

MSc thesis in Geomatics

Point Cloud for 3D Land Administration
System (LAS)

Citra Andinasari

July 2025

A thesis submitted to the Delft University of Technology in
partial fulfillment of the requirements for the degree of Master

of Science in Geomatics

Citra Andinasari: Point Cloud for 3D Land Administration System (LAS) (2025)
cb This work is licensed under a Creative Commons Attribution 4.0 International License.
To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/.

The work in this thesis was carried out in the:

Geo-Database Management Centre
Delft University of Technology

Supervisors: Prof. Peter van Oosteroom
Ir. E. Verbree

Co-reader: dr. M.N. Koeva

http://creativecommons.org/licenses/by/4.0/

Abstract

As cities grow denser and more and more in vertical directions, Land Administration Sys-
tems (LAS) must evolve to represent complex, multi-level property ownership, particularly
in apartment buildings. While Building Information Models (BIM) are commonly used
for 3D representation, their availability remains limited for many buildings. This research
explores the use of point clouds as an alternative means to represent 3D spatial units in
LAS, focusing on the integration of cadastral floor plans and the airborne Lidar point cloud
datasets (in our case Actueel Hoogtebestand Nederland (AHN)).

Three apartment cadastral drawings from different years in Rotterdam serve as case stud-
ies. The proposed methodology involves five main steps: (1) parsing the scanned image
of the floor plans using image processing to extract cadastral room boundary polygons; (2)
segmenting AHN point cloud; (3) generating synthetic point clouds by extruding floor plan
polygons and aligning them with AHN; (4) storing these 3D spatial units in a PostgreSQL-
based database following the ISO 19152:2024 Land Administration Domain Model (LADM);
and (5) developing a web-based 3D LAS using Vue.js, Cesium, and FastAPI for visualization
and interaction.

Results show that unit boundaries can be extracted from cadastral drawings and con-
verted into 3D point clouds for integration into a cadastral database. The synthetic point
clouds include room-level attributes and spatial identifiers, enabling interactive visualiza-
tion and LADM information through a web interface that can be accessed by the public and
stakeholders. However, challenges such as misalignment due to occlusion in AHN data and
inconsistent quality in older floor plan drawings affect the accuracy and automation of the
process.

This research demonstrates that point clouds can effectively serve as final 3D represen-
tations in land administration, providing a scalable solution in the absence of BIM models
and minimizing the need for additional field surveys. It also enables a seamless integration
with AHN, offering a representation of real-world features such as building facades, walls,
and fences, which often delineate cadastral boundaries.

The code for this project is available in GitHub, while the website can be accessed in
gist.bk.tudelft.nl/apps/LADMPointCloud/.

v

https://github.com/citrandina/PointCloud3DLAS
https://gist.bk.tudelft.nl/apps/LADMPointCloud/

Acknowledgements

I would like to express my deepest gratitude to all those who helped me finish this thesis.
First, I am sincerely thankful to my supervisors, Peter van Oosterom and Edward Verbee,
for their continuous support from the beginning to the end of this journey. Their valuable
feedback and insight guide me to write and improve my research, and their understanding
and patience encourage me to face all these difficulties and self-doubt along the way. I
would also like to thank my co-reader, Milla Koeva, for her feedback and suggestions to
refine my research. In addition, I would like to thank Bastiaan van Loenen for his support
in hosting the presentation during my graduation procedure, and Martijn Meijers for his
valuable insights and support in hosting the web server.

Although we are separated by more than a dozen thousand kilometers away, I am so
grateful from the bottom of my heart for the endless love from my parent that has always
accompanied throughout these days. Thank you to my father, who has always been the best
father figure I can imagine. Without you, I would never have dreamed of studying abroad.
Thank you to my mother, who always takes care of me, gives me warmth, and never tires of
listening to my whining and crying. Their support always encourages me to stand, and their
prayer always protects me to move forward. Thanks also to Waro, our chunky-fatty-lazy cat,
who is supposed to be my mental support.

I would like to thank my Geomatics classmates who accompanied and helped me during
the entire time of my master’s studies. Thank you also to all of my friends who have become
my second family here, with whom I can travel around exploring the world, with whom I
can share all of the hardship that I endure during this study, and with whom I have first met
at the departure from Indonesian airport to our countless departures together.

Finally, I would also like to thank LPDP for giving me the scholarship and the opportunity
to study my master’s here.

I dedicate this to my dearest Papa and Mama

vii

Contents

1. Introduction 1
1.1. Introduction . 1
1.2. Research Objectives . 1
1.3. Scope . 2
1.4. Thesis Outline . 2

2. Related Work 3
2.1. Point Cloud . 3
2.2. Floor Plan . 7
2.3. LADM and Industry Foundation Classes (IFC) 10
2.4. 3D Land Administration System (LAS) Visualization 11

3. Methodology 15
3.1. Parsing the floor plan . 17
3.2. Segmenting AHN Point Cloud . 23
3.3. Generating Synthetic Point Cloud . 25
3.4. Storing Point Cloud to LADM . 29
3.5. Visualizing 3D LAS . 32

4. Implementation 39
4.1. Tools . 39
4.2. Datasets . 40

5. Results 45
5.1. Parsing Floor Plan . 45
5.2. Segmenting Point Cloud . 50
5.3. Synthetic Point Cloud Construction . 50
5.4. Point Cloud to LADM Storage . 54
5.5. 3D Land Administration System Visualization 62
5.6. Reflection of Application . 72

6. Conclusion 77
6.1. Conclusion of research question . 77
6.2. Future Work . 79

A. Reproducibility self-assessment 81
A.1. Marks for each of the criteria . 81
A.2. Self-reflection . 81

B. LADM Unified Modeling Language (UML) Model 83

C. Georeference Method Explanation 85

ix

Acronyms

API Application Programming Interface

CSF Cloth Simulation Filter

RANSAC RANdom SAmple Consensus

AHN Actueel Hoogtebestand Nederland

LA Land Administration

LAS Land Administration System

LADM Land Administration Domain Model

PDAL Point Data Abstraction Library

ICP Iterative Closest Point

GIS Geographical Information System

LiDAR Light Detection and Ranging)

DBSCAN Density-Based Spatial Clustering of Applications with Noise

RRRs Right, Restrictions, and/or Responsibilities

BIM Building Information Modelling

IFC Industry Foundation Classes

BAUnit Basic Administrative Unit

SU Spatial Unit

DT Digital Twin

ALS Airborne Laser Scanning

TLS Terrestrial Laser Scanning

MLS Mobile Laser Scanning

HT Hough Transform

MBR Minimum Bounding Rectangle

UML Unified Modeling Language

OCR Optical Character Recognition

CRS Coordinate Reference System

xi

Contents

HTML Hypertext Markup Language

CSS Cascading Style Sheets

RMSE Root Mean Square Error

JSON JavaScript Object Notation

SQL Structured Query Language

xii

1. Introduction

This chapter begins with a brief explanation of the problem statement of the thesis topic. To
address the identified problems, a main research question is formulated, followed by a set of
sub-questions. The scope of the research is defined to clarify the boundaries and limitations
of the study, indicating what is covered and what is not. Finally, an overview of the thesis
report is provided, outlining the structure and content of the subsequent chapters.

1.1. Introduction

Rapid growth in urban areas has led to an increasing number of apartment buildings. This
growth requires a Land Administration System (LAS) capable of optimally storing and vi-
sualizing the legal status of these structures, ideally with 3D representation. LAS is a system
formed by land administration and land registration, which maps the land parcels and regis-
ters their Right, Restrictions, and/or Responsibilities (RRR). Building Information Modeling
(BIM) has been widely used in various studies as 3D representation in digital twin [Nguyen
and Adhikari, 2023; Alonso et al., 2019], demonstrating great potential to represent LAS
[Mao et al., 2024; Meulmeester, 2019]. However, since not all buildings have BIM data avail-
able, it raises the question of how to address this limitation.

Recent studies have used point clouds as the basis for creating digital twins. Baauw
[2021] studies that the Actueel Hoogtebestand Nederland (AHN) point cloud is capable of
fulfilling the basic requirements of a digital twin as it provides a realistic 3D visual rep-
resentation and, through segmentation and classification, the semantic information can be
derived, allowing direct interaction. Using point cloud, historical or previous epoch data can
be easily compared for change detection and integrated with temporal attributes. However,
as the point cloud from ALS can only capture the exterior building envelope, an additional
method to model the walls and slabs for property boundaries needs to be explored. In the
Netherlands, providing notarial deeds to the Cadastre government is obligatory, including
floor plans to register the apartment rights. As the land administration system required a
real-world presentation, this study attempted to visualize the 3D LAS by directly using the
point cloud, enriching its semantics, and representing the 3D spatial unit derived from the
floor plan.

1.2. Research Objectives

The main research question of this thesis is:

To what extent can point clouds represent and visualize 3D spatial units?

To address this question, the following sub-questions are posed:

1. What is the suitable method to parse the floor plan?

2. How can apartment spatial units be represented when exterior wall points are unavail-
able due to occlusion?

1

1. Introduction

3. What approach can be used to represent wall and slab points for apartment spatial
units inside the apartment building?

4. What approach can be used to accurately represent apartment spatial units and their
boundaries using point cloud?

5. How can point clouds be stored in the Land Administration Domain Model (LADM)
database for multi-spatial-unit apartments, including living units, storage areas, and
parking spaces, as a single basic administrative unit?

6. Which web architecture is suitable for representing and visualizing the resulting 3D
LAS?

1.3. Scope

This research aims to enrich the point cloud with spatial units derived from the floor plan,
mapping it into the LADM database to develop 3DLAS and visualize it on the web. It
focuses on an apartment building as the case study. The study provides a semi-automated
pipeline to parse the floor plan and enrich the point cloud. The scope of this study does
not involve any indoor laser scanning observation by Terrestrial Laser Scanning (TLS) and
Mobile Laser Scanning (MLS), as the input data for the point cloud is only acquired from
the AHN dataset.

1.4. Thesis Outline

This thesis is organized into six chapters. The first chapter is the introduction to the re-
search and the objectives of the research, which includes the question and the scope. Chap-
ter 2 describes the relevant theoretical background and other related research about point
cloud, floor plan, LADM, and visualization of the 3D land administration system. Chapter
3 explains the methodology of the research, which is divided into 4 (four) main segments:
parsing the floor plan, processing point cloud, generating a synthetic point cloud, storing
the point cloud in LADM, and visualizing 3D LAS. The entire process of the pipeline is de-
scribed in detail, step by step. Chapter 4 specifies the required tools to conduct the research,
including the software and library. The dataset used as a sample for the study is also ex-
plained. Chapter 5 discusses the results of the experiments from the proposed pipeline. The
evaluation and used parameters are also elaborated in this chapter. Chapter 6 concludes the
study by answering the research question and identifying what improvements can be made
for future studies.

2

2. Related Work

This chapter provides a comprehensive review of the literature relevant to this thesis. It be-
gins by introducing the main topics, including Point Cloud, Floor Plan, Land Administration
Domain Model (LADM) and Industry Foundation Classes (IFC), and 3D Land Administra-
tion System (LAS) Visualization. Subsequently, it examines previous research on each topic,
focusing on the methodologies that are applicable to this study. The chapter also explores
the interconnections between these topics, supported by relevant references.

2.1. Point Cloud

Point cloud is a set of 3D data points that can be organized to capture geometric informa-
tion of the entire 3D object, and also can contain attributes like semantic information (e.g.
classification) and RGB color. The two methods to acquire 3D points are the ranging-based
principle, using laser scanning, and the image-based principle, using multiview stereo vi-
sion from cameras. Light Detection and Ranging) (LiDAR) is a surveying technology used
in range-based methods. It employs laser pulses to measure distances to the surrounding
objects from a LiDAR scanner by calculating the travel time of the laser signal. The intensity
of laser light reflected by an object is influenced by object characteristics, including the mate-
rial and color of its surface [Tiberius et al., 2022]. Laser scanners have three types: Airborne
Laser Scanning (ALS), Terrestrial Laser Scanning (TLS), and Mobile Laser Scanning (MLS).

Figure 2.1.: ALS [Vosselman, 2011]

ALS is carried out using a fixed-wing aircraft, a helicopter, a drone or even a satellite
with two main components: a laser scanner system that employs LiDAR technology and a
GPS/IMU combination to determine its position and orientation, as shown in Figure 2.1. As
TLS and MLS are able to acquire more accurate precision, ALS can measure point clouds for
larger areas and has been used for efficiently capturing precise and highly detailed spatial

3

2. Related Work

data of urban environments, including terrain elevation, vegetation, etc. Although ALS
enhances the automation of accurate and efficient 3D urban model reconstruction, it also
suffers from occlusion. Occlusion is a phenomenon where data is quite sparse or missing in
certain point cloud regions because those areas were hidden from the sensor’s view during
data acquisition [Manders, 2023], as illustrated in Figure 2.2. Incomplete data remains a
challenge, as key structures like vertical walls of buildings are often missing in airborne
LiDAR point clouds due to the limited positioning and movement trajectories of airborne
scanners [Huang et al., 2022].

Figure 2.2.: Occlusion [Hinks et al., 2015]

a. Actueel Hoogtebestand Nederland (AHN)

AHN is a Dutch national dataset acquired using ALS technology containing a point cloud,
digital terrain model, and digital elevation model. Since its first measurement in 1996, AHN
has been updated for a period of time and produced 5 (five) data series. AHN has a height
accuracy of no more than 5 (five) cm with a point density between 6 and 10 points per
square meter for AHN2 and AHN3 and between 10 and 14 points per square meter for
AHN4. The planimetric accuracy of AHN versions 2 to 4 is roughly 5 cm random error and
8 cm systematic error [AHN, 2020]. Since AHN3, the classification has been provided, such
as ground, vegetation, building, and water [AHN, 2020]; however, the current AHN5 still
does not have a sufficient classification for building class as it only classifies the roof, not the
entire building as done in AHN3 and AHN4.

b. Point Cloud Segmentation

Segmentation is grouping several homogeneous points based on their common features.
There are three most popular methods for segmentation.

1. Model fitting, which uses a mathematical representation.

• Hough Transform (HT) uses a voting mechanism to identify shapes by transform-
ing the data to parameter space and forming clusters according to their geometric
features in the point cloud with the highest number of votes

• RANdom SAmple Consensus (RANSAC) defines a model parameter from a min-
imum sample of random points. Iteratively checking their neighboring points,
and a consensus set is formed if they are a match

2. The Region Growing method is performed by growing the segments from seed points
and then expanding the segments iteratively by checking their neighbors that satisfy

4

2.1. Point Cloud

similarity criteria (normal or distance).

3. Unsupervised Clustering-based methods

• K-means starts by random points as centroids with a given number of clusters (k)
and assigns the closest points to the corresponding centroid to form a cluster.

