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A B S T R A C T

This paper investigates the role of 3D Gaussian Splatting (3DGS) within point cloud–dominated workflows for 
modern architectural heritage digitization. While 3DGS enables real-time, photorealistic visualization, its inte
gration into LiDAR-based documentation pipelines remains underexplored. Using Bouwpub, a modern heritage 
building in the Netherlands, as a case study, the paper compares 3DGS and LiDAR across data acquisition and 
preservation, visualization, semantic segmentation, and dissemination. Results show that 3DGS offers superior 
visual expressiveness and user responsiveness, whereas LiDAR provides greater structural accuracy and seg
mentation reliability. Based on these findings, two integration strategies are proposed: a Blender-based multi- 
angle rendering workflow and a Level of Detail 3DGS (LOD3DGS) pipeline. Moving from isolated assessment to 
applied integration, the study positions 3DGS as a complementary visualization and dissemination module rather 
than a replacement. This hybrid approach supports immersive, scalable, and semantically enriched digital her
itage systems, offering new directions for enhancing both expert documentation and public engagement.

1. Introduction

Modern heritage buildings refer to structures built from the 20th 
century onwards that possess historical, cultural, artistic, or social sig
nificance, reflecting the defining characteristics of their respective pe
riods, as emphasized by ICOMOS1 and Docomomo International2 [1,2]. 
On the one hand, they form an essential part of humanity’s cultural 
heritage, embodying modern society’s diversity and innovation, and 
warrant dedicated conservation efforts3 [3]. On the other hand, their 
structural complexity and continued use increase their vulnerability to a 
range of threats, such as urbanization, natural disasters, and warfare 
[4–7]. Compared with traditional historical buildings, modern archi
tectural heritage typically features new materials such as reinforced 

concrete, steel, and glass curtain walls, resulting in distinct structural 
forms and material–structure combinations. These buildings often 
remain in active use, undergoing frequent functional changes that 
complicate preservation. Additionally, modern heritage generally has 
lower public recognition, requiring more realistic and immersive digital 
representation to enhance public engagement. These unique challenges 
motivate our specific focus on modern architectural heritage in this 
research [4–7].

To effectively address these complexities, digital archiving has 
increasingly emerged as a pivotal approach. By enabling precise docu
mentation, preservation, and immersive visual representation, digital 
archiving ensures that the authenticity, materiality, and unique spatial 
characteristics of modern heritage buildings are retained and 
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appreciated over time [8–10]. In the past decades, various digital 
technologies, including photogrammetry, 3D laser scanning using 
LiDAR (Light Detection and Ranging), and subsequent modeling and 
visualization techniques, have been employed to support heritage digital 
archiving [11–13]. These point cloud-based methods have emerged as a 
dominant and widely accepted workflow in heritage studies [14–16], 
offering high-precision geometric data that supports accurate docu
mentation [17,18], enables detailed visualization [19–21], facilitates 
semantic modeling [22–24], and underpins further digital analysis 
[25,26]. However, conventional point cloud techniques often struggle to 
capture photorealistic textures and support real-time visualization, ca
pabilities increasingly vital for immersive heritage experiences and 
broader public engagement [27–29]. Emerging methods such as 3D 
Gaussian Splatting (3DGS) offer promising alternatives to meet these 
evolving demands. As an advanced 3D representation technique [30], 
3DGS has been suggested to deliver high-fidelity textures and interactive 
visualization capabilities, potentially complementing traditional point 
cloud workflows [31–33]. Yet, its application in modern heritage digital 
archiving remains largely unexplored. Two key research gaps can be 
identified: 

(a) Although 3DGS shows promising capabilities in photorealistic 
visualization and rendering efficiency, empirical evidence of its 
effectiveness in real-world modern heritage contexts, particularly 
regarding complex geometry and diverse material textures, re
mains insufficient [34].

(b) Rather than replacing existing point cloud methods, 3DGS is ex
pected to complement established workflows. However, meth
odological clarity on how to effectively integrate 3DGS into 
prevailing LiDAR-based digitization processes, especially con
cerning visualization, semantic modeling, and dissemination, is 
currently lacking.

To address the identified gaps, this paper aims to explore the prac
tical application of 3DGS in modern architectural heritage digitization 
and clarify its integration within existing point cloud-dominant work
flows. This overarching aim is divided into three sub-aims: (a) exam
ining the feasibility and potential of applying 3DGS in real-world 
heritage contexts; (b) positioning 3DGS within current digitization 
workflows dominated by point clouds; and (c) investigating how 3DGS 
can enhance existing heritage digitization practices in terms of effi
ciency and expressiveness.

To achieve these objectives, the paper is structured as follows. First, 
it reviews existing research on the technical characteristics and appli
cations of LiDAR-based point cloud techniques and 3DGS in heritage 
digitization. Subsequently, a comparative methodological workflow is 
applied to a selected case study—Bouwpub, a modern heritage building 
within the Rijksmonument-listed complex of TU Delft in the 
Netherlands, representing typical modern architectural heritage.4 The 
comparative analysis primarily addresses three critical aspects of heri
tage digitization: visualization quality, semantic segmentation, and 
effective dissemination (Sections 3 & 4). Additionally, the paper briefly 
describes data acquisition processes and implications for data preser
vation, although these aspects are not quantitatively compared. 
Empirical findings clarify the functional role of 3DGS and identify 
pathways for its effective integration into existing workflows, thus 
supporting more efficient, realistic, and semantically rich digital heri
tage practices (Section 5).

This paper contributes to the Architectural Heritage Information 
Infrastructure (AHII) by demonstrating how 3DGS complements estab
lished LiDAR-based approaches. It provides clear guidance for inte
grating diverse digitization methods, advancing both practical heritage 

documentation and effective public dissemination strategies.

2. Related works

This section reviews existing research on point cloud technologies 
and emerging image-based methods, particularly 3DGS, highlighting 
their current applications, strengths, and limitations in modern heritage 
digitization contexts.

2.1. Point cloud technology in modern heritage digitization

Point cloud is a three-dimensional data representation method that 
captures the spatial morphology of objects by recording XYZ coordinates 
and color information of their surfaces. It is widely used in the digita
lization of modern architectural heritage [25,35,36]. The primary 
methods for acquiring point cloud data include LiDAR scanning and 
photogrammetry [37–39]. LiDAR obtains high-density point cloud data 
through laser ranging, while photogrammetry reconstructs point clouds 
by matching multi-angle images [40]. These data support the entire 
lifecycle of heritage digitization, from acquisition and modeling to 
condition assessment, visualization, and dissemination, playing a vital 
role in documentation, monitoring, analysis, and informed decision- 
making [41]. 

(a) Data acquisition and digital surveying: LiDAR and image- 
based photogrammetry are the two most prevalent methods for 
generating point clouds. Terrestrial laser scanning (TLS) provides 
high-precision geometry with sub-centimeter accuracy, making it 
ideal for documenting complex structures [40,42]. Unmanned 
Aerial Vehicles (UAV)-based photogrammetry complements TLS 
by covering inaccessible facades or roof structures [43], while 
mobile or handheld systems enhance indoor or detailed compo
nent capture [44]. These technologies allow the creation of 
comprehensive digital archives, which are vital for further ap
plications [45,46].

