

MSc thesis in Geomatics

Directly Serving 3D Tiles From A
Geo-DBMS

Yue Yang

April 2024

A thesis submitted to the Delft University of Technology in
partial fulfillment of the requirements for the degree of Master

of Science in Geomatics

Yue Yang: Directly Serving 3D Tiles From A Geo-DBMS (2024)
cb This work is licensed under a Creative Commons Attribution 4.0 International Li-
cense. To view a copy of this license, visit http://creativecommons.org/licenses/by/

4.0/.

The work in this thesis was carried out in the:

Geo-Database Management Centre of the OTB
Delft University of Technology

Supervisors: Dr.ir. B.M. Meijers
Prof.dr.ir. P.J.M. van Oosterom

Co-reader: Dr. G. Agugiaro

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/

Abstract

The rise of urban digital twins emphasises the critical role of representing real-world en-
vironments for decision-making and collaboration among stakeholders. This leads to an
expectation of effective management and visualisation of large-scale urban data models. 3D
Tiles is an open specification designed for streaming and rendering massive heterogeneous
3D geospatial datasets. It is widely adopted in fields such as urban planning and engineering
construction, where geospatial data is crucial for decision-making and collaboration.

However, as the 3D data size is growing, the performance of traditional file-based solutions is
facing challenges. Currently, dissemination and visualisation of 3D data are often reliant on
file-based systems. Users suffer from problems such as long load times, data inconsistencies,
and lack of flexibility. In this thesis, an approach for compactly storing both geometries and
attributes in the Database Management System (DBMS) and efficiently serving data compliant
with 3D Web standards to the client is proposed, advocating the direct serving of 3D Tiles
from the database.

v

Acknowledgements

Within this section, I would like to take the opportunity to express gratitude for the support
and guidance I have received throughout this journey.

Firstly, I would like to thank Martijn Meijers for this beautiful topic and support in the thesis
progress. The insightful advice and well-structured feedback are crucial to project develop-
ment and prototype refinement. Next, I would like to thank Peter van Oosterom for his critical
aiding mindset and kindness in helping me. I sincerely appreciate your guidance and feed-
back, which deepen my understanding of Geomatics in the built environment. A great
thanks goes to Giorgio Agugiaro for giving me valuable suggestions on my thesis project, and
for attending the P4 meeting. Finally, I would like to thank Bastiaan van Loenen for hosting
the meetings during my graduation procedure.

In addition, I would like to thank my friends in Delft. It is fortunate to meet and know
you on this land. I treasure every rainy and windy day we spent together, as much as the
sunny times. Special thanks to my friends in Australia who always support me despite
the significant time difference. Moreover, JJ LIN’s music lighted me whenever I felt demo-
tivated. Lastly, I would like to thank my parents and my cousins for their continued support.

Yue Yang
Delft, April 2024

vii

Contents

1. Introduction 1
1.1. Motivation and problem statement . 1
1.2. Potential use cases . 2
1.3. Objectives & Research Question . 4
1.4. Thesis Outline . 4

2. Theoretical Background 7
2.1. Modelling the real world . 7

2.1.1. 3D spatial data representations . 7
2.1.2. Open data models . 8

2.2. Web 3D GIS related standards and applications 10
2.2.1. WebGIS-related standards of OGC . 10
2.2.2. Visualisation of 3D city models using OGC’s standard 11
2.2.3. WebGL-related frameworks . 13

2.3. Database management system . 14
2.3.1. Geometrical representation in PostgreSQL Spatial 14
2.3.2. Topological data model . 15
2.3.3. Database for 3D city models . 18
2.3.4. Geometric operations (Triangulation) . 20
2.3.5. Spatial accessing method . 21

2.4. 3D Tiles . 22
2.4.1. Elements composite of 3D Tiles . 22
2.4.2. Coordinates system . 27
2.4.3. 3D Tiles indexing . 29

3. 3D Tiles Approach 31
3.1. Motivation . 31

3.1.1. Requirements . 31
3.1.2. Approach and variations . 32

3.2. Storage model for database . 33
3.2.1. 3D data storage model . 34
3.2.2. Hierarchy storage database model . 37
3.2.3. Associations with attribute . 42

3.3. Preparation of the 3D model . 42
3.3.1. Geometry validity in the database . 43
3.3.2. Is it a valid polyhedron? . 43

3.4. Developing 3D Tiles database . 43
3.4.1. Feature generation . 44
3.4.2. Tileset organisation and tile creation . 50
3.4.3. b3dm Encoding . 55

3.5. Web server query and visualisation . 59
3.5.1. Direct web access . 59

ix

Contents

3.5.2. Attribute and spatial query . 60
3.5.3. Web client visualisation . 62

4. Implementation and Experiments 65
4.1. Tools and database used . 65

4.1.1. Software . 65
4.1.2. Datasets . 66

4.2. Implementation prototype . 66
4.2.1. Data preprocessing . 67
4.2.2. Feature generation . 68
4.2.3. Tileset organisation and tile creation . 73
4.2.4. Encoding of geometry and property . 75
4.2.5. Web server query and visualisation . 75

5. Results and Analysis 81
5.1. Tools and datasets . 81

5.1.1. Test environment . 81
5.1.2. Datasets . 81

5.2. 3D Tiles Serving approaches . 82
5.2.1. Storage system . 84
5.2.2. Web retrieval . 86

5.3. Tiling method . 87
5.3.1. Bounding box filtering time performance 87
5.3.2. Cluster distribution performance . 88

5.4. Case study . 89
5.4.1. Campus Emergency Evacuation—Sea Level Rise 89

6. Conclusion and Future Work 93
6.1. Conclusions and Discussion . 93

6.1.1. Research Questions . 93
6.1.2. Contribution . 95
6.1.3. Reflection and discussion . 95

6.2. Future work . 97
6.2.1. Native database functionality . 97
6.2.2. Improving indexing and clustering method 97
6.2.3. Investigating refined LODs . 98
6.2.4. Collaborating with more 3D data formats 99
6.2.5. Generating standard 3D Tiles on the web application 100
6.2.6. Coordinates transformation . 101
6.2.7. Adapting to 3D Tiles 1.1 . 101
6.2.8. Interoperability with other existing databases and web clients 101

A. 3D Tiles example 103
A.1. Bounding volume example . 103
A.2. Tileset JSON example . 103

B. Code description and SQL statements 107
B.1. Flask code structure . 107
B.2. Normal computation . 108

x

Contents

B.3. Triangulation . 110
B.3.1. Triangulation on convex geometries . 110
B.3.2. Triangulation on concave geometries . 110
B.3.3. Triangulation on titled geometries . 111

B.4. Attribute enrichment . 112
B.4.1. 2D Area . 112
B.4.2. 3D Area . 112

B.5. Hierarchy . 112
B.6. Tileset JSON . 114
B.7. Spatial query . 117

B.7.1. Bounding box query . 117
B.8. Database storage system benchmarks . 118

C. Github link 121
C.1. Software usage . 121

D. Reflection 123

xi

List of Figures

1.1. 3D Tiles streaming and progressive loading on Cesium 1
1.2. Overview of Cesium prototype showing spatial planning information in Jakarta,

Indonesia [Indrajit, 2021] . 3

2.1. Boundary Representation . 8
2.2. Hierarchical CSG tree [Kragler, 2016] . 8
2.3. LoD1-LoD4 represented in the CityGML standard (OGC CityGML) 9
2.4. The glTF structure . 10
2.5. The system architecture [Alattas et al., 2021] . 12
2.6. The data flow from GeoRocket to the visualised 3D Tiles, which are requested

via the 3D Portrayal Service queries [Koukofikis et al., 2018] 13
2.7. The sequence diagram that displays data flow from GeoRocket to the visu-

alised 3D Tiles [Koukofikis et al., 2018] . 13
2.8. 3D Formal Data Structure [Molenaar, 1992]. 15
2.9. The relational data structure of 3D FDS [Zlatanova et al., 2009] 16
2.10. Tetrahedral Network(TEN) [Pilouk, 1996]. 16
2.11. TEtrahedral Network(TEN): relational implementation for 3D [Pilouk, 1996].

Reused from [Zlatanovaa et al., 2003] . 17
2.12. Simplified Spatial Model (SSM) [Zlatanovaa, 2000]. 17
2.13. Urban Data Model (UDM) [Coors, 2003]. 18
2.14. 3D City Database (3DCityDB) example of mapping an inheritance hierarchy

onto one table [Yao et al., 2018] . 19
2.15. Implementation of the 3DCityDB Web Feature Service [Yao et al., 2018] 19
2.16. Workflow of using 3DCityDB web client coupled with Cloud-based online

spreadsheets [Yao et al., 2018] . 20
2.17. R-Tree indexing example: 2D visualization (a), hierarchical dependencies (b)

[Broilo et al., 2010] . 22
2.18. A sample 3D Tiles bounding volume hierarchy [Cesium and OGC, 2019] . . . 23
2.19. Tile structure [CesiumGS, 2021] . 23
2.20. A tileset that refers to other tilesets [Cesium and OGC, 2019] 24
2.21. View frustum [CesiumGS, 2021] . 25
2.22. Layout of a b3dm [CesiumGS, 2021] . 26
2.23. batch ID linking geometry and property, modified from [CesiumGS, 2021] . . 27
2.24. right-handed coordinate system . 28
2.25. A position defined by lat, long, and height as shown in Cesium.Cartographic . 28
2.26. SFC Z-order encoding quadtree scheme [CesiumGS, 2022] 30

3.1. The overview of the 3D Tiles approach (Simplified) 33
3.2. An overview of the data storage model . 34
3.3. UML diagram for Node-Face-Object approach 36
3.4. UML diagram for Face-Object approach . 37
3.5. Representation of an L-shaped polyhedron . 37

xiii

List of Figures

3.6. An example of a hierarchy, and how it may appear in entity/relationship
models (b) and relational database tables (c) [Brunel, 2017] 38

3.7. Projecting basic properties of the nodes in the relational table [Brunel, 2017] . 38
3.8. (a) Breadth-first search, (b) Depth-first search [Khemani et al., 2019] 39
3.9. Table hierarchy (initial design) . 39
3.10. Schema design (cluster that objects are assigned to is associated with table

object) . 40
3.11. Schema design developed (objects that are assigned to the same cluster are

associated with table hierarchy) . 41
3.12. Table hierarchy table adapted to tile organization 41
3.13. Introduce table property into schema design . 42
3.14. Normal vector of a polygon . 44
3.15. Triangulation of the faces making up a unit cube 46
3.16. Triangulation of faces making up an L-shaped polyhedron 47
3.17. Triangulation of building footprint polygons . 47
3.18. A tilted cube visualised using Matplotlib . 48
3.19. Overview of the steps in the triangulation . 49
3.20. Illustration of DBSCAN clustering algorithm [Khater et al., 2020] 51
3.21. Illustration of hierarchical k-means partition, the circle represents the centroid

of the object . 52
3.22. Tile hierarchy represented in a tree structure . 53
3.23. Geometric error comparison test (same view frame screenshot) 55
3.24. binary glTF encoding [Group, 2021] . 55
3.25. An example of accessors in JSON data . 56
3.26. A binary glTF exmaple of 10 cubes . 57
3.27. Feature Table and Batch Table, modified from [CesiumGS, 2021] 58
3.28. Screenshot of padding results . 59
3.29. The Application Programming Interface (API) requests established between

Cesium and Postgres through Flask . 60
3.30. Sequence diagram representation of the way the web server works 61
3.31. The workflow of a filter query . 62
3.32. Screenshot of JSON chunk in a glb . 63
3.33. b3dm styled based on height value in Cesium via Javascript 64

4.1. The overview of tools used . 65
4.2. The relation between a real-world building and 3D representation in the 3DBAG

[Peters et al., 2021] . 67
4.3. Triangulation result of ST Tesselate . 71
4.4. JavaScript code box with online compiler support 78
4.5. Models displayed with and without a mouseover 78
4.6. Properties displayed as the user clicks the model 79
4.7. The model progressively displayed when zoomed in 79

5.1. Approximated projection of the extent of the used datasets 82
5.2. Visualisation of dataset Aula LOD . 83
5.3. Visualisation of dataset BK LOD . 83
5.4. Visualisation of dataset Campus LOD . 83
5.5. Content size performance (Dataset Campus) . 85
5.6. Content size performance benchmark (Dataset BK) 85
5.7. Content size performance benchmark (Dataset Aula) 86

xiv

List of Figures

5.8. Time performance for fetching one tile . 87
5.9. Relationship between file size and fetching time 89
5.10. Visualisation of campus underwater(a) and above water(b) 91

6.1. The four linking schemes for three LODs of a house, here depicted in 2D.
The objects that would obtained by slicing between the LODs can be seen
in dashed green contours; the red dashed lines reflect the cells that need to
be added and split in order to ensure a valid 3D (2D+LOD) cell complex
[Arroyo Ohori, 2016] . 98

6.2. sparse indexing in glTF [Group, 2021] . 99
6.3. An example of IFC to 3DTiles conversion workflow [Chen et al., 2018] 100
6.4. System Outlook Overview . 101

xv

List of Tables

2.1. Inventory of different 3D topological structures, modified from [Van Oost-
erom et al., 2002] . 18

3.1. TIN representation of a unit cube in PostgreSQL Spatial 35
3.2. Comparison of triangulation time complexity on a rotated cube 47
3.3. Comparison of triangulation applicability . 48
3.4. Example of bounding volume with type box . 54
3.5. Geometric error configuration for tileset, root and leaf node 54
3.6. Data Specification Examples . 57

4.1. Query results example of one building before and after ST Transform 69
4.2. Face count for tested dataset of LOD1 of extruded buildings, and LOD1 and

LOD2 of 3D buildings . 70
4.3. Example of a theme JSON Object in the input JSON file 76

5.1. System specifications . 81
5.2. Dataset description . 82
5.3. Content size performance (non-indexed b3dm) 84
5.4. Content size performance (indexed b3dm) . 84
5.5. Time performance for serving one tile . 87
5.6. Bounding box filtering time performance . 88
5.7. Relationship between the tile size and serving time 88
5.8. input.json file settings . 90

xvii

Acronyms

DBMS Database Management System . v
API Application Programming Interface . xiv
GIS geographical Information System . 2
LOS line of sight . 3
B-Rep Boundary Representation . 7
3D Three dimensional . 7
CAD Computer-Aided Design . 7
CSG Constructive Solid Geometry . 7
MCAD Mechanical CAD . 8
BIM Building Information Modeling . 8
GML Geography Markup Language . 9
CityGML City Geography Markup Language . 9
GPKG GeoPackage . 9
OGC Open Geospatial Consortium . 9
glTF Graphics Language Transmission Format . 9
WFS Web Feature Service . 10
I3S Indexed 3D Scene Layers . 11
GUI Graphical User Interface . 11
B3DM Batched 3D Model . 12
GiST Generalized Search Tree . 15
3DFDS Formal Data Structure . 15
SSM Simplified Spatial Model . 17
3DCityDB 3D City Database . 18
SFCGAL Simple Feature CGAL . 20
CGAL Computational Geometry Algorithms Library . 20
TIN Triangular Irregular Network . 21
MBRs Minimum Bounding Rectangles . 21
MBR Minimum Bounding Rectangle . 21
HLOD Hierarchical Level of Detail . 22
GE Geometric Error . 24
SSE Screen Space Error . 24
LOD Level of Detail . 32
RDBMS Relational Database Management System . 35
DBSCAN Density-Based Spatial Clustering of Applications with Noise 51
JS JavaScript . 63
BLOB Binary Large Object . 75
IFC Industry Foundation Classes . 99

xix

1. Introduction

1.1. Motivation and problem statement

As urban digital twins gain momentum, a wide range of use cases require 3D geospatial data
visualisation to represent the real world, where rapid response to the built environment is
critical. Ensuring timely updates and easy access is important to fostering collaboration
among stakeholders such as citizens, municipal decision-makers, and other urban planning
entities. This also promotes bottom-up strategies that promote community engagement,
enabling actively shaping the development of the city.

Over the last decade, there have been endeavours to enhance the dissemination and visuali-
sation of 3D data. For example, Cesium provides a platform that is accessible to anyone with
a Cesium ion account. The platform seamlessly optimizes, hosts and streams 3D geospatial
data, enabling users to create presentations using their 3D geospatial data. In addition, 3D
Tiles designed by Cesium allows massive data to be divided into smaller chunks [Cesium
and OGC, 2019]. This supports progressive loading and helps solve the problem of long
retrieval and loading times when there are many buildings.

Figure 1.1.: 3D Tiles streaming and progressive loading on Cesium

Typically, data is maintained in a DBMS and then serves as data copies in a file format. While
easy to store data, this approach raises concerns about spatial and temporal inconsistencies.
The definitive mechanism to guarantee simultaneous updates to both geometry and attribute
values is absent in file management. For example, information in the file may be outdated
and inconsistent with the database. In addition, this file-based approach lacks efficiency
and flexibility in data access. Despite the fact the 3D Tiles is optimised for massive data,

1

1. Introduction

users experience a long loading time with the current 3D viewer, Cesium, because of the
large number of tiles in a large-scale scene. The 3D models are divided into fixed-size
tiles to organise the 3D Tiles. This makes it difficult to search for the digital representation
of specified regions and filter data. Another concern is that a file-based system increases
redundancy and impacts storage efficiency.

This highlights the need for alternative solutions that directly serve the data from the
database. Instead of exporting 3D Tiles as separate files and then serving them, 3D Tiles
are streamed directly from the database to the web application. This streamlined approach
provides immediate access to the most current data and simplifies the process of accessing
and visualising 3D spatial data.

Furthermore, 3D city models are not only for 3D visualisation but also often used for vari-
ous geographical Information System (GIS) simulation and analysis tasks. Due to the large
size and complexity of the country-wide 3D geospatial data, the GIS software vendors and
service providers face many challenges when building 3D spatial data infrastructures for
realising the efficient storage, analysis, management, interaction, and visualisation of the 3D
city models [Yao et al., 2018]. Spatial databases enable a wide range of geometric operations.
Apart from data retrieval, storing geometries inside the database could also handle 3D data
more easily and efficiently, including validating and flexibility to perform spatial analysis
tasks.

However, there is currently no standard procedure for manipulating and displaying 3D Tiles
for web visualisation. This research aims to research the possibility of compactly storing
geometries and attributes in the database and effectively generating data formats that
comply with 3D Web standards. We examine the benefits of serving 3D Tiles data directly
from a database management system (DBMS), and explore suitable database solutions for
reducing duplication, enhancing interoperability and providing fast data access.

To formulate the research question properly, an overview of the methods, related to 3D data
modelling in the database as well as data transfer between client and server, is given in the
next chapter.

1.2. Potential use cases

Through an exploration of direct serving 3D Tiles from Database Management Systems
(DBMS), our objective is to unveil the benefits of this approach within the realm of 3D spatial
data management and visualisation. In which scenarios do applications derive significant
benefits from direct serving of 3D data from a Database Management System (DBMS) as
opposed to file-based storage methods?

Case 1: 3D Land Administration Domain
In the context of urban development where certain buildings exceed height limitations, effi-
ciently visualising this information is crucial for land use and planning departments. How-
ever, the large size of the dataset takes a long time to load, and the need for a fast search for
specific spatial content is not met. To address this challenge, directly serving the relevant
buildings as 3D Tiles based on user-defined conditions becomes imperative. By leverag-
ing database capabilities to stream only the buildings that exceed height limitations to the
web application, unnecessary data transfer and processing overhead are minimised. Spatial
indexing and clustering in the database can also speed up accessing the spatial data.

2

1.2. Potential use cases

Figure 1.2.: Overview of Cesium prototype showing spatial planning information in Jakarta,
Indonesia [Indrajit, 2021]

Apart from filtering objects based on attribute querying, analysis tasks based on geomet-
ric operations can be performed. For example, to examine if a building is inside a parcel, a
point-in-polygon metric operation can be performed for each point constituting the footprint
of the building [Biljecki et al., 2015]. In the PostgreSQL spatial database with PostGIS ex-
tension, this can be performed directly by spatial functions. Another example is performing
visibility analysis. 3D city models are essential for visibility analyses, such as determining
the line of sight (LOS) between two points and estimating sight volumes within urban envi-
ronments. For instance, they are used in property valuation in urban areas, because the view
from an apartment may significantly impact the property values [Kara et al., 2020].

Case 2: Municipal Engineering Construction
An example is that in a project the industry technicians change attributes in the database,
however, 3D visualisation on the web client is not updated in time. The necessity of di-
rectly serving 3D Tiles from the database stems from the need for a way to guarantee the
synchronisation of spatial and relational attribute data in a geometry database.

A municipality requires a comprehensive database management system to monitor and
manage the utility network in this area. The updates in DB involve maintenance, repair,
and changes of the utility, for example, the geospatial location of water pipes. Spatial at-
tributes and associated attributes must be updated simultaneously to ensure data accuracy
and integrity. The issue of a file-based approach is the absence of a guarantee for updating
the geometry and attributes simultaneously.

Additionally, engineering constructions like tunnels often span large spatial extents, posing
challenges for efficient search and fast retrieval of relevant information. A database man-
agement system (DBMS) enables efficient queries within the system and targeted retrieval
of specific regions.

Case 3: Bridging multiple Digital Twin databases
Urban digital twins, as the means of monitoring physical assets and simulating dynamic sce-
narios, facilitate decision-making. However, there is no standard digital twin database. Chal-
lenges need to be addressed, such as scalability, reproducibility and interoperability.

It is acknowledged that the physical world is complex, and it is impossible to manage one
model database for an entire digital world representation. Multiple model databases have
been developed in different domains, including geospatial aspects and other non-geospatial

3

1. Introduction

aspects, such as transportation, marine and so on. The main challenge is how to link these
fields and obtain the required information from numerous data.

Collaboration between multiple digital twin databases can be costly. There is a gap between
the need to build larger systems from multiple digital twins and the desire to help reduce
costs through digital twin models. In the short term, bridging the differences between
multiple databases is more manageable than standardizing an entire massive digital twin
system. It is not easy to visualise the digital twins, given that these databases are not
connected and are built with different standards. 3D Tiles, as an OGC standard, enhances
data sharing in academia and the industry. It is a promising way to compose these pieces
from multiple databases into 3D Tiles and directly serve from the database.

1.3. Objectives & Research Question

In response to the identified challenge and the imperative to address specific use cases, the
main research question is formulated as follows:

How to compactly store geometries and attributes in the database and effectively serve
3D Tiles to the client?

To answer the main question, the following sub-questions are relevant:

1. How to organise the database storing raw data, for example, storing raw geometries
as polygons, multi polygons or polyhedrons?

2. How to define the mapping rules for storing 3D Tiles in a relational database?

3. How to derive meshes (triangulated geometries) from raw data?

4. How to avoid potential problems such as data redundancy and data inconsistency?

5. How to define the tiling rules?

6. What kind of spatial and attribute queries could be performed based on the proposed
data model?

7. What are the advantages and disadvantages of generating 3D Tiles on the fly compared
to a file-based approach?

Efficiently storing and seamlessly visualising 3D geospatial data in web-based GIS appli-
cations forms the core focus of this research. The main objective revolves around finding
optimal methods for storing both geometric information and associated attributes within
a database while ensuring compliance with 3D web standards. This pursuit gives rise to
several critical research objectives.

This research primarily emphasises two key aspects: the compact database storage of 3D
Tiles and the visualisation of geospatial data through web-based GIS.

1.4. Thesis Outline

The remainder of this thesis is organised as follows:

4

1.4. Thesis Outline

Chapter 2: Theoretical Background
This chapter provides the relevant theoretical background and explains the current web
technologies and DBMS methods that support the management and visualization of 3D city
models in general. It explains the fundamental concepts of 3D Tiles and helps explore a
DBMS approach for managing and serving 3D Tiles.

Chapter 3: 3D Tiles Approach
This chapter introduces the database model requisites, geometry storage and topological
references, and hierarchical storage structures for efficient 3D Tiles organisation. It explores
methodologies for organising 3D Tiles, and explains system architecture, query procedures,
and visualisation strategies.

Chapter 4: Implementation and Experiments
This chapter identifies the tools used and the preparatory phases for dataset processing and
describes the prototype implementation for testing the proposed storage models and web
retrieval methods.

Chapter 5: Results and Analysis
This chapter describes and analyses the benchmarks used to examine the proposed approach
and presents visualisation results.

Chapter 6: Conclusion and Future Work
This chapter provides the answers to the research question and discusses the contributions
and limitations encountered. Finally, relevant future work is given.

5

2. Theoretical Background

The theoretical background chapter aims to provide a foundational introduction for the sub-
sequent thesis sections. Section 2.1 outlines digital representation for the real world. Section
2.2 focuses on WebGIS standards and services. Section 2.3 explains conceptual and logical
design, indexing and clustering methods, and geometric operations within DBMS. It also
describes the current DBMS approaches for 3D city model management and visualisation.
Section 2.4 focuses on 3D Tiles. These lay the foundation for further developing a DBMS
approach for managing and serving 3D Tiles.

2.1. Modelling the real world

2.1.1. 3D spatial data representations

Spatial modelling involves the process of translating intricate real-world objects into dig-
ital representations. This progress requires abstracting entities resembling real-world ele-
ments into representations suitable for computer storage. There are different representation
schemes for data models in the context of spatial modelling, the main difference lies in
the way that they decompose and discretize the space into a defined set of elements [Ar-
royo Ohori, 2016].

Boundary representation

Boundary Representation (B-Rep) in computer-aided design leverages mathematical theo-
rems like the Jordan curve and Jordan-Brouwer theorems to depict complex Three dimen-
sional (3D) objects using 2D boundary surfaces. These structures can consist of decomposed
surfaces composed of basic cells like triangles or polygons. B-rep describes the geomet-
ric shapes, interconnectivity, and relationships among vertices, edges, faces, and volumes.
These elements form the representation of complex 3D objects. It forms the foundation for
various operations in 3D modelling, including Boolean operations, mesh generation, etc.
However, managing and creating B-rep models can be intricate, especially for complex ob-
jects or non-manifold surfaces.

Constructive solid geometry

Constructive Solid Geometry (CSG) enables complex 3D object representation through sim-
ple geometric primitives and Boolean operations. It efficiently creates intricate shapes in
Computer-Aided Design (CAD) and game engines, ensuring a watertight object. Typically, a
complex object is formed by combining basic geometric primitives using Boolean operations,
which manipulate sets of points [Kragler, 2016]. These operations include union, difference,
intersection, and others. These primitives and operations can be organised hierarchically
and represented as a CSG tree.

