down by gender, 4 men and
5 women reported feeling secure, corresponding to 21.05% and 26.32% of the total
adult population, respectively. Based on ownership, the percentage of individuals
with secure tenure remains at 47.37%, reflecting the proportion of ownership rights
holders who perceive their tenure as secure.

In the third year, the total adult population reached 19. Of these, 63.16% had legally doc-
umented land rights, with 21.05% being men and 42.11% being women. Ownership rights
accounted for 47.37%, while lease rights made up 21.05%. Regarding tenure security, 52.63%
of adults felt secure about their rights, with 21.05% of men and 26.32% of women expressing
security, predominantly among those with ownership.

Set the time range to ’2002-01-01 00:00:00’ to ’2003-01-01 00:00:00’, with the geographical area
still selected as the entire test area. The results from the SDG 1 4 2 Report View 2002 all are
as follows:

Figure 5.5.: Final Report View within the Complete Test Area in 2002

Also match with manual calculated results.

SDG Report Visualization

In the third-year testing phase, SDG report maps were generated based on different at-
tributes to showcase how various regions performed in land management indicators.

64

5.2. Comparison of Automated and Manual Calculations

First, all parcels were divided into two regions based on their extaddressid attribute: Region
50001 is represented in red, and Region 50002 is represented in blue (shown in Figure 5.6a.
These two regions correspond to different administrative or management units, displaying
the specific SDG indicator performance for each area.

For these two regions, a total of 10 SDG report maps were generated for each, covering the
following contents:

• The overall proportion perceiving security;

• Proportion perceiving security by gender (male/female);

• Proportion perceiving security by ownership type (ownership/lease);

• The overall proportion with legal documentation;

• Proportion with legal documentation by gender (male/female);

• Proportion with legal documentation by ownership type (ownership/lease).

These maps allow for a clear comparison of how Region 50001 and Region 50002 perform
across these key SDG indicators (see Figure 5.7). The maps effectively illustrate the dif-
ferences in performance across various attributes, providing valuable data to support land
management policies.

In addition, an overall SDG report for the entire study area was generated, simulating a
multi-level governance model. By combining the data from Regions 50001 and 50002, a
higher-level regional report was produced, showing the aggregated performance across both
areas (see Figure 5.6b, 5.6c). This multi-level reporting approach not only demonstrates the
comparison between different layers but also lays the groundwork for future spatial analysis
and data integration for additional parcels at the same level.

This multi-level reporting approach not only illustrates the comparison between different re-
gions under the same topic but also lays the groundwork for future spatial and comparative
analyses by incorporating more parcels at the same administrative level. With a richer set
of spatial data, this analysis can significantly enhance monitoring of SDG indicators within
regions and provide strong support for policy-making.

(a) Multi-Level Map
(b) Female Proportion Perceiv-

ing Security in First-level Map
(c) Female Proportion Perceiving

Security in second-level Map

Figure 5.6.: Multi-level Governance SDG Report Visualization for Combined and Sub-regions

65

5. Testing

(a) Overall Proportion Perceiving Security (b) Female Proportion Perceiving Security

(c) Ownership Proportion Perceiving Security
(d) Overall Proportion with Legal Documen-

tation

Figure 5.7.: Key SDG Report Maps for Regions 50001 and 50002

66

5.3. Validation of Constraints through Invalid Data Testing

5.3. Validation of Constraints through Invalid Data Testing

This section validates the effectiveness of the system’s constraint mechanisms by inserting
invalid data into the database. The goal of this testing is to trigger various constraints and
ensure that the system can effectively prevent erroneous or inconsistent data from being
inserted. The tests are designed around different functions and constraints within the sys-
tem, and the results demonstrate the robustness of these constraints in maintaining data
integrity.

5.3.1. Testing check version lifespan continuity

This test focuses on ensuring continuity in versioned records. Specifically, it validates that
the beginLifespanVersion of a new record follows the endLifespanVersion of the previous
record. Attempting to insert an invalid record, where the beginLifespanVersion is not con-
tinuous with the previous endLifespanVersion, correctly triggered the constraint and the
insertion failed.

Invalid record example

First, a valid record was updated to have an endLifespanVersion, after which an attempt was
made to insert a new record with a beginLifespanVersion (’2001-01-02 08:35:03’) that did not
match the corresponding endLifespanVersion (’2001-01-01 08:35:03’). Valid update to insert
endLifespanVersion:

UPDATE LA_Right

SET

endLifespanVersion = ’2001 -01 -01 08:35:03 ’,

endRealWorldLifespanVersion = ’2001 -01 -01 00:00:00 ’

WHERE

rID = 20004;

Then, an invalid record is inserted where the beginLifespanVersion does not align with the
previous record’s endLifespanVersion, leading to an error:

INSERT INTO LA_Right (rID , r_type , suID , pID , share , shareCheck ,

timeSpec , beginLifespanVersion , endLifespanVersion ,

beginRealWorldLifespanVersion , endRealWorldLifespanVersion)

VALUES

(20014 , 11, 30004 , 10013 , ’(1,1)’, TRUE , NULL , ’2001 -01 -02

08:35:03 ’, NULL , ’2001 -01 -01 00:00:00 ’, NULL);

This operation will trigger the following error due to the mismatch in version continuity:

67

5. Testing

Figure 5.8.: Error message caused by check version lifespan continuity constraint

5.3.2. Testing check fraction validity

The purpose of this test was to validate the fraction constraints, ensuring that fractions have
valid values for the numerator and denominator. The system successfully blocked invalid
fractions (e.g., where the denominator was zero or the numerator was greater than the
denominator), showing that the constraint was working as intended.

Denominator equals 0

The following SQL statement attempts to insert a record where the denominator of the
share attribute is zero. This violates the constraint that the denominator must be greater
than zero.

INSERT INTO LA_PartyMember (pmid , pgid , pid , share ,

beginLifespanVersion , endLifespanVersion ,

beginRealWorldLifespanVersion , endRealWorldLifespanVersion)

VALUES (80004 , 70001, 10002, ’(1,0)’, ’2001 -10 -01 10:24:38 ’,

NULL , ’2001 -10 -01 00:00:00 ’, NULL);

Figure 5.9.: Error message caused by denominator equal to 0

68

5.3. Validation of Constraints through Invalid Data Testing

Numerator greater than denominator

This SQL statement attempts to insert a record where the numerator of the share is greater
than the denominator. The constraint ensures that the numerator must be less than or equal
to the denominator.

INSERT INTO LA_PartyMember (pmid , pgid , pid , share ,

beginLifespanVersion , endLifespanVersion ,

beginRealWorldLifespanVersion , endRealWorldLifespanVersion)

VALUES (80004 , 70001, 10002, ’(3,2)’, ’2001 -10 -01 10:24:38 ’,

NULL , ’2001 -10 -01 00:00:00 ’, NULL);

Figure 5.10.: Error messages caused by numerator greater than denominator

share value is NULL

This SQL statement attempts to insert a record where the share attribute is NULL. The
constraint requires that the share value must be specified (i.e., not NULL).

INSERT INTO LA_PartyMember (pmid , pgid , pid , share ,

beginLifespanVersion , endLifespanVersion ,

beginRealWorldLifespanVersion , endRealWorldLifespanVersion)

VALUES (80004 , 70001, 10002, NULL , ’2001 -10 -01 10:24:38 ’

, NULL , ’2001 -10 -01 00:00:00 ’, NULL);

Figure 5.11.: Error message due to NULL share value

Negative numerator

This SQL statement attempts to insert a record where the numerator of the share attribute is
negative. The constraint specifies that the numerator must be non-negative.

69

5. Testing

INSERT INTO LA_PartyMember (pmid , pgid , pid , share ,

beginLifespanVersion , endLifespanVersion ,

beginRealWorldLifespanVersion , endRealWorldLifespanVersion)

VALUES (80004 , 70001, 10002, ’(-3,2)’, ’2001 -10 -01 10:24:38 ’,

NULL , ’2001 -10 -01 00:00:00 ’, NULL);

Figure 5.12.: Error message due to negative denominator

5.3.3. Testing check minimum group members

The check minimum group members constraint ensures that every group in the LA PartyGroup
must have at least two members. Attempting to create a group with fewer than two mem-
bers will violate this constraint. Below is an example where an attempt is made to insert a
group with only one member.

Figure 5.13.: Error message due to a group with only one member

5.3.4. Testing check administrative source constraints

The check administrative source constraints function ensures that records in the LA AdministrativeSource
table maintain consistency with related tables, specifically LA Right. This function enforces
that the timestamps and relationships between the administrative source data and the land
rights records are correctly aligned, both for insertions and updates.

70

5.3. Validation of Constraints through Invalid Data Testing

In the following example, we attempt to insert a record into the LA AdministrativeSource
table, but the data violates the constraints due to a mismatch between the lifeSpanStamp
and the corresponding beginLifespanVersion in the LA Right table.

Before testing the invalid case, a correct record should be inserted into the LA Right table to
set up the constraint checking:

UPDATE LA_Right

SET

endLifespanVersion = ’2001 -01 -01 08:35:03 ’,

endRealWorldLifespanVersion = ’2001 -01 -01 00:00:00 ’

WHERE

rID = 20004;

Then attempt to insert a record into LA AdministrativeSource where the lifeSpanStamp does
not match the beginLifespanVersion from the related LA Right table, triggering a constraint
violation:

Figure 5.14.: Error message due to inconsistency between LA AdministrativeSource infor-
mation and LA Right

71

6. Conclusion

6.1. Research overview

This research aimed to implement and evaluate a land administration system based on the
ISO 19152 LADM, focusing on SDG indicator 1.4.2. The primary objective was to design
a formalized land administration database architecture and dynamically assess its perfor-
mance and accuracy to verify its potential for real-world applications. The key steps in this
process included design, implementation, and system evaluation.