(b) Visualization and 3D representation: Point cloud data sup
ports interactive 3D visualization and spatial inspection. Tools 
such as Autodesk Recap,5 CloudCompare,6 and Potree7 are 
commonly used to navigate, annotate, and share point-based 
representations [47]. However, raw point clouds typically lack 
texture fidelity and do not inherently represent continuous sur
faces, thus posing challenges for immersive applications such as 
virtual or augmented reality [48,49]. To address this, many 
studies have highlighted the trade-off between geometric density 
and rendering efficiency, leading to hybrid visualization strate
gies [50]. These strategies typically include either direct point 
cloud rendering enhanced by real-time shaders or indirect visu
alization through intermediate steps such as surface reconstruc
tion to mesh models [51]. Nevertheless, direct use of raw point 
clouds remains common in heritage digitization workflows due to 
their geometric accuracy and minimal data loss [52].

(c) Semantic segmentation and modeling: Beyond geometric 
visualization, point cloud segmentation enables the conversion of 
raw spatial data into semantically meaningful architectural ele
ments. Recent advances in deep learning and machine learning 
have significantly improved the classification of components such 
as walls, vaults, and windows [53,54]. Subsequently, semantic 
modeling uses these segmented outputs as a basis or reference to 
construct structured semantic representations, most notably 
Historic Building Information Modeling (HBIM). In HBIM work
flows, segmented point clouds guide the creation of parametric 

4 Delft Municipality Open Data Portal. Available online: https://data.delft. 
nl/ (Accessed on 16 July 2025).

5 Overview | ReCap | Autodesk.
6 CloudCompare - Open Source project (danielgm.net).
7 Potree
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architectural models, which are further enriched with historical, 
material, and structural metadata [55,56]. Such HBIM models 
have proven valuable for condition assessment, restoration 
planning, and interdisciplinary collaboration [57,58].

(d) Digital dissemination and public engagement: Point 
cloud–based models increasingly facilitate the dissemination of 
heritage knowledge to broad audiences. By employing interactive 
web platforms (e.g., Potree, Sketchfab), virtual reality (VR), 
augmented reality (AR), and immersive digital exhibitions, these 
models allow the public to visually explore and experience heri
tage sites remotely [59]. High-profile initiatives, such as Digital 
Dunhuang and Virtual Monticello, demonstrate how point cloud 
reconstructions significantly enhance global accessibility, offer
ing virtual visits to otherwise fragile, restricted, or remote heri
tage locations [60,61]. Through immersive storytelling and 
interactive exploration, these applications actively support heri
tage education, encourage cultural tourism, and stimulate greater 
public awareness and engagement in cultural identity and con
servation efforts.

Overall, point cloud technology has become the foundational layer of 
modern heritage digitization, supporting detailed geometric documen
tation, semantic modeling, and digital dissemination across the full 
lifecycle of heritage management [27]. However, despite its strengths in 
precision and structure, point cloud representations often face chal
lenges in achieving high-fidelity surface realism, seamless real-time 
rendering, and engaging visual storytelling. These limitations have 
motivated the exploration of emerging methods, such as image-based 
neural rendering and Gaussian-based techniques, that aim to enhance 
or complement point cloud workflows in heritage visualization.

2.2. 3D Gaussian splatting in heritage studies

3DGS is a 3D scene representation technique that models spatial 
radiance using anisotropic Gaussian kernels (Fig. 1). Each Gaussian 
encodes position, orientation, opacity, and color, enabling smooth sur
face appearance and real-time rendering without the need for neural 
network inference. Compared to mesh- or point cloud-based visualiza
tion, 3DGS has shown promising photorealism and rendering potential 
based on calibrated RGB imagery, suggesting suitability for immersive 
visualization tasks. Yet, systematic empirical evaluation within specific 
heritage contexts has not been sufficiently explored. [62].

Recent studies have begun to explore its potential in cultural heritage 
contexts. Clini et al. [63] compared 3DGS with SfM-MVS and NeRF for 
reconstructing a Romanesque church, indicating preliminary advan
tages of 3DGS in visual realism and rendering interactivity. Other efforts 
include the reconstruction of a noble family chapel in Palermo using 
consumer-grade video and 3DGS for interactive exhibition [64], drone- 
based neural rendering of remote sites [65], and artistic experiments 
combining 3DGS with curatorial storytelling in digital heritage narra
tives [66]. These applications suggest the emerging value of 3DGS in 
rapid documentation, public engagement, and immersive interpretation, 
particularly where conventional scanning methods are inaccessible. 

Nevertheless, comprehensive empirical assessments validating these 
advantages across broader heritage scenarios remain absent.

In addition, its integration into established digital heritage work
flows remains limited. Existing practices, especially those based on 
LiDAR point clouds, support accurate geometric documentation, se
mantic modeling, and structured archiving. In contrast, 3DGS lacks to
pological and parametric structure and is not readily compatible with 
HBIM, GIS, or component-based annotation systems. Its current pipeline 
also provides minimal support for semantic interaction or operational 
control. These limitations reveal three key research gaps. First, the 
functional role of 3DGS within point cloud–dominated workflows is not 
clearly defined, particularly regarding interoperability, rendering 
layering, and semantic complementarity. Second, the absence of struc
tured metadata and editing control hinders its integration into collab
orative or annotation-driven environments. Third, while early 
demonstrations exist, there is a lack of systematic empirical evaluation 
of 3DGS specifically in modern architectural heritage, which involves 
complex materials, hybrid geometries, and continued use, and which 
presents distinct challenges for documentation and visualization. 
Bridging these gaps is essential for repositioning 3DGS as a visualization 
tool and a complementary method in digital heritage practices. Notably, 
peer-reviewed applications of 3DGS in architectural heritage remain 
scarce, particularly in cases involving modern materials and large-scale 
documentation, making this an urgent area for empirical research and 
methodological development.

2.3. Synthesis and study positioning

Although 3DGS has attracted increasing attention in graphics and 
neural rendering, its application in architectural heritage digitization 
remains largely unexplored. Existing uses are limited to small-scale or 
artistic reconstructions, with no systematic evaluation in structured 
heritage workflows, especially in modern architectural contexts, where 
material complexity and spatial scale pose additional challenges. 
Meanwhile, LiDAR remains the dominant method for geometry-focused 
heritage documentation, yet it operates separately from emerging 
image-based rendering techniques. Few studies have assessed how 3DGS 
and LiDAR perform across comparable tasks, or how their integration 
could enhance both spatial accuracy and visual expressiveness. To 
address these gaps, this study evaluates 3DGS within a real-world her
itage scenario and explores its role as a complementary visualization 
layer in LiDAR-based workflows, offering a hybrid approach that bridges 
geometric precision with real-time visualization and dissemination.

