
ISPRS Journal of Photogrammetry and Remote Sensing 224 (2025) 1–18

0
f

Contents lists available at ScienceDirect

ISPRS Journal of Photogrammetry and Remote Sensing

journal homepage: www.elsevier.com/locate/isprsjprs

An nD-histogram technique for querying non-uniformly distributed point
cloud data
Haicheng Liu a ,∗, Zhiwei Li a, Peter van Oosterom b, Martijn Meijers b, Chuqi Zhang a
a China South-to-North Water Diversion Group Water Networks Intelligent Technology Co., Ltd., Beijing, China
b Delft University of Technology, Delft, The Netherlands

A R T I C L E I N F O

Keywords:
nD point clouds
Space filling curves
Data structures
Histograms
Skewed distributions

 A B S T R A C T

Point cloud data contains abundant information besides XYZ, such as Level of Importance (LoI) and intensity.
These non-spatial dimensions are also frequently used and queried. Therefore, developing an efficient nD
solution for managing and querying point clouds is imperative. Previous researchers have developed PlainSFC
that maps both nD points and queries into a one-dimensional Space Filling Curve (SFC) space and uses B+-
tree for indexing. However, when computing SFC ranges for selection, PlainSFC subdivides the nD space
mechanically to approach the query window without considering the point distribution. Then, excessive ranges
are generated in vacant areas, and ranges generated in dense point areas are coarse. Consequently, a large
number of false positives are selected, slowing down the whole querying process.

This paper develops a new solution called HistSFC to resolve the issue. HistSFC builds an nD-histogram
which records point data distribution, and uses it to compute ranges for selecting data. Also, this paper
discovers a novel statistical metric, Cumulative Hypercubic Coverage (CHC), to measure the uniformity of the
point cloud data. Theory is established and it indicates that the nD-histogram is more beneficial when CHC is
smaller. Thus, CHC can be used to guide the building of HistSFC. In addition, the paper conducts simulations
and benchmark tests to examine the improvement on PlainSFC. It turns out that using the nD-histogram
can decrease the false positive rate by orders of magnitude. HistSFC is also evaluated against state-of-the-art
solutions. The result shows that HistSFC leads the performance in nearly all the tests.
1. Introduction

Point clouds are increasingly used in spatial related domains, from
terrain modeling (AHN, 2014), forest estimation (Neuville et al., 2021),
trajectory analysis (Zheng et al., 2009) to recently emerged semantic
labeling (Tchapmi et al., 2017), virtual reality (Blanc et al., 2020),
and autonomous driving (Chen et al., 2021). The most commonly used
point clouds are collected by Light Detection And Ranging (LiDAR)
sensors, containing up to trillions (1012) of points. Besides, point clouds
record multidimensional information. Apart from routinely concerned
spatio-temporal dimensions, other dimensions such as intensity and
classification also constitute indispensable part of the data. In specific
fields, points may carry even more information. For instance, in hy-
draulic modeling, a point may also record the flow direction and speed,
sediment concentration, and other dimensions.

∗ Corresponding author.
E-mail address: liuhaicheng@csnwd.com.cn (H. Liu).

1.1. nD-PointCloud

We propose the term nD-PointCloud to cover the point cloud data
containing multidimensional information. nD-PointCloud can be an in-
dependent spatial data representation, besides the vector and the raster.
Unlike the point or the multi-point which is a vector geometry, nD-
PointCloud can be directly collected, structured, stored, interpreted and
analyzed. That is, many applications can be addressed with only nD-
PointCloud. Besides, nD-PointCloud’s advantage also lies in the ultra
high accuracy which may be decreased when converting to rasters.
Moreover, nD points are intuitive to interact with and convenient to
analyze.

The dimension plays an important role in nD-PointCloud’s support
of different applications. Spatio-temporal dimensions are normally the
fundamental dimensions for analysis considering the majority of ap-
plications, while the classification dimension is essential for semantic
analytical purposes. Continuous Level of Importance (cLoI) (van Oos-
terom et al., 2022) can be additionally used to express importance
924-2716/© 2025 International Society for Photogrammetry and Remote Sensing, I
or text and data mining, AI training, and similar technologies.

https://doi.org/10.1016/j.isprsjprs.2025.03.014
Received 11 October 2024; Received in revised form 5 March 2025; Accepted 13 M
nc. (ISPRS). Published by Elsevier B.V. All rights are reserved, including those
arch 2025

https://www.elsevier.com/locate/isprsjprs
https://www.elsevier.com/locate/isprsjprs
https://orcid.org/0000-0003-3437-4724
mailto:liuhaicheng@csnwd.com.cn
https://doi.org/10.1016/j.isprsjprs.2025.03.014
https://doi.org/10.1016/j.isprsjprs.2025.03.014
http://crossmark.crossref.org/dialog/?doi=10.1016/j.isprsjprs.2025.03.014&domain=pdf

ISPRS Journal of Photogrammetry and Remote Sensing 224 (2025) 1–18H. Liu et al.
Fig. 1. Third-person view of a cLoI sample, from Schütz et al. (2019).

and alleviate the computational workload. Schütz et al. (2019), van
Oosterom et al. (2022) add cLoI dimension to the data for querying, to
smoothly and efficiently visualize large volumes of LiDAR points. When
doing perspective view selection, all nearby points are selected, while
fewer faraway points with restricted cLoI values are selected (Fig. 1).
These dimensions can also be jointly used to support applications. Take
indoor navigation in a VR environment as an example, it is sufficient
to only show important objects along the route to avoid excessive data
loading. This can be realized using cLoI. Besides, people should be able
to see things through windows and go through doors. The windows
and doors are recognizable in a classified point cloud. Then, a query
concerned with XYZ, cLoI and classification will form the query for
navigation. As information continues to grow, more dimensions are
expected in queries. Generally, we call them nD queries.

1.2. Motivation of the research

However, since the body of current spatial applications is still under
3D, most software for spatial data management adopts 2D/3D orga-
nization, e.g., Oracle’s SDO_PC package (Oracle, 2019), PostgreSQL’s
pgPointcloud extension (Ramsey, 2020) and PDAL (PDAL-Contributors,
2018). To efficiently execute nD queries, all concerned dimensions
are suggested to be used for clustering and indexing. van Oosterom
et al. (2015) developed a prospective SFC mapping-based clustering
and indexing framework, which we will call PlainSFC, for the sake
of convenience for referencing. Basically, PlainSFC maps both multi-
dimensional points and queries into a one-dimensional SFC space so
that one-dimensional indexing structure such as the B+-tree can be
used. PlainSFC distinguishes two types of dimensions. The organizing
dimension is used to cluster and index the data, e.g., X, Y, Z and Time.
They are transformed and mapped to the SFC space. The other property
dimensions are affiliated to the SFC key, such as color and return
number, which are not frequently used in the SQL WHERE clause.

The superiority of PlainSFC has been verified with different use
cases (Psomadaki, 2016; Guan et al., 2018; Meijers and van Oosterom,
2018). However, these studies only use PlainSFC for managing and
querying points within 4D. Our practical experiments indicate that
PlainSFC performs inefficiently in higher dimensional spaces, especially
when the data distribution is skewed. This is because PlainSFC adopts
fixed recursive decomposition of the SFC space to generate SFC ranges
for selection. This will result in a large amount of ranges containing no
data when data is non-uniformly distributed. This increases the memory
and time cost to compute ranges. It also increases I/O because of coarse
ranges for selection in dense point areas.

This paper develops a technique to resolve this issue. The paper
focuses on a common query type, the window query. It refers to a
hyperrectangular query region formed by multiple dimensions. Unlike
2

previous studies which propose their techniques and only demonstrate
using specific test cases (Berchtold et al., 1998; Ooi et al., 2000), this
paper provides a theoretical analysis of point data distribution and the
effectiveness of the technique developed. In summary, the paper has
the following contributions:

• We develop a novel solution called HistSFC that adopts an nD-
histogram structure to overcome the limitations of PlainSFC
caused by skewed data distribution. HistSFC achieves significant
efficiency improvement in the window query on massive point
cloud data. Query algorithms and optimizations are developed
based on HistSFC.

• We theoretically demonstrate the effectiveness of HistSFC by
proposing and using a statistical metric, Cumulative Hypercubic
Coverage (CHC). We prove that CHC can measure the uniformity
of the point cloud data and that it can indicate the performance
gain by using HistSFC. Thus, CHC can be used to guide the
building of HistSFC.

• We perform realistic benchmark tests on PlainSFC, HistSFC and
other state-of-the-art solutions based on two novel applications:
one is exploring 4D laser scanning point clouds; the other is
analyzing flood risk using the 8D point cloud representation of
hydraulic modeling results.

The remainder of the paper is organized as follows: Section 2 sum-
marizes previous studies on organizing and indexing nD-PointCloud.
Section 3 introduces the PlainSFC structure which is the basis for devel-
opment. Section 4 describes HistSFC and the corresponding algorithms.
This is followed by Section 5 which introduces CHC, including theo-
retical analysis and simulation results. Section 6 compares PlainSFC,
HistSFC with other state-of-the-art solutions based on real applications.
Section 7 concludes the paper.

2. Related work

Plenty of studies have been carried out to investigate the optimal
data structures to manage point cloud data. Here, we categorize the
techniques into three categories — R-tree and variants, the 2𝑛-tree and
B+-tree. Besides, strategies to deal with skewed point data distribution
are also discussed.

2.1. R-tree and variants

The R-tree (Guttman, 1984) is the most widely adopted spatial
indexing structure. The major database vendors including Oracle and
PostgreSQL implement and use it as the de-facto approach. The R-
tree based solutions normally group points into blocks clustered by a
specific order (e.g., Hilbert-R tree), and build index on these blocks. To
further improve R-tree, variants including the R*-tree (Beckmann et al.,
1990), SR-tree (Katayama and Satoh, 1997) and X-tree (Berchtold et al.,
1996) are developed to decrease the overlap ratio between blocks,
support frequent updates, and resolve nD queries. An R-tree based
solution is tested in Section 6.4.

2.2. 2𝑛-Tree

2𝑛-tree represents an indexing category which evenly splits all di-
mensions in an iteration until the leaf node level. A leaf node normally
refers to a block of points. In 2D, the 2𝑛-tree refers to Quadtree while
in 3D, it becomes Octree. Potree, the most prevalent software for
visualizing point clouds uses the Octree to organize data. CloudCom-
pare, another software frequently used to analyze point clouds adopts
the Octree index to facilitate analytical functions. To improve the
performance on querying non-uniformly distributed data, adaptive data
blocks can be adopted. That is, a threshold is to constrain the node’s
capacity so that a node with less number of points will not be split
further (Wang and Shan, 2005).

ISPRS Journal of Photogrammetry and Remote Sensing 224 (2025) 1–18H. Liu et al.

Fig. 2. Pyramid data partitioning, adapted from Berchtold et al. (1998).

2.3. B+-tree

B+-tree (Comer, 1979) is a variant of the B-tree which is widely
used for indexing one-dimensional data. Unlike B-tree, the leaf nodes
of the B+-tree are connected by pointers. Therefore, besides the top-
down traversal, a leaf node can also be visited from its prior leaf node.
B+-tree forms the basis for many nD-PointCloud solutions, such as
Pyramid-Technique (Berchtold et al., 1998), iMinMax(𝜃) (Ooi et al.,
2000) and Size Separation Indexing (SSI) (Zhang et al., 2014). For
example, in high dimensional spaces, the Pyramid-Technique avoids
excessive access to data pages by partitioning data into pieces which
cater to the shape of hyper-cubes (Fig. 2). The approach maps each
nD point into a one-dimensional space according to the pyramid piece
the point belongs to and the height in the pyramid. All the resultant
one-dimensional keys are then managed by a B+-tree structure to be in-
dexed. The extended Pyramid-Technique improves Pyramid-Technique
for handling non-uniformly distributed data by shifting all points to
the cluster center of the data. In the benchmark test (Section 6.4), the
Pyramid-Technique is examined.