7

2. Theoretical Background

(a) object modelling (b) corresponding graph

Figure 2.1.: Boundary Representation

Figure 2.2.: Hierarchical CSG tree [Kragler, 2016]

Parametric approach

Parametric modelling serves as a fundamental principle in Computer-Aided Design (CAD),
particularly in Mechanical CAD (MCAD). It offers a systematic approach to defining entities
through adjustable parameters that encompass various measurements and geometric fea-
tures. Its essence lies in its flexibility, allowing swift modifications to parameters to alter
entity characteristics and relationships between components. Nevertheless, this modelling
approach has its limitations of the manual definition of geometries and features by design-
ers, which requires human labour.

In the Building Information Modeling (BIM) domain, constructive solid geometry and para-
metric modelling are key methods for modelling geometries. Regarding the GIS world,
boundary representation is typically used, which is the geometric modelling paradigm we
focus on in this project.

2.1.2. Open data models

This section discusses the practice of various open data models. Open data models provide
a standardised framework for representing and organising data, fostering interoperability,
accessibility, and collaboration in data sharing and exchange.

8

2.1. Modelling the real world

GPKG

The GeoPackage (GPKG), an Open Geospatial Consortium (OGC) standard, is a versatile
container for various types of spatial data elements, including vector data, raster data,
and associated attributes, into a single SQLite database file format. GPKG complies with
the OGC Simple Features standard, encompassing various geometry types such as Point,
LineString, Polygon, MultiPoint, MultiLineString, MultiPolygon, and GeometryCollection.
Among these, the MultiPolygon type is noteworthy as it can encapsulate both 2D and 3D
geometries.

CityGML

Geography Markup Language (GML) encompasses more complex data structures and em-
bedded topological information. International standards such as City Geography Markup
Language (CityGML), an open data model for representing 3D city models. It defines the com-
bination of geometric and semantic information to enable comprehensive urban modelling
and analysis. Moreover, the emergence of CityGML as an open model for 3D city object
representation marks a crucial advancement in standardising the storage and exchange of
urban models in multiple levels of detail.

Figure 2.3.: LoD1-LoD4 represented in the CityGML standard (OGC CityGML)

CityJSON

CityGML, initially introduced by the OGC as an open data model, encountered challenges
due to its XML-based format, which posed difficulties in processing and distribution. CityJ-
SON emerged as a more streamlined alternative, utilising JSON for a simpler, lightweight
representation. While CityGML offers extensive features and capabilities, CityJSON’s JSON-
based structure facilitates efficient dissemination online.

glTF

The Graphics Language Transmission Format (glTF) is a standard developed by the Khronos
Group for efficiently representing 3D models. Its core part is a JSON file that describes
the whole contents of the 3D scene [Group, 2021]. The JSON file also contains links to
the geometry and textures of the 3D objects, which are stored in dedicated binary files, as

9

2. Theoretical Background

shown in Figure 2.4. This allows the data to be stored in a compact format, resulting in
smaller file sizes ideal for web-based applications. Widely adopted across the industry, glTF
strikes a balance between file size and visual fidelity, making it popular for game engines,
web browsers, VR, and AR platforms. Its JSON-based structure enables easy authoring and
editing, facilitating seamless interchange of 3D content across different tools and workflows.
glTF 2.0 is the primary tile format for 3D Tiles which is introduced in the next section.

Figure 2.4.: The glTF structure

2.2. Web 3D GIS related standards and applications

The need for WebGIS (Web Geographic Information System) arises because of the necessity
of modelling, representing, and simulating the dynamic world in a spatiotemporal context.
There are mainly two parts that facilitate 3D WebGIS. One is standardisation introduced by
international organisations like the OGC. The other is the software and hardware support
visualisation of 3D formats on desktop and mobile devices.

2.2.1. WebGIS-related standards of OGC

The Open Geospatial Consortium (OGC) serves as an international standards organisation.
Its specifications aim to ensure compatibility with geospatial technology. One of them is
the Web Feature Service (WFS). It aims to facilitate the creation, modification, and exchange
of vector-format geographic information over the Internet through HTTP protocols. A WFS
encodes and transfers information in Geography Markup Language (GML).

In 2019, OGC introduced the OGC API - Feature standard, which embraces a RESTful archi-
tecture. This development represents a significant stride towards enhancing the accessibility
and user-friendliness of geospatial resources on the web.

Despite years of developing and managing geographic standards that have set mature stan-
dards supporting 2D data file formats, standards that work with various 3D data formats
are still on the way. The OGC web services standards provide interoperability for spatial
data exchanging over the web, while limitations arise when dealing with 3D data, such as
in scenarios of multi-scale 3D planning (eg: Transit-oriented development).

10

2.2. Web 3D GIS related standards and applications

It is noteworthy that, in response to 3D WebGIS challenges, the OGC has introduced stan-
dards like the 3D Portrayal Service Standard 1.0 (3DPS), incorporating strategies like the Web
View Service (WVS) and Web 3D Service (W3DS) for server-side and client-side rendering
of 3D data.

With the increasing need for 3D web visualisation, a generic approach is needed to accessing
3D data. Continuous efforts by organisations like the Open Geospatial Consortium (OGC)
are actively taken to formulate comprehensive standards for 3D data formats. 3D Tiles
and Indexed 3D Scene Layers (I3S) are the latest open standards for streaming massive 3D
geospatial content.

3D Tiles

3D Tiles is designed to provide efficient streaming of 3D geospatial data. Each tileset is a
set of tiles that are organised hierarchically, with each tile having a corresponding bound-
ing volume. This yields a hierarchical spatial data structure that optimises rendering and
enables efficient spatial queries. When rendering, Cesium first evaluates the topological re-
lationship between the bounding volume and the view frustum. If the bounding volume
overlaps with the view frustum, then check if its geometric error falls within the predefined
error limit specified in the tileset. If both conditions are met, the tile will be fetched and
rendered.

3D Tiles facilitate seamless adoption and compatibility across different platforms. By of-
fering batch 3D models, instanced 3D models, point clouds, composites, and detailed 3D
Tiles style specifications, 3D Tiles presents a holistic solution for managing and visualising
intricate 3D geospatial datasets.

I3S

Indexed 3D Scene Layer (I3S) is an innovative solution developed by Esri for managing vast
and diverse 3D geographic datasets. A single I3S data set, known as a Scene Layer, serves
as a comprehensive container capable of accommodating large amounts of heterogeneously
distributed data. The delivery format and persistence model for Scene Layers, specified as
Indexed 3D Scene Layer (I3S) and Scene Layer Package (SLPK), respectively, are outlined in
the OGC Community Standard. Utilising JSON and binary ArrayBuffers, I3S is optimised for
cloud, web, and mobile environments, leveraging modern web standards for easy handling,
parsing, and rendering by web and mobile clients.

2.2.2. Visualisation of 3D city models using OGC’s standard

The web visualisation of 3D City Models is made possible through the utilisation of OGC’s
Standard.

Web-Based 3D Routing System using WFS

Alattas et al. [2021] developed a routing system accessible through a web-based 3D Graphical
User Interface (GUI). This web-based application utilises the integrated model of LADM
and IndoorGML to enable indoor navigation based on user access rights within an educa-
tional building. On the server side, the system relies on a PostgreSQL/PostGIS database

11

2. Theoretical Background

with pgRouting functionality. Additionally, GeoServer is employed to implement industry-
standard OGC protocols such as Web Feature Service (WFS). Apache Tomcat serves as the
web server for hosting the application. This setup ensures efficient and accessible routing
capabilities for users via their laptops, tablets, or mobile phone web browsers. Note that the
BIM (Building Information Modelling) data is first converted into Batched 3D Model (B3DM)
file and then served separately to the web server.

Figure 2.5.: The system architecture [Alattas et al., 2021]

Visualisation of 3D city models using 3D Portrayal Service

Koukofikis et al. [2018] explored the interoperable visualisation of 3D city models using
OGC’s standard 3D Portrayal Service. This experiment assessed the end-to-end process of
transforming CityGML data into web-enabled visualisations using Cesium via OGC’s 3D
Portrayal Service. It involved converting CityGML data to 3D Tiles format, importing it into
the 3D Portrayal Service Framework, and querying hierarchical 3D geometries. Addition-
ally, an Attribute Server provided supplementary information. Through this evaluation, the
experiment showcases the seamless integration enabled by OGC’s 3D Portrayal Service for
visualising 3D geospatial data on web platforms like Cesium. However, directly serving 3D
Tiles from the database is not supported. Instead, the CityGML file is exported from the
GeoRocket, a high-performance data store for geospatial files, and then converted into 3D
Tiles.

12

2.2. Web 3D GIS related standards and applications

Figure 2.6.: The data flow from GeoRocket to the visualised 3D Tiles, which are requested
via the 3D Portrayal Service queries [Koukofikis et al., 2018]

Figure 2.7.: The sequence diagram that displays data flow from GeoRocket to the visualised
3D Tiles [Koukofikis et al., 2018]

From two setups for web-based 3D visualization, it can be seen that 3D Tiles and additional
features are served separately to the web application. The approaches create file represen-
tation for geometries during the process, and imply a lack of integrity maintenance. In the
first scenario, b3dm (one of the 3D Tiles formats) is produced using FME, while additional
features are retrieved from the database using WFS as GeoJSON format. In the second sce-
nario, the 3D Tiles is generated using a converter and served via the 3DPS framework, while
additional features are retrieved from another server.

2.2.3. WebGL-related frameworks

Today, WebGL is supported by all major desktop and mobile web browsers, and there are
examples of 3D WebGIS frameworks based on WebGL.

Cesium supports the loading and display of 3D Tiles. CesiumJS is an open-source JavaScript
library for creating 3D globes and 2D maps that run in browsers and across devices. The
platform uses the Earth Centred, Earth Fixed coordinate system (ECEF, which is EPSG:4978),
in which the centre of mass of the reference ellipsoid of Earth is taken as the origin. To render

13

2. Theoretical Background

the objects in 3D Tiles at the correct position, instead of using local coordinates, a coordinate
transformation to ECEF needs to be ensured [Alattas et al., 2021].

X3DOM is an open-source JavaScript framework that enables the creation of declarative 3D
scenes within web pages without the need for plugins. By integrating X3D (Extensible 3D
Graphics) and DOM (Document Object Model), X3DOM allows for dynamic manipulation
of 3D elements using familiar JavaScript operations, making 3D content a natural part of the
web browsing experience. Three.js is another open-source JavaScript library used to create
and display 3D computer graphics in web browsers.

Various commercial and proprietary solutions support geospatial applications. One is the
ESRI CityEngine web viewer which is tailored for urban planning applications, facilitating
the rapid prototyping and visualisation of urban environments through WebGL technology.
As a market leader in geospatial software, ESRI provides CityEngine as an extension to
its ArcGIS software, widely utilized in municipalities worldwide. The web viewer offers
tools for plan sharing and public participation, enhancing collaboration and decision-making
processes in urban planning initiatives.

Unity was originally developed as a 3D game engine for desktop PCs and game consoles.
This game engine is versatile, enabling the development of augmented and virtual real-
ity, simulations, and other applications. Unity has expanded its capabilities to support
geospatial visualization through extensions like WorldComposer. This extension enables the
creation of realistic 3D visualisations from geospatial data.

2.3. Database management system

An increasing number of database management systems (DBMS), such as PostgreSQL Spa-
tial and Oracle Spatial, are incorporating the maintenance of geometry type in compliance
with the OpenGIS specification [Zlatanova et al., 2004]. We focus on PostgreSQL Spatial,
a free and open-source relational database management system (RDBMS) widely popu-
lar among GIS users for its powerful spatial capabilities. PostGIS and SFCGAL serve as
an extension to PostgreSQL, implementing the OGC Simple Feature Specifications for SQL
standards.

2.3.1. Geometrical representation in PostgreSQL Spatial

The maintenance of spatial objects typically involves three fundamental components. First, a
schema within the RDBMS defines the data storage, which is often extended with specialised
extensions like PostGIS. Second, a spatial indexing mechanism is employed to organize and
access spatial data efficiently, enhancing the performance of spatial queries. Finally, a set
of operators and functions are provided for performing spatial queries and other spatial
analysis operations.

Spatial data storage: PostgreSQL spatial supports a relational model to store different types
of spatial data. It supports geometric primitives such as points, lines, polygons, and also
geometric aggregate (multi-geometries). Apart from working with 2-D geometries, Post-
GIS supports additional dimensions on all geometry types, such as a “Z” dimension to
add height information. Additionally, PostGIS includes the TIN type that models triangu-
lar meshes as rows, and the POLYHEDRALSURFACE type which allows users to model
volumetric objects.

14

2.3. Database management system

Indexing: This is typically implemented using the Generalized Search Tree (GiST). Apart
from the GiST index, other types like SP-GiST, BRIN, and B-tree can also be used. Spatial
indexing supports quickly searching and retrieving spatial data based on its location.

Functions and operators: These functions enable users to perform a wide range of geometric
operations. For example, users can filter and analyse spatial data, measure distances and
areas, intersect geometries, buffering, and more. Furthermore, some of the spatial functions
will automatically make use of a spatial index.

2.3.2. Topological data model

Various topological models have been proposed in the literature to address the complexity
of spatial data representation.

3DFDS

Formal Data Structure (3DFDS) is a comprehensive vector model that contains geometric
and semantic information and maintains 3D topology [Zlatanova et al., 2009]. This model
can be implemented using an object-oriented approach, based on fundamental objects like
Points, Lines, Surfaces, and Bodies, along with primitives such as Nodes, Arcs, Edges, and
Faces.

Figure 2.8.: 3D Formal Data Structure [Molenaar, 1992].

15

2. Theoretical Background

Figure 2.9.: The relational data structure of 3D FDS [Zlatanova et al., 2009]

TEN

The TEN (Tetrahedral Network), offers a different perspective by employing primitives like
tetrahedrons, triangles, arcs, and nodes. However, while this method subdivides space
effectively and naturally for geological applications, it creates a large volume of unnecessary
data, especially when representing man-made 3D objects.

Figure 2.10.: Tetrahedral Network(TEN) [Pilouk, 1996].

16

2.3. Database management system

Figure 2.11.: TEtrahedral Network(TEN): relational implementation for 3D [Pilouk, 1996].
Reused from [Zlatanovaa et al., 2003]

SSM

The Simplified Spatial Model (SSM) focuses on representing geometry using planar convex
faces. The SSM is designed to support web applications and focus on the visualization of
queries on the screen. The model stores faces referencing to nodes, while bodies are stored
associated with faces.

Figure 2.12.: Simplified Spatial Model (SSM) [Zlatanovaa, 2000].

UDM

In the Urban Data Model (UDM), the geometry of a surface or body is modelled through
planar convex faces. These faces are linked by nodes that serve as connection points and
establish connections among themselves and other faces.

17

2. Theoretical Background

Figure 2.13.: Urban Data Model (UDM) [Coors, 2003].

Used Primitives Topological Tables Explicit Relationships

3DFDS node, arc, edge, face arc, edge, face

node-on-face
node-in-volume
arc-partof-line
arc-on-face
arc-in-volume

TEN node, arc, triangle, tetrahedron arc, triangle, tetrahedron arc-partof-line

SSS node, face face, line, surface, volume node-in-volume
face-in-volume

UDM node, face face, line, surface, volume face-partof-surface
node-partof-line

Table 2.1.: Inventory of different 3D topological structures, modified from [Van Oosterom
et al., 2002]

The topological type is determined by encoding several parameters, including the dimension
of the data structure, the total number of topological tables, and the specific topological rules
[Van Oosterom et al., 2002]. It can be seen from Figure 2.1 that the primitives used depend
on the expected type of topology, and not all primitives need to be used. For example, only
the node and face are used in the SSS structure [Zlatanovaa, 2000], while all the primitives
are utilised in the TEN structure [Pilouk, 1996].

2.3.3. Database for 3D city models

The 3D City Database (3DCityDB) is an Open Source software suite which allows the im-
port, management, analysis, visualisation, and export of virtual 3D city models. This tool
can automatically create database schemas for storing CityGML data for various database
management systems (ORACLE Spatial or PostgreSQL). The mapping approach in 3DCi-
tyDB, for example, can utilise one table to represent multiple classes that are subtyped from
a common class and at the same time belong to the same inheritance hierarchy level [Yao
et al., 2018]. The 3DCityDB allows for importing and exporting of CityGML and CityqJSON

18

2.3. Database management system

datasets. In addition, it comes with a KML/COLLADA/glTF exporter for creating tiled
visualization models.

Figure 2.14.: 3D City Database (3DCityDB) example of mapping an inheritance hierarchy
onto one table [Yao et al., 2018]

3DCityDB enhances web access through two services: 3DCityDB-Web-Feature-Service and
3DCityDB-Web-Map-Client. The former, compliant with OGC Web Feature Service 2.0, ex-
tends the CityGML import/export tool to enable web-based access to city objects. The latter
allows 3D visualization models (such as KML/COLLADA/glTF) generated via the exporter
plugin, linking with the tabular thematic data exported from the Spreadsheet Generator
plugin. Note that this Web-Map-Client service first exports a file representation from the
database and then serves the file to the web application.

Figure 2.15.: Implementation of the 3DCityDB Web Feature Service [Yao et al., 2018]

19

2. Theoretical Background

Figure 2.16.: Workflow of using 3DCityDB web client coupled with Cloud-based online
spreadsheets [Yao et al., 2018]

2.3.4. Geometric operations (Triangulation)

Spatial databases such as PostGIS, Oracle Spatial, and Spatialite support geometric opera-
tions. However, performing 3D spatial operations in a database can be challenging. Ex-
isting capabilities may not adequately handle 3D geometries, so specialized tools such as
Computational Geometry Algorithms Library (CGAL) or Simple Feature CGAL (SFCGAL) are
required for precise operations compliant with GIS standards. Balancing accuracy and com-
putational efficiency remains a consideration. Even so, existing database functions designed
for spatial operations, such as PostGIS functions, may not support processing the current 3D
geometry type.

The CGAL is an open-source library known for providing a variety of geometric algorithms
and data structures covering both 3D and 2D spaces, such as triangulations, Voronoi dia-
grams, Boolean operations on polygons, and polyhedra. However, this library is external to
the database, which supports geometric operations in file-based approaches. It should be
noticed that CGAL geometric models and operations differ from those commonly used in
the GIS field.

To bridge this gap, an open-source project called SFCGAL was developed, which is a C++
wrapper library that provides easy access to the powerful computational geometry algo-
rithms library CGAL [Oslandia and IGN, 2022]. It specifically implements geometric mod-
els and API compliant with the ISO 19107 spatial schema and OGC Simple Features Access.
This consistency ensures compatibility with GIS standards, enabling seamless interaction
and integration with existing GIS systems.

Triangulation

Triangles are basic shapes in graphics and rendering, widely used in various application ar-
eas such as GIS, robotics, and geometric modelling. Triangulation is commonly employed by

20

2.3. Database management system

constructing a Triangular Irregular Network (TIN) or mesh, providing a continuous surface
representation.

The computational geometry triangulations aim to simplify complex polygonal shapes into a
collection of triangles [Boissonnat et al., 2000]. This decomposition ensures that the resulting
triangles cover the entire interior of the original polygon excluding the holes, and without
intersecting or overlapping each other within the polygon. The collection of these triangles
forms together the exact shape of the initial polygon.

One common method for triangulating a simple polygon is the ear-clipping algorithm. This
algorithm involves a recursive process that identifies “ears” within a polygon and iteratively
removes them until only one triangle remains. The concept is that any simple polygon
with at least 4 vertices (without holes) has at least two ears—triangles within the polygon.
Originally, the ear-clipping has an expensive time complexity of O(n3) with O(n) time spent
on validating newly formed triangles [Mei et al., 2012]. Some triangulation algorithms, such
as the FIST Package by Held, are optimised based on Ear-Clipping. These algorithms reduce
the occurrence of sliver triangles, ensuring efficient and better-shaped triangulation and
avoiding requiring additional post-processing corrective steps after the initial triangulation
process.

SFCGAL extensions in the spatial database also support triangulation. SFCGAL offers
two-dimensional and three-dimensional built-in triangulations. The method ST Tessellate,
available from version 2.1.0 onward, takes as input surfaces such as MULTI(POLYGON)
or POLYHEDRALSURFACE and returns into TIN representations from tessellation. Oper-
ating within a GIS environment, it employs the SFCGAL backend. This process supports
three-dimensional attributes, preserving the z-coordinate.

2.3.5. Spatial accessing method

Spatial access methods refer to techniques used in spatial databases to organise and retrieve
spatial data efficiently. It aids in quick access and rendering of specific portions of large
datasets.

Spatial data sets are often large and multi-dimensional, and normal indexing has limitations
when dealing with these data. Traditional indexes, such as B-trees, are not well-suited
for spatial data. They rely on sorting and binary search, which are optimized for one-
dimensional data. Spatial data cannot be easily sorted in a linear order that preserves spatial
relationships. Thus, it requires specialised indexing techniques that can efficiently handle
multi-dimensional data and spatial relationships.

Spatial indexing structures, such as R-trees, quad-trees, field-trees, and kd-trees, are com-
monly used to organize spatial data. These structures partition the space into smaller regions
and associate spatial objects with these regions to facilitate fast search and retrieval.

R-tree is a hierarchical data structure used to efficiently index and query spatial data rep-
resented as Minimum Bounding Rectangles (MBRs). In a classical R-tree, each tuple in the
tree has a unique identifier and a Minimum Bounding Rectangle (MBR) that encloses the
spatial object it represents [Zlatanova and Gruber, 2001]. It organizes these rectangles in a
tree structure, enabling quick spatial searches by traversing only the relevant nodes of the
tree.

21

2. Theoretical Background

Figure 2.17.: R-Tree indexing example: 2D visualization (a), hierarchical dependencies (b)
[Broilo et al., 2010]

Fast Access in spatial queries is significant. Spatial queries, such as finding nearby points or
objects within a given region, require fast access to the relevant data. A spatial index helps
in quickly identifying the subset of data that satisfies the query conditions.

There are clustering methods that store objects near each other in space. Spatial clustering
is based on the spatial filling curve, which reconstructs cells in kD into 1D using bijective
mapping. The Morton curve (also known as the Z-order curve) and the Hilbert curve are two
well-known examples of space-filling curves (SFCs). For example, the R-tree can be adapted
using the Hilbert curve and be mapped from N-dimensional to 1D. Additionally, clustering
methods like K-means and DBSCAN are utilised for spatial subdivision or clustering.

The choice of the indexing and clustering method is related to the specific characteristics of
the data in the research.

2.4. 3D Tiles

3D Tiles is widely adopted within the geoinformation and web communities. It offers scal-
ability and interoperability, making it ideal for delivering 3D visualisation. Therefore, we
choose the 3D Tiles format for our research. The b3dm and tileset.json collaboratively form
3D Tiles.

2.4.1. Elements composite of 3D Tiles

3D Tiles serve as an innovative data format used for efficiently streaming and displaying
vast amounts of three-dimensional geospatial data. They enable the seamless transmission
of complex 3D models, textures, and attributes, optimizing performance for visualization on
various platforms. 3D Tiles supports the Hierarchical Level of Detail (HLOD), as shown in
Figure 2.18. This format organizes data hierarchically, allowing for progressive loading and
rendering, which means users can view details gradually as needed.

22

2.4. 3D Tiles

Figure 2.18.: A sample 3D Tiles bounding volume hierarchy [Cesium and OGC, 2019]

Tileset - tile structure

3D Tiles organises data on different levels, and this structure is stored in the tileset. The
tileset structure commonly includes a root tile and its associated child tiles, storing render-
able content within each tile, three child tiles in the example, as shown in Figure 2.19. The
renderable part is stored in content. The same content with a low level of detail and with a
higher level of detail are stored on different levels. The content with a higher level of detail
is of smaller geometric error. In addition, each tile may refer to an external tileset, and this
can combine small tilesets into a larger one.

Figure 2.19.: Tile structure [CesiumGS, 2021]

In this organisation, the term ”children” refers to the multiple contents under this node, and
this recursive structure allows for the potential of multiple contents under each child node.
Theoretically, the creation of an extensive tree hierarchy is feasible. However, it is advisable
to limit the height of this tree due to practical considerations.

The content in the tileset refers to an external URL or URI, which can be a B3DM(Batched
3D Model), PNTS(PointCloudTileset), I3DM(Instanced 3D Model), CMPT(Composite), or
GLB(Binary representation of glTF). It can also point to an external tileset (the uri of another
tileset JSON file), enabling storing each city in a tileset and then having a global tileset of
tilesets.

23

2. Theoretical Background

Figure 2.20.: A tileset that refers to other tilesets [Cesium and OGC, 2019]

Geometric Error and Screen Space Error

The Geometric Error (GE) represents the degree of approximation or deviation of the tile’s
geometry from the actual scene geometry, aiding in determining which tile should be ren-
dered. For a tileset, i.e. the geometric error on the top level, it determines whether the root
in the tileset should be rendered based on Screen Space Error (SSE). For a tile, it is used to
check if its children tile should be rendered. Note that geometric error points to the next
level below. root.children can be considered as sub-tiles. Each Tile can also have its chil-
dren, thus forming a recursive tree structure. Generally, the children tiles’ geometric error is
smaller than its parent tile’s.

Screen space error (SSE) is crucial to manage the level of detail based on the perceived error
in geometry simplification. Each tile has a geometric error property which compares the
simplified geometry to the real geometry, in metres. At runtime, the geometric error is
converted into SSE. This is used for determining when to load a tile’s children. In general,
a higher geometric error means it will load its children sooner when the camera is zooming
in.

The calculation of geometric error in 3D Tiles-based rendering systems involves various
factors. The provided formula indicates one possible way to compute Screen Space Error
(SSE) using parameters like screen height, tile distance, and field of view angle, determining
an exact standard formula for SSE is not universally defined:

sse = (geometricError * screenHeight) /(tileDistance ∗ 2 ∗ tan(fovy /2))

screenHeight : the height of the rendering screen in pixels
tileDistance : the distance of the tile from the eye point
fovy : the opening angle of the view frustum in the y-direction

The exact implementation is experience-based and tailored to specific applications. For
instance, when constructing an octree for managing levels of detail, a typical approach is

24

2.4. 3D Tiles

to designate a geometric error for the root node and subsequently halve this error for each
descending level in the tree.

Bounding volume and view frustum

A Bounding Volume is a simplified volume, like a bounding box, a bounding sphere that
approximates the spatial extent of an object or group of objects in a scene. A view frustum
is defined by the camera position, orientation, and field-of-view angle.

When rendering, the bounding volume is first read, and based on the bounding volume and
the current view frustum, it is determined whether the bounding volumes of tilesets and
tiles intersect with the view frustum.

Figure 2.21.: View frustum [CesiumGS, 2021]

Content in 3D Tiles

The 3D Tiles specification covers a variety of file formats, including Batched 3D Model(B3DM),
PointCloudTileset(PNTS), Instanced 3D Model(I3DM), Composite(CMPT), and binary rep-
resentation of glTF(GLB). It is designed to efficiently manage and transport a variety of 3D
geospatial data types. These formats play a key role in representing different aspects of 3D
models, point clouds, instances, and composite scenes in the 3D Tiles ecosystem.