• Density-Based Spatial Clustering of Applications with Noise (DBSCAN) is a density-
based algorithm that identifies core points with a sufficient number of neighbors
and expands their clusters.

c. Occlusion Correction

To densify the sparse point cloud and missing data in some regions due to occlusion, an
occlusion correction technique can be employed. Balado et al. [2019] proposed the technique
to generate points in highly colluded sidewalk areas of the point cloud dataset acquired by
MLS. The point cloud is rasterized with a grid size of twice the distance between points,
allowing all pixels to be filled with points and avoiding empty pixels. Three binary images
are created: the sidewalks, the rest of the elements, and the global. The global binary image
and the other elements’ image are integrated to produce a mask image. The sidewalk image
is expanded iteratively using morphological dilation, and then the pixels that overlap with
the mask image are removed, ensuring the growth of the sidewalk image does not go beyond
the external limit of the point cloud. The resulting sidewalk image is then subtracted from
the initial sidewalk image to generate the occlusion image, where the only large occlusions
are kept. To individualize occlusions, connected missing points are identified and grouped
together, then are slightly expanded to clearly define their boundaries. All points along the
edges of each occlusion are identified as boundary points to create a polygon outlining the
occluded area. New random points are generated inside the polygon with the same density
as the original point cloud to fill the empty space, where their Z coordinates are calculated
through a multiple linear regression model and the existing boundary points as the sample.
The new points with complete XYZ coordinates are put back into the point cloud, filling the
missing areas. The algorithm for this entire process is depicted in Figure 2.3 while the result
is in Figure 2.4.

d. Point cloud for 3D Land Administration

Various studies have explored the use of point clouds for 3D Land Administration. Koeva
et al. [2019] demonstrated the ability to automatically detect changes in building geometry
over time by utilizing point clouds linked to the LADM. The study showed promising
results, as relevant changes for 3D Land Administration (e.g., walls and rooms) could be
differentiated from temporary changes (e.g., people and furniture) and were connected to
spatial subdivisions. This approach enables the Land Administration database to be updated
based on the detected changes. However, the study was conducted in a university building,
which does not fully represent the full range of real-world scenarios involving private units.

Another study by Bydłosz et al. [2021], in Cracow Country, Poland, proposed a 3D LAS
using 3D Building Information Modelling (BIM) reconstructed from TLS point clouds. While
point clouds offer a more realistic representation and can accommodate differences from the
original architectural design, preparing a 3D model using TLS involves significant costs in
terms of both time and money, which is not always possible, especially for large-scale.

5

2. Related Work

Figure 2.3.: Occlusion Correction Algorithm [Balado et al., 2019]

Figure 2.4.: Before and After Occlusion Correction Application [Balado et al., 2019]

6

2.2. Floor Plan

Figure 2.5.: 2D Floor plan example in notarial deed [Meulmeester, 2019]

2.2. Floor Plan

When registering land, the boundaries of a parcel must be clearly drawn to represent the
exact division between it and neighboring properties. In the case of apartment buildings,
the boundaries become more complex, as they must be represented not only on horizontal
planes but also on vertical planes. Additionally, apartment rights include not only private
units but also common areas, which are shared spaces that all owners in the apartment
building are entitled to use based on their respective Right, Restrictions, and/or Responsi-
bilities (RRRs). Therefore, as stated in Articles 5 and 6 of the Implementation Regulation
of the Land Registry Act 1994, a detailed drawing must be included when registering an
apartment unit in a notarial deed. This drawing should depict the boundaries of the land, as
well as a floor plan that clearly illustrates the division of private and common areas on both
the ground floor and upper floors of the building [Koninkrijksrelaties]. Figure 2.5 illustrates
that property boundaries are outlined with thick black lines [Meulmeester, 2019], which are
more prominent compared to normal walls. Since floor plans are a requirement for obtain-
ing a building permit, municipalities also maintain floor plan datasets for buildings within
their respective cities, but without the thick black lines.

Various studies incorporate floor plans as input to append indoor structures to 3D build-
ing models. By integrating 2D floor plans with 3D BAG data, Kippers et al. [2021] auto-
matically reconstructed 3D building models, including their interiors, through two main
processes. First, the floor plan was transformed into vectors with semantic attributes, where
walls, openings, and room labels were classified separately using deep learning methods:
U-Net, SSD with MobileNet v1 FPN, and RetinaNet50. The training dataset, sourced from
CubiCasa, consisted of 5,000 floor plan images and annotated vector files. Since the floor
plans lacked orientation, to merge the 3D BAG and floor plan, the 3D BAG was rotated
based on the nearest road to align with the floor plan. For each facade adjacent to a road,
alignment was optimized by maximizing polygon overlap using trust region methods. The

7

2. Related Work

study achieved satisfactory results, with an accuracy of 0.7673, but due to the homogeneous
training data, it may face challenges with more complex floor plans.

a. Parsing Floor Plan

Yin et al. [2009] describes that to decipher layout information, parsing the floor plan is re-
quired, which involves four steps: (1) Noise removal: A scanned image often contains noise
and irrelevant details that need to be removed through image cleaning in order to enhance
the quality of graphics recognition; (2) Text extraction: The system identifies and separates
text from other graphical elements to facilitate further analysis; (3) Vectorization: To trans-
form image pixels to the geometric primitive traditionally includes two steps. First, the
raster bitmap is converted to a set of pixel chains with algorithms like parametric model
fitting (HT), contouring, and skeletonization. After that, by implementing polygonal ap-
proximation or estimating curvature to determine key point segments, point chains can be
segmented into sets of lines, polylines, and circular arcs; (4) Symbol recognition: After vec-
torization, it identifies and organizes architectural symbols or elements by using predefined
constraints, thereby creating a structured representation of the building layout.

Thus, the floor plan would be preprocessed first, including cleaning the scanned image
file, increasing the quality, and adjusting its scale and orientation for easier further process-
ing. After georeferencing the raster file using QGIS, the information must be extracted for
vectorization. Nottrot et al. [2023] utilized OpenCV to generate building outlines for each
floor by identifying shape contours and drawing a convex hull from floor plans that contain
multiple floors on a single page. The corresponding floor can be identified from the text
using ACV. The resulting outline is then compared to the BAG polygons to match their scale
and orientation, ensuring consistency with real-world representations. Another method can
also be applied:

• FloorplantoBlender by Grebstew [2021] employed ORB (Oriented FAST and Rotated
BRIEF) and image processing techniques to analyze and extract features from ras-
terized floor plans, see Figure 2.6. First, it prepares the input image by denoising,
grayscaling, and rescaling it. It applied a threshold from the OpenCV library to the
grayscale image to detect the wall, converting it into a binary format where the wall
can be distinguished from the rest based on pixel intensity. The binary image is re-
fined with morphological operations like dilation and erosion to remove small noise
and close gaps in the walls. The walls are then extracted using a contour approach
to retain only the most significant structures. By integrating contour closing and con-
nected component labeling, rooms are identified as connected components enclosed by
the previously detected walls, which are then refined by removing small gaps or noise.
ORB is implemented to determine doors and windows by detecting key points and
matching features between a template image and the floor plan. The detected features
are transformed into a 3D representation that can be viewed in Blender.

• Liu et al. [2017] propose an algorithm using machine learning to convert a rasterized
floor plan image into a vector-graphic representation, achieving around 90% preci-
sion. The method consists of three main steps as depicted in Figure 2.7. First, the
CNN transforms the input floor plan image into a first set of junction maps and per-
pixel semantic classification scores. Then, integer programming filters the candidates
from junctions according to geometric and semantic constraints, producing a primitive
layer. For example, it ensures that a bedroom is fully enclosed by walls that form a
complete loop, with each wall correctly marked as belonging to the bedroom. Finally,
the primitive layer is processed into the final vector format.

8

2.2. Floor Plan

Figure 2.6.: FloorplantoBlender [Grebstew, 2021]

Figure 2.7.: Raster to Vector [Liu et al., 2017]

9

2. Related Work

Figure 2.8.: LADM Basic Class [Lemmen et al., 2015]

2.3. LADM and IFC

LADM is a conceptual information model to support a land administration system initiated
by the International Federation of Surveyors (FIG), documenting the relationship between
people and land that concerns land tenure, land value, and land use plans as an Interna-
tional Standard (ISO 19152:2012). LADM Edition II integrates land value, land use, and land
development into the first edition of LADM, which only contains a land tenure component
for Land Administration. There are 6 parts in the second edition: Part 1 - Generic conceptual
model, Part 2 - Land registration, Part 3 - Marine georegulation, Part 4 - Valuation informa-
tion, Part 5 - Spatial plan information, Part 6 - Implementation aspects. Development of
Part 6 is planned by the Open Geospatial Consortium (OGC). It accommodates the 3D Land
Administration by referring to the boundary of the BIM/IFC model to ExtPhysicalBuildin-
gUnit in the General Boundary Spatial Unit profile, preventing a mismatch between spatial
unit representation in 2D and 3D. It efficiently supports the title and deed registration sys-
tem, presenting the restrictions and responsibilities as rights, relationship ownership, and
beneficiary entities. With the Valuation Information package, the correlation between land
value and 3D aspects, such as a high floor with a better view and other factors like noise
and routing influence, can be effectively modeled. Furthermore, the Spatial plan informa-
tion packages represent RRRs derived from spatial planning or zoning plan, enabling the
Spatial Development lifeCycle (SDC) that can maintain and store historical processes and
information of an object, including financial, building/construction permits and occupancy
from various databases [Kara et al., 2024]. As can be seen in Figure 2.8, basic classes of
LADM are LA Party, which specifies the property owner; LA RRR, which outlines the own-
ership rights, restrictions and responsibilities; LA BAU (Basic Administrative Unit), which
represents the group of parcels with the same owner or party; and LA SpatialUnit, which
defines the spatial unit with its geometric boundary of the parcel.

To design 3D Land Administration system in the Netherlands, Meulmeester [2019] en-
riches IFC BIM model with legal space for apartment rights based on 2D floorplans. The
study began by identifying a list of requirements for the 3D geometry representation of
apartment rights derived from the Dutch Civil Code. It enriches the IFC BIM with legal
information according to that requirement list. Ifcspace is a part of the spatial structure
of IFC that represents a space or area within a building and can carry several attributes to

10

2.4. 3D LAS Visualization

enhance the space with semantic information. The new user defines a property set named
IfcPropertySet. After that, the information from the enriched IFC BIM with legal space
is conceptually mapped to the LADM and then stored in an LADM-compliant database.
The attributes from IfcPropertySet (apartment number and space type) are mapped to the
LA Right subclass that contains the type of (apartment) rights and LA Basic Administrative
Unit (BAUnit) class, which assigns the spaces associated with each apartment right number.
The geometry and the id of ifcspace are mapped to the LA LegalSpaceBuildingUnit class
and also LA BAUnit. During the storage process, the geometry of ifscpace is converted to
polyhedral surfaces where the faces can be mapped to the LA BoundaryFace class and be-
come the 3D geometry representation for LA LegalSpaceBuildingUnit. The ifcspace and its
user-defined property set are extracted and merged as one entity to fill the LADM-compliant
database’s LA Right, LA BAUnit table, and LA LegalSpaceBuildingUnit. It is crucial to check
if the stored data is valid semantically and geometrically. Finally, the 3D Land Administra-
tion system is visualized on the Cesium JS platform and QGIS. In QGIS, the system allows
for splitting the apartment right by changing the apartment index number.

To associate point clouds and LADM, Koeva et al. [2019] stores 3D spatial units in GM -
MultiSurface using Class LA BoundaryFace. As GM MultiSurface is not adequate for 3D
spatial analysis and representation, enriched point clouds were employed as an external
database for storing and representing 3D objects, enabling spatial attributes calculation for
3D Land Administration.

2.4. 3D LAS Visualization

Several essential components are identified by Kalogianni et al. [2020] to develop system
architecture of a 3D Web-based LAS that integrates both spatial and non-spatial data: (1)
datasets and datatypes availability; (2) data processing and validation; (3) data storage and
management; (4) data visualization and manipulation. Van Oosterom [2013] specifies four
challenge points to visualize 3D Land Administration as follows: (1) visualize dense 3D
volumetric divisions where 3D spatial units often obscure each other which can be solved
by using selections and wireframes or semi-transparent objects, displaying cross-sectional
views or slices, or employing slide-out layers; (2) displaying open or unbounded parcels;
(3) integrating the Earth’s surface and reference objects like in CityGML for 3D Land Ad-
ministration parcels; (4) presenting realistic depth perception for subsurface legal spaces
associated with utilities by applying techniques such as stereoscopic imaging, perspective
shifts, rotational views, or vertical markers connecting subsurface elements to the surface.

To ensure the 3D Land Administration visualization is able to address user preference
when they are accessing the land administration information using a web client, Table 2.1
lists the requirements for 3D Land Administration and 3D web viewer identified by Cemellini
et al. [2020], along with the other requirements from Mao et al. [2024] and new requirements
proposed by the author. As both previous studies utilized IFC as their 3D model represen-
tation, a new requirement to facilitate the point cloud that will be used in this research, such
as a Point cloud-based approach, needs to be considered as well.

11

2. Related Work

Wish List

For 3D Visualization of Land Administra-
tion Data

For 3D Web Viewer

Navigation tools and view controls
Integrating topography and reference ob-
jects
Transparency
Object selection
Object search
Wireframe display
Explode view
Sliding
Cross-section view
Visualization cues
3D measurement tools
3D buffer
Display partly unbounded objects and ’com-
plex’ geometries
Party /RRRs visualization and selection
Point cloud-based

Platform and browser independence
Handling massive data and caching/tiling
between server and client
Layers control
Database support
Support different models (vector/polyhe-
dral, raster/voxel, point clouds)
Support of basic 3D topographic visualiza-
tion
Support for georeferencing
Ensure spatial validity (3D vector topology)
Underground view
Open source platform
Possibility for the platform to be extended
2D overview map (orientation)

Table 2.1.: Wish List for 3D Visualization and Web Viewer

Various studies visualize 3D LAS from vector BIM using Cesium.JS. However, point cloud
can also be transformed to Cesium 3D tile [Beil et al., 2021] to visualize 3D LAS from point
cloud, enabling direct information of LADM with corresponding point cloud data. The
overall method is illustrated in Figure 2.9.

Figure 2.9.: Point Cloud and Semantic Models Integration [Beil et al., 2021]

Mao et al. [2024] utilized Cesium JS to create a novel 3D Land Administration website
by linking LADM information to the BIM/IFC model represented as 3D spatial units of
apartments through UML instance-level LADM diagrams to visualize the RRRs and parties,
as can be seen in Figure 2.10. Any changes in information regarding parties and rights in
the land administration database are also updated on the website, proposing a real-time

12

2.4. 3D LAS Visualization

update capability. Some practical features are implemented as follows: (0) Switching on/off
physical object and legal space; (1) By adopting 3DBAG, it displayed its surroundings with
a determined Level of Detail (LoD) from the user; (2) floor visibility, allowing the user to
examine each floor in more detail; (3) dynamic slicing view to help user inspect the internal
structure and layout of building detail; (4) underground space view that can visualize the
basements, garage or utilities as well; (5) sunlight simulations that are essential for real-estate
marketing; (6) providing LADM information based on user interaction through owner and
property inquiry.

Figure 2.10.: A digital twin based on Land Administration [Mao et al., 2024]

13

3. Methodology

This chapter outlines the methodology employed in this study, providing a step-by-step ex-
planation of the entire process. The methodology consists of five main steps, each elaborated
in detail within the respective sections: (1) Parsing the floor plan, (2) Segmenting AHN Point
Cloud, (3) Generating Synthetic Point Cloud, (4) Storing Point Cloud to LADM, and (5) Vi-
sualizing 3D LAS. The technical implementation, including the algorithms, parameters, and
code, is thoroughly described in the subsections. The complete pipeline of this research is
illustrated in Figure 3.1.