2.4. Histograms

As a common technique to improve the querying efficiency given
non-uniform data distribution, histograms are largely used in major
DBMSs (e.g., statistics collection module). Histograms incur little run-
time overhead and produce low-error estimates with compact storage,
compared to other techniques such as sampling and wavelet transfor-
mation (Liu, 2009). In particular, Oracle Spatial & Graph has developed
state-of-the-art solutions to build spatial histograms for query optimiza-
tion purposes (Bamba et al., 2013). However, these histograms are
based on individual columns, the querying performance on nD data
cannot be optimal.

As a possible solution, nD-histograms have been investigated, mostly
used as a synopsis technique for selectivity estimation to optimize query
execution plan (Liu et al., 2021b). For instance, Achakeev and Seeger
(2012) build a convenient spatial histogram based on R-tree, mainly for
managing rectangular or point objects. This histogram achieves higher
accuracy for selectivity estimation of 2D/3D spatial data queries than
alternative solutions, but nD data is not tested. rK-Hist is another nD-
histogram (Eavis and Lopez, 2007), and is basically a truncated version
of the R-tree. It optimizes the nD-histogram using a 𝑘-uniformity metric
which utilizes kd-tree to measure the uniformity inside a leaf node of
the histogram. There are also other techniques such as STHoles (Bruno
et al., 2001) and STHistogram (Roh et al., 2010) that are not based on
R-tree. All these studies indicate the benefits of using nD-histograms
for querying.

3. PlainSFC

This section introduces PlainSFC, which provides the preliminaries
of our solution.
3

3.1. Terminology

When introducing data structures and queries, we use node and
range. Fig. 3 illustrates them in 2D, where all points have integer
coordinates. By truncating the last 𝑛 bits of the points’ Morton codes
recursively, Morton codes at upper levels are derived. That is to say,
the Morton codes of points implicitly contain a hierarchy which is
equivalent to a Quadtree structure. We can easily extend this scheme
to higher dimensional spaces so that a Morton node refers to the
corresponding node of a 2𝑛-tree. A branch node covers the nodes on the
level below, and represents the extent of a hypercubic region (e.g., a
block in the Quadtree). Thus, the branch node also indicates a range of
Morton codes starting from the lower-left corner to the upper-right. A
leaf node is not further subdivided.

3.2. Basic settings

Fig. 4 presents the workflow of PlainSFC including data loading
and querying. PlainSFC first encodes each nD point to a full resolution
Morton key, interleaving the bits of all organizing dimensions. In most
cases, values of the organizing dimensions contain decimals. So, these
values are first scaled up to integers for encoding. Such a full resolu-
tion key can be directly decoded to the original coordinates, without
additional storage of dimension values. Besides, due to uniqueness of
each full resolution key, they are used as the primary key in a table
for indexing. Property dimensions are attached to each key. Based
on this organization, PlainSFC utilizes Oracle Index-Organized Tables
(IOTs) (Oracle, 2013) to manage the data. The internal data structure
of IOT is a B+-tree, integrating the index and data storage.

For querying, PlainSFC adopts a two-step filtering mechanism. The
first filter uses the Morton hierarchy to approximate the query window
and derive the ranges. Take Fig. 5(a) to illustrate: the first filter starts by
examining whether the root node (i.e., the overall extent of the data)
intersects the query window. If they intersect, the root node will be
decomposed into 4 sub-nodes and the spatial relationship between each
node and the query window will be assessed again. During the range
computing process, if a node is inside the query window, the range
will be exported directly without further decomposition. Near the query
boundary, the decomposition goes on recursively until a maximum
number of ranges (𝑟𝑚𝑎𝑥) is reached. After this, the first filter exports all
ranges into a range table and joins it with the IOT for selection (Fig.
4). This is followed by the second filter which conducts post-processing
including decoding and point-wise checking to complete the query.

3.3. Time complexity

The querying time of PlainSFC includes two parts, the first filter
and the second (Fig. 4). The time cost of the first filter comprises range
computation, database fetching and other processes such as database
initialization and communication. On the whole, the first filter costs
(𝑟 log𝑁) time, where 𝑟 is the number of ranges generated and it
reaches the threshold 𝑟𝑚𝑎𝑥 by default; 𝑁 represents the number of
points stored. The expression is derived because range computation
costs (𝑟) time and searching 𝑟 ranges from IOT costs (𝑟 log𝑁) time.
The time cost of the second filter mainly covers the I/O cost of reading
point data from the disk and post-processing. The cost of these pro-
cesses is mostly determined by 𝑘′ which is the result size from the first
filter. Specifically, the I/O cost maximally covers (𝑘′) I/Os. The post-
processing time is bounded by (𝑛𝑘′). 𝑛 refers to the dimensionality of
the key, assuming the dimensions in the point cloud data are all used
as the organizing dimensions.

The efficiency of the solution mainly depends on the performance
of the first filter. An optimal first filter should on the one hand process
fastly, while on the other hand return a small 𝑘′. This can alleviate I/O
and post-processing in the second filter. We introduce False Positive
Rate (FPR) to indicate the accuracy of the first filter (Eq. (1)). A large

ISPRS Journal of Photogrammetry and Remote Sensing 224 (2025) 1–18

4

H. Liu et al.

Fig. 3. Implicit Morton hierarchy: black dots are real points to be managed, while colored dots are Morton branch nodes at different levels.

Fig. 4. The loading and querying procedure of PlainSFC, separated by the dash line.

Fig. 5. Illustration of range computation in 2D, where 𝑟𝑚𝑎𝑥 refers to the maximum number of ranges used for querying.

ISPRS Journal of Photogrammetry and Remote Sensing 224 (2025) 1–18H. Liu et al.
FPR means a coarse first filter and a slow second filter. Although FPR
calculated may be larger than 1, it is an appropriate metric to indicate
the querying efficiency (Section 6.4).

𝐹𝑃𝑅 =
|

|

|

|

𝑘′ − 𝑘
𝑘

|

|

|

|

, (1)

where 𝑘 refers to the final output size.
A bottleneck of querying with PlainSFC lies in the cases where

points are inhomogeneously distributed in the space. This happens
frequently when points are in 3D or higher dimensional spaces. In
such cases, PlainSFC generates a large number of ranges without any
points inside. This means that the budget for ranges that actually select
points decreases. Consequently, ranges in dense point regions cannot
be refined sufficiently. This increases FPR, and the overall querying
efficiency declines.

4. Principles of an nD-histogram method

To resolve the defects of PlainSFC, a distribution-aware method
is needed for computing ranges. The idea is to optimize the range
computation to generate finer ranges where the point density is high,
while generate coarser ranges where points are sparsely distributed. To
this end, this section develops an nD-histogram solution — HistSFC, as
described in the following.

4.1. HistogramTree

We assume all dimensions in the point cloud data are used as the
organizing dimension, for the ease of explanation. We implement the
nD-histogram by using a tree structure — HistogramTree. The C++ data
structure of a node in HistogramTree is expressed as
STRUCT HistNodeND {HistNodeND *child; HistNodeND

*neighbor; uint_256 key; long long
pointcount; short height;}

pointcount records the number of points inside a node. If the
number exceeds a threshold, i.e., the capacity of a leaf node, then the
node is decomposed into 2𝑛 children. height is used to distinguish
different nodes, because branch nodes at different levels may possess
identical keys. It should be noted that a HistogramTree node contains
neither points nor pointers to points. So, HistogramTree is not an
indexing structure. It is an additional structure used by the first filter
when computing ranges for a query window. It is also compact and is
normally stored in a flat table. So, it is convenient to be loaded into the
memory for querying. By using HistogramTree, the number of vacant
ranges can be greatly diminished (Fig. 5(b)). We call the new solution
HistSFC. HistSFC builds HistogramTree using HistSTREAM algorithm
which is described in Appendix A.

4.2. HistSFC querying

HistSFC employs HistogramTree to compute ranges (Fig. 6). Start-
ing from the root node, by performing intersection between the His-
togramTree and the query window iteratively, the function retrieves all
relevant nodes to build the range table (Fig. 4). Nodes inside the query
window are immediately added to the range table without further
processing. Nodes on the boundary containing few points are also
exported immediately, e.g., nodes that contain less than 2𝑛 points. The
remaining nodes intersecting the boundary of the query window are
temporarily held in a refinement pool. These can be further refined
based on fixed recursive decomposition. In fact, some nodes in the pool
intersect with the query window by a large proportion. Then, most
points inside these nodes are likely to be within the query window as
well. By contrast, other nodes intersecting the query window by a small
portion may introduce many false positives. Consequently, HistSFC
computes the intersection ratio of each node which equals the volume
of intersection divided by the volume of the node. These nodes are then
ranked to be subdivided. The process stops when the refinement pool
is empty or the number of ranges reaches the threshold. The rest of the
querying process remains the same as PlainSFC.
5

Fig. 6. Range computation using HistogramTree: with respect to the query window,
green nodes are inside; red nodes are on the boundary; orange nodes are on the
boundary but with few points; white nodes are outside. (For interpretation of the
references to color in this figure legend, the reader is referred to the web version
of this article.)

4.3. Parallel decoding

Although HistSFC decreases FPR compared to PlainSFC (Eq. (1)), the
decoding process of the second filter can still be time consuming if the
result contains many keys. To address this issue, HistSFC adopts parallel
technique for decoding. HistSFC distributes the ranges generated by
the first filter to different processors so that each processor executes
a part of the query and decodes the result. As each range contains
a different number of points due to skewed data distribution, the
actual workload can be unbalanced among processors. To improve this,
HistSFC ranks the ranges according to their lengths, assuming that the
length represents the number of points inside. This is reasonable as
the result is computed using the nD-histogram. Then, each range is
randomly assigned to a processor in the processor pool. Each processor
handles all its ranges and fetches the point data on the disk.

5. Cumulative hypercubic coverage

In principle, HistSFC improves the query performance given skewed
data distribution. However, to what extent can HistSFC improve the
performance? How is this related to specific data distributions? As
the dimensionality of point clouds is always limited, we conduct a
theoretical analysis to investigate the effectiveness of HistogramTree.
This section proposes a metric called Cumulative Hypercubic Coverage
(CHC) to quantify the uniformity of nD points. Then, the section
analyzes the relationship between CHC and the effectiveness of His-
togramTree in querying. In addition, simulation is performed to learn
how the effectiveness of HistogramTree changes with CHC.

5.1. Definition

The idea of CHC comes from a basic question: is it possible to
quantify the uniformity of a set of points on a 2D plane? We may
think of using area to indicate the uniformity. This is because when the
points are spread over the plane, the area seems to be larger than the
case when the points are clustered. However, as a point has no area,
to quantify such a measure, we need to build cells with area around
each point for evaluation. Besides, as the goal is to measure uniformity,
we also want the area measure to be independent from the number of
points (i.e., 𝑁) and only relate to the distribution. To achieve this, the
cell size should be varied according to 𝑁 . We choose the square as the
shape of each cell, which becomes the hypercube in nD space. We name
the cell created for the measurement the associated cell for each point.

ISPRS Journal of Photogrammetry and Remote Sensing 224 (2025) 1–18H. Liu et al.
Fig. 7. Two approaches computing the 2D cumulative hypercubic coverage.
Fig. 8. Numerical simulation of CHC using two computing approaches.
Definition. Given a set of nD points, cumulative hypercubic coverage
refers to the sum of standardized hypercubic volume of all associated
cells after deduplication.