3D Tiles specification version 1.1 is backwards compatible with 1.0, and the basic structure
of the file format remains consistent. The standardized structure of B3DM, PNTS, I3DM,
CMPT, and GLB ensures interoperability and seamless data transfer, regardless of which
specification version is used. This cross-compatibility supports iterative work on projects
based on earlier versions of 3D Tiles.

B3DM is specifically studied. It is a binary blob (Binary Large Object) in little-endian. The
Information in the b3dm is shown in Figure 2.22. It contains the header and the body part.
The body comprises the Feature Table, the Batch Table, and the binary glTF. The encoding
of a b3dm body will be explained in Section 3.4.3.

25

2. Theoretical Background

Figure 2.22.: Layout of a b3dm [CesiumGS, 2021]

The fields in a b3dm header are summarised as follows:

• The magic value is used to identify the content as a b3dm file. It is a 4-byte ANSI
string.

• The version identifies the total length of the file.

• The byteLength identifies the version of the Batched 3D Model format.

• The featureTableJSONByteLength and featureTableBinaryByteLength identify the
JSON section and binary section length of the Feature Table in bytes, with data type
uint32.

• The batchTableJSONByteLength and batchTableBinaryByteLength identify the JSON
section and binary section length of the Feature Table, with data type uint32.

A Feature Table contains position and appearance properties required to render each feature
in a tile, and the Batch Table describes additional application-specific properties for each
feature.

In a b3dm, batch ID identifies the same model. It can determine the selected model with
the same batch ID at run time. The batch ID links the geometric data in a binary glTF with
properties in a batch table, as shown in Figure 2.23. This allows the model’s appearance
to change dynamically based on its property, for example, styling buildings according to
height values.

26

2.4. 3D Tiles

Figure 2.23.: batch ID linking geometry and property, modified from [CesiumGS, 2021]

2.4.2. Coordinates system

There are two main aspects related to the coordinate system in the thesis. One is orientation
associated with using z-up or y-up, and the other is the coordinate transformation among
different coordinate reference systems.

Choices between z-up or y-up coordinate system

glTF is a file format designed for efficient transmission of 3D scenes and models. By de-
fault, glTF files use a right-handed coordinate system, where the y-axis is up. However,
3DTiles uses a coordinate system with z-up. Both the z-up and y-up follow the right-hand
rule.

To keep the consistency, a transformation by rotating around the x-axis by /2 radians is done
at runtime. This is equivalent to matrix transform:

1.0 0.0 0.0 0.0
0.0 0.0 −1.0 0.0
0.0 1.0 0.0 0.0
0.0 0.0 0.0 1.0

Additionally, for high-precision rendering purposes, vertex positions can be defined relative
to a centre position specified by RTC CENTER. This centre position serves as the reference
point to which all vertex positions are relative after the coordinate system and glTF node
hierarchy transformations have been applied, aiding in maintaining precision during render-
ing processes. In 3D Tiles 1.0, this transformation that is used to translate model vertices is
in featureTable. In 3DTile 1.1, the RTC CENTER can be added to the translation component
of the root node of the glTF asset.

27

2. Theoretical Background

(a) before y-up to z-up transformation (b) after y-up to z-up transformation

Figure 2.24.: right-handed coordinate system

Coordinate reference system

Cesium is a JavaScript library that supports visualization and analysis on a high-precision
WGS84 glob and is shared with users on desktop or mobile. It streams 3D Tiles and other
standard formats from Cesium ion or another source. Cesium ion is a SaaS platform that
offers a seamless solution for optimizing, hosting, and streaming 3D geospatial data. When
the user uploads the content, Cesium ion will optimize it as 3D Tiles, host it in the cloud,
and stream it to any device.

As CesiumJS is a runtime engine, it deals with data that has been transformed into specific
coordinate systems. It is essential to understand the coordinate reference systems of the
geospatial datasets and handle transformations between different CRS to ensure accurate
geospatial representations.

EPSG codes define the coordinate system of the dataset. In the context of Cesium, a tile-
set’s global coordinate system is in a WGS 84 earth-centred, earth-fixed (ECEF) reference
frame (EPSG 4978), coordinates as XYZ. The region bounding volume specifies bounds us-
ing a geographic coordinate system (latitude, longitude, height), specifically EPSG 4979. A
Cartesian in CesiumJS is in EPSG:4978. While it is in EPSG:4979 if it is a Cartographic in
CesiumJS.

Figure 2.25.: A position defined by lat, long, and height as shown in Cesium.Cartographic

To be specific, EPSG 4978 represents the ECEF (Earth-Centered, Earth-Fixed) CRS, which is
a 3D Cartesian coordinate system with its origin at the centre of the Earth. This system is
used for various applications involving satellite tracking, navigation, and geodesy. EPSG
4979 is similar to EPSG 4978. However, it uses three-dimensional Cartesian coordinates
that include ellipsoidal height as the third dimension, representing the height above the

28

2.4. 3D Tiles

reference ellipsoid. Additionally, EPSG4326 represents a geographical coordinate system
that uses longitude and latitude to represent points on the Earth. This is a two-dimensional
coordinate system. EPSG:4326 uses the WGS 84 (World Geodetic System 1984) ellipsoid as
its reference ellipsoid, hence the alias ”WGS 84 coordinate system”.

When displaying multi-source geospatial data on Cesium, conversion from source CRS to
target CRS is required to ensure a correct and unified coordinate system

2.4.3. 3D Tiles indexing

3D Tiles indexing plays a crucial role in optimizing the delivery and rendering of 3D Tiles
or any spatial data for applications like CesiumJS, especially in scenarios where there are
bandwidth limitations or slow internet connections. This reduces the amount of data that
needs to be transmitted over the network.

glTF indexing designed for web transmission

Cesium is designed based on WebGL which is the core to render the objects, and glTF is
a model that complies with WebGL well. The design of glTF, to be specific, the internal
structure of glTF, mimics the memory buffers. This is commonly used by graphics chips for
real-time rendering. Indices themselves take space, and finding the positions that indices
refer to also costs time. However, the most important idea of indices in glTF is not about
saving space or ‘geometric’ efficiency, it is more about the renderer mechanism. glb data is
mesh, and there are two ways to deliver the mesh data to GPU, DrawArrays, and DrawEle-
ments. The latter needs an index buffer to which indices in a glb are related. This reduces
memory usage and improves GPU efficiency, prompting assets to be delivered to web or
mobile clients and displayed quickly with minimal processing [Group, 2021].

In computer graphics, triangle strips are used to optimize memory usage and improve ren-
dering performance. This allows encoding a mesh of n faces with N+2 vertices. Modern
graphics interfaces provide primitive types of triangle strips to relieve the bottlenecks and
save graphics memory [Treumer et al., 2023]. Instead of specifying each triangle individ-
ually, triangle strips allow consecutive triangles to share vertices, reducing redundancy in
vertex data and optimizing memory usage.

A hierarchical schema

Massive 3D model data is loaded by loading 3D Tiles, which speeds up the loading and
rendering. The most important concept is hierarchy.

The 3D Tiles model is a multi-resolution hierarchical structure. From the bottom to the top
of the pyramid, the resolution, i.e. level of detail, is getting lower and lower, while the range
of representation is fixed. Building a hierarchy on varying accuracy levels enables clients to
visualize large-scale 3D data by combining three-dimensional data with different precision
on hierarchical levels and dynamically loading data in real-time, which reduces memory
consumption [Renxin et al., 2019].

The 3D Tiles technology supports different indexing mechanisms to build tile hierarchy. It
usually uses a multidimensional indexing method to build the hierarchy that forms multiple
resolution levels. The 3D Tiles technology mainly adopts the index mechanism such as

29

2. Theoretical Background

octree structure, and quadtree structure. These hierarchical spatial partitioning structures
represent regions in 2D and 3D space, by recursively subdividing space into quadrants or
octants. In 3D Tiles 1.1, quadtree and Octree can be mapped into 1D, where the tile in a
tileset can be called randomly regardless of the level depth[CesiumGS, 2022], as shown in
Figure 2.26.

Figure 2.26.: SFC Z-order encoding quadtree scheme [CesiumGS, 2022]

30

3. 3D Tiles Approach

This chapter details the proposed methodology used within this thesis project. Section 3.1
gives the motivation for managing and serving 3D Tiles from the database, compared to the
typical file-based approach. The database storage model is described in Section 3.2. Section
3.3 describes the steps to prepare the model for further approach development. Section 3.4
explains the approach and possible alternatives that can be followed to prepare 3D Tiles in
the database. Section 3.5 explains the methodology used for querying and visualising the
3D Tiles.

3.1. Motivation

The main motivation for using a DBMS approach to serve 3D Tiles directly from the database
stems from limitations present in current file-based solutions. The typical file-based ap-
proach unavoidably creates file representations (data copies). More specifically, the methods
presented in Section 2.2.2. The typical approach takes up valuable disk space and is bur-
densome to manage. This also raises concerns about data inconsistency. Besides, it is not
flexible in querying and fetching certain regions. In many applications, loading the data on
the web client takes a long time as the data size and coverage area increase. This suggests
that an efficient query and data visualisation requires a different approach than file-based
ones.

3.1.1. Requirements

The 3D Tiles approach is expected to fulfil the following requirements:

• 3D Tiles storage: It should support organising the object-oriented tileset structure
and 3D geometry into a relational database. Additionally, it provides an option to
temporarily store tile data in the local database, and ready to be delivered to the web
application.

• Geometric computation and attribute enriching: It is expected to compute mandatory
information from the raw data for generating b3dm format, including normal compu-
tation, triangulation, and calculation of the total spatial extent of objects in the same
tile. The database also utilises spatial functions and operators, processing queries on
geometries to enrich attributes.

• Spatial clustering: It is expected to cluster objects into groups on multiple levels,
with each level representing distinct scales or granularities. This hierarchical structure
facilitates faster spatial search and retrieval by encompassing broader spatial extents
at higher levels. Moreover, it enables the potential implementation of a multi-level
representation of data across various levels of detail.

31

3. 3D Tiles Approach

• Tile organisation: It should support custom tiling objects based on a hierarchical index
structure. The spatial extent for each tile is determined based on the groups defined on
the same level (for example: the bottom level), guaranteeing meaningful spatial areas
within each tile.

• Web connection and streaming: It should support connections to a web server that
efficiently sends the 3D Tiles to the web client based on user demand.

Why serve a single LOD of a b3dm from PostgreSQL Spatial?

• Multiple source data can be served as 3D Tiles, such as point clouds, BIM, and 3D
buildings (KML/COLLADA, Wavefront OBJ, CityGML, CityJSON). We focus on serv-
ing volumetric objects with 3D Tiles due to their rich geometric and semantic informa-
tion and their central role in the management of the built environment.

• The methodology and implementation are based on the PostgreSQL geospatial database.
The reason is that it is one of the most widely used open-source database management
systems.

• The b3dm (Batched 3D Model) format is one of the tile formats specified within the 3D
Tiles specification 1.0. In 3D Tiles, ”batched” refers to grouping multiple 3D models
into larger batches. The b3dm file format stores a batch table containing property
(attribute) information for each model, identified by unique batch IDs. For example,
the batch table contains a series of height values of building model data, enabling the
visualisation of buildings with varying heights. The b3dm is used for storing and
transmitting 3D models in a batched, binary format that can be easily streamed and
rendered on web clients.

• By commencing the prototype with the initial version of 3D Tiles, version 1.0, it es-
tablishes a robust starting point that ensures compatibility with existing tools and
workflows. As the new 3D Tiles specification evolves, it is feasible to enable iterative
improvements while maintaining compatibility with the initial version.

• To prioritize simplicity and streamline the development process, a decision has been
made to concentrate on a single Level of Detail (LOD). By focusing on a single LOD,
complexity is reduced. This aims at directly serving 3D Tiles from the database.

3.1.2. Approach and variations

The DBMS approach is proposed as opposed to the typical file-based approach. The overview
of the proposed approach and the variations is shown in Figure 3.1.

32

3.2. Storage model for database

Figure 3.1.: The overview of the 3D Tiles approach (Simplified)

Approach 1

The first approach, the on-the-fly approach, encodes the complete b3dm in the web server.
This is achieved by generating normal, position and triangle indices in the database, serving
this information from the database and then composing the b3dm in the web server.

The on-the-fly serving approach is expected to be a flexible method to meet user needs for
region and property selection.

Approach 2

The second approach, the precomposed geometry approach, assembles the geometric in-
formation in the database. After generating normal, position and triangle indices in the
database, the geometric information is encoded and stored as a binary glTF in the database.
The binary glTF and properties are served from the database, and the properties are com-
bined with glTF in the server to compose a b3dm.

Regarding serving 3D Tiles containing different properties, this approach is expected to
provide efficient response times. The reason is that the geometric information in the b3dm
is encoded as a binary glTF in advance.

Approach 3

The third approach, the precomposed b3dm approach, completes the creation of b3dm be-
forehand and stores it in the database. The b3dm is then queried and directly sent to the
web server from the database.

This approach should provide an efficient response time as the b3dm encoding computation
is not needed in the web server.

3.2. Storage model for database

This section describes the conceptual schema for mapping an object-oriented 3D Tiles struc-
ture within a relational database. Conceptual Schema is summarised as follows:

33

3. 3D Tiles Approach

Object: 3D coordinates of each object body are stored as an array of coordinates (nodes).
References to faces at the lower level are maintained through object IDs.

Face: Details about triangulated faces are maintained on this level. Indices of the triangu-
lated faces are stored as an array of indices. Faces are expected to keep a counterclockwise
orientation when viewed from the outside of a three-dimensional enclosure.

Property: Properties are linked to the corresponding object.

Hierarchy: This table supports efficient queries based on minimum bounding regions on hi-
erarchical levels. Objects clustered into the same cluster are considered to be in a tile.

Figure 3.2.: An overview of the data storage model

3.2.1. 3D data storage model

The geometry data in the b3dm format is contained in a binary glTF format that represents
the mesh, and the initial problem revolves around developing a compact storage method for
the mesh in the database.

Generally, there are two aspects regarding storing 3D data in the database, one is maintain-
ing the data as geometry, and the other is maintaining the coordinates and its topological
relationship. By translating topological structures into geometric primitives, it becomes fea-
sible to establish a DBMS view on a topological primitive, thus presenting it as a geometric
primitive [Van Oosterom et al., 2002]. This combines the advantages of topological structure
for less redundancy and the benefits of explicit geometric primitives.

Data model examples in Oracle Spatial

Proposed by Zlatanova et al. [2004], there are two approaches to storing 3D geometry in
Oracle Spatial. One is storing one simple geometry (i.e. as a set of 3D polygons), and the
other is storing one geometry as a collection of simple geometry types (i.e. 3D collection
and 3D multipolygon).

The first approach encodes 3D objects using multiple rows in the geometry table, linking a
set of polygons to specific 3D objects. This representation is a bit inefficient, but it manages
the topology by storing relationships between faces and the object. Topological queries can
be completed by comparing IDs of polygons that reference the same object.

34

3.2. Storage model for database

TIN Z (((0 0 0,0 0 1,0 1 1,0 0 0)),((0 1 0,0 0 0,0 1 1,0 1 0)),
((0 0 0,0 1 0,1 1 0,0 0 0)),((1 0 0,0 0 0,1 1 0,1 0 0)),
((0 0 1,1 0 0,1 0 1,0 0 1)),((0 0 1,0 0 0,1 0 0,0 0 1)),
((1 1 0,1 1 1,1 0 1,1 1 0)),((1 0 0,1 1 0,1 0 1,1 0 0)),
((0 1 0,0 1 1,1 1 1,0 1 0)),((1 1 0,0 1 0,1 1 1,1 1 0)),
((0 1 1,1 0 1,1 1 1,0 1 1)),((0 1 1,0 0 1,1 0 1,0 1 1)))

Table 3.1.: TIN representation of a unit cube in PostgreSQL Spatial

In the second approach, the 3D object is described in a single row, since all the information
about the polygons is decoded in the Oracle Spatial geometry type. This approach reduces
the number of records to represent a geometry compared to the first approach. However,
redundant coordinates are stored because each triple of coordinates (x,y,z) is repeated at
least three times in the list of coordinates.

Both representations have their trade-offs. The first approach sacrifices some efficiency due
to multiple rows per 3D object but maintains topology. The second approach reduces the
number of records but suffers from coordinate redundancy.

Additionally, it is noteworthy that Relational Database Management System (RDBMS) lacks
inherent navigational capabilities within the system due to its adherence to the relational
principle. As a result, external procedural languages or iterators are required to navigate
the database. In contrast, Object-Oriented Database Management Systems (OO-DBMS) can
navigate within the system, inherent to the object-oriented paradigm.

3D data storage model design - A balance between geometry and topology

Based on the second data model design proposed by Zlatanova et al. [2004], we propose an
approach which finds a balance between geometrical structures that provide explicit object
representation and topological structures which help reduce redundancy.

It is efficient to store normal information for b3dm files based on face level because triangles
on the same planar surface share the same normal.

Regarding how to store the triangles, the first option is storing the geometry as TIN. This
type allows to model triangular meshes as one row in the database. However, triangulating
duplicate coordinates in waste storage increases computational overhead without adding
useful geometric information.

An alternative approach is to establish the relationship on topological primitives. First, the
primitive point(node) is used to store coordinates in 3 dimensions. Next, it’s crucial to
ensure support for the representation of complex features in the database. The topological
structure is stored as node-face-body. To directly reconstruct the boundary representation,
both the topologies of the original non-triangulated geometry and the triangulated mesh are
stored.

35

3. 3D Tiles Approach

Figure 3.3.: UML diagram for Node-Face-Object approach

However, it needs to access the table nodes and faces to reconstruct the mesh from the
database. Scanning through rows of records in the node table can be time-consuming. This
indicates implementing indexing on key columns in the node table, or processing all coordi-
nates of the same object in a batch. Moreover, non-triangulated geometry is not frequently
queried in the 3D Tiles database, and it can be derived from the triangulated geometry.
Thus, node id in the table object is discarded.

The third, and is also the approach adopted in the project, is to store the coordinates for each
object, and the topology of the triangulated objects. This is a bit object-oriented, but it helps
save the time to traverse. The physical objects are represented by abstractions (object body
topology) and simple elements (nodes). Coordinates of a non-triangulated object are stored
as nodes in the table object, and indices of each triangulated face are stored as tri node id in
the table face.

• Node coordinates in the table object are stored as an array of double arrays, i.e.
[[x1,y1,z1],[x2,y2,z2],[x3,y3,z3]]. According to the test, whether double precision[] or
double precision[][] is declared in PostgreSQL, the field in the result table is of double
precision[] type.

• The tri node id is stored as an array of int. These int numbers are indices of the
triangle vertices. Vertices are shared by multiple faces in the same object. Thus the
indices point to the coordinates of an object that are stored in the nodes coordinates
column in the object table.

• The two columns are linked with the same identifier, the ID number of the object. It is
the primary key of the object table and is referenced by a foreign key in the face table.

• Normals are stored as an array of doubles. Normals are shared by triangles on the
same face. This helps save storage space.

By establishing object and face tables and their relationships, we store the geometric infor-
mation that composes a b3dm. They are coordinates of an object, normals, and triangulated
topology of faces.

36

3.2. Storage model for database

Figure 3.4.: UML diagram for Face-Object approach

An L-shaped polyhedron is provided as an example, and depicted in Figure 3.5. In the face-
object approach, the list of 12 unique vertices of the polyhedron object is stored in the object
as one row. Its mesh topology, namely the indices, is stored in the face as 8 rows represent
8 faces.

Figure 3.5.: Representation of an L-shaped polyhedron

3.2.2. Hierarchy storage database model

To facilitate spatial queries, hierarchical clusters that are used for speeding up spatial queries
are explicitly stored in the database. This involves clustering spatial data at different hier-
archical levels and mapping each level into the database. Additionally, object-oriented 3D
Tiles structures need to be represented in a relational database.

Hierarchical data in relational databases

Hierarchical relationships are typically defined through self-referencing foreign keys, linking
each entity (row) to its corresponding higher-level entity. Figure 3.6(a) shows examples of a
rooted tree, which is a directed graph.

37

3. 3D Tiles Approach

Figure 3.6.: An example of a hierarchy, and how it may appear in entity/relationship models
(b) and relational database tables (c) [Brunel, 2017]

To better describe the hierarchy storage database design, the terminology for Trees is listed:

Ancestor-descendant relationships are established through unique paths. If the
path from T to node v passes through node u, node u is called an ancestor of v,
and v is called a descendant of u.
A node’s parent is its directly connected ancestor. Each node, except the root,
has a single parent. Children are nodes directly connected to a parent. A node
that has no children is called a leaf.
The depth of a node v is the number of nodes on the path from T to v.
The height of the subtree rooted at the node is the depth of the deepest node in
the node’s subtree.
Size: the number of nodes in the subtree rooted at the node.
Degree: the number of children of the node.

Figure 3.7.: Projecting basic properties of the nodes in the relational table [Brunel, 2017]

The hierarchical structure of the tree is explicit and clear. It offers lightweight database
storage because the parent-child relation is enough to build the hierarchy.

Another approach is to build an order index for each record using nested sets, for example,
systematic traversal of index structure with depth-first search. However, this approach is
not dynamic and needs periodic re-clustering.

38

3.2. Storage model for database

Figure 3.8.: (a) Breadth-first search, (b) Depth-first search [Khemani et al., 2019]

Hierarchy cluster storage model design - managing hierarchical data in RDBMS

The hierarchy storage design starts with mapping the hierarchy of subdivisions into a rela-
tional schema associated with objects. Objects are organized into hierarchical clusters, with
fewer subdivisions at lower depths and more at higher depths. This means the same objects
are assigned multiple times to one cluster on different hierarchical levels. Each cluster is a
node value in the direct tree graph.

Parent-child relation
In a relational database, hierarchical structures become flat tables. This involves encoding
the hierarchy into one or more table columns using basic SQL data types. One commonly
used method is the basic self-referencing table model, as described previously.

Figure 3.9.: Table hierarchy (initial design)

The table hierarchy supports the management of geometry subdivisions. This is useful
to improve querying performance, as it stores bounding boxes hierarchically, similar to R-
tree.

• Envelope: The minimum bounding box for the supplied geometry within the cluster
on the current depth.

• Level: the depth of the node value (cluster) in the node’s subtree. It defines its level
with respect to the top level (level = 1).

39

3. 3D Tiles Approach

The field envelope stored in the table hierarchy is a 3D box. The type box is chosen because
it is a simple geometric type, compared with normal geometry type and array type. It is the
double-precision (float8) minimum bounding box for the supplied objects in the cluster, as
a geometry, defined by the corner points of the bounding box. It is computed by taking the
3D extent of the objects that are assigned to the same cluster. This 3D extent is also used for
the bounding volume provided in the tileset view.

One-to-many relation
One object is assigned to the clusters on different levels, as many times as the depth of the
hierarchical tree. As explained in Section 3.2.1, the table object supports the encoding of
geometries, and the table face is associated with this table. The attribute levelN cluster id
(where N = 1,2,...) is added to the table object to represent the one-to-many relationship,
where X refers to the level of the cluster, i.e. depth of the node value.

Figure 3.10.: Schema design (cluster that objects are assigned to is associated with table
object)

The table hierarchy is significant for fast querying. It clusters objects in a close region into
groups on a hierarchical level representing different granularities. To find the cluster that an
object is assigned to, one needs to access both object and hierarchy tables, and then query
the objects that share the same cluster id on the same level. This is a bit inefficient.

Storing cluster ids as multiple rows provides more querying flexibility. However, these
objects are frequently queried as a batch. Additionally, storing the object id as an array
in one row is possible to reduce storage overhead. Thus, the object id records are stored
as an array of int in the hierarchy table, enhancing querying efficiency. The attributes that
represent the corresponding clusters in the table object are removed.

40

3.2. Storage model for database

Figure 3.11.: Schema design developed (objects that are assigned to the same cluster are
associated with table hierarchy)

Tile storage based on the hierarchical cluster storage
The structure of 3D tiles is a tree structure that includes one root with multiple children
nodes. Its organisation can be derived based on the storage models above.

The temp tid column is added. This represents a temporary ID of the tile. It is an increment
number starting from 1 within the same level in the hierarchy table, where the number 1
indicates a root tile. This identifies a unique tile within the same hierarchy level, and it is
used to form a URI reference within the tileset pointing to the renderable content.

Figure 3.12.: Table hierarchy table adapted to tile organization

As explained in Section 3.1.2, two of the 3D Tiles methods are to serve precomposed b3dm or
glTF from the database. To store the renderable content (b3dm or binary glTF), an additional
content column (data type: bytea) is designed. This is where the renderable content is stored,
and this field is optional. It serves as the temporary storage for tile data in the local database,
making it readily available for delivery to the web application.

41

3. 3D Tiles Approach

3.2.3. Associations with attribute

As explained, this table object supports the encoding of geometries. To further provide
visualisation of geometries based on their properties, the table property is introduced. To
store the attributes associated with the object, a foreign key obejct id is created in the table
attribute to link oid in the object table. The property of an object can be height, the year
of construction, building type, etc. The attribute can be generated with SQL functions and
operations or linked to an existing attribute table to incorporate with.

(a) Property table

(b) Examples of property name and type

Figure 3.13.: Introduce table property into schema design

3.3. Preparation of the 3D model

To develop and examine the 3D Tiles approach, concave (eg: a cube) and convex geometries
(eg: an L-shaped polyhedron) have been created and tested by executing the following SQL
query. 3D models representing the physical objects should also be collected and prepro-
cessed to examine the 3D Tiles approach.

SELECT ST_GeomFromText('POLYHEDRALSURFACE Z(

((0 0 0, 0 0 1, 0 1 1, 0 1 0, 0 0 0)),

((0 0 0, 0 1 0, 1 1 0, 1 0 0, 0 0 0)),

((0 0 0, 1 0 0, 1 0 1, 0 0 1, 0 0 0)),

((1 1 0, 1 1 1, 1 0 1, 1 0 0, 1 1 0)),

((0 1 0, 0 1 1, 1 1 1, 1 1 0, 0 1 0)),

((0 0 1, 1 0 1, 1 1 1, 0 1 1, 0 0 1)))');

42

3.4. Developing 3D Tiles database

SELECT ST_GeomFromText('POLYHEDRALSURFACE Z(

((2 0 0, 2 2 0, 0 2 0, 0 3 0, 3 3 0, 3 0 0, 2 0 0)),

((2 0 0, 2 0 1, 2 2 1, 2 2 0, 2 0 0)),

((2 2 0, 2 2 1, 0 2 1, 0 2 0, 2 2 0)),

((0 2 0, 0 2 1, 0 3 1, 0 3 0, 0 2 0)),

((0 3 0, 0 3 1, 3 3 1, 3 3 0, 0 3 0)),

((2 0 0, 3 0 0, 3 0 1, 2 0 1, 2 0 0)),

((3 3 0, 3 3 1, 3 0 1, 3 0 0, 3 3 0)),

((3 0 1, 3 3 1, 0 3 1, 0 2 1, 2 2 1, 2 0 1, 3 0 1)))');

3.3.1. Geometry validity in the database

To facilitate geometric operations in the database, validation should be performed to guar-
antee geometry validity and minimal errors. ST IsValid can be used to check if a given
geometry is well-formed and valid according to OGC rules in 2D space. This function helps
flag any invalid geometries. Note that for geometries with 3 and 4 dimensions, validity is
still only tested in 2 dimensions. This can cause the geometry to self-intersect when col-
lapsed to lower dimensions. Another function is ST IsValidReason. It returns a reason why
a geometry is invalid, such as self-intersection, invalid rings, etc.

