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Abstract 

This thesis studies transformation of urban environments, taking the conservation area of Utrecht as a 

case study. It aims to explore methods for vectorization, object matching and change detection of 

building data across different time periods. By studying these three processes together, this study aims 

to develop a holistic approach for linking historical and modern building data, bridging the gap between 

past and present datasets and offering a pathway for more integrated analyses of the built 

environment. This research found that combining manual and automatic vectorization provides the 

most solid foundation for extracting buildings from historical cadastral maps. For object matching, a 

1:1 match using building centroids, supplemented by ‘contains’ and ‘within’ spatial relationships, 

proved most effective in matching BGT Pand building versions. A rule-based change detection method, 

refined through 1:m spatial joins, was the most reliable for identifying building changes in the BGT Pand 

dataset between 2016 and 2024. It can be concluded that relatively many changes have occurred in 

the conservation area since the beginning of the BGT Pand version history in 2016, despite being an 

area that has strict instructions for the modification of buildings. 
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Glossary 
Term Definition  

ADR  Area Difference Ratio: A metric that resembles the relative change in area size between 
old- and new building versions. 

Automatic vectorization Methods that rely entirely on algorithms or machine learning models to convert raster 
data into vector data without human intervention during the extraction process (Chen 
et al., 2024). 

BAG  Basisregistratie Adressen en Gebouwen: The Dutch national register for addresses and 
buildings, which contains information about the locations, addresses, and attributes of 
buildings (Kadaster, n.d.-b). 

BGT Basisregistratie Grootschalige Topografie: The Dutch national register for large-scale 
topography, containing detailed geographical information about buildings, roads, and 
other infrastructural elements (Kadaster, 2024). 

Building change typology A classification system that categorizes different types of changes in buildings over time. 

Building versions Different instances of a building in a dataset, reflecting administrative updates, 
measurement adjustments, or actual physical changes. 

Centroid The geometric centre of a polygon or feature, typically used to represent the "centre" of 
an object in spatial analyses. 

Change classes Categories used in change detection to classify different types of changes between two 
building versions. 

Change detection The process of identifying and analysing changes in spatial or temporal datasets 
(Matikainen et al., 2010). 

Conservation area Groups of immovable properties that are of general interest due to their beauty, their 
mutual spatial or structural cohesion, or their scientific or cultural-historical value, and 
in which one or more monuments are located” (Rijksdienst voor het Cultureel Erfgoed, 
n.d.). 

Digitization The process of converting physical data sources into digital formats. 

False positives Errors in data or analysis where a feature or change is mistakenly identified, even 
though it does not actually exist (Matikainen et al., 2010). 

Field validation The process of verifying data by collecting and comparing it with real-world 
observations or measurements. 

Georeferencing The process of precise alignment of the input spatial information through determining 
the position of input data in a spatial coordinate system other than its own (Cascón-
Katchadourian & Alberich-Pascual, 2021). 

GIS Geographic Information System: A system for capturing, storing, analysing, and 
displaying spatial and geographic data, often used for mapping, analysis, and decision-
making (Heywood et al., 1999). 

Large-scale cadastral maps Detailed maps that depict land parcels and property boundaries. 

Manual vectorization Methods that rely on manually tracing to convert raster data into vector data (Chen et 
al., 2024). 

Object joins Relational operations in spatial databases where attributes from one object (e.g., 
building) are matched to another object. A 1:1 join links one object to another, while a 
1:m join links one object to multiple others (Zhou et al., 2018). 

Object matching the identification and matching of the same objects in different data sources (Zhou et 
al., 2018). 

Pand Smallest functionally and structurally independent unit that is directly and permanently 
connected to the earth and that can be entered and locked (Geonovum, 2022). 

RMSE  Root Mean Square Error: A metric for assessing the accuracy and precision of the 
georeferencing process (Brovelli & Minghini, 2012). 

Training data A set of data used to train machine learning models or algorithms, which helps the 
model learn to classify or predict features in new data. 

VeCTOR pipeline A model developed by Kadaster for converting JPEG images of field sketches into digital 
vectorized networks of geometric observations (Franken et al., 2021). 

Vectorization the process of transforming scanned or rasterized graphical representations of 
geographic entities into a vector format which can be edited using GIS software, to be 
better indexed, georeferenced, and analysed spatially (Picuno et al., 2019). 
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1. Introduction  

Understanding the transformation of urban environments is vital for a wide variety of research fields 

and disciplines, including urban planning, effective land use management and cultural heritage 

preservation (Drolias & Tziokas, 2020; Petitpierre & Guhennec, 2023; Liu et al., 2024). Information on 

the historical organization of urban landscapes is widely recorded in historical documents such as city 

archives and registers, notarial deeds and cadastral maps. Especially the latter provide valuable sources 

for the purpose of analysing spatial developments, as they are the most reliable documentations of 

cities on a fine scale level (Kruizinga & van Rosmalen, 1997). They therefore allow for the comparison 

of parcel boundaries and building outlines over time, enabling for studying cities’ building structures 

across time periods. The use of geographical information systems (GIS) has increasingly been used to 

display, manage and most importantly analyse historical geographical data, including digitized cadastral 

maps (Femenia-Ribera et al., 2022). One of the biggest challenges in realising the full potential of 

historical cadastral maps lies in their vectorization, the process of converting scanned paper maps into 

vector data. Related topics like the ambivalence between using traditional manual vectorization (more 

accurate but not scalable) and modern automatic methods (less accurate but largely scalable) are 

recurring within research and organizations alike (Chen et al., 2024; Chen et al., 2020a). Building on 

data derived from the vectorization of historical maps, the research field of change detection allows 

for the analysis of changes on building level through time. Thereby, this process essentially enables the 

changes of buildings in urban areas to be tracked over time, offering detailed insights into the changing 

urban landscape in nature and pace. Hereby, these cadastral sources can be used to provide a nuanced 

understanding of historical contexts and narratives that are vital for cultural heritage preservation (Liu 

et al., 2024). Despite the importance and interconnectedness of both these processes, they are rarely 

researched in relation to each other.  

The field of cultural heritage management and preservation is increasingly employing GIS as it 

integrates three essential components of cultural research: data acquisition, spatial analysis, and 

landscape reconstruction (Yao et al., 2023). Despite this increase, there remains significant untapped 

potential for the application of GIS within this field. Liu et al. (2024) for instance plead for increased 

integration and use of digital technologies, and specifically GIS, for the conservation of cultural 

heritage. They go on to discuss that, in addition to using GIS to study themes such as climate change, 

risk management and values, using it to study the historical development context of heritage holds 

unholstered potential. Their bibliometric analysis highlights the importance of strengthening efforts in 

the historical field of cultural heritage conservation, including the use of historical maps, overviews, 

and data. Such historical data is essential for evaluating the development of cultural heritage and its 

relation to broader spatial characteristics in cities. By placing cultural heritage within historical time 

and space, transformation processes and spatial characteristics are revealed, thereby also unveiling 

nuances regarding the zeitgeist of historical data. Similarly, Huang (2024) discusses the potential of 

using GIS in heritage studies for the digital recording and document management of heritage, as well 

as for interpreting historical data to deepen the understanding of heritage history and the cultural 

context.  

The historical city centre of Utrecht, designated as conservation area (beschermd stadsgezicht) since 

1975, is used as a case study to explore the application of the researched methods and to study how 

buildings change over time. In the past, the structure of historical cities in the Netherlands underwent 

profound transformations, driven by shifts in societal needs, technological advancements, and evolving 

urban functions (Dolfin et al., 1989). Existing buildings that no longer met the whims of social and urban 

needs were regularly redeveloped or demolished without consideration of their artistic value or 

significance for the streetscape and broader urban structure (Hulsman, 2020). In their stead, new 
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structures were constructed that accommodated new uses to better align cities with the evolving 

demands of their populations. This only changed with the introduction of the first national Heritage 

Law in the Netherlands in 1961, following a temporary law from 1950 (Tillema, 1975). This law 

introduced a careful legislative procedure that made it impossible for municipal authorities to easily 

grant demolition permits for listed heritage (hereinafter built heritage). The transformation of cities on 

a building level can be seen as a clear indicator of these functional shifts as cities adapt to societal 

needs. While this case study shows the potential for change analysis in heritage conservation, the 

methods studied in this thesis can be applied to urban transformations in other contexts. 

1.1 Research objectives  

This thesis aims to model urban transformation, taking the city of Utrecht as a case study. Through the 

perspective of building changes within the conservation area of the medieval city centre it seeks to 

study the preservation and transformation of the urban landscape on the building level. Its aim is 

twofold. Firstly, it focuses on different methods for the vectorization of historical cadastral data at the 

building level, with the goal of exploring how historical maps can be used for modern scientific 

analyses. Secondly it studies how to most effectively compare cadastral data from different temporal 

versions of the BGT Pand dataset (Basisregistratie Grootschalige Topografie), aiming to understand 

how building changes can be classified over time. The main research question that this thesis will 

answer is:  

"How can the processes of vectorizing historical cadastral maps and detecting building-level changes 

over time be combined to analyse the urban transformations of the historical city centre of Utrecht?" 

To further guide the research process, three sub questions have been formulated. The first question is 

aimed at identifying the methods most appropriate for the vectorization of large-scale cadastral maps. 

The vectorization process of historical cadastral data is necessary for turning it into usable vector data, 

enabling further spatial analysis at the building level. By studying advantages and limitations associated 

with techniques for vectorizing historical map data, the most suitable methods are determined. Hereby, 

this thesis seeks to advance the use of historical cadastral maps for modern applications. 

1. “What methods are most effective for the vectorization of historical cadastral data?” 

The second sub-question addresses the challenge of object matching, linking corresponding buildings 

from different building versions. Considering that building changes occur over time, this step binds 

different time steps together, enabling versions of buildings to be correctly matched with one another. 

Thereby it is crucial for effectively performing the subsequent change detection. This question explores 

methods for matching building footprints, considering geometric, topological, and attribute-based 

factors to ensure reliable comparisons. The constructed method is finally used to match building 

versions in the BGT Pand dataset. 

2. “What are the most effective approaches for matching different versions of buildings?” 

The third and final sub-question studies methods to detect changes between different versions of 

buildings in a temporal context. It examines how buildings have changed over time by identifying the 

following transformations: demolition, construction, partial demolition, expansion, merging, and 

splitting. Different approaches exist for classifying changes in buildings over time. Through studying 

multiple forms of change detection, this research aims to find the most effective methods for 

comparing building data from different versions. Finally, the BGT Pand dataset, is used as a proof of 

concept for the constructed change detection method over the past 8 years (2016 - 2024).  
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3. “What methods are most suitable for researching the historical destruction, construction and 

changes of buildings?”  

1.2 Research scope 

Considering that this thesis touches upon a myriad of interconnected research areas, various methods 

also exist for vectorization, object matching, and change detection. Although this thesis explores 

multiple approaches through an extensive literature review, the proposed solution only employs a 

selection of methods and data sources to ensure feasibility given the time constraint. To help clarify 

this focus, the following aspects are considered in scope and out of scope: 

In Scope: 

• The georeferencing and partial manual vectorization of a historical cadastral map. 

• The testing of an untrained machine-learning pipeline for automatic map vectorization.  

• The development and evaluation of an object matching and change detection approach. 

• The application of both approaches to analyse building changes in the BGT Pand dataset from 

2016 to 2024. 

Out of Scope: 

• The vectorization of historical maps beyond the test area selected for this research. 

• The training of a machine-learning approach for vectorizing cadastral maps  

• The application of the proposed object matching and change detection approaches beyond 

the BGT Pand dataset  

• A detailed historical analysis of urban development patterns  

Figure 1 shows the methodology used to construct the proposed solution. The process starts with 

reviewing the literature, followed by data collection. Then, the solution is designed and tested, after 

which iterative feedback loop to refine it until it meets the required standards. After this process, the 

solution is ready for implementation in the BGT Pand dataset. 

 

Figure 1: Graphic illustration of the key steps in developing the proposed solutions 

1.3 Reading guide 

In Chapter 2, the state-of-the-art is discussed. This includes sections on map vectorization, building 

change typologies and discrepancies between datasets. Then change detection is elaborated on, 

followed by a section on the conservation areas and monumental statuses in the Netherlands. In 

Chapter 3 the methods to address the research questions are discussed. First, the research area is 

described. Next, the chapter explores the vectorization of historical cadastral data, covering 

georeferencing, manual and automatic vectorization, the BGT data model, object matching, and change 

detection. Finally, the verification method of the results is explained, followed by a brief overview of 

what a change detection pipeline for comparing historical cadastral data to a new data source might 

look like. In Chapter 4, the results of the proposed solutions are presented. This is subdivided between 
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the vectorization of the historical cadastral map, including the georeferencing, manual- and automatic 

vectorization processes. Then, the outcomes of the object matching and change detection are 

illustrated and briefly explained. In Chapter 5, the outcomes from the results sections are interpreted 

and elaborated on more extensively within the context of the research. Some limitations of the used 

methodology are also included here. In Chapter 6, the objectives of the thesis are briefly restated, after 

which the identified sub questions and the main research question are answered. Finally, in Chapter 7, 

recommendations for future research based on this study are given. 
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2. Literature review  

This theoretical framework will elaborate on methods used to vectorize maps in the related literature. 

Hereafter, it focusses on building change typologies and on how to deal with possible discrepancies 

between datasets. Then, the buildings change detection is discussed, followed by a concluding section 

discussing the concept of conservation areas and the various monumental statuses in the Netherlands. 

2.1 Digitization of Historical maps 

Efforts to make historical maps available online through digitization have been ongoing over the past 

decades fuelled by the realization that these documents should be available to the public (Levi, 2009). 

Additionally, they contain a wealth of information about topics that are still very much relevant, such 

as heritage preservation, spatial developments and the evolution of territory (Petitpierre & Guhennec, 

2023). To extract geospatial information from these documents, the first step is scanning them; thereby 

making them available digitally (Drolias & Nikolaos, 2020). This work has resulted in the creation of 

numerous online databases containing historical maps that can be viewed, downloaded and are even 

georeferenced and overlayed unto digital maps (see for instance the OldMapsOnline environment of 

Utrecht University, (n.d.)). By scanning historical maps and making them digitally available, a raster 

image is created where every cell in the raster matrix is associated with a data value in the red, green 

and blue (RGB) bands, or binary in black and white. These values can then be used to extract 

information from the digital map, like spatial features such as building footprints, roads, and water 

bodies based on differences in pixel values. Raster data is particularly useful for analysing large scale 

spatial layout, measure distances and study land use changes over time. Additionally, raster data allows 

for the georeferencing of historical maps, enabling their overlay with modern digital datasets to study 

temporal changes. 