15

3.
M

ethodology

Figure 3.1.: The Overview of Methodology

16

3.1. Parsing the floor plan

Figure 3.2.: Parsing the Floor plan procedure

3.1. Parsing the floor plan

Parsing the floor plan involves multiple steps with the floor plan and parcel polygon as the
input, as illustrated in Figure 3.2. It starts with Preprocessing Cadastral Drawing PDF file,
Vectorization, then Georeference to position the floor plan into the real world coordinates,
same with the parcel polygon. The output of this process is the georeferenced floor plan
polygon.

a. Preprocessing Cadastral Drawing PDF file

Parsing the floor plan starts by preprocessing a single PDF of the cadastral apartment that
contains multiple floor plans into multiple PNGs for each floor using pdf2image with 300DPI
and transforming to grayscale using an image processing python library, OpenCV. A reso-
lution of 300 DPI is preferred as it offers an optimal balance between text readability and
file size: higher resolutions, such as 600 DPI, do not improve text recognition, while 1200
DPI introduces unnecessary detail that reduces text clarity and hinders recognition. On the
contrary, a lower resolution, such as 150 DPI, results in insufficient image quality, making
it difficult to extract text information effectively. To locate the floor plan, Optical Charac-
ter Recognition (OCR) is implemented to read keywords that are associated with ground or
floor in Dutch, such as ”begane” and ”verdieping”. It isolates the individual floor plan block
with GaussianBlur and Canny Edge detection to outline the floor plan frames or edges, and
findContours to extract all the contours from the outlined edges. For each detected OCR text
from before, it searched for all the closest identified contours. If a matching contour was
found above the label, it crops the image using the bounding box of the contour and exports
it into a PNG image. The entire procedure of preprocessing the floor plan is explained in
Algorithm 3.1.

17

3. Methodology

Algorithm 3.1: Preprocessing Floor plan

Input: pdf path (architectural drawing), output dir (where cropped images are
saved)

Output: Labeled cropped floor plan PNGs saved per detected section
// Step 1: Convert PDF to high-resolution image

1 image← convert first page of pdf path to image at 300 DPI;
2 gray← convert image to grayscale;
3 horizontal threshold← 30% of image width;
// Step 2: Run OCR to detect all text blocks

4 ocr data← pytesseract OCR output with bounding boxes;
// Step 3: Detect contours from drawing

5 blurred← GaussianBlur(gray);
6 edges← Canny(blurred);
7 contours← findContours(edges);
// Step 4: Loop over OCR texts and find labels

8 processed labels← empty set;
9 for i← 0 to length of ocr data do

10 full text← concatenate ocr data[i:i+3] as lowercase;
11 if full text contains any of [”begane”, ”verdieping”, ”grond”, ”kelder”, ”verd”] then

// Step 4a: Extract bounding box

12 (x, y, w, h)← bounding box of OCR label;
13 label text← clean and format full text (e.g., begane grond);
14 if label text in processed labels then
15 continue;

// Step 4b: Find closest contour above the label

16 closest contour← None;
17 min distance← ∞;
18 foreach contour in contours do
19 (xcnt, ycnt, wcnt, hcnt)← boundingRect(contour);
20 if contour lies directly above label then
21 distance← vertical gap between contour and label;
22 if distance < min distance then
23 closest contour← bounding box;
24 min distance← distance;

// Step 4c: Crop and save based on closest contour

25 if closest contour exists then
26 (x1, y1, x2, y2)← bounding box ± margin, clipped to image bounds;
27 cropped← crop image within (x1, y1, x2, y2);
28 add label text to processed labels;

29 else
30 fallback crop← large rectangle above label;

b. Vectorization

Algorithm 3.2 depicts the vectorization process. Initially, each PNG image must first be con-
verted into grayscale. Using OpenCV, it applies thresholding to create an inverted binary

18

3.1. Parsing the floor plan

image with cv2.-THRESH BINARY INV, where pixel values greater than the threshold be-
come 0 (black), while pixels with lower values (darker) become 255 (white). The threshold
is determined automatically from the image histogram with cv.THRESH OTSU. Followed
by morphological operations with their corresponding kernels; morphological opening, re-
move white pixels near edges first (erosion) then add white pixels around edges (dilation)
to remove noise, and morphological closing, add white pixels near edges first (dilation) then
remove pixels around edges (erosion) to fill small gaps to ensure full contours of walls are
formed. The kernel size affects the result, where a higher kernel size in the open kernel re-
moves more and larger noise. In contrast, in the close kernel, it connects larger gaps, which
also influences thicker lines to be generated instead of thinner ones. Thus, images with
different resolutions may require different kernel sizes. Afterwards, it retrieves all contours
with cv2.findContours, where it applies RETR TREE to retrieve all the contours along their
full hierarchy list and also cv2.CHAIN APPROX SIMPLE to ensure contour shape without
redundant vertices. The tiny areas, less than 500 pixels, are removed. This minimum area,
however, also relied on the resolution of input image. Before the remaining contours are
converted into a polygon using Shapely, their Y coordinates are flipped to conform to the
standard Cartesian coordinate system used in Geographical Information System (GIS) plat-
forms and in mathematics, and any wiggles in the remaining contours are cleared through
cv2.approxPolyDP with a certain epsilon. A higher epsilon results in simpler contours with
fewer vertices, while a lower epsilon retains more detail but may introduce jagged or overly
complex geometries. The polygons are simplified again with the simplify and buffer method
from Shapely and rectangularized, ensuring the symmetric shape of the polygons and re-
moving redundant vertices. The parameters used in these Shapely functions have a similar
effect to the epsilon parameter in cv2.approxPolyDP, controlling the balance between sim-
plification and shape fidelity. OCR reads the room numbers in the image and assigns the
room number if it is inside the room polygon. All room polygons in the same image or floor
are extracted into each layer of a geopackage file per building.

19

3. Methodology

Algorithm 3.2: Floor plan Vectorization

Input: input dir (folder with floor plan PNGs), output gpkg (path to output
GeoPackage)

1 foreach file in input dir do
2 gray← convert image to grayscale;
3 height← image height;

// Step 1: OCR Digit Detection using EasyOCR

4 ocr results← detect digits in gray using EasyOCR;
5 ocr points← [], ocr texts← [], ocr masks← [];
6 foreach (bbox, text, confidence) in ocr results do
7 if text is a single digit then
8 add center point of bbox to ocr points;
9 add text to ocr texts;

10 add bbox to ocr masks;

// Step 2: Mask OCR-labeled regions

11 foreach bbox in ocr masks do
12 fill bbox region in gray with white (255);

// Step 3: Preprocess for Room Detection

13 thresh← threshold(gray, 0, 255, inverse binary, cv2.THRESHOTSU)
14 opened← morphological open(thresh, kernel=2×2);
15 closed← morphological close(opened, kernel=5×5);

// Step 4: Contour Detection

16 contours← find external + internal contours from closed;
17 room polygons← [], room ids← [];
18 foreach contour in contours do
19 if area of contour < 500 then
20 continue;

21 simplified← approximate polygon from contour;
22 flipped← flip Y-axis of simplified;
23 poly← Polygon(flipped);
24 if poly is invalid then
25 continue;

26 simplified poly← simplify polygon with tolerance;
27 cleaned poly← simplify using buffer(5).buffer(-5);
28 rectified poly← apply rectangularization to cleaned poly;
29 if rectified poly is invalid or empty then
30 continue;

// Step 5: Assign Room ID from OCR

31 assigned id← None;
32 foreach (pt, txt) in (ocr points, ocr texts) do
33 flipped pt← flip Y-axis of pt;
34 if flipped pt inside rectified poly then
35 assigned id← txt;
36 break;

37 add rectified poly to room polygons;
38 add assigned id to room ids;

// Step 6: Save to GPKG

39 gdf← GeoDataFrame(room polygons, attributes = room ids);
40 save gdf to output gpkg with layer name = image filename;

20

3.1. Parsing the floor plan

c. Georeference

The vectorized polygons are georeferenced based on the parcel polygon downloaded from
PDOK.nl. Coordinate transformation typically involves three fundamental steps: scaling,
rotation, and translation [Wolf et al., 2014]. As outlined in Algorithm 3.3, it is initialized
by matching the Coordinate Reference System (CRS), then computing the orientation of the
floor plan and parcel polygon using their respective Minimum Bounding Rectangle (MBR).
The computation involves creating a convex hull to simplify geometry, where each pair of
consecutive vertices is extracted from its exterior coordinates to form an edge. For each
edge, its x and y differences (dx,dy) between the pair of vertices and their arc-tangent are
calculated to determine its angle or direction towards the horizontal line (x-axis). The orig-
inal polygon is virtually rotated by the negative of that angle to align that particular edge
horizontally. After each rotation, the area of the bounding box is calculated, which varies
depending on the angle of rotation. The angle with the smallest bounding box area is cho-
sen, representing the most compact and efficient rectangular representation of the shape.
The difference between the MBR angle of the cadastral and the floor plan reveals how much
the floor plan must be rotated to align with the cadastral. After the floor plan is rotated
at this angle, the bounding box of the rotated floor plan and the parcel polygon are recal-
culated to measure the x and y scale factor by comparing their width and height extent.
Following this, translation offsets are computed by aligning the lower-left corners of the
latest bounding boxes to shift the floor plan exactly at the cadastral footprint.

21

3. Methodology

Algorithm 3.3: Georeferencing Floor plan Layers Using MBR Alignment

Input: Input GeoPackage input gpkg, Output GeoPackage output gpkg, Cadastral
Geometry cadastral gdf

Output: All layers are transformed to align with the cadastral reference
1 layers← list of layers in input gpkg;
2 f loorplan gd f ← load first layer from input gpkg;
3 f loorplan merged← unary union of f loorplan gd f ;
4 cadastral polygon← first geometry in cadastral gd f ;
5 Function GetMBRAngle(polygon):
6 hull ← convex hull of polygon;
7 coords← boundary coordinates of hull;
8 min area← ∞, best angle← 0;
9 for i← 1 to |coords| − 1 do

10 Compute edge angle θ from coords[i] and coords[i + 1];
11 Rotate polygon by −θ;
12 Compute bounding box area;
13 if area < min area then
14 min area← area;
15 best angle← θ;

16 return best angle;

// Step 1: Compute MBR for Floorplan and parcel polygon

17 f loorplan angle← GetMBRAngle(f loorplan merged);
18 cadastral angle← GetMBRAngle(cadastral polygon);

// Step 2: Rotation angle

19 rotation angle← cadastral angle− f loorplan angle;
// Step 3: Compute Scale factor

20 scalex ← width of cadastral bounds÷ width of f loorplan bounds;
21 scaley ← height of cadastral bounds÷ height of f loorplan bounds;

// Step 4: Compute Translation factor

22 translationx ← cadastral bounds.minx− f loorplan bounds.minx× scalex;
23 translationy ← cadastral bounds.miny− f loorplan bounds.miny× scaley;

24 f lip center ← center of bounding box of f loorplan gd f ;
25 centroid← centroid of f loorplan merged;
26 Function TransformGeometry(geom, apply f lip):
27 Rotate geom by rotation angle around centroid;
28 if apply f lip then
29 Flip geom around f lip center;

30 Scale geom using scalex, scaley;

31 Translate geom using translationx, translationy;

32 return transformed geometry;

// Step 5: Apply Transformation parameters

33 foreach layer name in layers do
34 gd f ← load layer from input gpkg;
35 Transform gd f to match cadastral gdf.crs;
36 foreach geometry in gd f do
37 geometry← TransformGeometry(geometry, True);

38 Save gd f to output gpkg under layer name;

22

3.2. Segmenting AHN Point Cloud

Figure 3.3.: Segmenting AHN Point Cloud

3.2. Segmenting AHN Point Cloud

To segment the AHN point cloud, multiple version of AHN dataset along the parcel polygon
is required. Figure 3.3 illustrates that AHN Multi-version Combination is performed first,
followed by Ground Classification to differentiate ground and non-ground points, then Point
Cloud Segmentation to categorize wall and roof points.

a. AHN Multi-version Combination

(a) AHN5 (b) AHN 1–5

Figure 3.4.: Comparison of AHN datasets: (a) AHN5 and (b) AHN 1–5

Combining multiple versions of AHN can overcome the occlusion of the latest version of
AHN data as demonstrated in Figure 3.4. In this example, missing sections of a building in
one version are completed by corresponding parts from another version. This improvement
is due to the variations in the flight path during AHN laser scanning, resulting in different
parts of the building being scanned. Therefore, the AHN from multiple versions, from
AHN 1 to AHN 5, would be combined together and cropped with 1-meter buffer towards
the building footprint obtained from pdok.nl to retrieve the building points. A segmentation
process should be implemented to distinguish outside walls and roofs of building points.

23

3. Methodology

Figure 3.5.: CSF Illustration to classify ground points [Zhang et al., 2016]

b. Ground Classification using Cloth Simulation Filter (CSF)

Ground points are filtered using the CSF through filters.csf feature in Point Data Abstrac-
tion Library (PDAL). CSF is based on simulating a simple physical process to extract ground
points from LiDAR points. It inverted the original point cloud, and then a rigid grid called
cloth was dropped onto the inverted surface from above, as illustrated in Figure 3.5. The
interactions between the nodes of the cloth and the corresponding point clouds can deter-
mine the final shape of the cloth to distinguish point clouds into ground and non-ground
points. There are user-defined parameters: resolution, which represents grid resolution or
cell size; step or time step, which adjusts the translation of points due to gravity during each
iteration; and rigidness, which determines the stiffness of the cloth, where a higher value
is preferred for flat terrain while a lower value is suggested for steep slopes [Zhang et al.,
2016].

c. Point Cloud Segmentation

Segmentation is grouping several homogeneous points based on their common features.
RANdom SAmple Consensus (RANSAC) is a model-fitting method that uses a mathematical
representation. It defines a model parameter from a minimum sample of random points.
Iteratively checking their neighboring points, then a consensus set is formed if they are a
match. The overall algorithm can be seen in Figure 3.6. The non-ground points identified
by the CSF filter are iteratively segmented into individual planar patches using RANSAC,
implemented via the segment plane function from Open3D, with a distance threshold of 0.3
meters and a minimum of 3 points. Normal for each point in the plane is estimated through
Open3D’s estimate normal function and converted as a numpy array with Numpy’s asarray
to compute the angle between the normal vector and the vertical Z-axis using the inverse
cosine (arccos). By calculating the angle of arccos degree, the points can be classified into
Flat Roof if the angle of normal is below 25°, Sloped Roof if the angle is between 25 and 60°,
and Wall if the normal is more than 60 °.

24

3.3. Generating Synthetic Point Cloud

Figure 3.6.: RANSAC Algorithm [Ledoux et al., 2023]

3.3. Generating Synthetic Point Cloud

Figure 3.7 shows that to generate a synthetic point cloud, the outputs from the previous
steps are required, the georeferenced floorplan and segmented AHN. The synthetic point
cloud is then aligned with Iterative Closest Point (ICP) before it is combined with the AHN.
This produces an aligned building point cloud in two different formats, LAZ and CSV.

a. Generate Synthetic Point Cloud

To construct a synthetic building point cloud, it initially load a floor plan layer from a
Geopackage input file and iterates through each room polygon, searching the boundary
using polygon.exterior and calculate its boundary to estimate how many points are needed
to be created based on the user-defined point density, where 20 points per square meter
as point density means 0.05 m spacing between points. Following that, it iterates over the
number of points and, by using linestring.interpolate on the boundary line, it returns a point
with 0.05 spacing, generating points with even spacing on the boundary line of every room
polygon. Each point is then iterated and numpy.arrange(start, stop, step) is implemented
to generate points along the z-axis from the floor to the ceiling with the height of the floor
as start, the height of the ceiling plus the spacing as stop, and the spacing as step. The
3D coordinates along their attributes are stored as well inside this loop, creating the wall
points that are generated vertically along the boundaries of the polygon from the floor to
the ceiling. The height for the ground floor is calculated based on the ground point from
AHN, while the height for the ceiling is computed based on the average height of the roof
point in AHN divided by the total number of floors above the ground.

