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 A B S T R A C T

Point cloud data contains abundant information besides XYZ, such as Level of Importance (LoI) and intensity. 
These non-spatial dimensions are also frequently used and queried. Therefore, developing an efficient nD 
solution for managing and querying point clouds is imperative. Previous researchers have developed PlainSFC 
that maps both nD points and queries into a one-dimensional Space Filling Curve (SFC) space and uses B+-
tree for indexing. However, when computing SFC ranges for selection, PlainSFC subdivides the nD space 
mechanically to approach the query window without considering the point distribution. Then, excessive ranges 
are generated in vacant areas, and ranges generated in dense point areas are coarse. Consequently, a large 
number of false positives are selected, slowing down the whole querying process.

This paper develops a new solution called HistSFC to resolve the issue. HistSFC builds an nD-histogram 
which records point data distribution, and uses it to compute ranges for selecting data. Also, this paper 
discovers a novel statistical metric, Cumulative Hypercubic Coverage (CHC), to measure the uniformity of the 
point cloud data. Theory is established and it indicates that the nD-histogram is more beneficial when CHC is 
smaller. Thus, CHC can be used to guide the building of HistSFC. In addition, the paper conducts simulations 
and benchmark tests to examine the improvement on PlainSFC. It turns out that using the nD-histogram 
can decrease the false positive rate by orders of magnitude. HistSFC is also evaluated against state-of-the-art 
solutions. The result shows that HistSFC leads the performance in nearly all the tests.
1. Introduction

Point clouds are increasingly used in spatial related domains, from 
terrain modeling (AHN, 2014), forest estimation (Neuville et al., 2021), 
trajectory analysis (Zheng et al., 2009) to recently emerged semantic 
labeling (Tchapmi et al., 2017), virtual reality (Blanc et al., 2020), 
and autonomous driving (Chen et al., 2021). The most commonly used 
point clouds are collected by Light Detection And Ranging (LiDAR) 
sensors, containing up to trillions (1012) of points. Besides, point clouds 
record multidimensional information. Apart from routinely concerned 
spatio-temporal dimensions, other dimensions such as intensity and 
classification also constitute indispensable part of the data. In specific 
fields, points may carry even more information. For instance, in hy-
draulic modeling, a point may also record the flow direction and speed, 
sediment concentration, and other dimensions.

∗ Corresponding author.
E-mail address: liuhaicheng@csnwd.com.cn (H. Liu).

1.1. nD-PointCloud

We propose the term nD-PointCloud to cover the point cloud data 
containing multidimensional information. nD-PointCloud can be an in-
dependent spatial data representation, besides the vector and the raster. 
Unlike the point or the multi-point which is a vector geometry, nD-
PointCloud can be directly collected, structured, stored, interpreted and 
analyzed. That is, many applications can be addressed with only nD-
PointCloud. Besides, nD-PointCloud’s advantage also lies in the ultra 
high accuracy which may be decreased when converting to rasters. 
Moreover, nD points are intuitive to interact with and convenient to 
analyze.

The dimension plays an important role in nD-PointCloud’s support 
of different applications. Spatio-temporal dimensions are normally the 
fundamental dimensions for analysis considering the majority of ap-
plications, while the classification dimension is essential for semantic 
analytical purposes. Continuous Level of Importance (cLoI) (van Oos-
terom et al., 2022) can be additionally used to express importance 
924-2716/© 2025 International Society for Photogrammetry and Remote Sensing, I
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https://doi.org/10.1016/j.isprsjprs.2025.03.014
Received 11 October 2024; Received in revised form 5 March 2025; Accepted 13 M
nc. (ISPRS). Published by Elsevier B.V. All rights are reserved, including those
arch 2025

https://www.elsevier.com/locate/isprsjprs
https://www.elsevier.com/locate/isprsjprs
https://orcid.org/0000-0003-3437-4724
mailto:liuhaicheng@csnwd.com.cn
https://doi.org/10.1016/j.isprsjprs.2025.03.014
https://doi.org/10.1016/j.isprsjprs.2025.03.014
http://crossmark.crossref.org/dialog/?doi=10.1016/j.isprsjprs.2025.03.014&domain=pdf


ISPRS Journal of Photogrammetry and Remote Sensing 224 (2025) 1–18H. Liu et al.
Fig. 1. Third-person view of a cLoI sample, from Schütz et al. (2019).

and alleviate the computational workload. Schütz et al. (2019), van 
Oosterom et al. (2022) add cLoI dimension to the data for querying, to 
smoothly and efficiently visualize large volumes of LiDAR points. When 
doing perspective view selection, all nearby points are selected, while 
fewer faraway points with restricted cLoI values are selected (Fig.  1). 
These dimensions can also be jointly used to support applications. Take 
indoor navigation in a VR environment as an example, it is sufficient 
to only show important objects along the route to avoid excessive data 
loading. This can be realized using cLoI. Besides, people should be able 
to see things through windows and go through doors. The windows 
and doors are recognizable in a classified point cloud. Then, a query 
concerned with XYZ, cLoI and classification will form the query for 
navigation. As information continues to grow, more dimensions are 
expected in queries. Generally, we call them nD queries.

1.2. Motivation of the research

However, since the body of current spatial applications is still under 
3D, most software for spatial data management adopts 2D/3D orga-
nization, e.g., Oracle’s SDO_PC package (Oracle, 2019), PostgreSQL’s 
pgPointcloud extension (Ramsey, 2020) and PDAL (PDAL-Contributors, 
2018). To efficiently execute nD queries, all concerned dimensions 
are suggested to be used for clustering and indexing. van Oosterom 
et al. (2015) developed a prospective SFC mapping-based clustering 
and indexing framework, which we will call PlainSFC, for the sake 
of convenience for referencing. Basically, PlainSFC maps both multi-
dimensional points and queries into a one-dimensional SFC space so 
that one-dimensional indexing structure such as the B+-tree can be 
used. PlainSFC distinguishes two types of dimensions. The organizing 
dimension is used to cluster and index the data, e.g., X, Y, Z and Time. 
They are transformed and mapped to the SFC space. The other property 
dimensions are affiliated to the SFC key, such as color and return 
number, which are not frequently used in the SQL WHERE clause.

The superiority of PlainSFC has been verified with different use 
cases (Psomadaki, 2016; Guan et al., 2018; Meijers and van Oosterom, 
2018). However, these studies only use PlainSFC for managing and 
querying points within 4D. Our practical experiments indicate that 
PlainSFC performs inefficiently in higher dimensional spaces, especially 
when the data distribution is skewed. This is because PlainSFC adopts 
fixed recursive decomposition of the SFC space to generate SFC ranges 
for selection. This will result in a large amount of ranges containing no 
data when data is non-uniformly distributed. This increases the memory 
and time cost to compute ranges. It also increases I/O because of coarse 
ranges for selection in dense point areas.

This paper develops a technique to resolve this issue. The paper 
focuses on a common query type, the window query. It refers to a 
hyperrectangular query region formed by multiple dimensions. Unlike 
2

previous studies which propose their techniques and only demonstrate 
using specific test cases (Berchtold et al., 1998; Ooi et al., 2000), this 
paper provides a theoretical analysis of point data distribution and the 
effectiveness of the technique developed. In summary, the paper has 
the following contributions:

• We develop a novel solution called HistSFC that adopts an nD-
histogram structure to overcome the limitations of PlainSFC
caused by skewed data distribution. HistSFC achieves significant 
efficiency improvement in the window query on massive point 
cloud data. Query algorithms and optimizations are developed 
based on HistSFC.

• We theoretically demonstrate the effectiveness of HistSFC by 
proposing and using a statistical metric, Cumulative Hypercubic 
Coverage (CHC). We prove that CHC can measure the uniformity 
of the point cloud data and that it can indicate the performance 
gain by using HistSFC. Thus, CHC can be used to guide the 
building of HistSFC.

• We perform realistic benchmark tests on PlainSFC, HistSFC and 
other state-of-the-art solutions based on two novel applications: 
one is exploring 4D laser scanning point clouds; the other is 
analyzing flood risk using the 8D point cloud representation of 
hydraulic modeling results.

The remainder of the paper is organized as follows: Section 2 sum-
marizes previous studies on organizing and indexing nD-PointCloud. 
Section 3 introduces the PlainSFC structure which is the basis for devel-
opment. Section 4 describes HistSFC and the corresponding algorithms. 
This is followed by Section 5 which introduces CHC, including theo-
retical analysis and simulation results. Section 6 compares PlainSFC, 
HistSFC with other state-of-the-art solutions based on real applications. 
Section 7 concludes the paper.

2. Related work

Plenty of studies have been carried out to investigate the optimal 
data structures to manage point cloud data. Here, we categorize the 
techniques into three categories — R-tree and variants, the 2𝑛-tree and 
B+-tree. Besides, strategies to deal with skewed point data distribution 
are also discussed.