Raster data also has distinct limitations that constrain its use in certain types of research. As the well-

known saying within the GIS discipline, “raster is faster, but vector is corrector” suggests, raster data is 

particularly well-suited for examining large-scale spatial phenomena. However, it lacks the precision 

needed for detailed analyses on the object level. In these cases, vector data is more useful as it 

represents features as discrete geometric shapes (points, lines, and polygons). Additionally, associated 

attribute tables to the data allow for precise spatial queries and analyses. By converting raster images 

into vector data, researchers can label individual buildings, parcels, or infrastructure more accurately. 

This makes it easier to quantify changes and integrate historical data with modern GIS datasets (Drolias 

& Nikolaos, 2020). This is crucial for studies into transformations at a building level, as accurate 

boundary definitions are essential for researching trends in this field. To extract vector data from a 

raster image, map vectorization must be performed. Picuno et al., (2019) define map vectorization as 

the process of transforming scanned or rasterized graphical representations of geographic entities into 

a vector format which can be edited using GIS software, to be better indexed, georeferenced, and 

analysed spatially. Generally, the literature divides between three types of methods for map 

vectorization: manual, automatic and hybrid methods (Chen et al., 2024). These types will be further 

elaborated on in the following sub sections.  

2.1.1 Manual vectorization 

Traditionally, the vectorization of historical map data is done manually, and it is still the most popular 

method when the map is small in coverage and time period (Chen et al, 2024). The process of manually 

vectorizing maps involves drawing the objects in a map digitally via a GIS or AutoCAD software. When 

a larger map, or a collection of maps must be vectorized, collaborative approaches like crowd sourcing 

are sometimes used, where a group of contributors help to speed up the process (Southall et al., 2017). 
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Despite that manual methods are still among the most used methods of map vectorization; it is 

associated with some considerable disadvantages. The largest drawback is that it is a very time-

consuming process and therefore costly to implement on a large scale (Chen et al., 2024). Additionally, 

the quality of the results is largely dependent on the contributors’ abilities to correctly draw the 

features in the maps. Furthermore, the lack of universally accepted methods and standards for manual 

vectorization make it difficult to compare the errors and results of projects using it as a method (Skaloš 

et al., 2011). To overcome these disadvantages and following advancements within fields as computer 

vision and machine learning, automatic and hybrid methods for the vectorization of historical maps has 

increasingly become an area of interest for researchers. The main difference between automatic and 

hybrid methods is that the former rely entirely on algorithms or machine learning models to convert 

raster data into vector data without human intervention during the extraction process. The latter, on 

the other hand, combines automated techniques with manual or supervised rule-based enhancements 

to correct errors or improve the accuracy of the model (Chen et al., 2024). 

2.1.2 Automatic vectorization 

Colour and texture 

Fully automatic methods for the vectorization of historical maps have been proposed by numerous 

researchers. Early methods of automatic vectorization mainly used RGB pixel values from the original 

raster images to classify objects in historical maps. This is done by using e.g. thresholding or region 

growing algorithms to separate different layers based on their associated colours, like blue for water 

bodies, green for vegetation and red for man-made structures (Dhar & Chanda, 2006; Petitpierre, 

2020). Khotanzad and Zink (2003), for instance, make use of a method based on RGB values to extract 

and recognize geographical features from coloured topographic maps. Despite being relatively easy to 

implement, methods depending on raster RGB values for the vectorization of maps often work with a 

limited number of historical maps, like those with distinct colouring. Additionally, they often focus on 

few features, such as roads or parcels, while leaving out much of other map information. These 

approaches are thus difficult to adapt to many historical maps, especially those with complex shapes 

and layouts, such as urban areas (Chen et al., 2024). Furthermore, maps produced before the mid 19th 

century were generally printed in black only and those that were coloured have often faded due to the 

circumstances under which they were preserved. To overcome these limitations, some researchers 

have tried using textures, mainly focussing on features like hatched areas in historical maps. However, 

as methods targeting textures largely depend on size and rotation, they require customized 

parameterization per use case which has severe implications for their scalability and applicability 

(Petitpierre, 2020). 

Mathematical morphology 

Other researchers like Chen et al., (2021a) use the morphological features of maps, such as lines, edges 

and closed polygons, to vectorize objects from historical maps. These methods rely on the principles 

of mathematical morphology (MM) to identify geometric features based on their shapes. In MM, 

operations such as dilation, erosion, opening and closing are used to analyse the structure of an input 

image; in this case a historical map (ESRI, n.d.-a). Techniques including MM are an often-employed 

method to account for incomplete edges, closing contours and recover other incomplete elements in 

maps (Petitpierre, 2020). A limitation of MM for vectorization is that it is highly susceptible to 

information overlays over the map objects such as map grids, background textures, text and symbol, 

which are very common in cartography.  
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Neural networks 

Neural networks, also referred to as classical- or shallow neural networks (SNN), are among the early 

method that have been widely employed and adapted to vectorize digitized raster maps (Petitpierre & 

Guhennec, 2023). SNNs are models made up of one or two layers of connected units called "neurons", 

which process information. The network takes input data, in this instance a historical map, and passes 

it through these layers to make a decision or prediction; to identify objects in input the map. Each 

neuron performs simple calculations, and the network learns by adjusting these calculations based on 

the output, so-called “backpropagation”. This learning process makes the method a form of machine 

learning. The first instance of this method being used for the vectorization of historic maps was by Chen 

et al. in 1996. They used a SNN for the automatic extraction of parcels, text and rotated characters from 

scanned images of Chinese cadastral maps.   

Deep neural networks 

Over the course of time, SNN have been refined and with the introduction of deep learning in recent 

years, they have evolved into deep neural networks (Ignjatić et al., 2018).  These deep neural networks 

(DNN) outperform the SNN based on machine learning, considerably improving visual object and 

pattern recognition. The main difference between the two is that DNN are capable of learning higher-

level, more complex and abstract features than their non-deep counterparts. This is achieved by 

combining feature learning and model building into one process. In a DNN, the model is built by 

selecting kernels and adjusting the model’s parameters automatically through end-to-end optimization 

without human interference (Sze et al., 2017; Ignjatić et al., 2018). DNN are made up of many layers 

working in a non-linear way to transform the data into more abstract features as it moves further 

through the network, also referred to as “feedforward”. The deeper in the network the input data is, 

the more complex patterns it can learn.  

Convolutional neural networks 

Recent studies like that of Petitpierre et al. (2021) refer to the use of convolutional neural networks 

(CNN) for historical map vectorization. CNN are special forms of DNN that are the most widely used 

neural networks for computer vision tasks, including object detection (Ignjatić et al., 2018). The 

position of CNN within broader artificial intelligence (AI) is illustrated below in Figure 2.  

 

Figure 2: Relationship between AI, ML, DL, DNN and CNN. Zhang et al., 2022. 
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As in a DNN, data fed to a CNN passes through a number of hidden layers which learns the model to 

recognize features in the data. However, a CNN has fewer parameters and connections between its 

layers to better allow for two-dimensional image processing. It has three different types of layers 

through which input data, in this instance historical maps, passes: convolutional layers, pooling layers 

and fully connected layers (Vloulodimos et al., 2018). In the convolutional layers, kernels are used to 

extract local features by convolving input data, after which the pooling layers summarize and reduce 

the dimensionality of feature maps. Finally, in the fully connected layers perform high-level reasoning 

by combining outputs of the top convolutional layer, thereby converting the 2D feature maps into 1D 

features. This process for the vectorization of a historical map is visualised in Figure 3. To train a CNN 

for map vectorization, a dataset is often used that consists of input images of cut-out sections of the 

input map and corresponding binary images containing the buildings with pixel information of one, and 

zero otherwise (Heitzler & Hurni, 2020).  

 
Figure 3: Example of a CNN for the vectorization of historical map data. Heitzler & Hurni, 2020. 

Where more traditional computer vision algorithms have been used successfully for extracting 

information from very homogeneous maps, it is argued that CNN allows for the vectorization of more 

heterogenous bodies of maps. Therefore, this method is very suitable when a more flexible approach 

is required, as is the case for studying multiple diverse historical maps in characteristics such as scale, 

hue, writing, scanning quality et cetera. However, CNN are also characterized by some distinct 

weaknesses, such as the inability to detect shapes if only the outlines are illustrated in the input maps. 

To counter this, Chen et al. (2021b) combined the use of CNN with MM for segmenting the contents of 

historical maps. By doing so, the authors combined the strengths of CNN in efficient edge detection 

and filtering, with that of MM in the extraction of closed shapes. Additionally, Guidotti et al. (2018) 

highlight the challenges posed by AI-based models, including CNNs, which operate as black boxes, 

hiding their internal logic to the user. This opacity presents both practical and ethical concerns, as it 

prevents the formation of a standardized definition for the models’ interpretation. 
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2.1.3 Hybrid vectorization 

Hybrid vectorization combines automatic and manual methods, thereby addressing the limitations of 

both individual methods (Chen et al., 2024). Hybrid methods theoretically offer a suitable basis for 

digitizing historical maps, as they balance manual precision with automated scalability. An example of 

a hybrid method is derived from research by Budig et al. (2016) into a crowdsourcing project for the 

extraction of building footprints from historical maps of New York City. The three-year crowdsourcing 

project showed participants building footprint polygons which were automatically extracted from the 

input maps but often had errors. The participants were then tasked with deciding whether those 

building footprints were correctly extracted by the model, using the original subsection of the map as 

reference. If the outline was voted as incorrect more than three times, the outline was redrawn by a 

participant in a specially created tool in a subsequent step of the project. Each correction was made by 

multiple users, which were then aggregated by an algorithm into a consensus polygon for the corrected 

footprint. The resulting "consensus polygon" was validated against manually vectorized ground truth 

data and achieved a higher accuracy (96%) than the individual user polygons (85%). Despite leveraging 

strengths of both manual and automatic methods, hybrid approaches are also have limitations (Chen 

et al., 2021a). Among the biggest drawbacks is that hybrid methods may prove to accomplish the 

opposite; being resource intensive while not generalizable for other datasets. This can be argued 

because crowdsourcing depends on factors such as a broad participant base, the participants‘ accuracy 

in vectorizing building outlines, creating and testing an environment for the crowdsourcing project et 

cetera. Additionally, used algorithms like that of Budig et al. (2018) are still very dependent on data 

being fed and additionally require parameter adjustments when used for vectorizing different maps, as 

does a CNN for instance. As a result, hybrid approaches are not yet common in the research area of 

historic map vectorization. 

2.2 Building change typologies 

When studying the changes to individual buildings on cadastral maps, it is essential to consider the 

potential changes that can occur. Such a topology for building changes encompasses all changes that 

can occur over time on a building level. Jovanović et al. (2022) make use of a simplistic typology 

containing three classes of building changes in their study comparing cadastral data to satellite imagery. 

These classes include new buildings that do not exist in the cadastre but are visible in the satellite data, 

demolished buildings that are still registered in the cadastre but demolished in the field and modified 

buildings where the base dimensions have changed in relation to the original records. Matikainen et 

al. (2010) propose a typology including five different classes in their article researching the automatic 

detection of changes in buildings for updating maps. These classes are defined to categorize the 

building status based on comparisons between the baseline building map and building outlines 

detected in subsequent time steps. The classes between which differentiation is made are: 

1. Unchanged buildings: One building on the map corresponds to one in the building detection 

(1-1). 

2. Changed building: A building exists in both datasets but has undergone modifications e.g., 

changes in size, shape, or orientation (1:1). 

3. New buildings: No buildings on the map, one in the building detection (0-1). 

4. Demolished buildings: A building is present in the existing map but is absent in the new 

building detection results (1:0). 
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5. Complex changes: One building on the map, more than one in the building detection (1-n), or 

vice versa (n-1). This can be a real change, or it can be related to generalization or inaccuracy 

of the map or problems in building detection (1-n/n-1). 

However, in this typology, no differentiation is made between merging and splitting of buildings as both 

are grouped under the ‘complex changes’ class. Similarly, Hajiheidari et al. (2023) discusses five 

enrichment types for updating data in urban cadastral maps which are strongly related to those 

previously discussed. The enrichment types include adding (new parcel), deleting (demolished parcel), 

merging (two or more parcels joining), splitting (a parcel disintegrating into two or more), and changing 

(a parcel’s topology changing). Figure 4 shows the used building change typologies in green, derived 

from the literature. These are displayed over a base map which is used as reference for the location of 

the buildings in question. 

 

Figure 4: Identified change typologies in the BGT Pand between the earlier epoch (left) and the later epoch (right) 



17 
 

2.3 Discrepancies between datasets 

When conducting research into changes between datasets, one should consider possible discrepancies 

between the input data sources. A distinction can be made between absolute- and relative errors (Berk 

& Ferlan, 2016). Absolute errors refer to the direct difference between the mapped object and the real-

life object and are typically measured in the actual units. Conversely, relative errors refer to the 

difference between the mapped object and the real-life object and are expressed as a proportion of 

the real-life size, often a percentage. This is especially relevant when comparing historical map data as 

these were manually drawn and surveyed. Traditional techniques for mapping such as triangulation 

relied on manually measuring distances and angles. In the production of early cadastral maps of the 

Netherlands, measuring chains of 20 to 30 meters in length, marked in 20-centimetre links were used 

by surveyors (Kruizinga & Van Rosmalen, 1997). Main measurement lines were based on triangulation 

and secondary lines were used to follow parcel boundaries. Measurements focused only on boundary 

mapping, with minimal points marked for straight borders and no systematic accuracy checks. For 

curved boundaries, only key points were measured, and intermediate lines were estimated by eye and 

memory. Church towers were used as reference points from which the maps were produced across 

large land areas. Consequently, the cadastral maps accumulated errors due to limitations in 

measurement precision, physical obstacles, and human error. This often led to inaccuracies in defining 

boundaries, especially further away from urban areas. As a result, absolute measurement errors of up 

to 40 meters are not uncommon in early Dutch cadastral maps according to Kruizinga and van Rosmalen 

(1997). In more recently produced digital maps inaccuracies between datasets also exist, albeit in much 

smaller scale. Zhou et al. (2018) study differences between heterogeneous data sources maintained by 

OpenStreetMap (OSM) and the Dutch Cadastre. Data managed by commercial data providers is often 

updated on a quarterly cycle, potentially leading to a situation where professional data may be 

outdated compared with their crowd-sourced counterparts. This is most apparent in locations where 

changes follow each other at a rapid pace, as is the case in urban areas (Fan et al., 2014). This is also 

apparent in OSM and the TOP10NL dataset managed by Kadaster, where small deviations exist between 

vector objects like buildings, as is illustrated in Figure 5. 

 

Figure 5: Discrepancies between OSM (green) and TOP10NL (cyan), with overlaps in brown. Zhou et al., 2018. 