6.1.1. Design Phase

• Conceptual model building: Based on the LADM specification, a conceptual model
was designed to specify the data structure of the core classes including LA Party (Par-
ties), LA SpatialUnit (Spatial Units), and LA RRR (Rights, Responsibilities and Restric-
tions). Attributes required to support the calculation of SDG 1.4.2 indicators, such as
the legal authentication status of land tenure and the perceived security of land tenure,
were specifically added to the model.

• Model Conversion: A detailed plan on how to convert the conceptual model into
a physical database model, including data type selection, table structure design and
relationship definition. Special attention was paid to the use of spatial data types to
ensure that PostGIS can support spatial queries for land use. The architecture was
designed with special consideration of data consistency, scalability and flexibility to
ensure that the system can be adapted to the needs in different land administration
scenarios.

6.1.2. Implementation Phase

• Database Architecture Implementation: The designed database schema was imple-
mented in PostgreSQL, individual tables and their associations were constructed, and
the necessary indexes were defined to optimise query performance. PostGIS exten-
sions were used to handle the storage and querying of spatial data such as parcel
boundaries.

• Development of custom functions and triggers: Several custom functions and database
triggers were developed to ensure data consistency and implement complex business
rules. These functions include automated calculation of land ownership percentages,
validation of data integrity and implementation of business logic, such as management
of the history of land rights changes. These functions and triggers are the core part of
the system, ensuring operational accuracy and data reliability.

73

6. Conclusion

6.1.3. Evaluation Phase

To verify the system’s effectiveness, a test dataset covering various land administration sce-
narios was generated. This dataset simulated land tenure transfers, population changes, and
administrative boundary adjustments over different years. By simulating real-world land
administration processes, the system’s performance in handling complex business scenarios
was tested. The evaluation focused on the accuracy, data consistency, and computational
efficiency of the system when automatically calculating SDG 1.4.2 indicators, such as the
coverage of legal documentation and perceived tenure security.

The system evaluation was not limited to normal data processing but also tested its robust-
ness by inserting invalid data. The results showed that when invalid data or unreasonable
land tenure changes occurred, the system triggered appropriate error handling mechanisms
through pre-defined constraints. The system demonstrated high flexibility and scalability,
quickly adapting to various data scenarios.

Throughout the evaluation, the study verified the system’s accuracy and consistency by
comparing automated calculation results with manual calculations. The dynamic three-year
test demonstrated that the system could efficiently handle complex land tenure and spatial
data while reliably generating reports aligned with SDG 1.4.2 requirements. The rigorous
testing proved the system’s effectiveness in managing large-scale land administration data,
particularly in automating the calculation and monitoring of land tenure changes.

Overall, this study successfully demonstrated the potential application of the LADM-based
database architecture in calculating SDG 1.4.2 indicators. Through formalized design and
rigorous implementation and evaluation, the study validated the system’s effectiveness and
scalability in handling complex dynamic land data, providing a solid foundation for future
land administration system development.

6.1.4. Answers to Subquestions

How can the conceptual model for SDG 1.4.2 be developed based on its metadata?

The conceptual model for SDG 1.4.2 was developed using the Four-Step Method. First, the
SDG metadata was analyzed to identify key elements, like legal documentation and tenure
security. These were then mapped to relevant LADM classes, ensuring alignment with the
standard. The model was refined by adding necessary attributes and tested to confirm its
accuracy in supporting SDG 1.4.2 indicator calculations, reducing the reliance on manual
data collection and ensuring consistency.

How can the conceptual model for SDG 1.4.2 be effectively translated into a physical
database implementation?

The translation from the conceptual model to a physical database was achieved using Post-
greSQL and PostGIS. The physical model was implemented by defining tables that corre-
spond to the core classes of the conceptual model. Specific attention was given to data
types, table structures, and the relationships between spatial and non-spatial data to en-
sure the database was capable of handling the complex requirements of land administra-
tion. PostGIS extensions were employed to manage spatial queries and data, such as parcel

74

6.2. Contribution

boundaries, while custom functions and triggers ensured data consistency and the correct
execution of business logic, including the management of land rights history and ownership
percentages. This implementation provided a solid foundation for the system’s operational
use.

What added value does this process bring to the overall monitoring and evaluation of
SDG indicators?

This process significantly enhances the monitoring and evaluation of SDG indicators by re-
ducing the reliance on manual data collection and calculations through the integration of
cadastral systems. By formalizing and automating the process, it ensures greater accuracy
and consistency in the calculation of key indicators, such as tenure security and legal doc-
umentation, eliminating errors that could arise from manual methods. Furthermore, the
system allows for efficient reporting across different time periods, regions, and governance
levels, providing policymakers with timely and reliable data to assess trends and policy im-
pacts. Its scalability and adaptability also make it suitable for application across various legal
frameworks, ensuring that it can be effectively implemented in diverse land administration
contexts to support broader SDG monitoring efforts.

6.2. Contribution

The contribution of this study is mainly in three aspects. First, by adopting the ISO 19152
LADM, the study provides a standardised and systematic solution for the calculation of SDG
indicators in land administrative systems, which promotes the standardisation and consis-
tency of global land administration practices. Second, the study designs and implements
an automated system capable of dynamically processing land rights changes, population
dynamics, and administrative updates, which provides a new path for the efficient calcu-
lation and monitoring of SDG 1.4.2 indicators, and improves the accuracy and efficiency of
land administration data processing. Finally, the study not only verifies the feasibility of
automated calculations using simulated data, but also lays the foundation for future appli-
cations and extensions to other SDG indicators based on real data, which provides a strong
reference basis for subsequent academic research and policy formulation.

6.3. Limitations

The limitations of this study can be summarized as follows. First, the test data used in this
research were synthetic, which, although useful for validating the system’s functionality and
accuracy, may not fully capture the complexity of real-world scenarios. As a result, the sys-
tem’s performance in practical applications may differ from the simulation results. Second,
the focus of this research was solely on SDG 1.4.2, demonstrating the applicability of LADM
to this indicator, but other SDG indicators were not explored. Future studies should expand
to other land-related SDG indicators to fully assess the broad applicability of the LADM
framework. Additionally, due to data limitations, this study did not evaluate the system’s
performance across different regions and legal contexts, which restricts the generalizabil-
ity of the findings across different countries. Therefore, future research should validate the

75

6. Conclusion

system with real-world cadastral data and consider regional differences in land adminis-
tration systems. The system’s ability to manage concurrent multi-user access was also not
addressed in this study. Issues such as maintaining data consistency and integrity during
simultaneous data insertions, updates, and deletions by multiple users were not considered.
This may impact system performance and reliability in real-world environments, and future
work should incorporate concurrency handling and optimization mechanisms to meet the
complex demands of practical applications.

6.4. Future work

While this research demonstrated the applicability of LADM in calculating SDG indicators,
several areas warrant further exploration.

6.4.1. Application to Other SDG Indicators

This research focused primarily on SDG 1.4.2, but the system could be extended to support
the calculation and monitoring of other land-related SDG indicators, such as SDG 11 (”Sus-
tainable Cities and Communities”) or SDG 15 (”Life on Land”). By adapting and optimizing
the current model, the LADM-based system could cater to a broader range of sustainable
development data needs, creating a more comprehensive land management solution.

6.4.2. Integration of Real-World Data for Validation

The current study utilized simulated datasets to validate the system’s functionality and ef-
fectiveness. Future work should involve the integration of real-world land administration
data, particularly from different countries and regions. This will help to further validate the
model’s applicability in complex, dynamic real-world scenarios and identify potential ar-
eas for improvement. Collaborations with local governments or international organizations
could enhance the system’s evaluation under diverse legal and administrative contexts.

6.4.3. Enhancement of User Interface and Report Generation Capabilities

Although this research focused on the database architecture and data processing logic, fu-
ture work could enhance the user interface to make the system more user-friendly for non-
technical users. The report generation module could also be expanded to allow for diverse
formats and content, tailored to the specific needs of different users. This would provide
more sophisticated data analysis and visualization functionalities.

76

6.4. Future work

6.4.4. Further Performance Optimization

While this research improved the system’s performance by optimizing database queries and
index structures, future work could continue to explore performance optimization methods
for larger datasets and more complex queries. Additionally, further research could assess
the system’s responsiveness and stability in high-concurrency, multi-user environments, en-
suring its feasibility for large-scale applications.

By pursuing these areas of expansion and optimization, future work can further enhance
the practicality and flexibility of the land administration system developed in this research,
providing stronger technical support for global land management and the achievement of
sustainable development goals.

77

A. Reproducibility self-assessment

A.1. Marks for each of the criteria

Figure A.1.: Reproducibility criteria to be assessed.

1. input data 3

2. preprocessing 3

3. methods 2

4. computational environment 3

5. results 3

A.2. Self-reflection

In my thesis, I aimed to ensure reproducibility through clear documentation and the use
of accessible methods and tools. The data used were synthetic datasets, which are fully
documented and available for reproduction. Since the data were not derived from real-world

79

A. Reproducibility self-assessment

sources, issues of confidentiality do not apply, and others can recreate similar datasets based
on the provided metadata and assumptions.

All the methods, including database design, preprocessing, and SQL functions, are thor-
oughly documented. I used open-source tools such as PostgreSQL and PostGIS, ensuring
others can replicate the work with similar setups. However, the use of real-world data was
limited due to privacy and confidentiality concerns, which may restrict full replication in
practical contexts. Nonetheless, the synthetic datasets and the reproducibility of the meth-
ods and outputs provide a strong foundation for future research to build upon.