We provide two approaches to compute CHC, and later prove that
they approach to the same expectation when 𝑁 becomes arbitrarily
large. Given a point set consisting of 𝑁 points within an nD do-
main which is defined by the range of all dimensions, suppose the
hypervolume of the domain is 𝑉 :

Grid occupancy: We divide the domain into 𝑁 nD-cells with equal
size (Fig. 7(a)). Suppose the extent of the 𝑖th dimension 𝐷𝑖 equals
𝐸𝐷𝑖, the edge length of the cell at that dimension then equals 𝐸𝐷𝑖

𝑛√𝑁
.

If at least one point falls into a cell, then the cell is counted. As the
hypervolume of each cell is 𝑉𝑁 , then, 𝐶𝐻𝐶 = 1

𝑉
count of occupied cells⋅𝑉

𝑁 =
count of occupied cells

𝑁 .
Entity union: For each point 𝑝, we use it as the center to build an

nD-cell 𝑐 (Fig. 7(b)) of which the edge length at 𝐷𝑖 equals 𝐸𝐷𝑖
𝑛√𝑁

. Then,
𝐶𝐻𝐶 = ℎ𝑦𝑝𝑒𝑟𝑣𝑜𝑙𝑢𝑚𝑒(

⋃

𝑐)
𝑉 .

Theorem 1. Given a point set following a specific distribution, when 𝑁
becomes arbitrarily large, the expectation of grid occupancy is a constant
which is only determined by the joint Probability Density Function (PDF).

Theorem 2. The expectation of entity union converges to the same constant
as grid occupancy, when 𝑁 becomes arbitrarily large.

Appendix B provides the proof. We also perform simulations to
illustrate the theorems. In Fig. 8(a), the CHC of a 2D point cloud is
6

computed. The dimension X and Y are independent from each other,
both following  (0.5, 0.1) (shown in Fig. 7). Fig. 8(b) shows the CHC
of another 2D point cloud, where X follows exponential distribution
𝐸(12.5) and Y follows gamma distribution 𝛤 (2, 0.08). The figures in-
dicate that the CHC values computed by both approaches gradually
converge to the true value which can be computed (Eq. (6) in Appendix
B).

Compared with entity union, grid occupancy is more convenient
and efficient to compute. For example, a DBMS flat table PC stores
𝑁 points with columns 𝑑1, 𝑑2, . . .𝑑𝑛, corresponding to different di-
mensions. The SQL command ‘‘SELECT COUNT(ct)/N from (SELECT
COUNT(*) AS ct from PC group by TRUNC(d1/𝑒𝑙𝐷1), TRUNC(d2/𝑒𝑙𝐷2),
. . . TRUNC(dn/𝑒𝑙𝐷𝑛))’’ can be used to derive CHC. 𝑒𝑙𝐷𝑖 refers to the edge
length of a cell in 𝐷𝑖, which equals 𝐸𝐷𝑖

𝑛√𝑁
.

Uniformity metrics for point clouds have been proposed before
(Gunzburger and Burkardt, 2004; Ong et al., 2012). Compared with
them, CHC is computed based on accumulating the hypercubes, which
keeps consistent with the querying strategy of HistSFC. Therefore, CHC
can be an appropriate metric to explore the relationship between the
effectiveness of HistogramTree and the uniformity of data.

5.2. Effectiveness of nD-histogram

As mentioned, there exist a fraction of the ranges computed by
PlainSFC containing no points. We define an effective range as a range
exported by PlainSFC that contains at least one point, no matter
whether the point is inside the query window or not. Assume the

ISPRS Journal of Photogrammetry and Remote Sensing 224 (2025) 1–18H. Liu et al.
Fig. 9. Simulated probability density functions.
capacity threshold of HistogramTree is 1 (i.e., the highest precision).
Obviously, HistSFC only returns effective ranges. Then, we use Eq. (2)
to measure the effectiveness of HistogramTree with respect to a query.
Theorem 3 shows how the effectiveness is related to CHC.

𝐸ℎ𝑖𝑠𝑡 =
Number of ranges exported by PlainSFC
Number of ranges exported by HistSFC (2)

Theorem 3. Given a point cloud containing 𝑁 points. Suppose the points
can move freely in the domain so that the uniformity is changing. For a
window query, the expected 𝐸ℎ𝑖𝑠𝑡 is a monotonically decreasing function of
CHC.

The proof is provided in Appendix B. We derive a general pattern
from Theorem 3: given two nD point clouds 𝐴 and 𝐵 where 𝐶𝐻𝐶𝐴 >
𝐶𝐻𝐶𝐵 , for a large number of window queries, 𝐸ℎ𝑖𝑠𝑡(𝐴) < 𝐸ℎ𝑖𝑠𝑡(𝐵). That
is, with the decrease of CHC, the benefit of using HistSFC increases.
When CHC approaches 0, 𝐸ℎ𝑖𝑠𝑡 becomes arbitrarily large and the vacant
ranges generated by HistSFC will be much less than that of PlainSFC.
The smallest 𝐸ℎ𝑖𝑠𝑡 equals 1, which happens when points follow a
chessboard distribution (i.e., CHC = 1). In that case, HistogramTree is
not needed.

5.3. Realistic simulation

To further evaluate the effectiveness of HistogramTree, we conduct
another experiment with realistically simulated data. Using simulation,
we guarantee that CHC values of the data generated can be of different
orders of magnitude. We first collect point clouds from different sources
such as indoor laser scanning and Airborne Laser Scanning (ALS),
and study the distributions of various dimensions involved. This test
simulates 6 dimensions with different distribution types that we derived
7

Table 1
Distributions designed in the realistic simulation.
 Gentle Sharp
 Uniform 𝑈 (0, 220) 𝑈 (0, 220)
 Normal  (219 , 218)  (219 , 217)
 Gamma1 𝛤 (1, 2) × 217 𝛤 (0.05, 1) × 217
 Gamma2 𝛤 (2, 3) × 215 𝛤 (10, 0.1) × 215
 Gamma3 𝛤 (10, 2) × 216 𝛤 (820, 0.02) × 216

(Table 1 and Fig. 9). The value of each dimension is based on 20 bits,
ranging from 0 to 220.

The test builds 10 data sets in 3D, 4D, 5D and 6D, respectively. Each
data set contains 107 points. The first two dimensions of these data
sets always follow the uniform distribution, while other dimensions are
generated by randomly choosing the distribution from Table 1. Then,
the test adopts the regular procedure to build HistogramTree based on
capacity threshold: 3D and 4D solutions use 100 as the capacity, while
5D and 6D adopt 1000, instead. When querying, the test randomly
generates 500 nD query windows with varying edge lengths at each
dimension. The maximum number of ranges for 3D and 4D querying
is 1000; while that for 5D and 6D querying is 10,000. These settings
are typical given corresponding data. We adopt a variant of 𝐸ℎ𝑖𝑠𝑡 to
evaluate the effectiveness of HistogramTree, which is 𝐸′

ℎ𝑖𝑠𝑡 (Eq. (3)).
It is more appropriate because PlainSFC and HistSFC returns the same
number of ranges in this experiment:

𝐸′
ℎ𝑖𝑠𝑡 =

𝐹𝑃𝑅𝑃 𝑙𝑎𝑖𝑛𝑆𝐹𝐶
𝐹𝑃𝑅𝐻𝑖𝑠𝑡𝑆𝐹𝐶

(3)

where 𝐹𝑃𝑅𝑃 𝑙𝑎𝑖𝑛𝑆𝐹𝐶 and 𝐹𝑃𝑅𝐻𝑖𝑠𝑡𝑆𝐹𝐶 stand for FPR of PlainSFC and
HistSFC, respectively.

Fig. 10 presents the medians of 𝐸′
ℎ𝑖𝑠𝑡 from all the tests. On the whole,

HistogramTree works more effectively when the data set possesses a

ISPRS Journal of Photogrammetry and Remote Sensing 224 (2025) 1–18H. Liu et al.

.

Fig. 10. Relationship between CHC and 𝐸′

ℎ𝑖𝑠𝑡 derived from the realistic simulation.

Fig. 11. The AHN2 sample used for benchmarking.

smaller CHC. The results indicate that when the CHC value is smaller
than 0.1, HistogramTree becomes essential to use. This is because
in many cases, the FPR can be decreased by orders of magnitude,
especially when CHC is below 0.01. In practice, as CHC is convenient to
compute based on the occupancy grid, developers are suggested to first
measure the CHC before building the HistogramTree. If a point cloud
is too large, random sampling can be performed to derive CHC since it
is only influenced by the point distribution.

6. Experimental evaluation

After acquiring the convincing results of HistSFC by theoretical
analysis and simulation, we evaluate the performance in practice. This
section elaborates benchmark results on real data. Section 6.1 lists the
other state-of-the-art solutions for benchmarking. Section 6.2 describes
two use cases on which the benchmark is based. Section 6.3 compares
HistSFC and PlainSFC. This is then followed by an overall comparison
including HistSFC and state-of-the-art solutions in Section 6.4. Sec-
tion 6.5 discusses the results and provides more aspects of the use of
HistSFC. All benchmark tests are performed on a HP DL380p Gen8
server with 2 × 8-core Intel Xeon processors, E5-2690 at 2.9 GHz,
128 GB of main memory, a RHEL6 operating system. The disk storage
is a 41 TB SATA 7200 rpm in RAID6 configuration.

6.1. State-of-the-art solutions

Appendix C presents the querying process of state-of-the-art solu-
tions for benchmarking. The final results of all solutions are stored as
C++ in-memory objects, before being exported to the disk.

(Extended) Pyramid-Technique Section 2.3 describes the principle
of both Pyramid-Technique and extended Pyramid-Technique. They
adopt the same architecture for querying.

PostGIS The pgPointcloud extension (Ramsey, 2020) can maximally
support two organizing dimensions, which performs inefficiently in
higher dimensional queries. Thus, it is not used in the benchmark test.
8

Table 2
Storage size of AHN2 data sets on the disk (GB).
 Data set 1 2 3 4 5
 Number of points 5 × 108 109 2 × 109 6 × 109 1010
 Raw TEXT 16.49 32.98 64.42 193.9 323.4
 SFC IOT 10 19.95 38.97 118.3 199.7
 Pyramid 18.24 36.39 71.06 213.6 356.9
 PyramidEx 18.52 36.95 72.01 216.2 360.7
 PostGIS 7.21 14.17 28.1 82.32 138.0

Table 3
Selectiveness of different dimensions of the query windows, with respect to Data set 1
 X Y Z cLoI Overall
 SmallA 1.73% 4.37% 99.46% 94.31% 0.05%
 SmallB 20.5% 79.11% 1.01% 23.48% 0.05%
 SmallC 20.25% 17.58% 98.8% 1.03% 0.05%
 Medium 20.29% 35.02% 98.29% 11.23% 0.67%
 Large 20.39% 55.3% 98% 40.03% 4.53%

Instead, we implemented a 4D solution based on the 4D MultiPoint ge-
ometry. The original ‘‘M’’ dimension is replaced by cLoI (Section 6.2.1).
To keep in line with HistSFC, a MultiPoint object which corresponds to
a leaf node of HistogramTree is created to store point data. Such an
object can be regarded as a 4D block. Then, a 4D R-tree is built on all
MultiPoint objects for indexing.

SDO_PC Oracle SDO_PC solution (Oracle, 2019) partitions point
cloud data into 2D blocks and adopts Hilbert R-tree for indexing. In the
flood data test (Section 6.2.2), we use X and Y dimension to organize
data and create blocks.