Another issue raised by Zhou et al. (2018) is that the discussed discrepancies between data sources are 

hard to distinguish from real-world changes. When attempting to overlay datasets, differences in level 

of detail (LOD) lead to fragmented polygons (as is seen in Figure 5), where areas of overlap, differences, 

and intersecting boundaries do not always represent physical changes. Therefore, a mere size-based 

analysis of polygons can be misleading: a fragmented polygon from OSM, for instance, could appear 

larger than in TOP10NL and suggest a modified building when in fact no change has occurred. Because 
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offsets between the datasets are often non-uniform, they cannot be fixed solely relying on geo-

referencing adjustments. The random nature of offsets introduces a significant challenge with regard 

to the change detection of polygons. The challenges posed in the article become even more relevant 

when comparing digitized historical maps with modern building data. This can be argued because 

historical building data is often associated with simplified representations of buildings, varying 

boundary definitions, inaccurate measurements, and inaccuracies caused by digitization processes 

such as geo-referencing and rubber sheeting (Drolias & Tziokas, 2020; Kruizinga & van Rosmalen, 1997).  

2.4 Object matching 

As the name indicates, object matching involves the identification and matching of the same objects in 

different data sources. When spatial offsets between objects in the datasets are small and the data is 

of similar scales, a simple overlay analysis can be used to match objects (Matikainen et al. 2010; Zhou 

et al., 2018). However, when working with data that does not precisely overlap, this method is 

inadequate for object matching. Hajiheidari et al. (2023) employ a different technique for matching 

two datasets of the city of Tehran, Iran. As they use maps produced by different mapping agencies (the 

Municipality of Tehran and the Cadastre office of Iran Deeds and Property Registration Organization), 

the first process includes the preprocessing of the input data. This includes correcting topological errors 

and aligning the data scales. Hereafter, the polygons derived from the buildings in the maps are 

transformed into singular centre points. These points are used to generate buffers, which are employed 

to identify corresponding buildings between the two datasets. If the centre point of a Tehran 

Municipality Dataset parcel falls within the buffer zone of an Iranian Cadastral Organization Dataset 

parcel, the two are considered a match. This method allows for more flexibility to match buildings when 

they have large offsets but might lack in accuracy as opposed to an overlap analysis. Additionally, it 

does not account for the shape and size of the polygons. As a result, it might match parcels because 

the generated centre points are in close proximity, but in reality, have entirely different shapes or sizes. 

Therefore, this method might be combined with other matching techniques, manual inspection or 

additional features to account for ambiguous matches.  

A technique to counteract the problem of boundary mismatches between datasets is to align buildings 

based on their centre of gravity (Zhou et al., 2018). This method is used to reduce discrepancies caused 

by deviations in the same objects in different datasets. It improves the reliability of shape comparisons 

in the consequent step of change detection by ensuring features align as best as possible, reducing 

offsets between buildings. An example of controlled alignment is demonstrated in Figure 6. It should  

be noted that centroid alignment is only applicable to single buildings or blocks of buildings with simple 

shapes (e.g. squares or rectangles). This limitation is caused by topological errors that might arise when 

aligning polygons by their centroids independently when the relative position of the buildings within 

the block are changed. Therefore, a block-level approach, like that used by Zhou et al. (2018), is 

essential for consistancy when using this method. 
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Figure 6: Controlled building alignment by centroid (1965 cadastral map in yellow, BGT in blue). 

2.5 Change Detection  

When two or more datasets of the same set of buildings are available, it is possible to perform change 

detection between the old and the new data. Multiple methods exist for the detection of changes 

between datasets depending on the type of data that is to be compared. When performing change 

detection between two- or multiple cadastral maps, objects vectorized from map data or remotely 

sensed imagery, techniques like overlap analysis and buffering can be used. Matikainen et al. (2010) 

use this technique by creating buffers around objects through morphological operations. The change 

detection rules allow small differences in the location and appearance of the same buildings over 

different datasets. Larger differences, however, are considered “true” changes or errors that require 

further examination. A rule-based method for change detection has some distinct advantages. Firstly, 

it facilitates accurate comparisons and reliable change detection across different temporal versions of 

a dataset. This is indicated by the findings of Matikainen et al. (2010), who found accuracies of 69%, 

88% and 81% for new buildings, changed buildings and complex cases respectively. Additionally, a rule-

based approach allows for flexible parameter finetuning based on the accuracy of the outputted 

results, as shown by Zhou et al. (2018). It should be noted that this method using object matching and 

overlap analysis can only be employed when buildings are accurately positioned.  

Change detection performed by Hajiheidari et al. (2023) involves comparing the geometric properties 

(the area and number of nodes) of the matched polygons. If significant discrepancies are found 

between the matched polygons, the buildings are flagged as suspicious. This indicates that potential 

changes have occurred, or that inaccuracies are present in one of the datasets. This is automated using 

a logistic regression model for the flagging of suspicious buildings.  

Zhou et al. (2018) present a rule-based change detection approach for analysing building footprints 

using multiple factors and methods. Before using these change rules, the authors converted the one-

to-many (1:m) relations (multiple historical buildings corresponding to one modern building) to one-

to-one (1:1) relations as this makes it easier to analyse the changes. This is done by aggregating the 

objects using the pair-wise aggregation tool in ArcGIS, which is stopped when too much empty space 

is enclosed, indicating physical change. Also, small buildings are aligned based on their centre points 

(as discussed in the previous paragraph), while bigger, more complex buildings are measures and 

aligned using a turning function. Hereafter, the morphology of the difference parts of the overlapping 

building footprints is analysed. If the difference is fragmented or has a thin shape, it may indicate an 

offset. For large buildings, the changes are analysed based on the absolute size of the difference. For 
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small buildings, both absolute and relative sizes are considered, because when a large percentage of a 

small building is flagged as changed, it might only be an offset between the datasets. 

For potential changes, a constrained Delaunay triangulation is applied to generate a skeleton (centre 

lines) of the object, which are used to calculate the average length and width of the difference. A 

directed acyclic graph (DAG) structure is used to organize the change rules, where size and shape 

analysis are prioritized based on building size. Small buildings are more sensitive to boundary 

mismatches and are handled with a simpler rule set. The established rules of the model dictate that 

differences that are wider than a threshold of 5 meters are considered significant changes. If the 

changes are not wide enough, but large enough (larger than at least 100 m2, or 20% of the building) 

and in a compact form, this is also considered a change. Finally, the model accounts for the patterns 

and contextual information of buildings, as building configured in certain alignments (e.g. grid-like or 

linear patterns) are less likely to be modified than individual buildings. An alignment is identified as a 

homogeneous group of buildings that are evenly spaced and have similar forms, sizes, and regular 

layout (Zhang et al., 2013). This alignment recognition is done using Delaunay triangulation with a 

heuristic being used to adjust detected changes based on the consistency of building alignments 

between datasets, based on Zhang et al. (2011). If the alignment is maintained in both datasets, the 

buildings in the group were considered unchanged with a higher probability. The entire schematic 

model of the change detection model is illustrated in Appendix A. Three different variations of the 

model were used: 

4. Basic: Basic geometric analysis without controlled alignment and morphology analysis   

5. Advanced: Basic geometries with controlled alignment and morphology analysis 

6. Advanced + pattern recognition: Basic geometries with controlled alignment and morphology 

analysis corrected by the pattern constraint. 

This yielded the results illustrated in Table 1, where all values range from 0 to 1 with a higher value 

indicating a higher level of satisfaction. The performance was assessed using true positives (𝑇𝑃), false 

positives (𝐹𝑃), true negatives (𝑇𝑁), and false negatives (𝐹𝑁). Metrics include precision (𝑇𝑃 / ( 𝑇𝑃 + 

𝐹𝑃), recall ( 𝑇𝑃 / ( 𝑇𝑃 + 𝐹𝑁 ), accuracy ( ( 𝑇𝑃 + 𝑇𝑁 ) / ( 𝑇𝑃 + 𝐹𝑃 + 𝑇𝑁 + 𝐹𝑁 )), and Cohen’s kappa (𝑘).  

Table 1: Performance of the model. Zhou et al., 2018. 

Method Precision Recall Accuracy K   

Basic 0.55 0.76 0.77 0.47 

Advanced 0.82 0.87 0.90 0.77 

Advanced + Pattern 0.87 0.87 0.92 0.81 

 

It can be concluded that the model benefitted especially from including the controlled alignment and 

morphology analysis in the advanced method, while its performance only increased marginally when 

accounting for the pattern constraint. 

2.6 Conservation area 

In the Dutch national Heritage Law of 1988, a conservation area (beschermd stads- of dorpsgezicht) is 

described as: “Groups of immovable properties that are of general interest due to their beauty, their 

mutual spatial or structural cohesion, or their scientific or cultural-historical value, and in which one or 

more monuments are located” (Rijksdienst voor het Cultureel Erfgoed, n.d.). A conservation area can 

thus be described as an area within a city with a special cultural-historical character. The protection of 

these areas aims to preserve their cultural-historical significance while maintaining, enhancing, and 

utilizing its core cultural-historical qualities. Rather than halting all development, future spatial 
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transformations in the area must take this significance into account (Rijksdienst voor het Cultureel 

Erfgoed, 2024). In the Netherlands, 472 of such protected areas were assigned since 1962 and as of 

2012, no more will be added. The Environment and Planning Act (Omgevingswet) contains instructions 

for municipalities about the protection of conservation areas (IPLO, n.d.). In addition to just protecting 

the conservation areas, sight lines and open areas must also be included as the special character of the 

areas often extends beyond the delimited area (Rijksdienst Voor het Cultureel Erfgoed, 2024). Other 

key measures include: 

• Preventing activities or developments that could damage or alter the character of protected 

urban or village views and cultural landscapes, including green spaces and water structures. 

• Maintaining the distinctive features and cohesion of these areas. 

• Enhancing the quality of public spaces surrounding protected areas to improve their 

appreciation and preservation. 

2.7 Monumental status 

In addition to entire areas that might be assigned a protected status in the form of a conservation area, 

individual protection of buildings may also occur in the Netherlands when it is of great importance. 

Generally, three types of individual monumental statuses are distinguished for buildings that are 

relevant for this research: national monuments, provincial monuments, and municipal monuments 

(Monumenten.nl, 2024).  

2.7.1 National monuments 

National monuments are built objects or archaeological sites of national importance that must be 

preserved by law. This status is assigned to buildings that are important because of their beauty, 

cultural-historical value or scientific significance (Rijksoverheid, 2022). Approximately 63,000 of such 

national monuments exist in the Netherlands. The Cultural Heritage Agency of the Netherlands 

designates the status of national monuments on behalf of the Minister of Education, Culture and 

Science. Generally, municipalities grant permits for modifications to buildings with a national 

monumental status.  

2.7.2 Provincial monuments 

Provincial monuments refer to build objects that are designated with a monumental status by the 

provinces. The municipality is accountable for the maintenance of these objects and issues permits for 

the adaptation of monuments. Despite that all provinces may designate objects and structures as 

provincial monuments, only the provinces of North Holland and Drenthe have done so (e.g. many 

historical farms in Drenthe are assigned with a provincial monumental status).  

2.7.3 Municipal monuments 

Finally, municipal monuments are objects of importance to the municipal identity where the 

municipality itself regulates the designation of protected statuses (Monumenten.nl, 2022). This 

designation is often executed by the executive board of a municipality (college van burgemeester en 

wethouders). Like in national- and provincial monumental status, a municipal definition of a monument 

typically is typically based on attributes such as beauty, cultural-historical value, architectural-historical 

value, urban development significance, or scientific importance. A municipal monumental status 

regulates that for activities like renovation, relocation or demolition of a municipal monument, a permit 

application from the municipality is required (IPLO, n.d.).  
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3. Proposed solutions 

In the methodology chapter, the case study area is first introduced, followed by a discussion of the 

georeferencing method. Next, the building vectorization process is explained, then the datasets used 

in the research are presented. The chapter continues with the techniques used for object matching 

between temporal versions of buildings, concluding with an overview of the change detection phase. 

An overview of the proposed solutions for the building vectorization process, and object matching and 

change detection process is provided in Figure 7 for clarification. 

 

Figure 7: Graphic Illustration of building vectorization from the 1965 cadastral map (above) and object matching with 
change detection in BGT Pand (below). 

3.1 Case study area  

The now city of Utrecht was founded by Roman soldiers in 47 AD, when they build a castellum on the 

south bank of the river Rhine (Dolfin et al., 1989). At the location of what is now the Dom Square, the 

Romans built a fortification as part of the Lower Germanic Limes, which marked the northern boundary 

of the Roman Empire. The castellum was given the name Traiectum, which translates to crossing place 

as the fortress protected a crossable section of the river Rhine. After the fall of the Roman Empire and 

the subsequent Merovingian Empire in the seventh century, the city was captured by the pagan 

Frisians. When Willibrord arrived from England in 690 to begin his missionary work, Utrecht that had 

been recaptured from the Frisians, became base of the bishop’s operations. Due to the invasions of the 

Normans, the bishop of Utrecht ended up in Deventer. It would take until 922 before a bishop would 

return to Utrecht and the city developed further. In that year, bishop Balderic (897-975) decided to 

establish the episcopal see again in the Utrecht castellum. Balderic’s successive bishops were appointed 

by the king and later by the holy Roman Emperor, mostly for their administrative qualities, and large 

amounts of lands were gifted to them. Their rule created a market where traders and producers could 

sell their goods. These traders and producers started to built dwellings to the northwest of the 

episcopal residence in the former castellum. In its turn, the creation of a market resulted in a 

population increase from the 10th century onwards, further accelerating the development of the city. 

The wealth resulting from Utrecht’s development was epitomized by the construction of a large new 

cathedral by Bishop Adelbold II (975-1026). Even more ambitious was the plan of Bishop Bernold (?-

1054), who built a cross of churches around the cathedral after the example of Rome. Immunities 

(physically closed off, spiritual jurisdictions) were established around these churches, which would 

partly determine the topography and traffic situation in the later city (Dolfin et al., 1989). In the 



23 
 

following centuries, the city developed further with more civilian settlements being build in the Stathe 

area, which was situated at the current Donkerstraat and later developed towards the Steenweg, 

Boterstraat and Oudegracht. In 1122, the city of Utrecht was granted city rights by Emperor Henry, 

which allowed the construction of city walls (Het Utrechts Archief, n.d.). The walled city in the twelfth 

century retains a similar area and shape to what it is today, as shown in Appendix B.  