3.3.2. Is it a valid polyhedron?

Considering the diverse 3D data models, geometries are expected to be harmonised into the
same geometry type for further processing.

The first geometry type candidate is a polyhedron. The reason is that spatial functions take
polyhedral surfaces as inputs. Note that restrictions are applied to the input data when
creating a polyhedron. The faces must be planar, the edges may not cross, and a polyhedron
must be watertight [Teunissen and van Oosterom, 1988]. The normal vector of each face
should point outwards.

To check if a polygon is planar, ST IsPlanar supported by SFCGAL backend is used. It
checks if a geometry is planar (in 3D space) and doesn’t drop the z-coordinate. It supports
3D geometries and can handle Polyhedral surfaces, Triangles, and Triangulated Irregular
Network Surfaces (TIN).

We try to create a valid polyhedron from a volumetric geometry bounded by several poly-
gons represented by Multipolygon Z. However, tilted planar surfaces are considered non-
planar because of floating-point precision in some cases. Thus, the restrictions to reconstruct
a valid polyhedron are not always satisfied for the input data. This suggests that a more
robust approach to performing geometric operations is at the face level rather than the vol-
ume.

3.4. Developing 3D Tiles database

This procedure describes how to create the information that makes up 3D Tiles in a database.
It includes feature generation for composing a b3dm, and tilest organisation for defining a
hierarchical data structure.

43

3. 3D Tiles Approach

3.4.1. Feature generation

This phase is to generate the mandatory data required for composing a b3dm. This section
introduces geometric operations, including normal computation, triangulation, and property
enrichment. As explained in Section 2.4, the actual renderable model geometry is contained
in a binary glTF with ”POSITION”, ”NORMAL”, ” BATCHID” (and ”indices”). The per-
feature properties are defined in a Batch Table.

Normal computation

To determine a surface’s orientation toward a light source for shading, normal is required.
Given that a polygon is a closed figure on a coordinate plane, the calculation of the nor-
mal for each vertex in a polygon is simplified to calculate the face normal. The process
involves selecting two non-parallel edges from consecutive edges, determining edge vectors,
applying cross products, and normalising vectors. This method yields a normalised vector
perpendicular to the mesh face.

Figure 3.14.: Normal vector of a polygon

The procedure is described in the Pseudo-code as in Algorithm 3.1. Specifically, given three
points defining a triangle: p1, p2, and p3 , and if the vectors:

U = p2 − p1
V = p3 − p1

The cross product of these vectors gives the normal vector N of the triangle:

N = UXV

The components of the normal vector (n) in three different axis directions can be calculated
by:

Nx = UyVz − UzVy
Ny = UzVx − UxVz
Nz = UxVy − UyVx

Ultimately, normalisation is implemented to save the data size of the normal data to compose
a b3dm. the unit normal vector N’ is obtained by normalising the components (Nx, Ny, Nz)

44

3.4. Developing 3D Tiles database

of the calculated normal vector N. This is typically done by dividing each component by the
magnitude of the vector:

N′ = (Nx/∥N∥, Ny/∥N∥, Nz/∥N∥),
where ∥N∥ represents the magnitude of the vector N

Algorithm 3.1: CalculateSurfaceNormal

1 Function CalculateSurfaceNormal(Polygon):
2 Set Normal to (0, 0, 0);
3 if Polygon.vertexNumber < 3 then
4 return null;

5 Set p1 to Polygon.verts[0];
6 Set p2 to Polygon.verts[1];
7 Set p3 to Polygon.verts[2];
8 Set Vector U to (p2 − p1);
9 Set Vector V to (p3 − p1);

10 Set Normal.x to (Uy × Vz)− (Uz × Vy);
11 Set Normal.y to (Uz × Vx)− (Ux × Vz);
12 Set Normal.z to (Ux × Vy)− (Uy × Vx);
13 Set Magnitude to

√
Normal.x2 + Normal.y2 + Normal.z2;

14 if Magnitude == 0 then
15 return null ;

16 Set Normal to (Normal.x
Magnitude , Normal.y

Magnitude , Normal.z
Magnitude);

17 return Normal;

It is expected that the normals point outwards when looking at the mesh from the outside.
However, the above algorithm only ensures this if the vertices of each face go around in a
counterclockwise direction.

Triangulation

In b3dm, geometries are stored as meshes composed of triangles. In most cases, 3D models
are stored as non-triangulated geometries in the database, this suggests a necessary step to
implement triangulation. This involves the process of breaking down a 3D model or scene
into a series of triangles that can be easily processed and rendered.

In PostgreSQL, two of the triangulation functions are the ST DelaunayTriangles supported
by PostGIS and the ST Tesselate supported by SFCGAL:

• ST DelaunayTriangles function supports computing Delaunay triangulation based on a
given set of input vertices within a geometry. This function generates non-overlapping
triangles that are bounded by the convex hull of the input vertices.

• ST Tesselate takes both MULTI(POLYGON) or POLYHEDRALSURFACE as inputs. It
returns a TIN representation.

• According to the PostgreSQL manual, both functions support 3d and do not drop
z-coordinates, indicating that these two functions are promising methods for triangu-
lating 3D geometries in the database.

45

3. 3D Tiles Approach

To test the applicability of these two functions to 3D geometries, we conducted a series of
comparative tests. The tested geometries are as introduced in Section 3.3, which are a unit
cube, an L-shaped polyhedron, and building footprint polygons.

Testing on convex geometry (axis aligned)
Testing of triangulation functions on faces of a unit cube is executed as in Appendix B.3.1,
and query results are shown in Figure 3.15.

The test shows that ST DelaunayTriangles returns an empty geometry collection When deal-
ing with vertical polygons, while ST Tesselate works in this case.

(a) Results from ST DelaunayTriangles

(b) Results from ST Tesselate

Figure 3.15.: Triangulation of the faces making up a unit cube

Testing on concave geometry (axis aligned)
To further discuss the effectiveness of handling concave and convex surfaces, tests on an
L-shaped polyhedron and building footprint polygons are also conducted. Triangulation
results are as shown in 3.16.

This means ST DelaunayTriangles does not work correctly with a convex surface. Tests of
building footprint polygons further prove that applying ST DelaunayTriangles to complex
concave surfaces results in convex surfaces, while ST Tesselate can correctly triangulate both
convex and concave surfaces, as shown in 3.17.

Testing on a rotated geometry
Tests on a rotated unit cube are also conducted to investigate how floating-point issues
affect triangulation functions. The cube is first rotated 30 degrees along the X-axis, and
then 30 degrees along Y-axis. This is achieved using ST RotateX and ST RotateY in the
database. SQL scripts see Appendix B.3.3. Both of the functions work with the rotated
cube faces. The execution timing is shown in table 3.2, where ST Tesselate is faster than
ST DelaunayTriangles.

46

3.4. Developing 3D Tiles database

(a) Results from ST DelaunayTriangles (b) Results from ST Tesselate

Figure 3.16.: Triangulation of faces making up an L-shaped polyhedron

(a) Results from ST DelaunayTriangles (b) Results from ST Tesselate

Figure 3.17.: Triangulation of building footprint polygons

ST DelaunayTriangles ST Tesselate
Execution time 0.631ms 10.909ms

Table 3.2.: Comparison of triangulation time complexity on a rotated cube

47

3. 3D Tiles Approach

ST DelaunayTriangles ST Tesselate
Convex polygon √ √

Concave polygon × √

Vertical polygon × √

tilted polygon Depends on tilted degree Depends on coordinates precision

Table 3.3.: Comparison of triangulation applicability

However, in some cases, tilted faces are not accepted by ST Tesslelate. For example, a cube
generated in Python, as shown in 3.18, is not accepted by ST Tesslelate because the points
are not in the same plane. This shows that the flatness tolerance of ST Tesslelate is higher,
which means the total change allowed by the actual plane to its ideal plane is smaller.

Figure 3.18.: A tilted cube visualised using Matplotlib

Table 3.3 illustrates the applicability of the triangulation function to different cases. As
can be seen from the table, ST Tesselate is more robust in terms of handling different ge-
ometries, despite being slower than ST DelaunayTriangles. ST DelaunayTriangles results in
pitfalls when working with concave faces, while ST Tesselate performs well. However, the
triangulation functions supported by PostGIS and SFCGAL extensions do not always work
in 3D. ST DelaunayTriangles gives empty geometry collection when working with vertical
faces, and the ST Tesselate function fails with tilted faces because of points not lying in the
same plane. The possible reason for this is floating-point precision.

To make the SFCGAL function ST Tesselate work, a planar face input must be ensured,
because it strictly checks if a geometry is planar. An adaptive approach with ST Tesselate
is proposed to address this issue. We propose an adaptive method where the non-planar
geometries are projected to the XY plane to ensure a planar face. The adaptive step is
explained as follows, and Figure 3.19 gives an overview of the steps.

• ST IsPlanar can be used to check if a face is planar because ST Tesselate only works
when a planar face is ensured. However, there is no proof that ST Tesselate will cer-
tainly accept a face determined as planar by ST IsPlanar. We choose to project all the
faces to make this a robust approach. This means we translate a 3D case into 2D and
implement ST Tesselate.

• For vertical non-planar faces, it can result in invalid geometries when projected onto
the XOY plane. In this case, a rotation concerning the x-axis and y-axis is implemented
to overcome this issue. After triangulating the projected rotated geometries, triangles

48

3.4. Developing 3D Tiles database

are rotated back to their original position.

• For non-planar faces, the PostGIS function ST Force2D is used to project non-planar
polygons onto the XOY plane. It drops the Z dimension and projects all 3D point
coordinates onto a 2D (X, Y) plane.

• Note that the rotation step greatly increases the time complexity. An examination of
how often this step is executed will be given in Section 4.2.2.

Figure 3.19.: Overview of the steps in the triangulation

Attention should be paid to the orientation of geometries. The first aspect is whether the
topology of the original geometry forms a correct orientation. Another aspect is that tri-
angulation can introduce inconsistent orientation between the triangulated faces and non-
triangulated faces. The orientation test with ST Tesselate shows that the geometry before and
after tessellation keeps the same orientation, which applies to both 2D and 3D space.

Property enrichment

In a b3dm, property values are stored in a Batch Table, indexable by batchId. This can be
used for declarative styling, where the model appearance changes based on predefined rules
at the run time.

To enrich the property of the geometries stored in the database, geometric functions enabled
by PostGIS and SGCGAL are used. Some of these functions work with polygons and accept
geometry types such as a polyhedral surface or a solid. Although a polyhedral surface from
multiple 3D polygons is problematic, as explained in section 3.3, a valid polyhedron can be
created based on the 2D footprint polygon and height. Examples of rich attributes include
height, area, volume calculation, etc.

PostGIS geometries can be retained or dropped when the geometric information required
and properties expected in 3D Tiles are complete. In our case, the main purpose is to serve
3D Tiles directly from the database and perform selective visualisation with user-defined

49

3. 3D Tiles Approach

queries. Thus, all of the object geometries are deleted from the tables. This means no PostGIS
geometry (Point, line, surface, body, etc.) representing the 3D buildings are explicitly stored
in the database. A geometry reconstruction can be performed if further enrichment at the
face or volume level is needed. This is enabled with the node coordinates stored in the table
object and triangulated geometry topology stored in the table face.

After completing the required geometric information and expected properties in 3D Tiles,
the data stored in the database is ready to be composed into tiles in the format of b3dm.

3.4.2. Tileset organisation and tile creation

The organisation of tiles is stored in a tileset JSON. In a tileset, URIs are used to reference
tile content, an actual renderable model (eg: b3dm). A hierarchical k-means clustering is
proposed for clustering objects and organising 3D Tiles. An example of tileset JSON is
provided in Appendix A.2.

Indexing and clustering objects in PostgreSQL

We aim to find an approach natively supported in the PostgreSQL database to index and
cluster the geometries. This is important for efficient spatial indexing and speeds up queries
within a scene. By reducing the number of objects that a given query needs to examine, spa-
tial queries can be optimised. In addition, it expects a flexible subdivision so that geometries
are not split and 3D buildings are not ‘destructed’ during the subdivision.

Exploring Spatial Indexing in PostgreSQL
R-tree, natively supported with Gist in Postgres, is an option. In an R-tree, spatial data is
organized into nested rectangles, with smaller rectangles nested within larger rectangles.
Earlier versions of PostGIS used PostgreSQL R-Tree indexes. Later, PostgreSQL R-trees were
dropped and Generalized Search Trees (GiST) were used to provide faster search perfor-
mance. The update of the R-tree index involves the balancing and splitting of the R-tree.
Although query efficiency is reduced after large-scale updates and spatial indexes need to
be rebuilt, R-tree indexing satisfies 3D city model scenarios that do not require frequent
updates.

However, the R-tree structure is implicitly stored in the database when indexed with Gist.
This does not directly support the further organisation of 3D Tiles. Additionally, data in
R-trees is organised in pages with a variable number of entries, but Gist does not support
custom minimum and maximum entries. This indicates a lack of support for customising
the number of clusters in a tileset.

Another option is Quadtree or Octree, commonly used for spatial partitioning and data
organisation in multidimensional spaces. A Quadtree is a tree structure partitioning a two-
dimensional space into regions. It recursively subdivides a space into four equal quadrants
or sub-regions. Similarly, an Octree is a tree data structure partitioning a three-dimensional
space into eight octants or sub-regions. An Octree has nodes that can have up to eight
children, representing the eight subdivisions of a 3D space. Each level of the tree represents
a deeper level of spatial detail. However, neither Octree nor Quadtree is natively supported
in the Postgres database.

50

3.4. Developing 3D Tiles database

Another direction is using the cluster method. The approach involves partitioning 3D mod-
els into independent blocks based on their minimum bounding boxes and evaluating the
threshold between the blocks to determine the clusters. The functions ST ClusterDBSCAN
and ST ClusterKMeans are two clustering algorithms supported by PostGIS.

ST ClusterDBSCAN function implements the Density-Based Spatial Clustering of Applica-
tions with Noise (DBSCAN) algorithm. DBSCAN identifies clusters as areas where there is a
high density of points separated by areas of low density. It classifies points as core points,
border points, or noise points, depending on their neighbourhood density. Core points are
those surrounded by a minimum number of points within a specified radius, while bor-
der points lie within the neighbourhood of core points but do not meet the density criteria
themselves. It is noted that DBSCAN doesn’t require the number of clusters as input.

In contrast, ST ClusterKMeans aims to partition the data into a predetermined number
of clusters (k) by iteratively assigning points to the nearest centroid and updating cen-
troids to minimize the within-cluster sum of squares. In terms of 3D Tiles organisation,
ST ClusterKMeans is an ideal method compared with the ST ClusterDBSCAN function. The
reason for this is that K-means with a custom number of clusters ensures that all objects are
partitioned into clusters without labelling any point as an outlier. However, ST ClusterKMeans
does not support custom minimum and maximum entries for the cluster. The number of
objects in each cluster can vary significantly, resulting in large variations in tile size and
hence the need for post-processing.

Figure 3.20.: Illustration of DBSCAN clustering algorithm [Khater et al., 2020]

Hierarchical k-means partition
The clustering method proposed is inherited over the R-tree with user-defined cluster num-
bers. The 3D model is partitioned via top-bottom clustering, as shown in Figure. The top-
level shows a coarse partition, while the bottom level is fine-grained. Note that the clusters
at the lower level cannot cross boundaries imposed by top levels.

51

3. 3D Tiles Approach

Figure 3.21.: Illustration of hierarchical k-means partition, the circle represents the centroid
of the object

First, based on the centroids of the minimum bounding boxes of the objects, the 3D geome-
tries are clustered into multiple blocks. Next, the overall minimum bounding boxes of each
block are calculated. Clustering is continued until the stop condition is reached, which can
be a customised number of clusters. The number of resulting clusters should not exceed a
threshold, which correlates with the number of objects at the current level. A post-processing
intervention is required to balance the objects assigned to each cluster.

The partitioning process occurs from the top level to the bottom level. These results are
stored within a table hierarchy in the database and used to speed up queries, such as
whether a specific domain is within or intersects the search region. The bounding vol-
ume of a cluster can be a convex hull of any shape, but considering query efficiency, the
bounding box is calculated as a rectangle, as in an R-tree.

Utilizing hierarchical k-means clustering, we group spatial objects based on spatial proxim-
ity. Objects are assigned to groups at each level of the hierarchy, ensuring spatial coherence
across different scales. This hierarchical tiling strategy optimises spatial querying and fur-
ther supports the organisation of a 3D Tile.

Tiling based on hierarchical k-means clustering

This step aims to organise a tileset JSON based on the constructed hierarchy in the previous
section. This tileset JSON is created as a view relying on the data defined in the table
hierarchy in the database, where the tile-tileset structure is stored.

To perform large-scale visualisation of data, 3D tiles use the HLOD (Hierarchical level of
detail) technique to subdivide the dataset into manageable file sizes. This technique in-
volves organising objects in a scene into a hierarchical structure, where models at different
levels have different levels of detail. This technique involves dynamically switching between
different LODs of a 3D model based on the distance of the object from the viewer.

52

3.4. Developing 3D Tiles database

As for objects at a single level of detail, the objects can be organised into tiles based on the
clusters on one of the hierarchical levels, as depicted in Figure 3.22. Regarding determining
the root tile, one can customise a certain tile as the root node and set other tiles in its
surrounding environment as child nodes.

Figure 3.22.: Tile hierarchy represented in a tree structure

The hierarchical k-means partition approach can used for optimising 3D Tiles generation.
Regarding serving large-scale 3D city models as 3D Tiles, the number and size of tiles affect
the visualisation performance. Determining the optimal cluster number is a user-driven
process, involving tests to balance tile size and the total number of tiles. After the initial
clustering, the partitions can be refined based on user-defined criteria.

3D Tiles configuration
In this section, key configurations of the tileset are described. These configurations deter-
mine how to visualise the data at different levels, including bounding volume, geometric
error value and refinement strategy.

bounding volume
The bounding volume defines the spatial extent of a 3D scene. Which tile at the current
level is loaded is determined by calculating whether the tile’s bounding volume intersects
the view frustum. Generally, there are three types of bounding volume in 3D Tiles, which
are box, region, and sphere. We select the box type as the bounding volume in the tileset
organisation. Because it is simple and easily calculated from the result of the ST 3DExtent
function. Regarding the hierarchical tile structure, the content of each child tile is within the
bounding volume of its parent tile. An example of the box type is provided in Table 3.4. In
addition to box types, regions and spheres are also supported (see Appendix A.1).

This bounding volume is defined as a box, and the array defines the properties of the bound-
ing box:

The first three numbers [0, 0, 10] represent the centre of the bounding box in 3D
space. This means the box is centred at coordinates (0, 0, 10).

The next three numbers [20, 0, 0] describe the half-lengths along the x-axis, which
is 20 units. This means the box extends 20 units in the positive and negative x-

53

3. 3D Tiles Approach

1 boundingVolume: {

2 "box" : [

3 0, 0, 10,

4 20, 0, 0,

5 0, 30, 0,

6 0, 0, 10

7]

8 }

Table 3.4.: Example of bounding volume with type box

direction from the centre.

The following three numbers [0, 30, 0] describe the half-lengths along the y-axis,
which is 30 units.

The final three numbers [0, 0, 10] describe the half-lengths along the z-axis, which
is 10 units.

Geometric error and refinement strategy
As explained in the previous section, one can custom the tileset, so that the parent tile
depicts the important domain, and the child tiles provide surrounding details. This method
incorporates the setting of geometric errors.

The geometric error is used to determine whether a tile content should be rendered. Tiles
closer to the root are set to larger geometric errors, while tiles closer to leaf nodes are set to
smaller geometric errors. This section gives the comparative test results between geometric
errors. For details of the tested 3D Tiles example, please refer to Appendix A.2.

tileset root leaf node
1 200 50 0
2 200 200 0
3 200 200 50
4 200 200 200

Table 3.5.: Geometric error configuration for tileset, root and leaf node

Refinement determines whether a lower-resolution parent tile remains rendered when a
higher-resolution child tile is selected to render. Two types of refinement are allowed, re-
placement (”REPLACE”) and addition (”ADD”). In this example, the tile uses additive
refinement, rendering itself and its children simultaneously. In contrast, if a tile uses re-
placement refinement, when refined it will be replaced by its children.

In addition, the transformation matrix in the tileset.json can be set. It uses the geographic
coordinates of the centre point as the origin and calculates a 4 × 4 transformation matrix.
Another approach is to use the Ceisum engine to calculate the transformation matrix at
runtime. When the transform is not defined, it defaults to the identity matrix as shown
below.

54

3.4. Developing 3D Tiles database

(a) In Test 1, only parent tile (orange, red,
purple blocks) displays

(b) In Test 2/3/4, both parent and chil-
dren tiles (green, yellow blocks) dis-
play

Figure 3.23.: Geometric error comparison test (same view frame screenshot)

1.0 0.0 0.0 0.0
0.0 1.0 0.0 0.0
0.0 0.0 1.0 0.0
0.0 0.0 0.0 1.0

3.4.3. b3dm Encoding

The encoding of a b3dm follows three steps. First, encoding binary glTF with POSITION,
NORMAL, BATCHID, and indices. Next, further complete b3dm encoding by composing
header, featureTable, batchTable and binary glTF. Finally, the header is added.

Binary glTF

As depicted in Figure 3.24, the glb file contains three parts: a 12-byte header, chunk0 (JSON)
and chunk1 (Binary Buffer).

Figure 3.24.: binary glTF encoding [Group, 2021]

The 12-byte header is composed of three parts:

• The magic entry, value 0x46546C67

55

3. 3D Tiles Approach

• Version, for example, version 2

• The length of the total length of the binary file

Chunk0 contains three parts:

• The length of the chunkData of chunk 0

• The chunkType, 0x4E4F534A, which is the ASCII string ”JSON”. It defines what type
of data is contained in the chunkData

• The ASCII representation of the JSON data

Chunk1 contains three parts:

• The length of the chunkData of chunk 1

• The chunkType, 0x004E4942, which is the ASCII string ”BIN”

• The ASCII representation of the binary buffer data

3D data, including POSITION, NORMAL, BATCHID and indices, is stored in bin data in
chunk 1, where the JSON data in chunk 0 refers to. In the JSON data, meshes provide the
index of primitive attributes and indices that point to the accessors. The index of bufferView
can be found in the corresponding accessors, which point to bufferViews. This bufferView
provides information on the byteLength, byteOffset, and byteStride, indicating how to un-
pack the 3D data in binary.

Figure 3.25.: An example of accessors in JSON data

In accessors in JSON data, it defines a method for retrieving data as typed arrays from a
buffer view. The componentType values specify how the data is stored within the GLB file.
For example, for attribute POSITION, the component type is 5126 for foat, the data type in
accessors is VEC3 for 3D vectors, and the target in corresponding bufferViews is 34962. This
property is used by the renderer to recognize the data that the buffer view refers to. 34962
stands for ARRAY BUFFER, indicating that the data is used for vertex attributes.

In the example, the Component Type is set as 5123 unsigned short, ByteStride 2. It requires
0 ≤ number ≤ 0xffff, i.e. range from 0 to 65,535. This indicates the indice number trying to

56

3.4. Developing 3D Tiles database

Primitives Data type Component Type Number of components ByteStride Target

POSITION VEC3 5126 float 3 4 34962
NORMAL VEC3 5126 float 3 4 34962
BATCHID SCALAR 5126 float 1 4 34962

indices SCALAR 5123 unsigned short 1 2 34963

Table 3.6.: Data Specification Examples

pack into an unsigned short integer format exceeds the range of unsigned short (5123). How-
ever, when working with a large dataset, ushort format is not applicable. To accommodate
larger values within the GLB file, it is replaced with using unsigned int (5125), ByteStride
4. However, it is noticed that changing the datatype from ushort to uint increases the file
size.

(a) POSITION and BATCHID (b) Visualisation in blender

Figure 3.26.: A binary glTF exmaple of 10 cubes

Not all of the attributes are compulsory, and keeping indices in the file is not mandatory.
Both indexed and non-indexed methods are available to draw a geometry on Cesium or
a WebGL application. Take a cube as an example. In the non-indexed approach, 36 po-
sitions are required without encoding indices. In the indexed approach, the 3D model is
represented by 24 positions and 36 indices.

Apart from indices, it is allowed to remove BATCHID and NORMAL, but to keep POSI-
TION. However, recomputing ”NORMAL” from scratch takes time. BATCHID is the key
to link geometry in the binary glTF and properties in the Batch Table. Indices are needed to
reduce the data size and improve render performance.

57

3. 3D Tiles Approach

Feature Table and Batch Table

Figure 3.27.: Feature Table and Batch Table, modified from [CesiumGS, 2021]

If a b3dm includes a Feature Table, the b3dm header will also contain featureTableJSONByte-
Length and featureTableBinaryByteLength (uint32 fields), which can be used to interpret the
corresponding part of the Feature Table. The data is stored in a JSON object, for example,
“BATCH LENGTH”:10. This is used for global semantics BATCH LENGTH in a b3dm. The
data can also be referenced in the binary body.

If a tile format includes a Batch Table. The JSON Header and Binary Body are specified ac-
cording to batchTableJSONByteLength and batchTableBinaryByteLength (Data type: unit32)
in the b3dm header. It can be represented as an array of values. For example, ”height” :
[10.0, 20.0, 15.0]. The length of each array is equal to batchLenghth, which is specified in
each tile format. In b3dm, it is the number of models in the tile. For example, 10 means
there are 10 objects, and the min and max values of batch ID in the binary glTF should be
0 and 9. Another way is referencing data in the binary body, represented by a JSON object
with byteOffset, componentType, and type properties.

Padding rules

Encoding the binary glTF with featureTable and batchTable should be aligned to a set of
padding rules. The rules are summarised as follows:

1. The total byteLength must be aligned to an 8-byte boundary.

2. The Feature Table JSON must be padded with trailing Space chars (0x20) to satisfy
alignment requirements of the Feature Table binary (if present).