6.2. Use cases

We investigate two use cases: the AHN2 exploration in Section 6.2.1
concerns a 4D point cloud, while the flood risk querying in Sec-
tion 6.2.2 uses an 8D data set.

6.2.1. AHN2 exploration
AHN2 is an ALS point cloud recording the terrain elevation of

the Netherlands (AHN, 2014), with a density of 6 — 10 points/m2.
We cropped a sample which locates at the southwestern part of the
Netherlands (Fig. 11), containing 10 billion points. The XYZ bounding
box is [13427.6, 359007.3, −8.8; 38000, 415990.9, 119.7] in spatial
reference system Amersfoort/RD New, EPSG:28992. cLoI is used to
represent the importance of a point. It improves the performance on
visualizing large point clouds where less important points may not have
to be rendered (Fig. 12). We add the cLoI dimension into AHN2 as the
fourth organizing dimension.

In order to learn the scalability of different solutions, we split the
data into five vertical slices from west to east. Starting from the first
piece which is Data set 1, by adding one more slice each time, five
different data sets are built. Table 2 presents the storage size of different
solutions. Raw TEXT refers to point records with 4 fields stored in TEXT
files. Pyramid and PyramidEx refer to Pyramid-Technique and extended
Pyramid-Technique, respectively.

For querying, we devise the query window sizes and locations by
considering query logs and testing requirements (e.g., diverse selective-
ness of queries defined by Eq. (4)). The selectiveness of the 5 query
windows used for benchmarking is presented in Table 3.

𝑠𝑒𝑙𝑒𝑐𝑡𝑖𝑣𝑒𝑛𝑒𝑠𝑠 =
Number of points within the query range

Total number of points (4)

ISPRS Journal of Photogrammetry and Remote Sensing 224 (2025) 1–18H. Liu et al.
Fig. 12. A bird-view selection of the AHN data using cLoI. Only important points are rendered on the periphery.
Fig. 13. A typical flood modeling grid along a river, from Gharbi et al. (2016).
6.2.2. Flood risk querying
Flood risk mapping projects generate huge amounts of modeling

data to assess the flood risk. The mapping process mainly includes two
parts. The first part concerns running a 1D and 2D coupled hydrody-
namic model to compute water depth, flow velocity and direction at
different time steps, given a specific breach case. The model stores
results in a 2D mesh covering the modeling basin (Fig. 13). The
modeling results are then used for making various maps such as the
maximum inundation map and inundation duration map, in a following
step. The water authorities collect these final products, and use them for
decision making. However, a large part of original modeling results are
omitted because they are cumbersome to manage, analyze and present.
This certainly has drawbacks: the products are ‘‘static’’ and no more
details can be derived; the maps fail to address new requirements.

In fact, any specific flood map can be expressed and formed by a
type of query. For example, the inundation extent map can be generated
by selecting all the grid cells with water depth greater than 0, while
the arrival time map can be generated by selecting cells at different
time steps that have been flooded. In addition, new requirements such
as flood situation around certain objects can also be resolved by using
specific queries. Due to the irregular grid (Fig. 13), data storage and
querying in the form of rasters would be cumbersome and inefficient.
A possible solution is to extract the centroids of all cells and store
the attributes including flow velocity, direction and inundation depth
in these centroids. These attributes can either be used as the prop-
erty dimension or organizing dimension for data management. Flood
risk analysis can then be performed by querying this nD-PointCloud
database using all these relevant dimensions. This section demonstrates
this with a use case in China (Liu et al., 2021a).

The project models 8 cases (i.e., initial conditions), and each case
simulates 720 time steps with 30-min resolution. In total, we get
9

Table 4
Storage size of flood data sets on the disk (GB).
 Data set Number of points Raw TEXT HistSFC SDO_PC
 1 42,969,600 2.69 1.67 + 0.002 3.63
 2 85,939,200 5.41 3.34 + 0.004 7.26
 3 171,878,400 10.8 6.67 + 0.009 14.1
 4 343,756,800 20.7 12.9 + 0.017 33.3

59,680 × 720 × 8 = 343,756,800 points in an 8D space composed by
case ID, X, Y, Z, time, depth, velocity and direction. To explore the
scalability, we divide the whole result set into 4 benchmark data sets
according to the case ID. Data set 1 consists of the result of case 1.
Data set 2 consists of case 1 and 2. Data set 3 includes the first 4 cases.
Data set 4 refers to the whole data set. Table 4 lists the storage size of
different solutions. HistSFC’s size includes IOT and HistogramTree.

In practice, the flow direction is infrequently used for risk analysis
compared with other dimensions. So, we set flow direction as the only
property dimension when building HistSFC. We choose to implement
SDO_PC because Oracle is widely used to manage water data. So, it is
very convenient to be used directly for point clouds. Besides, HistSFC
is also implemented in Oracle and this can achieve fair comparison in
terms of architecture.

According to practical experience and potential needs, we devised
4 queries for testing (Table 5). As these queries all concern case 1, the
execution using different data sets will return the same results.

6.3. HistSFC vs PlainSFC

This section investigates to what extent HistSFC improves the per-
formance of PlainSFC. We tested different size of HistogramTree to

ISPRS Journal of Photogrammetry and Remote Sensing 224 (2025) 1–18H. Liu et al.
Table 5
Flood queries used for benchmarking.
 Query Description Org. Dimensions Num. Points
 DEPTH3 m Select the area that is flooded with depth greater than

3 m, in case 1
caseID, depth 26,484,215

 ARRIVAL24h Select the area that is flooded (depth > 0) within 24 h, in
case 1

caseID, depth, time 925,691

 EXTENTmax Select the maximum inundation area (depth > 0), in case 1 caseID, depth 32,183,314
 HOUSErisk Select the area that is flooded (depth > 0) around several

houses (a rectangular area), in case 1
caseID, depth, X, Y 170,417
Table 6
Memory consumption of HistogramTree in AHN2 test (MB).
 Data set Capacity threshold
 1,000 10,000 100,000
 1 135 11.6 1.18
 2 265 23.2 2.38
 3 531 46.8 4.77
 4 1,408 124 11.9
 5 2,615 242 24.1

Table 7
False positive rate using different HistogramTrees in AHN2 test.
 Query window HistSFC_1K HistSFC_10K HistSFC_100K PlainSFC
 SmallA 0.084 0.121 0.248 1.031
 SmallB 0.778 1.143 1.257 2.339
 SmallC 0.022 0.052 0.059 0.068
 Medium 0.079 0.100 0.124 0.285
 Large 0.028 0.033 0.063 0.136

Table 8
Memory consumption of HistogramTree in the flood data test (MB).
 Data set Capacity threshold
 1,000 5,000 10,000
 1 13.8 2.70 1.74
 2 27.4 5.38 3.62
 3 54.7 10.8 7.13
 4 105 20.5 13.6

Table 9
False positive rate using different HistogramTrees in the flood data test.
 Query window HistSFC_1K HistSFC_5K HistSFC_10K PlainSFC
 DEPTH3m 0.048 0.084 0.106 4.739
 ARRIVAL24h 4.958 5.571 5.884 25.433
 EXTENTmax 0.339 0.357 0.39 4.327
 HOUSErisk 1.922 1.876 2.048 13.457

learn how this influences the querying efficiency. We adopted neutral
number of ranges for querying. That is, 1 million for AHN2 test and
100,000 for the flood data test.

Table 6 presents the memory consumption in AHN2 test. Table 7
presents FPR of different solutions. HistSFC_1K refers to HistogramTree
with a capacity threshold of 1000. Overall, using HistogramTree signif-
icantly decreases FPR of PlainSFC. HistSFC_1K performs the best, and
it at least decreases FPR by half compared to PlainSFC.

Table 8 presents the memory cost of HistogramTrees in the flood
data test. As the data set is smaller than AHN2, smaller node capacities
are tested. As the tables show, HistogramTrees’ sizes are much smaller
here than in the AHN2 experiment. They are all below 100 MB. Table
9 presents FPRs for flood queries. The FPR can be decreased by orders
of magnitude after using HistogramTree. In fact, HistogramTree’s ef-
fectiveness is closely related to CHC, where the CHC of AHN2 data is
0.0095 and that of the whole flood data is 0.0006758.

Fig. 14 shows the querying time cost of different solutions in the
AHN2 SmallC test. Appendix D provides exact time measurements.
10
Fig. 14. Time cost of SmallC query using different HistogramTrees.

Fig. 15. Time cost of ARRIVAL24h using different HistogramTrees.

Other tests present analogous patterns. The time cost is composed
by the first filter time and the second (Section 3.3). On the whole,
HistSFC_10K and HistSFC_100K perform the best. PlainSFC follows
behind, while HistSFC_1K ranks last. In most cases, the gap between
PlainSFC and HistSFC_10K or HistSFC_100K is not large. The main
reason lies in the high uniformity of the data, and the effectiveness
of HistogramTree is limited. In contrast to the favorable performance
in FPR (Table 7), HistSFC_1K degrades remarkably in time cost as
data size increases. This is mainly caused by traversing the huge
HistogramTree in the first filter which takes an enormous amount of
time. Besides, HistogramTree first has to be loaded into memory to use.
The loading process of HistSFC_1K of Data set 5 can take 150 s, which
is unacceptable.

Fig. 15 shows the time cost of the flood ARRIVAL24 h test as a repre-
sentative. Appendix D provides exact time measurements. HistSFC_1K,
HistSFC_5K and HistSFC_10K respond 2× to 5× faster than PlainSFC.
This is due to higher FPRs (Table 9) of PlainSFC which increases I/O
and decoding time cost. Compared to the AHN2 test, HistogramTree

ISPRS Journal of Photogrammetry and Remote Sensing 224 (2025) 1–18H. Liu et al.
Fig. 16. Time cost of SmallA query using state-of-the-art solutions.
Fig. 17. Time cost of SmallB query using state-of-the-art solutions.

works more effectively for this non-uniformly distributed data. The
time cost of HistSFC solutions do not vary significantly. In the follow-
ing, we choose HistSFC_5K as the optimal solution because it balances
the performance and resource consumption.

6.4. HistSFC vs State-of-the-arts

To further learn HistSFC’s performance, we perform benchmark
tests to compare HistSFC and other solutions using AHN2 and the flood
data. In the AHN2 test, the leaf node capacity of HistogramTree is
set to 10,000 (Table 6), and the number of ranges for querying is
100,000. These parameters are acquired by extra experimenting and
tend to be optimal. For PostGIS, the capacity of MultiPoint object is
10,000 points. Figs. 16–20 present the time cost of different solutions.
Appendix D provides all related time measurements. For all solutions,
we implement parallel post-processing with 32 processors.

From Figs. 16–20, HistSFC always takes the least time to execute.
PostGIS ranks behind, while Pyramid and PyramidEx (i.e., extended
Pyramid-Technique) are the slowest solutions. More specifically, in
SmallA and SmallC, PostGIS spends slightly more time than HistSFC.
However, SmallB is different, where HistSFC is 3× to 5× faster than
PostGIS. This is because the specific shape of SmallB results in more
blocks of the PostGIS solution intersecting the query window. Thus,
PostGIS spends much more time on unpacking blocks. For the same
reason, HistSFC outperforms PostGIS in the Medium and Large query.
For these two queries, HistSFC spends most of the time on the second
filter while less than 2 s on the first filter. With respect to scalability,
PostGIS scales constantly as input data size increases. HistSFC presents
a slightly increasing pattern in terms of scalability. This is mainly
attributed to the growing HistogramTree’s size which causes more
traversing time.
11
Fig. 18. Time cost of SmallC query using state-of-the-art solutions.