The city centre of Utrecht - that is the area within the Singel (waterway that encloses the historical city 

centre), excluding Hoog Catharijne and Wijk C, was named a conservation area on the third of 

December 1975. This area is illustrated in the left section of Figure 8. The argumentation given for 

granting the area a protected status is because the historical layout of canals and streets dating mostly 

from the Middle Ages, along with the surrounding buildings, exhibit such a degree of cohesion and 

historical significance that the definition of a conservation area in the Monuments Act was deemed 

applicable (Gemeente Utrecht, 1975).  

 

 
Figure 8: Research area 

3.2 Data availability 

For the process of vectorizing buildings in the conservation area of the historical centre of Utrecht, 

historic cadastral maps will be used. Cadastral maps primarily focused on representing property 

boundaries and land parcels, often including details like parcel numbers, ownership, and precise 

boundaries (Kadaster, n.d.-a). They are essential devices for legal and administrative uses, such as land 

valuation and property management.  
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This thesis benefits from access to numerous historical topographic maps, ground plans and cadastral 

maps of the city of Utrecht that have been digitized through scanning the original paper documents. 

Such historical sources are made available in relatively high quality in the online archives of 

organisations such as the Utrecht municipal archives and the Rijksdienst Cultureel Erfgoed (Het 

Utrechts Archief, n.d.; Rijksdienst Cultureel Erfgoed, n.d). A particularly useful website for data on the 

building level is documentatie.org (UDS, n.d.). This project is an informal collaboration between the 

Municipality of Utrecht, the Utrecht Monuments Fund, the Foundation for Architectural History of the 

Netherlands, and the Gelderland Society. It provides a comprehensive repository of information on 

monument conservation, architectural history, and cultural heritage, with a particular emphasis on 

Utrecht. The site features detailed data on buildings within the city's conservation area and offers an 

interactive panorama of Utrecht around 1870, viewed from the Dom Tower. Through this panorama, 

users can access extensive information on individual buildings, including historical photographs, 

register sheets, and construction drawings. Additionally, this information can be retrieved per plot 

using the 1832 cadastral map. 

While the use of all available datasets is not essential for the purpose of this thesis, documenting these 

sources provides a valuable foundation for future research. By creating an overview of the various data 

sources, subsequent studies can build upon this work without the need to independently identify and 

collect these materials. An overview of the available historical sources of the city of Utrecht are listed 

in Table 2 with the aim to facilitate further investigations into the historical development of Utrecht’s 

built environment. The large-scale cadastral map of the city centre of Utrecht from 1965 serves as the 

foundation for the vectorization section of this research and is illustrated in Appendix C. This choice 

was influenced by the sunk costs associated with the initial analysis and preparation of the dataset, 

making it a practical and logical focus for the current research. The map contains the buildings in this 

area, including the cadastral parcels, street names and bodies of water. 

Table 2: Historical data sources. The 1965 cadastral map in bold is used for the vectorization process.  

Source name Publisher Data type Year LOD 

2171221 The National Cadastre Cadastral map 1965 Individual buildings 

217121 The National Cadastre Cadastral map 1955 Individual buildings 

RCE-
647_Stapper532 

Rijksdienst voor het 
Cultureel Erfgoed 

Inventory of conservation 
areas 

1953 Individual buildings 

214055 J. van Druten Ground map (plattegrond) 1896 Building blocks 

818092 - 81096 The National Cadastre Cadastral map 1888 Individual buildings 

216861 The Municipality of Utrecht Ground map (plattegrond) 1870 Building blocks 

MIN06075A01 - 
MIN06075C023 

The National Cadastre Cadastral map 1832 Individual buildings 

2167324 The Municipality of Utrecht Ground map (plattegrond) 1822 Building blocks 

 

 
1 https://hetutrechtsarchief.nl/beeldmateriaal/?mode=gallery&view=horizontal&q=217122&page=1&reverse=0 
2 https://beeldbank.cultureelerfgoed.nl/rce-mediabank/detail/8f1c4b7f-d5b7-1b7d-9307-f73603bba2ec/media/98760169-b08e-0ae6-79e1-

50de6b4b622e?mode=detail&view=horizontal&q=RCE-647_Stapper53&rows=1&page=1 
3 https://beeldbank.cultureelerfgoed.nl/rce-mediabank/detail/a7662e8e-94d7-11e5-a9ca-fb3fe39144dd/media/a4e6167e-6293-ce91-393c-

e7833e3d8088?mode=detail&view=horizontal&q=Kadastrale%20kaarten%201811-
1832&rows=1&page=189&fq%5B%5D=search_s_monuments_monument_county:%22Utrecht%22 
4https://hetutrechtsarchief.nl/onderzoek/resultaten/archieven?mivast=39&mizig=210&miadt=39&miview=inv2&milang=nl&micode=BEELDBANK_CART_DOC&

minr=41627796&miaet=14 

https://hetutrechtsarchief.nl/beeldmateriaal/?mode=gallery&view=horizontal&q=217122&page=1&reverse=0
https://beeldbank.cultureelerfgoed.nl/rce-mediabank/detail/8f1c4b7f-d5b7-1b7d-9307-f73603bba2ec/media/98760169-b08e-0ae6-79e1-50de6b4b622e?mode=detail&view=horizontal&q=RCE-647_Stapper53&rows=1&page=1
https://beeldbank.cultureelerfgoed.nl/rce-mediabank/detail/8f1c4b7f-d5b7-1b7d-9307-f73603bba2ec/media/98760169-b08e-0ae6-79e1-50de6b4b622e?mode=detail&view=horizontal&q=RCE-647_Stapper53&rows=1&page=1
https://beeldbank.cultureelerfgoed.nl/rce-mediabank/detail/a7662e8e-94d7-11e5-a9ca-fb3fe39144dd/media/a4e6167e-6293-ce91-393c-e7833e3d8088?mode=detail&view=horizontal&q=Kadastrale%20kaarten%201811-1832&rows=1&page=189&fq%5B%5D=search_s_monuments_monument_county:%22Utrecht%22
https://beeldbank.cultureelerfgoed.nl/rce-mediabank/detail/a7662e8e-94d7-11e5-a9ca-fb3fe39144dd/media/a4e6167e-6293-ce91-393c-e7833e3d8088?mode=detail&view=horizontal&q=Kadastrale%20kaarten%201811-1832&rows=1&page=189&fq%5B%5D=search_s_monuments_monument_county:%22Utrecht%22
https://beeldbank.cultureelerfgoed.nl/rce-mediabank/detail/a7662e8e-94d7-11e5-a9ca-fb3fe39144dd/media/a4e6167e-6293-ce91-393c-e7833e3d8088?mode=detail&view=horizontal&q=Kadastrale%20kaarten%201811-1832&rows=1&page=189&fq%5B%5D=search_s_monuments_monument_county:%22Utrecht%22
https://hetutrechtsarchief.nl/onderzoek/resultaten/archieven?mivast=39&mizig=210&miadt=39&miview=inv2&milang=nl&micode=BEELDBANK_CART_DOC&minr=41627796&miaet=14
https://hetutrechtsarchief.nl/onderzoek/resultaten/archieven?mivast=39&mizig=210&miadt=39&miview=inv2&milang=nl&micode=BEELDBANK_CART_DOC&minr=41627796&miaet=14
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3.3 Building vectorization 

Building vectorization begins with the georeferencing of the historical cadastral map, which aligns the 

map to a spatial reference system. Following this, the buildings are derived using a combination of 

manual and automatic techniques, which will be discussed in the following sections. 

3.3.1 Georeferencing 

The first step in analysing the historical development of the conservation area involves overlaying 

historical data onto the city centre of Utrecht. This is accomplished through employing georeferencing 

techniques, which allow for precise alignment of the input spatial information through determining the 

position of input data in a spatial coordinate system other than its own (Cascón-Katchadourian & 

Alberich-Pascual, 2021). Georeferencing a historical map in GIS begins with the digitization of the 

source. Then, locations must be identified that exist on both the non-georeferenced and georeferenced 

maps, these are known as ground control points, or GCPs. One should consider that the selected GCPs 

must have remained consistent over time, objects such as landforms, monuments, or streets are 

therefore recommended. The process of assigning GCPs to the historical sources and the reference 

map enables the georeferencing software to align those points at the same coordinates. This method 

is particularly effective for georeferencing aerial images and maps created in the 19th and 20th century, 

which tend to be more geometrically accurate than the less precise and more schematic maps from 

earlier centuries (Cascón-Katchadourian & Alberich-Pascual, 2021). For georeferencing the historical 

sources, the ‘georeferencing tool’ is used within the ArcGIS Pro software. This tool allows for the 

alignment of a raster dataset to the correct geographic location on the reference map. Furthermore, 

the software enables the transformation of the source data to a coordinate system. Within the ArcGIS 

Pro software, three different types of transformations are most widely used to transform the raster 

dataset to the map coordinates. These are the first-, second- and third order polynomial 

transformations. The polynomial transformation uses a polynomial built on control points and a least-

squares fitting algorithm and are optimized for global accuracy (Esri, n.d.-b). The difference between 

the three types of transformations is that the higher the order the more complex the distortion that 

can be corrected. Generally, if a raster dataset needs to be stretched, scaled, and rotated, a first-order 

transformation is recommended while if it must be bent or curved, a second- or third-order 

transformation is more suitable. 

To assess the accuracy and precision of the georeferencing process, the root mean squared error 

(RMSE) is an often-used metric in historical maps (Brovelli & Minghini, 2012; Cascón-Katchadourian & 

Alberich-Pascual, 2021; Baiocchi et al., 2013; Szypuła, 2019). The RMSE is expressed as: 

Equation 1: RMSE 

 
Where Yi are the observed (true) values,Yj are the predicted values and n is the total number of 

observations. RMSE measures the average difference between the true coordinates which are based 

on the known reference points, and the predicted coordinates after the georeferencing process. A 

lower RMSE indicates a higher accuracy, meaning that the historical map aligns closely with the 

reference map, while a higher RMSE suggests greater distortion. The RMSE is calculated in the same 

units as the map's coordinates. In the ArcGIS Pro software, three different RMSE residuals are 

calculated; the forward-, inverse- and the forward-inverse residual. The first of the three shows the 

error in the same units as the data frame spatial reference, the second indicates the error in the pixel 
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units and the third measures the accuracy in pixels (Esri, n.d.-b). Typically, only the forward RMSE is 

interpreted when discussing the georeferencing accuracy. 

3.3.2 Manual vectorization 

A share of the buildings that are derived from the digitized cadastral map are vectorized using manual 

techniques. Before drawing the polygons, a convolution function is used in the software for sharpening 

the input raster image using a kernel-based equation (Esri, n.d.-c). This image enhancement tool makes 

it considerably easier to distinguish lines in the original scan. Then, the buildings are vectorized by 

manually drawing the vertices of building polygons over the source data using the create polygon 

feature in the ArcGIS Pro software. This tool allows the user to create irregular polygons comprising 

unequal sides and angles, which is useful when drawing irregularly shaped buildings (Esri, n.d.-d). As 

was previously discussed in Paragraph 2.1.1, manual vectorization is a very resource-intensive process. 

This is also encountered in this thesis, with the vectorization of 100 buildings requiring approximately 

20 minutes. Considering that the cadastral map of 1965 used in this research contains some 6000 

buildings, the total vectorization process takes roughly 20 hours to complete. Therefore, only a smaller 

subsection of the input map is digitized by hand. In addition to being an accurate method for vectorizing 

the data, the manually derived polygons can be utilized as training data when employing a deep neural 

network approach for the automatic detection of lines in input historical cadastral maps. This is a useful 

approach as one of the main hurdles for using DNNs for historic cadastral plan vectorization is the 

limited availability of training data (Ignjatić et al., 2018). Additionally, when training data is available it 

is not always applicable to other input data, leading to significant degradation of model performance 

(Oliveira et al., 2017). This process is further discussed in the following section. 

3.3.3 Automatic vectorization 

As discussed in previous chapters, CNN-based approaches are increasingly being explored for 

automatic map vectorization. While implementing this approach was considered for this research, it 

was ultimately decided to be unfeasible due to time constraints. However, steps were taken to prepare 

for potential future work in this direction through the creation of a training dataset by the partial 

manual vectorization of the 1965 cadastral map. This data can be used for training CNNs or other 

machine learning methods. This preparation ensures that future studies can build on the groundwork 

laid here to leverage the advantages of using AI-based models for map vectorization.  

In addition to creating training data, an untrained model was also tested for the purpose of map 

vectorization. The platform tested for this is the so-called Vectorization and Coupling Tool for 

Reconstruction, or VeCTOR in short. This model was developed by Kadaster for converting JPEG pictures 

of field sketches (an example of which is illustrated in Appendix D) to digital vectorized networks of 

geometric observations, coupled to other sketches at overlapping points (Franken et al., 2021). VeCTOR 

is comprised of multiple pipeline-stages for the vectorization of the input data, in which different 

artificial intelligence algorithms are used. The employed AI-algorithms, in combination with human 

validation and feedback allow for the model to perform better with each iteration. The training dataset 

of the 1965 cadastral map can be used to train the VeCTOR pipeline to better identify the line segments 

in historical cadastral maps. To train the model for different types of input data, a supervised learning 

approach is needed. The model relies on pairs of input images in RGB format and corresponding binary 

masks to learn the distinction between the relevant building outlines and irrelevant background 

elements or text. The binary masks serve as the ground truth for the corresponding RGB images, which 

are always inputted in pairs. In the binary masks, the pixel values are categorized into two classes: black 

pixels represent areas not corresponding to building outlines, while white pixels represent building 
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outlines. The complete pipeline used in the original consists of 6 steps, as shown in Figure 9. These 

steps will be shortly discussed in the following sections. 

 

 
Figure 9: Global pipeline stages of the VeCTOR model. Franken et al., 2021. 

Preprocessing 

The original input field sketches of Kadaster are only available in JPEG format, which introduces 

compression artifacts reducing image clarity and hindering the performance of the model. Therefore, 

the pre-processing stage accounts for removing noise and irregularities caused by the image 

compression. In this stage, an S-NET CNN architecture is used based on four residual blocks, comprised 

of multiple hidden layers, that balance model quality and speed for improving image quality.  

Detection 

In the detection step, line and point detection is performed using a combination of LSD (Line Segment 

Detector) and RANSAC (Random Sample Consensus) algorithms. LSD detects line segments with high 

accuracy and minimal parameter tuning, while RANSAC constructs continuous lines by linking detected 

segments. Then, parcel and measurement detection (indicating distances on sketches) is executed, 

which is the second and final step of the detection stage. Here, a Mask Regional CNN model is 

employed, combining convolutional layers with additional layers to effectively recognize object regions 

in images based on bounding boxes and object masks. 