The bounding box for every room polygon is computed to generate a grid of points within

25

3. Methodology

Figure 3.7.: Generating Synthetic Point Cloud

the interior of the polygons, creating a floor and a ceiling with different z coordinates. After
it iterates through all floor layers, all the points are combined into a new pandas.DataFrame
along their attributes, then exported into a CSV and LAZ 1.4 point cloud file with the same
CRS as the AHN file. Each point is assigned a unique ID and attributes, namely point -
id, room id, floor number, x, y, z, name, k id, and su id as summarized in Table 3.1. The
room id is generated by multiplying the floor number by 1000 and adding the polygon
index, while the su id is the concatenation of name, room id cadastral number, where name
means the building name. The value of floor number is start from 1 for groundfloor while
-1 for underground without 0 value to avoid leading zero that is not allowed in integers or
float. Since classification only has a range from 0-255, k id is used as classification for the
LAZ file. The entire process of this step is outlined in Algorithm 3.4.

26

3.3. Generating Synthetic Point Cloud

Attribute Description

point id unique id to identify point
room id unique id to identify room

floor number number of floor
k id id in cadastral drawing
su id unique id to identify spatial unit

x longitude
y latitude
z height

Table 3.1.: Attribute for point cloud semantic

27

3. Methodology

Algorithm 3.4: Synthesis Point Cloud from Floor plan Reconstruction

Input:
floor shapefiles list of (gpkg path, layer name, floor number)
ground points AHN classified ground points
planes info RANSAC-derived planes (roof, wall)

// Step 1: Estimate average ground height

1 ground points df← DataFrame of ground points [x, y, z];
2 global ground height← 5th percentile of ground points[:, 2];
// Step 2: Select valid roof height above walls

3 max wall top z← highest max z from wall planes;
4 highest valid roof min z← min z of highest roof plane above walls;
5 if none found then
6 fallback to mean height of all roof planes;

7 lowest roof height← selected min z of highest valid roof plane;
8 n floors← number of above-ground floor shapefiles;

9 calculated floor height← lowest roo f height−global ground height
n f loors ;

// Step 3: Generate floor point clouds

10 foreach (gpkg path, layer name, floor number) in floor shapefiles do
11 buildings← load layer from GPKG;
12 foreach polygon in buildings do
13 room id← f loor number× 1000± index;
14 base height

← global ground height + (f loor number− 1)× calculated f loor height;
15 floor z← base height;
16 ceiling z← base height + calculated floor height;

// 3.1: Generate wall points along polygon boundary

17 foreach ring in exterior and interior rings do
18 interpolate points along perimeter;
19 foreach height z from floor z to ceiling z do
20 record (x, y, z) with room id, floor number, attributes;

// 3.2: Generate floor points inside polygon

21 foreach (x, y) in bounding grid with spacing do
22 if (x, y) inside polygon then
23 record (x, y, floor z);

// 3.3: Generate ceiling points

24 foreach (x, y) in same grid do
25 if (x, y) inside polygon then
26 record (x, y, ceiling z);

// Step 4: Concatenate attributes for all floors

27 attributes df← concat of all per-floor DataFrames;
28 fill missing k id with 0;

// Step 5: Finalize and export CSV

29 attributes df← select columns [point id, room id, floor number, x, y, z, name,
su id, area, k id];

30 save attributes df to csv output;
// Step 6: Export LAS

31 las← create LAS file (version 1.4, format 6);
32 las.x, las.y, las.z← combined x, y, z arrays;
33 las.classification← k id;
34 ahn crs← read CRS from AHN header;
35 save LAS file ;

28

3.4. Storing Point Cloud to LADM

b. Iterative Closest Point (ICP)

After the synthetic point cloud is generated, it will be aligned to AHN using ICP. ICP is a
popular spatial registration-based method to align two point cloud datasets. The algorithm
operates over two main steps: first, it initially finds correspondences between the target
point cloud and the source point cloud by finding the nearest neighbor in Euclidean space;
second, given these correspondences, it iteratively estimates the optimal rigid transformation
that best aligns the source to the target by minimizing cost function (the sum of squared
distance between matched pairs) until convergence or the value is less than the threshold.
This algorithm is known as point-to-point ICP with equation as follow:

E(T) = ∑
(p,q)∈K

(

(p− Tq) · np

)2
(3.1)

The other ICP variant, point-to-plane ICP, uses the intersection of the normal point in both
datasets to determine the corresponding points. To increase convergence speed, the cost
function is improved by replacing point-to-point distances with point-to-plane distances,
which minimizes the distance between the source point and the tangent plane of the corre-
sponding target point [Wang and Zhao, 2017]. The formula for this method:

E(T) = ∑
(p,q)∈K

∥p− Tq∥2 (3.2)

After the alignment, both point cloud, AHN and synthetic floor plan point cloud will be
combined into one LAS file with the same header as the latter to preserve the generated
attributes. Since AHN is the envelope of the building, the SU ID for AHN would be the
same as the outer wall in synthetic points, which is the name plus 0, as there is no cadastral
number.

3.4. Storing Point Cloud to LADM

LAZ is a compressed version of standardized format for point cloud data. However, it
lacks support for concepts of semantic object structures like hierarchies or aggregation. To
represent the point cloud as 3D LAS, the point cloud data needs to be integrated with
structured knowledge and semantics by accommodating hierarchically structured and topo-
logically connected representations of objects with multiple attributes [Poux, 2019]. Using
PostgreSQL, as illustrated in Figure 3.8, the synthetic point clouds are stored in a Land Ad-
ministration Domain Model (LADM) compliance database based on ISO 19152-2024, where
five tables are created: Point cloud, LA SpatialUnit, LA BAUnit, LA RRR, and LA Party.
The Unified Modeling Language (UML) model for the LADM is illustrated in Appendix B.

a. Point Cloud Table

The point cloud and its attributes are stored in PostgreSQL using the CSV output from the
previous process with an import query as follows:

COPY synth_pc (point_id, room_id, floor_number, x, y, z, name, su_id, area, k_id)

FROM 'D:/TUDELFT/Thesis/Thesisprep/New folder/kad1.csv'

DELIMITER ',' CSV HEADER;

29

3. Methodology

Figure 3.8.: Storing Point Cloud to LADM

The geometry for each point is created using ST MakePoint based on the coordinate
columns originally in the Dutch national coordinate system EPSG:28992. Since Cesium uses
WGS84, ST Transform is applied to transform the coordinate system from EPSG:28992 into
EPSG:4326.

SET geom = ST_Transform(ST_SetSRID(ST_MakePoint(x, y, z), 28992),4326)

b. LA SpatialUnit Table

Spatial unit is a general term for the land parcel that can be tied to formal, informal, or
customary rights. LA SpatialUnit can belong to zero or more LA BAUnit. This means that
one may have a land registry without any mapped spatial unit, as not all land is formally
surveyed, and one may have multiple spatial units at one BAUnit, which usually happens
in an apartment unit that contains a living unit, a parking unit, and a storage room. One
parcel may also be mapped but not legally owned, or have multiple legal interests [Lemmen
et al., 2025]. Spatial unit contains columns as listed in Table 3.2.

INSERT INTO la_su_table (su_id, computed_area, bau_id)

SELECT name || '_' || k_id || '_' || room_id AS su_id,

area AS computed_area, name || '_' || k_id AS bau_id

FROM synth_pc GROUP BY name, k_id, room_id, area;

c. LA BAUnit Table

BAUnit is created to group all spatial units under the same rights. Each LA RRR can only
link to exactly one LA BAU, while LA BAU must have at least one LA RRR. This means that
one land registry requires one BAUnit to be registered under that right, ensuring BAUnit
is the legal container for rights. If there are multiple parcels that are owned together, then

30

3.4. Storing Point Cloud to LADM

Definition

su id spatial unit identifier
label short description of the spatial unit

legal area area written in the legal document
computed area area computed after conversion
ext addressid external address of the spatial unit

surfacerelation indicates underground or above ground
begin lifespan start date of spatial unit
end lifespan end date of spatial unit

bau id to link the SU table with the BAU table based on their id

Table 3.2.: Attributes in LA SpatialUnit class

either combine them into a single BAUnit that includes multiple spatial units, like the apart-
ment unit case, or if the condition is not possible, they may have separate RRRs that will
be linked to different BAUnits [Lemmen et al., 2025]. This class has attributes as listed in
Table 3.3.

Definition

bau id BAUnit identifier
la bautype type of bau: apartment / condominium unit or a land

consolidation area
begin lifespan start date of BAUnit
end lifespan end date of BAUnit

r id to link BAU table with Right table based on their id
id primary key for bau and right row

Table 3.3.: Attributes in LA BAUnit class

d. LA Right Table

RRRs consist of rights, restrictions, and responsibilities. This study only focuses on the right
class as it can be interpreted as the general RRRs in most countries. One right can link to
zero or one party, while LA Party can have zero or more rights. One without any right
means the person is involved in the transactions without property rights. A right without a
party means the right is purely related to the land, such as servitude. If rights are linked to
several parties, the sum of shares in a right must equal one. The share field is filled when
one right is shared for multiple parties [Lemmen et al., 2025]. Attributes stored in this table
are listed in Table 3.4

31

3. Methodology

Figure 3.9.: Generating Synthetic Point Cloud

Definition

r id right identifier
la righttype right type: ownership, lease, occupation, usufruct, tenancy

share a share in an instance of a subclass of a LA RRR
begin lifespan start date of the right
end lifespan end date of the right

p id to link Right table with Party table

Table 3.4.: Attributes in LA Right class

e. LA Party Table

A party means a person or organisation that is involved in any land administration process.
As a party can also refer to any stakeholder, such as a surveyor, notary, or registrar, in this
study, the role of party only focuses on the holder of a right on a land parcel. This class
contains columns as listed in Table 3.5.

Definition

p id party identifier
la partytype type of party
party name name of the person or institution

begin lifespan start date of party
end lifespan end date of party

ext id national/external identifier of party

Table 3.5.: Attributes in LA Party class

3.5. Visualizing 3D LAS

A land administration dissemination system is developed with Vue.js, Cesium, and FastAPI
to represent and visualize 3D spatial units, allowing the user access and modify land admin-
istration information, including owner, right, and spatial unit. Initially, the resulting point
cloud datasets from the previous step, Generating Synthetic Point Cloud, are uploaded to
Cesium.ion to render the point cloud tileset from Cesium server. The web application front-

32

3.5. Visualizing 3D LAS

end is built using the Vue.js framework based on Hypertext Markup Language (HTML),
Cascading Style Sheets (CSS), and JavaScript to manage user interaction. It integrates with
CesiumJS to enable 3D geospatial visualization for the web. The front-end and PostgreSQL
database server are connected through a RESTful Application Programming Interface (API)
using FastAPI, a web framework for developing HTTP-based service APIs in Python. It
manages how users retrieve and update data from the database server. The code for Vue.js
or a front-end application is mostly written in a main file called App.vue with Options API
style, while the back-end application is in a Python file named pgquery.py. The summary of
this step is depicted in Figure 3.9.

a. LADM Information Retrieval

To access the LADM, there are three steps required (Address → BAUnit → Spatial Unit).
First, the user needs to type the address and then select the name/address of the build-
ing from the options. The v-for directive will generate option elements within the select
dropdown from addressOptions that fetches a list of addresses from the database server.
A two-way data binding directive, selectedAddress, is stated as in v-model, and two event
listeners are: onAddressSelected, and fetchBauIds. onAddress is defined in the Vue method
to load the Cesium Ion asset ID based on the selected name (stored in selectedAddress) via
Cesium-3DTileset. The corresponding building will be loaded into the scene, and the cam-
era will zoom into the building. The fetchBauIds function fetches a list of bau id from the
database server via the defined localhost in the fast API backend module and stores it as
bauOptions, with query :

SELECT DISTINCT bau_id FROM la_su_table WHERE name = %s ORDER BY bau_id

Similar to onAddress, the bauOptions stated in v-for in the Select BAUnit dropdown will
generate an array bau id as options, the user can see how many BAUnits are available in
the building, and select one of them. The fetchSuIds event listener triggers the FAST API to
fetch a list of su id for that BAUnit (selectedBauId variable in v-model directive) from the
database server and stores it as suOptions through a basic query:

SELECT DISTINCT su_id FROM la_su_table WHERE name = %s and bau_id = %s ORDER BY su_id

Following that, the user can select one of the spatial units (from suOptions), and the load-
LinkedData method is triggered to fetch detailed information for the specified spatial unit
(selectedSuId). The web will zoom and highlight all the points of the selectedSuId and show
the information graph, which will be explained in the following subsection. The sequence
diagram of entire mechanism is illustrated in Figure 3.10.

b. Tooltip or Click Point Attribute

Although retrieving object attributes in Cesium with a point cloud is more challenging,
as per-point data is stored only on the GPU. To accommodate the tooltips features, the
pickPosition function from Cesium and the backend database server are used together. First,
as the user clicks on a point in the unit, it triggers the onMouseClick() method in the Vue
component that calls scene.pickPosition() function in Cesium to retrieve the clicked point’s
Cartesian 3D coordinate. It then converts the coordinates into geographic coordinates and
fetches data from the backend endpoint, /nearest-attribute. It searches the nearest point
from the point cloud table with the following SQL query:

33

3. Methodology

Figure 3.10.: Sequence Diagram of LADM Information Retrieval, Highlight SU and BAUnit
Points and Edit information

34

3.5. Visualizing 3D LAS

Figure 3.11.: Sequence Diagram of Tooltip

SELECT x, y, z, lon, lat, room_id, su_id FROM (

SELECT x, y, z, lon, lat, room_id, su_id, ((lon - %s)^2 + (lat - %s)^2 + (z - %s)^2)

AS dist FROM synth_pc WHERE name = %s

ORDER BY dist ASC LIMIT 1) AS nearest_point

As the matching point is found from the table, it calls another SQL query to gather the
land administration information from the party, right, BAUnit, and spatial unit table. Con-
sequently, the JSON response is sent to the front end to display the information in the tooltip
panel. This also triggers the highlighting features, highlighting the spatial units and BAUnit
where the user clicks a point and LADM instance level diagram that will be explained in the
next subsections. The mechanism of this feature is demonstrated in Figure 3.11.

c. BAU Visualization Checkbox

To allow the user to interact with the spatial unit in the same BAUnit, the cadastral ID
is stored as classification in the LAS files. Retrieving the available class from 3D Tiles in
Cesium is challenging, due to the per-point data is stored only on the GPU when the tileset
is loaded, not on the CPU. As the classification can only be parsed and applied during
rendering with the tileset.style that works at the GPU level, the label for each classification
is defined manually inside the data component in App.vue, along with their colours. After
selecting the address/name of the building in main dropdown menu, all points will be
colorized based on their BAUnit by default by applying thePointCloudClassificationColors
() function. If one or more units are unchecked in the checkbox, the Vue’s reactive binding
will update the selectedClassification array where the unchecked units are removed from
the list and in updateClassificationVisibility() function that stated inside @change check box
as event handler, will update the classification colors based on the list while the unlisted
units will be styled using Cesium3DTileStyle with gray color and one pixel or smaller size,
as the cesium style does not allow styling points as entirely transparent.

d. Highlighting

Since storing semantics into a point cloud is challenging and the classification of the LAS file
already refers to the bau id, to allow the user to highlight the spatial unit within BAUnit, the

35

3. Methodology

website retrieves all points of the selected spatial unit and presents them from PostgreSQL
instead of 3Dtiles. The highlighting process is triggered when the user selects a spatial unit
from the dropdown menu. This invokes the loadLinkedData function, defined in the Vue.js
component. This function sends a request to the backend using the /room-points-bau API
endpoint to retrieve the coordinates of all points belonging to the selected spatial unit.