Fig. 19. Time cost of Medium query using state-of-the-art solutions.

Pyramid and PyramidEx spend much more time on querying, and
the performance fluctuates significantly. This is caused by the large and
changing FPR (Table 10). Due to the specific pyramid decomposition of
the space, when the query window reaches the bottom of a pyramid,
all points residing in the bottom level of the pyramid will be selected.
This brings large number of false positive points, increasing FPR. On
the other hand, the FPR may also decrease when the input data size
increases. This is because for each data set, the boundary of data and
the medians for computing the pyramid value are changed. So, for the
same query window, either Pyramid or PyramidEx may select different
portions of data, which then influences FPR. PyramidEx may not always
outperform Pyramid. In SmallB, PyramidEx returns higher FPR for
certain query windows, which is caused by the window positions.
Besides the time cost, the final output of Pyramid and PyramidEx may

ISPRS Journal of Photogrammetry and Remote Sensing 224 (2025) 1–18H. Liu et al.
Fig. 20. Time cost of Large query using state-of-the-art solutions.

Table 10
False positive rate of state-of-the-art solutions in AHN2 test.
 Data set SmallA SmallB SmallC Medium Large
 HistSFC All 0.33 1.92 0.16 0.18 0.08
 PostGIS All 1.57 7.14 0.66 0.36 0.16

Pyramid

1 1739.32 336.69 32.85 14.77 5.73
 2 3328.40 677.63 84.20 29.58 13.34
 3 5739.03 862.65 708.46 54.45 30.07
 4 11345.91 612.88 585.33 33.65 50.16
 5 13568.89 170.72 1405.94 67.47 35.60

PyramidEx

1 255.80 689.05 20.43 23.87 6.40
 2 338.27 1148.89 41.91 44.66 9.36
 3 408.23 1083.39 84.84 86.67 12.12
 4 465.24 1266.48 263.35 101.90 14.34
 5 757.63 1733.64 432.85 139.94 20.01

not be accurate. This is because the pyramid value is not so precise to
avoid errors at the query boundaries.

In the flood data test, HistSFC uses 5000 as the leaf node capacity
(Table 8) and 100,000 ranges for querying. SDO_PC adopts 5000 as the
block capacity. In Fig. 21, from DEPTH3 m to EXTENTmax, HistSFC
responds significantly faster than SDO_PC. Besides, HistSFC also scales
better, while SDO_PC takes more time as input data becomes larger.
This is mainly because SDO_PC organizes and indexes data using XY
only. So, queries on other dimensions instead of XY (e.g., the temporal
or the depth dimension) need to unpack and scan all blocks, which is
costly. However, SDO_PC shows superior performance in HOUSErisk.
This is because the query uses XY range, which caters to the strength
of SDO_PC which implements efficient 2D intersection. Only a few
blocks are retrieved in HOUSErisk, and incurs small I/O cost. By
contrast, HistSFC adopts 7D data organization with one dimensions as
the property dimension, which means more nodes are examined for
intersection. This also introduces more false positive points with veloc-
ity below 0.5 or outside the road, increasing the FPR. Overall, the test
indicates that SDO_PC is only preferable for 2D spatial queries, while
HistSFC is advantageous in queries concerning different combinations
of dimensions.

6.5. Discussion

The benchmark tests show that HistSFC is the most favorable solu-
tion from all tests. HistSFC efficiently generates accurate SFC ranges for
selection using HistogramTree, and does not need to unpack blocks due
to its IOT storage. PostGIS performs very efficiently in retrieving blocks
(i.e., MultiPoint objects), and thus functions efficiently for queries with
small output. However, with more blocks selected, PostGIS spends sig-
nificantly more time on unpacking them. Yet, both PostGIS and SDO_PC
12
fail to address high dimensional queries efficiently due to their storing
strategies. Pyramid and PyramidEx are originally devised for very high
dimensional hypercubic window queries. However, they perform less
efficiently in our experiment. The specific pyramid decomposition of
the space causes very large FPRs.

As the input data size rises, HistogramTree’s memory cost goes up
(Tables 6 and 8). We also observe that the growing HistogramTree’s
size causes increasing time cost of the first filter. However, the size
(e.g., 242 MB of HistSFC_10K) is moderate given current hardware
settings, and the induced time cost in the first filter is insignificant
unless we adopt HistSFC_1K. In fact, the optimal size of HistogramTree
depends on the data and the implementing environment, and can be
derived by benchmarking in general. Considering prevalent settings of
hardware and typical applications of AHN2, HistogramTree is suggested
to be kept under 1 GB. If the data size continues to increase, we may
develop a block based HistSFC. That is, we group points to blocks as the
leaf nodes of IOT. Then, to reduce the block unpacking workload, we
can adopt a B+-tree to organize and index the data inside each block.
Then, HistSFC is able to retrieve and unpack only the corresponding
part of the block involved in a query by adopting the internal index.
This remains to be future work. Besides, we suggest using CHC as
an initial indicator to employ HistSFC. The simulation shows that
when CHC is greater than 0.1, PlainSFC is also appropriate to use
(Section 5.3).

To efficiently use PlainSFC and HistSFC, it is crucial to determine
the organizing dimensions. In fact, the set of organizing dimensions
balances the variety of queries and efficiency. That is, if we want to
add more organizing dimensions to support more types of queries, the
efficiency of every type of query somewhat declines due to the high
dimensionality of the node. This is because high dimensional nodes
generate a large number of child nodes by partitioning once, but 𝑟𝑚𝑎𝑥 is
confined by the memory size. So, the selected nodes may not be refined
sufficiently to reduce false positives. Thus, it is significant to perform
a systematic analysis of the application and only use dimensions that
are queried frequently to organize data. For spatial applications, we
should first consider using X and Y as organizing dimensions. Next, the
Z, time, cLoI, and classification may be used in addition. It is likely that
we may not foresee all possible applications in advance, and a crucial
new application requires conducting queries on property dimensions.
Then, we suggest performing benchmark tests to compare different
data organizations, e.g., by adopting different organizing dimensions
considering query frequency and selectiveness (Eq. (4)). In the end,
we may need to reorganize the data storage or build another copy to
achieve the best performance. More knowledge of nD-PointCloud data
organization can be acquired from Meijers and van Oosterom (2018),
Psomadaki (2016), Liu et al. (2021c).

7. Conclusions

To improve the range computation of PlainSFC on window queries,
this paper develops an nD-histogram approach — HistSFC. It builds a
HistogramTree structure and uses it to generate more accurate ranges
for selection. The paper discovers a statistical metric, CHC, to quantify
the uniformity of point data. It is revealed that CHC is only determined
by the data distribution regardless of the number of points. Theory
shows that HistogramTree works more effectively on data sets which
possess larger CHC values. Both simulation and benchmark tests in-
dicate that when the CHC value is below 0.01, HistSFC can reduce
the FPR of PlainSFC by at least 50%. As a consequence, the time cost
decreases evidently. The performance gain becomes more significant
as CHC further decreases. HistSFC is also compared with state-of-the
art solutions. Overall, HistSFC responses the fastest. In certain cases, it
takes less than 10% of the time of the others. It presents fine scalability
as well as stable performance in nearly all querying tests. Related
code of the research can be assessed at https://github.com/rencail-
hc/HistSFC.

ISPRS Journal of Photogrammetry and Remote Sensing 224 (2025) 1–18H. Liu et al.
Fig. 21. Time cost (lines) and throughput (bars) of different solutions on flood querying.
CRediT authorship contribution statement

Haicheng Liu: Writing – review & editing, Writing – original draft,
Methodology, Formal analysis, Conceptualization. Zhiwei Li: Valida-
tion, Resources, Project administration, Investigation, Funding acqui-
sition. Peter van Oosterom: Supervision, Methodology, Conceptual-
ization. Martijn Meijers: Validation, Supervision, Investigation. Chuqi
Zhang: Writing – review & editing, Validation.

Declaration of competing interest

The authors declare that they have no known competing finan-
cial interests or personal relationships that could have appeared to
influence the work reported in this paper.

Acknowledgments

The authors would like to thank Rodney Thompson, Jianping Wang,
Zhida Chen, and Jiong Xie for their help in preparing the manuscript.

Appendix A. HistogramTree construction

Fig. 22 presents the procedure of building HistogramTree, called
HistSTREAM. Basically, HistSTREAM reads sorted Morton keys sequen-
tially and meanwhile computes a node that could be the parent of
all traversed keys. This stops until reading a key that belongs to the
sibling or parent of the current node. The process will also stop when
the number of keys traversed exceeds the leaf node’s capacity. Then,
HistSTREAM returns to the beginning of this traversal and creates
the nodes. HistSTREAM continues and repeats such process until the
scanning of IOT is completed. Then, all nodes created are aggregated till
the root node. HistSTREAM has to be implemented after data loading,
as the order of the keys is critical. The I/O cost is (𝑁), as data sorting
has been done and IOT has been built. Besides, the memory usage
mainly depends on the leaf node capacity, and will not keep increasing
as the input size grows. Moreover, HistSTREAM can be a fully streaming
process.
13
Fig. 22. HistSTREAM.

Appendix B. Proof of CHC related theorems

Theorem 1. Given a point set following a specific distribution, when 𝑁
becomes arbitrarily large, the expectation of grid occupancy is a constant
which is only determined by the joint Probability Density Function (PDF).

ISPRS Journal of Photogrammetry and Remote Sensing 224 (2025) 1–18H. Liu et al.
Fig. 23. The region used to compute 𝐸(𝑠) which is the red box, with lower bound on the left, upper bound on the right.
Fig. 24. The change of effective ranges with respect to CHC, where solid lines constitutes the occupancy grid, while dash lines indicate the subdivision of space. Red rectangle
refers to the query window. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
Proof. Assuming the point set is distributed in a 2D unit domain, for
a specific cell 𝑐 defined by its center (𝑥, 𝑦), the probability that it is
occupied can be computed:

𝑃 (𝑐(𝑥, 𝑦)) = 1 −
(

1 − 𝐹𝑐(𝑥,𝑦)
)𝑁 = 1 −

(

1 − 1
𝑁

⋅ 𝑓𝑐(𝑥,𝑦)
)𝑁

where 𝐹𝑐(𝑥,𝑦) is the cumulative probability in 𝑐, and 1 − 𝐹𝑐(𝑥,𝑦) is the
probability that a point does not fall into 𝑐. 𝑓𝑐(𝑥,𝑦) refers to the average
probability density in 𝑐. When 𝑁 → ∞, the size of 𝑐 becomes arbitrarily
small, we have

lim
𝑁→∞

𝑃 (𝑐(𝑥, 𝑦)) = lim
𝑁→∞

(

1 − (1 −
𝑓𝑐(𝑥,𝑦)
𝑁

)𝑁
)

= 1 − 𝑒−𝑓 (𝑥,𝑦)

where 𝑒 is the Euler’s number which approximately equals 2.71828,
and 𝑓 (𝑥, 𝑦) is the probability density at (𝑥, 𝑦). The specific derivation is
based on lim𝑁→∞(1 − 1

𝑁)𝑁 = 1
𝑒 . We just need to change the form to

lim𝑁→∞(1 − 𝑓𝑐(𝑥,𝑦)
𝑁)𝑁 , to derive the limitation which equals 𝑒−𝑓 (𝑥,𝑦).