2.1. R-tree and variants

The R-tree (Guttman, 1984) is the most widely adopted spatial 
indexing structure. The major database vendors including Oracle and 
PostgreSQL implement and use it as the de-facto approach. The R-
tree based solutions normally group points into blocks clustered by a 
specific order (e.g., Hilbert-R tree), and build index on these blocks. To 
further improve R-tree, variants including the R*-tree (Beckmann et al., 
1990), SR-tree (Katayama and Satoh, 1997) and X-tree (Berchtold et al., 
1996) are developed to decrease the overlap ratio between blocks, 
support frequent updates, and resolve nD queries. An R-tree based 
solution is tested in Section 6.4.

2.2. 2𝑛-Tree

2𝑛-tree represents an indexing category which evenly splits all di-
mensions in an iteration until the leaf node level. A leaf node normally 
refers to a block of points. In 2D, the 2𝑛-tree refers to Quadtree while 
in 3D, it becomes Octree. Potree, the most prevalent software for 
visualizing point clouds uses the Octree to organize data. CloudCom-
pare, another software frequently used to analyze point clouds adopts 
the Octree index to facilitate analytical functions. To improve the 
performance on querying non-uniformly distributed data, adaptive data 
blocks can be adopted. That is, a threshold is to constrain the node’s 
capacity so that a node with less number of points will not be split 
further (Wang and Shan, 2005).
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Fig. 2. Pyramid data partitioning, adapted from Berchtold et al. (1998).

2.3. B+-tree

B+-tree (Comer, 1979) is a variant of the B-tree which is widely 
used for indexing one-dimensional data. Unlike B-tree, the leaf nodes 
of the B+-tree are connected by pointers. Therefore, besides the top-
down traversal, a leaf node can also be visited from its prior leaf node. 
B+-tree forms the basis for many nD-PointCloud solutions, such as 
Pyramid-Technique (Berchtold et al., 1998), iMinMax(𝜃) (Ooi et al., 
2000) and Size Separation Indexing (SSI) (Zhang et al., 2014). For 
example, in high dimensional spaces, the Pyramid-Technique avoids 
excessive access to data pages by partitioning data into pieces which 
cater to the shape of hyper-cubes (Fig.  2). The approach maps each 
nD point into a one-dimensional space according to the pyramid piece 
the point belongs to and the height in the pyramid. All the resultant 
one-dimensional keys are then managed by a B+-tree structure to be in-
dexed. The extended Pyramid-Technique improves Pyramid-Technique 
for handling non-uniformly distributed data by shifting all points to 
the cluster center of the data. In the benchmark test (Section 6.4), the 
Pyramid-Technique is examined.

2.4. Histograms

As a common technique to improve the querying efficiency given 
non-uniform data distribution, histograms are largely used in major 
DBMSs (e.g., statistics collection module). Histograms incur little run-
time overhead and produce low-error estimates with compact storage, 
compared to other techniques such as sampling and wavelet transfor-
mation (Liu, 2009). In particular, Oracle Spatial & Graph has developed 
state-of-the-art solutions to build spatial histograms for query optimiza-
tion purposes (Bamba et al., 2013). However, these histograms are 
based on individual columns, the querying performance on nD data 
cannot be optimal.

As a possible solution, nD-histograms have been investigated, mostly
used as a synopsis technique for selectivity estimation to optimize query 
execution plan (Liu et al., 2021b). For instance, Achakeev and Seeger 
(2012) build a convenient spatial histogram based on R-tree, mainly for 
managing rectangular or point objects. This histogram achieves higher 
accuracy for selectivity estimation of 2D/3D spatial data queries than 
alternative solutions, but nD data is not tested. rK-Hist is another nD-
histogram (Eavis and Lopez, 2007), and is basically a truncated version 
of the R-tree. It optimizes the nD-histogram using a 𝑘-uniformity metric 
which utilizes kd-tree to measure the uniformity inside a leaf node of 
the histogram. There are also other techniques such as STHoles (Bruno 
et al., 2001) and STHistogram (Roh et al., 2010) that are not based on 
R-tree. All these studies indicate the benefits of using nD-histograms 
for querying.

3. PlainSFC

This section introduces PlainSFC, which provides the preliminaries 
of our solution.
3

3.1. Terminology

When introducing data structures and queries, we use node and
range. Fig.  3 illustrates them in 2D, where all points have integer 
coordinates. By truncating the last 𝑛 bits of the points’ Morton codes 
recursively, Morton codes at upper levels are derived. That is to say, 
the Morton codes of points implicitly contain a hierarchy which is 
equivalent to a Quadtree structure. We can easily extend this scheme 
to higher dimensional spaces so that a Morton node refers to the 
corresponding node of a 2𝑛-tree. A branch node covers the nodes on the 
level below, and represents the extent of a hypercubic region (e.g., a 
block in the Quadtree). Thus, the branch node also indicates a range of 
Morton codes starting from the lower-left corner to the upper-right. A 
leaf node is not further subdivided.

3.2. Basic settings

Fig.  4 presents the workflow of PlainSFC including data loading 
and querying. PlainSFC first encodes each nD point to a full resolution 
Morton key, interleaving the bits of all organizing dimensions. In most 
cases, values of the organizing dimensions contain decimals. So, these 
values are first scaled up to integers for encoding. Such a full resolu-
tion key can be directly decoded to the original coordinates, without 
additional storage of dimension values. Besides, due to uniqueness of 
each full resolution key, they are used as the primary key in a table 
for indexing. Property dimensions are attached to each key. Based 
on this organization, PlainSFC utilizes Oracle Index-Organized Tables 
(IOTs) (Oracle, 2013) to manage the data. The internal data structure 
of IOT is a B+-tree, integrating the index and data storage.

For querying, PlainSFC adopts a two-step filtering mechanism. The 
first filter uses the Morton hierarchy to approximate the query window 
and derive the ranges. Take Fig.  5(a) to illustrate: the first filter starts by 
examining whether the root node (i.e., the overall extent of the data) 
intersects the query window. If they intersect, the root node will be 
decomposed into 4 sub-nodes and the spatial relationship between each 
node and the query window will be assessed again. During the range 
computing process, if a node is inside the query window, the range 
will be exported directly without further decomposition. Near the query 
boundary, the decomposition goes on recursively until a maximum 
number of ranges (𝑟𝑚𝑎𝑥) is reached. After this, the first filter exports all 
ranges into a range table and joins it with the IOT for selection (Fig. 
4). This is followed by the second filter which conducts post-processing 
including decoding and point-wise checking to complete the query.

3.3. Time complexity

The querying time of PlainSFC includes two parts, the first filter 
and the second (Fig.  4). The time cost of the first filter comprises range 
computation, database fetching and other processes such as database 
initialization and communication. On the whole, the first filter costs 
(𝑟 log𝑁) time, where 𝑟 is the number of ranges generated and it 
reaches the threshold 𝑟𝑚𝑎𝑥 by default; 𝑁 represents the number of 
points stored. The expression is derived because range computation 
costs (𝑟) time and searching 𝑟 ranges from IOT costs (𝑟 log𝑁) time. 
The time cost of the second filter mainly covers the I/O cost of reading 
point data from the disk and post-processing. The cost of these pro-
cesses is mostly determined by 𝑘′ which is the result size from the first 
filter. Specifically, the I/O cost maximally covers (𝑘′) I/Os. The post-
processing time is bounded by (𝑛𝑘′). 𝑛 refers to the dimensionality of 
the key, assuming the dimensions in the point cloud data are all used 
as the organizing dimensions.

The efficiency of the solution mainly depends on the performance 
of the first filter. An optimal first filter should on the one hand process 
fastly, while on the other hand return a small 𝑘′. This can alleviate I/O 
and post-processing in the second filter. We introduce False Positive 
Rate (FPR) to indicate the accuracy of the first filter (Eq.  (1)). A large 
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Fig. 3. Implicit Morton hierarchy: black dots are real points to be managed, while colored dots are Morton branch nodes at different levels.

Fig. 4. The loading and querying procedure of PlainSFC, separated by the dash line.

Fig. 5. Illustration of range computation in 2D, where 𝑟𝑚𝑎𝑥 refers to the maximum number of ranges used for querying.
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FPR means a coarse first filter and a slow second filter. Although FPR 
calculated may be larger than 1, it is an appropriate metric to indicate 
the querying efficiency (Section 6.4). 

𝐹𝑃𝑅 =
|

|

|

|

𝑘′ − 𝑘
𝑘

|

|

|

|

, (1)

where 𝑘 refers to the final output size.
A bottleneck of querying with PlainSFC lies in the cases where 

points are inhomogeneously distributed in the space. This happens 
frequently when points are in 3D or higher dimensional spaces. In 
such cases, PlainSFC generates a large number of ranges without any 
points inside. This means that the budget for ranges that actually select 
points decreases. Consequently, ranges in dense point regions cannot 
be refined sufficiently. This increases FPR, and the overall querying 
efficiency declines.