SELECT ST_X(geom_wgs), ST_Y(geom_wgs), z

FROM (SELECT ST_Transform(ST_SetSRID(ST_MakePoint(x, y), 28992), 4326)

AS geom_wgs, z FROM synth_pc WHERE su_id = %s) AS transformed

Followed by another query to collect other spatial units within the same BAUnit.

SELECT ST_X(geom_wgs), ST_Y(geom_wgs), z

FROM (SELECT ST_Transform(ST_SetSRID(ST_MakePoint(x, y), 28992), 4326) AS geom_wgs, z

FROM synth_pc WHERE su_id IN (SELECT su_id FROM la_su_table

WHERE bau_id = %s AND su_id != %s)) AS transformed

The result is returned as a JSON array of 3D coordinates and passed to the highlightSuPoints
function on the client side. This function uses Cesium’s PointPrimitiveCollection to ren-
der the points and applies a semi-transparent red color for visual emphasis. A vertical
offset of 43.5 meters is added to the original z-coordinate to account for a discrepancy be-
tween the coordinate reference systems. This is due to Cesium reprojects all geometry into
EPSG:4326 and measures height relative to the WGS84 ellipsoid, while the source point cloud
in EPSG:7415 uses NAP (Normaal Amsterdams Peil), which measures elevation relative to
Amsterdam normal sea level. Finally, the camera is automatically zoomed into the high-
lighted spatial unit with flyToBoundingSphere. The mechanism of this feature is depicted
in Figure 3.10.

e. LADM Istance Level Diagram

In the Select Spatial Unit dropdown, the loadLinkedData() function retrieves the associated
LADM information by calling the /load-by-bau API endpoint, using the selected su id as
a query parameter. The resulting data, which includes parties, rights, basic administrative
units (BAUnits), and spatial unit details, is then stored in the component’s reactive state
variables for display and editing. However, to understand its connection with other spatial
units that share the same bau id, it will find the spatial unit by su id from la su table along
other spatial units under the same bau id, then search for all rows with the same bau id
in the la bau table, then retrieve their corresponding r id and p id from la right table and
la party table. The LADM Diagram will show up in the bottom panel of the website. D3.js
is implemented to create a graph to visualize the relationship between party, right, BAUnit
and SpatialUnit. Four groups of nodes are created in order based on the LADM table: Party
→ Right → BAUnit → Spatial Unit. To fit the size, their scale and vertical spacing are
calculated based on the number of retrieved objects. Each node contains all attributes of its
corresponding table and is colorized based on them, which are specified in the drawGraph
function. Spatial Units are grouped by bau id and sorted to make their position align in
order with their corresponding bau id. The nodes will be linked based on their id: Party
and Right are linked with p id and r id, right and BAUnit are linked with r id and bau id,
and BAUnit and SpatialUnit are linked with bau id and su id. D3 elements such as zoom
and transform are implemented to allow the user to pan and zoom on the LADM graph. The
user is also able to click two of the boxes: party and spatial unit, which can trigger different
results. This click interaction is enabled by using event listeners directly tied to D3 elements.

36

3.5. Visualizing 3D LAS

Figure 3.12.: Sequence Diagram of LADM Instance Level Diagram

The event binding is added inside the drawGraph function with .on(’click’, ..) method,
then it listens to events that are defined in the Vue component < LinkedGraph/ > template
and the click event handler function that is declared within the methods block of a Vue
component.

There are two types of relations that the graph provides. First, the LADM information of
the specified BAUnit, which is an initial graph that will show all the rights and parties in
the selected spatial units along with the other spatial units within the same bau id. Dur-
ing the LADM Information Retrieval, the data from the GET request is also passed to the
LinkedGraph.vue component to render the graph. If the user clicks on one of the spatial unit
boxes, the website will zoom and highlight the spatial unit points using highlightSuPoints
function.

The second type is the LADM information of the specified Party. If the user clicks on
one of the party boxes, it will show another kind of graph that shows how many rights the
selected party has, along with their corresponding BAUnit and spatial units. This feature
sends a GET request to the backend server, where it first gathers all rights linked to the
desired party, then collects all the BAUs and their corresponding Spatial Unit. The returned
data is stored in partyFocusedData, which is passed to LinkedGraph to visualize the rela-
tions of one party with their available rights in LADM. The sequence diagram of this feature
is illustrated in Figure 3.12.

f. LADM Edit Form

The edit form appears after the user clicks on the Edit Information button. By default, the
form is filled with current LADM information that has been retrieved from the /load-by-bau
API address as explained in the previous feature. Since one BAU unit can link to multiple
rows of right and party, the user can add party and right in the form. When adding a party,
the user can choose whether they want to add the new party data or select from available
parties in the database. The add new party data option will fetch the latest id through
/next ids backend point

SELECT MAX(CAST(SUBSTRING(p_id FROM '[0-9]+') AS INTEGER)) FROM la_party_table

37

3. Methodology

This will return the next value, while the available party option will send GET request with
the typed name as a query parameter through /search-parties API endpoint with a query
that will return the list of matched parties:

SELECT p_id, party_name, ext_id FROM la_party_table WHERE LOWER(party_name)

LIKE LOWER(%s) ORDER BY party_name LIMIT 10

To ensure the party links to the correct right, the user needs to fill in the corresponding
p id inside the right panel edit form. The graph also allows real-time updates that can
be seen by the user to check whether the relations and the data are already coherent or
not. The two-way binding directive, v-model, is used to store the user inputs. A collection
of these reactive state variables (including user input for party, right, BAUnit, and spatial
unit) is passed as a property called linkedData into the LinkedGraphcomponent, a D3-based
module that renders the visual graph. In LinkedGraph.vue, the incoming linkedData is
declared as a prop and watched using Vue’s watch() function with deep and immediate
parameter set as true. This ensures that every time the user modifies any field in the form,
such as editing a party name or right type, the graph is redrawn immediately by calling
drawGraph(), providing instant visual feedback on the updated relationships and attributes.
After the user finishes editing the form and clicks the Save button, the saveAll event listener
is triggered. This function gathers all user input data, formats specific fields (especially date
objects) into the required string format, and constructs a complete payload in JSON. The
payload is then sent to the backend using a POST request to the /update-all API endpoint,
where it is parsed and stored in the PostgreSQL database. The server iterates over the list
of party objects and executes an INSERT into the la party table for each object. Using ON
COFLICT, it checks whether the p id already exists, if there is already the same p id in the
database, then with DO UPDATE SET, it will update the other fields with the new values
instead with the following query:

INSERT INTO la_party_table (p_id, party_name, ext_id)

VALUES (%s, %s, %s) ON CONFLICT (p_id) DO UPDATE SET

party_name = EXCLUDED.party_name, ext_id = EXCLUDED.ext_id

This same process is applied to the la right and la su tables. Meanwhile, for the la -
acBAUnit table, it will check the record based on the combination of bau id and r id. If it
already exists, then it updates the other fields based on the new value. Otherwise, it inserts
a new entry. The sequence diagram of this feature is illustrated in Figure 3.10.

g. Underground View

If the user slides the underground toggle, the state in showUnderground is on, and it will
trigger the toggleUnderground function to execute the GlobeTranslucency from Cesium to
a transparent terrain surface. To control its camera dynamic, the NearFarScalar is set with
0.2 transparency for up to 100 meters and gradually increases until 300 meters, when it will
be fully opaque.

38

4. Implementation

This chapter begins by outlining all the tools required for conducting this research, including
Python libraries, web development frameworks, and supporting applications. The datasets
used as inputs for the study are introduced in the final section.

4.1. Tools

The algorithm is mainly written in Python for data processing (Parsing the floor plan, Seg-
menting AHN Point Cloud, and Generating Synthetic Point Cloud) while other languages
are also used for database (Storing Point Cloud to LADM) and web development (Visualiz-
ing 3D LAS). The full code can be accessed in GitHub. Additional software is also utilized
to check the result after every process. More details are as follows:

a. Essential Python libraries and framework

1. OpenCV is a real-time computer vision and image processing library that provides
high-level interfaces for capturing, processing, and presenting image data. It is used
to process floor plan images

2. Shapely is a Python library based on the GEOS (Geometry Engine - Open Source)
library for geometric operations, including manipulating and analyzing planar (2D)
geometric objects. It is implemented during georeferencing, such as simplification,
rotation, and scaling.

3. PDAL is a Python binding to the C++ PDAL library for manipulating point cloud data
through JavaScript Object Notation (JSON)-defined processing pipelines. It is used for
ground filtering and cropping

4. Open3D is an advanced 3D data processing library focusing on point cloud and 3D
geometry applications, which support visualization, registration, reconstruction, and
optimization. It is implemented for RANSAC segmentation and ICP

5. laspy is designed for accessing point clouds in LAS/LAZ format with basic features
such as read, modify, and create. It is implemented to generate synthetic point clouds
and their attributes.

6. easyOCR is an open source OCR library that applies for reading text in images to
detect drawing per floor and number ID to recognize the cadastral ID.

b. Web Development

1. HTML to layout and structure user interface

2. CSS to style the web

39

https://github.com/citrandina/PointCloud3DLAS

4. Implementation

3. Vue.js to manage user interaction

4. PostgreSQL to serve as a database

5. Cesium to visualize 3D geospatial object, which in this case point cloud

6. D3.js is a JavaScript library for interactive data visualization in web browser, used for
LADM diagram

7. psycopg2 is a PostgreSQL database adapter to connect to a database from PostgreSQL
and run Structured Query Language (SQL) queries in Python. It is implemented to
retrieve LADM information on the website.

8. FastAPI is a web framework for building APIs in Python. It is applied to retrieve
LADM information on the website with psycopg2 support.

c. Software

1. Paint to check the image and manually clean the stairs or noises

2. QGIS to check the geopackage/shapefile from the floor plan, and also to manually edit
the attributes for SU ID

3. CloudCompare to check the point cloud and clean the noise

4.2. Datasets

1. Cadastrel drawing

Three cadastral apartment drawings from Kadaster are used as samples for this re-
search, drawn in different years: 1999 (Figure 4.1), 2002 (Figure 4.2), and 2019 (Fig-
ure 4.3), located in the Rotterdam municipality.

2. AHN Version 1-5

The AHN datasets are downloaded from GeoTiles, covering all available versions (1
to 5), using the following Tile IDs: 37FZ1 18 for Samples 1 and 3, and 37GN2 05 for
Sample 2.

3. Cadastral parcel

The parcel polygons are obtained from Kadaster kaart (WFS) dataset in PDOK.nl. The
map is part of the Basic Registration Land Registry (BRK) that includes records of
properties and the legal rights attached to them, like ownership, leasehold, or ease-
ments.

40

https://geotiles.citg.tudelft.nl/
https://service.pdok.nl/kadaster/kadastralekaart/wfs/v5_0?request=GetCapabilities&service=WFS

4.2. Datasets

Figure 4.1.: Kadaster Sample 1

41

4.
Im

plem
en

tation

Figure 4.2.: Kadaster Sample 2

42

4.2.
D

atasetsFigure 4.3.: Kadaster Sample 343

5. Results

This chapter presents and evaluates the results obtained at each stage of the research, in-
cluding an assessment of accuracy and a discussion of the obstacles encountered during the
process. In the final section, the chapter examines the overall workflow and reflects on the
capability of the proposed pipeline to generate a 3D LAS dataset.

5.1. Parsing Floor Plan

a. From Image to Polygon

During the preprocessing of the image, OCR can read the floor label that is associated
with keywords such as ”begane” and ”verdieping”; as a result, the contour block for each
floor is able to be generated. However, during the vectorization, the OCR cannot read
the room number in most cases as can be seen in Figure 5.1, Figure 5.2, and Figure 5.3;
consequently, the spatial unit ID for most of the polygons is empty, and manual input based
on the original floor plan needs to be executed in QGIS. Another user intervention is also
needed to check and filter the output of the individual floor plan image, as some pictures
may contain duplicate or wrong contour blocks.

The interior of the apartment can be detected and vectorized into geometric polygons.
Cadastral apartment drawings depict cadastral boundaries with thicker lines and room seg-
mentation with thinner lines. The algorithm is able to differentiate the thicker and thinner
lines in the newest cadastral drawing, thus generating cadastral boundaries without room
segmentation; on the contrary, for old cadastral drawings, Sample 1 and Sample 3, the poly-
gons are generated from all room segmentation, not cadastral boundaries, as the thick lines
are hard to distinguish even by eyesight. Some input images need to be cleaned manually
using an image editor due to inconsistent lines or stair areas that cannot be detected dur-
ing the automatic cleaning process. As Sample 1 does not require any manual cleaning,
Sample 2 in Figure 5.4 shows that stairs and annotations in the drawing create noises, and
inconsistent width boundaries lead to lines not being generated, while stairs in Sample 3
prevent room segmentation. The parameters must also be tuned for different drawing files,
as each file may vary in resolution, style, and quality. The effects of adjusting each parameter
have been previously discussed in Section 3.1 Parsing the floor plan. The specific parameter
values used are listed in Table 5.1 below.

45

5. Results

Figure 5.1.: Detected Texts in Sample 1

46

5.1. Parsing Floor Plan

Figure 5.2.: Detected Texts in Sample 2

Figure 5.3.: Detected Texts in Sample 3

47

5. Results

(a) Sample 2 (b) Sample 3

Figure 5.4.: Noises in Image that needed to be cleaned manually

Parameter
Process Sample 1 Sample 2 Sample 3

open kernel 3x3 2x2 2x2
open iteration 3 2 1
close kernel 20x20 10x10 5x5

close iteration 1 2 1
epsilon 0.013 0.001 0.005
simplify 10 1 9
buffer 8 5 5

Table 5.1.: Parameter during Vectorization

b. Georeferencing

As described in Section 3.1 Parsing the floor plan, the georeferencing algorithm estimates
transformation parameters, including rotation, scaling, and translation. For a more detailed
explanation of the procedure, refer to Appendix C. Although the georefencing algorithm
uses a simple calculation, it presents an adequate result where the polygon is located in the
same place as the cadastral boundary, as illustrated in Figure 5.6. The Root Mean Square
Error (RMSE) is also below half a meter, as shown in the Table 5.2. However, for certain cases,
one must add additional rotations in the code input parameter, where the value of the input
degree is tuned manually based on the orientation and shape of the vectorized polygon. For
instance, since Sample 1 has a rectangular shape, which has rotational symmetry, it may
need to be flipped.