Since

𝐸(𝐶𝐻𝐶) =
𝑁
∑

𝑖=1

𝑃 (𝑐𝑖)
𝑁

when 𝑁 → ∞, we derive

𝐸(𝐶𝐻𝐶) = ∬𝛺
𝑃 (𝜎) 𝑑𝜎 = 1 −∬𝛺

𝑒−𝑓 (𝑥,𝑦) 𝑑𝑥 𝑑𝑦 (5)

where 𝛺 refers to the unit domain, [0, 1] × [0, 1] in this case.
This can be easily extended to the nD unit hypercubic domain,

where 𝑓𝑛 represents the joint Probability Density Function (PDF) and
is a continuous function in the domain:

𝐸(𝐶𝐻𝐶) = 1 − ∫ ⋯∫ 𝑒−𝑓𝑛 𝑑𝑣 (6)
14

𝛺

In reality, it is very likely that a point cloud can spread over a much
larger space than a unit domain. In such cases, the PDF can firstly be
scaled to the unit domain, and the expectation can then be derived.
Such scaling does not change CHC because a cell in the original space
corresponds to a distinctive cell in the unit domain. So, the count of
occupied cells remains the same.

Theorem 2. The expectation of entity union converges to the same constant
as grid occupancy, when 𝑁 becomes arbitrarily large.

Proof. The difficulty to compute CHC using entity union lies in
computing the overlapping area of different cells. To solve this, instead
of a cell, we focus on a small box region in the domain that may be
covered by the union of cells. We still assume that the point set is
distributed in a 2D unit domain. The area of the box region is denoted
by 𝛥𝑠, where 1

𝑁 ≫ 𝛥𝑠. We use two bounds to derive the expectation
of the area of which 𝛥𝑠 is covered, denoted by 𝐸(𝑠). In Fig. 23, the
dashed box refers to an nD-cell 𝑐, when a point falls into the red box,
𝛥𝑠 is considered to be covered.

Apparently, the lower bound omits the region where a cell partially
intersects 𝛥𝑠, while the upper bound elaborates all intersection cases.
This yields
𝑃𝜎𝐿𝛥𝑠 ≤ 𝐸(𝑠) ≤ 𝑃𝜎𝑈 𝛥𝑠

where 𝑃𝜎𝐿 refers to the probability that a point falls into the region of
the lower bound, while 𝑃𝜎𝑈 refers to that of the upper bound. We have,

𝑃𝜎𝐿 = 1 −
(

1 − 𝐹𝜎𝐿(𝑥,𝑦)

)𝑁
=

1 −

(

1 − (1
√

−
√

𝛥𝑠)2 ⋅ 𝑓𝜎𝐿(𝑥,𝑦)

)𝑁
𝑁

ISPRS Journal of Photogrammetry and Remote Sensing 224 (2025) 1–18H. Liu et al.
Fig. 25. Querying process of different solutions.
𝑃𝜎𝑈 = 1 −

(

1 − (1
√

𝑁
+
√

𝛥𝑠)2 ⋅ 𝑓𝜎𝑈 (𝑥,𝑦)

)𝑁

When 𝑁 → ∞, then, 𝛥𝑠 → 0, the size of 𝜎𝐿 and 𝜎𝑈 becomes arbitrarily
small, we then derive

lim
𝑁→∞

𝑃𝜎𝐿 = lim
𝑁→∞

(

1 − (1 −
𝑓𝜎𝐿(𝑥,𝑦)

𝑁
)𝑁

)

= 1 − 𝑒−𝑓 (𝑥,𝑦)

lim
𝑁→∞

𝑃𝜎𝑈 = 1 − 𝑒−𝑓 (𝑥,𝑦)

As

𝐸(𝐶𝐻𝐶) =
∑

𝐸(𝑠)

so
1
𝛥𝑠
∑

𝑖=1
𝑃𝜎𝐿𝛥𝑠 ≤ 𝐸(𝐶𝐻𝐶) ≤

1
𝛥𝑠
∑

𝑖=1
𝑃𝜎𝑈 𝛥𝑠

When 𝑁 → ∞, and 𝛥𝑠 → 0, we also derive

𝐸(𝐶𝐻𝐶) = ∬𝛺

(

1 − 𝑒−𝑓 (𝑥,𝑦)
)

𝑑𝜎

where 𝛺 refers to the unit domain.
This is the same as Eq. (5). Analogously, we can extend the deriva-

tion of CHC’s expectation to the nD domain, and the expression is the
same as Eq. (6).

Theorem 3. Given a point cloud containing 𝑁 points. Suppose the points
can move freely in the domain so that the uniformity is changing. For a
window query, the expected 𝐸ℎ𝑖𝑠𝑡 is a monotonically decreasing function of
CHC.
15
Proof. We first build the occupancy grid for each point set (Fig. 24).
Assuming 𝑙 is the search depth, as 𝑁 may not equal 2𝑛𝑙 which is the
number of subspaces, we set 𝑙 to

⌈

log2 𝑁
𝑛

⌉

. We assume the query window
totally matches the boundaries of SFC cells at 𝑙.

In Fig. 24, the incremental process of CHC reveals how effective
range and 𝐸ℎ𝑖𝑠𝑡 change. Starting from 𝐶𝐻𝐶 → 0, i.e., all points reside in
a grid cell, and there is no effective range. So, 𝐸ℎ𝑖𝑠𝑡 → +∞. In practice,
this means HistSFC can immediately report an empty result. When a
point moves from the central grid cell to another, which means 𝐶𝐻𝐶
increases, 𝐸ℎ𝑖𝑠𝑡 decreases due to a higher probability of encountering
a point inside (middle sub-figure). When more points move out of the
original grid cell, 𝐸ℎ𝑖𝑠𝑡 is most likely to decrease again or remain the
same (right sub-figure). Sometimes, it is likely that two points belong
to different cells of the occupancy grid, but reside in the same SFC cell.
This is due to the mismatch of these two cell sizes. In this case, 𝐸ℎ𝑖𝑠𝑡
also remains the same, and will not increase. Consequently, for a large
number of random window queries, 𝐸ℎ𝑖𝑠𝑡 is a monotonically decreasing
function of CHC.

Appendix C. Querying process of tested solutions

See Fig. 25.

Appendix D. Benchmarking results

See Tables 11–14.

ISPRS Journal of Photogrammetry and Remote Sensing 224 (2025) 1–18H. Liu et al.
Table 11
Time cost of different processes in the AHN2 SmallC querying (second).
 Data HistogramTree First filter Second Total Points
 set loading Range Database Total filter time per
 computing fetching cost second

HistSFC_1K

1 7.00 2.38 0.31 2.94 0.25 3.19 75,107
 2 13.70 2.67 0.28 3.16 0.25 3.41 70,328
 3 29.26 3.45 0.30 4.12 0.26 4.38 54,715
 4 84.55 5.37 0.27 6.04 0.26 6.30 38,072
 5 145.89 8.28 0.37 8.92 0.26 9.18 26,127

HistSFC_10K

1 0.68 2.01 0.16 2.46 0.27 2.72 88,039
 2 1.31 2.07 0.28 2.49 0.26 2.75 87,334
 3 2.43 2.11 0.18 2.55 0.26 2.81 85,436
 4 6.28 2.26 0.27 2.62 0.26 2.88 83,299
 5 12.37 2.67 0.23 3.10 0.27 3.38 71,057

HistSFC_100K

1 0.21 2.28 0.14 2.75 0.27 3.02 79,384
 2 0.26 2.30 0.17 2.78 0.26 3.04 78,784
 3 0.40 2.23 0.14 2.63 0.27 2.89 82,867
 4 0.74 2.23 0.17 2.63 0.27 2.90 82,724
 5 1.41 2.19 0.16 2.65 0.26 2.91 82,327

PlainSFC

1 – 2.86 0.27 3.50 0.26 3.77 63,697
 2 – 2.80 0.29 3.48 0.28 3.76 63,849
 3 – 2.82 0.20 3.58 0.28 3.86 62,129
 4 – 2.91 0.27 3.60 0.27 3.88 61,889
 5 – 3.59 0.34 4.25 0.27 4.52 53,057
Table 12
Time cost of different processes in the flood ARRIVAL24h (second).
 Data HistogramTree First filter Second Total Points
 set loading Range Database Total filter time per
 computing fetching cost second

HistSFC_1K

1 0.90 0.25 0.86 1.20 7.22 8.42 109,887
 2 1.58 0.31 1.48 1.89 8.60 10.49 88,262
 3 3.18 0.36 1.97 2.42 8.92 11.34 81,609
 4 5.98 0.50 1.58 2.17 9.74 11.91 77,750

HistSFC_5K

1 0.24 0.26 1.19 1.51 8.27 9.77 94,719
 2 0.35 0.26 1.53 1.85 10.42 12.27 75,462
 3 0.63 0.29 1.58 1.92 10.97 12.89 71,815
 4 1.13 0.30 1.92 2.27 10.91 13.18 70,251

HistSFC_10K

1 0.20 0.32 1.16 1.51 9.43 10.94 84,623
 2 0.28 0.32 1.61 1.96 10.54 12.51 74,020
 3 0.49 0.33 1.68 2.04 10.52 12.56 73,690
 4 0.74 0.28 1.80 2.12 10.59 12.71 72,826

PlainSFC

1 – 0.66 2.40 3.14 16.34 19.48 47,513
 2 – 0.67 2.06 2.82 31.82 34.63 26,729
 3 – 0.68 2.30 3.08 30.98 34.05 27,185
 4 – 0.70 2.49 3.27 31.79 35.06 26,402
16

ISPRS Journal of Photogrammetry and Remote Sensing 224 (2025) 1–18H. Liu et al.
Table 13
Time cost of state-of-the-art solutions in AHN2 test (second).
 Data SmallA SmallB SmallC Medium Large

 set First Second First Second First Second First Second First Second
 filter filter filter filter filter filter filter filter filter filter

PostGIS

1 1.56 0.24 14.76 0.97 1.35 0.13 13.00 1.52 72.21 9.54
 2 1.63 0.23 19.61 0.62 1.07 0.10 15.18 1.19 76.52 6.97
 3 1.61 0.22 13.93 0.77 1.06 0.13 15.47 1.77 75.56 7.98
 4 1.55 0.26 12.33 1.19 1.13 0.13 15.38 1.82 73.52 6.72
 5 1.79 0.26 12.94 0.78 1.07 0.16 15.31 1.77 74.20 6.95

Pyramid

1 13.41 24.61 9.86 5.78 8.07 1.36 10.40 2.94 9.33 10.52
 2 17.11 50.06 17.08 7.20 9.45 1.52 11.90 4.57 27.67 9.24
 3 14.42 107.89 13.29 17.18 10.19 11.39 9.17 12.95 39.28 61.04
 4 15.80 248.82 19.85 8.35 10.36 11.56 9.75 9.53 21.59 275.63
 5 14.55 222.50 10.26 3.22 10.68 21.64 9.65 15.87 21.27 131.43

PyramidEx

1 8.80 3.32 11.39 14.20 6.81 0.37 9.57 5.23 11.61 11.19
 2 9.26 4.53 18.35 23.80 8.01 0.85 9.96 11.77 16.78 16.92
 3 15.03 2.67 23.76 23.33 9.18 1.59 19.26 25.95 18.70 35.99
 4 17.80 3.21 31.85 19.75 10.96 3.51 21.12 30.39 19.95 47.34
 5 11.93 10.09 19.79 28.84 12.05 3.94 18.89 32.02 28.67 59.84

HistSFC

1 0.81 0.32 4.14 0.83 0.46 0.28 0.83 5.02 0.73 28.53
 2 0.94 0.32 4.71 0.83 0.45 0.28 0.95 4.61 1.05 28.13
 3 1.20 0.31 4.72 0.83 0.67 0.30 1.17 4.35 0.90 28.41
 4 1.02 0.31 4.83 0.84 0.69 0.28 1.08 4.49 1.11 29.03
 5 1.49 0.32 4.84 0.86 0.93 0.28 1.55 4.92 1.32 29.20
Table 14
Overall throughput of state-of-the-art solutions (points per second).
 Data set SmallA SmallB SmallC Medium Large

PostGIS

1 128,545 17,541 162,478 232,510 277,205
 2 124,053 13,635 204,623 206,137 271,442
 3 126,363 18,768 202,378 195,770 271,318
 4 127,480 20,406 189,131 196,237 282,443
 5 112,997 20,110 195,770 197,569 279,282

Pyramid

1 6,069 17,651 25,431 252,914 1,141,608
 2 3,435 11,364 21,869 204,873 614,112
 3 1,886 9,056 11,112 152,565 225,891
 4 872 9,784 10,944 175,118 76,251
 5 973 20,467 7,420 132,213 148,419

PyramidEx

1 19,036 10,779 33,405 228,171 994,088
 2 16,737 6,546 27,055 155,295 672,559
 3 13,030 5,860 22,255 74,651 414,402
 4 10,983 5,348 16,564 65,523 336,784
 5 10,479 5,674 15,001 66,294 256,044

HistSFC

1 280,363 65,771 490,425 3,334,862 8,400,003
 2 240,103 57,831 523,620 2,782,259 7,240,641
 3 190,065 57,746 352,156 2,516,689 7,869,169
 4 222,292 56,435 343,087 2,674,231 7,572,070
 5 153,826 56,423 256,216 1,938,472 6,844,822

References

Achakeev, D., Seeger, B., 2012. A class of R-tree histograms for spatial databases.
In: Proceedings of the 20th International Conference on Advances in Geographic
Information Systems. pp. 450–453.