3. Methodology

This paper conducts a comparative investigation of two representa
tive technologies in modern heritage digitization, namely image-based 
3DGS and LiDAR-based point clouds, by independently applying each 
workflow to the same heritage site. The full pipeline is executed for both 
methods, encompassing data collection and storage, visualization, se
mantic segmentation, and VR-based dissemination (Fig. 2).

Specifically, data collection and storage underpin accurate 

Fig. 1. Standard workflow for 3DGS [67].
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documentation and long-term digital preservation; visualization is 
crucial for achieving perceptual fidelity and interpretive clarity; se
mantic segmentation enables structured information retrieval and fa
cilitates subsequent modeling and management; and VR-based 
dissemination significantly enhances public accessibility and engage
ment with digital heritage resources. By systematically comparing the 
outputs across these critical dimensions, the study aims to clarify each 
approach’s relative strengths and limitations, explicitly define the 
functional role of 3DGS, and evaluate its practical potential for inte
gration within existing LiDAR-based heritage digitization workflows.

3.1. Case study

This study selects Bouwpub, part of an educational building complex 
in the Netherlands, as a representative case of modern architectural 
heritage (Fig. 3). Constructed between 1918 and 1923 in the tradi
tionalist architectural style influenced by the Amsterdam School [68], 
the building features red brick façades and clearly articulated archi
tectural elements. Its material consistency, standardized construction 

methods, uniform materials, and well-documented architectural re
cords, provide a controlled yet representative environment for robustly 
evaluating and comparing modern 3D digitization techniques. Further
more, an established HBIM model of Bouwpub, previously constructed 
from architectural drawings and detailed manual measurements inde
pendent of the LiDAR and 3DGS techniques evaluated in this study, 
offers a precise geometric reference for validation and benchmarking.

3.2. Gaussian splatting-based workflow

To facilitate a clear and structured evaluation, the 3DGS-based 
workflow is divided into four methodological steps: data collection 
and preservation, reconstruction and visualization, semantic segmen
tation, and VR-based dissemination.

3.2.1. Data collection and preservation
Bouwpub’s data was collected using multi-view image capture with 

an iPhone 12 Pro. The choice of a smartphone for data collection was 
deliberate, motivated by the increasing accessibility of high-quality 

Fig. 2. Workflow-oriented comparison between 3DGS and LiDAR-based point cloud methods.
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smartphone imaging capabilities (e.g., built-in LiDAR sensor and 
advanced computational photography) and the desire to explore low- 
cost, easily replicable documentation methods suitable for heritage 
digitization in resource-constrained regions. A total of 124 high- 
resolution images (3024 × 4032 pixels) were captured, with overlap 
consistently exceeding the 70 % recommended threshold by COLMAP, 
ensuring robust and coherent 3D reconstruction results.

For preservation purposes, original images and processed camera 
pose data were systematically archived using standardized, open file 
formats (.jpg images, .csv files for camera poses). Metadata including 
image acquisition parameters (device type, resolution, timestamps, and 
camera settings), software processing details (COLMAP and Reality
Capture versions), and coordinate system information were documented 
alongside the datasets. This structured approach ensures long-term data 
integrity, authenticity, and sustainable reuse for future heritage docu
mentation and comparative research.

3.2.2. 3DGS reconstruction and visualization
To evaluate the practical implementation of 3DGS, this study com

pares three accessible workflows: (a) Inria Tool, (b) Polycam, and (c) 
Jawset Postshot. The goal is to identify a representative approach for 
subsequent comparison with LiDAR-based point cloud visualization 
(Table 1). 

(a) Inria Tool8 offers a high-fidelity real-time rendering pipeline with 
full parameter control. Images were first processed using COL
MAP to extract camera intrinsics and generate sparse point clouds 
(cameras.bin, images.bin, and points3D.bin). Training was con
ducted on a consumer-grade laptop equipped with an NVIDIA 
RTX 4060 GPU, using a downsampled image resolution of 1512 
× 2016 pixels. Key parameters included 30,000 training steps and 
a densification threshold of densify_until_iter = 200,000 to 
enhance detail in underrepresented regions of the scene.

(b) Polycam9 is a mobile and web-based platform that automates SfM 
and Gaussian Splatting in the cloud. In this study, 124 high- 
resolution images (3024 × 4032 pixels) were captured using an 
iPhone 12 Pro and uploaded to the Polycam cloud service. The 
platform automatically generated a 3DGS model with minimal 
user input, accessible through its built-in viewer.

(c) Jawset Postshot10 is a dedicated platform for real-time 3DGS 
editing and visualization. The workflow began with Reality
Capture to extract camera poses (.csv) and sparse point clouds (. 
ply). In Postshot, training used a low-resolution input (40 × 40 
pixels), 30,000 iterations, and a cap of 3,000,000 splats. The 
platform supports interactive parameter tuning, vertex color 
adjustment, and view-dependent rendering optimization.

Overall, Polycam offers an accessible and efficient solution suitable 
for small-scale scans with minimal technical input. In contrast, the Inria 
and Postshot workflows demand more preprocessing but provide 
enhanced flexibility and broader applicability. Table 1 summarizes the 
technical characteristics of each workflow.

3.2.3. Semantic segmentation
This study adopts three complementary methods to assess the seg

mentation potential of 3DGS representations in architectural contexts: 
the Segment Anything Model (SAM), k-means clustering, and 
Gaussian Mixture Models (GMM). These approaches reflect distinct 
algorithmic paradigms: SAM is a transformer-based model that gener
ates object masks from 2D projections using dense sampling and adap
tive confidence thresholds [69]; k-means clusters point-wise features, 
such as position, color, and scale, into discrete labels based on Euclidean 
distance [70]; and GMM models the data as a mixture of multivariate 
Gaussian distributions, optimized through the Expectation- 
Maximization algorithm [71]. Each method operates on different as
sumptions regarding data structure and segmentation granularity: SAM 
favors visual boundaries, k-means assumes uniform compact clusters, 
and GMM captures overlapping or elliptical regions. This diversity al
lows a comparative analysis of semantic segmentation performance 

Fig. 3. Photographs of Bouwpub.

Table 1 
Flow of the three visualization methods.

Approaches Preprocessing 
Step

Inputs Outputs Notes

Inria Tool

COLMAP for 
camera 
parameters (txt 
or .bin) and 
sparse points (. 
ply)

Images 
(from phone 
& 
panoramic 
camera); 
video 
frames.

Rendered 
3DGS via 
Inria tool 
(gaussians. 
ply)

Must include 
camera 
intrinsics and 
sparse points

PolyCam NA
Images 
(from 
phones)

Directly 
generate 
3DGS in the 
viewer

Easy to use; 
limited range; 
close shots 
improve detail

Jawset 
PostShot

RealityCapture 
for camera poses 
(.csv) and sparse 
point clouds (. 
ply)

Images 
(from phone 
& 
panoramic 
camera); 
video 
frames.

Refined 
3DGS 
rendering 
with 
editable 
vertex 
colors (e.g., 
exr, .png)

Requires 
separate 
export; ensure 
ASCII and 
vertex color 
compatibility

8 GitHub: https://github.com/graphdeco-inria/gaussian-splatting
9 Cross-Platform 3D Scanning Floor Plans & Drone Mapping: https://poly. 

cam/
10 Jawset Postshot: https://www.jawset.com/
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under varied architectural features and data representations (Table 2). 