3. The Batch Table JSON must be padded with trailing Space chars (0x20) to satisfy align-
ment requirements of the Batch Table binary (if present).

4. The binary glTF must start and end on an 8-byte alignment.

Originally, glb is aligned to an 4-byte boundary. If packing a glb to b3dm, it is necessary to
check if it is aligned to an 8-byte boundary. Otherwise, it requires padding, either to JSON
chunk data or bin chunk data. One possible way is adding the padding bytes in JSON chunk
data. Consequently, this affects the total length in the header chunk of glTF, and the length
in json or bin chunk. To be specific, pad binary glTF with null bytes (0x00), i.e. 00000000 or
space characters (0x20), i.e. 00100000. However, the Feature Table and the Batch Table are
only allowed to pad with space characters (0x20).

58

3.5. Web server query and visualisation

(a) with null bytes

(b) with space characters

Figure 3.28.: Screenshot of padding results

3.5. Web server query and visualisation

After the procedure above, the 3D Tiles data is ready to deliver for viewing and analysis. To
directly serve 3D Tiles from the database, a connection between the database and the web
client via a Flask web server needs to be set up.

3.5.1. Direct web access

In the typical approach, 3D Tiles are produced through a conversion process using spe-
cialised software (eg: FME). Attributes associated with the geometries are stored separately
in a database, while geometries are stored in files next to the database.

In the proposed approach, 3D tiles from the database are directly served for viewing and
analysis. Figure 3.29 illustrates communication between the client-side (CesiumJS) and
server-side connecting to the 3D Tiles database with the Flask API. CesiumJS, as a web inter-
face based on Javascript, can connect with servers by sending and receiving HTTP requests.
Flask Python library establishes a server API that queries the database and sends 3D Tiles
to the web client. It also cooperates with a set of processing for 3D Tiles generation outside
DBMS. By communicating with the database, it avoids 3D Tiles file export before transfer-
ring to Cesium and contributes to a cleaner system architecture with geometry stored in the
DBMS.

59

3. 3D Tiles Approach

Figure 3.29.: The API requests established between Cesium and Postgres through Flask

CesiumJS, an open-source Javascript library for 3D visualisation on the web, is chosen be-
cause of its originally native support for 3D Tiles. It is noted that there are more options
to load 3D Tiles for viewing and analysing apart from Cesium, such as 3DTilesRendererJS
[NASA AMMOS, 2020]. QGIS 3.34 has also been considered. However, the 3D Tiles func-
tionality in QGIS mainly supports loading data from Cesium ion and Google 3D. This is not
ideal for Flask API testing that serves 3D Tiles directly from the database, as it complicates
the data request procedure.

As explained in the previous Section 3.1, the on-the-fly method and its variations are pro-
posed to serve the b3dm from the database. The differences lie in whether the binary glTF
and the properties are composed or not. The sequence diagram shows how API requests
3D Tiles in Figure 3.30. The tileset is called first, and then tiles (b3dm) are called referred
to by URIs in the tileset. The Ceisum provides a progressive loading mechanism that de-
livers large data into smaller tiles. This ensures the web client displays the data stably and
effectively. Note that the issue can occur when geometry or attributes are simultaneously
updated by the user. However, in this prototype, the operations only focus on data access
and exclude web-side user updates.

3.5.2. Attribute and spatial query

Queries based on the spatial extent or attribute conditions are needed to query a subset of
the available data, as presented in Figure 3.31

60

3.5. Web server query and visualisation

(a) request a tileset

(b) request a b3dm

Figure 3.30.: Sequence diagram representation of the way the web server works

61

3. 3D Tiles Approach

Figure 3.31.: The workflow of a filter query

Generic attributes have been created for objects, as explained in Section 3.4.1. We can apply
an attribute filter at the object level and serve a subset of the dataset for visualization and
analysis on the CesiumJS-based web client.

Spatial queries can be performed, and objects can be filtered within the search area. PostGIS
and SFCGAL functions support spatial relationship checks, such as intersection, within,
and contains. One of the frequently used functions is ST Intersect. It returns true if two
geometries have any points in common. A distance tolerance of 0.00001 metres is used so
that points that are very close are considered to intersect.

Spatial indexing is critical in narrowing down the search region. Methods such as R-tree
indexing and k-means clustering aid in organising spatial data into bounding volumes, fa-
cilitating efficient spatial filtering. Based on the hierarchical k-means clustering explained
in Section 3.4.2, a method to help reduce the number of candidate objects is proposed, as
shown in Algorithm 3.2.

3.5.3. Web client visualisation

This phase discusses how to present the model and attribute information to users. Declara-
tive styling is used to change the appearance of the model at runtime flexibly.

Visualization of geometries helps people understand the environment surrounding them.
Apart from strengthening the visible geometric attributes according to styling, 3D Tiles can

62

3.5. Web server query and visualisation

Algorithm 3.2: Query Procedure
Input : geometry p
Output: Tiles intersecting p

1 if intersects(p, parent.MBR) then
2 foreach child.MBR do
3 if intersects(p, child.MBR) then
4 report tiles that intersect p

5 else
6 report p is within total tile region but out of children tile region

7 else
8 report p is out of total tile region

also support invisible attributes. There are some attributes important in human interaction
with the city that cannot be perceived directly, such as the building age. These can all be
considered as variables and styling the visualisation [Mao et al., 2020].

The appearance can follow the pre-configured appearance of transparency, colour, and tex-
ture in a binary glTF. For example, the baseColorFactor property in the binary glTF can be
set differently, as shown in Figure 3.32. However, this is hardcoded and does not suit the
needs of dynamic visualisation based on different properties.

Figure 3.32.: Screenshot of JSON chunk in a glb

Compared with a configured appearance in the binary glTF, declarative styling is more flex-
ible. It defines style rules in JavaScript (JS) code and styling appearance based on property
values in Cesium at runtime. The model’s appearance changes at runtime based on its prop-
erties. This includes changing colours, opacity, etc., to convey attribute information through
visualisation.

63

3. 3D Tiles Approach

Figure 3.33.: b3dm styled based on height value in Cesium via Javascript

In addition to visualization, users can interact with content running on a web browser by
clicking on a model, and the associated properties will be displayed.

64

4. Implementation and Experiments

This chapter describes the prototype implemented to show whether the 3D Tiles approach
provides an effective DBMS solution to serve 3D Tiles directly. For this reason, certain tests
and benchmarks have been performed. The chapter is organised as follows: In Section 4.1
the tools and datasets used for tests and benchmarks are presented. After that, Section 4.2
gives details about the database storage implementation and the methods for serving 3D
Tiles on the fly from the implemented database and variants of the approach.

4.1. Tools and database used

The implementation is available on GitHub: 3dtiles, providing transparent access to the
source code for collaboration and further development. The script takes (Multi)PolygonZ as
geometry input, and implements the methodology of Chapter 3. See Appendix D for more
details.

4.1.1. Software

A brief overview of tools, programming languages and necessary libraries and extensions
used for the proposed methodology is shown in Figure 4.1.

Figure 4.1.: The overview of tools used

• ogr2ogr

GDAL ogr2ogr is used to load 3D data in the database. It is a command
line tool of GDAL, which converts simple feature data between file formats
[OSGeo, 2024].

• PostgreSQL

65

https://github.com/zoeysunrise/3dtile

4. Implementation and Experiments

PostgreSQL Spatial is used because it is a powerful open-source relational
database management system. It enhances the capability to process spatial
data by enabling extensions such as PostGIS and SFCGAL.

• Flask

Flask is chosen for its ability for easy and fast prototyping of a web server.
However, note that the time efficiency of the code is limited.

• CesiumJS

CesiumJS is an open-source JavaScript library for 3D globes and maps based
on WebGL, for creating imagery and vector layers from various data sources.

In this setup, the Flask web server acts as an intermediary between the Cesium web client
and PostgreSQL. It interacts with the database for data retrieval in response to the HTTP
requests, and sends the data to the Cesium application in the format of 3D Tiles.

4.1.2. Datasets

We have tested the approach on primitives in the previous chapter. 3D digital models rep-
resenting the physical world are also collected and preprocessed to test the 3D Tiles ap-
proach.

A brief overview of the experiments and reasons for dataset choosing is summarised as
follows:

• To evaluate the 3D Tiles serving approaches, we use unclustered data, eliminating
the effect of variation in the number and size of tiles. Datasets are collected from
3DBAG. The 3DBAG dataset has both LOD1 and LOD2 buildings. Datasets of different
characteristics complement each other. The differences are relevant to evaluate how
the proposed 3D Tiles methodology behaves according to the LOD1 and LOD2 of a
building.

• To further evaluate the 3D Tiles tiling method, we use clustered data. The dataset is
collected from PDOK. The differences are relevant to evaluate the overall scalability of
the 3D Tiles methodology. Each PDOK dataset covers a larger area than 3D BAG, and
fewer objects are split. Thus, it reduces the number of split objects, possibly affecting
the tiling objects’ evaluation. We use clustered data to test the tiling method.

As explained in Chapter 3, the project focuses on 3D volumetric geometries at a single level
of detail. Tests on LOD1 and LOD2 models are implemented parallelly, which lays a basis
for adapting the approach to multiple Levels of Detail in the future.

4.2. Implementation prototype

This section describes key implementation details of the methodology introduced in Chapter
3. For the complete implementation, please refer to the source code online and supplemen-
tary scripts in Appendix C.

66

4.2. Implementation prototype

4.2.1. Data preprocessing

Datasets are collected from 3DBAG and processed to examine the 3D Tiles Approach. The
data is preprocessed to obtain harmonised valid geometries at a single level of detail. This
includes three parts: data loading, geometry harmonisation and validity.

Data loading

Data loading into the PostgreSQL database is enabled using ogr2ogr, which is part of the
GDAL suite. ogr2ogr enables converting and importing diverse formats like GeoJSON, KML,
GML and more directly into PostGIS. The steps for extracting and generating volumetric
geometry from the collected gpkg datasets are as follows:

LOD1/ LOD2 of 3D buildings To load data into the PostgreSQL database, we first convert
the 3D layer (3D Multi Polygon) with LOD 1.2 and LOD 2.2 into PostGIS dump format,
using ogr2ogr, and then load the dump file into the database. This results in a table in the
database where the 3D geometry is stored as Multipolygon Z, with coordinate reference
system EPSG:7415.

LOD1 of an extruded building For LOD1, the 3D model can be fully reconstructed from the
2D model by taking the 2D polygons and extruding each to one of their roof height values
from their heights at the surface level. The 2D polygons represent the 2D projection of the
3D model’s roof planes.

Figure 4.2.: The relation between a real-world building and 3D representation in the 3DBAG
[Peters et al., 2021]

Similarly to 3D layer loading, first, we convert the 2D layer (Polygon) with LOD 1.2 and
the layer with pand (where b3 h maaiveld represents heights at surface level is stored) into
PostGIS dump format using ogr2ogr and then load the dump files into the database. The
attribute fid is used to join the two layers.

The 2D footprint is extruded using the height value to obtain LOD1.2 3D models repre-
sented by polyhedral surfaces. The maximum roof height was chosen (b3 h dak max), as
it is associated with all of the geometries. This is executed by ST Extrude(geometry g1,0,0,
height). Then the 3D geometries can be translated to corresponding ground height if terrain
is concerned in the use case. The corresponding SQL query is ST Translate(geometry, 0, 0,
b3 h maaiveld).

67

4. Implementation and Experiments

Harmonisation

The harmonisation includes converting various input geometry types into Polygon Z and
reprojecting to coordinate reference system EPSG4978.

Geometry type harmonisation To harmonise different geometry types (Mulyipolygon Z,
Polyhedral surface), both the loaded and extruded volumetric geometries are expanded to
polygons, with the query step (ST Dump(geometry g1)).geom. This results in two tables in
the public schema, object and face, where the table face stores geometries dumped from raw
data as Polygon Z. In table face, object id references the id in the table object. The object ID
introduces a common administrative and a unique identifier (ID) for all the geometries in
the database.

CRS transformation To maintain a consistent spatial reference system, if geometries come
from multiple datasets with different CRS(Coordinate Reference System), reprojection to a
unified CRS needs to be performed. In our case, the CRS of the source datasets are under
the same CRS, EPSG:7415. To be precise, this is the combination of the Dutch national
coordinate system EPSG:28992 (Amersfoort/RD New) and EPSG:5709 (NAP height). This
means the coordinates of a point are in three dimensions, including its latitude, longitude,
and elevation above or below the Normaal Amsterdams Peil (NAP) datum.

Geometries are transformed from the CRS of the source data (EPSG:7415) and target CRS
(EPSG4978), as compatible with the Cesium web client. The transformation is implemented
in the database using ST Transform, which supports transforming spatial data from one
Coordinate Reference System (CRS) to another.

Geometry validity

SQL queries are implemented to validate and inspect resulting 3D polygons. Examples of
query results are as shown in Table 4.1, and it shows that ST Transform introduce some
errors.

It is expected to validate the geometry and fix invalid geometries to implement the 3D
Tiles database approach further. However, functions supported by PostGIS or SFCGAL
implement different definitions to determine a valid geometry. Obtaining a non-horizontal
3D geometry that meets both PostGIS and SFCGAL’s validity rules is tricky. In addition,
functions to fix 3D geometries are missing. For example, a feature that eliminates float error
issues and results in watertight geometries is expected.

4.2.2. Feature generation

The feature creation is implemented by developing the database based on the proposed data
model in Section 3.2 using PostgreSQL. This phase mainly contains two parts: geometry and
attributes.

For the geometry, steps are followed to process geometric information for 3D Tiles and
store the information based on the proposed data storage model. First, we compute the
normals because they are used in generating b3dm and serve as a flag in the next step of
triangulation. Second, triangulation is implemented. Next, the unique coordinates of the
object and the topology of the meshes (triangulated faces) are stored.

68

4.2. Implementation prototype

Before ST Transform
ST Delauna
yTriangles

ST Tesselate
e ST IsValid ST IsPlanar Total

face number

lod22 3d

8: successful
46:

geometry
collection

empty

47: successful
7: Error,

Invalid polygon

7: true
47:false

47: true
7: false 54

lod12 3d

2: successful
6:

geometry
collection

empty

All
successful

2: true
6: false All true 8

lod12 2d Same as above
After ST Transform

ST Delauna
yTriangles ST Tesselate ST IsValid ST IsPlanar Total

face number

lod22 3d

50: successful
4:

geometry collection
empty

32: true
22: Error,

Invalid polygon

52: true
2: false

32: true
22: false 54

lod12 3d All
successful

2: successful
6: Error,

Invalid polygon
All true 2: true

6: false 8

lod12 2d Same as above

Table 4.1.: Query results example of one building before and after ST Transform

69

4. Implementation and Experiments

planar non-planar vertical & non-planar vertical non-vertical
LOD1 of extruded buildings 1601 11592 0 0 13193
LOD1 of 3D buildings 2082 11372 0 0 13454
LOD2 of 3D buildings 11392 22082 5 15 33459

Table 4.2.: Face count for tested dataset of LOD1 of extruded buildings, and LOD1 and LOD2
of 3D buildings

In the intermediate step of developing the storage database model, geometric computation
is implemented on the level of node and face primitives, i.e. Point geometry and Polygon
geometry.

Normal computation

As mentioned in Section 3.4.1, normal calculation is implemented at the face level. For
an arbitrary 3D polygon lying on the coordinate plane, each vertex in the same polygon is
assigned the same face normal. This phase involves finding non-parallel edges, determining
edge vectors, applying cross products, and normalising vectors.

After a preprocessing phase in the previous section, geometries are harmonised as Polygon
Z. To find non-parallel edges, steps are implemented as follows. ST ExteriorRing(polygon) is
used to find the exterior ring that composes a polygon. The first three consecutive vertices
of the linestring are extracted using ST PointN(linestring, N), where N = 1,2,3. ST PointN
returns the Nth point in a single linestring or circular linestring. Note that the index of the
PostGIS function ST PointN is 1-based.

To facilitate the subtract and cross-product operation on vectors, user-defined SQL functions
ST Subtract and ST CrossProduct are created. For further details, please refer to SQL scripts
in Appendix B.2.

Triangulation

To evaluate how the triangulation method behaves on geometries, we implement tests on
3D buildings of LOD1 and LOD2.

As explained in Section 3.4.1, an adaptive approach from SFCGAL function ST Tesselate
that projects rotated geometry onto a 2D plane is performed to overcome the non-planar
face issue. The rotation should be applied to vertical faces. A threshold (1e-6) is used to
check if a face is vertical. We compare the z-axis of a normalised normal with 1e-6; if it is
smaller, then apply a rotation.

To examine the cost of the adaptive methods added to the algorithm, we count the number
of planar and non-planar faces, as well as vertical and non-vertical faces. The results pro-
vided in table 4.2 are drawn from 3D Building at LoD1/LOD2 and 3D extruded buildings
collected from the 3DBAG portal [Peters et al., 2021]. The triangulation result is presented
in Figure 4.3.

For LOD1 models, it is possible to triangulate the vertical faces with ST DelaunayTriangles
because it works with surfaces that are not strictly vertical. For non-vertical surfaces that are
possibly roofs with concave shapes, we use the more sophisticated algorithm ST Tesselate.
However, sometimes this results in missing vertical faces.

70

4.2. Implementation prototype

(a) Buildings of LOD1 (b) Buildings of LOD2

Figure 4.3.: Triangulation result of ST Tesselate

As explained in 3.2.1, the meshes are stored as coordinates in the table object and mesh
topology in the table face. To store the topology from the triangulated geometries, indexing
the triangles in an object is necessary.

The coordinates are extracted from geometry with ST DumpPoints (geometry geom). This
function returns a set of geometry dump rows, each containing a geometry field and a path
field (array of integers). These are formed into an array using array agg[expression [ORDER
BY]]. The order of expanding points(ST Dump) before and after applying ST Force2D is
important. A wrong order can result in wrong triangles. The coordinates are extracted from
geometry similarly. After obtaining the coordinates of triangles and the coordinates of the
object, We compare and find matching or similar coordinates. In this comparison, a tiny
threshold value is utilised to allow for floating-point error in the numerical values. This
results in the tri node id column in the table face, and the nodes coordniates in the table
object.

Regarding finding the index for each triangle position by comparing object coordinates and
face coordinates, I implemented this phase in Python using NumPy, which is a Python li-
brary convenient for working with arrays. Despite trying to implement the approach as
much as possible in the database, it is not convenient to work with the nested multidimen-
sional arrays in PostgreSQL. The drawback is that this greatly adds data exchange between
DB and Python. Another issue that may arise from this is that rounding errors cause vari-
ation between the resulting coordinates and the original geometry. Because the computed
geometric information mainly serves to compose a b3dm, this rounding error is considered
acceptable for visualisation purposes.

Given the further need to encode a b3dm from coordinates and triangle topology, it is noted
that there is a forward and reverse process between building a typology and constructing
a geometry. During geometric computation, indices of triangulated faces are looked up
from the coordinates of each object. When serving the b3dm file from the database, mesh
geometry is reconstructed from the mesh topology by looking up its coordinates in the object
table.

Attribute: Property enrichment

A table property was created. In our case, we focus on buildings at a city scale, where 3D
volumetric geometry is considered a feature in b3dm. Thus, the property is recorded and

71

4. Implementation and Experiments

identified with an object ID, and a constraint is set. This is to enforce referential integrity,
where the values in the object id column of the property table must exist in the id column
of the object table.

ALTER TABLE property

ADD CONSTRAINT fk_object_id FOREIGN KEY (object_id) REFERENCES object(id);

Property enrichment is implemented on the geometry stored in the database loaded from
the dataset. The process of enriching properties with functions and operators is discussed
in two cases: LOD1/LOD2 of 3D buildings and LOD1 of extruded buildings.

LOD1/LOD2 of 3D buildings
The property enrichment for LOD1/ LOD2 of 3D buildings is implemented at the face level.
The reason for this is that the geometries are stored as Multipolygon Z from the dataset. It
is problematic to create a polyhedron from these Multipolygon Z.

One of the examples is height calculation. First, compute the bounding box of the set of faces
(Polygon Z) that bounds the same object using ST 3DExtent. Then, compute the difference
between Z maxima and Z minima of the 3D bounding box. To update the property table with
the height property. A query that updates the property name and value is as follows:

ALTER TABLE property ADD height float;

UPDATE property

SET height = (ST_ZMax(o.envelope) - ST_ZMin(o.envelope))

FROM object o WHERE object_id = id;

Another example is 2D area calculation. ST Area is used and returns the area of a polygonal
geometry. The SQL script is provided in Appendix B.4.1

LOD1 of an extruded building
Property enrichment for extruded 3D buildings can be implemented on both the solid(body)
and the surface geometry because it is easy to get a valid Polyhedrasurface from a 2D
footprint and height.

An example regarding implementation on the solid is volume calculation. First, a closed
polyhedral surface is created by extruding the 2D polygon along the Z axis. Next, the closed
surface is converted to a solid for volume calculation. Otherwise, it is treated as an area and
returns 0. As explained in Section 3.4.1, PostGIS geometries are dropped when the geometric
information required and properties expected in 3D Tiles are complete. Here, we provide an
example of how to update the property table to add a new generic property volume from
the raw geometry. In our implementation, the row data dumped from the GPKG file into the
database is stored in the dbuser schema, while the 3D Tiles implementation is in the public
schema. A cross-database query is executed as follows, where geom is a 2D polygon.

ALTER TABLE property DROP COLUMN IF EXISTS volume;

ALTER TABLE property ADD volume float;

UPDATE property

SET volume = subquery.volume

FROM (

SELECT

lod.fid AS id,

ST_Volume(ST_MakeSolid(ST_Extrude(lod.geom, 0, 0, b3_h_max))) AS volume

FROM dbuser.lod12_2d_9_284_556 lod

72

4.2. Implementation prototype

) AS subquery

WHERE property.object_id = subquery.id;

Note that the ST Volume computation takes around 20000ms for only 10 objects. The execu-
tion time for ST MakeSolid and ST Extrude is only 10s.

An example of enrichment on surface geometry is 3D Surface area calculation with ST 3DArea,
and SQL script is provided in Appendix B.4.2.

More properties are created to test multiple properties attached by executing SQL scripts as
follows. A seed is set for the random number generator by SELECT SETSEED(0.5).

-- Randomly generate construction year

UPDATE property SET construction_year = 1950 + FLOOR(RANDOM() * (2021 - 1950));

-- Random building type classification

UPDATE property SET type =

CASE

WHEN RANDOM() < 0.25 THEN 'Residential'

WHEN RANDOM() >= 0.25 AND RANDOM() < 0.5 THEN 'Commercial'

WHEN RANDOM() >= 0.5 AND RANDOM() < 0.75 THEN 'Industrial'

ELSE 'Infrastructural'

END;

4.2.3. Tileset organisation and tile creation

The procedure follows the tileset organisational method defined in Chapter 3.

Creating hierarchy table

Hierarchical k-means clustering is implemented using ST ClusterKMeans. The 3D city mod-
els are clustered into different subsets on hierarchical levels. This hierarchical clustering cre-
ates a tree structure, and results in a set of leaf nodes on the bottom level. For the complete
implementation, please refer to the SQL scripts in Appendix B.5.

This results in a table hierarchy. It shows how models are divided into small parts. The
tileset structure can be organised based on this.

Creating a tileset view

After creating the hierarchy table, a query needs to be executed to create a view for the tileset
JSON (see Appendix B.6). The view for the tileset.json relies on table hierarchy and table
property, named vw tileset. This view provides a tileset JSON that can be served directly
from the database to the web server.

The view vw tilest contains two columns, tileset id (data type: integer) and tileset (data
type: JSON). The tileset id is the identification of the unique tileset to which tiles belong.
The 3D Tiles database can store multiple tilesets.

The following explains the organisation of the tileset. These include the information used
for defining metadata, bounding volume, geometric error, and refinement type.

73

4. Implementation and Experiments

The names of properties in the b3dm are associated with the tileset as a key/value pair, i.e.
an object. The key is ”properties”, and the value is a JSON object. Within this object, each
property’s value is also stored as an object. In the web client, this tileset.properties object
is checked, and a declarative styling is executed at runtime. For example, the 3D tiles can
be dynamically styled based on the ”Height” property, with different colours representing
different height ranges.

Apart from declarative styling based on the properties, this enhances user interaction with
semantic information. The query to select all of the properties stored in the table property
is as follows, where ’OFFSET 2’ is to exclude the primary key and foreign key in the table
property:

SELECT column_name AS properties

FROM information_schema.columns

WHERE table_name = 'property'

ORDER BY ordinal_position

OFFSET 2

By default, tile number 1 is put on the root level. To keep the tile on the root level displayed
on Cesium when it intersects the view frustum, the bounding volume on the root level is
set as the minimum bounding box for all the objects in the tileset because its bounding
volume must encompass the entire scene. Other tiles are as children tiles pointing to the
root tile.

The bounding volume for a child tile is computed from the 3D extent of the clusters in the
table hierarchy. The corresponding SQL is below, where the envelope is computed using
ST 3DExtent(geom).

SELECT

ARRAY[

(ST_XMin(h.envelope) + ST_XMax(h.envelope)) / 2, -- centerX

(ST_YMin(h.envelope) + ST_YMax(h.envelope)) / 2, -- centerY

(ST_ZMin(h.envelope) + ST_ZMax(h.envelope)) / 2, -- centerZ

(ST_XMax(h.envelope) - ST_XMin(h.envelope)) / 2, 0, 0, -- halfX

0, (ST_YMax(h.envelope) - ST_YMin(h.envelope)) / 2, 0, -- halfY

0, 0, (ST_ZMax(h.envelope) - ST_ZMin(h.envelope)) / 2 -- halfZ

]

FROM hierarchy h

Regarding the geometric error, the geometric error for the tileset and root tile of temp tid 1
(by default) is set to approximately half of the diagonal length of the root bounding volume,
and the children tile is set to 0. Note that this is not a standard calculation formula but one
based on experience. A conditional statement in SQL is as follows:

CASE WHEN h.temp_tid = 1 THEN

--half of the diagonal_length

ROUND(

sqrt(

power(ST_XMax(h.envelope) - ST_XMin(h.envelope), 2) +

power(ST_YMax(h.envelope) - ST_YMin(h.envelope), 2) +

power(ST_ZMax(h.envelope) - ST_ZMin(h.envelope), 2)

)::numeric/2,

2)

74

4.2. Implementation prototype

ELSE

0

END AS geometric_error

In our case constrained to single LOD, the refinement strategy is set as ”ADD” ensuring the
root tile is not replaced when adding children tiles to the scene.

4.2.4. Encoding of geometry and property

As explained in Section 3.1.2, the methods for serving 3D Tiles on the fly from the imple-
mented database and variants of the approach are proposed to serve the b3dm from the
database. The differences lie in whether the binary gltf and the properties are composed
beforehand.