AHN, 2014. Actueel hoogtebestand Nederland. Retrieved 2025-03-26, from https://
www.ahn.nl/.

Bamba, B., Ravada, S., Hu, Y., Anderson, R., 2013. Statistics collection in oracle spatial
and graph: Fast histogram construction for complex geometry objects. Proc. VLDB
Endow. 6 (11), 1021–1032.

Beckmann, N., Kriegel, H.-P., Schneider, R., Seeger, B., 1990. The R*-tree: An efficient
and robust access method for points and rectangles. In: Proceedings of the 1990
ACM SIGMOD International Conference on Management of Data. pp. 322–331.

Berchtold, S., Böhm, C., Kriegal, H.-P., 1998. The pyramid-technique: Towards breaking
the curse of dimensionality. In: Proceedings of the 1998 ACM SIGMOD International
Conference on Management of Data. pp. 142–153.

Berchtold, S., Keim, D.A., Kriegel, H.-P., 1996. The X-tree: An index structure for
high-dimensional data. In: Proceedings of VLDB. San Francisco, CA, USA, pp.
28–39.

Blanc, T., El Beheiry, M., Caporal, C., Masson, J.-B., Hajj, B., 2020. Genuage: visualize
and analyze multidimensional single-molecule point cloud data in virtual reality.
Nature Methods 17 (11), 1100–1102.
17
Bruno, N., Chaudhuri, S., Gravano, L., 2001. STHoles: A multidimensional workload-
aware histogram. In: Proceedings of the 2001 ACM SIGMOD International
Conference on Management of Data. pp. 211–222.

Chen, S., Liu, B., Feng, C., Vallespi-Gonzalez, C., Wellington, C., 2021. 3D point
cloud processing and learning for autonomous driving: Impacting map creation,
localization, and perception. IEEE Signal Process. Mag. 38 (1), 68–86.

Comer, D., 1979. Ubiquitous B-tree. ACM Comput. Surv. 11 (2), 121–137.
Eavis, T., Lopez, A., 2007. rK-Hist: an R-tree based histogram for multi-dimensional

selectivity estimation. In: Proceedings of the Sixteenth ACM Conference on
Conference on Information and Knowledge Management. pp. 475–484.

Gharbi, M., Soualmia, A., Dartus, D., Masbernat, L., 2016. Comparison of 1D and 2D
hydraulic models for floods simulation on the medjerda riverin Tunisia. J. Mater.
Environ. Sci. 7 (8), 3017–3026.

Guan, X., van Oosterom, P., Cheng, B., 2018. A parallel N-dimensional space-filling
curve library and its application in massive point cloud management. ISPRS Int.
J. Geo-Inf. 7 (8), 19.

Gunzburger, M., Burkardt, J., 2004. Uniformity Measures for Point Sample in Hy-
percubes. Tech. Rep., Florida State University, USA, Retrieved 2025-03-26, from
https://people.sc.fsu.edu/~jburkardt/publications/gb_2004.pdf.

Guttman, A., 1984. R-trees: A dynamic index structure for spatial searching. In:
Proceedings of the 1984 ACM SIGMOD International Conference on Management
of Data. pp. 47–57.

Katayama, N., Satoh, S., 1997. The SR-tree: An index structure for high-dimensional
nearest neighbor queries. ACM SIGMOD Rec. 26 (2), 369–380.

Liu, Q., 2009. Approximate query processing. In: Liu, L., Özsu, M.T. (Eds.), Encyclopedia
of Database Systems. Springer US, Boston, MA, pp. 113–119.

Liu, H., van Oosterom, P., Mao, B., Meijers, M., Thompson, R., 2021a. An efficient nD-
point data structure for querying flood risks. In: The International Archives of the
Photogrammetry, Remote Sensing and Spatial Information Sciences. XLIII-B4-2021,
Copernicus GmbH, pp. 367–374.

Liu, Q., Shen, Y., Chen, L., 2021b. LHist: Towards learning multi-dimensional histogram
for massive spatial data. In: 2021 IEEE 37th International Conference on Data
Engineering. IEEE, pp. 1188–1199.

Liu, H., Thompson, R., van Oosterom, P., Meijers, M., 2021c. Executing convex polytope
queries on nD point clouds. Int. J. Appl. Earth Obs. Geoinf. 105, 102625.

Meijers, M., van Oosterom, P., 2018. Clustering and indexing historic vessel movement
data with space filling curves. In: ISPRS - International Archives of the Photogram-
metry, Remote Sensing and Spatial Information Sciences. XLII-4, Copernicus GmbH,
pp. 417–424.

Neuville, R., Bates, J.S., Jonard, F., 2021. Estimating forest structure from UAV-
mounted LiDAR point cloud using machine learning. Remote. Sens. 13 (3),
352.

Ong, M.S., Kuang, Y.C., Ooi, M.P.-L., 2012. Statistical measures of two dimensional
point set uniformity. Comput. Statist. Data Anal. 56 (6), 2159–2181.

Ooi, B.C., Tan, K.-L., Yu, C., Bressan, S., 2000. Indexing the edges — A simple and yet
efficient approach to high-dimensional indexing. In: Proceedings of the Nineteenth
ACM SIGMOD-SIGACT-SIGART Symposium on Principles of Database Systems. pp.
166–174.

van Oosterom, P., Martinez-Rubi, O., Ivanova, M., Horhammer, M., Geringer, D.,
Ravada, S., Tijssen, T., Kodde, M., Gonçalves, R., 2015. Massive point cloud data
management: Design, implementation and execution of a point cloud benchmark.
Comput. Graph. 49, 92–125.

http://refhub.elsevier.com/S0924-2716(25)00112-1/sb1
http://refhub.elsevier.com/S0924-2716(25)00112-1/sb1
http://refhub.elsevier.com/S0924-2716(25)00112-1/sb1
http://refhub.elsevier.com/S0924-2716(25)00112-1/sb1
http://refhub.elsevier.com/S0924-2716(25)00112-1/sb1
https://www.ahn.nl/
https://www.ahn.nl/
https://www.ahn.nl/
http://refhub.elsevier.com/S0924-2716(25)00112-1/sb3
http://refhub.elsevier.com/S0924-2716(25)00112-1/sb3
http://refhub.elsevier.com/S0924-2716(25)00112-1/sb3
http://refhub.elsevier.com/S0924-2716(25)00112-1/sb3
http://refhub.elsevier.com/S0924-2716(25)00112-1/sb3
http://refhub.elsevier.com/S0924-2716(25)00112-1/sb4
http://refhub.elsevier.com/S0924-2716(25)00112-1/sb4
http://refhub.elsevier.com/S0924-2716(25)00112-1/sb4
http://refhub.elsevier.com/S0924-2716(25)00112-1/sb4
http://refhub.elsevier.com/S0924-2716(25)00112-1/sb4
http://refhub.elsevier.com/S0924-2716(25)00112-1/sb5
http://refhub.elsevier.com/S0924-2716(25)00112-1/sb5
http://refhub.elsevier.com/S0924-2716(25)00112-1/sb5
http://refhub.elsevier.com/S0924-2716(25)00112-1/sb5
http://refhub.elsevier.com/S0924-2716(25)00112-1/sb5
http://refhub.elsevier.com/S0924-2716(25)00112-1/sb6
http://refhub.elsevier.com/S0924-2716(25)00112-1/sb6
http://refhub.elsevier.com/S0924-2716(25)00112-1/sb6
http://refhub.elsevier.com/S0924-2716(25)00112-1/sb6
http://refhub.elsevier.com/S0924-2716(25)00112-1/sb6
http://refhub.elsevier.com/S0924-2716(25)00112-1/sb7
http://refhub.elsevier.com/S0924-2716(25)00112-1/sb7
http://refhub.elsevier.com/S0924-2716(25)00112-1/sb7
http://refhub.elsevier.com/S0924-2716(25)00112-1/sb7
http://refhub.elsevier.com/S0924-2716(25)00112-1/sb7
http://refhub.elsevier.com/S0924-2716(25)00112-1/sb8
http://refhub.elsevier.com/S0924-2716(25)00112-1/sb8
http://refhub.elsevier.com/S0924-2716(25)00112-1/sb8
http://refhub.elsevier.com/S0924-2716(25)00112-1/sb8
http://refhub.elsevier.com/S0924-2716(25)00112-1/sb8
http://refhub.elsevier.com/S0924-2716(25)00112-1/sb9
http://refhub.elsevier.com/S0924-2716(25)00112-1/sb9
http://refhub.elsevier.com/S0924-2716(25)00112-1/sb9
http://refhub.elsevier.com/S0924-2716(25)00112-1/sb9
http://refhub.elsevier.com/S0924-2716(25)00112-1/sb9
http://refhub.elsevier.com/S0924-2716(25)00112-1/sb10
http://refhub.elsevier.com/S0924-2716(25)00112-1/sb11
http://refhub.elsevier.com/S0924-2716(25)00112-1/sb11
http://refhub.elsevier.com/S0924-2716(25)00112-1/sb11
http://refhub.elsevier.com/S0924-2716(25)00112-1/sb11
http://refhub.elsevier.com/S0924-2716(25)00112-1/sb11
http://refhub.elsevier.com/S0924-2716(25)00112-1/sb12
http://refhub.elsevier.com/S0924-2716(25)00112-1/sb12
http://refhub.elsevier.com/S0924-2716(25)00112-1/sb12
http://refhub.elsevier.com/S0924-2716(25)00112-1/sb12
http://refhub.elsevier.com/S0924-2716(25)00112-1/sb12
http://refhub.elsevier.com/S0924-2716(25)00112-1/sb13
http://refhub.elsevier.com/S0924-2716(25)00112-1/sb13
http://refhub.elsevier.com/S0924-2716(25)00112-1/sb13
http://refhub.elsevier.com/S0924-2716(25)00112-1/sb13
http://refhub.elsevier.com/S0924-2716(25)00112-1/sb13
https://people.sc.fsu.edu/~jburkardt/publications/gb_2004.pdf
http://refhub.elsevier.com/S0924-2716(25)00112-1/sb15
http://refhub.elsevier.com/S0924-2716(25)00112-1/sb15
http://refhub.elsevier.com/S0924-2716(25)00112-1/sb15
http://refhub.elsevier.com/S0924-2716(25)00112-1/sb15
http://refhub.elsevier.com/S0924-2716(25)00112-1/sb15
http://refhub.elsevier.com/S0924-2716(25)00112-1/sb16
http://refhub.elsevier.com/S0924-2716(25)00112-1/sb16
http://refhub.elsevier.com/S0924-2716(25)00112-1/sb16
http://refhub.elsevier.com/S0924-2716(25)00112-1/sb17
http://refhub.elsevier.com/S0924-2716(25)00112-1/sb17
http://refhub.elsevier.com/S0924-2716(25)00112-1/sb17
http://refhub.elsevier.com/S0924-2716(25)00112-1/sb18
http://refhub.elsevier.com/S0924-2716(25)00112-1/sb18
http://refhub.elsevier.com/S0924-2716(25)00112-1/sb18
http://refhub.elsevier.com/S0924-2716(25)00112-1/sb18
http://refhub.elsevier.com/S0924-2716(25)00112-1/sb18
http://refhub.elsevier.com/S0924-2716(25)00112-1/sb18
http://refhub.elsevier.com/S0924-2716(25)00112-1/sb18
http://refhub.elsevier.com/S0924-2716(25)00112-1/sb19
http://refhub.elsevier.com/S0924-2716(25)00112-1/sb19
http://refhub.elsevier.com/S0924-2716(25)00112-1/sb19
http://refhub.elsevier.com/S0924-2716(25)00112-1/sb19
http://refhub.elsevier.com/S0924-2716(25)00112-1/sb19
http://refhub.elsevier.com/S0924-2716(25)00112-1/sb20
http://refhub.elsevier.com/S0924-2716(25)00112-1/sb20
http://refhub.elsevier.com/S0924-2716(25)00112-1/sb20
http://refhub.elsevier.com/S0924-2716(25)00112-1/sb21
http://refhub.elsevier.com/S0924-2716(25)00112-1/sb21
http://refhub.elsevier.com/S0924-2716(25)00112-1/sb21
http://refhub.elsevier.com/S0924-2716(25)00112-1/sb21
http://refhub.elsevier.com/S0924-2716(25)00112-1/sb21
http://refhub.elsevier.com/S0924-2716(25)00112-1/sb21
http://refhub.elsevier.com/S0924-2716(25)00112-1/sb21
http://refhub.elsevier.com/S0924-2716(25)00112-1/sb22
http://refhub.elsevier.com/S0924-2716(25)00112-1/sb22
http://refhub.elsevier.com/S0924-2716(25)00112-1/sb22
http://refhub.elsevier.com/S0924-2716(25)00112-1/sb22
http://refhub.elsevier.com/S0924-2716(25)00112-1/sb22
http://refhub.elsevier.com/S0924-2716(25)00112-1/sb23
http://refhub.elsevier.com/S0924-2716(25)00112-1/sb23
http://refhub.elsevier.com/S0924-2716(25)00112-1/sb23
http://refhub.elsevier.com/S0924-2716(25)00112-1/sb24
http://refhub.elsevier.com/S0924-2716(25)00112-1/sb24
http://refhub.elsevier.com/S0924-2716(25)00112-1/sb24
http://refhub.elsevier.com/S0924-2716(25)00112-1/sb24
http://refhub.elsevier.com/S0924-2716(25)00112-1/sb24
http://refhub.elsevier.com/S0924-2716(25)00112-1/sb24
http://refhub.elsevier.com/S0924-2716(25)00112-1/sb24
http://refhub.elsevier.com/S0924-2716(25)00112-1/sb25
http://refhub.elsevier.com/S0924-2716(25)00112-1/sb25
http://refhub.elsevier.com/S0924-2716(25)00112-1/sb25
http://refhub.elsevier.com/S0924-2716(25)00112-1/sb25
http://refhub.elsevier.com/S0924-2716(25)00112-1/sb25
http://refhub.elsevier.com/S0924-2716(25)00112-1/sb25
http://refhub.elsevier.com/S0924-2716(25)00112-1/sb25