(a) SAM: SAM was applied to the 2D projections of the 3DGS model 
to generate segmentation masks based on visual features [69]. 
Key parameters included 64 sampling points per side, an IoU 
threshold of 0.9, and a stability threshold of 0.95, ensuring high- 
confidence and stable outputs. A single crop layer and a down
scale factor of 2 were used to balance accuracy and computa
tional efficiency. The masks were subsequently projected back 
onto the 3D model, dividing the facade into ten architectural 
regions.

(b) k-Means: k-Means was applied to the 3DGS point cloud, using 
features such as spatial coordinates, RGB values, normals, and 
Gaussian parameters. The model was clustered into 7 and 14 
categories, with semantic labels assigned based on predefined 
architectural rules (e.g., walls, windows). Results were derived 
from the optimized 3DGS output.

(c) GMM: GMMs were applied to the 3DGS using spatial, color, and 
Gaussian-specific attributes. The method assumes that each point 
belongs to one of k underlying Gaussian clusters and employs the 
Expectation-Maximization (EM) algorithm to iteratively assign 
points and optimize cluster parameters. It operates by projecting 
points into an n-dimensional feature space and adjusting cluster 
membership and boundaries at each iteration. The segmentation 
was tested using k values of 7 and 14 to evaluate performance 
across different levels of granularity.

3.2.4. VR integration and visual dissemination of 3DGS
Unity11 was employed as the VR platform to load and disseminate 

3DGS-generated data, enabling evaluation of rendering performance 
and user experience in immersive environments [72]. The integration of 
Gaussian Splats into the VR dissemination workflow followed a struc
tured sequence of technical steps, encompassing data preparation, 
renderer implementation, and environment-specific adaptations. 

(a) Importing Gaussian Splats into the VR scene: The Gaus
sianSplatRenderer was assigned to a GameObject in Unity, with 
the corresponding data linked via the GaussianSplatAsset, 
enabling proper loading and rendering of Gaussian Splats in the 
VR scene.

(b) Transformation alignment with the VR coordinate system: 
The position, rotation, and scale of the Gaussian Splats were 
adjusted to conform to the VR spatial framework, ensuring that 
the dataset is displayed at a perceptually accurate scale. This 
alignment is essential for maintaining depth perception, spatial 
consistency, and user immersion within the VR environment.

(c) Interactive operations in VR: An interactive hotspot system has 
been implemented in the VR scene to support user engagement 
and data exploration. Clickable spherical markers were linked to 
architectural elements, and when selected, they display contex
tual panels with information such as materials, style, historical 
background, and function.

3.3. LiDAR-based point clouds workflow

To enable a structured comparison with 3DGS, this study applies the 
same four methodological steps—data collection and preservation, 
visualization, semantic segmentation, and VR-based dissemination—to 
LiDAR-based point clouds.

3.3.1. Data collection and preservation
LiDAR data was collected using the GeoSLAM HORIZON RT,12 a 

mobile scanner equipped with an integrated camera. The device enabled 
Simultaneous Localization and Mapping (SLAM)-based 3D scanning and 
panoramic image capture, generating dense point clouds in .las format 
for subsequent processing.

Preservation of LiDAR data involved storing raw and processed point 
cloud files in standard open formats (.las, .ply). Comprehensive meta
data, including device specifications, scanning parameters (trajectory 
paths, scanning durations, sensor calibrations), and spatial referencing 
data (coordinate reference system, alignment transformations), was 
documented to support the data’s long-term authenticity and interop
erability. This rigorous preservation strategy facilitates future data 
reuse, validation, integration into broader digital heritage repositories, 
and compatibility with existing heritage management platforms.

3.3.2. Visualization
The collected point cloud data was visualized using FARO Connect 

Viewer,13 which supports adjustable rendering modes such as RGB 
color, intensity, and depth shading. These static rendering modes sup
ported initial data quality assessment, verification, and enhanced spatial 
interpretation, thus laying the foundation for subsequent real-time 
dissemination in VR environments.

3.3.3. Semantic segmentation
This subsection explores the application of different segmentation 

methods to evaluate their effectiveness in extracting architectural fea
tures from LiDAR-based point cloud data. Consistent with the approach 
used for 3DGS, SAM and k-means clustering were applied to the visu
alized point clouds, while GMMs were utilized for direct segmentation of 
the raw point cloud data. Due to differences in data characteristics and 
processing workflows, each method was adapted accordingly. 

(a) SAM: When processing point cloud data, SAM leveraged its effi
cient 2D image segmentation capabilities [73], which were 

Table 2 
Comparison of SAM, K-Means, and GMM in the context of 3D Gaussian Splatting 
and point cloud segmentation, focusing on their algorithmic characteristics, data 
assumptions, and use cases.

Aspect SAM K-Means GMM

Algorithm 
Type

Deep Learning 
(Transformer- 
based)

Clustering 
(Centroid-based)

Clustering 
(Probabilistic model)

Learning Type
Supervised / Semi- 
supervised Unsupervised Unsupervised

Data 
Assumptions

Requires large, 
annotated datasets

Assumes spherical 
(Euclidean distance) 
clusters

Assumes data is a 
mixture of 
Gaussian 
distributions

Cluster Shape
Irregular, 
adaptable to 
object boundaries

Spherical, equal 
variance clusters

Elliptical, 
adaptable to 
varying shapes

Output Type Binary mask or 
segmented regions

Discrete labels for 
clusters

Probabilistic 
assignment to 
clusters

Computation 
Complexity

High (Requires 
GPU and large 
memory)

Low to moderate Moderate to high

Use Cases
Image and video 
segmentation, 
object detection

Data clustering, 
initial 
segmentation, and 
preprocessing

Data segmentation, 
clustering with 
complex 
boundaries

11 Unity: https://unity.com/cn

12 Geoslam Horizon RT: https://www.faro.com/zh-CN/Products/Hardware/ 
GeoSLAM-ZEB-Horizon-RT
13 FARO: https://www.faro.com/en/Products/Software/FARO-Connect-Soft 

ware
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subsequently projected onto the 3D point cloud using ray casting 
and nearest-neighbor mapping [74]. To ensure segmentation 
quality and computational efficiency, the SAM mask generator 
was configured with a resolution of 64 points per side, an IoU 
threshold of 0.9, and a stability score threshold of 0.95. Addi
tionally, the segmentation was performed using one crop layer 
and a downscale factor of 2 to balance detail preservation with 
processing speed.

(b) K-Means: During the k-Means clustering process, point cloud 
data was divided into a predefined number of clusters, with 7 or 
14 categories applied in this study to ensure effective differenti
ation of architectural elements. The final clustering results were 
utilized for automatic semantic segmentation, where certain 
clusters may correspond to major architectural components such 
as walls, windows, and roofs.