80

B. Complete SQL code

This appendix provides all the code used in the research process, supporting the implemen-
tations and tests described in the main body of the thesis. The included code is primarily
for building and testing the database system. The code samples are annotated to offer read-
ers a clear understanding of the system’s functionalities and structure, and to demonstrate
practical data processing and analysis applications. Annotations are provided to enhance
readability and usability, detailing the purpose and operation of each function and mod-
ule.

create extension postgis;

Create a new data type by using TYPE

• Oid

CREATE TYPE Oid AS (

localId VARCHAR ,

namespace VARCHAR

);

• Fraction

CREATE TYPE Fraction AS (

numerator INTEGER ,

denominator INTEGER

);

81

B. Complete SQL code

B.1. Create Tables

B.1.1. Create codelists

LA HumanSexesType

CREATE TABLE LA_HumanSexesType (

hst_id INTEGER UNIQUE NOT NULL ,

hst_description TEXT NOT NULL UNIQUE

);

INSERT INTO LA_HumanSexesType (hst_id , hst_description) VALUES

(0, ’unknown ’),

(1, ’Male’),

(2, ’Female ’),

(9, ’doesNotApply ’),

(99, ’other’);

LA PartyType

CREATE TABLE LA_PartyType (

pt_id SERIAL PRIMARY KEY ,

pt_description TEXT NOT NULL UNIQUE

);

INSERT INTO LA_PartyType (pt_description) VALUES

(’naturalPerson ’),

(’nonNaturalPerson ’),

(’baunit ’),

(’group’);

LA GroupPartyType

CREATE TABLE LA_GroupPartyType(

gpt_id SERIAL PRIMARY KEY ,

gpt_description TEXT NOT NULL UNIQUE

);

INSERT INTO LA_GroupPartyType (gpt_description) VALUES

(’tribe’),

(’association ’),

(’family ’),

(’baunitGroup ’),

(’municipality ’),

(’state’),

(’farmerCooperation ’),

(’churchCommunity ’)

82

B.1. Create Tables

LA RightType

CREATE TABLE LA_RightType (

rt_id SERIAL PRIMARY KEY ,

rt_description TEXT NOT NULL UNIQUE

);

INSERT INTO LA_RightType (rt_description) VALUES

(’agriActivity ’),

(’commonOwnership ’),

(’customaryType ’),

(’fireWood ’),

(’fishing ’),

(’grazing ’),

(’hunting ’),

(’informalOccupation ’),

(’lease’),

(’occupation ’),

(’ownership ’),

(’ownershipAssumed ’),

(’superficies ’),

(’usufruct ’),

(’waterRights ’),

(’tenancy ’);

LA AdministrativeSourceType

CREATE TABLE LA_AdministrativeSourceType(

ast_id SERIAL PRIMARY KEY ,

ast_description TEXT NOT NULL UNIQUE

);

INSERT INTO LA_AdministrativeSourceType(ast_description) VALUES

(’agriLease ’),

(’agriNotaryStatement ’),

(’deed’),

(’mortgage ’),

(’title’),

(’agriConsent ’);

83

B. Complete SQL code

ExtLandRightPerception

CREATE TABLE ExtLandRightPerception(

elrp_id INTEGER PRIMARY KEY ,

elrp_description TEXT NOT NULL UNIQUE

);

INSERT INTO ExtLandRightPerception(elrp_id , elrp_description)

VALUES

(0, ’insecure ’),

(1, ’secure ’);

B.1.2. Create classes

Parent table for versionedobject

CREATE TABLE VersionedObject (

beginLifespanVersion TIMESTAMPTZ ,

endLifespanVersion TIMESTAMPTZ ,

beginRealWorldLifespanVersion TIMESTAMPTZ ,

endRealWorldLifespanVersion TIMESTAMPTZ ,

CONSTRAINT chk_version_lifespan CHECK (

endLifespanVersion IS NULL OR endLifespanVersion >

beginLifespanVersion),

CONSTRAINT chk_version_RealWorldLifespan CHECK (

endRealWorldLifespanVersion IS NULL OR

endRealWorldLifespanVersion >

beginRealWorldLifespanVersion)

);

ExtParty

CREATE TABLE ExtParty (

extPID INTEGER PRIMARY KEY ,

extAddressID INTEGER ,

birthday DATE ,

name TEXT ,

begindate TIMESTAMPTZ ,

enddate TIMESTAMPTZ

);

84

B.1. Create Tables

LA Party

CREATE TABLE LA_Party (

pID INTEGER PRIMARY KEY ,

extPID INTEGER REFERENCES ExtParty(extpID),

name TEXT ,

humanSex INTEGER REFERENCES LA_HumanSexesType(hst_id),

p_type INTEGER NOT NULL REFERENCES LA_PartyType(pt_id)

)

-- inherited from VersionedObject

INHERITS (VersionedObject);

LA PartyGroup

CREATE TABLE LA_PartyGroup (

pgID INTEGER PRIMARY KEY ,

pid INTEGER NOT NULL REFERENCES LA_Party (pID),

pg_type INTEGER NOT NULL REFERENCES LA_GroupPartyType (

gpt_id)

)

-- inherited from VersionedObject

INHERITS (VersionedObject);

LA PartyMember

CREATE TABLE LA_PartyMember (

pmID INTEGER PRIMARY KEY ,

pgID INTEGER NOT NULL REFERENCES LA_PartyGroup (pgID),

pID INTEGER NOT NULL REFERENCES LA_Party (pID),

share Fraction

)

-- inherited from VersionedObject

INHERITS (VersionedObject);

LA SpatialUnit

CREATE TABLE LA_SpatialUnit (

suid SERIAL PRIMARY KEY ,

geom GEOMETRY ,

area DOUBLE PRECISION

)

-- inherited from VersionedObject

INHERITS (VersionedObject);

85

B. Complete SQL code

LA Right

CREATE TABLE LA_Right (

rID INTEGER PRIMARY KEY ,

r_type INTEGER NOT NULL REFERENCES LA_RightType (rt_id),

-- inherited from LA_RRR

suID INTEGER REFERENCES la_spatialunit(suid),

pID INTEGER REFERENCES la_party(pid),

share fraction ,

shareCheck BOOLEAN ,

timeSpec TEXT

)

-- inherited from VersionedObject

INHERITS (VersionedObject);

LA AdministrativeSource

CREATE TABLE LA_AdministrativeSource (

asID INTEGER PRIMARY KEY ,

text TEXT ,

as_type INTEGER NOT NULL REFERENCES

la_administrativesourcetype (ast_id),

rid INTEGER REFERENCES la_right(rid),

suid INTEGER REFERENCES la_spatialunit(suid),

pid INTEGER REFERENCES la_party(pid),

-- inherited from LA_Source

acceptance TIMESTAMPTZ NOT NULL ,

lifeSpanStamp TIMESTAMPTZ NOT NULL

);

ExtSecureLandRightsQuestionnaire

CREATE TABLE ExtSecureLandRightsQuestionnaire (

eslrq_id INTEGER PRIMARY KEY ,

selfperception INTEGER REFERENCES ExtLandRightPerception(

elrp_id),

name TEXT ,

extpid INTEGER ,

begindate TIMESTAMPTZ ,

enddate TIMESTAMPTZ

)

86

B.2. Create Constraints

B.1.3. Create relations

extaddress suid relation

CREATE TABLE extaddress_suid_relation (

extaddressid INTEGER NOT NULL ,

suid INTEGER NOT NULL ,

suid_geom geometry NOT NULL ,

PRIMARY KEY (extaddressid , suid),

FOREIGN KEY (suid) REFERENCES la_spatialunit(suid)

);

B.2. Create Constraints

B.2.1. check version lifespan continuity

CREATE OR REPLACE FUNCTION check_fraction_validity ()

RETURNS TRIGGER AS $$
DECLARE

pk_value TEXT; -- Used to store the primary key value

pk_name TEXT; -- Used to store the primary key field name

passed as a parameter

BEGIN

-- Retrieve the primary key field name from the trigger ’s

arguments

pk_name := TG_ARGV [0];

-- Dynamically retrieve the primary key value using the

provided field name

EXECUTE format(’SELECT $1.%I FROM %I’, pk_name ,

TG_TABLE_NAME) INTO pk_value USING NEW;

-- Check if the share field is NOT NULL before proceeding

with further checks

IF NEW.share IS NOT NULL THEN

-- Check if the denominator is greater than 0

IF (NEW.share).denominator <= 0 THEN

RAISE EXCEPTION ’Error in record with %=%:

Denominator must be greater than zero , found %’,

pk_name , pk_value , (NEW.share).denominator;

-- Check if the numerator is non -negative

ELSIF (NEW.share).numerator < 0 THEN

RAISE EXCEPTION ’Error in record with %=%: Numerator

must be greater than or equal to zero , found %’,

pk_name , pk_value , (NEW.share).numerator;

-- Check if the numerator is greater than the

denominator

87

B. Complete SQL code

ELSIF (NEW.share).numerator > (NEW.share).denominator

THEN

RAISE EXCEPTION ’Error in record with %=%: Numerator

cannot be greater than denominator. Numerator:

%, Denominator: %’,

pk_name , pk_value , (NEW.share).

numerator , (NEW.share).

denominator;

END IF;

END IF;

-- Return the new or updated record if all checks pass

RETURN NEW;

END;

$$ LANGUAGE plpgsql;

Create triggers for the LA Right

CREATE TRIGGER trg_check_version_lifespan_right

BEFORE INSERT OR UPDATE ON LA_Right

FOR EACH ROW

EXECUTE FUNCTION check_version_lifespan_continuity ();

B.2.2. check fraction validity

CREATE OR REPLACE FUNCTION check_fraction_validity ()

RETURNS TRIGGER AS $$
DECLARE

pk_value TEXT; -- Used to store the primary key value

pk_name TEXT; -- Used to store the primary key field name

passed as a parameter

BEGIN

-- Retrieve the primary key field name from the trigger ’s

arguments

pk_name := TG_ARGV [0];

-- Dynamically retrieve the primary key value using the

provided field name

EXECUTE format(’SELECT $1.%I FROM %I’, pk_name ,

TG_TABLE_NAME) INTO pk_value USING NEW;

-- Check if the share field is NOT NULL before proceeding

with further checks

IF NEW.share IS NOT NULL THEN

-- Check if the denominator is greater than 0

IF (NEW.share).denominator <= 0 THEN

88

B.2. Create Constraints

RAISE EXCEPTION ’Error in record with %=%:

Denominator must be greater than zero , found %’,

pk_name , pk_value , (NEW.share).denominator;

-- Check if the numerator is non -negative

ELSIF (NEW.share).numerator < 0 THEN

RAISE EXCEPTION ’Error in record with %=%: Numerator

must be greater than or equal to zero , found %’,

pk_name , pk_value , (NEW.share).numerator;

-- Check if the numerator is greater than the

denominator

ELSIF (NEW.share).numerator > (NEW.share).denominator

THEN

RAISE EXCEPTION ’Error in record with %=%: Numerator

cannot be greater than denominator. Numerator:

%, Denominator: %’,

pk_name , pk_value , (NEW.share).

numerator , (NEW.share).

denominator;

END IF;

END IF;

-- Return the new or updated record if all checks pass

RETURN NEW;

END;

$$ LANGUAGE plpgsql;

Create trigger for LA Right

CREATE TRIGGER trg_check_fraction_validity_right

BEFORE INSERT OR UPDATE ON LA_Right

FOR EACH ROW

EXECUTE FUNCTION check_fraction_validity(’rid’);

Create trigger for LA PartyMember

CREATE TRIGGER trg_check_fraction_validity_party_member

BEFORE INSERT OR UPDATE ON LA_PartyMember

FOR EACH ROW

EXECUTE FUNCTION check_fraction_validity(’pmid’);

B.2.3. check share sum

for LA PartyMember

89

B. Complete SQL code

CREATE OR REPLACE FUNCTION check_share_sum_partymember () RETURNS

VOID AS $$
DECLARE

total_numerator INTEGER := 0;

total_denominator INTEGER := 1;

current_fraction RECORD;

BEGIN

-- Query the sum of the shares under each pgID , making sure

that endLifespanVersion is NULL.

FOR current_fraction IN

SELECT COALESCE ((p.share).numerator , (t.share).numerator

) AS numerator ,

COALESCE ((p.share).denominator , (t.share).

denominator) AS denominator

FROM la_partymember p

FULL JOIN temp_partymember t ON p.pgid = t.pgid

WHERE (p.endLifespanVersion IS NULL)

LOOP

-- Debugging outputs the current numerator and

denominator values

RAISE NOTICE ’Current numerator: %, Current denominator:

%’, current_fraction.numerator , current_fraction.

denominator;

-- Update the logic of total_numerator and

total_denominator.

total_numerator := total_numerator * current_fraction.

denominator + current_fraction.numerator *

total_denominator;

total_denominator := total_denominator *

current_fraction.denominator;

-- Debugging the output of the accumulated numerator and

denominator values

RAISE NOTICE ’Total numerator: %, Total denominator: %’,

total_numerator , total_denominator;

END LOOP;

-- Check if the sum of shares is 1

IF total_numerator <> total_denominator THEN

RAISE EXCEPTION ’Share sum error: total share for pgID

is not equal to 1’;

ELSE

-- If the check passes , insert the temporary table data

into the main table

INSERT INTO la_partymember (pmid , pgid , pid , share ,

beginLifespanVersion , endLifespanVersion ,

beginRealWorldLifespanVersion ,

endRealWorldLifespanVersion)

90

B.2. Create Constraints

SELECT pmid , pgid , pid , share , beginLifespanVersion ,

endLifespanVersion , beginRealWorldLifespanVersion ,

endRealWorldLifespanVersion

FROM temp_partymember;

RAISE NOTICE ’Data successfully inserted into

la_partymember from temp_partymember ’;

END IF;

END;

$$ LANGUAGE plpgsql;

for LA Right

CREATE OR REPLACE FUNCTION check_share_sum_laright () RETURNS

VOID AS $$
DECLARE

total_numerator INTEGER := 0;

total_denominator INTEGER := 1;

current_fraction RECORD;

BEGIN

-- Query the sum of shares for each suID and r_type

combination , making sure that endLifespanVersion is NULL.

FOR current_fraction IN

SELECT COALESCE ((r.share).numerator , (t.share).numerator

) AS numerator ,

COALESCE ((r.share).denominator , (t.share).

denominator) AS denominator

FROM la_right r

RIGHT JOIN temp_laright t ON r.suid = t.suid AND r.

r_type = t.r_type

WHERE (r.endLifespanVersion IS NULL and t.

endLifespanVersion IS NULL)

LOOP

-- Debugging outputs the current numerator and

denominator values

RAISE NOTICE ’Current numerator: %, Current denominator:

%’, current_fraction.numerator , current_fraction.

denominator;

total_numerator := total_numerator * current_fraction.

denominator + current_fraction.numerator *

total_denominator;

total_denominator := total_denominator *

current_fraction.denominator;

-- Debugging the output of the accumulated numerator and

denominator values

91

B. Complete SQL code

RAISE NOTICE ’Total numerator: %, Total denominator: %’,

total_numerator , total_denominator;

END LOOP;

-- Check if the sum of shares is 1

IF total_numerator <> total_denominator THEN

RAISE EXCEPTION ’Share sum error: total share for suID

and r_type is not equal to 1’;

ELSE

-- If the check passes , insert the temporary table data

into the main table

INSERT INTO la_right (rID , suID , r_type , pID , share ,

beginLifespanVersion , endLifespanVersion ,

beginRealWorldLifespanVersion ,

endRealWorldLifespanVersion)

SELECT rID , suID , r_type , pID , share ,

beginLifespanVersion , endLifespanVersion ,

beginRealWorldLifespanVersion ,

endRealWorldLifespanVersion

FROM temp_laright;

RAISE NOTICE ’Data successfully inserted into la_right

from temp_laright ’;

END IF;

END;

$$ LANGUAGE plpgsql;

B.2.4. check minimum group members()

CREATE OR REPLACE FUNCTION check_minimum_group_members ()

RETURNS TRIGGER AS $$
DECLARE

member_count INTEGER;

BEGIN

-- Count the number of members in the current PartyGroup

SELECT COUNT (*) INTO member_count

FROM LA_PartyMember

WHERE pgID = NEW.pgID;

-- Ensure that there are at least two members

IF member_count < 2 THEN

RAISE EXCEPTION ’A PartyGroup must have at least 2

members.’;

END IF;

RETURN NEW;

END;

$$ LANGUAGE plpgsql;

92

B.2. Create Constraints

Create trigger for LA PartyMember

CREATE TRIGGER trg_check_minimum_group_members

AFTER INSERT OR UPDATE ON LA_PartyMember

FOR EACH ROW

EXECUTE FUNCTION check_minimum_group_members ();

B.2.5. check administrative source constraints

CREATE OR REPLACE FUNCTION

check_administrative_source_constraints ()

RETURNS TRIGGER AS $$
DECLARE

existing_record RECORD;

corresponding_right RECORD;

BEGIN

-- Find out if the same asid exists (i.e. if it is an update

operation)

SELECT * INTO existing_record

FROM LA_AdministrativeSource

WHERE asid = NEW.asid;

-- Find the corresponding la_right record

SELECT * INTO corresponding_right

FROM LA_Right

WHERE rID = NEW.rID;

-- Throws an error if the corresponding la_right record does

not exist

IF corresponding_right IS NULL THEN

RAISE EXCEPTION ’Corresponding la_right record not found

for rID %’, NEW.rID;

END IF;

-- Check that acceptance is consistent with

beginRealWorldLifespanVersion in the la_right table.

IF NEW.acceptance IS DISTINCT FROM corresponding_right.

beginrealworldlifespanversion THEN

RAISE EXCEPTION ’Acceptance date must match

beginRealWorldLifespanVersion in la_right. Given: %,

Expected: %’,

NEW.acceptance , corresponding_right.

beginrealworldlifespanversion;

END IF;

-- If the asid already exists , the update operation is

performed

IF existing_record IS NOT NULL THEN

93

B. Complete SQL code

-- Ensure that lifeSpanStamp is the same as the

endLifespanVersion of la_right at update time.

IF NEW.lifespanstamp IS DISTINCT FROM

corresponding_right.endlifespanversion THEN

RAISE EXCEPTION ’LifespanStamp must match

endLifespanVersion in la_right for updates. Given

: %, Expected: %’,

NEW.lifespanstamp ,

corresponding_right.

endlifespanversion;

END IF;

-- Returns the updated record

RETURN NEW;

-- If the asid doesn ’t exist (i.e. it ’s an insertion

operation), check if lifeSpanStamp is the same as

beginLifespanVersion of la_right

ELSE

IF NEW.lifespanstamp IS DISTINCT FROM

corresponding_right.beginlifespanversion THEN

RAISE EXCEPTION ’LifespanStamp must match

beginLifespanVersion in la_right for inserts.