4. Principles of an nD-histogram method

To resolve the defects of PlainSFC, a distribution-aware method 
is needed for computing ranges. The idea is to optimize the range 
computation to generate finer ranges where the point density is high, 
while generate coarser ranges where points are sparsely distributed. To 
this end, this section develops an nD-histogram solution — HistSFC, as 
described in the following.

4.1. HistogramTree

We assume all dimensions in the point cloud data are used as the 
organizing dimension, for the ease of explanation. We implement the 
nD-histogram by using a tree structure — HistogramTree. The C++ data 
structure of a node in HistogramTree is expressed as
STRUCT HistNodeND {HistNodeND *child; HistNodeND

*neighbor; uint_256 key; long long
pointcount; short height;}

pointcount records the number of points inside a node. If the 
number exceeds a threshold, i.e., the capacity of a leaf node, then the 
node is decomposed into 2𝑛 children. height is used to distinguish 
different nodes, because branch nodes at different levels may possess 
identical keys. It should be noted that a HistogramTree node contains 
neither points nor pointers to points. So, HistogramTree is not an 
indexing structure. It is an additional structure used by the first filter 
when computing ranges for a query window. It is also compact and is 
normally stored in a flat table. So, it is convenient to be loaded into the 
memory for querying. By using HistogramTree, the number of vacant 
ranges can be greatly diminished (Fig.  5(b)). We call the new solution 
HistSFC. HistSFC builds HistogramTree using HistSTREAM algorithm 
which is described in Appendix  A.

4.2. HistSFC querying

HistSFC employs HistogramTree to compute ranges (Fig.  6). Start-
ing from the root node, by performing intersection between the His-
togramTree and the query window iteratively, the function retrieves all 
relevant nodes to build the range table (Fig.  4). Nodes inside the query 
window are immediately added to the range table without further 
processing. Nodes on the boundary containing few points are also 
exported immediately, e.g., nodes that contain less than 2𝑛 points. The 
remaining nodes intersecting the boundary of the query window are 
temporarily held in a refinement pool. These can be further refined 
based on fixed recursive decomposition. In fact, some nodes in the pool 
intersect with the query window by a large proportion. Then, most 
points inside these nodes are likely to be within the query window as 
well. By contrast, other nodes intersecting the query window by a small 
portion may introduce many false positives. Consequently, HistSFC 
computes the intersection ratio of each node which equals the volume 
of intersection divided by the volume of the node. These nodes are then 
ranked to be subdivided. The process stops when the refinement pool 
is empty or the number of ranges reaches the threshold. The rest of the 
querying process remains the same as PlainSFC.
5

Fig. 6. Range computation using HistogramTree: with respect to the query window, 
green nodes are inside; red nodes are on the boundary; orange nodes are on the 
boundary but with few points; white nodes are outside. (For interpretation of the 
references to color in this figure legend, the reader is referred to the web version 
of this article.)

4.3. Parallel decoding

Although HistSFC decreases FPR compared to PlainSFC (Eq.  (1)), the 
decoding process of the second filter can still be time consuming if the 
result contains many keys. To address this issue, HistSFC adopts parallel 
technique for decoding. HistSFC distributes the ranges generated by 
the first filter to different processors so that each processor executes 
a part of the query and decodes the result. As each range contains 
a different number of points due to skewed data distribution, the 
actual workload can be unbalanced among processors. To improve this, 
HistSFC ranks the ranges according to their lengths, assuming that the 
length represents the number of points inside. This is reasonable as 
the result is computed using the nD-histogram. Then, each range is 
randomly assigned to a processor in the processor pool. Each processor 
handles all its ranges and fetches the point data on the disk.

5. Cumulative hypercubic coverage

In principle, HistSFC improves the query performance given skewed 
data distribution. However, to what extent can HistSFC improve the 
performance? How is this related to specific data distributions? As 
the dimensionality of point clouds is always limited, we conduct a 
theoretical analysis to investigate the effectiveness of HistogramTree. 
This section proposes a metric called Cumulative Hypercubic Coverage 
(CHC) to quantify the uniformity of nD points. Then, the section 
analyzes the relationship between CHC and the effectiveness of His-
togramTree in querying. In addition, simulation is performed to learn 
how the effectiveness of HistogramTree changes with CHC.

5.1. Definition

The idea of CHC comes from a basic question: is it possible to 
quantify the uniformity of a set of points on a 2D plane? We may 
think of using area to indicate the uniformity. This is because when the 
points are spread over the plane, the area seems to be larger than the 
case when the points are clustered. However, as a point has no area, 
to quantify such a measure, we need to build cells with area around 
each point for evaluation. Besides, as the goal is to measure uniformity, 
we also want the area measure to be independent from the number of 
points (i.e., 𝑁) and only relate to the distribution. To achieve this, the 
cell size should be varied according to 𝑁 . We choose the square as the 
shape of each cell, which becomes the hypercube in nD space. We name 
the cell created for the measurement the associated cell for each point.
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Fig. 7. Two approaches computing the 2D cumulative hypercubic coverage.
Fig. 8. Numerical simulation of CHC using two computing approaches.
Definition.  Given a set of nD points, cumulative hypercubic coverage 
refers to the sum of standardized hypercubic volume of all associated 
cells after deduplication.

We provide two approaches to compute CHC, and later prove that 
they approach to the same expectation when 𝑁 becomes arbitrarily 
large. Given a point set consisting of 𝑁 points within an nD do-
main which is defined by the range of all dimensions, suppose the 
hypervolume of the domain is 𝑉 :

Grid occupancy: We divide the domain into 𝑁 nD-cells with equal 
size (Fig.  7(a)). Suppose the extent of the 𝑖th dimension 𝐷𝑖 equals 
𝐸𝐷𝑖, the edge length of the cell at that dimension then equals 𝐸𝐷𝑖

𝑛√𝑁
. 

If at least one point falls into a cell, then the cell is counted. As the 
hypervolume of each cell is 𝑉𝑁 , then, 𝐶𝐻𝐶 = 1

𝑉
count of occupied cells⋅𝑉

𝑁 =
count of occupied cells

𝑁 .
Entity union: For each point 𝑝, we use it as the center to build an 

nD-cell 𝑐 (Fig.  7(b)) of which the edge length at 𝐷𝑖 equals 𝐸𝐷𝑖
𝑛√𝑁

. Then, 
𝐶𝐻𝐶 = ℎ𝑦𝑝𝑒𝑟𝑣𝑜𝑙𝑢𝑚𝑒(

⋃

𝑐)
𝑉 .

Theorem 1.  Given a point set following a specific distribution, when 𝑁
becomes arbitrarily large, the expectation of grid occupancy is a constant 
which is only determined by the joint Probability Density Function (PDF).

Theorem 2.  The expectation of entity union converges to the same constant 
as grid occupancy, when 𝑁 becomes arbitrarily large.

Appendix  B provides the proof. We also perform simulations to 
illustrate the theorems. In Fig.  8(a), the CHC of a 2D point cloud is 
6

computed. The dimension X and Y are independent from each other, 
both following  (0.5, 0.1) (shown in Fig.  7). Fig.  8(b) shows the CHC 
of another 2D point cloud, where X follows exponential distribution 
𝐸(12.5) and Y follows gamma distribution 𝛤 (2, 0.08). The figures in-
dicate that the CHC values computed by both approaches gradually 
converge to the true value which can be computed (Eq.  (6) in Appendix 
B).

Compared with entity union, grid occupancy is more convenient 
and efficient to compute. For example, a DBMS flat table PC stores 
𝑁 points with columns 𝑑1, 𝑑2, . . .𝑑𝑛, corresponding to different di-
mensions. The SQL command ‘‘SELECT COUNT(ct)/N from (SELECT 
COUNT(*) AS ct from PC group by TRUNC(d1/𝑒𝑙𝐷1), TRUNC(d2/𝑒𝑙𝐷2), 
. . . TRUNC(dn/𝑒𝑙𝐷𝑛))’’ can be used to derive CHC. 𝑒𝑙𝐷𝑖 refers to the edge 
length of a cell in 𝐷𝑖, which equals 𝐸𝐷𝑖

𝑛√𝑁
.

Uniformity metrics for point clouds have been proposed before
(Gunzburger and Burkardt, 2004; Ong et al., 2012). Compared with 
them, CHC is computed based on accumulating the hypercubes, which 
keeps consistent with the querying strategy of HistSFC. Therefore, CHC 
can be an appropriate metric to explore the relationship between the 
effectiveness of HistogramTree and the uniformity of data.