Interpretation 

In the interpretation stage, the obtained parcels and measurements are interpreted, and cadastral 

correction is executed. For interpreting the parcels and measurements, the handwriting of the latter 

must be recognized, which is a challenging task as they differ a lot. A segmentation-based method is 

used in a CNN, achieving a word-level accuracy of 40%. Therefore, this step especially requires human 

validation. In the cadastral correction, the detected and validated measurements and lines are 

decomposed into measurement lines. The global scale of the sketch is calculated by averaging the 

scales of all line segments. This scale is used to predict measurement line origins and verify their 

consistency. The results of this step are presented as overlays on the sketches for user validation. 

Deduction 

This stage is tasked with detecting the contours of the building in the field sketch. Candidate building 

polygons are derived using an approach based on image processing and heuristics, which are then 

classified as buildings or non-buildings based on properties like background colour and shading. Then, 

symbols are deducted from the building outlines using the general rule that 180-degree lines indicate 

walls, and 90-degree angles indicate angles between walls.  
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Positioning and linking 

Finally, in the positioning and linking stage, the local vectorized field sketches are integrated into a 

global cadastral map. To perform the positioning step, an edge-matching algorithm is executed, 

searching for an optimal transformation from local to global geometry. It thereby aligns the sketch 

edges with reference map edges based on the parcel numbers. The algorithm identifies 

transformations involving translation and rotation, clustering them using k-Nearest Neighbours to 

derive optimal transformations via a least-squares approach. Sketches are then automatically linked to 

other sketches using identified points that are in very close proximity to each other based on a 

threshold value. This is done to improve the accuracy of the resulting cadastral map. 

3.4 BGT Pand 

The source that will used in the object matching and change detection phases of this research is the 

BGT Pand (Basisregistratie Grootschalige Topografie) dataset. It is developed and maintained by the 

national Cadastre and can be freely accessed through the PDOK website (PDOK, n.d.-a). The BGT is a 

digital dataset of the Netherlands that uniformly documents objects like buildings, roads, waterways, 

railway lines, and green spaces (Kadaster, 2024). The use of the BGT is regulated by law, which came 

into effect in 2016 for source holders and the National Facility (LV BGT). A source holder is the legally 

designated organization responsible for providing data and are often governments. The purpose of the 

BGT is to ensure that all government entities utilize a unified base map of large-scale topography for 

the Netherlands, with governments referring to all levels of government (national, provincial, municipal 

and water boards) plus other administrative bodies (Geonovum, 2020). Within the government, use is 

mandatory and based on legislation. Its information is freely accessible to everyone. As mentioned, the 

Pand (building) object type is used. This is characterized as the smallest functionally and structurally 

independent unit that is directly and permanently connected to the earth and that can be entered and 

locked (Geonovum, 2022). Unlike other national databases such as the BAG (Basisregistratie Adressen 

en Gebouwen), each building within the BGT - including the demolished buildings - have timestamps, 

enabling change detection (Kadaster, n.d.-b). Historical data is maintained in the BGT to answer 

questions about data validity and change timing.  

3.4.1 Bi-Temporal model 

Considering that building versions in the BGT Pand exist within a timeframe, the temporal component 

must be discussed. When enclosing temporal information about objects within relational databases, 

two types of times exist. Firstly, the real-world time, which is more formally known as the valid time, 

and secondly the time that a piece of information enters the database, the transaction time (Thompson 

& Van Oosterom, 2021; Van Oosterom, 1997). This bi-temporal model has some considerable benefits 

such as providing more clarity to changes in data over time, which is important when aiming to 

compare and visualize historical data.  

3.4.2 Temporal component in the BGT Pand 

As was discussed in the previous paragraph, the BGT Pand dataset includes buildings that currently 

exist, that have been demolished and that are planned to be constructed. The dataset contains building 

version history starting from 2016. The BGT Pand data model includes version history through use of 

the lifespan (levensduur) and history (historie) of buildings. Both are transaction times, reflecting when 

the objects change in the database.   

• The lifespan of buildings in the BGT Pand indicate the initial creation and expiration of an object 

in the BGT Pand dataset. It is recorded using the objectBeginTijd (object begin time) and 
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objectEindtijd (object end time) attribute fields. When a building is first registered in the BGT, 

it receives an objectBegintijd from the source holder, marking the start of its formal lifespan. If 

the building is removed from the dataset, it is assigned an objectEindtijd. So, while a building 

is active, the objectEindtijd remains null; once it becomes inactive, this field is given a value. 

 

• The history of buildings in the BGT Pand indicate when a change of an object has been made 

in the registration. This concerns the administrative recording of the object. It is recorded using 

the tijdstipRegistratie (time of registration) and eindRegistratie (end of registration) attribute 

fields. When a building is added to the database, it receives a timestamp from the source 

holder; the tijdstipRegistratie. Then, if a building ceases to exist, for instance due to its 

demolition, the source holder gives it an end registration date, the eindRegistratie. So, when a 

building is active the eindRegistratie remains null; once it becomes inactive, this field is given 

a value. 

When the geometry of an object changes, one of two scenarios occurs: a geometry change while, or a 

split or merge with one or more other objects. In the former scenario, the object ID is retained, and a 

new version is created; the current version receives an eindRegistratie by the source holder. The source 

holder creates a new object version. The object retains the same objectBeginTijd and is given a new 
tijdstipRegistratie, where tijdstipRegistratie is equal to the eindRegistratie of the previous version. In 

the latter scenario, new objects are created, and the old objects receive an eindRegistratie. 

Status changes to a building must first be observed and reported before being processed in the BGT 

Pand dataset. This is to ensure that changes are updated to correctly reflect the real-world 

developments while meeting legal and administrative requirements. All building versions in the BGT 

Pand dataset get a unique 32-digit identification code, called the object-ID. This ID is determined when 

the object is created and is retained through the lifespan of the building, even if the object is transferred 

to another source holder. When a building in the BGT is split or merged, objects are regarded as newly 

created and are assigned a new unique identification code. Additionally, the unique sixteen-digit BAG 

identification code is assigned to buildings to ensure interoperability between the two base 

registrations. 

3.5 Object matching 

The object matching of the different temporal versions of buildings in the BGT Pand dataset is done in 

the ArcGIS Pro software using different matching techniques. This is done using the ArcPy Python 

package, the created scripts are illustrated in Appendices E and F. The first step in the process is to 

extract the old building versions present in the BGT Pand subset of the conservation area of Utrecht 

from the up-to-date buildings. This is done using a select by attributes operation, selecting the features 

where the end of registration is not null, and/or their status is plan (see Section 3.4.2). Since these 

buildings are either old versions of buildings, or ones that have not yet been constructed, they are 

erased from the dataset. The selection of buildings with an end of registration date represents older 

versions of buildings, which are used as a reference to identify changes made to buildings within the 

conservation area since the beginning of the version history in 2017. The dataset created by removing 

the old and not-yet-constructed selection represents the current scenario and serves as the foundation 

for detecting changes that have occurred to buildings in the conservation area over time.  

After having split the old, current and future versions of buildings in the BGT Pand subset from one 

another, the object matching can be performed. Since the spatial offsets between buildings between 

the datasets are relatively small and the data is of similar scale, an overlay analysis is used to match the 

old building versions to the up-to-date ones. Despite the data being of a similar scale, some buildings 
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have undergone minor topology changes, i.e. due to topology or geometry corrections or because of 

simple remeasurements. In some instances, this causes their borders to intersect with (multiple) 

neighbouring polygons. When using a one to many (1:m) join operation, allowing multiple features to 

be matched with the target feature, using the intersect match option, this results in multiple false 

matches to neighbouring buildings. To account for this, a one to one (1:1) join operation is chosen for 

the initial object matching. The 'have their centre in' match option is used, which matches features if 

the centroid (the average of all points in the polygon) of a target feature falls within them. This matching 

option does not match L-, U or O-shaped buildings as their centres fall outside of the geometry of the 

buildings. To address these buildings, an additional matching round is conducted using the ‘contains’ 

option. A final matching round is performed using the ‘within’ option to link the remaining unmatched 

building versions from the previous step. This method is preferred over an overlay object matching 

approach that relies on calculating overlap percentages, as it is easier to implement and provides 

clearer insights. Furthermore, it avoids the need to create and compute new attribute fields, which 

would add complexity and clutter the already extensive BGT Pand dataset. 

Additionally, the BGT Pand dataset is joined with the BAG dataset, which contains supplementary 

information. The construction date of buildings, for instance, is not included in the BGT Pand dataset 

as it only records the transaction time; the date when the building was entered into the database, not 

the year it was originally built. The additional information provided by the BAG is useful in the 

subsequent change detection phase for validating identified developments. Buildings are matched 

using the BAG identification number, which is present in both datasets, allowing for an attribute match. 

The integrating the BAG-data allows for a more accurate classification, as buildings with a construction 

date in the BAG dataset after a specified threshold can be classified as newly built. Thereby, the 

construction date in the BAG eliminates the ambiguity caused by geometry-based methods. In this 

case, buildings built after 2019 are listed as newly built considering that the PDOK aerial imagery that 

is used for the verification of the results dates to 2018. This verification will be further discussed in 

Section 3.7. Demolished buildings are also detected using this attribute matching method. This is done 

by selecting buildings in the BGT that could not be matched based on their BAG IDs. This occurs because 

the BAG subset only contains up-to-date buildings, meaning that if a building version in the BGT does 

not have a corresponding BAG ID in the current BAG dataset, it no longer exists. However, when 

buildings are merged, this results in the deactivation of their old BAG number, or buildings that were 

planned but never constructed, may still be incorrectly classified as demolished. To account for this, 

buildings flagged as demolished that intersect with merged buildings are erased from the change class. 

3.6 Change Detection  

For detecting changes between different versions of building in the BGT dataset, a rule-based approach 

is used. This technique is chosen for its accuracy and allowing flexible parameter adjustment, as argued 

in Section 2.5 of the Literature Review. This method can be used because the different versions of the 

BGT datasets overlap precisely, as they are created and maintained in the same geodatabase. The rule 

sets are based on the factors that were discussed in the Literature Review and are structured to account 

for different status changes that can occur to buildings in the dataset. The possible statuses as 

abstracted from the Literature Review are unchanged, demolished, newly constructed, partly 

demolished, expanded, merged, and split, characterized by the following criteria: 

• Unchanged: Buildings with identical geometry and attributes in the old- and new version. 

• Demolished: Buildings present in the old version but absent in the new version. 

• Newly constructed: Buildings absent in the old version but present in the new version. 

• Partly Demolished: Changes in building footprints exceeding a specified negative threshold. 
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• Expanded: Changes in building footprints exceeding a specified positive threshold. 

• Merged: Multiple buildings in the old version merged into one in the new version. 

• Split: One building in the old version split into multiple buildings in the new version. 

Figure 10 below presents graphical illustration of the different change types, structured as a decision 

tree to visually guide the classification process. 

 
Figure 10: Decision tree for building change detection 

3.6.1 Area difference ratio 

After having matched the old and new buildings versions, a new field called the ADR, short for the area 

difference ratio, is added to the matched buildings. This field resembles the relative change in area size 

between the old- and new building versions as linked in the object matching phase. The value can either 

be negative when the old version is larger than the new one, or positive when the new version in larger 

than the old one. The ADR is calculated using the calculate field tool with the following formula: 

Equation 2: ADR formula 

 

The ADR is used to detect the changes that have occurred to the buildings over time, and is coded in 

ArcPy, as shown in Appendix G. Threshold values are used to categorize the changes in the building 

areas into the classes that were discussed in the previous section based on the magnitude and the 

direction of the change in building area.  

• An ADR between -0,1 and 0,1, meaning that the area of the building has remained unchanged 

within a margin of 90%, is the threshold for a building to be marked as Unchanged. This is 

threshold is chosen to account for potential topology or geometry corrections or 

remeasurements in the data.  
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• An ADR between than -0,1 and -0,3 indicates a moderate decrease in the building's area, 

suggesting that only a portion of the building has been removed or reduced. Therefore, these 

buildings are marked as Partly Demolished. The upper limit of -0.1 excludes small decreases, 

which are often geometry changes or remeasurements. The lower limit of -0.3 ensures that 

larger decreases are also excluded. 

 

• An ADR between 0,1 and 0,6 indicates a moderate increase in building area, these are 

therefore classified as Expanded. This range captures buildings whose footprint has grown, 

such as through extensions or additions to the old building versions. The lower limit of 1,1 

excludes small increases, while the upper limit omits larger increases that often indicate a 

merge of buildings. 

 

• An ADR above 0.6 indicates a large increase in the area of a building, which is often the result 

of multiple old buildings merging into one new building. Therefore, these buildings are marked 

as Merged. This threshold is chosen to identify large increases, distinguishing them from 

moderate increase that fall under the Expanded category. 

 

• An ADR below -0.3 signifies a large decrease in the building's area. This decrease typically 

occurs when a building is subdivided into smaller parts, resulting in a considerable loss of its 

original footprint. In these cases, the building is classified as Split. The threshold of -0.3 ensures 

that only large area decreases are included, thereby avoiding moderate decreases of area size. 

3.6.2 Refinement step 

To ensure the accuracy of the change detection model, a refinement step was performed for the 

identified splits and partial demolitions identified by the initial 1:1 matching process using the ADR as 

described above. This aimed to confirm that these splits and partial demolitions are indeed valid, rather 

than partial demolitions, demolitions or other change types. For the split buildings, the refinement step 

involves selecting the up-to-date BGT buildings that fall within the boundaries of the old split BGT 

buildings, as attributed by the model. Based on the assumption that splits result in multiple smaller 

buildings inside the historical one, a one-to-many (1:m) spatial join is performed in ArcGIS Pro between 

the two datasets using the ‘within’ match option. This links each split building to the multiple 

corresponding updated ones. The number of associated BAG buildings is then counted, and only the 

BGT buildings with more than one BAG building are selected, as these are the ones that have 

undergone valid splits. The old building versions with fewer than 2 matches are then transferred to the 

partly demolished change class, as these have become smaller over time, but do not consist of multiple 

new buildings. The same process is performed for the partly demolished buildings class by firstly 

selecting the new BGT versions buildings that have their centre in the old building initially identified as 

partly demolished. Then, the contain match option is used to join the old partly demolished buildings 

to the selected new building versions in a 1:m spatial join. The ones that are matched to multiple new 

buildings that do not share the same BAG IDs are then flagged and added to the Split class. The created 

ArcPy code for the refinement step is shown in Appendices H and I. 