(c) GMM: For LiDAR-based point clouds, the same GMM approach 
was applied, using spatial coordinates and intensity values as 
input features. While the underlying algorithm remained 
consistent, adaptations were made to account for the sparser 
structure and lower color information of raw point cloud data. 
Segmentation was also tested with 7 and 14 clusters.

3.3.4. VR integration and visual dissemination of LiDAR point clouds
The dissemination potential of LiDAR-based point clouds in a VR 

environment was assessed through data integration and optimized real- 
time rendering, enabling visual exploration and intuitive navigation. 

(a) Point cloud format conversion: Raw point cloud data (.las and . 
ply) were converted to Unity-compatible formats. The FARO 
Connect Viewer was used for initial format conversion and 
refinement, with subsequent export to the .off format via Mesh
Lab, optimized specifically for real-time visualization in Unity.

(b) Point cloud rendering and navigation in VR: The processed 
datasets were imported and dynamically rendered in Unity using 
the Point Cloud Viewer plugin, employing adaptive point-size 
scaling and occlusion culling techniques. This facilitated real- 
time interactive navigation, allowing users to dynamically 
explore and visually inspect the heritage dataset from various 
angles within an immersive VR context.

3.4. Comparative analysis

The comparative analysis of 3DGS and LiDAR-based point clouds is 
structured around three dimensions—visualization quality, semantic 
segmentation accuracy, and visual dissemination capability in VR. This 
comparative framework is specifically designed to uncover the com
plementary strengths of each method, thus guiding their potential 
integration into an optimized workflow for digitizing modern architec
tural heritage.

3.4.1. Visualization quality
Evaluated via Laplacian Variance scores, emphasizing visual clarity 

and detail preservation. Results aim to inform how visual realism from 
3DGS could be integrated with the structural accuracy of LiDAR.

3.4.2. Semantic segmentation accuracy
Precision and recall metrics calculated against an independently 

created HBIM model as geometric reference, guiding potential semantic 
data integration strategies (Fig. 4).

3.4.3. Visual dissemination in VR
Assessment of real-time rendering performance and user navigation 

responsiveness, aiming to identify integrated visualization pathways 
combining efficient rendering of 3DGS with detailed structure provided 
by LiDAR.

4. Results

This section presents comparative results between 3DGS and LiDAR- 
based point cloud methods. The analysis is organized by evaluation 
criteria: visualization quality, semantic segmentation accuracy, and vi
sual dissemination performance in VR environments.

4.1. Data collection and preservation

Regarding data acquisition and preservation, notable differences 
emerged between the two methodologies. The 3DGS workflow demon
strated high accessibility, leveraging consumer-grade smartphones for 
image capture, thus significantly lowering documentation costs and 
technical barriers. However, its reliance on image quality and controlled 
acquisition conditions introduces risks to data consistency and long- 
term authenticity. Conversely, LiDAR-based scanning provided robust 
and accurate geometric documentation, offering greater data authen
ticity and integrity due to standardized acquisition practices and mature 
preservation protocols (e.g., las and ply formats). Despite these 
strengths, LiDAR workflows typically entail higher operational 
complexity, resource demands, and storage requirements. These con
trasts underscore the complementary nature of the two methods, rein
forcing the value of hybrid digitization strategies to balance 
preservation quality, data accessibility, and cost efficiency in heritage 
digitization projects.

4.2. Visualization quality comparison

To evaluate visualization quality, representative results for both 
3DGS and LiDAR-based point clouds were generated and compared 
using qualitative visual assessment and quantitative Laplacian Variance 
metrics.

For the 3DGS, three implementations were initially examined. The 
Inria tool provided reconstructions with high geometric clarity and 
distinct architectural features, particularly evident in façade details 
(Fig. 5a). Polycam demonstrated balanced geometric and textural ac
curacy through its automated, cloud-based optimization (Fig. 5b). 
Postshot, although limited by lower resolution, delivered appealing 

Fig. 4. HBIM / HBIM with point cloud.
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visuals with rich colors and minimal artifacts due to real-time adaptive 
shading (Fig. 5c). Among these, the Polycam-generated 3DGS model was 
selected as the representative dataset for subsequent quantitative com
parison due to its balance of visual fidelity, detail preservation, and 
practical usability in heritage digitization contexts.

The LiDAR-based point cloud generated by GeoSLAM presented a 
dense, spatially coherent geometric representation of the building 
façade, effectively capturing structural elements such as walls, openings, 
and rooflines, despite limited fine-scale textural details (Fig. 6a). The 
accompanying panoramic images supported spatial interpretation and 
contextualization (Fig. 6b).

The quantitative comparison utilized Laplacian filtering (Fig. 7). The 
resulting Laplacian Variance scores indicated that the Polycam-based 
3DGS model (2021.88) retained significantly sharper visual details 

and higher-frequency information than the LiDAR-based point cloud 
(1181.53). The HBIM ground-truth model, used as a geometric refer
ence, yielded the highest score (3493.74), reflecting its inherent struc
tural completeness. These findings suggest that the 3DGS approach 
(represented by Polycam) is better suited than LiDAR for visualization 
tasks that demand high-resolution clarity and precise detail 
preservation.

4.3. Semantic segmentation accuracy comparison

Qualitative assessment revealed clear differences in semantic seg
mentation quality between the 3DGS and LiDAR-based datasets.

For the 3DGS model (generated by Polycam; Fig. 8), the SAM 
method (Fig. 8a) exhibited irregular boundaries and notable 

Fig. 5. Visualization results using (a) Inria tool, (b) Polycam, and (c) Postshot.

Fig. 6. Visualization results of LiDAR-based point clouds: (a) Point cloud of Bouwpub’s front-face and (b) Panoramic photo from GeoSLAM.
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Fig. 7. Images of Laplacian filter’s results: (a) Image of GeoSLAM point cloud in Greyscale; (b) Laplacian filter applied to GeoSLAM Point Cloud; (c) Image of 
Gaussian splatted point cloud in Greyscale; (d) Laplacian filter applied to Image of Gaussian splatted point cloud.

Fig. 8. Segmented Gaussian spaltted point cloud results.
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misalignment with actual architectural elements due primarily to sparse 
point distributions and projection distortions. K-means clustering 
(Fig. 8b, Fig. 8c; k = 7,14) moderately improved segmentation clarity 
but still lacked distinct differentiation of detailed components. The 
GMM method (Fig. 8d, Fig. 8e; k = 7,14) produced the most consistent 
and visually coherent segmentation results, clearly separating major 
volumes like roofs and ground areas despite ongoing challenges with 
smaller details such as windows and canopies. Thus, GMM (k ¼ 14) was 
selected as the most representative 3DGS segmentation approach for 
subsequent quantitative accuracy comparisons.

For the LiDAR-based point cloud dataset (Fig. 9), SAM segmenta
tion (Fig. 9a) successfully isolated primary architectural components 
such as walls, roofs, and doors, despite occasional local inaccuracies due 
to occlusions. K-means segmentation (Fig. 9b, Fig. 9c; k = 7,14) was 
comparatively coarse at lower resolutions but moderately improved at 
higher resolutions, although it remained fragmented in certain areas. 
GMM segmentation (Fig. 9d, Fig. 9e; k = 7,14) provided clear and 
detailed separation at higher resolutions, effectively delineating roofs, 
walls, and doors. Nevertheless, the SAM approach stood out due to its 
clearer overall segmentation structure and better correspondence with 
architectural boundaries. Consequently, SAM was chosen as the repre
sentative LiDAR segmentation method for quantitative comparison.