5.2. Effectiveness of nD-histogram

As mentioned, there exist a fraction of the ranges computed by 
PlainSFC containing no points. We define an effective range as a range 
exported by PlainSFC that contains at least one point, no matter 
whether the point is inside the query window or not. Assume the 
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Fig. 9. Simulated probability density functions.
capacity threshold of HistogramTree is 1 (i.e., the highest precision). 
Obviously, HistSFC only returns effective ranges. Then, we use Eq.  (2) 
to measure the effectiveness of HistogramTree with respect to a query. 
Theorem  3 shows how the effectiveness is related to CHC. 

𝐸ℎ𝑖𝑠𝑡 =
Number of ranges exported by PlainSFC
Number of ranges exported by HistSFC (2)

Theorem 3.  Given a point cloud containing 𝑁 points. Suppose the points 
can move freely in the domain so that the uniformity is changing. For a 
window query, the expected 𝐸ℎ𝑖𝑠𝑡 is a monotonically decreasing function of 
CHC.

The proof is provided in Appendix  B. We derive a general pattern 
from Theorem  3: given two nD point clouds 𝐴 and 𝐵 where 𝐶𝐻𝐶𝐴 >
𝐶𝐻𝐶𝐵 , for a large number of window queries, 𝐸ℎ𝑖𝑠𝑡(𝐴) < 𝐸ℎ𝑖𝑠𝑡(𝐵). That 
is, with the decrease of CHC, the benefit of using HistSFC increases. 
When CHC approaches 0, 𝐸ℎ𝑖𝑠𝑡 becomes arbitrarily large and the vacant 
ranges generated by HistSFC will be much less than that of PlainSFC. 
The smallest 𝐸ℎ𝑖𝑠𝑡 equals 1, which happens when points follow a 
chessboard distribution (i.e., CHC = 1). In that case, HistogramTree is 
not needed.

5.3. Realistic simulation

To further evaluate the effectiveness of HistogramTree, we conduct 
another experiment with realistically simulated data. Using simulation, 
we guarantee that CHC values of the data generated can be of different 
orders of magnitude. We first collect point clouds from different sources 
such as indoor laser scanning and Airborne Laser Scanning (ALS), 
and study the distributions of various dimensions involved. This test 
simulates 6 dimensions with different distribution types that we derived 
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Table 1
Distributions designed in the realistic simulation.
 Gentle Sharp  
 Uniform 𝑈 (0, 220) 𝑈 (0, 220)  
 Normal  (219 , 218)  (219 , 217)  
 Gamma1 𝛤 (1, 2) × 217 𝛤 (0.05, 1) × 217  
 Gamma2 𝛤 (2, 3) × 215 𝛤 (10, 0.1) × 215  
 Gamma3 𝛤 (10, 2) × 216 𝛤 (820, 0.02) × 216 

(Table  1 and Fig.  9). The value of each dimension is based on 20 bits, 
ranging from 0 to 220.

The test builds 10 data sets in 3D, 4D, 5D and 6D, respectively. Each 
data set contains 107 points. The first two dimensions of these data 
sets always follow the uniform distribution, while other dimensions are 
generated by randomly choosing the distribution from Table  1. Then, 
the test adopts the regular procedure to build HistogramTree based on 
capacity threshold: 3D and 4D solutions use 100 as the capacity, while 
5D and 6D adopt 1000, instead. When querying, the test randomly 
generates 500 nD query windows with varying edge lengths at each 
dimension. The maximum number of ranges for 3D and 4D querying 
is 1000; while that for 5D and 6D querying is 10,000. These settings 
are typical given corresponding data. We adopt a variant of 𝐸ℎ𝑖𝑠𝑡 to 
evaluate the effectiveness of HistogramTree, which is 𝐸′

ℎ𝑖𝑠𝑡 (Eq.  (3)). 
It is more appropriate because PlainSFC and HistSFC returns the same 
number of ranges in this experiment: 

𝐸′
ℎ𝑖𝑠𝑡 =

𝐹𝑃𝑅𝑃 𝑙𝑎𝑖𝑛𝑆𝐹𝐶
𝐹𝑃𝑅𝐻𝑖𝑠𝑡𝑆𝐹𝐶

(3)

where 𝐹𝑃𝑅𝑃 𝑙𝑎𝑖𝑛𝑆𝐹𝐶 and 𝐹𝑃𝑅𝐻𝑖𝑠𝑡𝑆𝐹𝐶 stand for FPR of PlainSFC and 
HistSFC, respectively.

Fig.  10 presents the medians of 𝐸′
ℎ𝑖𝑠𝑡 from all the tests. On the whole, 

HistogramTree works more effectively when the data set possesses a 
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.

Fig. 10. Relationship between CHC and 𝐸′

ℎ𝑖𝑠𝑡 derived from the realistic simulation.

Fig. 11. The AHN2 sample used for benchmarking.

smaller CHC. The results indicate that when the CHC value is smaller 
than 0.1, HistogramTree becomes essential to use. This is because 
in many cases, the FPR can be decreased by orders of magnitude, 
especially when CHC is below 0.01. In practice, as CHC is convenient to 
compute based on the occupancy grid, developers are suggested to first 
measure the CHC before building the HistogramTree. If a point cloud 
is too large, random sampling can be performed to derive CHC since it 
is only influenced by the point distribution.

6. Experimental evaluation

After acquiring the convincing results of HistSFC by theoretical 
analysis and simulation, we evaluate the performance in practice. This 
section elaborates benchmark results on real data. Section 6.1 lists the 
other state-of-the-art solutions for benchmarking. Section 6.2 describes 
two use cases on which the benchmark is based. Section 6.3 compares 
HistSFC and PlainSFC. This is then followed by an overall comparison 
including HistSFC and state-of-the-art solutions in Section 6.4. Sec-
tion 6.5 discusses the results and provides more aspects of the use of 
HistSFC. All benchmark tests are performed on a HP DL380p Gen8 
server with 2 × 8-core Intel Xeon processors, E5-2690 at 2.9 GHz, 
128 GB of main memory, a RHEL6 operating system. The disk storage 
is a 41 TB SATA 7200 rpm in RAID6 configuration.

6.1. State-of-the-art solutions

Appendix  C presents the querying process of state-of-the-art solu-
tions for benchmarking. The final results of all solutions are stored as 
C++ in-memory objects, before being exported to the disk.

(Extended) Pyramid-Technique Section 2.3 describes the principle 
of both Pyramid-Technique and extended Pyramid-Technique. They 
adopt the same architecture for querying.

PostGIS The pgPointcloud extension (Ramsey, 2020) can maximally 
support two organizing dimensions, which performs inefficiently in 
higher dimensional queries. Thus, it is not used in the benchmark test. 
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Table 2
Storage size of AHN2 data sets on the disk (GB).
 Data set 1 2 3 4 5  
 Number of points 5 × 108 109 2 × 109 6 × 109 1010  
 Raw TEXT 16.49 32.98 64.42 193.9 323.4 
 SFC IOT 10 19.95 38.97 118.3 199.7 
 Pyramid 18.24 36.39 71.06 213.6 356.9 
 PyramidEx 18.52 36.95 72.01 216.2 360.7 
 PostGIS 7.21 14.17 28.1 82.32 138.0 

Table 3
Selectiveness of different dimensions of the query windows, with respect to Data set 1
 X Y Z cLoI Overall 
 SmallA 1.73% 4.37% 99.46% 94.31% 0.05%  
 SmallB 20.5% 79.11% 1.01% 23.48% 0.05%  
 SmallC 20.25% 17.58% 98.8% 1.03% 0.05%  
 Medium 20.29% 35.02% 98.29% 11.23% 0.67%  
 Large 20.39% 55.3% 98% 40.03% 4.53%  

Instead, we implemented a 4D solution based on the 4D MultiPoint ge-
ometry. The original ‘‘M’’ dimension is replaced by cLoI (Section 6.2.1). 
To keep in line with HistSFC, a MultiPoint object which corresponds to 
a leaf node of HistogramTree is created to store point data. Such an 
object can be regarded as a 4D block. Then, a 4D R-tree is built on all 
MultiPoint objects for indexing.

SDO_PC Oracle SDO_PC solution (Oracle, 2019) partitions point 
cloud data into 2D blocks and adopts Hilbert R-tree for indexing. In the 
flood data test (Section 6.2.2), we use X and Y dimension to organize 
data and create blocks.

6.2. Use cases

We investigate two use cases: the AHN2 exploration in Section 6.2.1 
concerns a 4D point cloud, while the flood risk querying in Sec-
tion 6.2.2 uses an 8D data set.

6.2.1. AHN2 exploration
AHN2 is an ALS point cloud recording the terrain elevation of 

the Netherlands (AHN, 2014), with a density of 6 — 10 points/m2. 
We cropped a sample which locates at the southwestern part of the 
Netherlands (Fig.  11), containing 10 billion points. The XYZ bounding 
box is [13427.6, 359007.3, −8.8; 38000, 415990.9, 119.7] in spatial 
reference system Amersfoort/RD New, EPSG:28992. cLoI is used to 
represent the importance of a point. It improves the performance on 
visualizing large point clouds where less important points may not have 
to be rendered (Fig.  12). We add the cLoI dimension into AHN2 as the 
fourth organizing dimension.