ISPRS Journal of Photogrammetry and Remote Sensing 224 (2025) 1–18H. Liu et al.
van Oosterom, P., van Oosterom, S., Liu, H., Thompson, R., Meijers, M., Verbree, E.,
2022. Organizing and visualizing point clouds with continuous levels of detail.
ISPRS J. Photogramm. Remote. Sens. 194, 119—-131.

Oracle, 2013. Indexes and index-organized tables. Retrieved 2025-03-26, from https:
//docs.oracle.com/database/121/CNCPT/indexiot.htm#CNCPT721.

Oracle, 2019. SDO_PC_PKG Package (Point Clouds). Retrieved 2025-03-26, from
https://docs.oracle.com/en/database/oracle/oracle-database/19/spatl/SDO_PC_
PKG-reference.html.

PDAL-Contributors, 2018. PDAL Point Data Abstraction Library. http://dx.doi.org/10.
5281/zenodo.2556738.

Psomadaki, S., 2016. Using a Space Filling Curve for the management of dynamic point
cloud data in a Relational DBMS (Unpublished master’s thesis). Delft University of
Technology, The Netherlands.

Ramsey, P., 2020. pgPointcloud - A PostgreSQL extension for storing point
cloud (LIDAR) data. Retrieved 2025-03-26, from https://pgpointcloud.github.io/
pointcloud/.
18
Roh, Y.J., Kim, J.H., Chung, Y.D., Son, J.H., Kim, M.H., 2010. Hierarchically organized
skew-tolerant histograms for geographic data objects. In: Proceedings of the 2010
ACM SIGMOD International Conference on Management of Data. pp. 627–638.

Schütz, M., Krösl, K., Wimmer, M., 2019. Real-time continuous level of detail rendering
of point clouds. In: 2019 IEEE Conference on Virtual Reality and 3D User Interfaces.
VR, IEEE, pp. 103–110.

Tchapmi, L., Choy, C., Armeni, I., Gwak, J., Savarese, S., 2017. SEGCloud: Semantic
segmentation of 3D point clouds. In: 2017 International Conference on 3D Vision.
3DV, pp. 537–547.

Wang, J., Shan, J., 2005. Space filling curve based point clouds index. In: Proceedings
of the 8th International Conference on GeoComputation. pp. 551–562.

Zhang, R., Qi, J., Stradling, M., Huang, J., 2014. Towards a painless index for spatial
objects. ACM Trans. Database Syst. 39 (3), 1–42.

Zheng, Y., Zhang, L., Xie, X., Ma, W.-Y., 2009. Mining interesting locations and
travel sequences from GPS trajectories. In: Proceedings of the 18th International
Conference on World Wide Web. WWW ’09, Association for Computing Machinery,
New York, NY, USA, pp. 791–800.

http://refhub.elsevier.com/S0924-2716(25)00112-1/sb26
http://refhub.elsevier.com/S0924-2716(25)00112-1/sb26
http://refhub.elsevier.com/S0924-2716(25)00112-1/sb26
http://refhub.elsevier.com/S0924-2716(25)00112-1/sb26
http://refhub.elsevier.com/S0924-2716(25)00112-1/sb26
https://docs.oracle.com/database/121/CNCPT/indexiot.htm#CNCPT721
https://docs.oracle.com/database/121/CNCPT/indexiot.htm#CNCPT721
https://docs.oracle.com/database/121/CNCPT/indexiot.htm#CNCPT721
https://docs.oracle.com/en/database/oracle/oracle-database/19/spatl/SDO_PC_PKG-reference.html
https://docs.oracle.com/en/database/oracle/oracle-database/19/spatl/SDO_PC_PKG-reference.html
https://docs.oracle.com/en/database/oracle/oracle-database/19/spatl/SDO_PC_PKG-reference.html
http://dx.doi.org/10.5281/zenodo.2556738
http://dx.doi.org/10.5281/zenodo.2556738
http://dx.doi.org/10.5281/zenodo.2556738
http://refhub.elsevier.com/S0924-2716(25)00112-1/sb30
http://refhub.elsevier.com/S0924-2716(25)00112-1/sb30
http://refhub.elsevier.com/S0924-2716(25)00112-1/sb30
http://refhub.elsevier.com/S0924-2716(25)00112-1/sb30
http://refhub.elsevier.com/S0924-2716(25)00112-1/sb30
https://pgpointcloud.github.io/pointcloud/
https://pgpointcloud.github.io/pointcloud/
https://pgpointcloud.github.io/pointcloud/
http://refhub.elsevier.com/S0924-2716(25)00112-1/sb32
http://refhub.elsevier.com/S0924-2716(25)00112-1/sb32
http://refhub.elsevier.com/S0924-2716(25)00112-1/sb32
http://refhub.elsevier.com/S0924-2716(25)00112-1/sb32
http://refhub.elsevier.com/S0924-2716(25)00112-1/sb32
http://refhub.elsevier.com/S0924-2716(25)00112-1/sb33
http://refhub.elsevier.com/S0924-2716(25)00112-1/sb33
http://refhub.elsevier.com/S0924-2716(25)00112-1/sb33
http://refhub.elsevier.com/S0924-2716(25)00112-1/sb33
http://refhub.elsevier.com/S0924-2716(25)00112-1/sb33
http://refhub.elsevier.com/S0924-2716(25)00112-1/sb34
http://refhub.elsevier.com/S0924-2716(25)00112-1/sb34
http://refhub.elsevier.com/S0924-2716(25)00112-1/sb34
http://refhub.elsevier.com/S0924-2716(25)00112-1/sb34
http://refhub.elsevier.com/S0924-2716(25)00112-1/sb34
http://refhub.elsevier.com/S0924-2716(25)00112-1/sb35
http://refhub.elsevier.com/S0924-2716(25)00112-1/sb35
http://refhub.elsevier.com/S0924-2716(25)00112-1/sb35
http://refhub.elsevier.com/S0924-2716(25)00112-1/sb36
http://refhub.elsevier.com/S0924-2716(25)00112-1/sb36
http://refhub.elsevier.com/S0924-2716(25)00112-1/sb36
http://refhub.elsevier.com/S0924-2716(25)00112-1/sb37
http://refhub.elsevier.com/S0924-2716(25)00112-1/sb37
http://refhub.elsevier.com/S0924-2716(25)00112-1/sb37
http://refhub.elsevier.com/S0924-2716(25)00112-1/sb37
http://refhub.elsevier.com/S0924-2716(25)00112-1/sb37
http://refhub.elsevier.com/S0924-2716(25)00112-1/sb37
http://refhub.elsevier.com/S0924-2716(25)00112-1/sb37

	An nD-histogram technique for querying non-uniformly distributed point cloud data
	Introduction
	nD-PointCloud
	Motivation of the research

	Related work
	R-tree and variants
	2n-tree
	B+-tree
	Histograms

	PlainSFC
	Terminology
	Basic settings
	Time complexity

	Principles of an nD-histogram method
	HistogramTree
	HistSFC querying
	Parallel decoding

	Cumulative Hypercubic Coverage
	Definition
	Effectiveness of nD-histogram
	Realistic simulation

	Experimental evaluation
	State-of-the-art solutions
	Use cases
	AHN2 exploration
	Flood risk querying

	HistSFC vs PlainSFC
	HistSFC vs State-of-the-arts
	Discussion

	Conclusions
	CRediT authorship contribution statement
	Declaration of competing interest
	Acknowledgments
	Appendix A. HistogramTree construction
	Appendix B. Proof of CHC related theorems
	Appendix C. Querying process of tested solutions
	Appendix D. Benchmarking results
	References