Given: %, Expected: %’,

NEW.lifespanstamp ,

corresponding_right.

beginlifespanversion;

END IF;

-- Returns the inserted new record

RETURN NEW;

END IF;

END;

$$ LANGUAGE plpgsql;

Create trigger for LA administrativesource

CREATE TRIGGER trg_check_administrative_source_constraints

BEFORE INSERT OR UPDATE ON la_administrativesource

FOR EACH ROW

EXECUTE FUNCTION check_administrative_source_constraints ();

B.3. Create Functions

B.3.1. countAdult

94

B.3. Create Functions

-- only for extparty(census dataset)

CREATE OR REPLACE FUNCTION countAdults(CA_begindate DATE ,

CA_area GEOMETRY)

RETURNS INTEGER AS $$
DECLARE

adultCount INTEGER := 0;

BEGIN

SELECT COUNT (*) INTO adultCount

FROM (

SELECT DISTINCT ON (e.extpid) e.extpid

FROM extparty e

JOIN extaddress_suid_relation esr ON e.extaddressid =

esr.extaddressid

-- Ensure that the address is within the given

geographical area

WHERE ST_Contains(CA_area , esr.suid_geom)

-- Calculation of the age of the adult , based on the

date of commencement

AND EXTRACT(YEAR FROM age(CA_begindate , e.birthday)) >=

18

-- Timeframe for checking census records

AND (e.enddate IS NULL OR e.enddate >= CA_begindate)

AND e.begindate <= CA_begindate

) AS unique_adults;

RETURN adultCount;

END;

$$ LANGUAGE plpgsql;

B.3.2. computeProportionWithLegalDocumentation

output only proportion

CREATE OR REPLACE FUNCTION

computeProportionWithLegalDocumentation(

input_begin TIMESTAMPTZ ,

input_end TIMESTAMPTZ ,

input_area GEOMETRY

)

RETURNS TABLE (

category TEXT ,

subcategory TEXT ,

proportion FLOAT

) AS $$
DECLARE

totalAdultsCount INTEGER := 0;

adultsWithDocumentationCount INTEGER := 0;

95

B. Complete SQL code

gender INTEGER;

tenureType INTEGER;

BEGIN

-- Total number of adults

totalAdultsCount := countAdults(input_begin ::DATE ,

input_area);

IF totalAdultsCount > 0 THEN

-- Total number of adults with legal documents

SELECT COUNT (*) INTO adultsWithDocumentationCount

FROM(

SELECT DISTINCT ON (p.pid) p.pid

FROM la_party p

JOIN la_administrativesource ads ON p.pid = ads.pid

JOIN extparty ep ON p.extpid = ep.extpid

JOIN la_spatialunit s ON ads.suid = s.suid

JOIN la_right r ON ads.rid = r.rid

WHERE ST_Contains(input_area , s.geom)

AND (ep.enddate IS NULL OR ep.enddate >= input_end)

AND EXTRACT(YEAR FROM age(input_begin , ep.birthday))

>= 18 -- find the adult

AND (ads.pid IS NOT NULL AND ads.as_type IS NOT NULL

AND ads.suid IS NOT NULL)

-- metadata "Reporting on the information contained in these

land records ((i) namesof people holding rights , (ii) type

of rights and (iii) location) is not difficult in principle

if records are kept ina computerized format. "

AND (r.beginLifespanVersion <= input_end)

AND (r.endLifespanVersion IS NULL OR r.

endLifespanVersion >= input_begin)

) AS unique_adultsWithDocumentationCount;

RETURN QUERY SELECT ’total’ AS category , NULL AS

subcategory ,

adultsWithDocumentationCount ::FLOAT

/ totalAdultsCount ::FLOAT AS

proportion;

ELSE

RETURN QUERY SELECT ’total’ AS category , NULL AS

subcategory , 0:: FLOAT AS proportion;

END IF;

-- divided by gender

FOR gender IN SELECT DISTINCT humansex FROM la_party LOOP

SELECT COUNT (*) INTO adultsWithDocumentationCount

FROM (

SELECT DISTINCT ON (p.pid) p.pid

FROM la_party p

JOIN la_administrativesource ads ON p.pid = ads.pid

JOIN extparty ep ON p.extpid = ep.extpid

96

B.3. Create Functions

JOIN la_spatialunit s ON ads.suid = s.suid

JOIN la_right r ON ads.rid = r.rid

WHERE p.humansex = gender

AND ST_Contains(input_area , s.geom)

AND (ep.enddate IS NULL OR ep.enddate >= input_end)

--make sure

AND EXTRACT(YEAR FROM age(input_begin , ep.birthday))

>= 18

AND (ads.pid IS NOT NULL AND ads.as_type IS NOT NULL

AND ads.suid IS NOT NULL)

AND (r.beginLifespanVersion <= input_end)

AND (r.endLifespanVersion IS NULL OR r.

endLifespanVersion >= input_begin)

) AS unique_adultsWithDocumentationCount;

IF totalAdultsCount > 0 THEN

RETURN QUERY SELECT ’gender ’ AS category , gender ::

TEXT ,

adultsWithDocumentationCount ::

FLOAT / totalAdultsCount ::

FLOAT AS proportion;

ELSE

RETURN QUERY SELECT ’gender ’ AS category , gender ::

TEXT , 0:: FLOAT AS proportion;

END IF;

END LOOP;

-- divided by tenure type

FOR tenureType IN SELECT DISTINCT r_type FROM la_right LOOP

SELECT COUNT (*) INTO adultsWithDocumentationCount

FROM (

SELECT DISTINCT ON (p.pid) p.pid

FROM la_party p

JOIN la_administrativesource ads ON p.pid = ads.pid

JOIN extparty ep ON p.extpid = ep.extpid

JOIN la_right r ON ads.rid = r.rid

JOIN la_spatialunit s ON r.suid = s.suid

WHERE r.r_type= tenureType

AND ST_Contains(input_area , s.geom)

AND (ep.enddate IS NULL OR ep.enddate >= input_end)

AND EXTRACT(YEAR FROM age(input_begin , ep.birthday))

>= 18

AND (ads.pid IS NOT NULL AND ads.as_type IS NOT NULL

AND ads.suid IS NOT NULL)

AND (r.beginLifespanVersion <= input_end)

AND (r.endLifespanVersion IS NULL OR r.

endLifespanVersion >= input_begin)

) AS unique_adultsWithDocumentationCount;

IF totalAdultsCount > 0 THEN

97

B. Complete SQL code

RETURN QUERY SELECT ’tenure_type ’ AS category ,

tenureType ::TEXT ,

adultsWithDocumentationCount ::

FLOAT / totalAdultsCount ::

FLOAT AS proportion;

ELSE

RETURN QUERY SELECT ’tenure_type ’ AS category ,

tenureType ::TEXT , 0:: FLOAT AS proportion;

END IF;

END LOOP;

END;

$$ LANGUAGE plpgsql;

output proportion and counted number

CREATE OR REPLACE FUNCTION

computeProportionWithLegalDocumentation_number(

input_begin TIMESTAMPTZ ,

input_end TIMESTAMPTZ ,

input_area GEOMETRY

)

RETURNS TABLE (

category TEXT ,

subcategory TEXT ,

proportion FLOAT ,

total_adults_count INTEGER ,

adults_with_documentation_count INTEGER

) AS $$
DECLARE

totalAdultsCount INTEGER := 0;

adultsWithDocumentationCount INTEGER := 0;

gender INTEGER;

tenureType INTEGER;

BEGIN

-- Total number of adults

totalAdultsCount := countAdults(input_begin ::DATE ,

input_area);

IF totalAdultsCount > 0 THEN

-- Total number of adults with legal documents

SELECT COUNT (*) INTO adultsWithDocumentationCount

FROM(

SELECT DISTINCT ON (p.pid) p.pid

FROM la_party p

JOIN la_administrativesource ads ON p.pid = ads.pid

JOIN extparty ep ON p.extpid = ep.extpid

98

B.3. Create Functions

JOIN la_spatialunit s ON ads.suid = s.suid

JOIN la_right r ON ads.rid = r.rid

WHERE ST_Contains(input_area , s.geom)

AND (ep.enddate IS NULL OR ep.enddate >= input_end)

AND EXTRACT(YEAR FROM age(input_begin , ep.birthday))

>= 18

AND (ads.pid IS NOT NULL AND ads.as_type IS NOT NULL

AND ads.suid IS NOT NULL)

AND (r.beginLifespanVersion <= input_end)

AND (r.endLifespanVersion IS NULL OR r.

endLifespanVersion >= input_begin)

) AS unique_adultsWithDocumentationCount;

RETURN QUERY SELECT ’total’ AS category , NULL AS

subcategory ,

adultsWithDocumentationCount ::FLOAT

/ totalAdultsCount ::FLOAT AS

proportion ,

totalAdultsCount ,

adultsWithDocumentationCount;

ELSE

RETURN QUERY SELECT ’total’ AS category , NULL AS

subcategory , 0:: FLOAT AS proportion ,

totalAdultsCount ,

0;

END IF;

-- divided by gender

FOR gender IN SELECT DISTINCT humansex FROM la_party LOOP

SELECT COUNT (*) INTO adultsWithDocumentationCount

FROM (

SELECT DISTINCT ON (p.pid) p.pid

FROM la_party p

JOIN la_administrativesource ads ON p.pid = ads.pid

JOIN extparty ep ON p.extpid = ep.extpid

JOIN la_spatialunit s ON ads.suid = s.suid

JOIN la_right r ON ads.rid = r.rid

WHERE p.humansex = gender

AND ST_Contains(input_area , s.geom)

AND (ep.enddate IS NULL OR ep.enddate >= input_end)

AND EXTRACT(YEAR FROM age(input_begin , ep.birthday))

>= 18

AND (ads.pid IS NOT NULL AND ads.as_type IS NOT NULL

AND ads.suid IS NOT NULL)

AND (r.beginLifespanVersion <= input_end)

AND (r.endLifespanVersion IS NULL OR r.

endLifespanVersion >= input_begin)

) AS unique_adultsWithDocumentationCount;

IF totalAdultsCount > 0 THEN

99

B. Complete SQL code

RETURN QUERY SELECT ’gender ’ AS category , gender ::

TEXT ,

adultsWithDocumentationCount ::

FLOAT / totalAdultsCount ::

FLOAT AS proportion ,

totalAdultsCount ,

adultsWithDocumentationCount;

ELSE

RETURN QUERY SELECT ’gender ’ AS category , gender ::

TEXT , 0:: FLOAT AS proportion ,

totalAdultsCount ,

0;

END IF;

END LOOP;

-- divided by tenure type

FOR tenureType IN SELECT DISTINCT r_type FROM la_right LOOP

SELECT COUNT (*) INTO adultsWithDocumentationCount

FROM (

SELECT DISTINCT ON (p.pid) p.pid

FROM la_party p

JOIN la_administrativesource ads ON p.pid = ads.pid

JOIN extparty ep ON p.extpid = ep.extpid

JOIN la_right r ON ads.rid = r.rid

JOIN la_spatialunit s ON r.suid = s.suid

WHERE r.r_type = tenureType

AND ST_Contains(input_area , s.geom)