Quantitative comparison between the selected segmentation 
methods (GMM for 3DGS and SAM for LiDAR) using precision and recall 
metrics further clarified their respective strengths (Fig. 10). The preci
sion heatmap (Fig. 10a) indicates that LiDAR-based SAM segmentation 
precision varied significantly (approximately 10 %–77 %), achieving 
high accuracy for major elements (walls, roofs) but lower accuracy for 
complex elements (canopies) due to structural complexity and limited 
point coverage. The recall heatmap (Fig. 10b) revealed consistently 

higher recall values for LiDAR-based SAM segmentation, particularly for 
walls and stairs, attributable to the denser point distribution enabling 
more comprehensive segmentation coverage. In contrast, the 3DGS 
GMM segmentation demonstrated relatively lower recall values, espe
cially for components with fewer points, such as canopies, limiting 
detection accuracy.

The bar plot summarizing mean precision and recall (Fig. 10c) 
explicitly illustrates these distinctions, highlighting that LiDAR-based 
SAM segmentation generally achieves superior recall, better suited to 
applications demanding comprehensive segmentation of architectural 
features. Conversely, 3DGS-based GMM segmentation exhibited 
consistently stable precision but at the cost of completeness. Overall, 
these results suggest that LiDAR (with SAM) provides superior seg
mentation completeness, advantageous for detailed heritage documen
tation, whereas 3DGS (with GMM) offers consistent segmentation 
precision better suited to scenarios prioritizing segmentation stability 
and visual coherence.

4.4. Visual dissemination performance in VR comparison

To evaluate visual dissemination capabilities in VR (Unity), both 
3DGS and LiDAR-based point cloud models were first qualitatively 
assessed and followed by a detailed quantitative comparison of 
rendering performance and responsiveness metrics.

3DGS provided visually consistent and realistic models characterized 
by smooth, continuous textures and effective color blending, signifi
cantly enhancing immersive realism and spatial clarity. Despite minor 
visual artifacts in highly detailed regions (e.g., windows), overall visual 
quality was maintained at a high level (Fig. 11).

LiDAR-based point clouds delivered detailed geometric 

Fig. 9. Segmented GeoSLAM point cloud results.
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Fig. 10. Precision and recall across different methods: (a) Heat map for precision scores on all methods; (b) Heat map for recall scores on all methods; (c) Bar plot 
with mean precision and recall with error bars on all methods.

Fig. 11. 3DGS Visualization and interactive operation in Unity.
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representations with accurate spatial structures. However, visual frag
mentation, transparency issues, and noticeable gaps detracted from vi
sual realism and immersive experience. User interaction was also 
perceptibly hindered by visual discontinuities and slower responses 
(Fig. 12).

A direct quantitative comparison (Table 3) strongly emphasized the 
performance gap between the two methods. Specifically, the 3DGS 
model consistently outperformed LiDAR-based visualization with 
significantly higher real-time rendering stability (3DGS: 60–90 FPS vs. 
LiDAR: 15–60 FPS), markedly reduced GPU load (3DGS: 12–25 % vs. 
LiDAR: 35–55 %), dramatically lower memory consumption (3DGS: 
13.6 MB vs. LiDAR: 562 MB), and substantially lower interaction latency 
(3DGS: <10 ms vs. LiDAR: ~35 ms). These substantial differences 
confirm that 3DGS excels not only in visual coherence and immersive 
quality but also in scalability, responsiveness, and computational effi
ciency. Conversely, despite its strengths in geometric accuracy, the 
LiDAR method’s limitations in rendering efficiency, latency, and 
immersive consistency present notable challenges for effective VR-based 
dissemination. The observed complementarity between 3DGS, offering 
superior visual dissemination, and LiDAR, providing robust geometric 
completeness, highlights promising opportunities for methodological 
integration. The empirical findings presented in this study further vali
date the practical feasibility and benefits of such an integrated approach, 
laying a foundation for developing optimized hybrid solutions in 
immersive architectural heritage digitization.

5. Discussion

The comparative results clearly indicate that 3DGS and LiDAR-based 
point clouds possess complementary rather than competing strengths. 
While 3DGS offers intrinsic advantages in visual quality, photorealism, 
and VR-based dissemination, making it highly effective for immersive 
public engagement, LiDAR excels in geometric accuracy, semantic 
completeness, and structural documentation, essential for rigorous 
heritage analysis and professional archiving. These distinct methodo
logical strengths suggest that neither method alone fully addresses the 
complex requirements of digital heritage practices. Therefore, inte
grating the visual and dissemination advantages of 3DGS with the 
structural and semantic accuracy of LiDAR could lead to an optimal, 
hybrid digitization workflow. The following sections explore specific 
integration strategies, potential applications, and methodological ad
vancements based on this complementary relationship.

5.1. Integration of 3DGS and LiDAR-based point clouds

Based on the comparison, 3DGS has shown remarkable performance 

in image-based 3D reconstruction; its role within LiDAR-dominant 
workflows for heritage documentation remains underexplored. Rather 
than viewing 3DGS as a competing acquisition method, this study pro
poses repositioning it as a post-processing visualization and dissemina
tion layer. In point cloud-based workflows, where geometric accuracy is 
paramount, 3DGS can serve as a rendering enhancement mechanism, 
improving visual coherence, real-time performance, and user dissemi
nation in immersive environments. To enable such integration, two 
strategies are proposed: one based on structured image rendering using 
Blender, and the other on point cloud subsampling combined with Level- 
of-Detail (LOD) rendering.

5.1.1. Blender-based rendering of dense point clouds for 3DGS integration
A Blender-based rendering pipeline was developed to circumvent the 

computational limitations of direct point cloud-to-3DGS conversion. 
This method imports denoised and optimized LiDAR point clouds into 
Blender, where the original camera trajectory is reconstructed via Py
thon scripting. A cube-map image capture setup is created by placing six 
virtual cameras at each position using the “Camera Array Tool for 
Blender.” This setup ensures systematic, multi-angle rendering of the 
entire structure (Fig. 13).

The generated image dataset—typically exceeding 1800 

Fig. 12. Dense point cloud visualization in unity.

Table 3 
Dissemination comparison between 3DGS and LiDAR point clouds in VR.