In order to learn the scalability of different solutions, we split the 
data into five vertical slices from west to east. Starting from the first 
piece which is Data set 1, by adding one more slice each time, five 
different data sets are built. Table  2 presents the storage size of different 
solutions. Raw TEXT refers to point records with 4 fields stored in TEXT 
files. Pyramid and PyramidEx refer to Pyramid-Technique and extended 
Pyramid-Technique, respectively.

For querying, we devise the query window sizes and locations by 
considering query logs and testing requirements (e.g., diverse selective-
ness of queries defined by Eq.  (4)). The selectiveness of the 5 query 
windows used for benchmarking is presented in Table  3. 

𝑠𝑒𝑙𝑒𝑐𝑡𝑖𝑣𝑒𝑛𝑒𝑠𝑠 =
Number of points within the query range

Total number of points (4)
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Fig. 12. A bird-view selection of the AHN data using cLoI. Only important points are rendered on the periphery.
Fig. 13. A typical flood modeling grid along a river, from Gharbi et al. (2016).
6.2.2. Flood risk querying
Flood risk mapping projects generate huge amounts of modeling 

data to assess the flood risk. The mapping process mainly includes two 
parts. The first part concerns running a 1D and 2D coupled hydrody-
namic model to compute water depth, flow velocity and direction at 
different time steps, given a specific breach case. The model stores 
results in a 2D mesh covering the modeling basin (Fig.  13). The 
modeling results are then used for making various maps such as the 
maximum inundation map and inundation duration map, in a following 
step. The water authorities collect these final products, and use them for 
decision making. However, a large part of original modeling results are 
omitted because they are cumbersome to manage, analyze and present. 
This certainly has drawbacks: the products are ‘‘static’’ and no more 
details can be derived; the maps fail to address new requirements.

In fact, any specific flood map can be expressed and formed by a 
type of query. For example, the inundation extent map can be generated 
by selecting all the grid cells with water depth greater than 0, while 
the arrival time map can be generated by selecting cells at different 
time steps that have been flooded. In addition, new requirements such 
as flood situation around certain objects can also be resolved by using 
specific queries. Due to the irregular grid (Fig.  13), data storage and 
querying in the form of rasters would be cumbersome and inefficient. 
A possible solution is to extract the centroids of all cells and store 
the attributes including flow velocity, direction and inundation depth 
in these centroids. These attributes can either be used as the prop-
erty dimension or organizing dimension for data management. Flood 
risk analysis can then be performed by querying this nD-PointCloud 
database using all these relevant dimensions. This section demonstrates 
this with a use case in China (Liu et al., 2021a).

The project models 8 cases (i.e., initial conditions), and each case 
simulates 720 time steps with 30-min resolution. In total, we get 
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Table 4
Storage size of flood data sets on the disk (GB).
 Data set Number of points Raw TEXT HistSFC SDO_PC 
 1 42,969,600 2.69 1.67 + 0.002 3.63  
 2 85,939,200 5.41 3.34 + 0.004 7.26  
 3 171,878,400 10.8 6.67 + 0.009 14.1  
 4 343,756,800 20.7 12.9 + 0.017 33.3  

59,680 × 720 × 8 = 343,756,800 points in an 8D space composed by 
case ID, X, Y, Z, time, depth, velocity and direction. To explore the 
scalability, we divide the whole result set into 4 benchmark data sets 
according to the case ID. Data set 1 consists of the result of case 1. 
Data set 2 consists of case 1 and 2. Data set 3 includes the first 4 cases. 
Data set 4 refers to the whole data set. Table  4 lists the storage size of 
different solutions. HistSFC’s size includes IOT and HistogramTree.

In practice, the flow direction is infrequently used for risk analysis 
compared with other dimensions. So, we set flow direction as the only 
property dimension when building HistSFC. We choose to implement 
SDO_PC because Oracle is widely used to manage water data. So, it is 
very convenient to be used directly for point clouds. Besides, HistSFC 
is also implemented in Oracle and this can achieve fair comparison in 
terms of architecture.

According to practical experience and potential needs, we devised 
4 queries for testing (Table  5). As these queries all concern case 1, the 
execution using different data sets will return the same results.

6.3. HistSFC vs PlainSFC

This section investigates to what extent HistSFC improves the per-
formance of PlainSFC. We tested different size of HistogramTree to 
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Table 5
Flood queries used for benchmarking.
 Query Description Org. Dimensions Num. Points  
 DEPTH3 m Select the area that is flooded with depth greater than 

3 m, in case 1
caseID, depth 26,484,215  

 ARRIVAL24h Select the area that is flooded (depth > 0) within 24 h, in 
case 1

caseID, depth, time 925,691  

 EXTENTmax Select the maximum inundation area (depth > 0), in case 1 caseID, depth 32,183,314  
 HOUSErisk Select the area that is flooded (depth > 0) around several 

houses (a rectangular area), in case 1
caseID, depth, X, Y 170,417  
Table 6
Memory consumption of HistogramTree in AHN2 test (MB).
 Data set Capacity threshold
 1,000 10,000 100,000 
 1 135 11.6 1.18  
 2 265 23.2 2.38  
 3 531 46.8 4.77  
 4 1,408 124 11.9  
 5 2,615 242 24.1  

Table 7
False positive rate using different HistogramTrees in AHN2 test.
 Query window HistSFC_1K HistSFC_10K HistSFC_100K PlainSFC 
 SmallA 0.084 0.121 0.248 1.031  
 SmallB 0.778 1.143 1.257 2.339  
 SmallC 0.022 0.052 0.059 0.068  
 Medium 0.079 0.100 0.124 0.285  
 Large 0.028 0.033 0.063 0.136  

Table 8
Memory consumption of HistogramTree in the flood data test (MB).
 Data set Capacity threshold
 1,000 5,000 10,000 
 1 13.8 2.70 1.74  
 2 27.4 5.38 3.62  
 3 54.7 10.8 7.13  
 4 105 20.5 13.6  

Table 9
False positive rate using different HistogramTrees in the flood data test.
 Query window HistSFC_1K HistSFC_5K HistSFC_10K PlainSFC 
 DEPTH3m 0.048 0.084 0.106 4.739  
 ARRIVAL24h 4.958 5.571 5.884 25.433  
 EXTENTmax 0.339 0.357 0.39 4.327  
 HOUSErisk 1.922 1.876 2.048 13.457  

learn how this influences the querying efficiency. We adopted neutral 
number of ranges for querying. That is, 1 million for AHN2 test and 
100,000 for the flood data test.

Table  6 presents the memory consumption in AHN2 test. Table  7 
presents FPR of different solutions. HistSFC_1K refers to HistogramTree 
with a capacity threshold of 1000. Overall, using HistogramTree signif-
icantly decreases FPR of PlainSFC. HistSFC_1K performs the best, and 
it at least decreases FPR by half compared to PlainSFC.

Table  8 presents the memory cost of HistogramTrees in the flood 
data test. As the data set is smaller than AHN2, smaller node capacities 
are tested. As the tables show, HistogramTrees’ sizes are much smaller 
here than in the AHN2 experiment. They are all below 100 MB. Table 
9 presents FPRs for flood queries. The FPR can be decreased by orders 
of magnitude after using HistogramTree. In fact, HistogramTree’s ef-
fectiveness is closely related to CHC, where the CHC of AHN2 data is 
0.0095 and that of the whole flood data is 0.0006758.

Fig.  14 shows the querying time cost of different solutions in the 
AHN2 SmallC test. Appendix  D provides exact time measurements. 
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Fig. 14. Time cost of SmallC query using different HistogramTrees.

Fig. 15. Time cost of ARRIVAL24h using different HistogramTrees.

Other tests present analogous patterns. The time cost is composed 
by the first filter time and the second (Section 3.3). On the whole, 
HistSFC_10K and HistSFC_100K perform the best. PlainSFC follows 
behind, while HistSFC_1K ranks last. In most cases, the gap between 
PlainSFC and HistSFC_10K or HistSFC_100K is not large. The main 
reason lies in the high uniformity of the data, and the effectiveness 
of HistogramTree is limited. In contrast to the favorable performance 
in FPR (Table  7), HistSFC_1K degrades remarkably in time cost as 
data size increases. This is mainly caused by traversing the huge 
HistogramTree in the first filter which takes an enormous amount of 
time. Besides, HistogramTree first has to be loaded into memory to use. 
The loading process of HistSFC_1K of Data set 5 can take 150 s, which 
is unacceptable.