3.7 Accuracy assessment 

Aerial imagery supplied by PDOK (n.d.-b) is used for the verification of uncertain results in the change 

detection phase of the BGT Pand data. Uncertain results are identified by manual inspection of the 

change detection results compared to the old- and current BGT data. The results that are identified as 

uncertain are then validated using two aerial images in time to confirm the detected changes in the 
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model. Since 2016, an aerial photograph covering the entire ground space of the Netherlands is 

published every year. From the 2016 edition, this product is available as open data with a resolution of 

25 centimetres. Since the 2021 version, image material with a higher resolution of 7.5 centimetres is 

also made available as open data through the PDOK portal. As the orthophoto mosaics are available 

for every year since 2016, and the earliest entries into the BGT Pand dataset also dating back to this 

year, this allows the detected changes on the building level to be verified through the time. It must be 

noted that the lower 25-centimetre resolution until the 2021 time step makes it considerably more 

difficult to recognize changes as opposed to the later 7.5 centimetre resolution time steps. This is 

especially the case for smaller buildings and buildings that are situated in shaded areas in the pre 2021 

aerial images. Verification using aerial imagery is useful for the validation of larger scale changes that 

can be observed from a top view of the buildings.  

The final accuracy of the change detection results is assessed using a confusion matrix, as is similarly 

employed in the change detection study by Matikainen et al (2012). In a confusion matrix, the 

performance of classification models can be tested based on the percentage of cases it identifies 

correctly and incorrectly. This is done in a cross table with the change types of the old version of the 

BGT in the X-axis, and the new version of the BGT in the Y-axis after. Hereafter, the cases are counted 

in which the status was identified correctly, which are then entered in the table. When a building is 

identified incorrectly, this is also recorded, including which incorrect change class the building was 

attributed by the change detection model. The final output is a table in which the percentage of 

correctly detected changes are listed per building status. 

3.8 Historical change detection 

Considering the time constraint for this thesis, the object matching and change detection phases are 

only performed for the different temporal version of buildings in the BGT Pand dataset, and not with 

large scale cadastral data. However, it is encouraged to use this study as a broader framework for 

analysing changes using older historical datasets, like the cadastral dataset that was partly vectorized. 

When wanting to compare the BGT Pand data to the vectorized historical cadastral data, this requires 

a more complex pipeline similar to that used by Zhou et al. (2018), as discussed in Section 2.5. In this 

instance, the pipeline must ideally include data matching, accounting for displacement between the 

historical- and BGT data, shape similarity, morphology of differing components, building pattern 

constraints and finally a change detection to achieve accurate change detection results.  
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4. Results 

In the Results section, the results of the research will be illustrated and shortly discussed. Firstly, the 

building vectorization processes are considered. Hereafter, the object matching is elaborated on and 

the chapter concludes with the results of the change detection phase. 

4.1 Building vectorization 

In the building vectorization, the georeferencing of the historical cadastral map and the manual- and 

automatic vectorization processes are illustrated and briefly discussed. 

4.1.1 Georeferencing 

The georeferencing of the historical cadastral map of the conservation area in Utrecht was conducted 

using a third order polynomial transformation. This method was chosen as it accommodates well for 

non-linear distortions, which are often present in historical map data. In the transformation process, 

50 control points were used to ensure that the historical map data would be aligned robustly to the 

modern coordinate system, as more control points of good quality contribute to a more accurate 

polynomial transformation. The placement of the GCPs is illustrated with red points in the left pane of 

Figure 11 below. The final georeferenced map is overlayed over a topographic basemap and is edited 

using the darken layers blend. This results in the blending of the historical map with the content below 

it in the basemap to illustrate the accuracy of the georeferencing process, as is shown in the right pane 

of Figure 11. 

 

Figure 11: GCPs in the research area (left), georeferenced historical map (right) 

To assess the accuracy of the georeferencing process, the Root Mean Square Error (RMSE) is used, as 

is shown in Table X. The forward RMSE indicates an average deviation of 1.41 map units between the 

GCPs and their position after the transformation. 
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Table 3: RMSE values of the georeferencing process 

Forward RMSE 1.409540   

Inverse RMSE 0.014409   

Forward-inverse RMSE 0.000242 

 

4.1.2 Manual vectorization 

For the manual vectorization of the buildings in the historical cadastral map of 1965, a total of 2,059 

buildings were digitized by hand by the researcher and one peer. This process took approximately 7 

hours to complete, over the time span of a week. Most of the buildings that were vectorized are 

situated in the south and west, including some smaller sub sections along the northern parts of the 

research area. An overview of the manually vectorized buildings is illustrated in Figure 12. 

 

Figure 12: Overview of the manually vectorized buildings of the 1965 cadastral map  
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In addition to providing serving as a resource for studying historical urban development, the manually 

vectorized buildings can be used to train a deep learning model, like a CNN-based pipeline to automate 

the process of building vectorization. To train most of such models, including the previously discussed 

VeCTOR pipeline, the vectorized buildings must be illustrated in white, with the background in black, 

creating a binary mask. These masks are then paired with their original RGB counterparts, which in turn 

allows the model to learn the distinction between the relevant building outlines and irrelevant 

background elements or text. Two examples of such image pairs are shown in the Figure below. In order 

to facilitate further research aiming to automatically vectorize historical cadastral map data in a similar 

manner using deep learning, the manually created building dataset will be published on a dedicated 

Github page. Through this page, the data can be freely downloaded and used by researchers that might 

be interested in using it for future studies.  

  

  

Figure 13: Examples of RGB images and corresponding binary masks  
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4.1.3 Automatic vectorization 

In the subsequent automatic vectorization process, the historical data was inputted into the base 

VeCTOR pipeline. This was done to explore the potential of using an already existing CNN-based model 

for automatically extracting building outlines in the historical large scale cadastral map of 1965. 

Multiple subsets of the RGB map were inputted into the model to analyse its effectiveness in vectorizing 

buildings without training the existing model. Some outputs of the untrained VeCTOR pipeline are 

shown in Figure 14 below. 

 

 

Figure 14: VeCTOR pipeline line segment output 
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Upon analysis of the source code of the model, the VeCTOR line detection model outputs confidence 

scores for each pixel. These confidence scores represent the likelihood of pixels belonging to the line 

class or not. Confidence values range from 0 to 1 and are set at a threshold level in the source code to 

ensure that pixels are classified correctly according to the set threshold. In the standard configuration 

of the model, it is set to 0.5. When lowering the confidence level in the source code, the model outputs 

more line segments as more pixels meet the lowered threshold. This results in the model closing the 

unclosed line segments more frequently, and the model recognizing more lines overall when inputting 

subsets of the large scale cadastral maps. Figure 15 shows the differences in the line detection when 

lowering the confidence level from 0.5 to 0.05, 0.005 and 0.0005. However, lowering the confidence 

level also causes pixels with a weak probability to be attributed as lines, causing the overall line 

thickness to increase and potentially causing more false positives to occur in the output. This is 

especially apparent when analysing the 0.0005 confidence level in Figure 15, which visibly causes the 

line segments to become thicker than in the outputs with a lower confidence level.  

    

   

Figure 15: VeCTOR outputs with decreasing confidence levels (0.5 top left, 0.05 top right, 0.005 bottom left, 0.0005 bottom 
right). 
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The VeCTOR model has only been trained on upright fieldworks, which influences its performance 

when applied to different input sources. An implication of the used training data is that the model has 

learned that lines in the header and footer never need to be vectorized. Additionally, it was trained 

using fieldworks with a similar scale. Because the inputted cut outs of large scale cadastral maps are 

without a header and footer and with a different scale and drawing style, the predictions might be 

incorrect. Another factor that should be considered is that the model’s performance is largely 

dependent on the orientation of the input image. It was found that when the input image was rotated 

with 90 degrees, this had a large effect on the effectiveness of the model capturing of line segments in 

the output. This discrepancy is illustrated in Figure 16. Here, the same cutoff of the map is shown, 

however, in the first image it is rotated correctly, whilst in the second image it is rotated 90 degrees to 

the left. In the rotated image, the line segments are vectorized much more accurately than in the 

original image, which only shows fragmented lines in the output.  

 

 
Figure 16: VeCTOR output difference when changing input image orientation 
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4.4 Object matching 

In the object matching step, all historical versions of buildings in the BGT Pand dataset are matched to 

their updated counterparts, in a total of 3 steps. In the first object matching step, a one-to-one (1:1) 

join operation using the ‘have their centre in’ match option is used, joining old buildings if their centroid 

falls within a new building’s boundaries. This matches 1,581 out of the 1,675 building versions. As 

shown in light orange in Figure 17. The second matching round is conducted using the ‘contains’ option, 

joining an additional 40 of the 94 previously unmatched buildings. Finally, the ‘within’ match option 

adds six more building matches. Upon manual inspection of the dataset, three out of the 48 unmatched 

buildings were falsely unmatched. It is decided to remove these buildings from the subsequent change 

detection phase. The other unmatched buildings have either been (partly) demolished or have been 

removed from the BGT Pand dataset for another reason, for instance a pergola wrongfully labelled as 

a building. 

.  

Figure 17: Object matching 
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4.5 Change detection 

 

Figure 18: The detected building version changes in the conservation area of Utrecht, between 2016 and 2024 
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In Figure 18 above, an overview of the final change detection model is shown, with different colours 

illustrating the different types of changes. The changes between 2016 and 2024 appear to be evenly 

distributed throughout the conservation area, with no regions standing out due to a higher 

concentration of urban transformations. In the initial model without refinement, out of the seven 

possible statuses as identified in Chapter 3, 53 building versions were demolished, 65 were newly 

constructed, 82 were partly demolished, 78 were expanded, 107 were merged, 41 were split and 4394 

remained unchanged. After the refinement step for split building versions, 8 falsely allocated splits 

were reassigned to the partly demolished class. The refinement of partial demolitions reassigned 8 

instances to the split change class, resulting in a total of 42 splits and 82 partial demolitions. A total of 

427 building versions underwent change, while 4394 remained unchanged, indicating that 9.7% of the 

building versions in the conservation area of Utrecht changed in the span of 8 years.  

In Table 4, the results that are shown in Figure 18 are illustrated in table form using a confusion matrix, 

which is also used as accuracy assessment of the model. This confusion matrix shows how many 

instances of a particular change type were identified successfully by the researched BGT change 

detection model, as is shown in the bold numbers in the main body of the table. Additionally, the falsely 

identified cases are presented in the table to study the (un)certainty of the model to accurately 

recognize the changes that occurred and attribute them to the different change classes. In the table, 

the ‘other’ class is added to account for buildings to which multiple changes have occurred, or 

modifications that are difficult to classify under a single of the identified category. The result shows 

that overall, the model can accurately identify the changes that occurred, with percentages between 

87.2 and 98.5 percent. The refinement step considerably improved the change detection model output, 

increasing the accuracy of identified splits from 70.7% to 90.4% and partial demolitions from 82.2% to 

90.2%. The output of the split and partly demolished refinement step can be seen in Appendix J. It 

must be noted that the demolished-, new- and unchanged buildings were not manually validated like 

the other change types, as these were collected using a method based on attribute matching between 

the BGT Pand and BAG data. Considering that the BAG data is maintained as an official source and is 

expected to be highly reliable, these are considered to be 95% correct, with an error margin of the 

residual 5% to account for potential inconsistencies. 

Table 4: Confusion matrix of the change detection results 

  Demolished New Partly 
demolished 

Expanded Merged Split Unchanged Other Total % Correct 

Demolished 53 - - - - - - - 53 95.0% 

New - 65 - - - - - - 65 95.0% 

Partly 
demolished 

- - 74 - - - - 8 82 90.2% 

Expanded - - - 68 - - 1 9 78 87.2% 

Merged 3 - - - 100 - 2 2 107 98.5% 

Split - - - - 1 38 - 3 42 90.4% 

Unchanged - - - - - - 4394 - 4394 95.0% 
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The following four figures show examples of change detection instances that were correctly identified 

by the created model and were validated using PDOK aerial imagery, as discussed in Section 3.5.5. Splits 

and merges are not illustrated in this manner, as these change types are not visible from the outside of 

the concerning buildings. Firstly, in Figure 19 an example of a building in the BGT Pand dataset that was 

correctly classified as demolished shown. In the left pane of the map, aerial imagery dating from 2021 

is used as a base on which the demolished building outline is projected. In the right pane, the same 

location is shown in 2024. Through using aerial imagery of 2021 and 2024, it is illustrated that the 

building has been demolished. 

 

Figure 19: Demolished building 

In Figure 20 below, several buildings that were identified as newly constructed in the southern part of 

the conservation area are depicted. From the aerial imagery in the left and right map panes dating from 

2021 and 2023, it is illustrated hat buildings were indeed constructed in this area. 
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Figure 20: New buildings 

Figure 21 is an example of a building identified as partially demolished. It is located next to another 

building where a new section was constructed, as shown in the previous figure. Here, aerial imagery of 

2016 and 2021 reveals that a portion of the building was demolished. 

 

Figure 21: Partly demolished building 



45 
 

Finally, Figure 22 illustrates two buildings in the left map pane that were expanded and merged. The 

building is classified under both change types because it was originally composed of a smaller and a 

larger structure, which becomes evident when examining the building outline in the left pane. From 

the perspective of the smaller building, it was merged, as its relatively small size resulted in a significant 

change in its ADR. In contrast, the larger building experienced only a slight increase in size due to its 

already larger area, which is why it was classified as expanded.  

 

Figure 22: Expanded/merged buildings 
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Figure 23: Timelapse of BGT building changes between 2016 and 2024 
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Figure 23 above illustrates the changes that have occurred to a block of buildings in the BGT Pand 

dataset in time. The pane in the top right of the figure shows the reference scenario in 2016 without 

any alterations to the buildings in the BGT Pand having taken place. The transformations are 

categorized by the year of their occurrence in chronological order, with a maximum of two changes 

being illustrated per map pane to ensure clarity. Additionally, the old building versions in the left panes 

that underwent changes are depicted in the colour of the change type that was attributed to them by 

the change detection model. In the panes on the right, the new version of the buildings are shown in 

light blue in the way that they are listed in the updated version of the BGT Pand dataset. As can be seen 

in the figure above, in the 2022a time step, two buildings are partly demolished according to the model. 

Then, in the subsequent 2022b pane, their updated version are shown. When inspecting the buildings 

in question, it becomes clear that the one at the top has indeed become smaller. However, the building 

bottom of the block has not only been partly demolished, it has also been split. This is because building 

versions can only be attributed to one change class, which will be further elaborated on in the 

Limitations section. In time step 2022b, two small building that were newly constructed are shown 

which are thus added to the updated version of the BGT. Then, in the 2023a pane, one building is partly 

demolished, whilst its direct neighbour is expanded. In the final 2023b time step, a building is newly 

constructed in the courtyard of the building block, illustrated in pink. This building is then added to the 

BGT in the lower right map pane. 
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5. Discussion 

In the Discussion chapter, the outcomes from the Results of the building vectorization, object matching 

and change detection are interpreted and elaborated on more extensively within the context of this 

research. The chapter concludes with some limitations of the used methodology. 

5.1 Building vectorization 

In the building vectorization, the georeferencing, manual- and automatic vectorization results are 

interpreted in more detail. 