Aspect Point Cloud 3DGS

Rendering 
Performance

High computational cost Optimized for real-time VR

Loading Time 40s (13 million vertices) 1 s
Real-Time FPS 15–60 (requires LoD) 60–90
Memory Usage 562 MB 13.6 MB
GPU Processing 

Overhead
35–55 % 12–25 %

Visual Clarity & Depth Missing parts and 
transparency

More continuous and 
realistic

Latency ~35 ms ~10 ms
Texture 

Representation
Dependent on point 
density Smooth texture appearance

Depth Perception
Depth perception 
challenges

More stable and solid 
perception

Transparency 
Handling

Floating artifacts cause 
confusion

Better, but still has 
transparency artifacts

Interaction Precision Lower accuracy More precise and reliable
Object Selection 

Accuracy Easy to select Easy to select

Immersion & User 
Experience Less immersive Highly immersive

Realism and 
Immersion

Limited due to artifacts
Realistic due to blended 
textures
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views—serves as input to the COLMAP and Postshot pipeline for 
Gaussian Splatting reconstruction. Since the images are rendered from 
the point cloud, this approach avoids registration inconsistencies be
tween real-world photos and spatial data. The resulting 3DGS model 
preserves both the structural integrity of the original point cloud and the 
visual continuity required for immersive visualization. Fully compatible 
with game engines such as Unity and Unreal Engine, the output supports 
real-time rendering and dissemination applications, offering a scalable 
and resource-efficient solution for transforming large-scale heritage 
datasets into lightweight, high-quality models.

5.1.2. Subsampled point cloud reconstruction with LOD-enhanced 3DGS
A second strategy involves generating a 3DGS model from LiDAR- 

derived point clouds strategically subsampled and aligned with photo
grammetric inputs. The process begins with SfM reconstruction using 
high-resolution images, producing a sparse point cloud and camera 
poses. The LiDAR data is then cropped, denoised, and downsampled to 
retain the primary architectural features while reducing data volume. 

The LiDAR dataset is registered to the SfM coordinate system to ensure 
spatial consistency, enabling accurate alignment of geometric and 
photometric data (Fig. 14).

This hybrid dataset is subsequently used to generate Gaussian Splats, 
with the addition of LOD techniques to manage rendering complexity 
adaptively. LOD3DGS dynamically adjusts the level of detail based on 
viewer distance, improving runtime performance while preserving vi
sual fidelity. Although LOD-based splatting has been demonstrated in 
controlled indoor environments, this study represents an early attempt 
to scale the method to architectural heritage scenarios. The approach 
combines LiDAR’s geometric accuracy with 3DGS’s rendering effi
ciency, supporting high-performance deployment in immersive VR 
applications.

5.1.3. Summary of the two integration methods
Blender-based multi-angle rendering and LOD-enhanced subsampled 

reconstruction demonstrate distinct yet complementary approaches to 
embedding 3DGS within LiDAR-based workflows. The Blender method 

Fig. 13. Blender-Based Integration of Point Clouds and 3D Gaussian Splatting. (a) Overview of the 3D Reconstruction in Blender; (b) Result of Blender- 
Based splatting.

Fig. 14. (a) LOD3DGS Workflow [75] and (b), (c) LiDAR Points & Images Results.

Y. Yu et al.                                                                                                                                                                                                                                       Automation in Construction 180 (2025) 106509 

13 



is ideal for dense point clouds lacking high-quality imagery, enabling 
consistent splatting results through synthetic, geometry-aligned images. 
In contrast, the LOD3DGS approach suits hybrid datasets where LiDAR 
and photogrammetry can be jointly processed, supporting scalable 
rendering with adaptive resolution control. Despite their differences, 
both approaches assign 3DGS a shared role: a visualization abstraction 
layer. Rather than replacing LiDAR’s role in precise geometric capture, 
3DGS enhances surface continuity, dissemination, and real-time per
formance, particularly in immersive applications. LiDAR provides 
spatial accuracy in this modular structure, image-based inputs supply 
texture fidelity, and 3DGS delivers an accessible, cohesive output for 
visualization and engagement.

These integration strategies highlight the complementary strengths 
of LiDAR and 3DGS. While LiDAR ensures spatial accuracy and supports 
semantic modeling, 3DGS enhances real-time responsiveness and 
immersive visualization. Together, they form a dual-layered framework: 
a geometric core underpinned by LiDAR [40,42], and an expressive 
surface enabled by Gaussian rendering [31–33]. This structure supports 
both analytical precision and visual engagement, fulfilling the technical 
and communicative goals of heritage digitization.

5.2. Extended potential of 3D Gaussian splatting in heritage workflows

As clarified in the previous sections, 3DGS demonstrates substantial 
potential as a visualization and dissemination layer within LiDAR-based 
heritage workflows. Looking forward, 3DGS is poised to extend its role 
beyond technical integration, offering transformative possibilities for 
heritage segmentation, immersive dissemination and adaptive workflow 
development. These future applications align with the third sub- 
objective of this research: to explore how 3DGS can enhance existing 
digitization practices in terms of both efficiency and expressiveness. The 
following discussion outlines three potential directions for 3DGS in 
modern architectural heritage workflows.

5.2.1. Semantic intelligence: Automated segmentation and HBIM-enriched 
representation

One of the most promising future applications of 3DGS lies in auto
mated semantic segmentation and semantic enrichment. While tradi
tional point cloud methods have already been employed to extract 
meaningful architectural elements through machine learning, 3DGS 
introduces a novel representational structure—layered Gaussian primi
tives—that supports refined object boundaries and high-frequency 
detail. This characteristic opens the door for integrating deep 
learning-based classifiers specifically tailored for architectural typol
ogies, enabling high-precision recognition of walls, windows, cornices, 
and other elements.

In particular, coupling 3DGS with HBIM offers a powerful pathway 
for semantic structuring. Gaussian splats can serve as an intermediary 
visualization layer bridging raw spatial data and parametric HBIM ele
ments, especially when enhanced through semantic labeling algorithms 
[57,58]. Furthermore, the expressiveness of 3DGS allows metadata such 
as material conditions and intervention histories to be attached as 
interactive overlays, supporting multidimensional interpretation of 
architectural features.

As an initial exploration into semantic enrichment and integrated 
visualization, our team has developed a preliminary web-based platform 
that combines semantic HBIM data, detailed LiDAR point clouds, and 
Gaussian splatting for interactive, multilayered heritage presentation. In 
this implementation, Gaussian splatting provides an intuitive photo
realistic visualization layer, beneficial for public engagement and gen
eral comprehension of heritage sites. The HBIM semantic layer enriches 
the model with structured information on architectural components, 
historical contexts, and materials, thus facilitating professional analysis 
and educational outreach. Concurrently, the LiDAR-derived point cloud 
ensures precise geometric accuracy, supporting heritage managers with 
detailed structural information crucial for accurate condition 

assessments and conservation strategies. Early user tests have indicated 
promising outcomes in interpretability, user engagement, and profes
sional utility, underscoring the effectiveness of this integrated semantic- 
visual framework. Detailed evaluation, including comprehensive tech
nical workflows and quantitative analyses, will be presented in a future 
dedicated publication.

5.2.2. Immersive interaction: Enhancing heritage exploration in VR/AR
3DGS is uniquely suited to support immersive exploration of archi

tectural heritage in VR/AR environments, because 3DGS enables pho
torealistic, smooth-surface rendering optimized for real-time interaction 
[31–33]. In educational and curatorial contexts, this supports more 
intuitive spatial perception and allows non-expert audiences to navigate 
complex architectural environments.