• For method 1, it only computes compulsory geometric and topological information,
and stores it in the database. The composition of the b3dm is implemented in the web
server.

• Method 2 is to compose binary gltf in the database and store it as a blob. The binary
glTF is then combined with the queried property to generate the b3dm in the web
server. This allows different properties to be provided in b3dm without regenerating
the entire tile.

• Method 3 is to compose b3dm in the database and store it as a blob.

In approach 3, an additional step in this phase is to pre-compose b3dm, a Binary Large
Object (BLOB) for multiple 3D models grouped into larger batches. The reason for this is to
store the fully pre-computed b3dm to serve 3D Tiles from the database. An additional b3dm
column is added to the hierarchy table. A built-in function to pre-compute b3dm inside
the database is expected in future development, and this leads to the pre-composed b3dm
column in a view instead of a table.

Another thing to mention is the correct link between the attributes and the geometry model
in the query results. The b3dm stores a table batch table that describes the property infor-
mation of the model. In the batch table, the property value is associated with a unique batch
ID, allowing for the identification of the properties of each model. During the composition
phase, a query to join table object and property on object ID is executed. The batch ID
in a b3dm is based on the object ID in the table, ensuring a unique identification for each
model.

4.2.5. Web server query and visualisation

Web server set-up

A web server is set up to connect with the database and serve 3D Tiles to the web client. In
this phase, we define a Flask application factory function create app that takes theme as a
parameter specified in a JSON file. Inside the function, a Flask application instance is cre-
ated, and route handlers (ui, index, cesium ui, tiles tileset, tiles one tile) are defined within
the function. For further details, please refer to Appendix B.1 and GitHub: 3dtiles.

An example of a JSON file is provided as follows:

Parameters in the input.json are explained as follows:

75

https://github.com/yangyzoey/3dtiles

4. Implementation and Experiments

1 {

2 "theme": {

3 "description": "This is for test, around TU Delft Aula",

4 "lod": "lod12_2d",

5 "mode": 1,

6 "cluster_number": [1,1],

7 "index_flag": 1,

8 "b3dm_flag": -1,

9 "glb_flag": 1,

10 "property": ["height", "building_type", "construction_year", "city"],

11 "filter": ""

12 }

13 }

Table 4.3.: Example of a theme JSON Object in the input JSON file

• theme: It is used to control customised input, and this parameter is specified in the
Flask API.

• lod: LOD of the dataset, one can specify from lod12 2d, lod12 3d or lod22 3d. This
value and theme collectively determine the dataset used. If the lod is not supported
yet, an exception will be raised.

• mode: The Flask API includes two parts, creator and server. If the mode is set to 1, the
tile creator is called first, and then the server. If 0, only the server is called, which is
used in case 3D Tiles have been prepared in the database.

• cluster number: number of clusters on the top level and bottom level used for the
hierarchical k-means algorithm.

• index flag: 0 for non-indexed b3dm or binary glTF, 1 for an indexed one.

• b3dm flag and glb flag: 1 for composed, -1 for no composed. For example, if both in-
dex flag and glb flag are set to 1, an indexed binary glTF will be composed beforehand
in the database.

• property: specify the property to query, property names given in a list. If the property
is not supported yet, an exception will be raised.

• filter: This is used for attribute and spatial filters. For example: “and height > 10”. By
default, it is set to “”, meaning no filter is specified.

The Flask application loads this JSON file named input.json. Based on the provided theme,
the application extracts relevant data from the JSON file and utilises necessary data type
conversion. The extracted and processed customised values are then passed within the
Flask routes to generate responses, allowing dynamic 3D Tiles selection based on custom
requirements.

In this project, the database schema designed for 3D Tiles is emphasised. The web appli-
cation is mainly used for visualisation and analysis. Thus, the prototype does not support

76

4.2. Implementation prototype

interactive spatial or attribute querying from the web client user interface. Custom queries
are only defined in JSON files within the web server and parsed to the Flask API.

Attribute and spatial query

An attribute query can be performed. For example, the corresponding SQL for the above
height filter is below, where maxz is the value of the parameter.

SELECT * FROM {obj_record}

WHERE height > {maxz}

Another example is volume property. The corresponding SQL to query the top 10 volume
geometries with the largest volumes is as follows:

SELECT * FROM {obj_record}

ORDER BY volume ASC Limit 10

Spatial querying is enhanced by bounding box filtering. Firstly, a search region is created
around a specific point. Next, a spatial filter is applied to check the tiles in the domain
intersecting the region. During the experiment, a box buffer is created by extending 1 metre
from the coordinate point (3921335 299904). Two methods are implemented. One directly
checks all the bounding boxes on the bottom level, and the other is a hierarchical search.
It first checks the top level, filtering the parent bounding box that intersects the specified
region, and then checks its children. For details, please refer to Appendix B.7.1.

Web client visualisation

We implement declarative stying by defining a set of visualisation conditions based on the
property in the Javascript code in the HTML. The colour and transparency of buildings vary
according to their property values.

A 3D visualisation platform based on Cesium Sandcastle is utilised. It has an operation
interface that supplements the 3D Tiles visualisation. An interactive editing box to set JS
scripts for declarative styling is provided. The styling criteria can also be adjusted and
recompiled on the Cesium application interface, allowing interactive visualisation on the
web client side.

77

4. Implementation and Experiments

Figure 4.4.: JavaScript code box with online compiler support

Users can interactively select models on the web client with a mouseover. Each model is
interactive in the scene and can be highlighted in yellow, as shown in Figure 4.5. When
the object is clicked, all the properties that are stored in the header of the b3dm are dis-
played.

(a) model visualised based on property (b) highlight 3d model on mouse hover

Figure 4.5.: Models displayed with and without a mouseover

78

4.2. Implementation prototype

Figure 4.6.: Properties displayed as the user clicks the model

Another thing worth mentioning is that appearance colours are pre-configured in the binary
glTF during the prototyping stage. This is for better debugging and result comparison, mak-
ing the development process straightforward and controllable. The entire scene is streamed
to the scene tile by tile. The construction of b3dm and the definition of the tileset JSON
hierarchy are crucial factors that influence rendering behaviour and web performance. For
example, at the bottom-left corner of Figure 4.7a, there are a few buildings loaded, and
in Figure 4.7b, more buildings are loaded and the entire scene is displayed. These build-
ings are not rendered at the same time since they are encapsulated in different b3dm files.
These b3dm files are referenced in different hierarchies in the tileset JSON file with different
geometric errors.

(a) zoom out (b) zoom in

Figure 4.7.: The model progressively displayed when zoomed in

79

5. Results and Analysis

This chapter evaluates the design of the database storage and the performance of serving 3D
Tiles to the web client. Tools and datasets used are presented in Section 5.1. Benchmarking
concerning the storage system and web retrieval has been performed, and the results are
discussed in Section 5.2.1 and Section 5.2.2. The tiling method is evaluated in Section 5.3.
A case study regarding 3D Tiles creation enhanced by the DBMS approach is given in Sec-
tion 5.4.

5.1. Tools and datasets

5.1.1. Test environment

Table 5.1 gives the system details used for the tests and benchmarks described in this chapter.
The web server performance is particularly affected by GPU and memory.

5.1.2. Datasets

In Chapter 4, we implemented the 3D Tiles method using a small spatial extent dataset. As
explained in 4.1.2, we use datasets from 3DBAG to test 3D Tiles serving from the perspective
of the storage system and web retrieval, and datasets from PDOK to test the tiling method.
The dataset description is provided in table 5.2.

Datasets of different sizes and characteristics are used. The differences are relevant to evalu-
ate how the proposed 3D Tiles approach behaves in these use cases. An overview is given for
these datasets in Figure 5.1. The Orange area represents Aula LOD; the red area represents
BK LOD; orange and red together represent Campus LOD; the blue area is for Delft NE, the
yellow area is for Delft NW and the green area is for Delft.

OS Windows 11 64bit
Processor Intel(R) Core(TM) i7-10875H CPU @ 2.30GHz
Memory 16G

Graphics Card Intel(R) UHD Graphics
NVIDIA GeForce RTX 2060 with Max-Q Design

Browser Chrome
Screen Resolution 1920*1080

Table 5.1.: System specifications

81

5. Results and Analysis

Name Files LOD Geometry
representation

Disk size
(MB) Description

Delft 4 LOD1.2 2D polygon 67.4 City Delft and
surroundings

Delft NE 1 LOD1.2 2D polygon 15.4 Northeastern part
of City Delft

Delft NW 1 LOD1.2 2D polygon 39.4 Northwestern part
of City Delft

Campus LOD1 3 LOD1.2 MultiPolygonZ 32.4 TU Delft Campus
Campus LOD2 3 LOD2.2 MultiPolygonZ

BK LOD1 2 LOD1.2 MultiPolygon Z 15.13 BK and
surrounding areasBK LOD2 2 LOD2.2 MultiPolygon Z

Aula LOD1 1 LOD1.2 MultiPolygon Z
17.3 Aula and

surrounding areasAula LOD2 1 LOD2.2 MultiPolygon Z
Aula Extrusion 1 LOD1.2 2D polygon

Table 5.2.: Dataset description

Figure 5.1.: Approximated projection of the extent of the used datasets

5.2. 3D Tiles Serving approaches

Benchmarking is implemented on the LOD1 and LOD2 3D building datasets collected from
3DBAG. To evaluate 3D Tiles serving approaches, we use unclustered data. This eliminates
the effect of variation in the number and size of tiles. The b3dm contains height property.
The visualization of the datasets based on height property is provided.

82

5.2. 3D Tiles Serving approaches

(a) Buildings of LOD1 (b) Buildings of LOD2

Figure 5.2.: Visualisation of dataset Aula LOD

(a) Buildings of LOD1 (b) Buildings of LOD2

Figure 5.3.: Visualisation of dataset BK LOD

(a) Buildings of LOD1 (b) Buildings of LOD2

Figure 5.4.: Visualisation of dataset Campus LOD

83

5. Results and Analysis

5.2.1. Storage system

The database storage needed for each of the three proposed DBMS methods is computed
to compare the three proposed approaches with the file-based approach. As explained in
Section 5.1, we use unclustered data to compare and focus on the content(b3dm) in 3D
Tiles. Thus, the tileset and hierarchy storage are not included. The table 5.3 presents the
storage results for the datasets collected from 3DBAG. The file generated for comparison
is a non-indexed b3dm. In a non-indexed B3DM file, each vertex of the 3D geometry is
stored individually without any optimisation through indexing. This means that vertices
are repeated for each triangle that uses them.

Dataset Object & face tables Property table GLB in DB B3DM in DB B3DM File
Campus LOD1 3.55MB 0.04MB 2.07MB 2.10MB 6.73MB
Campus LOD2 8.88MB 0.04MB 5.36MB 5.39MB 17.30MB
BK LOD1 1.62MB 0.019MB 0.93MB 0.95MB 3.18MB
BK LOD2 4.12MB 0.019MB 2.45MB 2.47MB 8.04MB
Aula LOD1 1.93MB 0.021MB 1.13MB 1.15MB 3.67MB
Aula LOD2 4.76MB 0.021MB 2.90MB 2.92MB 9.25MB

Table 5.3.: Content size performance (non-indexed b3dm)

We also generate an indexed b3dm and make comparisons. In an indexed B3DM file, the
vertices of the 3D geometry are stored once, and then the triangles are defined using in-
dices that reference those vertices. The table 5.4 presents the storage results. The storage
comparison is provided in Figures 5.5, 5.6, and 5.7. The four methods are summarised as
follows:

Method 1: For the on-the-fly approach, the compulsory data are from object, face, and
property tables. The geometric and property data and their associated identifiers are used
to compute the database storage.

Method 2: For the precomposed geometry approach the compulsory data is glb and prop-
erty.

Method 3: For the precomposed b3dm approach, the compulsory data is the binary b3dm.

Method 4: The b3dm file on the disk.

Dataset Object & face tables Property table GLB in DB B3DM in DB B3DM File
Campus LOD1 3.55MB 0.04MB 1.46MB 1.49MB 4.15MB
Campus LOD2 8.88MB 0.04MB 3.78MB 3.82MB 10.50MB
BK LOD1 1.62MB 0.019MB 0.66MB 0.68MB 1.88MB
BK LOD2 4.12MB 0.019MB 1.73MB 1.74MB 4.91MB
Aula LOD1 1.93MB 0.021MB 0.80MB 0.82MB 2.26MB
Aula LOD2 4.76MB 0.021MB 2.06MB 2.07MB 5.65MB

Table 5.4.: Content size performance (indexed b3dm)

The results show that on-the-fly generation takes up less disk storage than the file approach.
The pre-composed approaches take up less space. Geometry representation is reduced with
a binary glTF representation. Another thing worth noticing is that the b3dm blob stored

84

5.2. 3D Tiles Serving approaches

Figure 5.5.: Content size performance (Dataset Campus)

Figure 5.6.: Content size performance benchmark (Dataset BK)

85

5. Results and Analysis

Figure 5.7.: Content size performance benchmark (Dataset Aula)

in the database is compressed and is approximately one third of the b3dm file representa-
tion.

5.2.2. Web retrieval

We compare precomposed methods with on-the-fly methods from the perspective of web
retrieval efficiency and compare with a file-based system regarding efficient data access.
The used datasets are Aula LOD1 and Aula LOD2.

We compare the DBMS approaches enhanced by a Flask API with a file system. The serving
time is split into creating time and fetching time. The triangulation method is an adap-
tive ST Tesselate. The property in the b3dm is height. The results are provided in Ta-
ble 5.5.

For the on-the-fly approach (Method 1), the creating time is mainly calculated from the total
time spent on computing properties, normals, positions, and indices. For the precomposed
geometry approach (Method 2), the increased creating time is composing a glb. For the
precomposed b3dm approach (Method 3), the increased creating time is composing a b3dm.
Method 4 is serving the generated b3dm file from the disk.

In comparing the fetching time of the three DBMS methods, the precomposed methods
(method 2 and method 3) outweigh the on-the-fly method (method 1). The precomposed
b3dm method (method 3) is the fastest. The total execution time for the three DBMS methods
is similar.

The file system’s retrieval efficiency performs better than that of a DBMS, as shown in Fig-

86

5.3. Tiling method

Method Property(s) Normal(s) Triang-
ulation(s) Indices(s) Blob

Total
creating
time(s)

Total
fetching
time(s)

Total
serving
time(s)

LOD1

1
0.009 2.336 20.929 12.871

0 38.350 4.686 43.036
2 3.039 41.389 0.147 41.536
3 3.637 41.987 0.043 42.03
4 file stored on the disk 0.002 0.002

LOD2

1
0.009 5.932 69.991 80.672

0 161.731 10.250 171.981
2 8.520 170.251 0.375 170.626
3 8.758 170.489 0.101 170.59
4 file stored on the disk 0.006 0.006

Table 5.5.: Time performance for serving one tile

ure 5.8. However, the file system is impacted by the file size, which indicates the burdensome
on the disk in the case of a larger dataset. To further prove this, more datasets need to be
collected.

Figure 5.8.: Time performance for fetching one tile

Regarding the time from 3D Tiles fetching completion in the web server to the display on the
web application, it is tricky and out of expectation. The two precomposed methods show
differences. Displaying precomposed b3dm on the web application takes an unexpectedly
longer time, while precomposed binary glTF does not face this problem. Although the
glTF and b3dm are stored compressed as blobs, the glTF is uncompressed during the b3dm
composing phase in the Flask prototype while b3dm is not.

5.3. Tiling method

5.3.1. Bounding box filtering time performance

We use clustered data to test the tiling method, and the dataset is Delft NW and Delft
collected from PDOK. The cluster number settings and corresponding query timing are

87

5. Results and Analysis

provided in the table. Note that because of the limited performance of the adaptive triangu-
lation approach in the prototype, the triangulation method is simplified to the combination
of ST Tesselate for the bottom and top face while ST Delaunay for the others.

The table shows the performance result of filtering the tile that intersects with a search
region (ST Buffer(ST GeomFromText(’POINT(3921335 299904)’), 1)), with two methods. The
first method is to check all the bounding boxes directly on the bottom level. The second
method is hierarchical search, as explained in 4.2.5.

Dataset Subdivision Total tile
number

Method I
timing (s)

Method II
timing(s)level1 level2

Delft NW 8 8 64 0.121 0.159
8 32 256 0.273 0.317

Delft 8 8 64 0.125 0.181
8 32 256 0.289 0.392

Table 5.6.: Bounding box filtering time performance

From tests with other search regions, it is noticed that there are also scenarios where the area
of interest is located in more than one tile. It is also possible that the query returns none,
as the search region lies within the bounding volume on level 1 but out of the bounding
volume on level 2.

Method I show an advantage over method II from the dataset tested. An analysis of the
possibility of applying method II to a larger dataset is presented in 6.2.

5.3.2. Cluster distribution performance

The following experiments are based on the dataset Delft NE of LOD1 extrusion and aim
to quantify the clustering distribution of hierarchical k-means and find how tiling methods
affect the overall streaming performance.

Utilising an HTTP request to stream multiple models within the same tile improves effi-
ciency because each tile issues one draw call. The dataset used is Delft NE, and the objects
are clustered into different cluster numbers. This aims to evaluate the tiling method and
find how tile size and number affect the overall performance. The table 5.7 shows the tile
size, tile number(cluster number) and fetching time.

Total fetch
timing Tile number Tile Size

Min Max Medium Avg
18 s 15 7 KB 1333 KB 512 KB 581 KB
11 s 10 202 KB 1592 KB 890 KB 870 KB
8 s 5 694 KB 2798 KB 1576 KB 1738 KB
19s 3 1475 KB 4848 KB 2363 KB 2895 KB

Table 5.7.: Relationship between the tile size and serving time

The variation between tile sizes is big, resulting in different transmission times per tile,
thus affecting the overall transmission performance. It can be seen from Figure 5.9 that as
the tile number increases, the overall loading time is reduced. However, a turning point

88

5.4. Case study

occurs when the tile number continues increasing. The tiles that intersect with the bounding
volume and meet the maximumScreenSpaceError will issue draw calls. The tests suggest
that, for the experiment tileset, the optimal number of tiles is around 5, and the single tile
size is around 2 MB. This test is not conducted by directly measuring or monitoring memory,
CPU, or GPU usage.

Figure 5.9.: Relationship between file size and fetching time

5.4. Case study

A case study is provided to show how the 3D Tiles approach can be applied in a specific
use case as proof of the applicability of the on-the-fly approach for dynamic serving 3D
Tiles.

5.4.1. Campus Emergency Evacuation—Sea Level Rise

Extreme events are becoming increasingly frequent. In this situation, rapid decision-making
is critical to reduce risk and ensure the safety of individuals and communities. In this case
study, we explore how the 3D Tiles approach facilitates emergency evacuation decision-
making during a hypothetical sea level rise event. We want to answer the question of
where would be the ideal temporary emergency evacuation centre when the sea level rises
to 10m.

The goal is to identify and visualise temporary safe destinations on the campus in the event
of rising sea levels. The property building height is relevant to this event. An attribute
query is executed to find the ideal place for a temporal evacuation centre. The 3D Tiles
database for the Campus has been created and is ready to serve. The implementation is on
the Aula Extrusion dataset.

89

5. Results and Analysis

Attribute query

The following visualisations are served from the database with a SQL attribute filter in each
case, the returned buildings are considered as potential safe destinations.

The attribute query is explained together with the usage of input.json in Flask API.

First, we retrieve buildings whose height is less than 10 meters. The settings in input.json
are displayed in table 5.8.

1 {

2 "theme": {

3 "description": "Dataset round TU Delft Aula",

4 "lod": "lod12_2d",

5 "mode": 1,

6 "cluster_number": [1,1],

7 "index_flag": 0,

8 "b3dm_flag": -1,

9 "glb_flag": -1,

10 "property": ["height"],

11 "filter": "and height > 10"

12 }

13 }

Table 5.8.: input.json file settings

Next, we retrieve buildings whose height is more than 10 meters. The filter in the input.json
is changed to:

"filter": "and height <= 10"

Visualisation of the case study is presented in Figure 5.10.

90

5.4. Case study

(a) Buildings above the water

(b) Buildings under the water

Figure 5.10.: Visualisation of campus underwater(a) and above water(b)

91

6. Conclusion and Future Work

Chapter 6 concludes the research performed. The Section 6.1 gives discussion and conclu-
sions derived from the analysis of the obtained results, and the future work is discussed in
6.2.

6.1. Conclusions and Discussion

Section 6.1 answers the research questions introduced in Section 1.3 and gives conclusions.
Section 6.1.2 summarises the overall contribution. In Section 6.1.3, limitations of the pro-
posed methodology are presented.

6.1.1. Research Questions

Firstly, answers to sub-questions are provided. Subsequently, the section focuses on ad-
dressing the main research questions. Finally, the main findings and conclusions drawn
from addressing these research questions are summarised.

1. How to organise the database storing raw data, for example, storing raw geometries
as polygons, multi polygons or polyhedrons?

The geometry type of raw data is harmonised, with expanding the geometry types
(multi polygon, polyhedral surface) to polygons. Geometric operation on face level
reduces complexity compared with volume level. Adhered to a Cesium WGS84 globe,
all geometries are reprojected to a unified coordinate reference system (CRS). This
allows managing data from multiple sources with different CRS using a standard and
consistent workflow.

The polygons are further harmonised into positions and normals, which fit into the
final deliverable data format b3dm.

2. How to define the mapping rules for storing 3D Tiles in a relational database?

• 3D coordinates of each object body are stored as an array of coordinates (nodes).
References to faces at the lower level are maintained through object IDs. Proper-
ties are linked to the corresponding object.

• The hierarchy supports object clustering based on minimum bounding regions on
different hierarchical levels. Thus forming different tile sizes.

• Regarding storing the precomposed glb and b3dm, there is a balance between
database storage and web retrieval. The results show that precomposed b3dm or
binary glTF largely reduces the fetching time.

93

6. Conclusion and Future Work

3. How to derive meshes (triangulated geometries) from raw data?

The algorithm adapted from ST Tesselate triangulates both convex and concave sur-
faces correctly. This method fits both LOD1 and LOD2 models.

Whether to maintain or drop raw geometries depends on the use case. It is suggested
that the geometry be dropped if there is no need to compute new generic properties
from it or if geometry rarely needs to be reconstructed from the topology.

4. How to avoid potential problems such as data redundancy, and data inconsistency?

Regarding data redundancy:

• Tile organisation is stored in view, relying on the table hierarchy.

• Topology models avoid redundancy and maintain consistency. Triangulated face
topology is maintained on face level. Indices of the triangulated faces are stored
as an array of indices, referencing vertices coordinates in an object.

• A POSTGIS geometry can be reconstructed from nodes and faces. For visualiza-
tion purposes, this method provides a compact storage model.

Regarding data inconsistency:

• The table face and property are linked with the object table with a foreign key
referencing the object ID.

• Furthermore, objects assigned to the tile are associated with the table object. This
establishes a one-to-one association between each tile content and each object.
This is insufficient for multiple representations, where a feature identifier must
be introduced.

5. How to define the tiling rules?

• Tiling rules can be defined based on spatial relationships or properties. These
rules organize objects into different tiles.

• We can organise tiles with a cluster algorithm. The tested algorithm is hierarchical
k-means with user-defined cluster numbers. The 3D models are partitioned using
a “top-bottom” clustering. The tiling process organises the data in a hierarchical
structure based on a multi-scale partition of the dataset. Objects assigned to the
cluster on the same level are combined into one tile.

• The tile number and tile size should be balanced. If there are too many tiles, it
will issue many draw calls. If the tile size is too large, there is a problem with
the ‘uncertain’ web transmission. This suggests improving web performance by
incorporating appropriate spatial index tuning. Delivering a tile with a super
large size is not suggested.

6. What kind of spatial and attribute queries could be performed based on the pro-
posed data model?

• 2D and 3D computation can be implemented on geometries and stored as prop-
erties. These properties can then be used to generate 3D tiles.

• Validation inside the database is tricky for functions supported by PostGIS and
SFCGAL.

94

6.1. Conclusions and Discussion

• It is easy to implement 3D computation with SFCGAL on LOD1 geometries be-
cause a valid polyhedron is guaranteed.

• However, this is problematic for LOD2 buildings because of the failure to build a
polyhedral surface from Multipolygon Z.

• Precision should be paid attention to. ST transform is not accurate. CRS transfor-
mation affects precision.

7. What are the advantages and disadvantages of generating 3D Tiles on the fly com-
pared to a file-based approach?

The on-the-fly approach is more flexible than the file-based approach. Geometric in-
formation and attributes are only stored in the table and fetched to compose a b3dm
together when needed. However, creating 3D Tiles on the fly takes a long computation
time.

After answering the sub-question above, the main research question can also be answered:
How to compactly store both geometries and attributes in a database and efficiently serve
data that complies with 3D Web standards to the client?

The database tailored for 3D Tiles ensures compatibility and adherence to standardised
formats. The database is further connected to the web server, facilitating the retrieval and
streaming of 3D geospatial data directly to the web application. Tiling objects into clusters
and streaming multiple models in several tiles improves efficiency.

In the database, a face-object approach stores the triangulated topology and unique coordi-
nates of the object. Compared with a file-based approach, the on-the-fly and precomposed
approaches take up less disk storage. Instead of producing a b3dm file on the disk, it calls
memory and generates content on the server side.

Regarding fetching time, pre-composed approaches outweigh the on-the-fly approach. Both
are much slower than serving from disk. However, the DBMS approach maintains data con-
sistency and offers more flexibility to users. It is fair to believe that on-the-fly is a promising
approach with the generation process improved.

6.1.2. Contribution

The 3D Tiles approach provides a way to serve 3D Tiles directly from the database. It reduces
the generation of data copies and helps ensure spatiotemporal consistency.

It enhances the dynamic generation of a subset of the data model stored in the database
with spatial and attribute filters. This solves the issue of 3D Tiles, which contains many
fixed-divided files, making it difficult to deliver a subset of the data.

Method 2 (precomposed geometry) can serve b3dm with different properties on the fly,
ensuring its flexibility in dynamically serving different attributes. The geometric information
in the database is stored as a binary glTF and generated b3dm dynamically. The binary
geometry representation (glTF) is computed once but can be used many times.

6.1.3. Reflection and discussion

The main criticisms of the prototype developed are as follows:

95

6. Conclusion and Future Work

Processing raw geometry to obtain triangle topology is slow:

• ST Tesselate is chosen to handle concave faces. However, this is sometimes a waste of
CPU computation because handling convex surfaces with a sophisticated algorithm is
unnecessary.

• A flag for concave surfaces should be introduced, which can help save CPU time and
result in fast triangulation.

Data transfer between Python and Database:

• The prototype is lacking of native database functionality. Data transfer back and forth
between Python and PostgreSQL occurs (see Section 6.2)

Property enrichment and filter only at the object level:

• The generic attribute in the database is limited to object property, and so is the filter
implementation. The filter should also be applied to the face level or vertex level.