Fig.  15 shows the time cost of the flood ARRIVAL24 h test as a repre-
sentative. Appendix  D provides exact time measurements. HistSFC_1K, 
HistSFC_5K and HistSFC_10K respond 2× to 5× faster than PlainSFC. 
This is due to higher FPRs (Table  9) of PlainSFC which increases I/O 
and decoding time cost. Compared to the AHN2 test, HistogramTree 
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Fig. 16. Time cost of SmallA query using state-of-the-art solutions.
Fig. 17. Time cost of SmallB query using state-of-the-art solutions.

works more effectively for this non-uniformly distributed data. The 
time cost of HistSFC solutions do not vary significantly. In the follow-
ing, we choose HistSFC_5K as the optimal solution because it balances 
the performance and resource consumption.

6.4. HistSFC vs State-of-the-arts

To further learn HistSFC’s performance, we perform benchmark 
tests to compare HistSFC and other solutions using AHN2 and the flood 
data. In the AHN2 test, the leaf node capacity of HistogramTree is 
set to 10,000 (Table  6), and the number of ranges for querying is 
100,000. These parameters are acquired by extra experimenting and 
tend to be optimal. For PostGIS, the capacity of MultiPoint object is 
10,000 points. Figs.  16–20 present the time cost of different solutions. 
Appendix  D provides all related time measurements. For all solutions, 
we implement parallel post-processing with 32 processors.

From Figs.  16–20, HistSFC always takes the least time to execute. 
PostGIS ranks behind, while Pyramid and PyramidEx (i.e., extended 
Pyramid-Technique) are the slowest solutions. More specifically, in 
SmallA and SmallC, PostGIS spends slightly more time than HistSFC. 
However, SmallB is different, where HistSFC is 3× to 5× faster than 
PostGIS. This is because the specific shape of SmallB results in more 
blocks of the PostGIS solution intersecting the query window. Thus, 
PostGIS spends much more time on unpacking blocks. For the same 
reason, HistSFC outperforms PostGIS in the Medium and Large query. 
For these two queries, HistSFC spends most of the time on the second 
filter while less than 2 s on the first filter. With respect to scalability, 
PostGIS scales constantly as input data size increases. HistSFC presents 
a slightly increasing pattern in terms of scalability. This is mainly 
attributed to the growing HistogramTree’s size which causes more 
traversing time.
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Fig. 18. Time cost of SmallC query using state-of-the-art solutions.

Fig. 19. Time cost of Medium query using state-of-the-art solutions.

Pyramid and PyramidEx spend much more time on querying, and 
the performance fluctuates significantly. This is caused by the large and 
changing FPR (Table  10). Due to the specific pyramid decomposition of 
the space, when the query window reaches the bottom of a pyramid, 
all points residing in the bottom level of the pyramid will be selected. 
This brings large number of false positive points, increasing FPR. On 
the other hand, the FPR may also decrease when the input data size 
increases. This is because for each data set, the boundary of data and 
the medians for computing the pyramid value are changed. So, for the 
same query window, either Pyramid or PyramidEx may select different 
portions of data, which then influences FPR. PyramidEx may not always 
outperform Pyramid. In SmallB, PyramidEx returns higher FPR for 
certain query windows, which is caused by the window positions. 
Besides the time cost, the final output of Pyramid and PyramidEx may 
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Fig. 20. Time cost of Large query using state-of-the-art solutions.

Table 10
False positive rate of state-of-the-art solutions in AHN2 test.
 Data set SmallA SmallB SmallC Medium Large 
 HistSFC All 0.33 1.92 0.16 0.18 0.08  
 PostGIS All 1.57 7.14 0.66 0.36 0.16  
 

Pyramid

1 1739.32 336.69 32.85 14.77 5.73  
 2 3328.40 677.63 84.20 29.58 13.34 
 3 5739.03 862.65 708.46 54.45 30.07 
 4 11345.91 612.88 585.33 33.65 50.16 
 5 13568.89 170.72 1405.94 67.47 35.60 
 

PyramidEx

1 255.80 689.05 20.43 23.87 6.40  
 2 338.27 1148.89 41.91 44.66 9.36  
 3 408.23 1083.39 84.84 86.67 12.12 
 4 465.24 1266.48 263.35 101.90 14.34 
 5 757.63 1733.64 432.85 139.94 20.01 

not be accurate. This is because the pyramid value is not so precise to 
avoid errors at the query boundaries.

In the flood data test, HistSFC uses 5000 as the leaf node capacity 
(Table  8) and 100,000 ranges for querying. SDO_PC adopts 5000 as the 
block capacity. In Fig.  21, from DEPTH3 m to EXTENTmax, HistSFC 
responds significantly faster than SDO_PC. Besides, HistSFC also scales 
better, while SDO_PC takes more time as input data becomes larger. 
This is mainly because SDO_PC organizes and indexes data using XY 
only. So, queries on other dimensions instead of XY (e.g., the temporal 
or the depth dimension) need to unpack and scan all blocks, which is 
costly. However, SDO_PC shows superior performance in HOUSErisk. 
This is because the query uses XY range, which caters to the strength 
of SDO_PC which implements efficient 2D intersection. Only a few 
blocks are retrieved in HOUSErisk, and incurs small I/O cost. By 
contrast, HistSFC adopts 7D data organization with one dimensions as 
the property dimension, which means more nodes are examined for 
intersection. This also introduces more false positive points with veloc-
ity below 0.5 or outside the road, increasing the FPR. Overall, the test 
indicates that SDO_PC is only preferable for 2D spatial queries, while 
HistSFC is advantageous in queries concerning different combinations 
of dimensions.

6.5. Discussion

The benchmark tests show that HistSFC is the most favorable solu-
tion from all tests. HistSFC efficiently generates accurate SFC ranges for 
selection using HistogramTree, and does not need to unpack blocks due 
to its IOT storage. PostGIS performs very efficiently in retrieving blocks 
(i.e., MultiPoint objects), and thus functions efficiently for queries with 
small output. However, with more blocks selected, PostGIS spends sig-
nificantly more time on unpacking them. Yet, both PostGIS and SDO_PC 
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fail to address high dimensional queries efficiently due to their storing 
strategies. Pyramid and PyramidEx are originally devised for very high 
dimensional hypercubic window queries. However, they perform less 
efficiently in our experiment. The specific pyramid decomposition of 
the space causes very large FPRs.

As the input data size rises, HistogramTree’s memory cost goes up 
(Tables  6 and 8). We also observe that the growing HistogramTree’s 
size causes increasing time cost of the first filter. However, the size 
(e.g., 242 MB of HistSFC_10K) is moderate given current hardware 
settings, and the induced time cost in the first filter is insignificant 
unless we adopt HistSFC_1K. In fact, the optimal size of HistogramTree 
depends on the data and the implementing environment, and can be 
derived by benchmarking in general. Considering prevalent settings of 
hardware and typical applications of AHN2, HistogramTree is suggested 
to be kept under 1 GB. If the data size continues to increase, we may 
develop a block based HistSFC. That is, we group points to blocks as the 
leaf nodes of IOT. Then, to reduce the block unpacking workload, we 
can adopt a B+-tree to organize and index the data inside each block. 
Then, HistSFC is able to retrieve and unpack only the corresponding 
part of the block involved in a query by adopting the internal index. 
This remains to be future work. Besides, we suggest using CHC as 
an initial indicator to employ HistSFC. The simulation shows that 
when CHC is greater than 0.1, PlainSFC is also appropriate to use 
(Section 5.3).

To efficiently use PlainSFC and HistSFC, it is crucial to determine 
the organizing dimensions. In fact, the set of organizing dimensions 
balances the variety of queries and efficiency. That is, if we want to 
add more organizing dimensions to support more types of queries, the 
efficiency of every type of query somewhat declines due to the high 
dimensionality of the node. This is because high dimensional nodes 
generate a large number of child nodes by partitioning once, but 𝑟𝑚𝑎𝑥 is 
confined by the memory size. So, the selected nodes may not be refined 
sufficiently to reduce false positives. Thus, it is significant to perform 
a systematic analysis of the application and only use dimensions that 
are queried frequently to organize data. For spatial applications, we 
should first consider using X and Y as organizing dimensions. Next, the 
Z, time, cLoI, and classification may be used in addition. It is likely that 
we may not foresee all possible applications in advance, and a crucial 
new application requires conducting queries on property dimensions. 
Then, we suggest performing benchmark tests to compare different 
data organizations, e.g., by adopting different organizing dimensions 
considering query frequency and selectiveness (Eq.  (4)). In the end, 
we may need to reorganize the data storage or build another copy to 
achieve the best performance. More knowledge of nD-PointCloud data 
organization can be acquired from Meijers and van Oosterom (2018), 
Psomadaki (2016), Liu et al. (2021c).