RMSE (cm)

Sample 1 32.18
Sample 2 18.25
Sample 3 25.71

Table 5.2.: RMSE of Georeferencing

48

5.1. Parsing Floor Plan

(a) Vectorization Result in Sample 1 (b) Vectorization Result in Sample 2

(c) Vectorization Result in Sample 3

Figure 5.5.: Vectorization Result in All Samples

49

5. Results

5.2. Segmenting Point Cloud

Combining multiple AHN versions can overcome occlusion in the AHN as it provides more
points for the building, as can be seen in Figure 5.7; however, wall points are still sparse and
some parts still missing. Another problem is that the buildings are row houses, and they
were located between other units as depicted in Figure 5.8; therefore, the surrounding walls,
particularly the shared or common wall, were impossible to acquire by LiDAR scanning.

Ground points are effectively extracted from the complete building point clouds using
the Cloth Simulation Filtering (CSF) algorithm, configured with default parameter values
suitable for moderately flat terrain. The resulting ground points are visualized as blue-
colored points in Figure 5.9. However, during subsequent segmentation, distinguishing
non-ground points, specifically separating wall and roof components (shown in red and
white, respectively), remains challenging. This is particularly evident in cases involving
sparse wall points and sloped roofs, such as in Sample 3 (Figure 5.9c). Additionally, some
outliers and vegetation points persist after classification, as seen in Sample 1 (Figure 5.9a),
indicating limitations in the accuracy of the AHN-based classification.

5.3. Synthetic Point Cloud Construction

The height of the ground floor fits the AHN as it uses the z value of ground points. However,
the floor height does not seem to correctly conform to AHN, due to some misclassified roof
points, as mentioned before in the previous step.

Sample 1 Sample 2 Sample 3

Initial
Fitness 3.7e-05 6.92e-05 1.31e-04

Inlier RMSE (cm) 1.406 1.478 1.418
Correspondences 44 249 141

Point-to-Point ICP
Fitness 5.22e-05 8.73e-05 1.89e-04

Inlier RMSE (cm) 1.480 1.480 1.459
Correspondences 62 314 141

Point-to-Plane ICP
Fitness 0 7.43e-05 0

Inlier RMSE (cm) 0 1.537 0
Correspondences 0 267 0

Table 5.3.: RMSE of ICP

Although the floor plan polygons have been georeferenced based on the parcel polygon,
and the generated point clouds from the floor plan are aligned with AHN through ICP, the
highly accurate position is still hard to acquire, with an RMSE between 1.3 and 1.6 cm as can
be seen in Table 5.3. This is due to sparse points in AHN that affect the performance of ICP.
Point-to-point needs to find the corresponding point between the datasets; thus, it would be
challenging if no matching points are available. Meanwhile, point-to-plane exploits normal
calculation, which also becomes problematic if the surrounding neighbour points are not
adequate to correctly calculate the normal for each point. For that reason, Point-to-Plane
ICP only performs better for Sample 2 (Figure 5.11), which has more correspondence points,
while it fails completely for Sample 1 and Sample 3 (Figure 5.10 and 5.12), which have fewer
correspondence points. The algorithm will automatically use the ICP method that has lower
RMSE and higher number of correspondences points. Point-to-Point ICP is preferred for

50

5.3. Synthetic Point Cloud Construction

(a) All Georeferenced Floor plan in Sample 1

(b) All Georeferenced Floor plan in Sample 2

(c) All Georeferenced Floor plan in Sample 3

Figure 5.6.: Overview of Georeferencing Results

51

5. Results

(a) AHN 5 (b) Combination of All Versions of AHN

Figure 5.7.: Comparison of AHN 5 and Combination in Sample 3

(a) Building location for Sample 1

(b) Building location for Sample 2

(c) Building location for Sample 3

Figure 5.8.: Building location for All Samples

52

5.3. Synthetic Point Cloud Construction

(a) Segmentation in Sample 1 (b) Segmentation in Sample 2

(c) Segmentation in Sample 3

Figure 5.9.: Result of Segmentation in All Samples

53

5. Results

Sample 1 and Sample 3, and Point-to-Plane ICP is opted for Sample 2. Although all the
resulting RMSEs are slightly higher or worse than the initial for the three cases, the values
for correspondences increase, depicting a greater number of matched point pairs between
the source and target after alignment. This also leads to a slightly higher fitness value, which
means the proportion of total source points that matched within a threshold of 2 cm.

Figure 5.10.: ICP Result in Sample 1

After aligning the synthetic point cloud to AHN, both datasets are combined into one LAS
file for each sample and uploaded into Cesium Ion.

5.4. Point Cloud to LADM Storage

To store the point cloud and link their LADM information, one needs to import the resulting
CSV from Section 5.3 Synthetic Point Cloud Construction that contains 3D coordinates along
with their attributes into PostgreSQL. Due to privacy concerns, the land administration in-
formation filled in this research is fictional. As mentioned in Section 3.4 Storing Point Cloud
to LADM, five tables are created in PostgreSQL: (1) point cloud table in Figure 5.13; (2) spa-
tial unit table in Figure 5.14; (3) BAUnit table in Figure 5.15; (4) Right table in Figure 5.16;
(5) Party table in Figure 5.17. All of the LADM classes are derived from VersionedObject, a
LADM special class that allows all information in the LADM database to be tracked histori-
cally through time stamps by providing attributes called begin lifespan and end lifespan.

54

5.4. Point Cloud to LADM Storage

Figure 5.11.: ICP Result in Sample 2

55

5. Results

Figure 5.12.: ICP Result in Sample 3

56

5.4.
P

oin
t

C
lou

d
to

L
A

D
M

S
torage

Figure 5.13.: Point Cloud table

57

5.
R

esu
lts

Figure 5.14.: Spatial Unit table

58

5.4.
P

oin
t

C
lou

d
to

L
A

D
M

S
torage

Figure 5.15.: BAUnit table

59

5.
R

esu
lts

Figure 5.16.: Right table

60

5.4.
P

oin
t

C
lou

d
to

L
A

D
M

S
torage

Figure 5.17.: Party table

61

5. Results

5.5. 3D Land Administration System Visualization

The development of a 3D visualization website prioritizes optimal performance and user
experience. The usability of the system for delivering LADM information is also considered
to ensure the platform fulfills its intended main objective. To this end, several interactive
features have been incorporated to facilitate user engagement and improve the effective-
ness of the platform, including 3D Land Administration Visualization, BAUnit Visualization
Checkbox, Tooltip, Selection and Highlight, LADM Instance Level Diagram, LADM Edit
Form, and Underground View.

a. 3D Land Administration Visualization

Visualization in the Land Administration context focuses on the representation of owner-
ship boundaries and their related legal information. With a 3D map, the visualization is
upgraded to more complex 3D structures with a sense of depth that is closer to the real
world representation [Pouliot et al., 2018]. A 3D parcel is the fundamental spatial unit in
a LAS to which a unique and homogeneous set of rights, responsibilities, and restrictions
(RRRs) is assigned. Homogeneous means that the same combination of RRRs applies uni-
formly to the entire 3D spatial unit. The 3D parcel is the largest spatial extent where this
homogeneity holds; extending the parcel would introduce different RRRs, while subdivid-
ing it would create neighboring parcels with identical RRRs [Oosterom et al., 2011]. To
deliver a real-world representation, integrating other datasets, including reference objects
and a topography map, can offer a reference to interpret the parcel in terms of location and
size [Cemellini, 2018; Kalogianni, 2016]. Since the 3D parcel is represented as a point cloud,
the AHN dataset can serve as a reference object, enabling seamless integration of spatial
data, as illustrated in Figure 5.18.

b. BAUnit Visualization Checkbox

The 3D point cloud building model is rendered as the user selects the address in the drop-
down option, which will automatically zoom to the desired building. In the right panel,
there is a checkbox list based on the Basic Administrative unit. By default, all color boxes
are checked, showing all the BAUnit with different colors as shown in Figure 5.19. If the
user unchecks, then the corresponding BAUnit points will be discolored and decreased in
size as occurred in Figure 5.20. However, unlike in Potree, which has a built-in feature for
color classification filter, in Cesium, this feature needs to be created manually, and due to
restrictions on point styling, the points may not completely disappear, but still remain as
small white dots. This tool enables users to identify the specific BAUnit by color and con-
trast certain BAUnits by their appearance, which can be selected via a checkbox. A study
by Wang et al. [2012] shows that visual variables, including size and color, are suitable to
represent bounded and partially bounded 3D legal units. Size and color are known as the
most efficient visual variables for human perception. By leveraging the change and differ-
ence in size and color, it helps users to easily identify the BAUnit. Since a single BAUnit
may contain multiple spatial units, this helps users to effortlessly recognize which units in
the building are owned by the same or different person. Additionally, common spaces are
easily distinguished by their distinct color, which is visually separate from other private
spatial units.

62

5.5. 3D Land Administration System Visualization

Figure 5.18.: 3D Land Administration Visualization

Figure 5.19.: All Checked Colorbox

63

5. Results

Figure 5.20.: Unchecked Colorbox for Building Envelope and Unit 1

c. Tooltip

Shojaei et al. [2013] includes a tooltip as one of the parameters for quick user recognition
to improve the visualization utility. As a tool that is commonly used in GIS applications,
its function is to identify the specified object and to provide the data attribute of that corre-
sponding object. In this 3D LAS, see Figure 5.21, when the user clicks a point, it will select
and highlight the points of the unit and offer brief information about the owner, right, and
type of units of the corresponding unit. It displays the information of the selected spatial
unit in bold, while the other spatial units within the same BAUnit are shown in regular font.

d. Selection and Highlight

Cemellini et al. [2020] identified object selection and highlighting as essential client-side tools
for 3D LAS visualization. Selection is one of the fundamental universal tasks in 3D user in-
terfaces, referring to the process of identifying and selecting one or more objects within a
3D environment [Steed, 2006; Bowman et al., 2012]. Highlighting, in turn, supports this
interaction by enabling users to easily perceive the active or selected object. Typically, high-
lighting is achieved by altering the visual style or appearance of the selected object, thereby
leveraging pre-attentive cognitive processing [Trapp et al., 2011]. Figure 5.22 illustrates two
types of highlighting mechanisms. The first type highlights the BAUnit: when the user se-
lects a BAUnit either via the toolbar or the LADM Graph, the camera automatically zooms
to the selected BAUnit, and all points belonging to it are rendered in red. The second type
highlights the spatial unit: when the user selects a spatial unit via the toolbar, clicks on a
point, or selects a corresponding node in the LADM Graph, the application zooms in on the
selected spatial unit and renders it in red, while other spatial units within the same BAUnit
are displayed in a lighter shade of red. This feature delivers dynamic visualization to focus
on the specified spatial unit for the user. However, since there is a discrepancy between

64

5.5. 3D Land Administration System Visualization

Figure 5.21.: Tooltip

Cesium and the Dutch national coordinate system for height measurements, as explained in
Section 3.5, the highlight position may shift slightly from the rendered point cloud.

65

5. Results

Figure 5.22.: Highlight Features

e. LADM Instance Level Diagram

Figure 5.23.: Basic Instance Level Diagram [Lemmen et al., 2025]

66

5.5. 3D Land Administration System Visualization

Figure 5.24.: BAUnit with multiple spatial unit [Lemmen et al., 2025]

To provide a comprehensive representation of LADM information to the user, an LADM
instance-level diagram is introduced. Unlike a simple information table or panel, the di-
agram allows users to clearly perceive the relationships between parties, rights, BAUnits,
and spatial units, as shown in Figure 5.23. It also enables the visualization of cases where
a single BAUnit contains multiple spatial units, as demonstrated in Figure 5.24. In her land
administration web platform, Mao et al. [2024] implements this instance-level diagram to
facilitate user understanding. Two types of diagrams are presented on the web, as follows:

1. BAUnit relations diagram

Figure 5.25.: Multiple shares in LADM diagram [Lemmen et al., 2025]

This diagram shows all the parties, right, BAUnit that are linked to the specified spa-
tial unit along with the other spatial units under the same BAUnit, as illustrated in
Figure 5.25. It allows users to comprehend the case when there are multiple shares in
one property. It can occur when the property is leased, resulting in different types and
records of right linked to the same BAUnit. Another case is if the property is owned
or leased by multiple persons, such as a marriage partner, resulting in multiple rights
linked to the same BAUnit which can be identified in the share column from LA RRRs.
This feature, see Figure 5.27.(a), appears as the user selects the spatial unit in the drop-
down or clicks a point. To increase user experience and interaction, the graph can also
be resized vertically and can be clicked. Although the web can zoom as the user selects
the spatial unit in the drop-down, as this graph also shows the other spatial unit with
the same BAU id, the user can also check where the other spatial unit is by clicking on
the box in the diagram. This will trigger the website to zoom and highlight the spatial
unit points as illustrated in Figure 5.22. As the diagram also shows, all the parties that
own the property, the user can also click on one of the party boxes to see whether they
own another property, which leads to the second diagram.

2. Party relations diagram

67

5. Results

Figure 5.26.: People to land relations represented [Lemmen et al., 2025]

Lemmen et al. [2025] states that an LADM instance-level diagram can be used to reveal
the party-to-land relationships in the LADM. In Figure 5.26, case (a) shows records
of multiple spatial units, each with its corresponding BAUnit and right, connected
separately to the same party. In contrast, case (b) resolves the repetitive layout by
aggregating the party into a single node that branches out to multiple rights. By
implementing this layout, it facilitates users to comprehend how many rights, BAUnits,
and spatial units are associated with a specified party, as depicted in Figure 5.27.(b).
To return to the previous graph, users can simply click the Back to Full Graph button
located in the upper-right corner.

68

5.5.
3D

L
an

d
A

dm
in

istration
S

ystem
V

isu
alization

Figure 5.27.: BAUnit relation and Party relation in Instance Level Diagram

69

5. Results

f. LADM Edit Form

To support the LAS maintenance, any update to the data needs to be facilitated for autho-
rized users. As the land administration information records always change over time, the
edit LADM form is incorporated into the 3D Web-based LAS prototype. This tool can be
easily accessed by clicking the Edit Information button, like in Figure 5.28.a that appeared
after the user finished selecting their desired Spatial Unit. The Edit LADM Form emerges
when the user clicks the button. If the selected spatial unit already has filled data with the
linked party and right, then all the available data appears as in Figure 5.28.b.2, and the user
can modify the data, such as add more parties or remove an existing party. If not, then the
empty LADM form is shown like in Figure 5.28b.1 and the user can add a new party and
right with the Add button, and fill the BAU accordingly. Since one party may have multiple
rights, the user can also select how they want to append a new party to the specified units,
whether by adding a brand new party or searching for an available party, as illustrated in
Figure 5.28.c. Every new party and new right will have generated a new ID that the user can
use to link them together. During the editing process, any change can be seen in the LADM
Graph immediately. The user simply clicks the Save All button to save any modified data,
then any change is saved to the database server, Figure 5.28.e. It also allows users to remove
a party or right in the corresponding BAUnit. With this tool, the troublesome process of
filling the LADM information in PostgreSQL can be avoided.