AND (ep.enddate IS NULL OR ep.enddate >= input_end)

AND EXTRACT(YEAR FROM age(input_begin , ep.birthday))

>= 18

AND (ads.pid IS NOT NULL AND ads.as_type IS NOT NULL

AND ads.suid IS NOT NULL)

AND (r.beginLifespanVersion <= input_end)

AND (r.endLifespanVersion IS NULL OR r.

endLifespanVersion >= input_begin)

) AS unique_adultsWithDocumentationCount;

IF totalAdultsCount > 0 THEN

RETURN QUERY SELECT ’tenure_type ’ AS category ,

tenureType ::TEXT ,

adultsWithDocumentationCount ::

FLOAT / totalAdultsCount ::

FLOAT AS proportion ,

totalAdultsCount ,

adultsWithDocumentationCount;

ELSE

RETURN QUERY SELECT ’tenure_type ’ AS category ,

tenureType ::TEXT , 0:: FLOAT AS proportion ,

totalAdultsCount ,

0;

100

B.3. Create Functions

END IF;

END LOOP;

END;

$$ LANGUAGE plpgsql;

B.3.3. computeProportionPerceivingSecurity

output only proportion

CREATE OR REPLACE FUNCTION computeProportionPerceivingSecurity(

input_begin TIMESTAMPTZ ,

input_end TIMESTAMPTZ ,

input_area GEOMETRY

)

RETURNS TABLE (

category TEXT ,

subcategory TEXT ,

proportion FLOAT

) AS $$
DECLARE

totalAdultsCount INTEGER := 0;

adultsPerceivingSecurityCount INTEGER := 0;

gender INTEGER;

tenureType INTEGER;

BEGIN

-- Total number of adults

totalAdultsCount := countAdults(input_begin ::DATE ,

input_area);

IF totalAdultsCount > 0 THEN

-- Total Number of adults perceiving security

SELECT COUNT (*) INTO adultsPerceivingSecurityCount

FROM (

SELECT DISTINCT ON (p.pid) p.pid

FROM la_party p

JOIN extsecurelandrightsquestionnaire slr ON p.

extpid = slr.extpid

JOIN la_right r ON p.pid = r.pid

JOIN la_spatialunit s ON r.suid = s.suid

JOIN extparty ep ON p.extpid = ep.extpid

WHERE ST_Contains(input_area , s.geom)

AND (ep.enddate IS NULL OR ep.enddate >= input_end)

AND EXTRACT(YEAR FROM age(input_begin , ep.birthday))

>= 18

AND slr.selfperception = 1

AND (slr.begindate <= input_end ::DATE)

101

B. Complete SQL code

AND (slr.enddate IS NULL OR slr.enddate >=

input_begin ::DATE)

) AS unique_adultsPerceivingSecurityCount;

RETURN QUERY SELECT ’total’ AS category , NULL AS

subcategory ,

adultsPerceivingSecurityCount ::

FLOAT / totalAdultsCount ::FLOAT

AS proportion;

ELSE

RETURN QUERY SELECT ’total’ AS category , NULL AS

subcategory , 0:: FLOAT AS proportion;

END IF;

-- divided by gender

FOR gender IN (SELECT DISTINCT humansex FROM la_party) LOOP

SELECT COUNT (*) INTO adultsPerceivingSecurityCount

FROM (

SELECT DISTINCT ON (p.pid) p.pid

FROM la_party p

JOIN extsecurelandrightsquestionnaire slr ON p.

extpid = slr.extpid

JOIN la_right r ON p.pid = r.pid

JOIN la_spatialunit s ON r.suid = s.suid

JOIN extparty ep ON p.extpid = ep.extpid

WHERE p.humansex = gender

AND ST_Contains(input_area , s.geom)

AND (ep.enddate IS NULL OR ep.enddate >= input_end)

AND EXTRACT(YEAR FROM age(input_begin , ep.birthday))

>= 18

AND slr.selfperception = 1

AND (slr.begindate <= input_end ::DATE)

AND (slr.enddate IS NULL OR slr.enddate >=

input_begin ::DATE)

) AS unique_adultsPerceivingSecurityCount;

IF totalAdultsCount > 0 THEN

RETURN QUERY SELECT ’gender ’ AS category , gender ::

TEXT ,

adultsPerceivingSecurityCount ::

FLOAT / totalAdultsCount ::

FLOAT AS proportion;

ELSE

RETURN QUERY SELECT ’gender ’ AS category , gender ::

TEXT , 0:: FLOAT AS proportion;

END IF;

END LOOP;

-- divided by tenure type

102

B.3. Create Functions

FOR tenureType IN (SELECT DISTINCT r_type FROM la_right)

LOOP

SELECT COUNT (*) INTO adultsPerceivingSecurityCount

FROM (

SELECT DISTINCT ON (p.pid) p.pid

FROM la_party p

JOIN extsecurelandrightsquestionnaire slr ON p.

extpid = slr.extpid

JOIN la_right r ON p.pid = r.pid

JOIN la_spatialunit s ON r.suid = s.suid

JOIN extparty ep ON p.extpid = ep.extpid

WHERE r.r_type = tenureType

AND ST_Contains(input_area , s.geom)

AND (ep.enddate IS NULL OR ep.enddate >= input_end)

AND EXTRACT(YEAR FROM age(input_begin , ep.birthday))

>= 18

AND slr.selfperception = 1

AND (slr.begindate <= input_end ::DATE)

AND (slr.enddate IS NULL OR slr.enddate >=

input_begin ::DATE)

) AS unique_adultsPerceivingSecurityCount;

IF totalAdultsCount > 0 THEN

RETURN QUERY SELECT ’tenure_type ’ AS category ,

tenureType ::TEXT ,

adultsPerceivingSecurityCount ::

FLOAT / totalAdultsCount ::

FLOAT AS proportion;

ELSE

RETURN QUERY SELECT ’tenure_type ’ AS category ,

tenureType ::TEXT , 0:: FLOAT AS proportion;

END IF;

END LOOP;

END;

$$ LANGUAGE plpgsql;

output proportion and counted number

CREATE OR REPLACE FUNCTION

computeProportionPerceivingSecurity_number(

input_begin TIMESTAMPTZ ,

input_end TIMESTAMPTZ ,

input_area GEOMETRY

)

RETURNS TABLE (

category TEXT ,

subcategory TEXT ,

103

B. Complete SQL code

proportion FLOAT ,

total_adults_count INTEGER ,

adults_perceiving_security_count INTEGER

) AS $$
DECLARE

totalAdultsCount INTEGER := 0;

adultsPerceivingSecurityCount INTEGER := 0;

gender INTEGER;

tenureType INTEGER;

BEGIN

-- Total number of adults

totalAdultsCount := countAdults(input_begin ::DATE ,

input_area);

IF totalAdultsCount > 0 THEN

-- Total Number of adults perceiving security

SELECT COUNT (*) INTO adultsPerceivingSecurityCount

FROM (

SELECT DISTINCT ON (p.pid) p.pid

FROM la_party p

JOIN extsecurelandrightsquestionnaire slr ON p.

extpid = slr.extpid

JOIN la_right r ON p.pid = r.pid

JOIN la_spatialunit s ON r.suid = s.suid

JOIN extparty ep ON p.extpid = ep.extpid

WHERE ST_Contains(input_area , s.geom)

AND (ep.enddate IS NULL OR ep.enddate >= input_end)

AND EXTRACT(YEAR FROM age(input_begin , ep.birthday))

>= 18

AND slr.selfperception = 1

AND (slr.begindate <= input_end ::DATE)

AND (slr.enddate IS NULL OR slr.enddate >=

input_begin ::DATE)

) AS unique_adultsPerceivingSecurityCount;

RETURN QUERY SELECT

’total’ AS category ,

NULL AS subcategory ,

adultsPerceivingSecurityCount ::FLOAT /

totalAdultsCount :: FLOAT AS proportion ,

totalAdultsCount ,

adultsPerceivingSecurityCount;

ELSE

RETURN QUERY SELECT

’total’ AS category ,

NULL AS subcategory ,

0:: FLOAT AS proportion ,

totalAdultsCount ,

0;

END IF;

104

B.3. Create Functions

-- divided by gender

FOR gender IN (SELECT DISTINCT humansex FROM la_party) LOOP

SELECT COUNT (*) INTO adultsPerceivingSecurityCount

FROM (

SELECT DISTINCT ON (p.pid) p.pid

FROM la_party p

JOIN extsecurelandrightsquestionnaire slr ON p.

extpid = slr.extpid

JOIN la_right r ON p.pid = r.pid

JOIN la_spatialunit s ON r.suid = s.suid

JOIN extparty ep ON p.extpid = ep.extpid

WHERE p.humansex = gender

AND ST_Contains(input_area , s.geom)

AND (ep.enddate IS NULL OR ep.enddate >= input_end)

AND EXTRACT(YEAR FROM age(input_begin , ep.birthday))

>= 18

AND slr.selfperception = 1

AND (slr.begindate <= input_end ::DATE)

AND (slr.enddate IS NULL OR slr.enddate >=

input_begin ::DATE)

) AS unique_adultsPerceivingSecurityCount;

IF totalAdultsCount > 0 THEN

RETURN QUERY SELECT

’gender ’ AS category ,

gender ::TEXT ,

adultsPerceivingSecurityCount ::FLOAT /

totalAdultsCount :: FLOAT AS proportion ,

totalAdultsCount ,

adultsPerceivingSecurityCount;

ELSE

RETURN QUERY SELECT

’gender ’ AS category ,

gender ::TEXT ,

0:: FLOAT AS proportion ,

totalAdultsCount ,

0;

END IF;

END LOOP;

-- divided by tenure type

FOR tenureType IN (SELECT DISTINCT r_type FROM la_right)

LOOP

SELECT COUNT (*) INTO adultsPerceivingSecurityCount

FROM (

SELECT DISTINCT ON (p.pid) p.pid

FROM la_party p

JOIN extsecurelandrightsquestionnaire slr ON p.