7. Conclusions

To improve the range computation of PlainSFC on window queries, 
this paper develops an nD-histogram approach — HistSFC. It builds a 
HistogramTree structure and uses it to generate more accurate ranges 
for selection. The paper discovers a statistical metric, CHC, to quantify 
the uniformity of point data. It is revealed that CHC is only determined 
by the data distribution regardless of the number of points. Theory 
shows that HistogramTree works more effectively on data sets which 
possess larger CHC values. Both simulation and benchmark tests in-
dicate that when the CHC value is below 0.01, HistSFC can reduce 
the FPR of PlainSFC by at least 50%. As a consequence, the time cost 
decreases evidently. The performance gain becomes more significant 
as CHC further decreases. HistSFC is also compared with state-of-the 
art solutions. Overall, HistSFC responses the fastest. In certain cases, it 
takes less than 10% of the time of the others. It presents fine scalability 
as well as stable performance in nearly all querying tests. Related 
code of the research can be assessed at https://github.com/rencail-
hc/HistSFC.
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Fig. 21. Time cost (lines) and throughput (bars) of different solutions on flood querying.
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Appendix A. HistogramTree construction

Fig.  22 presents the procedure of building HistogramTree, called 
HistSTREAM. Basically, HistSTREAM reads sorted Morton keys sequen-
tially and meanwhile computes a node that could be the parent of 
all traversed keys. This stops until reading a key that belongs to the 
sibling or parent of the current node. The process will also stop when 
the number of keys traversed exceeds the leaf node’s capacity. Then, 
HistSTREAM returns to the beginning of this traversal and creates 
the nodes. HistSTREAM continues and repeats such process until the 
scanning of IOT is completed. Then, all nodes created are aggregated till 
the root node. HistSTREAM has to be implemented after data loading, 
as the order of the keys is critical. The I/O cost is (𝑁), as data sorting 
has been done and IOT has been built. Besides, the memory usage 
mainly depends on the leaf node capacity, and will not keep increasing 
as the input size grows. Moreover, HistSTREAM can be a fully streaming 
process.
13
Fig. 22. HistSTREAM.

Appendix B. Proof of CHC related theorems

Theorem 1.  Given a point set following a specific distribution, when 𝑁
becomes arbitrarily large, the expectation of grid occupancy is a constant 
which is only determined by the joint Probability Density Function (PDF).
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Fig. 23. The region used to compute 𝐸(𝑠) which is the red box, with lower bound on the left, upper bound on the right.
Fig. 24. The change of effective ranges with respect to CHC, where solid lines constitutes the occupancy grid, while dash lines indicate the subdivision of space. Red rectangle 
refers to the query window. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
Proof.  Assuming the point set is distributed in a 2D unit domain, for 
a specific cell 𝑐 defined by its center (𝑥, 𝑦), the probability that it is 
occupied can be computed:

𝑃 (𝑐(𝑥, 𝑦)) = 1 −
(

1 − 𝐹𝑐(𝑥,𝑦)
)𝑁 = 1 −

(

1 − 1
𝑁

⋅ 𝑓𝑐(𝑥,𝑦)
)𝑁

where 𝐹𝑐(𝑥,𝑦) is the cumulative probability in 𝑐, and 1 − 𝐹𝑐(𝑥,𝑦) is the 
probability that a point does not fall into 𝑐. 𝑓𝑐(𝑥,𝑦) refers to the average 
probability density in 𝑐. When 𝑁 → ∞, the size of 𝑐 becomes arbitrarily 
small, we have

lim
𝑁→∞

𝑃 (𝑐(𝑥, 𝑦)) = lim
𝑁→∞

(

1 − (1 −
𝑓𝑐(𝑥,𝑦)
𝑁

)𝑁
)

= 1 − 𝑒−𝑓 (𝑥,𝑦)

where 𝑒 is the Euler’s number which approximately equals 2.71828, 
and 𝑓 (𝑥, 𝑦) is the probability density at (𝑥, 𝑦). The specific derivation is 
based on lim𝑁→∞(1 − 1

𝑁 )𝑁 = 1
𝑒 . We just need to change the form to 

lim𝑁→∞(1 − 𝑓𝑐(𝑥,𝑦)
𝑁 )𝑁 , to derive the limitation which equals 𝑒−𝑓 (𝑥,𝑦).

Since

𝐸(𝐶𝐻𝐶) =
𝑁
∑

𝑖=1

𝑃 (𝑐𝑖)
𝑁

when 𝑁 → ∞, we derive 

𝐸(𝐶𝐻𝐶) = ∬𝛺
𝑃 (𝜎) 𝑑𝜎 = 1 −∬𝛺

𝑒−𝑓 (𝑥,𝑦) 𝑑𝑥 𝑑𝑦 (5)

where 𝛺 refers to the unit domain, [0, 1] × [0, 1] in this case.
This can be easily extended to the nD unit hypercubic domain, 

where 𝑓𝑛 represents the joint Probability Density Function (PDF) and 
is a continuous function in the domain: 

𝐸(𝐶𝐻𝐶) = 1 − ∫ ⋯∫ 𝑒−𝑓𝑛 𝑑𝑣 (6)
14

𝛺

In reality, it is very likely that a point cloud can spread over a much 
larger space than a unit domain. In such cases, the PDF can firstly be 
scaled to the unit domain, and the expectation can then be derived. 
Such scaling does not change CHC because a cell in the original space 
corresponds to a distinctive cell in the unit domain. So, the count of 
occupied cells remains the same.

Theorem 2.  The expectation of entity union converges to the same constant 
as grid occupancy, when 𝑁 becomes arbitrarily large.

Proof.  The difficulty to compute CHC using entity union lies in 
computing the overlapping area of different cells. To solve this, instead 
of a cell, we focus on a small box region in the domain that may be 
covered by the union of cells. We still assume that the point set is 
distributed in a 2D unit domain. The area of the box region is denoted 
by 𝛥𝑠, where 1

𝑁 ≫ 𝛥𝑠. We use two bounds to derive the expectation 
of the area of which 𝛥𝑠 is covered, denoted by 𝐸(𝑠). In Fig.  23, the 
dashed box refers to an nD-cell 𝑐, when a point falls into the red box, 
𝛥𝑠 is considered to be covered.

Apparently, the lower bound omits the region where a cell partially 
intersects 𝛥𝑠, while the upper bound elaborates all intersection cases. 
This yields
𝑃𝜎𝐿𝛥𝑠 ≤ 𝐸(𝑠) ≤ 𝑃𝜎𝑈 𝛥𝑠

where 𝑃𝜎𝐿  refers to the probability that a point falls into the region of 
the lower bound, while 𝑃𝜎𝑈  refers to that of the upper bound. We have,

𝑃𝜎𝐿 = 1 −
(

1 − 𝐹𝜎𝐿(𝑥,𝑦)

)𝑁
=

1 −

(

1 − ( 1
√

−
√

𝛥𝑠)2 ⋅ 𝑓𝜎𝐿(𝑥,𝑦)

)𝑁
𝑁
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Fig. 25. Querying process of different solutions.
𝑃𝜎𝑈 = 1 −

(

1 − ( 1
√

𝑁
+
√

𝛥𝑠)2 ⋅ 𝑓𝜎𝑈 (𝑥,𝑦)

)𝑁

When 𝑁 → ∞, then, 𝛥𝑠 → 0, the size of 𝜎𝐿 and 𝜎𝑈  becomes arbitrarily 
small, we then derive

lim
𝑁→∞

𝑃𝜎𝐿 = lim
𝑁→∞

(

1 − (1 −
𝑓𝜎𝐿(𝑥,𝑦)

𝑁
)𝑁

)

= 1 − 𝑒−𝑓 (𝑥,𝑦)

lim
𝑁→∞

𝑃𝜎𝑈 = 1 − 𝑒−𝑓 (𝑥,𝑦)

As

𝐸(𝐶𝐻𝐶) =
∑

𝐸(𝑠)

so
1
𝛥𝑠
∑

𝑖=1
𝑃𝜎𝐿𝛥𝑠 ≤ 𝐸(𝐶𝐻𝐶) ≤

1
𝛥𝑠
∑

𝑖=1
𝑃𝜎𝑈 𝛥𝑠

When 𝑁 → ∞, and 𝛥𝑠 → 0, we also derive

𝐸(𝐶𝐻𝐶) = ∬𝛺

(

1 − 𝑒−𝑓 (𝑥,𝑦)
)

𝑑𝜎

where 𝛺 refers to the unit domain.
This is the same as Eq.  (5). Analogously, we can extend the deriva-

tion of CHC’s expectation to the nD domain, and the expression is the 
same as Eq.  (6).

Theorem 3.  Given a point cloud containing 𝑁 points. Suppose the points 
can move freely in the domain so that the uniformity is changing. For a 
window query, the expected 𝐸ℎ𝑖𝑠𝑡 is a monotonically decreasing function of 
CHC.
15
Proof.  We first build the occupancy grid for each point set (Fig.  24). 
Assuming 𝑙 is the search depth, as 𝑁 may not equal 2𝑛𝑙 which is the 
number of subspaces, we set 𝑙 to 

⌈

log2 𝑁
𝑛

⌉

. We assume the query window 
totally matches the boundaries of SFC cells at 𝑙.