70

5.5.
3D

L
an

d
A

dm
in

istration
S

ystem
V

isu
alization

Figure 5.28.: Edit Feature Process

71

5. Results

Figure 5.29.: Underground View

g. Underground View

As urban growth occurs not only above ground but also beneath the surface, several studies
have emphasized that an underground view is an essential feature in 3D LAS visualization
for revealing underground developments [Shojaei et al., 2013; Pouliot et al., 2018], such as
utilities, basements, underground shopping malls, and subway stations. In the application,
this feature can be activated by the user by toggling the underground mode via a control in
the bottom-right corner of the interface. When enabled, the OpenStreetMap layer is hidden,
allowing the user to explore the entire structure of the apartment building as shown in
Figure 5.29, including all available spatial units located below ground level.

5.6. Reflection of Application

Geometry accuracy
The current cadastral map in the Netherlands has a graphic quality accuracy where the

standard deviation of boundaries is 20 cm for urban areas and 40 cm for rural areas. Hence,
the current map is inadequate to precisely determine the parcel’s position on the ground
[Hagemans, 2024]. These error measurements are close to the RMSEs for 2D positioning
with errors between 18-32 cm. Furthermore, during 3D alignment, the RMSEs are decreased
to around 1.5 cm for 62-298 matching points. However, there is still no standard about accu-
racy in 3D LAS, and in the cadastral drawing, the thick lines are implied as the boundaries,
which is the representation of the wall of units. Thus, if one can consider the LiDAR build-
ing points as truth ground points, this accuracy, however, can be improved if the AHN or
LiDAR point clouds are more abundant. It must be noted as well that planimetric accuracy
of AHN versions 2 to 4 is around 5 cm [AHN, 2020].

3D Web-based LAS Prototype
After the research, not all 3D LAS requirements listed from the literature review in Ta-

72

5.6. Reflection of Application

ble 2.1 can be implemented in this research due to time limitations and the point cloud
aspect, such as wireframe display, explode view, and sliding. Nevertheless, the majority of
essential functionalities have been incorporated into the 3D LAS web prototype, as detailed
in Table 5.4.

Digital twin is defined as a virtual representation of actual objects in real-world environ-
ments, synchronized through real-time data exchange [Park et al., 2023]. In this research, the
point cloud serves as a virtual model of the built environment, while the LADM database
provides the necessary data connections. Together, they constitute an instantiation of a dig-
ital twin for land administration purposes. In the context of the built environment, the
concept of a digital twin refers to an autonomous system representation that facilitates syn-
chronized and bidirectional updates, ensuring that any change in the virtual or physical
world is reflected and acted upon in the other [Osama, 2024]. Edit Form web feature en-
ables stakeholders to supply live data and update the LADM, implementing the lifecycle
management and digital governance. However, as the current framework does not yet in-
corporate sensors, it can be classified as Descriptive Twin Level 1 based on five Digital Twin
classifications by Autodesk [2024], see Figure 5.30. By incorporating integration of real-time
sensors, change detection workflows, or lifecycle event tracking (construction, renovation,
transaction updates), this 3D Web-based LAS prototype can evolve to a full Digital Twin.

For 3D Visualization of Land Administration Data For 3D Web Viewer
Implemented Implemented

Navigation tools and view controls ✓ Platform and browser independence ✓

Integrating topography and refer-
ence objects

✓ Handling massive data and
caching/tiling between server
and client

Transparency Layers control ✓

Object selection ✓ Database support ✓

Object search ✓ Support different models (vec-
tor/polyhedral, raster/voxel, point
clouds)

✓

Wireframe display Support of basic 3D topographic vi-
sualization

✓

Explode view Support for georeferencing ✓

Sliding Ensure spatial validity (3D vector
topology)

Cross-section view Underground view ✓

Visualization cues ✓ Open source platform ✓

3D measurement tools Possibility for the platform to be ex-
tended

✓

3D buffer 2D overview map (orientation) ✓

Display partly unbounded objects
and ’complex’ geometries

✓

Party / RRRs visualization and se-
lection

✓

Point cloud-based ✓

Table 5.4.: List of Implemented Features for 3D Visualization and Web Viewer

Point Cloud in 3D LAS
3D LAS based on BIM by Mao et al. [2024] is able to deliver nice visualization and many

features that may be hard to fulfill in 3D LAS based on point cloud. However, not all build-
ings, particularly older buildings, have BIM, and some buildings may have different BIM
formats that may also hinder the process. Point cloud and floor plan can be used as an alter-
native. Although the synthetic point cloud may deliver unusual visualization, its integration

73

5. Results

Figure 5.30.: Digital Twin Levels [Osama, 2024]

74

5.6. Reflection of Application

with more detailed LiDAR point clouds can yield a more realistic representation compared
to 3D mesh models of buildings, as they can seamlessly blend together. In the context of
land administration, the accurate visual representation of real-world features, such as walls
and fences, captured through LiDAR scanning, is particularly valuable, as these features
play a critical role in demarcating cadastral boundaries [Luo et al., 2016]. Additionally, as
AHN offers precise XYZ measurement, the height of the building and the floor can be sim-
ply calculated based on the AHN [Luo et al., 2016]. The height measurements are important
as a closed volume represents a legal space that is bounded by precise property bound-
aries and heights [Sun et al., 2019]. Despite point clouds are widely used as input data, not
final data, they can provide land administration information by storing them in an LADM-
compliant database. Most notably, since cadastral boundaries are determined by boundary
points measured from control points [Çağdaş et al., 2023], a key advantage of using point
clouds is their ability to preserve geometric representations that can be directly compared
to these high-accuracy reference points. This allows for point-by-point analysis of geometric
accuracy, aligning the point cloud data with precise cadastral measurements obtained via
GNSS. Therefore, the integration of point clouds is crucial for achieving accurate 3D repre-
sentations in land administration.

Further Implementation
The proposed pipeline requires approximately between 44 and 97 seconds per sample

from processing the floor plan to generating the synthetic building point cloud, as detailed
in Table 5.5. However, this estimate does not account for manual interventions that may
be necessary in certain cases, such as image noise cleaning, parameter tuning, and missing
cadastral number assignment. Despite these exceptions, the pipeline demonstrates sufficient
efficiency for large-scale or nationwide implementation, provided that some manual input
is accommodated when necessary.

Process Sample 1 Sample 2 Sample 3

Preprocessing 7 7 8
Vectorize 8 22 10
Georeference 1 2 1
Crop AHN 13 15 14
Segment AHN 5 6 6
Construct PC 9 31 4
Align & combine AHN 2 14 1
Total 45 97 44

Table 5.5.: Processing times across samples (in seconds).

75

6. Conclusion

This final chapter provides a summary of the findings and conclusions of this study. The
research questions presented in Section 1.2 Research Objectives are revisited to evaluate how
the proposed pipeline addresses the primary research questions. Based on this reflection,
the chapter also discusses the limitations of the study and suggests potential future works
for refinement.

6.1. Conclusion of research question

This research studies to what extent point clouds can represent and visualize 3D spatial
units. To address this main question, the answers to the sub-questions are as follows.

1. What is the suitable method to parse the floor plan?

The analysis in Section 5.1 Parsing Floor Plan demonstrated that by using a combina-
tion of OpenCV for vectorization, easyOCR for text detection, and MBR calculation for
Georeference, the cadastral drawings are able to be parsed and aligned with below 0.4
m RMSE. However, different styles of drawings may require different parameters that
need to be adjusted by the user, as cadastral drawings drawn by different notaries in
older times tend not to conform to the same format. As older drawings are mainly
scanned without high-quality resolution, some text, especially the number of cadastral
hard to detect by easyOCR. Thus, the method is able to parse the floor plan, but some
manual involvement is still required.

2. How can apartment spatial units be represented when exterior wall points are unavail-
able due to occlusion?

Combining multiple AHN versions often can lead to more points and more building
facades provided by the variation of flight path in different versions of AHN as de-
picted in Section 3.2 Segmenting AHN Point Cloud. However, the result in Section 5.2
Segmenting Point Cloud shows that some parts are still occluded in the study case,
either due to ALS flight elevation or the buildings located between other properties.
Thus, appending the synthetic point cloud from the floor plan, which also captures the
outer boundary, to AHN can help to visualize the building envelope.

3. What approach can be used to represent wall and slab points for apartment spatial
units inside the apartment building?

Result in Section 5.3 Synthetic Point Cloud Construction portrayed that generating
point clouds from a floor plan demonstrates a sufficient visualization to represent
spatial units. The interior geometry can be acquired without any further survey needed
to be conducted. By integrating elevation data from AHN that has been segmented into
wall, roof, and ground classes, the heights of both the ground floor and the roof can be
estimated accurately. Using these heights, wall points can be generated by extruding
the boundary polygons vertically. Similarly, slab points can be created by distributing
points within the interior of the polygons at two distinct elevations, corresponding to
the floor and roof heights obtained from AHN.

77

6. Conclusion

4. What approach can be used to accurately represent apartment spatial units and their
boundaries using point cloud?

The overall result reveals that integrating cadastral drawing, 2D parcel polygon, and
AHN can model both the indoor and the outdoor of the building. As boundaries of
spatial units are drawn by a thick line in the cadastral drawing, this offers a 3D repre-
sentation of the cadastral boundary of the building, and also within the building. The
pipeline delivers adequate-accuracy positioning, as the alignment process during 2D
in Section 5.1 Parsing Floor Plan has RMSE between 18-32 cm compared to the 2D par-
cel polygon. During 3D in Section 5.3 Synthetic Point Cloud Construction, it improves
to between 1.48-1.51 cm with 62-298 correspondence points found compared to AHN
points. This accuracy, however, relied on the quality of AHN. In the Netherlands, the
standard deviation for cadastral boundary positioning is 20 cm in urban areas and 40
cm in rural areas. The presented approach offers potential improvements over these
standards, especially as the quality and density of AHN data improve, where the cur-
rent version of AHN provides a planimetric accuracy of approximately 5 cm.

5. How can point clouds be stored in the LADM database for multi-spatial-unit apart-
ments, including living units, storage areas, and parking spaces, as a single basic
administrative unit?

As explained in Section 5.4 Point Cloud to LADM Storage, the point cloud can be
imported into PostgreSQL by using a CSV containing the 3D coordinates along with
their attributes. By linking the point cloud table that has a geometry column with the
other four main tables in LADM: party, right, BAUnit, and spatial unit, the points can
represent 3D spatial unit along their attributes. Multiple spatial units within the same
BAUnit can be associated by assigning them the same BAUnit identifier.

6. Which web architecture is suitable for representing and visualizing the resulting 3D
LAS?

Not only a building mesh, Cesium is also able to render a point cloud. Section 5.5 3D
Land Administration System Visualization proves that integrating cesium, Vue.js, and
FastAPI, the website offers 3D visualization and its LADM information. Some features
are also available to enrich the user experience, including 3D Land Administration Vi-
sualization, BAUnit Visualization Checkbox, Tooltip, Selection and Highlight, LADM
Instance Level Diagram, LADM Edit Form, and Underground View. However, several
challenges have been encountered, particularly in styling and information representa-
tion of point clouds in Cesium, which are less feature-rich and harder to customize
compared to the more straightforward options available for BIM models. Other 3D
viewer, such as Potree, has built-in features like 3D tools measurement that allow
users to directly measure points with other points and classification color filter, but
in Cesium, there is no such feature available. Nevertheless, Cesium enables direct
integration with OpenStreet Map and is easier to develop with Vue.js.

Main research question:

To what extent can point clouds represent and visualize 3D spatial units?

Instead of relying on an BIM model that may not be available for older buildings, this project
proposes an alternative approach using point clouds as 3D spatial units in a land admin-
istration system. By combining cadastral drawings and a point cloud nationwide dataset,
AHN, the buildings with their own spatial units can be generated in this framework with-
out additional survey or an existing BIM model. This approach also enables the seamless

78

6.2. Future Work

integration of real-world features provided from AHN such as building facades, walls, and
fences, which often delineate cadastral boundaries. Another advantage is their ability to pre-
serve geometric representation that can be directly compared to cadastral reference points
measured with GNSS. Although point clouds are widely used as input data rather than fi-
nal representation, by storing them in an LADM-compliant database and integrating them
with 3D web-based LAS, this proposed framework is able to provide and visualize land
administration information for the public and stakeholders, from identifying multi spatial
unit apartment to updating the land registry. Moreover, the system is capable of generating
a synthetic building point cloud in under two minutes per sample, indicating the feasibility
of future nationwide implementation.

However, several limitations identified in this study warrant further refinement, including
the need for manually tuning parameters and cleaning specific cadastral drawings because
of inconsistencies in quality and style, and misalignment due to occlusion in AHN data.

Given that the consistency and quality of cadastral drawings and AHN data significantly
influence the accuracy of the results, this study recommends to the relevant authorities that
cadastral drawings issued by notaries be standardized in terms of format and resolution.
Furthermore, the production of AHN data in urban areas should consider the use of higher-
accuracy methods.

The code for this project is available in GitHub, while the website can be accessed in
gist.bk.tudelft.nl/apps/LADMPointCloud/.

6.2. Future Work

Given the obstacles encountered and the new questions that emerged during this study,
several refinements are suggested for future research to address these limitations and further
improve the proposed pipeline:

• As the study only has a limited dataset, 3 apartment units, a larger-scale pilot (e.g.,
for an entire apartment block or city block) for future work could be conducted to
improve the pipeline performance and robustness. More samples for the cadastral
drawing can be utilized to develop a deep learning method, which has been popular
for architectural floor plan parsing [Liu et al., 2017; Kippers et al., 2021]. Since the ori-
entation of the floor plan also plays a big role in georeferencing, taking the front door
and road along the north arrow during parsing into consideration would be important
to explore. Implementing deep learning for AHN point cloud segmentation would
also be considered to get a higher accuracy for roof and wall classification, which will
affect more precise height calculation, as well as the height of the floor for the build-
ing. With more extensive training data, the pipeline could be extended to reconstruct
more complex and realistic building geometries. Thus, new research questions can be
asked, such as (1) how deep learning can parse the cadastral drawing that can iden-
tify the thick lines as cadastral boundary along with the building orientation based on
the north arrow, the front door, and the road?; (2) how to segment sparse AHN point
cloud with deep learning?; and (3) how to generate synthetic building point clouds
that closely resemble real-world structures.

• Considering this study proposes an alternative approach to developing 3D LAS using
point clouds instead of BIM, an additional research question arises: how does this
method perform in terms of accuracy, completeness, and usability for LAS compared
to the BIM-based approach?

79

https://github.com/citrandina/PointCloud3DLAS
https://gist.bk.tudelft.nl/apps/LADMPointCloud/

6. Conclusion

• Given that the current study focuses solely on datasets from the Netherlands, both
in terms of cadastral drawings and the availability of point cloud data such as AHN,
future research could explore the applicability of this method in other countries. This
includes utilizing alternative sources of point cloud data, such as drone-based ALS,
TLS, LiDAR, or stereo matching. Furthermore, future studies could investigate how
the algorithm performs when applied to various cadastral drawing styles from differ-
ent countries, thereby enhancing its robustness.

• Since geometry accuracy is a critical factor for land administration, future work can
focus on evaluating the accuracy for 3D LAS, as there is still limited research available
on this topic. Due to time limitations, occlusion correction has not been applied to
fill the occluded AHN point cloud, which plays a big role in point cloud alignment.
As the current ICP method still offers moderate-accuracy positioning, other alignment
algorithms may also need to be taken into consideration. Thus, it would be great to an-
alyze how occlusion correction can improve the accuracy, compare various alignment
methods that offer higher accuracy for point clouds that represent 3D LAS, and then
analyze how geometry accuracy can be validated in 3D LAS. Integration with a higher
resolution laser scanning point cloud may also be considered, such as drone-based
LiDAR, TLS, or MLS, or photogrammetric point clouds.