The tiling methodology does not ensure an even distribution and results in large variations
in different clusters:

• Hierarchical k-means tiling does not ensure an even distribution. An improved k-
means or other clustering method is expected. The indexing and clustering method
should be improved (see Section 6.2).

The BLOB storage in the table is redundant.

• As discussed in Section 6.1.1, However, b3dm or binary glTF stored in the table is
redundant because geometric information is stored twice.

• An alternative is to represent this binary content in a view instead of storing the con-
tent column in the hierarchy table, where a fully native database approach is needed
(see Section 6.2).

The validity of a polyhedron is not ensured:

• Faces are expected to keep a counterclockwise orientation when viewed from the out-
side of a three-dimensional enclosure.

• At the face level, the orientation is correct. The orientation test shows a consistency
between the polygon and the triangulated geometries. However, there are still issues
with orientation at the body level.

• It is also suggested that triangulating geometries with external libraries and importing
triangulated geometries to databases be considered (see Section 6.2).

Floating-point error issue is not solved.

• Precision is not confirmed. A set of geometric operations introduced floating errors,
leading to inconsistency between the resulting coordinates and the raw geometry.
Thus, the geometry is less accurate than the raw geometries. Use cases relying highly
on geometric accuracy cannot be implemented.

• During the CRS conversion process, floating point errors are introduced. The transfor-
mation can be implemented at run time (see 6.2).

96

6.2. Future work

6.2. Future work

We would recommend the following directions for future exploration.

6.2.1. Native database functionality

In my prototype, geometric processing has been done with the use of SFCGAL and PostGIS
functions, including normal computation, triangulation and some property calculations. The
b3dm composition is still performed outside the database. The prototype first queries from
the database to Python and then composes the queried information into a binary b3dm in
Python; finally, it transfers the binary data from Python to the database and updates the
b3dm field in the table hierarchy.

In addition, during the 3D Tiles generation process in the prototype, data transfer back and
forth between Python and PostgreSQL occurs. The prototype first queries the triangulated
meshes from PostgreSQL to Python, and then finds unique coordinates and triangulation
topology of the object in Python, finally transfers the data from Python to PostgreSQL to
update the nodes field in the table object and tri node id in the table face.

This causes expensive input/output (I/O) operations, which can minimise unnecessary data
transfer. A b3dm composition function within the database is to be developed, supporting
the creation of a set of views representing 3D Tiles.

A postgresql-plpython extension can be a solution. With enabling “plpython3u”, the NumPy
module is expected to work properly. Otherwise, implementing it in C++ would be ideal,
considering there are more existing works around implementing C++ with PostgreSQL that
lay a foundation, such as SFCGAL.

In addition, storing node coordinates, triangle indices, and normals as bytes instead of arrays
in the database can be further explored. If the native database functionality is realised, it is
also suggested to further explore the possibility of loading views into memory as a cache
database.

6.2.2. Improving indexing and clustering method

The bounding box filtering (hierarchical search) results presented in Section 5.3 show the
potential of the hierarchical tiling method when applied to larger data sets, such as national
datasets. However, K-means supported by Postgres does not ensure an even distribution of
objects in the cluster, resulting in tile size variations. It is suggested that a native database
function, such as R-tree, be further implemented. In addition, SFC clustering supports access
to the available clusters(tiles) regardless of hierarchical levels. Mapping R-tree to 1D with a
Hilbert curve is worth exploring.

Based on this, a larger dataset can be organised as tilesets refer to another tileset. If a national
dataset visualisation is needed, one can organise a tileset containing smaller tilesets.

In addition, because the binary glTF asset in 3D Tiles is a mesh. The b3dm size is not only
affected by the total number of objects in a batch, but also related to the number of triangles.
A complex shape can result in a larger data size. A clustering based on triangle numbers
instead of object numbers can be considered.

97

6. Conclusion and Future Work

6.2.3. Investigating refined LODs

Currently, the design of 3D data representation typically involves a single level of detail
(LOD). This also lays a foundation for future development. Future iterations can be built
upon this simplified framework, and the schema can be extended and adapted to incorporate
models at multiple LODs.

One approach is maintaining data at different LODs directly in the database. Another
approach is parsing the storage LODs from the view of topology, as depicted in Figure
6.1.

Figure 6.1.: The four linking schemes for three LODs of a house, here depicted in 2D. The
objects that would obtained by slicing between the LODs can be seen in dashed green
contours; the red dashed lines reflect the cells that need to be added and split in order to
ensure a valid 3D (2D+LOD) cell complex [Arroyo Ohori, 2016]

A starting point can be investigating simple linking and matching between LODs and util-
ising sparse storage in the database, as indicated in Figure 6.1(a). This approach not only
decreases storage requirements but also enhances retrieval efficiency.

98

6.2. Future work

Figure 6.2.: sparse indexing in glTF [Group, 2021]

By establishing hierarchical connections between LODs within the database, detailed LODs
can reference coarse LODs where common data is stored. This is also aligned with sparse
indexing in glTF. This hierarchical structure enables shared information storage at coarse
LODs, reducing storage space.

This can be incorporated with the ‘ADD’ and ‘REPLACE’ refine strategy in 3D Tiles. Users
can seamlessly navigate between different LODs as needed. Note that if the building is
divided into multiple parts, there are potential texture seam issues with the UV maps of
adjacent faces in the textured model.

6.2.4. Collaborating with more 3D data formats

Apart from 3D city models, more data formats are used to represent the physical world.
One of the examples is Industry Foundation Classes (IFC) formats, an open file format used
by BIM programs in the architecture, engineering, and construction (AEC) industry. The BIM
model is usually big. Thus, a typical way is to decompose it into pieces to make this large
asset possible to stream.

A typical conversion approach from IFC to 3D Tiles consists of four key steps, as depicted
in Figure 6.3. They are IFC decomposition, IFC to OBJ conversion, OBJ to glTF conver-
sion, and glTF to b3dm conversion. The binary glTF can be directly stored in the 3D Tiles
database.

99

6. Conclusion and Future Work

Figure 6.3.: An example of IFC to 3DTiles conversion workflow [Chen et al., 2018]

Each of the BIM model components can be stored in the database as a small binary glTF file.
When merging glTF files to a single constituent or multiple b3dm files is needed, such as
merging all the walls on the ground floor. SQL operations easily support this with a GROUP
BY Statement based on the properties.

Regarding BIM, it is an asset with owners, which can be government utilities, private owners
or a sharing ownership. The ownership problem should be handled during the BIM dissem-
ination, and this can be done by managing roles and access permissions. For example, the
view represents the agreed-to-share data, and the tables containing the whole information
can not be accessed without permission.

6.2.5. Generating standard 3D Tiles on the web application

The loading of massive 3D data is limited by browsers and the network bandwidth. The
smaller the page, the faster it loads. In web transmission, the binary glTF takes a large
portion of the data size of 3D Tiles. In the built environment, ideally, there are primitives in
LOD1, which are irregular but flat surfaces in LOD2 where many Delaunay triangles share
the same normal. These result in many duplicated normals in the file.

Directly delivering many 3D geometries in the format designed based on graphics program-
ming would be burdensome for network transmission in some cases. Instead of standard
glb, a possible way to deliver the geometries is to remove normals and reuse positions to
reduce the file size. Khronos supports the above format, but Cesium has not yet supported
it.

An alternative and direct way is that the system delivers tileset JSON sent from DB, buffered
geometric data will be sent to the web application when tiles are called, and generates glb
data on the client side. This requires more processing time on the web client side. However,
techniques such as WebAssembly may help improve the processing on the web side. The
bottleneck of web transmission requires more effort to overcome than processing on the web
side.

100

6.2. Future work

6.2.6. Coordinates transformation

In the prototype, the vertices in the binary glTF are stored as global coordinates. Alter-
natively, 3D global coordinates can be placed in local object space, and the transformation
matrix can be stored, as shown below. In addition, coordinate reference system transforma-
tions can be applied at the run time.

Structure: local transform global transform

root R R

+- nodeA A R*A

+- nodeB B R*A*B

+- nodeC C R*A*C

6.2.7. Adapting to 3D Tiles 1.1

In 3D Tiles 1.1, the content is a glb instead of b3dm. Existing creation or processing tools
(e.g. 3D modelling software, validators, optimizers) have better compatibility with glTF
assets. For example, converting IFC to glTF assets. This makes the 3D Tiles DBMS approach
comply with the newly involved standards 3D Tiles 1.1 and can more easily provide support
for directly serving 3D Tiles for use cases that rely on glTF.

6.2.8. Interoperability with other existing databases and web clients

It is worth exploring extensions that support the generation of views representing 3D Tiles
that rely on the developed databases, such as 3DCityDB and multiple digital twin databases.
In addition, further integration with more web clients, such as the Unity Web platform,
is recommended. This extends support for spatial information access. The overview is
depicted in Figure 6.4.

Figure 6.4.: System Outlook Overview

101

A. 3D Tiles example

A.1. Bounding volume example

1 boundingVolume : {

2 "box" : [

3 0 , 0 , 10, // Center

4 20 , 0 , 0, // x-axis

5 0 , 30 , 0, // y-axis

6 0 , 0 , 10 // z-axis

7]

8 }

9

10 boundingVolume : {

11 "region" : [

12 -1.319700, // West

13 0.6. // South

14 -1.33, // East

15 0.6, // North

16 0.0, // Min height

17 20.0 // Max height

18]

19 }

20

21 boundingVolume : {

22 "sphere" : [

23 1 , 1 ,1 , // Centre

24 100 // Radius

25]

26 }

A.2. Tileset JSON example

1 {

2 "asset": {

3 "version": "1.0",

4 "tilesetVersion": "1.2.3"

5 },

6 "extras": {

7 "name": "Sample Tileset"

103

A. 3D Tiles example

8 },

9 "properties": {

10 "id": {},

11 "Height": {}

12 },

13 "geometricError": 200, //This is tileset Geometric Error

14 "root": {

15 "boundingVolume": {

16 "region": [

17 -1.3197209591796106,

18 0.6988424218,

19 -1.3196390408203893,

20 0.6989055782,

21 0,

22 88

23]

24 },

25 "geometricError": 200,//This is root Geometric Error

26 "refine": "ADD",

27 "content": {

28 "uri": "parent.b3dm",

29 "boundingVolume": {

30 "region": [

31 -1.3197004795898053,

32 0.6988582109,

33 -1.3196595204101946,

34 0.6988897891,

35 0,

36 88

37]

38 }

39 },

40 "children": [

41 {

42 "boundingVolume": {

43 "region": [

44 -1.3197209591796106, //West

45 0.6988424218, //South

46 -1.31968, //East

47 0.698874, //North

48 0, //Min height

49 20 // Max height

50]

51 },

52 "geometricError": 0,//This is leaf node Geometric Error

53 "content": {

54 "uri": "ll.b3dm"

55 }

56 }

57]

104

A.2. Tileset JSON example

58 }

59 }

105

B. Code description and SQL statements

B.1. Flask code structure

The Flask application factory function named create app with a parameter theme is provided
as follows:

1 def create_app(theme):

2 app = Flask(__name__)

3

4 @app.route("/Cesium-1.110/<path:name>")

5 def ui(name):

6 print("ui route")

7 return send_from_directory("Cesium-1.110", name, as_attachment=False)

8

9 @app.route("/")

10 def index():

11 print("Index route")

12 return send_file("static/index.html")

13

14 @app.route("/ui/")

15 def cesium_ui():

16 print("cesium_ui route")

17 return send_file("static/cesium_ui_server_map.html")

18

19 @app.route("/tiles/tileset.json")

20 def tiles_tileset():

21

22 # Fetch tileset JSON from the database

23

24 contents = tileset_json

25 return jsonify(contents)

26

27 @app.route("/tiles/<string:tile_name>.b3dm")

28 def tiles_one_tile(tile_name):

29

30 # Fetch and compose b3dm from the database

31

32 response = Response(b3dm_bytes, mimetype="application/octet-stream")

33 return response

34

35 return app

107

B. Code description and SQL statements

This Flask application can be created with the specified dataset theme (eg: ”9 284 556”) and
called as follows:

1 theme = "9_284_556"

2 app = create_app(theme)

3 app.run(debug=True)

B.2. Normal computation

1 CREATE OR REPLACE FUNCTION ST_Subtract(p1 geometry, p2 geometry)

2 RETURNS geometry AS

3 $$

4 DECLARE

5 x1 numeric := ST_X(p1);

6 y1 numeric := ST_Y(p1);

7 z1 numeric := COALESCE(ST_Z(p1), 0.0);

8 x2 numeric := ST_X(p2);

9 y2 numeric := ST_Y(p2);

10 z2 numeric := COALESCE(ST_Z(p2), 0.0);

11 BEGIN

12 RETURN ST_SetSRID(ST_MakePoint(

13 x1 - x2,

14 y1 - y2,

15 z1 - z2

16), ST_SRID(p1));

17 END;

18 $$

19 LANGUAGE plpgsql IMMUTABLE;

20

21

22 CREATE OR REPLACE FUNCTION ST_CrossProduct(p1 geometry, p2 geometry)

23 RETURNS geometry AS

24 $$

25 DECLARE

26 a1 numeric := ST_X(p1);

27 a2 numeric := ST_Y(p1);

28 a3 numeric := COALESCE(ST_Z(p1), 0.0);

29 b1 numeric := ST_X(p2);

30 b2 numeric := ST_Y(p2);

31 b3 numeric := COALESCE(ST_Z(p2), 0.0);

32 BEGIN

33 RETURN ST_SetSRID(ST_MakePoint(

34 a2 * b3 - a3 * b2,

35 a3 * b1 - a1 * b3,

36 a1 * b2 - a2 * b1

37), ST_SRID(p1));

38 END;

39 $$

108

B.2. Normal computation

40 LANGUAGE plpgsql IMMUTABLE;

41

42 -- Drop the table if it exists

43 DROP TABLE IF EXISTS temp_nn;

44

45 CREATE TEMP TABLE temp_nn AS

46 (with points AS (

47 SELECT id, poly, ST_AsText(linestr) AS linestr,

48 ST_AsText(ST_Subtract(ST_PointN(t.linestr, 2), ST_PointN(t.linestr, 3))) AS p1,

49 ST_AsText(ST_Subtract(ST_PointN(t.linestr, 2), ST_PointN(t.linestr, 1))) AS p2

50 FROM (

51 SELECT id, ST_AsText(polygon) AS poly,

52

53 --ST_ExteriorRing(st_transform(polygon, 4978)) AS linestr

54 ST_ExteriorRing(polygon) AS linestr

55

56 FROM face

57)AS t

58)

59 SELECT id, poly, ARRAY[x,

60 y,

61 z] as nn

62 FROM

63 (SELECT id, poly, ST_X(n) as x, ST_Y(n) as y, ST_Z(n) as z FROM

64 (SELECT id, poly, linestr, ST_AsText(ST_CrossProduct(

65 p1, p2

66)) AS n from points) as tn) as tnn)

67 ;

68

69 -- Update the 'face' table with normalised normal

70 UPDATE face

71 SET normal = CASE

72 WHEN (temp_nn.nn[1]*temp_nn.nn[1] + temp_nn.nn[2]*temp_nn.nn[2] +

temp_nn.nn[3]*temp_nn.nn[3]) != 0 THEN↪→

73 ARRAY[

74 temp_nn.nn[1] / sqrt(temp_nn.nn[1]*temp_nn.nn[1] + temp_nn.nn[2]*temp_nn.nn[2] +

temp_nn.nn[3]*temp_nn.nn[3]),↪→

75 temp_nn.nn[2] / sqrt(temp_nn.nn[1]*temp_nn.nn[1] + temp_nn.nn[2]*temp_nn.nn[2] +

temp_nn.nn[3]*temp_nn.nn[3]),↪→

76 temp_nn.nn[3] / sqrt(temp_nn.nn[1]*temp_nn.nn[1] + temp_nn.nn[2]*temp_nn.nn[2] +

temp_nn.nn[3]*temp_nn.nn[3])↪→

77]

78 ELSE ARRAY[0, 0, 0]

79 END

80 FROM temp_nn

81 WHERE face.id = temp_nn.id;

109

B. Code description and SQL statements

B.3. Triangulation

B.3.1. Triangulation on convex geometries

1 SELECT

2 ST_AsText(ST_DelaunayTriangles((ST_Dump(ST_GeomFromText(

3 'POLYHEDRALSURFACE Z(

4 ((0 0 0, 0 0 1, 0 1 1, 0 1 0, 0 0 0)),

5 ((0 0 0, 0 1 0, 1 1 0, 1 0 0, 0 0 0)),

6 ((0 0 0, 1 0 0, 1 0 1, 0 0 1, 0 0 0)),

7 ((1 1 0, 1 1 1, 1 0 1, 1 0 0, 1 1 0)),

8 ((0 1 0, 0 1 1, 1 1 1, 1 1 0, 0 1 0)),

9 ((0 0 1, 1 0 1, 1 1 1, 0 1 1, 0 0 1)))')

10)).geom))

11 AS Delaunay_result;

12

13 SELECT

14 ST_AsText(ST_Tesselate((ST_Dump(ST_GeomFromText(

15 'POLYHEDRALSURFACE Z(

16 ((0 0 0, 0 0 1, 0 1 1, 0 1 0, 0 0 0)),

17 ((0 0 0, 0 1 0, 1 1 0, 1 0 0, 0 0 0)),

18 ((0 0 0, 1 0 0, 1 0 1, 0 0 1, 0 0 0)),

19 ((1 1 0, 1 1 1, 1 0 1, 1 0 0, 1 1 0)),

20 ((0 1 0, 0 1 1, 1 1 1, 1 1 0, 0 1 0)),

21 ((0 0 1, 1 0 1, 1 1 1, 0 1 1, 0 0 1)))')

22)).geom))

23 AS Tesselate_result;

B.3.2. Triangulation on concave geometries

1 SELECT

2 ST_AsText(ST_DelaunayTriangles((ST_Dump(ST_GeomFromText(

3 'POLYHEDRALSURFACE Z(

4 ((2 0 0, 2 2 0, 0 2 0, 0 3 0, 3 3 0, 3 0 0, 2 0 0)),

5 ((2 0 0, 2 0 1, 2 2 1, 2 2 0, 2 0 0)),

6 ((2 2 0, 2 2 1, 0 2 1, 0 2 0, 2 2 0)),

7 ((0 2 0, 0 2 1, 0 3 1, 0 3 0, 0 2 0)),

8 ((0 3 0, 0 3 1, 3 3 1, 3 3 0, 0 3 0)),

9 ((2 0 0, 3 0 0, 3 0 1, 2 0 1, 2 0 0)),

10 ((3 3 0, 3 3 1, 3 0 1, 3 0 0, 3 3 0)),

11 ((3 0 1, 3 3 1, 0 3 1, 0 2 1, 2 2 1, 2 0 1, 3 0 1)))')

12)).geom))

13 AS Delaunay_result;

14

15 SELECT

16 ST_AsText(ST_Tesselate((ST_Dump(ST_GeomFromText(

17 'POLYHEDRALSURFACE Z(

18 ((2 0 0, 2 2 0, 0 2 0, 0 3 0, 3 3 0, 3 0 0, 2 0 0)),

19 ((2 0 0, 2 0 1, 2 2 1, 2 2 0, 2 0 0)),

110

B.3. Triangulation

20 ((2 2 0, 2 2 1, 0 2 1, 0 2 0, 2 2 0)),

21 ((0 2 0, 0 2 1, 0 3 1, 0 3 0, 0 2 0)),

22 ((0 3 0, 0 3 1, 3 3 1, 3 3 0, 0 3 0)),

23 ((2 0 0, 3 0 0, 3 0 1, 2 0 1, 2 0 0)),

24 ((3 3 0, 3 3 1, 3 0 1, 3 0 0, 3 3 0)),

25 ((3 0 1, 3 3 1, 0 3 1, 0 2 1, 2 2 1, 2 0 1, 3 0 1)))')

26)).geom))

27 AS Tesselate_result;

B.3.3. Triangulation on titled geometries

1 EXPLAIN ANALYZE

2 WITH cube AS (

3 SELECT

4 (ST_GeomFromText(

5 'POLYHEDRALSURFACE Z(

6 ((0 0 0, 0 0 1, 0 1 1, 0 1 0, 0 0 0)),

7 ((0 0 0, 0 1 0, 1 1 0, 1 0 0, 0 0 0)),

8 ((0 0 0, 1 0 0, 1 0 1, 0 0 1, 0 0 0)),

9 ((1 1 0, 1 1 1, 1 0 1, 1 0 0, 1 1 0)),

10 ((0 1 0, 0 1 1, 1 1 1, 1 1 0, 0 1 0)),

11 ((0 0 1, 1 0 1, 1 1 1, 0 1 1, 0 0 1))

12)'

13)) AS geom

14)

15 SELECT

16 ST_AsText(ST_DelaunayTriangles((

17 ST_Dump(ST_RotateY(ST_RotateX(cube.geom, radians(30)), radians(30)))).geom)

18)

19 AS Delaunay_result

20 FROM cube;

21

22 EXPLAIN ANALYZE

23 WITH cube AS (

24 SELECT

25 (ST_GeomFromText(

26 'POLYHEDRALSURFACE Z(

27 ((0 0 0, 0 0 1, 0 1 1, 0 1 0, 0 0 0)),

28 ((0 0 0, 0 1 0, 1 1 0, 1 0 0, 0 0 0)),

29 ((0 0 0, 1 0 0, 1 0 1, 0 0 1, 0 0 0)),

30 ((1 1 0, 1 1 1, 1 0 1, 1 0 0, 1 1 0)),

31 ((0 1 0, 0 1 1, 1 1 1, 1 1 0, 0 1 0)),

32 ((0 0 1, 1 0 1, 1 1 1, 0 1 1, 0 0 1))

33)'

34)) AS geom

35)

36 SELECT

37 ST_AsText(ST_Tesselate((

38 ST_Dump(ST_RotateY(ST_RotateX(cube.geom, radians(30)), radians(30)))).geom)

39)

111

B. Code description and SQL statements

40 AS Tesselate_result

41 FROM cube;

B.4. Attribute enrichment

B.4.1. 2D Area

1 ALTER TABLE property DROP COLUMN IF EXISTS area2d;

2 ALTER TABLE property ADD area2d float;

3

4 UPDATE property

5 SET area2d = subquery.area2d

6 FROM (

7 SELECT

8 lod.fid AS id,

9 --ST_Volume(ST_MakeSolid(ST_Extrude(lod.geom, 0, 0, b3_h_max))) AS volume

10 ST_Area(lod.geom) AS area2d

11 FROM dbuser.lod12_2d_9_284_556 lod

12) AS subquery

13 WHERE property.object_id = subquery.id;

B.4.2. 3D Area

1 ALTER TABLE property DROP COLUMN IF EXISTS area3d;

2 ALTER TABLE property ADD area3d float;

3

4 UPDATE property

5 SET area3d = subquery.area3d

6 FROM (

7 SELECT

8 lod.fid AS id,

9 --ST_Volume(ST_MakeSolid(ST_Extrude(lod.geom, 0, 0, b3_h_max))) AS volume

10 ST_3DArea(ST_Extrude(lod.geom, 0, 0, b3_h_max)) AS area3d

11 FROM dbuser.lod12_2d_9_284_556 lod

12 limit 50

13) AS subquery

14 WHERE property.object_id = subquery.id;

B.5. Hierarchy

1 DROP TABLE IF EXISTS temp_centroids;

2

3 CREATE TEMP TABLE temp_centroids AS

112

B.5. Hierarchy

4 With p

5 AS

6 (

7 SELECT id, (ST_Dump(envelope)).geom AS polygon from object

8)

9 SELECT id,

10 ST_AsText(ST_Force2D(ST_Centroid(ST_Collect(polygon)))) AS cc

11 FROM p GROUP BY id;

12

13 SELECT tmpc.id, cc, envelope FROM temp_centroids tmpc

14 JOIN object

15 ON tmpc.id = object.id;

16

17

18 DROP TABLE IF EXISTS hierarchical_clusters;

19

20 -- Create a table to store hierarchical cluster information

21 CREATE TEMP TABLE hierarchical_clusters(

22 object_id INTEGER, -- Assuming this column references the object's unique identifier

23 level INTEGER, -- Level of clustering (e.g., 0 for initial clustering, 1 for sub-clustering)

24 cluster_id INTEGER, -- Cluster ID at this level

25 parent_cluster_id INTEGER, -- Cluster ID at the previous level

26 name TEXT --unique name for all clusters

27);

28

29 -- Perform k-means clustering for the first level (level 0)

30 INSERT INTO hierarchical_clusters (object_id, level, cluster_id, parent_cluster_id, name)

31 SELECT object_id, 1 AS level, cid AS cluster_id, NULL AS parent_cluster_id, 'Level_0_Cluster_'

|| cid AS name↪→

32 FROM (

33 SELECT ST_ClusterKMeans(cc, {0}) OVER() AS cid, id as object_id, cc

34 FROM temp_centroids AS obj

35) level_0_clusters;

36

37

38 -- Subsequent levels of clustering (if required)

39 -- Example: Second level clustering

40 INSERT INTO hierarchical_clusters(object_id, level, cluster_id, parent_cluster_id, name)

41 SELECT object_id, 2 AS level, cid AS cluster_id, parent_cluster_id, 'Level_1_Cluster_' ||

parent_cluster_id || '_SubCluster_' || cid AS name↪→

42 FROM (

43 SELECT

44 ST_ClusterKMeans(o.cc, {1}) OVER(PARTITION BY t.cluster_id ORDER BY t.cluster_id) AS

cid,↪→

45 id AS object_id,

46 t.cluster_id AS parent_cluster_id

47 FROM hierarchical_clusters t

48 JOIN temp_centroids o ON t.object_id = o.id

49 WHERE t.level = 1 -- Consider removing specific Cluster_id filter here

50) level_1_clusters;

51

52 DROP TABLE IF EXISTS hierarchy CASCADE;

113

B. Code description and SQL statements

53

54 CREATE TABLE hierarchy (

55 hid SERIAL PRIMARY KEY,

56 level int,

57 object_id int[],

58 cluster_id int,

59 parent_cluster_id int,

60 envelope box3d

61);

62

63 INSERT INTO hierarchy (level, object_id, cluster_id, parent_cluster_id, envelope)

64 --CREATE TABLE hierarchy AS

65 SELECT

66 (ARRAY_AGG(DISTINCT level))[1] AS level,

67 ARRAY_AGG(object_id) AS object_id,

68 (ARRAY_AGG(DISTINCT cluster_id))[1] AS cluster_id,

69 (ARRAY_AGG(DISTINCT parent_cluster_id))[1] AS parent_cluster_id,

70 ST_3DExtent(envelope) AS envelope

71 FROM hierarchical_clusters

72 JOIN object

73 on object.id = object_id

74 GROUP BY name;

75

76

77 ALTER TABLE hierarchy

78 ADD COLUMN temp_tid INTEGER;

79 --ADD COLUMN hid SERIAL PRIMARY KEY;