5.1.1 Georeferencing  

The RMSE of 1.41 map units indicates that the transformation captures the overall alignment of the 

historical map well. However, it also demonstrates that there are inaccuracies in certain areas. These 

are likely caused by distortions in the original historical map considering it was hand drawn and 

measured and is thus more error-prone than newer sources. This underlines overall difficulties that are 

often encountered when doing comparative studies using historical map data, as is also concluded in 

research by Heitzler and Hurni (2020) into the reconstruction of historical building footprints in the 

historical Swiss Siegfried map. However, considering that its primary purpose is to serve as potential 

training data for an automatic vectorization model, localized inaccuracies are inconsequential.  

5.1.2 Manual vectorization 

When analysing the results of the manual vectorization process, it can be concluded that the results 

are of overall good quality. The binary vectorized polygons in combination with the source RGB map 

can be used in further research to effectively train an automatic vectorization model to identify line 

segments from similar large scale cadastral maps. Nevertheless, it was observed in the process that the 

quality of the results was dependent on the contributors’ abilities and motivation to accurately draw 

the features in the maps. This is in line with findings presented in research by Chen et al. (2024). 

Furthermore, it must be noted that in the 1965 large scale cadastral map used as source data, it was at 

times difficult to distinguish what lines correlated to actual building outlines. In some instances, 

gardens, parcel boundaries or road segments were drawn very similarly to buildings. Familiarity with 

the research area facilitated this process. 

5.1.3 Automatic vectorization 

The results of the automatic vectorization process using the VeCTOR pipeline without training the 

model on the large-scale cadastral maps were promising. As is shown in Figure 15 in the Results section, 

the model recognized most of the line segments in the input data, demonstrating strong capabilities in 

detecting objects in historical maps. This indicates that even with minimal adaptation, the VeCTOR 

pipeline has the potential to be an effective model for processing large scale cadastral data. Despite 

these successes, some challenges were also observed. The VeCTOR pipeline does show difficulties in 

closing the identified line segments, causing many of the lines to be unfinished in the model output. 

Furthermore, it is observed that building outlines that are overlayed with other shapes, like the building 

in the bottom-left corner in Figure 15, hinder the model in correctly detecting building outlines. 

Additionally, fine line segments in larger scale inputs posed a problem for the model, in such instances 

it was not able to identify the small buildings, as is shown in the top pane of Figure 15.  
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The observed increase in line thickness when lowering the confidence scores, as illustrated in Figure 

16, does not pose a problem for the use of the results in this field of research. This is because processing 

tools like raster-to-polyline are unaffected by line thickness in raster outputs. Additionally, at the tested 

confidence levels, small outlines are not yet being completely filled in by the model. However, if this 

were to happen, for instance in sections with very thin or fine line segments, small buildings could be 

misclassified as walls rather than individual objects. Further refinement of the confidence threshold 

may be necessary to balance improved line closure with the risk of false positives. 

Finally, the discrepancies seen in the model’s performance between different orientations of the input 

data can be caused by a myriad of factors. One explanation being the cadastral fieldwork data that 

were used to train the model, which predominantly have horizontal and vertical line orientations. As a 

result, the model may detect lines more effectively when they align with these orientations. Another 

factor to consider in is the writing in the input cadastral maps being aligned vertically instead of 

horizontally. In the original cadastral fieldworks that VeCTOR is trained with, writing on the source data 

almost exclusively positioned horizontally. However, in the inputted subset of the cadastral map, it is 

not. This might cause the model to have difficulties in calibrating what pixels it identifies as line 

segments, and which as text, as it filters out the latter in the interpretation phase of the pipeline. 

Due to the phenomenon known as the black box problem, it is impossible to draw conclusions on the 

internal workings of an AI-based tool based solely on the model’s inputs and outputs, as underlined by 

Guidotti et al. (2018). Therefore, pinpointing a definitive explanation to account for the observed 

challenges is difficult. However, after consultation with one of the developers of the VeCTOR pipeline, 

it was determined that the identified challenges in the model can likely be resolved relatively easily by 

training the model with the manually vectorized building data. This would allow for better recognition 

of specific line segments in the input data, enabling the model to more accurately vectorize large scale 

cadastral maps. As previously discussed, implementing this solution was not feasible within the scope 

of this thesis due to time constraints, however, it does provide a next step for further research. 

5.2 Object matching 

The centroid-based object matching method performed well in matching different temporal versions 

of buildings in the BGT Pand dataset. Its degree of flexibility helped to correctly match corresponding 

buildings with small offsets through time, while accounting for potential mismatches caused by their 

overlaps, which occurred when using the intersect match option. The method does depend on a level 

of continuity with regard to building topologies. In other words, the general topology between different 

temporal versions of used datasets should remain relatively consistent and must not shift by more than 

several centimetres, as a large offset would prevent the successful application of the object matching 

method. To counter these difficulties, controlled alignment, possibly in combination with pattern 

recognition can be used, as successfully employed for change detection by Zhang et al. (2013).  

Additionally, as outlined in the methodology, the initial object matching approach made use of 1:1 

object joins. This was decided as it simplifies the subsequent change detection by preventing incorrect 

matches caused by topology offsets between different versions of buildings, as also demonstrated by 

Zhou et al. (2018). While this approach was effective for most change classes, it did cause some 

challenges for differentiating between splits and partial demolitions. In these cases, multiple historical- 

or newly created building versions often corresponded to a single counterpart, complicating the 

matching process and requiring more nuance to the model. Therefore, the additional refinement step 
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allowing historically split and partly demolished buildings to be joined to multiple new buildings (1:m), 

significantly enhanced the accuracy and reliability of object matching. 

5.3 Change detection 

Overall, the constructed change detection model that was developed performed well in identifying the 

occurred changes to building versions in the research area over time. As was mentioned in the Results 

Section, a total of 9.7% of the building versions in the conservation area of Utrecht changed in the span 

of 8 years. This demonstrates that urban transformation actively takes place in the studied conservation 

area, including the demolition of buildings. Thereby, the findings of this research challenge the 

assumption that protected historical centres in the Netherlands are like frozen, open-air museums 

where no changes are permitted. 

According to the validation of the results, as is shown in the confusion matrix in Table 4, between 87.2 

and 98.5 percent of the building version changes were attributed to the correct change class. 

Furthermore, the refinement step contributed considerably to the improvement of the model, 

increasing the percentage of correctly identified splits by 19.7 percentage points and correctly 

identified partial demolitions by 8 percentage points. The confusion matrix indicates that merges were 

classified most accurately with a percentage of 98.5%, while the expanded class was most prone to 

inaccuracies, with 87.2% being identified correctly. Most misidentified expansions belonged to the 

‘other’ class, where multiple changes had occurred, or when modifications were difficult to classify 

under a single of the identified categories. This misclassification arose because in such instances of 

buildings being incorrectly marked as expanded, they had in reality undergone entirely different shape 

configurations. This makes it difficult to check whether the building versions had truly expansion or had 

changed in another way. This was strengthened by the fact that many identified expansions were not 

visible in aerial images, likely due to discrepancies between data entries in the BGT Pand dataset and 

corresponding real-world structures, a point that will be elaborated on in the next paragraph. 

An unexpected insight into the transformations within the conservation area is that partial demolitions, 

following merges, are the most common changes observed between 2016 and 2024. This is surprising 

as there are strict instructions for the modification of buildings in a conservation area as to not damage 

or alter its special character, as described by the Rijksdienst voor het Cultureel Erfgoed (2024). However, 

when validating the identified changes with PDOK aerial imagery, it becomes apparent that a portion 

of the identified partial demolitions do not correspond to actual physical changes in the buildings. 

Instead, these changes can often be attributed to adjustments made in the BGT Pand data model for 

technical or classification reasons. For instance, structures that were initially classified as buildings, or 

parts of buildings that are not on ground level, might be re-evaluated and removed from updated 

versions of the BGT Pand dataset. As a result, a considerable amount of the partial demolitions in the 

model show changes in the dataset's classification, instead of actual physical transformations of 

buildings. Such discrepancies between buildings in databases versus their real-world counterparts are 

in line with the findings of Zou et al. (2018), who discuss that changes in databases do not always 

represent physical changes and the challenges this introduces for change detection. This emphasises 

both the complexity of working with large-scale building data and the importance of considering 

physical changes as well as data updates when analysing changes in building databases. 

Additionally, it was found that relying solely on the ADR for the change detection was too simplistic, 

making the refinement step also essential for improving the accuracy of the change detection model. 
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Here, the manual verification process played a critical role, as it proved the necessity for a more 

elaborate change detection pipeline. This conclusion was drawn through validation against the up-to-

date BGT Pand and BAG data, in addition to the used PDOK aerial imagery. Thereby ensuring that when 

including the refinement step, the results aligned more accurately with the real-world changes.  

Modelling urban transformation over time in a historically significant area enables a deeper analysis of 

detected changes, offering insights into the driving factors behind them. Furthermore, the proposed 

method supports data-driven decision-making by offering a historical baseline for understanding urban 

transformations, which is crucial for maintaining the character of conservation areas alike. Since the 

method was developed for the BGT Pand dataset in general, it can also be applied to other cities and 

towns in the Netherlands to identify the changes that have occurred over time. This can help guide 

future preservation strategies by identifying which types of buildings or locations are more susceptible 

to change.  

5.4 Limitations 

The presented method can be used in countries with advanced geographic base registration systems, 

like the Netherlands, as the method requires for building topology and corresponding identification 

numbers to remain consistent over time. However, in countries that do not have a developed 

registration system, this method is not applicable without further refinements. Additionally, it was not 

possible to validate all changes as accurately as possible. Preferably one would perform fieldwork 

validation as this is the most reliable approach to confirm whether detected changes in the data also 

occurred in reality. By physically verifying changes on-site, one could ensure that false positives (e.g., 

incorrectly registered buildings) do not distort the analysis. However, field validation is not feasible 

within the scope of this thesis due to time constraints. Similarly, by employing historical images of the 

city of Utrecht, which for instance are available in the Utrecht city archives or through 

Documentatie.org, this validation step can be performed to bridge the gap in earlier time layers.  

Furthermore, the object matching method used did not take the shape of buildings into account. 

Consequently, historical versions of buildings can be matched to new buildings that have an entirely 

different shape, also causing the subsequent object matching to also be unsuccessful. This is illustrated 

in Figure 24 below, where a falsely identified merge is shown. To account for this, the BAG ID can be 

used to validate whether buildings are matched to the same, or to a different building. However, the 

BGT Pand dataset contains multiple instances where the BAG ID remains unchanged despite the 

demolition of a building and the construction of a new one in the same location. Molenstraat 16 is an 

example of this where, according to Google Street View (see Appendix K), a different, now-demolished 

building stood in 2014, which aligns with the version history in the BGT Pand data. Yet, both the old 

and new building are assigned the same BAG ID in the BGT Pand dataset. This relates back to the 

method’s dependency on accurate, systemic reporting of changes in the built environment. If this 

condition is not sufficiently met, as shown in the previously mentioned example, the method's 

reliability is considerably smaller. 

Furthermore, upon validation of the change detection results, it became apparent that building 

versions marked as demolished were not always demolished in reality. Some buildings were never 

constructed (niet gerealiseerd pand) or incorrectly registered (pand ten onrechte opgevoerd) but have 

still at some point been inputted into the BGT Pand and received a BAG id, despite never having existed 

in the real world.  
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Finally, buildings versions can only be attributed a single change type. Therefore, if multiple changes 

have occurred in a single time step, this cannot be identified using this change detection method. An 

example of this is shown in Figure 23, where a building was split and partly demolished in a single time 

step.  

 

Figure 24: Demolition falsely identified as merge 
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6. Conclusion 

This thesis has sought to study urban transformations in the context of built heritage, using the 

conservation area of Utrecht as a case study. Its aim was twofold, firstly to research different methods 

for the vectorization of historical cadastral data at the building level. Secondly, to study the most 

effective methods for matching and comparing cadastral data from different temporal versions of the 

BGT. By examining vectorization, object matching and change detection in relation to each other, an 

attempt was made to create a more holistic approach so that old and new data sources can enrich one 

another in further research. This study has sought to aimed to answer the following research question: 

"How can the processes of vectorizing historical cadastral maps and detecting building-level changes 

over time be combined to analyse the urban transformation of the historical city centre of Utrecht?". 

To help answer the research question, three sub-questions were formulated “What methods are most 

effective for the vectorization of historical cadastral data?”, “What are the most effective approaches 

for matching different versions of buildings?” and “What methods are most suitable for researching the 

historical destruction, construction and changes of buildings?”. Firstly, the sub-questions will be 

addressed, after which the main question will be answered. 

Manual vectorization was found to be an effective, but time-consuming method for the vectorization 

of historic large scale cadastral maps. Ideally, this approach should be complemented by an automatic 

vectorization method, which are fast but not sufficiently accurate without model training and 

parameter adjustment. Here, the vectorized building outlines can serve as training data for a 

convolutional neural network-based pipeline. By training an automated model using the vectorized 

data from this thesis, a fundament can be laid enabling researchers to vectorize old map data on a 

larger scale, holstering the potential of historic data.  

A 1:1 object match, using building centroids as the primary matching criterion and supplemented by 

‘contains’ and ’within’ spatial relationships, proved to be the most effective method for accurately 

matching historical buildings to their current counterparts. The method provided some flexibility which 

was necessary to account for buildings that had undergone slight topology changes over time. This was 

enriched by linking the BAG to the BGT Pand using the BAG id to verify the matched buildings. 

A rule-based approach using seven change classes was found to be most effective for performing 

change detection. This method was complimented with a refinement step verifying splits and partial 

demolitions through 1:m spatial joins. This optimization improved the accuracy of detecting building 

changes in the BGT Pand dataset between 2016 and 2024. 

To answer the research question, this thesis demonstrates that combining the processes of vectorizing 

historical cadastral maps and detecting building-level changes over time enable a more comprehensive 

analysis of the development of historical city centres, like that of Utrecht. While the vectorization of 

historical cadastral data created a foundation for linking old and new datasets, the integration of these 

data sources for change detection proved challenging. Despite difficulties in directly linking the 

vectorized historical data to modern datasets for change detection, this thesis shows the potential for 

future work in this area. The methods developed for vectorization and change detection offer a 

framework that, with further refinement and improved object matching techniques, can lead to a more 

comprehensive understanding of urban transformation over time. This thesis aims toward bridging the 

gap between historical and contemporary data, offering a pathway for future research to integrate data 

for a more holistic analysis of the built environment. 
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7. Recommendations 

From the findings of this thesis, several recommendations can be formulated for future research. This 

thesis has explored the processes of vectorization and object matching and change detection in 

isolation. In future research, it is encouraged to connect these two interconnected fields. This can be 

achieved in multiple ways. 