Future applications may include interactive storytelling platforms in 
VR, where users explore a building and activate information nodes 
embedded within the Gaussian representation, such as material anno
tations, historical narratives, or comparisons across time periods. Real- 
time overlays of conservation data or structural assessments could also 
be enabled within the 3DGS environment, supporting professional 
workflows. Moreover, by incorporating LOD3DGS into web-based plat
forms, lightweight yet detailed models could be deployed online for 
collaborative access, making digital heritage more scalable and partic
ipatory. A notable innovation in our prototype is the seamless integra
tion of Gaussian splats with dynamic interactive hotspots, providing a 
visually coherent and contextually responsive exploration experience. 
Initial trials conducted at selected historical buildings demonstrated a 
significant enhancement in participants’ ability to comprehend spatial 
layouts, identify heritage elements, and engage meaningfully with 
conservation narratives.

Future applications may further include integrating real-time over
lays of conservation data or structural assessments directly within 3DGS 
environments. Additionally, incorporating LOD3DGS into web-based 
platforms could enable lightweight yet detailed models for broader 
collaborative access.

5.2.3. Workflow evolution: Designing future pipelines with 3DGS 
integration

Beyond use-specific advancements, 3DGS offers substantial potential 
for reshaping broader digital heritage workflows. Rather than merely 
serving as an endpoint for visualization, 3DGS can function as a dynamic 
node within interoperable heritage documentation pipelines. Outputs 
from point cloud segmentation or HBIM modeling could be visually 
rendered via 3DGS, enabling streamlined communication among con
servationists, architects, historians, and the general public. This capa
bility positions 3DGS as both a visual and interactive module within 
comprehensive heritage information systems.

As part of our ongoing research, a structured hybrid data acquisition 
and processing workflow has been preliminarily established and tested. 
UAV photogrammetry was employed for documenting elevated or 
inaccessible architectural features, such as domes, towers, and complex 
rooftops, resulting in textured Gaussian Splats with high visual fidelity. 
Concurrently, TLS was used to capture accurate geometric data of fa
çades, interiors, and ground-level details. Our initial practical imple
mentations have successfully demonstrated effective spatial alignment 
and integration of these datasets, generating coherent 3D digital twins 
that combine precise LiDAR geometry with detailed Gaussian-based 
visualization.

Early testing in real-world heritage scenarios has highlighted notable 
benefits in collaborative stakeholder engagement, enabling both expert 
groups and non-technical audiences to interact intuitively with complex 
data. Preliminary feedback indicated significant improvements in 
communication efficiency between conservation specialists, architects, 
and site managers, streamlining conservation planning and decision- 
making processes.

This integrated workflow aligns closely with the vision promoted by 
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the AHII, advocating interoperable, semantically enriched, and visually 
intelligible heritage data frameworks. In our implemented multi-layered 
architecture, LiDAR provides the foundational geometric accuracy, 
HBIM delivers structured semantic and parametric information, and 
3DGS operates as the primary interface for visualization, public 
engagement, and professional interaction. This modular framework 
supports scalable dissemination via Web3D platforms or immersive VR 
environments, encouraging multi-disciplinary collaboration and effi
cient reuse of heritage data.

Moving forward, future research should further refine data fusion 
methodologies, optimize Gaussian-based visualization modules for 
larger-scale deployments, and establish standard protocols for embed
ding 3DGS seamlessly within AHII-compatible workflows. Comprehen
sive technical details, precise workflow evaluations, and case-specific 
quantitative results from our ongoing projects will be systematically 
presented in dedicated future publications.

5.3. Limitations and outlook

While this study demonstrates the feasibility and value of integrating 
3DGS with LiDAR for modern architectural heritage digitization, several 
limitations should be acknowledged. These relate primarily to data de
pendency, computational performance, workflow maturity, and cross- 
platform interoperability.

One notable limitation is 3DGS’s reliance on high-quality image 
input. Accurate reconstruction depends on well-calibrated, high-reso
lution photographs with consistent lighting and full surface coverage. In 
this study, while the available imagery was sufficient for methodological 
validation, issues such as exposure variation and partial occlusion may 
have introduced localized errors in depth estimation and texture fidelity 
[76,77]. These constraints underscore the importance of refined image 
acquisition protocols rather than reflecting inherent weaknesses in the 
3DGS technique. A second limitation concerns hardware constraints. 
Due to the high GPU demand associated with converting dense LiDAR 
point clouds into Gaussian splats [78], this study adopted alternative 
integration strategies, such as Blender-based image rendering and 
LOD3DGS pipelines, to maintain feasibility. These workarounds intro
duced trade-offs in model resolution and processing granularity. Finally, 
the integration of 3DGS into structured digital heritage workflows, such 
as HBIM and the AHII, remains at an early stage. Currently, 3DGS lacks 
standardized compatibility with GIS-based spatial data formats, para
metric modeling platforms, and semantic conservation datasets. This 
limits its interoperability within long-term heritage management sys
tems. Developing shared protocols for 3DGS–LiDAR–HBIM data ex
change and embedding visualization components into existing 
workflows should be a priority for future research.

Despite these limitations, the study contributes a practical roadmap 
for integrating 3DGS into LiDAR-dominant heritage workflows, sup
ported by two viable technical strategies. Moving forward, research 
should focus on three fronts: (a) improving image acquisition pipelines 
for greater reconstruction accuracy, (b) optimizing computational per
formance through multi-resolution or hardware-specific methods, and 
(c) formalizing standardized integration pathways for embedding 3DGS 
into broader heritage information infrastructures.

6. Conclusion

This paper presented the application of 3DGS within the domain of 
modern architectural heritage digitization and evaluated its integration 
with LiDAR-based workflows. Addressing the identified research gaps, 
the study fulfilled three primary objectives: (a) empirically assessed the 
feasibility of 3DGS in real-world heritage scenarios, (b) clarified its 
functional role within LiDAR-dominated digitization pipelines, and (c) 
explored integration strategies that enhanced both the efficiency and 
expressiveness of heritage documentation.

The comparative analysis confirmed that 3DGS excelled in 

photorealistic rendering and VR-based dissemination, offering light
weight and immersive outputs. However, it remained limited by its 
reliance on high-quality image inputs and reduced geometric precision 
in complex or occluded areas. In contrast, LiDAR ensured spatial accu
racy and segmentation reliability, albeit with higher computational 
costs and lower visual engagement. These complementary characteris
tics justified the development of hybrid workflows. Two integration 
strategies, Blender-based multi-angle rendering and LOD3DGS, 
demonstrated how 3DGS could serve as a visualization and dissemina
tion layer built upon LiDAR-acquired geometry.

While promising, further work is needed to strengthen 3DGS’s 
interoperability within broader heritage infrastructures. Future research 
should focus on improving image-based data acquisition, standardizing 
workflows that integrate 3DGS with HBIM and LiDAR, ensuring data 
interoperability with geospatial management platforms (e.g., GIS) and 
heritage documentation databases (e.g., Docomomo), and advancing 
LOD3DGS for web-based visualization.
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