80

81 --Update temp_tid column with values generated by ROW_NUMBER() window function

82 WITH n AS (

83 SELECT hid,

84 ROW_NUMBER() OVER (PARTITION BY level ORDER BY cluster_id) AS rn

85 FROM hierarchy

86)

87 UPDATE hierarchy AS h

88 SET temp_tid = n.rn

89 FROM n

90 WHERE h.hid = n.hid;

B.6. Tileset JSON

1 CREATE OR REPLACE FUNCTION create_vw_tileset() RETURNS VOID AS $$

2 BEGIN

3 -- Drop the existing view if it exists

4 EXECUTE 'DROP VIEW IF EXISTS vw_tileset;';

5

6 -- Create the view vw_tileset

7 EXECUTE '

8 CREATE VIEW vw_tileset AS

114

B.6. Tileset JSON

9 WITH property AS (

10 SELECT json_object_agg(initcap(properties), json_build_object()) AS property_json

11 FROM (

12 SELECT column_name AS properties

13 FROM information_schema.columns

14 WHERE table_name = ''property''

15 ORDER BY ordinal_position

16 OFFSET 2

17) AS property_data

18),

19 tile

20 AS (

21 WITH

22 e AS (

23 SELECT ST_3DExtent(envelope) AS envelope FROM hierarchy WHERE level = 2

24)

25 SELECT

26 h.temp_tid AS id,

27 1 AS tileset_id,

28

29 CASE WHEN h.temp_tid != 1 THEN

30 1

31 ELSE

32 NULL

33 END AS parent_id,

34

35 CASE WHEN h.temp_tid != 1 THEN

36 ARRAY[

37 (ST_XMin(h.envelope) + ST_XMax(h.envelope)) / 2, -- centerX

38 (ST_YMin(h.envelope) + ST_YMax(h.envelope)) / 2, -- centerY

39 (ST_ZMin(h.envelope) + ST_ZMax(h.envelope)) / 2, -- centerZ

40 (ST_XMax(h.envelope) - ST_XMin(h.envelope)) / 2, 0, 0, -- halfX

41 0, (ST_YMax(h.envelope) - ST_YMin(h.envelope)) / 2, 0, -- halfY

42 0, 0, (ST_ZMax(h.envelope) - ST_ZMin(h.envelope)) / 2 -- halfZ

43]

44 ELSE

45 ARRAY[

46 (ST_XMin(e.envelope) + ST_XMax(e.envelope)) / 2, -- centerX

47 (ST_YMin(e.envelope) + ST_YMax(e.envelope)) / 2, -- centerY

48 (ST_ZMin(e.envelope) + ST_ZMax(e.envelope)) / 2, -- centerZ

49 (ST_XMax(e.envelope) - ST_XMin(e.envelope)) / 2, 0, 0, -- halfX

50 0, (ST_YMax(e.envelope) - ST_YMin(e.envelope)) / 2, 0, -- halfY

51 0, 0, (ST_ZMax(e.envelope) - ST_ZMin(e.envelope)) / 2 -- halfZ

52]

53 END AS bounding_volume,

54

55 CASE WHEN h.temp_tid = 1 THEN

56 ROUND(

57 sqrt(

58 power(ST_XMax(h.envelope) - ST_XMin(h.envelope), 2) +

59 power(ST_YMax(h.envelope) - ST_YMin(h.envelope), 2) +

60 power(ST_ZMax(h.envelope) - ST_ZMin(h.envelope), 2)

115

B. Code description and SQL statements

61)::numeric/2,

62 2)

63 --diagonal_length

64 ELSE

65 0

66 END AS geometric_error,

67

68 CASE WHEN h.temp_tid = 1 THEN

69 ''ADD''

70 ELSE

71 NULL

72 END AS refine,

73

74 h.temp_tid AS content

75 FROM hierarchy h, e

76 WHERE h.level = 2

77),

78

79 children AS (

80 SELECT

81 array_agg(json_build_object(

82 ''boundingVolume'', json_build_object(

83 ''box'', tile_data.bounding_volume

84),

85 ''geometricError'', tile_data.geometric_error,

86 ''content'', json_build_object(''uri'', CONCAT(''/tiles/'',

tile_data.content, ''.b3dm''))↪→

87)) AS children_json

88 FROM

89

90 (

91 SELECT *

92 FROM tile

93 WHERE tileset_id = 1 --AND tile_data.parent_id IS NOT NULL

94 --AND tile_data.parent_id IS NOT NULL

95 ORDER BY id -- Order by tile_id

96) AS tile_data

97 GROUP BY tile_data.tileset_id

98)

99

100 SELECT

101 1 AS id,

102 json_build_object(

103 ''asset'', json_build_object(

104 ''version'', ''1.0'',

105 ''tilesetVersion'', ''1.2.3''

106),

107 ''properties'', property.property_json,

108 ''geometricError'', tile_data.geometric_error,

109 ''root'', json_build_object(

110 ''boundingVolume'', json_build_object(

111 ''box'', tile_data.bounding_volume

116

B.7. Spatial query

112),

113 ''geometricError'', tile_data.geometric_error,

114 ''refine'', tile_data.refine,

115 ''content'', json_build_object(

116 ''boundingVolume'', json_build_object(

117 ''box'', tile_data.bounding_volume

118),

119 ''uri'', CONCAT(''/tiles/'', tile_data.content, ''.b3dm'')

120),

121 ''children'', (children.children_json)[2:],

122 ''transform'', ARRAY[1.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 1.0,

0.0, 1, 1, 1, 1.0]↪→

123)

124) AS tileset_json

125 FROM (

126 SELECT *

127 FROM tile

128 WHERE tileset_id = 1 AND parent_id IS NULL

129) AS tile_data

130 ,property

131 ,children;';

132 RETURN;

133 END;

134 $$ LANGUAGE plpgsql;

135

136 -- Call the function to create the view

137 SELECT create_vw_tileset();

138

139 -- Retrieve data from the created view

140 SELECT * FROM vw_tileset;

B.7. Spatial query

B.7.1. Bounding box query

1 -- Approach1 intersection check directly on the bottom level

2 --EXPLAIN ANALYZE

3 SELECT level,

4 h.temp_tid,

5 h.level,

6 h.cluster_id,

7 h.parent_cluster_id,

8 ST_Intersects(ST_Force2D(envelope),

9 ST_Buffer(ST_GeomFromText('POINT(3921335 299904)'), 1)

10) AS s

11 FROM hierarchy h

12 WHERE level = 2

13 AND ST_Intersects(ST_Force2D(envelope), ST_Buffer(ST_GeomFromText('POINT(3921335 299904)'), 1))

14 ORDER BY level;

117

B. Code description and SQL statements

15

16 -- Approach2, intersection check from top level to bottom level

17 --EXPLAIN ANALYZE

18 WITH Level1 AS (

19 SELECT cluster_id

20 FROM hierarchy

21 WHERE level = 1

22)

23 SELECT

24 h.temp_tid,

25 h.level,

26 h.cluster_id,

27 h.parent_cluster_id,

28 ST_Intersects(ST_Force2D(h.envelope), ST_Buffer(ST_GeomFromText('POINT(3921335 299904)'),

1)) AS s↪→

29 FROM

30 hierarchy h

31 WHERE

32 h.level = 2

33 AND h.parent_cluster_id IN (SELECT cluster_id FROM Level1) -- Filtering multiple cluster IDs

34 AND ST_Intersects(ST_Force2D(h.envelope), ST_Buffer(ST_GeomFromText('POINT(3921335.5566243

299904.402694535)'), 1))↪→

35 ORDER BY

36 h.level;

B.8. Database storage system benchmarks

1 SELECT table_name,

2 calculation_type,

3 total_size / (1024.0 * 1024.0) AS total_size_MB

4 FROM (

5 SELECT 'face' AS table_name,

6 'total_size1' AS calculation_type,

7 SUM(pg_column_size(id) +

8 pg_column_size(tri_node_id) +

9 pg_column_size(object_id) +

10 pg_column_size(normal)) AS total_size

11 FROM face

12 UNION ALL

13 SELECT 'face' AS table_name,

14 'total_size2' AS calculation_type,

15 SUM(pg_column_size(tri_node_id) +

16 pg_column_size(normal)) AS total_size

17 FROM face

18 UNION ALL

19 SELECT 'object' AS table_name,

20 'total_size1' AS calculation_type,

21 SUM(pg_column_size(id) +

22 pg_column_size(nodes)) AS total_size

118

B.8. Database storage system benchmarks

23 FROM object

24 UNION ALL

25 SELECT 'object' AS table_name,

26 'total_size2' AS calculation_type,

27 SUM(pg_column_size(nodes)) AS total_size

28 FROM object

29 UNION ALL

30 SELECT 'property' AS table_name,

31 'total_size1' AS calculation_type,

32 SUM(pg_column_size(pid) +

33 pg_column_size(object_id) +

34 pg_column_size(height)) AS total_size

35 FROM property

36 UNION ALL

37 SELECT 'property' AS table_name,

38 'total_size2' AS calculation_type,

39 SUM(pg_column_size(height)) AS total_size

40 FROM property

41

42 UNION ALL

43 SELECT 'hierarchy' AS table_name,

44 'glb' AS calculation_type,

45 SUM(pg_column_size(glb)) AS total_size

46 FROM hierarchy

47

48 UNION ALL

49 SELECT 'hierarchy' AS table_name,

50 'b3dm' AS calculation_type,

51 SUM(pg_column_size(b3dm)) AS total_size

52 FROM hierarchy

53

54 UNION ALL

55 SELECT 'vw_tileset' AS table_name,

56 'total_size1' AS calculation_type,

57 SUM(pg_column_size(id) +

58 pg_column_size(tileset_json)) AS total_size

59 FROM vw_tileset

60 UNION ALL

61 SELECT 'vw_tileset' AS table_name,

62 'total_size2' AS calculation_type,

63 SUM(pg_column_size(tileset_json)) AS total_size

64 FROM vw_tileset

65) AS subquery;

119

C. Github link

C.1. Software usage

The source code is stored and maintained in GitHub repository: https://github.com/yangyzoey/3dtiles.

Step:

1. Load data into Postgres

First, download gpkg dataset:

Downloaded a tile from 3dbag.nl in geopackage format (tile around TU Delft Aula).

Then, convert the 3D layer (3D Multi Polygon) with LOD 1.2 into PostGIS dump
format, using ogr2ogr:

$ ogr2ogr --config PG_USE_COPY YES -f PGDump test_9-284-556.dmp 9-284-556.gpkg -sql

"SELECT * FROM lod12_3d" -nln "test_lod12_3d" -lco SCHEMA=dbuser

The command helps check the information of the dataset:

$ ogrinfo -so 9-284-556.gpkg

Next, load the dump file into Postgres. Make sure PostGIS is enabled in the target
database. This results in a table ’test lod12 3d’, where the 3D geometry is stored as
multipolygonz, with coordinate reference system EPSG:7415:

CREATE EXTENSION IF NOT EXISTS postgis;

$ psql -d [database_name] -U [database_host] -h localhost -f test_9-284-556.dmp

2. Run the prototype:

Preparation

Set up for your local database in database.ini

Download Cesium-1.110.zip from Cesium GitHub releases, and put in the project root di-
rectory.

Set up python environment (See requirements.txt)

121

https://github.com/yangyzoey/3dtiles
https://3dbag.nl/en/download?tid=9-284-556
https://github.com/CesiumGS/cesium/releases/tag/1.110

C. Github link

Serve 3D Tiles on-the-fly

- Perform a coordinate transformation from EPSG:7415 (RD+NAP) to EPSG:4978, and har-
monise geometries to valid polygonz.
- Compute and prepare 3D Tiles information (normal, position, triangulated topology, and
tileset structure)
- Run the webservice and complete the tiles creation. Then visualise on Cesium.

$ python server.py

Now connect with a web browser to the service running on your own laptop: http://127.0.0.1:5000

Additional Notes:

Feel free to customise configuration for the application.
In the input.json file, you can modify the parameters according to your requirements.

122

http://127.0.0.1:5000

D. Reflection

During this journey, I have encountered numerous challenges and opportunities. When
I reflect on my path, I am grateful for the valuable gains I have gained in the learning
process

Taking notes during implementation tests is important. The implementation and validation
of the proposed methods lasted for several months. After some time, some key points may be
missed. This is different from what we did in assignments or labs for master courses, where
I can clearly remember all the steps. In addition, it is important to explain the research
story and convey ideas to audiences from different backgrounds. Writing things down and
drawing figures is a good way to organize your ideas and research results.

Time management is another aspect. I am still learning and making progress. When I was
studying architecture for my bachelor’s, people always said design never ends. I feel it is
similar to prototype refinement. However, I learned how to set milestones for each phase
and keep the progress on track.

At the end of March, I had the opportunity to attend the OGC meeting on the topic of
Geo-BIM for the Built Environment. I was always wondering if the 3D Tiles database could
work as a translator to bridge multiple databases. Thanks to insights from the discussion
and presentation in OGC meetings, I understand the gap in the domain and find the exact
point where the 3D Tiles database should work to bridge the gap.

To conclude, I learned a lot from this journey. I don’t think I have reached the destination of
this project, but it is a milestone for me, and I would like to share this work.

123

Bibliography

Alattas, A., de Vries, M., Meijers, B., Zlatanova, S., and van Oosterom, P. (2021). 3D pgRout-
ing and visualization in Cesium JS using the integrated model of LADM and IndoorGML.

Arroyo Ohori, K. (2016). Higher-dimensional modelling of geographic information. https:
//3d.bk.tudelft.nl/ken/files/16_thesis_lowres.pdf.

Biljecki, F., Stoter, J., Ledoux, H., Zlatanova, S., and Çöltekin, A. (2015). Applications of 3D
city models: State of the art review. ISPRS Int. J. Geo Inf., 4:2842–2889. https://api.

semanticscholar.org/CorpusID:21082988.

Boissonnat, J., Devillers, O., Teillaud, M., and Yvinec, M. (2000). Triangulations in CGAL.
https://dl.acm.org/doi/10.1145/336154.336165.

Broilo, M., Piotto, N., Boato, G., Conci, N., and De Natale, F. G. B. (2010). Object trajectory
analysis in video indexing and retrieval applications. https://api.semanticscholar.

org/CorpusID:12979404.

Brunel, R. (2017). Enhancing relational database systems for managing hierarchical data.
https://mediatum.ub.tum.de/doc/1369976/1369976.pdf.

Cesium and OGC (2019). 3D Tiles Specification 1.0. https://docs.ogc.org/cs/18-053r2/
18-053r2.html.

CesiumGS (2021). 3d-tiles-reference-card. https://github.com/CesiumGS/3d-tiles/blob/
main/3d-tiles-reference-card.pdf.

CesiumGS (2022). 3d-tiles-reference-card-1.1. https://github.com/CesiumGS/3d-tiles/

blob/main/3d-tiles-reference-card-1.1.pdf.

Chen, Y., Shooraj, E., Rajabifard, A., and Sabri, S. (2018). From ifc to 3d tiles: An integrated
open-source solution for visualising bims on cesium. https://api.semanticscholar.

org/CorpusID:53237119.

Coors, V. (2003). 3D-GIS in networking environments. Comput. Environ. Urban Syst., 27:345–
357. https://api.semanticscholar.org/CorpusID:206048790.

Group, K. (2021). glTF 2.0 Specification. https://github.com/KhronosGroup/glTF.

Indrajit, A. (2021). 4d open spatial information infrastructure. https://repository.

tudelft.nl/islandora/object/uuid:cd993e69-6310-4e64-87ab-1ac1a1fcb149?

collection=research.

Khater, I., Nabi, I. R., and Hamarneh, G. (2020). A review of super-resolution single-molecule
localization microscopy cluster analysis and quantification methods. Patterns, 1. https:

//api.semanticscholar.org/CorpusID:225724448.

125

https://3d.bk.tudelft.nl/ken/files/16_thesis_lowres.pdf
https://3d.bk.tudelft.nl/ken/files/16_thesis_lowres.pdf
https://api.semanticscholar.org/CorpusID:21082988
https://api.semanticscholar.org/CorpusID:21082988
https://dl.acm.org/doi/10.1145/336154.336165
https://api.semanticscholar.org/CorpusID:12979404
https://api.semanticscholar.org/CorpusID:12979404
https://mediatum.ub.tum.de/doc/1369976/1369976.pdf
https://docs.ogc.org/cs/18-053r2/18-053r2.html
https://docs.ogc.org/cs/18-053r2/18-053r2.html
https://github.com/CesiumGS/3d-tiles/blob/main/3d-tiles-reference-card.pdf
https://github.com/CesiumGS/3d-tiles/blob/main/3d-tiles-reference-card.pdf
https://github.com/CesiumGS/3d-tiles/blob/main/3d-tiles-reference-card-1.1.pdf
https://github.com/CesiumGS/3d-tiles/blob/main/3d-tiles-reference-card-1.1.pdf
https://api.semanticscholar.org/CorpusID:53237119
https://api.semanticscholar.org/CorpusID:53237119
https://api.semanticscholar.org/CorpusID:206048790
https://github.com/KhronosGroup/glTF
https://repository.tudelft.nl/islandora/object/uuid:cd993e69-6310-4e64-87ab-1ac1a1fcb149?collection=research
https://repository.tudelft.nl/islandora/object/uuid:cd993e69-6310-4e64-87ab-1ac1a1fcb149?collection=research
https://repository.tudelft.nl/islandora/object/uuid:cd993e69-6310-4e64-87ab-1ac1a1fcb149?collection=research
https://api.semanticscholar.org/CorpusID:225724448
https://api.semanticscholar.org/CorpusID:225724448

Bibliography

Khemani, C., Doshi, J., Duseja, J., and Shah, K. (2019). Solving rubik’s cube using graph the-
ory. https://www.researchgate.net/publication/326749335_Solving_Rubik’s_Cube_
Using_Graph_Theory_ICCI-2017.

Koukofikis, A., Coors, V., and Gutbell, R. (2018). Interoperable visualization of 3D city
models using OGC’s standard 3D portrayal service. ISPRS Ann. Photogramm. Remote Sens.
Spatial Inf. Sci., IV(4):113–118.

Kragler, R. (2016). Solid modeling with boolean operations in mathematica. part 1: Defini-
tion of solid objects. https://www.researchgate.net/publication/319902549_Solid_

Modeling_with_Boolean_Operations_in_Mathematica_Part_1_Definition_of_Solid_

Objects.

Mao, B., Ban, Y., and Laumert, B. (2020). Dynamic Online 3D Visualization Framework
for Real-Time Energy Simulation Based on 3D Tiles. ISPRS International Journal of Geo-
Information, 9(3):166.

Mei, G., Tipper, J. C., and Xu, N. (2012). Ear-clipping based algorithms of generat-
ing high-quality polygon triangulation. https://link.springer.com/chapter/10.1007/
978-3-642-34531-9_105.

Molenaar, M. (1992). A topology for 3D vector maps. International Journal of Applied Earth Ob-
servation and Geoinformation, pages 25–34. https://api.semanticscholar.org/CorpusID:
130039734.

NASA AMMOS (2020). 3dtilesrendererjs. https://github.com/NASA-AMMOS/

3DTilesRendererJS/.

OSGeo (2024). Gdal. https://gdal.org/programs/ogr2ogr.html.

Oslandia and IGN (2022). Sfcgal. https://oslandia.gitlab.io/SFCGAL/authors.html.

Peters, R. Y., Dukai, B., Vitalis, S., van Liempt, J., and Stoter, J. E. (2021). Automated 3d
reconstruction of lod2 and lod1 models for all 10 million buildings of the netherlands.
ArXiv, abs/2201.01191. https://api.semanticscholar.org/CorpusID:245668761.

Pilouk, M. (1996). Integrated modelling for 3D GIS. https://api.semanticscholar.org/

CorpusID:117660282.

Renxin, Y., Qinghuang, Y., Tianrong, Z., Wei, L., and Ying, M. (2019). Visualized panoramic
display platform for transmission cable based on space-time big data. https://link.

springer.com/chapter/10.1007/978-981-15-1304-6_25.

Teunissen, W. and van Oosterom, P. (1988). The creation and display of arbitrary polyhedra
in hirasp. https://gdmc.nl/oosterom/rul_cs88-20.pdf.

Treumer, J., Neumann, L., Lorenz, B., and Pfleging, B. (2023). Fast triangle strip generation
and tunneling for different cost metrics. https://link.springer.com/chapter/10.1007/
978-3-031-22025-8_13.

Van Oosterom, P., Stoter, J., Quak, W., and Zlatanova, S. (2002). The balance between geom-
etry and topology. https://api.semanticscholar.org/CorpusID:8454374.

126

https://www.researchgate.net/publication/326749335_Solving_Rubik's_Cube_Using_Graph_Theory_ICCI-2017
https://www.researchgate.net/publication/326749335_Solving_Rubik's_Cube_Using_Graph_Theory_ICCI-2017
https://www.researchgate.net/publication/319902549_Solid_Modeling_with_Boolean_Operations_in_Mathematica_Part_1_Definition_of_Solid_Objects
https://www.researchgate.net/publication/319902549_Solid_Modeling_with_Boolean_Operations_in_Mathematica_Part_1_Definition_of_Solid_Objects
https://www.researchgate.net/publication/319902549_Solid_Modeling_with_Boolean_Operations_in_Mathematica_Part_1_Definition_of_Solid_Objects
https://link.springer.com/chapter/10.1007/978-3-642-34531-9_105
https://link.springer.com/chapter/10.1007/978-3-642-34531-9_105
https://api.semanticscholar.org/CorpusID:130039734
https://api.semanticscholar.org/CorpusID:130039734
https://github.com/NASA-AMMOS/3DTilesRendererJS/
https://github.com/NASA-AMMOS/3DTilesRendererJS/
https://gdal.org/programs/ogr2ogr.html
https://oslandia.gitlab.io/SFCGAL/authors.html
https://api.semanticscholar.org/CorpusID:245668761
https://api.semanticscholar.org/CorpusID:117660282
https://api.semanticscholar.org/CorpusID:117660282
https://link.springer.com/chapter/10.1007/978-981-15-1304-6_25
https://link.springer.com/chapter/10.1007/978-981-15-1304-6_25
https://gdmc.nl/oosterom/rul_cs88-20.pdf
https://link.springer.com/chapter/10.1007/978-3-031-22025-8_13
https://link.springer.com/chapter/10.1007/978-3-031-22025-8_13
https://api.semanticscholar.org/CorpusID:8454374

Bibliography

Yao, Z., Nagel, C., Kunde, F., Hudra, G., Willkomm, P., Donaubauer, A., Adolphi, T., and
Kolbe, T. (2018). 3DCityDB - A 3D geodatabase solution for the management, analysis,
and visualization of semantic 3D city models based on CityGML. Open Geospatial Data,
Software and Standards, 3:1–26. https://api.semanticscholar.org/CorpusID:44088436.

Zlatanova, S. and Gruber, M. (2001). 3D urban GIS on the web: Data structuring and visual-
ization. https://www.isprs.org/proceedings/xxxii/part4/zlatan82neu.pdf.

Zlatanova, S., Holweg, D., and Coors, V. (2004). Geometrical and topological models for
real-time GIS. https://api.semanticscholar.org/CorpusID:61851191.

Zlatanova, S., Pilouk, M., and Tempfli, K. (2009). Building reconstruction from aerial im-
ages and creation of 3D topologic data structure. https://api.semanticscholar.org/

CorpusID:5174597.

Zlatanovaa, S. (2000). 3D GIS for urban development. https://api.semanticscholar.org/
CorpusID:130381637.

Zlatanovaa, S., A.A., R., and Shi, W. (2003). Topological models and frameworks for 3D
spatial objects. ComputersGeosciences, 30:419–428.

127

https://api.semanticscholar.org/CorpusID:44088436
https://www.isprs.org/proceedings/xxxii/part4/zlatan82neu.pdf
https://api.semanticscholar.org/CorpusID:61851191
https://api.semanticscholar.org/CorpusID:5174597
https://api.semanticscholar.org/CorpusID:5174597
https://api.semanticscholar.org/CorpusID:130381637
https://api.semanticscholar.org/CorpusID:130381637

Colophon

This document was typeset using LATEX, using the KOMA-Script class scrbook. The main
font is Palatino.

	Introduction
	Motivation and problem statement
	Potential use cases
	Objectives & Research Question
	Thesis Outline

	Theoretical Background
	Modelling the real world
	3D spatial data representations
	Open data models

	Web 3D GIS related standards and applications
	WebGIS-related standards of OGC
	Visualisation of 3D city models using OGC's standard
	WebGL-related frameworks

	Database management system
	Geometrical representation in PostgreSQL Spatial
	Topological data model
	Database for 3D city models
	Geometric operations (Triangulation)
	Spatial accessing method

	3D Tiles
	Elements composite of 3D Tiles
	Coordinates system
	3D Tiles indexing

	3D Tiles Approach
	Motivation
	Requirements
	Approach and variations

	Storage model for database
	3D data storage model
	Hierarchy storage database model
	Associations with attribute

	Preparation of the 3D model
	Geometry validity in the database
	Is it a valid polyhedron?

	Developing 3D Tiles database
	Feature generation
	Tileset organisation and tile creation
	b3dm Encoding

	Web server query and visualisation
	Direct web access
	Attribute and spatial query
	Web client visualisation

	Implementation and Experiments
	Tools and database used
	Software
	Datasets

	Implementation prototype
	Data preprocessing
	Feature generation
	Tileset organisation and tile creation
	Encoding of geometry and property
	Web server query and visualisation

	Results and Analysis
	Tools and datasets
	Test environment
	Datasets

	3D Tiles Serving approaches
	Storage system
	Web retrieval

	Tiling method
	Bounding box filtering time performance
	Cluster distribution performance

	Case study
	Campus Emergency Evacuation—Sea Level Rise

	Conclusion and Future Work
	Conclusions and Discussion
	Research Questions
	Contribution
	Reflection and discussion

	Future work
	Native database functionality
	Improving indexing and clustering method
	Investigating refined LODs
	Collaborating with more 3D data formats
	Generating standard 3D Tiles on the web application
	Coordinates transformation
	Adapting to 3D Tiles 1.1
	Interoperability with other existing databases and web clients

	3D Tiles example
	Bounding volume example
	Tileset JSON example

	Code description and SQL statements
	Flask code structure
	Normal computation
	Triangulation
	Triangulation on convex geometries
	Triangulation on concave geometries
	Triangulation on titled geometries

	Attribute enrichment
	2D Area
	3D Area

	Hierarchy
	Tileset JSON
	Spatial query
	Bounding box query

	Database storage system benchmarks

	Github link
	Software usage

	Reflection