Firstly, the vectorization processes presented here have laid a foundation for facilitating a broader base 

for the extraction of building outlines from historical map data. Future research could use the manually 

vectorized building data to train automated vectorization methods. This relationship is illustrated by 

the dashed line between manual and automatic vectorization in Figure 25 below, adapted from the 

components of the proposed solutions presented in Chapter 3. Additional research in this field would 

enhance the accessibility of historical data.  

Another direction for further study of this topic is to expand the used object matching method to 

include factors such as building shapes and building pattern constraints. By including these factors, 

buildings can be matched with more accuracy than through only using an object matching approach. 

This would enable the method to be employed over a larger time span to research how extracted 

building data from historical cadastral maps relate to their current forms. Thereby, future studies could 

expand upon this work by incorporating additional datasets, exploring broader time periods, or 

comparing different methods for digitizing and analysing historical maps. This is graphically shown by 

the dashed line between the results and object matching in Figure 25.  

 

Figure 25: Graphic illustration of recommended research directions 

Finally, manual validation was used in this study to validate the results of the object matching and 

change detection phases. However, since this inherently involves a level of subjectivity, which may 

introduce inconsistencies when conducting similar research, future research could explore 

standardized validation methods to reduce human bias in this process.  
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Appendices 

Appendix A: The rule system for change detection. Zhou et al., 2018. 

 

 

The outline of the rule system for change detection. Zhou et al., 2018.  
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Appendix B: Map of Utrecht in the twelfth century. Van Der Vlerk, 1983. 
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Appendix C: 1965 large scale cadastral map. The National Cadastre, 1965. 
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Appendix D: Field sketch and VeCTOR model output. Franken et al., 2021.  
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Appendix E: Code for object matching I 

import arcpy 
 
arcpy.env.workspace = r"C:\Users\boris\OneDrive - Universiteit 
Utrecht\ArcGIS\Projects\ChangeDetection\ChangeDetection.gdb" 
 
# Define input feature classes 
old_buildings = "OudePandVersies"    
new_buildings = "BGThuidig"          
 
# Output feature class 
output_layer = r"C:\Users\boris\OneDrive - Universiteit 
Utrecht\ArcGIS\Projects\ChangeDetection\ChangeDetection.gdb\zAreaComparisonResult" 
 
# Step 1: Perform a Spatial Join to find intersecting features 
spatial_join_output = "zspatial_join_output" 
arcpy.analysis.SpatialJoin( 
    target_features=old_buildings, 
    join_features=new_buildings, 
    out_feature_class=spatial_join_output, 
    join_type="KEEP_COMMON",   
    match_option="HAVE_THEIR_CENTER_IN" 
) 
 
# Step 2: Add a field to calculate Area Difference Ratio 
arcpy.management.AddField(spatial_join_output, "Area_Diff_Ratio", "DOUBLE") 
 
# Step 3: Calculate Area Difference Ratio 
with arcpy.da.UpdateCursor(spatial_join_output,  
                           ["geom_Area", "geom_Area_1", "Area_Diff_Ratio"]) as cursor: 
    for row in cursor: 
        old_area = row[0] 
        new_area = row[1] 
        if old_area > 0:   
            row[2] = abs(new_area - old_area) / old_area 
        else: 
            row[2] = None   
        cursor.updateRow(row) 
 
# Step 4: Select features where the Area Difference Ratio <= 0.1 
arcpy.management.SelectLayerByAttribute( 
    in_layer_or_view=spatial_join_output, 
    selection_type="NEW_SELECTION", 
    where_clause="Area_Diff_Ratio <= 0.1" 
) 
 
# Step 5: Export selected features to a new feature class 
arcpy.management.CopyFeatures(spatial_join_output, output_layer) 
 
# Step 6: Add the output to the active map 
aprx = arcpy.mp.ArcGISProject("CURRENT") 
map_view = aprx.activeMap 
map_view.addDataFromPath(output_layer) 
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Appendix F: Code for object matching II 

import arcpy 
 
arcpy.env.workspace = r"C:\Users\boris\OneDrive - Universiteit 
Utrecht\ArcGIS\Projects\ChangeDetection\ChangeDetection.gdb" 
 
# Define input feature classes 
old_buildings = "OudePandVersies"    
new_buildings = "OudePandVersiesOngematched"          
 
# Output feature class 
output_layer = r"C:\Users\boris\OneDrive - Universiteit 
Utrecht\ArcGIS\Projects\ChangeDetection\ChangeDetection.gdb\zAreaComparisonResultOPVO" 
 
# Step 1: Perform a Spatial Join to find intersecting features 
spatial_join_output = "zspatial_join_outputOPVO" 
arcpy.analysis.SpatialJoin( 
    target_features=old_buildings, 
    join_features=new_buildings, 
    out_feature_class=spatial_join_output, 
    join_type="KEEP_COMMON",   
    match_option="CONTAINS" 
) 
 
# Step 2: Add a field to calculate Area Difference Ratio 
arcpy.management.AddField(spatial_join_output, "Area_Diff_Ratio", "DOUBLE") 
 
# Step 3: Calculate Area Difference Ratio 
with arcpy.da.UpdateCursor(spatial_join_output,  
                           ["geom_Area", "geom_Area_1", "Area_Diff_Ratio"]) as cursor: 
    for row in cursor: 
        old_area = row[0] 
        new_area = row[1] 
        if old_area > 0:   
            row[2] = abs(new_area - old_area) / old_area 
        else: 
            row[2] = None   
        cursor.updateRow(row) 
 
# Step 4: Select features where the Area Difference Ratio <= 0.1 
arcpy.management.SelectLayerByAttribute( 
    in_layer_or_view=spatial_join_output, 
    selection_type="NEW_SELECTION", 
    where_clause="Area_Diff_Ratio <= 0.1" 
) 
 
# Step 5: Export selected features to a new feature class 
arcpy.management.CopyFeatures(spatial_join_output, output_layer) 
 
# Step 6: Add the output to the active map 
aprx = arcpy.mp.ArcGISProject("CURRENT") 
map_view = aprx.activeMap 
map_view.addDataFromPath(output_layer) 
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Appendix G: Code for change detection 

arcpy.env.workspace = r"C:\Users\boris\OneDrive - Universiteit 
Utrecht\ArcGIS\Projects\ChangeDetectionSplitMerge.gdb" 
adr10 = "ADR10"   
 
# Output layers 
expanded_buildings = "ExpandedBuildings" 
merged_buildings = "MergedBuildings" 
split_buildings = "SplitBuildings" 
partly_demolished = "PartlyDemolished" 
 
# Step 1: Add the ChangeType field if it doesn't already exist 
arcpy.management.AddField(adr10, "ChangeType", "TEXT") 
 
# Step 2: Classify changes based on ADR values 
with arcpy.da.UpdateCursor(adr10, ["ADR", "Shape_Area", "geom_Area_1", "ChangeType"]) as cursor: 
    for row in cursor: 
        adr_value = row[0]   
 
  
        print(f"ADR: {adr_value}") 
 
       # Classify based on ADR values 
        if adr_value is not None: 
            if adr_value > 0.1 and adr_value <= 0.6: 
                row[3] = "Expanded" 
                print("Classified as Expanded") 
            elif adr_value < -0.3:    
                row[3] = "Split" 
                print("Classified as Split") 
            elif adr_value > 0.6:    
                row[3] = "Merged" 
                print("Classified as Merged") 
            elif -0.3 <= adr_value <= -0.1:   
                row[3] = "Partly Demolished" 
                print("Classified as Partly Demolished") 
 
        cursor.updateRow(row) 
 
# Step 3: Export categorized layers 
arcpy.management.SelectLayerByAttribute( 
    in_layer_or_view=adr10, 
    selection_type="NEW_SELECTION", 
    where_clause="ChangeType = 'Expanded'" 
) 
arcpy.management.CopyFeatures(adr10, expanded_buildings) 
 
arcpy.management.SelectLayerByAttribute( 
    in_layer_or_view=adr10, 
    selection_type="NEW_SELECTION", 
    where_clause="ChangeType = 'Merged'" 
) 
arcpy.management.CopyFeatures(adr10, merged_buildings) 
 
arcpy.management.SelectLayerByAttribute( 
    in_layer_or_view=adr10, 
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    selection_type="NEW_SELECTION", 
    where_clause="ChangeType = 'Split'" 
) 
arcpy.management.CopyFeatures(adr10, split_buildings) 
 
arcpy.management.SelectLayerByAttribute( 
    in_layer_or_view=adr10, 
    selection_type="NEW_SELECTION", 
    where_clause="ChangeType = 'Partly Demolished'" 
) 
arcpy.management.CopyFeatures(adr10, partly_demolished) 
 
  



69 
 

Appendix H: Code refinement step I 

import arcpy 
 
arcpy.env.workspace = r"C:\Users\boris\OneDrive - Universiteit Utrecht\ArcGIS\Projects\SplitTestBAGid.gdb" 
arcpy.env.overwriteOutput = True  # Allow overwriting existing outputs 
 
# Define layers 
BGT_old = "SplitBAGtestRDnew"  # Old BGT buildings 
BGT_new = "BGTutrechtGOED"  # New BAG buildings 
 
# Create feature layers 
arcpy.MakeFeatureLayer_management(BGT_old, "BGT_Layer") 
arcpy.MakeFeatureLayer_management(BGT_new, "BAG_Layer") 
 
# Select BAG buildings within BGT buildings 
arcpy.SelectLayerByLocation_management("BAG_Layer", "WITHIN", "BGT_Layer") 
 
# Count selected features 
count = int(arcpy.GetCount_management("BAG_Layer")[0]) 
print(f"Number of matched BAG buildings: {count}") 
 
if count > 0: 
    # Perform Spatial Join directly without exporting extra layers 
    joined_bag = "BAG_with_BGT_Join" 
    arcpy.SpatialJoin_analysis("BAG_Layer", "BGT_Layer", joined_bag,  
                               "JOIN_ONE_TO_MANY", match_option="WITHIN") 
    print(f"Spatial Join complete. Output: {joined_bag}") 
 
    # Generate summary table to count how many BAG buildings per BGT building 
    summary_table = "BGT_Split_Stats" 
    arcpy.Statistics_analysis(joined_bag, summary_table, [["main__BGTutrecht_bag_pnd", "COUNT"]], 
"main__BGTutrecht_bag_pnd") 
    print(f"Summary table created: {summary_table}") 
 
    # Check field names 
    fields = [f.name for f in arcpy.ListFields(summary_table)] 
    print("Fields in BGT_Split_Stats:", fields) 
 
    # Use the correct field name for COUNT (ArcGIS might rename it) 
    count_field = "COUNT_" if "COUNT_" in fields else "FREQUENCY" if "FREQUENCY" in fields else "COUNT" 
 
    # Select only BAG buildings that occur more than once (actual splits) 
    arcpy.MakeFeatureLayer_management(joined_bag, "Joined_Layer") 
    arcpy.AddJoin_management("Joined_Layer", "main__BGTutrecht_bag_pnd", summary_table, 
"main__BGTutrecht_bag_pnd") 
 
    # Select only rows where COUNT > 1 
    selection_query = f"{summary_table}.{count_field} > 1" 
    arcpy.SelectLayerByAttribute_management("Joined_Layer", "NEW_SELECTION", selection_query) 
 
    # Specify a new unique output name 
    final_output = "BAG_with_BGT_Join_Split_Buildings" 
 
    # Copy the selected features to the new output dataset 
    arcpy.CopyFeatures_management("Joined_Layer", final_output) 
    print(f"Filtered only split BAG buildings. Updated: {final_output}")  



70 
 

Appendix I: Code refinement step II 

 
import arcpy 
 
arcpy.env.workspace = r"C:\Users\boris\OneDrive - Universiteit Utrecht\ArcGIS\Projects\SplitTestBAGid.gdb" 
 
# Define layers 
PartlyDemolished = "PartlyDemBAGtest"  # Partly demolished buildings 
BGTutrechtGOED = "BGTutrechtGOED"  # Updated new BAG buildings 
 
# Perform a spatial selection using WITHIN to select BAG buildings inside Partly Demolished buildings 
arcpy.MakeFeatureLayer_management(PartlyDemolished, "Demolished_Layer") 
arcpy.MakeFeatureLayer_management(BGTutrechtGOED, "BGT_Layer") 
 
# Select new BAG buildings within partly demolished buildings 
arcpy.SelectLayerByLocation_management("BGT_Layer", "HAVE_THEIR_CENTRE_IN", "Demolished_Layer") 
 
# Perform a spatial join to link Partly Demolished buildings to the selected new BAG buildings 
demolished_bgt_bag_join = "Demolished_BGT_BAG_Join" 
arcpy.analysis.SpatialJoin("Demolished_Layer", "BGT_Layer", demolished_bgt_bag_join, 
join_type="KEEP_COMMON") 
 
# Summarize the count of new BAG buildings for each Partly Demolished building 
summary_table = "Summary_PartlyDemolished_BGT_BAG" 
arcpy.analysis.Statistics(demolished_bgt_bag_join, summary_table, [["Join_Count", "COUNT"]], 
"main__BGTutrecht_bag_pnd") 
 
# Make a table view from the summary table 
arcpy.MakeTableView_management(summary_table, "Summary_View") 
 
# Select buildings with more than one new BAG building associated (indicating splits) 
arcpy.SelectLayerByAttribute_management("Summary_View", "NEW_SELECTION", "COUNT > 1") 
 
# Copy the filtered result into a new layer (split buildings) 
split_buildings_filter = "Split_PartlyDemolished_Buildings" 
arcpy.TableToTable_conversion("Summary_View", arcpy.env.workspace, split_buildings_filter) 
 
# Select Split features in Partly Demolished class 
selected_values = [ 
    '344100000007254', '344100000011132', '344100000073288', '344100000002564',  
    '344100000012243', '344100000024396', '344100000025433', '344100000029794',  
    '344100000029848', '344100000041667', '344100000049912', '344100000051095',  
    '344100000051098', '344100000058748', '344100000079460' 
] 
 
# Strip any leading/trailing spaces from the selected values 
selected_values = [val.strip() for val in selected_values] 
 
# Construct the query string, ensuring values are properly quoted 
query = "main__BGTutrecht_bag_pnd IN ('" + "','".join(selected_values) + "')" 
 
# Check if the query is being constructed properly 
print(f"Query: {query}") 
 
# Select the features from PartlyDemBAGtest based on the query 
arcpy.SelectLayerByAttribute_management("PartlyDemBAGtest", "NEW_SELECTION", query)  
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Appendix J: Output refinement step 
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Appendix K: Demolished- and newly constructed buildings. Google, n.d. 

 

 
 