extpid = slr.extpid

105

B. Complete SQL code

JOIN la_right r ON p.pid = r.pid

JOIN la_spatialunit s ON r.suid = s.suid

JOIN extparty ep ON p.extpid = ep.extpid

WHERE r.r_type = tenureType

AND ST_Contains(input_area , s.geom)

AND (ep.enddate IS NULL OR ep.enddate >= input_end)

AND EXTRACT(YEAR FROM age(input_begin , ep.birthday))

>= 18

AND slr.selfperception = 1

AND (slr.begindate <= input_end ::DATE)

AND (slr.enddate IS NULL OR slr.enddate >=

input_begin ::DATE)

) AS unique_adultsPerceivingSecurityCount;

IF totalAdultsCount > 0 THEN

RETURN QUERY SELECT

’tenure_type ’ AS category ,

tenureType ::TEXT ,

adultsPerceivingSecurityCount ::FLOAT /

totalAdultsCount :: FLOAT AS proportion ,

totalAdultsCount ,

adultsPerceivingSecurityCount;

ELSE

RETURN QUERY SELECT

’tenure_type ’ AS category ,

tenureType ::TEXT ,

0:: FLOAT AS proportion ,

totalAdultsCount ,

0;

END IF;

END LOOP;

END;

$$ LANGUAGE plpgsql;

B.3.4. SDG 1 4 2 Report

CREATE OR REPLACE FUNCTION SDG_1_4_2_Report(

input_begin TIMESTAMPTZ ,

input_end TIMESTAMPTZ ,

input_area GEOMETRY

)

RETURNS TABLE (

report_begindate TIMESTAMPTZ ,

report_enddate TIMESTAMPTZ ,

report_region geometry ,

report_category TEXT ,

report_subcategory TEXT ,

106

B.3. Create Functions

report_totalAdultsCount INTEGER ,

report_proportionPerceivingSecurity FLOAT ,

report_proportionWithLegalDocumentation FLOAT

) AS $$
DECLARE

transformed_area GEOMETRY;

totalAdultsCount INTEGER := 0;

BEGIN

-- Transform input_area to the appropriate SRID

transformed_area := ST_Transform(input_area , 28992);

-- Compute the total number of adults once

totalAdultsCount := countAdults(input_begin ::DATE ,

transformed_area);

-- Return the overall proportion

RETURN QUERY

SELECT

input_begin AS report_begindate ,

input_end AS report_enddate ,

input_area AS report_region ,

’total’ AS report_category ,

NULL AS report_subcategory ,

totalAdultsCount AS report_totalAdultsCount ,

(SELECT proportion FROM

computeProportionPerceivingSecurity(input_begin ,

input_end , input_area) WHERE category = ’total’) AS

report_proportionPerceivingSecurity ,

(SELECT proportion FROM

computeProportionWithLegalDocumentation(input_begin ,

input_end , input_area) WHERE category = ’total’) AS

report_proportionWithLegalDocumentation;

-- Percentage by sex

RETURN QUERY

SELECT

input_begin AS report_begindate ,

input_end AS report_enddate ,

input_area AS report_region ,

’gender ’ AS report_category ,

CAST(p.humansex AS TEXT) AS report_subcategory , --

Convert humansex to TEXT type

totalAdultsCount AS report_totalAdultsCount ,

(SELECT proportion FROM

computeProportionPerceivingSecurity(input_begin ,

input_end , input_area) WHERE category = ’gender ’ AND

subcategory = CAST(p.humansex AS TEXT)) AS

report_proportionPerceivingSecurity , -- type

conversion

107

B. Complete SQL code

(SELECT proportion FROM

computeProportionWithLegalDocumentation(input_begin ,

input_end , input_area) WHERE category = ’gender ’ AND

subcategory = CAST(p.humansex AS TEXT)) AS

report_proportionWithLegalDocumentation -- type

conversion

FROM

la_party p

GROUP BY

p.humansex;

-- Proportion by type of land tenure

RETURN QUERY

SELECT

input_begin AS report_begindate ,

input_end AS report_enddate ,

input_area AS report_region ,

’tenure_type ’ AS report_category ,

CAST(r.r_type AS TEXT) AS report_subcategory , -- Convert

r_type to TEXT type

totalAdultsCount AS report_totalAdultsCount ,

(SELECT proportion FROM

computeProportionPerceivingSecurity(input_begin ,

input_end , input_area) WHERE category = ’tenure_type ’

AND subcategory = CAST(r.r_type AS TEXT)) AS

report_proportionPerceivingSecurity , -- type

conversion

(SELECT proportion FROM

computeProportionWithLegalDocumentation(input_begin ,

input_end , input_area) WHERE category = ’tenure_type ’

AND subcategory = CAST(r.r_type AS TEXT)) AS

report_proportionWithLegalDocumentation -- type

conversion

FROM

la_right r

GROUP BY

r.r_type;

END;

$$ LANGUAGE plpgsql;

B.4. Test Data

The test data used in this research includes geospatial elements, which are extensive and
complex, making them impractical to display directly in the document. All related test data,
encompassing the initial data for the first year and the subsequent changes over the next two
years, have been uploaded to GitHub. This data is crucial for validating the implementa-
tions and functionalities proposed in this thesis, especially in handling geospatial data and

108

B.4. Test Data

executing complex spatial queries.

Interested readers can access and download these test data through the following link:
GitHub - SDG-LADM Test-Data

109

https://github.com/Chen-Mengying/SDG_LADM_Test-Data

Bibliography

Aditya, T., Sucaya, I. K. G. A., and Adi, F. N. (2021). Ladm-compliant field data collector for
cadastral surveyors. Land Use Policy, 104:105356.

Agarwal, B. (2018). Gender equality, food security and the sustainable development goals.
Current opinion in environmental sustainability, 34:26–32.

Alattas, A., van Oosterom, P., and Zlatanova, S. (2018a). Deriving the technical model for the
indoor navigation prototype based on the integration of indoorgml and ladm conceptual
model. In 7th International FIG Workshop on the Land Administration Domain Model.

Alattas, A., van Oosterom, P., Zlatanova, S., Diakité, A. A., and Yan, J. (2018b). Developing
a database for the ladm-indoorgml model.

Alattas, A., van Oosterom, P., Zlatanova, S., Diakité, A., and Yan, J. (2018c). Developing a
database for the ladm-indoorgml model. In 6th International FIG 3D Cadastre Workshop.

Augustinus, C. (2010). Social tenure domain model: what it can mean for the land industry
and for the poor. In XXIV FIG International Congress: facing the challenges, building the
capacity.

BECK, A., STOW, D., HILL, M., et al. (2021). Generic concepts to support country profiles,
ladm implementation and indexing within formal land registers. FIG e-Working Week.

Bennett, R., Rajabifard, A., Williamson, I., and Wallace, J. (2012). On the need for national
land administration infrastructures. Land Use Policy, 29(1):208–219.

Bennett, R. M., Unger, E.-M., Lemmen, C., and Dijkstra, P. (2021). Land administration
maintenance: A review of the persistent problem and emerging fit-for-purpose solutions.
Land, 10(5):509.

Bizoza, A. R. and Opio-Omoding, J. (2021). Assessing the impacts of land tenure regulariza-
tion: Evidence from rwanda and ethiopia. Land Use Policy, 100:104904.

Bloomfield, G., Bucht, K., Martı́nez-Hernández, J. C., Ramı́rez-Soto, A. F., Sheseña-
Hernández, I., Lucio-Palacio, C. R., and Ruelas Inzunza, E. (2018). Capacity building to
advance the united nations sustainable development goals: An overview of tools and ap-
proaches related to sustainable land management. Journal of sustainable forestry, 37(2):157–
177.

Carlson, M., Wells, J., and Jacobson, M. (2015). Balancing the relationship between protection
and sustainable management in canada’s boreal forest. Conservation and Society, 13(1):13–
22.

Cf, O. (2015). Transforming our world: the 2030 agenda for sustainable development. United
Nations: New York, NY, USA.

111

Bibliography

Chehrehbargh, F. J., Rajabifard, A., Atazadeh, B., Steudler, D., and Nugraha, B. W. (2024).
Towards sustainable land governance: Extending the ladm to support global initiatives
parameters - a case study in indonesia. In 12th International FIG Land Administration Domain
Model & 3D Land Administration Workshop.

Chen, J., Peng, S., Chen, H., Zhao, X., Ge, Y., and Li, Z. (2020). A comprehensive measure-
ment of progress toward local sdgs with geospatial information: methodology and lessons
learned. ISPRS International Journal of Geo-Information, 9(9):522.

Chen, M., Van Oosterom, P., Kalogianni, E., Dijkstra, P., and Lemmen, C. (2024). Bridging
sustainable development goals and land administration: The role of the iso 19152 land
administration domain model in sdg indicator formalization. Land, 13(4):491.

Chigbu, U. E. (2023). Connecting land tenure to land restoration. Development in Practice,
33(7):762–770.

Choudhury, P. R. and Behera, M. K. (2017). Using administrative data for monitoring and
improving land policy and governance in india. In Proceedings of the 10th International
Conference on Theory and Practice of Electronic Governance, pages 127–135.

Dale, P. and McLaughlin, J. (2000). Land administration. Oxford University Press.

Diaz-Sarachaga, J. M., Jato-Espino, D., and Castro-Fresno, D. (2018). Is the sustainable de-
velopment goals (sdg) index an adequate framework to measure the progress of the 2030
agenda? Sustainable Development, 26(6):663–671.

Enemark, S., McLaren, R., and Lemmen, C. (2016). Fit-for-purpose land administration:
guiding principles for country implementation. Ref. Doc. Version. Global Land Tool Net-
work - UN-HABITAT, Nairobi, Kenya.

Enemark, S., Williamson, I., and Wallace, J. (2005). Building modern land administration
systems in developed economies. Journal of spatial science, 50(2):51–68.