In Fig.  24, the incremental process of CHC reveals how effective 
range and 𝐸ℎ𝑖𝑠𝑡 change. Starting from 𝐶𝐻𝐶 → 0, i.e., all points reside in 
a grid cell, and there is no effective range. So, 𝐸ℎ𝑖𝑠𝑡 → +∞. In practice, 
this means HistSFC can immediately report an empty result. When a 
point moves from the central grid cell to another, which means 𝐶𝐻𝐶
increases, 𝐸ℎ𝑖𝑠𝑡 decreases due to a higher probability of encountering 
a point inside (middle sub-figure). When more points move out of the 
original grid cell, 𝐸ℎ𝑖𝑠𝑡 is most likely to decrease again or remain the 
same (right sub-figure). Sometimes, it is likely that two points belong 
to different cells of the occupancy grid, but reside in the same SFC cell. 
This is due to the mismatch of these two cell sizes. In this case, 𝐸ℎ𝑖𝑠𝑡
also remains the same, and will not increase. Consequently, for a large 
number of random window queries, 𝐸ℎ𝑖𝑠𝑡 is a monotonically decreasing 
function of CHC.

Appendix C. Querying process of tested solutions

See Fig.  25.

Appendix D. Benchmarking results

See Tables  11–14.
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Table 11
Time cost of different processes in the AHN2 SmallC querying (second).
 Data HistogramTree First filter Second Total Points  
 set loading Range Database Total filter time per  
 computing fetching cost second 
 

HistSFC_1K

1 7.00 2.38 0.31 2.94 0.25 3.19 75,107 
 2 13.70 2.67 0.28 3.16 0.25 3.41 70,328 
 3 29.26 3.45 0.30 4.12 0.26 4.38 54,715 
 4 84.55 5.37 0.27 6.04 0.26 6.30 38,072 
 5 145.89 8.28 0.37 8.92 0.26 9.18 26,127 
 

HistSFC_10K

1 0.68 2.01 0.16 2.46 0.27 2.72 88,039 
 2 1.31 2.07 0.28 2.49 0.26 2.75 87,334 
 3 2.43 2.11 0.18 2.55 0.26 2.81 85,436 
 4 6.28 2.26 0.27 2.62 0.26 2.88 83,299 
 5 12.37 2.67 0.23 3.10 0.27 3.38 71,057 
 

HistSFC_100K

1 0.21 2.28 0.14 2.75 0.27 3.02 79,384 
 2 0.26 2.30 0.17 2.78 0.26 3.04 78,784 
 3 0.40 2.23 0.14 2.63 0.27 2.89 82,867 
 4 0.74 2.23 0.17 2.63 0.27 2.90 82,724 
 5 1.41 2.19 0.16 2.65 0.26 2.91 82,327 
 

PlainSFC

1 – 2.86 0.27 3.50 0.26 3.77 63,697 
 2 – 2.80 0.29 3.48 0.28 3.76 63,849 
 3 – 2.82 0.20 3.58 0.28 3.86 62,129 
 4 – 2.91 0.27 3.60 0.27 3.88 61,889 
 5 – 3.59 0.34 4.25 0.27 4.52 53,057 
Table 12
Time cost of different processes in the flood ARRIVAL24h (second).
 Data HistogramTree First filter Second Total Points  
 set loading Range Database Total filter time per  
 computing fetching cost second  
 
HistSFC_1K

1 0.90 0.25 0.86 1.20 7.22 8.42 109,887 
 2 1.58 0.31 1.48 1.89 8.60 10.49 88,262  
 3 3.18 0.36 1.97 2.42 8.92 11.34 81,609  
 4 5.98 0.50 1.58 2.17 9.74 11.91 77,750  
 
HistSFC_5K

1 0.24 0.26 1.19 1.51 8.27 9.77 94,719  
 2 0.35 0.26 1.53 1.85 10.42 12.27 75,462  
 3 0.63 0.29 1.58 1.92 10.97 12.89 71,815  
 4 1.13 0.30 1.92 2.27 10.91 13.18 70,251  
 
HistSFC_10K

1 0.20 0.32 1.16 1.51 9.43 10.94 84,623  
 2 0.28 0.32 1.61 1.96 10.54 12.51 74,020  
 3 0.49 0.33 1.68 2.04 10.52 12.56 73,690  
 4 0.74 0.28 1.80 2.12 10.59 12.71 72,826  
 
PlainSFC

1 – 0.66 2.40 3.14 16.34 19.48 47,513  
 2 – 0.67 2.06 2.82 31.82 34.63 26,729  
 3 – 0.68 2.30 3.08 30.98 34.05 27,185  
 4 – 0.70 2.49 3.27 31.79 35.06 26,402  
16
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Table 13
Time cost of state-of-the-art solutions in AHN2 test (second).
 Data SmallA SmallB SmallC Medium Large

 set First Second First Second First Second First Second First Second 
 filter filter filter filter filter filter filter filter filter filter  
 

PostGIS

1 1.56 0.24 14.76 0.97 1.35 0.13 13.00 1.52 72.21 9.54  
 2 1.63 0.23 19.61 0.62 1.07 0.10 15.18 1.19 76.52 6.97  
 3 1.61 0.22 13.93 0.77 1.06 0.13 15.47 1.77 75.56 7.98  
 4 1.55 0.26 12.33 1.19 1.13 0.13 15.38 1.82 73.52 6.72  
 5 1.79 0.26 12.94 0.78 1.07 0.16 15.31 1.77 74.20 6.95  
 

Pyramid

1 13.41 24.61 9.86 5.78 8.07 1.36 10.40 2.94 9.33 10.52  
 2 17.11 50.06 17.08 7.20 9.45 1.52 11.90 4.57 27.67 9.24  
 3 14.42 107.89 13.29 17.18 10.19 11.39 9.17 12.95 39.28 61.04  
 4 15.80 248.82 19.85 8.35 10.36 11.56 9.75 9.53 21.59 275.63 
 5 14.55 222.50 10.26 3.22 10.68 21.64 9.65 15.87 21.27 131.43 
 

PyramidEx

1 8.80 3.32 11.39 14.20 6.81 0.37 9.57 5.23 11.61 11.19  
 2 9.26 4.53 18.35 23.80 8.01 0.85 9.96 11.77 16.78 16.92  
 3 15.03 2.67 23.76 23.33 9.18 1.59 19.26 25.95 18.70 35.99  
 4 17.80 3.21 31.85 19.75 10.96 3.51 21.12 30.39 19.95 47.34  
 5 11.93 10.09 19.79 28.84 12.05 3.94 18.89 32.02 28.67 59.84  
 

HistSFC

1 0.81 0.32 4.14 0.83 0.46 0.28 0.83 5.02 0.73 28.53  
 2 0.94 0.32 4.71 0.83 0.45 0.28 0.95 4.61 1.05 28.13  
 3 1.20 0.31 4.72 0.83 0.67 0.30 1.17 4.35 0.90 28.41  
 4 1.02 0.31 4.83 0.84 0.69 0.28 1.08 4.49 1.11 29.03  
 5 1.49 0.32 4.84 0.86 0.93 0.28 1.55 4.92 1.32 29.20  
Table 14
Overall throughput of state-of-the-art solutions (points per second).
 Data set SmallA SmallB SmallC Medium Large  
 

PostGIS

1 128,545 17,541 162,478 232,510 277,205  
 2 124,053 13,635 204,623 206,137 271,442  
 3 126,363 18,768 202,378 195,770 271,318  
 4 127,480 20,406 189,131 196,237 282,443  
 5 112,997 20,110 195,770 197,569 279,282  
 

Pyramid

1 6,069 17,651 25,431 252,914 1,141,608 
 2 3,435 11,364 21,869 204,873 614,112  
 3 1,886 9,056 11,112 152,565 225,891  
 4 872 9,784 10,944 175,118 76,251  
 5 973 20,467 7,420 132,213 148,419  
 

PyramidEx

1 19,036 10,779 33,405 228,171 994,088  
 2 16,737 6,546 27,055 155,295 672,559  
 3 13,030 5,860 22,255 74,651 414,402  
 4 10,983 5,348 16,564 65,523 336,784  
 5 10,479 5,674 15,001 66,294 256,044  
 

HistSFC

1 280,363 65,771 490,425 3,334,862 8,400,003 
 2 240,103 57,831 523,620 2,782,259 7,240,641 
 3 190,065 57,746 352,156 2,516,689 7,869,169 
 4 222,292 56,435 343,087 2,674,231 7,572,070 
 5 153,826 56,423 256,216 1,938,472 6,844,822 
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