Feyertag, J., Childress, M., Langdown, I., Locke, A., and Nizalov, D. (2021). How does gender
affect the perceived security of land and property rights? evidence from 33 countries. Land
Use Policy, 104:105299.

for Standardization (ISO), I. O. (2024). Geographic information - land administration domain
model (ladm) - part 1: Generic conceptual model. International Organisation for Standardis-
ation: Geneva, Switzerland.

Gao, L. and Bryan, B. A. (2017). Finding pathways to national-scale land-sector sustainability.
Nature, 544(7649):217–222.

Global Land Tool Network (2014). Social tenure domain model. https://stdm.gltn.net/.
Accessed: 2024-9-7.

Global SDG Indicators (2024). Tier classification for global sdg indicators. Accessed: 6 Mar
2024.

Hák, T., Janoušková, S., and Moldan, B. (2016). Sustainable development goals: A need for
relevant indicators. Ecological indicators, 60:565–573.

Hull, S., Kingwill, R., and Fokane, T. (2020). An introduction to land administration.
LandNNES: Cape Town, South Africa.

112

https://stdm.gltn.net/

Bibliography

Indrajit, A. (2019). 4d open spatial information infrastructure supporting participatory urban
planning monitoring. Technical report, GISt Report. Accessed: 17 September 2024.

ISO (2019). Final report from stage 0 project on iso 19152 ladm. Iso/tc211/wg7n262, Inter-
national Organization for Standardization (ISO), Geneva, Switzerland.

ISO, I. (2012). 19152: 2012.(2012). geographic information–land administration domain
model (ladm). International Organisation for Standardisation: Geneva, Switzerland.

Kalfas, D., Kalogiannidis, S., Chatzitheodoridis, F., and Toska, E. (2023). Urbanization and
land use planning for achieving the sustainable development goals (sdgs): A case study
of greece. Urban Science, 7(2):43.

Kalogianni, E., Dimopoulou, E., Quak, W., Germann, M., Jenni, L., and Van Oosterom, P.
(2017). Interlis language for modelling legal 3d spaces and physical 3d objects by includ-
ing formalized implementable constraints and meaningful code lists. ISPRS International
Journal of Geo-Information, 6(10):319.

Kalogianni, E., van Oosterom, P., Schmitz, M., Capua, R., Verbree, E., Dimopoulou, E.,
Gruler, H.-C., Stubkjær, E., Neudiens, I., Guarin, J. M., et al. (2023). Galileo high accuracy
services: Support through iso 19162 ladm edition ii. In FIG Working Week 2023: Protecting
Our World, Conquering New Frontiers.

Kara, A., Lemmen, C., van Oosterom, P., Kalogianni, E., Alattas, A., and Indrajit, A. (2024).
Design of the new structure and capabilities of ladm edition ii including 3d aspects. Land
Use Policy, 137:107003.

Kara, A., Rowland, A., van Oosterom, P., Stubkjaer, E., Cagdas, V., Folmer, E., Lemmen, C.,
Quak, W., and Meggiolaro, L. (2022). Formalisation of code lists and their values–the case
of iso 19152 land administration domain model. In 10th Land Administration Domain Model
Workshop, pages 333–354. International Federation of Surveyors.

Katila, P., McDermott, C., Larson, A., Aggarwal, S., and Giessen, L. (2020). Forest tenure and
the sustainable development goals–a critical view. Forest Policy and Economics, 120:102294.

Kim, R. E. (2023). Augment the sdg indicator framework. Environmental Science & Policy,
142:62–67.

Koeva, M., Stöcker, C., Crommelinck, S., Ho, S., Chipofya, M., Sahib, J., Bennett, R., Zeven-
bergen, J., Vosselman, G., Lemmen, C., et al. (2020). Innovative remote sensing method-
ologies for kenyan land tenure mapping. Remote sensing, 12(2):273.

Lawlor, K., Sills, E., Atmadja, S., Lin, L., and Songwathana, K. (2019). Sdg 1: No poverty–
impacts of social protection, tenure security and building resilience on forests. Sustainable
development goals: their impacts on forests and people, pages 17–47.

Lemmen, C. (2010). The social tenure domain model: a pro-poor land tool: e-book. International
Federation of Surveyors (FIG).

Lisjak, J., Roić, M., Tomić, H., and Mastelić Ivić, S. (2021). Croatian ladm profile extension
for state-owned agricultural land management. Land, 10(2):222.

Lyytimäki, J. (2019). Seeking sdg indicators. Nature Sustainability, 2(8):646–646.

113

Bibliography

Matsumoto, K., Hasegawa, T., Morita, K., and Fujimori, S. (2019). Synergy potential between
climate change mitigation and forest conservation policies in the indonesian forest sec-
tor: implications for achieving multiple sustainable development objectives. Sustainability
Science, 14:1657–1672.

Mbow, C. (2020). Use it sustainably or lose it! the land stakes in sdgs for sub-saharan africa.
Land, 9(3):63.

Mengesha, A. K., Mansberger, R., Damyanovic, D., Agegnehu, S. K., and Stoeglehner, G.
(2022). The contribution of land registration and certification program to implement sdgs:
The case of the amhara region, ethiopia. Land, 12(1):93.

Molua, E. L. (2014). Land management for sustainable agriculture under climate change
in the congo-basin countries of central africa. ENVIRONMENT AND NATURAL RE-
SOURCES RESEARCH.

Morton, S., Pencheon, D., and Squires, N. (2017). Sustainable development goals (sdgs), and
their implementation: A national global framework for health, development and equity
needs a systems approach at every level. British medical bulletin, 124(1):81–90.

Mudau, N., Mwaniki, D., Tsoeleng, L., Mashalane, M., Beguy, D., and Ndugwa, R. (2020).
Assessment of sdg indicator 11.3. 1 and urban growth trends of major and small cities in
south africa. Sustainability, 12(17):7063.

Namubiru-Mwaura, E. (2014). Land tenure and gender: approaches and challenges for
strengthening rural women’s land rights. Accessed: 17 September 2024.

Sachs, J. D. (2012). From millennium development goals to sustainable development goals.
The lancet, 379(9832):2206–2211.

Schmidt-Traub, G., Kroll, C., Teksoz, K., Durand-Delacre, D., and Sachs, J. D. (2017). Na-
tional baselines for the sustainable development goals assessed in the sdg index and dash-
boards. Nature geoscience, 10(8):547–555.

Shahidinejad, J., Kalantari, M., and Rajabifard, A. (2024). Practical approaches to 3d cadastre
implementation: Database schemas and exchange formats. In 12th International FIG Land
Administration Domain Model & 3D Land Administration Workshop.

Stabile, M. C., Guimarães, A. L., Silva, D. S., Ribeiro, V., Macedo, M. N., Coe, M. T., Pinto,
E., Moutinho, P., and Alencar, A. (2020). Solving brazil’s land use puzzle: Increasing
production and slowing amazon deforestation. Land use policy, 91:104362.

Steudler, D., Rajabifard, A., and Williamson, I. P. (2004). Evaluation of land administration
systems. Land use policy, 21(4):371–380.

Stubkjær, E., Paasch, J., Çağdaş, V., van Oosterom, P., Simmons, S., Paulsson, J., and Lemmen,
C. (2018). International code list management: The case of land administration. In 7th
International FIG Workshop on the Land Administration Domain Model 2018: in conjunction
with Sixth Croatian Congress on Cadastre (VI. HKK).

Tan, E., Pattyn, V., Flores, C. C., and Crompvoets, J. (2021). A capacity assessment framework
for the fit-for-purpose land administration systems: The use of unmanned aerial vehicle
(uav) in rwanda and kenya. Land Use Policy, 102:105244.

114

Bibliography

Tirumala, R. D. and Tiwari, P. (2022). Importance of land in sdg policy instruments: A study
of asean developing countries. Land, 11(2):218.

Tuholske, C., Gaughan, A. E., Sorichetta, A., de Sherbinin, A., Bucherie, A., Hultquist, C.,
Stevens, F., Kruczkiewicz, A., Huyck, C., and Yetman, G. (2021). Implications for tracking
sdg indicator metrics with gridded population data. Sustainability, 13(13):7329.

Unger, E.-M., Bennett, R. M., Lemmen, C., and Zevenbergen, J. (2021). Ladm for sustainable
development: An exploratory study on the application of domain-specific data models to
support the sdgs. Land Use Policy, 108:105499.

Williamson, I., Enemark, S., and Wallace, J. (2006). Sustainability and land administration
systems. J. Wallace.–Department of Geomatics, Melbourne, 271.

Williamson, I., Enemark, S., Wallace, J., and Rajabifard, A. (2010). Land administration for
sustainable development. Citeseer.

Wunder, S., Kaphengst, T., and Frelih-Larsen, A. (2018). Implementing land degradation
neutrality (sdg 15.3) at national level: general approach, indicator selection and experi-
ences from germany. International yearbook of soil law and policy 2017, pages 191–219.

115

Colophon

This document was typeset using LATEX, using the KOMA-Script class scrbook. The main
font is Palatino.

	Introduction
	Motivation
	Research objective
	Thesis outline

	Background
	Sustainable Development Goals
	Land Administration and ISO 19152 LADM
	Previous Research Overview

	Methodology
	Research Approach Overview
	Linking LADM and SDGs Using the Four-Step Method
	Transition from Conceptual to Physical Model
	Conceptual Model for SDG Indicator 1.4.2

	Implementation
	Overview of Tools Used
	Custom Data Types and Constraints Implementation
	Functions and Triggers for Complex Constraints
	Functions for Calculation
	Views and Report Generation

	Testing
	Test Dataset Design
	Comparison of Automated and Manual Calculations
	Validation of Constraints through Invalid Data Testing

	Conclusion
	Research overview
	Contribution
	Limitations
	Future work

	Reproducibility self-assessment
	Marks for each of the criteria
	Self-reflection

	Complete SQL code
	Create Tables
	Create Constraints
	Create Functions
	Test Data