• Sharing the same objective as digital twin, which is supporting the spatial develop-
ment lifecycle, this 3D Web-based LAS prototype has the potential to evolve into a
fully digital twin by incorporating integration of real-time sensors, change detection
workflows, or lifecycle event tracking. As the current 3D LAS utilizes AHN that is
regularly updated and has Edit feature that allows stakeholders to update data, new
research can explore how a new version of AHN can be automatically incorporated
into the current 3D LAS and how the LADM Edit form can not only exclusive for
cadastral authority but also be expand into Crowdsourced sensors that allow public
to report and monitor any parcel boundary validation and land rights violations. This
opens the door to identifying which types of sensors and workflows can be imple-
mented to detect real-time modifications in the context of the LADM and digital twin,
which has been limited in recent studies.

• Future study can also focus on the visualization optimization, by comparing different
3D web viewers. Visualizing a point cloud dataset can become more efficient if one
can render the points directly from PostgreSQL or use converted 3DTILES that can still
store all the attributes in a features table to allow direct access for retrieving informa-
tion on the website. Incorporating other web viewers, such as Potree, can also provide
more features, as they have built-in point cloud measurements that allow users to mea-
sure the point accuracy which is essential for 3D LAS. Adaptive Level of Detail can
also be implemented to give a smoother visualization.

80

A. Reproducibility self-assessment

A.1. Marks for each of the criteria

Figure A.1.: Reproducibility criteria to be assessed.

1. Input data: 0 for cadastral drawings but 3 for two other datasets (AHN and cadastral
parcel)

2. Preprocessing: 2

3. Methods: 2

4. Computational environment: 2

5. Results: 2

A.2. Self-reflection

There are three datasets that are used in this research. First is the cadastral drawing that
needed to be acquired with a request to Kadaster, while other datasets, AHN, and cadastral
parcel are available as open data. The code for the entire process can be found at GitHub.

81

https://github.com/citrandina/PointCloud3DLAS

B. LADM UML Model

Figure B.1.: LADM UML Model

83

C. Georeference Method Explanation

First, it uses the MBR method to compute the orientation of the floor plan and parcel poly-
gon. Figure C.1 illustrates how this MBR computation worked in one of the floor plans,
Sample 3. It started by creating a convex hull, illustrated by a green dashed line, with the
red area representing the original polygon. It will iterate depending on the number of edges
on the convex hull, which in this floor plan polygon case is 11 (eleven). For each edge,
the arctan is computed, where the degree is used to rotate the polygon counterclockwise
towards the horizontal line. In the first iteration, the first edge consisted of two vertices
(690.88, 27.00) and (61.12, 30.00), where their dx and dy are (-629.75, 3.00). The arctan is
179.73°, so the original polygon is rotated by minus 179.73° toward the x-axis, which is al-
most flipped vertically, as drawn with the blue line in the image. The bounding box of
the rotated polygon, depicted with the orange dashed line, is created where the calculated
area is 958412.81. It continues to the next edge for the next iteration with the same steps
as before until all of the edges are computed. The angle with the minimum bounding box
area is chosen as the floor plan orientation. The same method is also applied to the parcel
polygon to get its polygon orientation. However, the number of iterations is different, as
the polygon may be simpler than the floor plan polygon, which contains fewer vertices. The
orientation of the floor plan polygon is -89.95° with a bounding box area of 953287.59, where
the parcel polygon is -62.35° with a bounding box area of 274.92, as compared in Figure C.3.
After standardizing the orientation of both polygons, the angular difference between the
floor plan and parcel polygons defined the rotation angle for alignment. Thus, the floor plan
is rotated by 27.61° to match the parcel polygon, as illustrated in Figure C.4. The second
transformation parameter, scaling, is estimated by calculating a bounding box for the parcel
polygon [89764.77, 436716.89, 89785.40, 436742.42] along with the floor plan after the ro-
tation alignment [−223.87752112, −52.41846511, 995.22210699, 1436.90429306]. The x scale
factor is derived by dividing the width of the cadastral bounding box by the width of the

rotated floor plan bounding box, i.e., 89785.40−89764.77
995.2221−(−223.8775)

= 0.0169, while the y scale factor is

derived by dividing the height of the cadastral bounding box by the height of the rotated

floor plan bounding box, i.e., 436742.42−436716.89
1436.9043−(−52.4185)

= 0.0171. As the floor plan polygon has not

been located in the real-world coordinate, after scaling the floor plan using both x and y
scale factors, the difference of lower-left corner coordinate between the cadastral and scaled
floor plan bounding box is computed: translation x = 89764.77 - (-223.88 × 0.0169) = 89768.56
and translation y = 436716.89 - (-52.42 × 0.0171) = 436717.79, and then used to translate the
floor plan to the correct geographic location.

85

C. Georeference Method Explanation

Figure C.1.: MBR Calculation in Floor plan polygon

86

Figure C.2.: MBR Calculation in parcel polygon

Figure C.3.: Comparison of Floor plan and parcel polygon orientation

Figure C.4.: Rotated Floor plan

87

Bibliography

AHN. Kwaliteitsbeschrijving, February 2020. URL https://www.ahn.nl/

kwaliteitsbeschrijving. Publisher: AHN.

Rubén Alonso, Mikel Borras, Rembrandt H. E. M. Koppelaar, Alessandro Lodigiani, Eduard
Loscos, and Emre Yöntem. SPHERE: BIM Digital Twin Platform. In Sustainable Places 2019,
page 9. MDPI, July 2019. doi: 10.3390/proceedings2019020009. URL https://www.mdpi.

com/2504-3900/20/1/9.

Autodesk. What is a digital twin? Intelligent data models shape the built world, 2024. URL
https://www.autodesk.com/design-make/articles/what-is-a-digital-twin.

Marc Baauw. Maintaining an up to date digital twin by direct use of point cloud data. Mas-
ter’s thesis, Delft University of Technology, 2021. URL https://gdmc.nl/publications/

2021/MScThesisMarcBaauw.pdf.

Jesús Balado, Lucı́a Dı́az-Vilariño, Pedro Arias, and Henrique Lorenzo. Point clouds for
direct pedestrian pathfinding in urban environments. ISPRS Journal of Photogramme-
try and Remote Sensing, 148:184–196, February 2019. ISSN 0924-2716. doi: 10.1016/
j.isprsjprs.2019.01.004. URL https://www.sciencedirect.com/science/article/pii/

S0924271619300048.

C. Beil, T. Kutzner, B. Schwab, B. Willenborg, A. Gawronski, and T. H. Kolbe. In-
tegration of 3D Point Clouds with Semantic 3D City Models – Providing Se-
mantic Information Beyond Classification. ISPRS Annals of the Photogrammetry,
Remote Sensing and Spatial Information Sciences, VIII-4-W2-2021:105–112, October
2021. ISSN 2194-9042. doi: 10.5194/isprs-annals-VIII-4-W2-2021-105-2021. URL
https://isprs-annals.copernicus.org/articles/VIII-4-W2-2021/105/2021/

isprs-annals-VIII-4-W2-2021-105-2021.html. Conference Name: ISPRS TC
IV
16th 3D GeoInfo Conference 2021 - 11–14 October 2021, New York
City, USA Publisher: Copernicus GmbH.

Doug A. Bowman, Ryan P. McMahan, and Eric D. Ragan. Questioning naturalism in 3D user
interfaces. Communications of the ACM, 55(9):78–88, September 2012. ISSN 0001-0782, 1557-
7317. doi: 10.1145/2330667.2330687. URL https://dl.acm.org/doi/10.1145/2330667.

2330687.

Jarosław Bydłosz, Artur Warchoł, Monika Balawejder, and Agnieszka Bieda. Prac-
tical verification of Polish 3D cadastral model. 2021. doi: 10.4233/
uuid:884b0c33-0d8e-40fd-bb88-669b21798a65. URL https://doi.org/10.4233/uuid:

884b0c33-0d8e-40fd-bb88-669b21798a65.

Barbara Cemellini. Web-based visualization of 3D cadastre. Technical report, 2018.

Barbara Cemellini, Peter van Oosterom, Rod Thompson, and Marian de Vries. Design,
development and usability testing of an LADM compliant 3D Cadastral prototype system.
Land Use Policy, 98, November 2020. ISSN 02648377. doi: 10.1016/j.landusepol.2019.
104418. Publisher: Elsevier Ltd.

89

https://www.ahn.nl/kwaliteitsbeschrijving
https://www.ahn.nl/kwaliteitsbeschrijving
https://www.mdpi.com/2504-3900/20/1/9
https://www.mdpi.com/2504-3900/20/1/9
https://www.autodesk.com/design-make/articles/what-is-a-digital-twin
https://gdmc.nl/publications/2021/MScThesisMarcBaauw.pdf
https://gdmc.nl/publications/2021/MScThesisMarcBaauw.pdf
https://www.sciencedirect.com/science/article/pii/S0924271619300048
https://www.sciencedirect.com/science/article/pii/S0924271619300048
https://isprs-annals.copernicus.org/articles/VIII-4-W2-2021/105/2021/isprs-annals-VIII-4-W2-2021-105-2021.html
https://isprs-annals.copernicus.org/articles/VIII-4-W2-2021/105/2021/isprs-annals-VIII-4-W2-2021-105-2021.html
https://dl.acm.org/doi/10.1145/2330667.2330687
https://dl.acm.org/doi/10.1145/2330667.2330687
https://doi.org/10.4233/uuid:884b0c33-0d8e-40fd-bb88-669b21798a65
https://doi.org/10.4233/uuid:884b0c33-0d8e-40fd-bb88-669b21798a65

Bibliography

Grebstew. grebtsew/FloorplanToBlender3d: Create 3d rooms in blender from floorplans.,
2021. URL https://github.com/grebtsew/FloorplanToBlender3d.

Eric Hagemans. Development in Cadastral Surveying and Mapping in the Netherlands:
About the Improved Cadastral Map of The Netherlands: Kadastrale Kaart Next. Kart og
Plan, 117(2):230–240, August 2024. ISSN 0047-3278, 2535-6003. doi: 10.18261/kp.117.2.10.
URL https://www.scup.com/doi/10.18261/kp.117.2.10.

Tommy Hinks, Hamish Carr, Hamid Gharibi, and Debra F. Laefer. Visualisation of urban
airborne laser scanning data with occlusion images. ISPRS Journal of Photogrammetry and
Remote Sensing, 104:77–87, June 2015. ISSN 0924-2716. doi: 10.1016/j.isprsjprs.2015.01.014.
URL https://www.sciencedirect.com/science/article/pii/S0924271615000325.

Jin Huang, Jantien Stoter, Ravi Peters, and Liangliang Nan. City3D: Large-Scale Building
Reconstruction from Airborne LiDAR Point Clouds. Remote Sensing, 14(9):2254, January
2022. ISSN 2072-4292. doi: 10.3390/rs14092254. URL https://www.mdpi.com/2072-4292/

14/9/2254. Number: 9 Publisher: Multidisciplinary Digital Publishing Institute.

E Kalogianni. Linking the Legal with the Physical Reality of 3D Objects in the Context
of Land Administration Domain Model (LADM). Master’s thesis, Delft University of
Technology Delft, The Netherlands, 2016.

Eftychia Kalogianni, Peter Van Oosterom, Efi Dimopoulou, and Christiaan Lemmen. 3D
Land Administration: A Review and a Future Vision in the Context of the Spatial Develop-
ment Lifecycle. ISPRS International Journal of Geo-Information, 9(2):107, February 2020. ISSN
2220-9964. doi: 10.3390/ijgi9020107. URL https://www.mdpi.com/2220-9964/9/2/107.

Abdullah Kara, Christiaan Lemmen, Peter Van Oosterom, Eftychia Kalogianni, Abdullah
Alattas, and Agung Indrajit. Design of the new structure and capabilities of LADM edition
II including 3D aspects. Land Use Policy, 137:107003, February 2024. ISSN 02648377. doi:
10.1016/j.landusepol.2023.107003. URL https://linkinghub.elsevier.com/retrieve/

pii/S0264837723004696.

R. G. Kippers, M. Koeva, M. Van Keulen, and S. J. Oude Elberink. Automatic 3D Building
Model Generation Using Deep Learning Methods Based on CityJSON and 2D Floor Plans.
In International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sci-
ences - ISPRS Archives, volume 46, pages 49–54. International Society for Photogrammetry
and Remote Sensing, October 2021. doi: 10.5194/isprs-archives-XLVI-4-W4-2021-49-2021.
Issue: 4/W4-2021 ISSN: 16821750.

Mila Koeva, Shayan Nikoohemat, Sander Oude Elberink, Javier Morales, Christiaan Lem-
men, and Jaap Zevenbergen. Towards 3D indoor cadastre based on change detection
from point clouds. Remote Sensing, 11(17), 2019. ISSN 20724292. doi: 10.3390/rs11171972.
Publisher: MDPI AG.

Ministerie van Binnenlandse Zaken en Koninkrijksrelaties. Uitvoeringsregeling Kadaster-
wet 1994. URL https://wetten.overheid.nl/BWBR0006596/2017-03-10/#Hoofdstuk2_

Artikel6. Last Modified: 2024-02-24.

Hugo Ledoux, Ken Arroyo Ohori, Ravi Peters, and Maarten Pronk. Computational mod-
elling of terrains. 2023.

90

https://github.com/grebtsew/FloorplanToBlender3d
https://www.scup.com/doi/10.18261/kp.117.2.10
https://www.sciencedirect.com/science/article/pii/S0924271615000325
https://www.mdpi.com/2072-4292/14/9/2254
https://www.mdpi.com/2072-4292/14/9/2254
https://www.mdpi.com/2220-9964/9/2/107
https://linkinghub.elsevier.com/retrieve/pii/S0264837723004696
https://linkinghub.elsevier.com/retrieve/pii/S0264837723004696
https://wetten.overheid.nl/BWBR0006596/2017-03-10/#Hoofdstuk2_Artikel6
https://wetten.overheid.nl/BWBR0006596/2017-03-10/#Hoofdstuk2_Artikel6

Bibliography

CHJ Lemmen, MC Chipofya, A Da Silva Mano, Abdullah Kara, Dennis Ushiña Huera,
Peter JM van Oosterom, Eftychia Kalogianni, Eva-Maria Morscher-Unger, JM Morales
Guarin, Anthony Beck, and others. LADM in the Classroom. 2025. Publisher: Inter-
national Federation of Surveyors (FIG).

Christiaan Lemmen, Peter Van Oosterom, and Rohan Bennett. The Land Administration
Domain Model. Land Use Policy, 49:535–545, December 2015. ISSN 02648377. doi: 10.
1016/j.landusepol.2015.01.014. URL https://linkinghub.elsevier.com/retrieve/pii/

S0264837715000174.

Chen Liu, Jiajun Wu, Pushmeet Kohli, and Yasutaka Furukawa. Raster-to-Vector: Revisiting
Floorplan Transformation. In 2017 IEEE International Conference on Computer Vision (ICCV),
pages 2214–2222, October 2017. doi: 10.1109/ICCV.2017.241. URL https://ieeexplore.

ieee.org/document/8237503. ISSN: 2380-7504.

Xianghuan Luo, Rohan Bennett, Mila Koeva, and Nathan Quadros. Cadastral boundaries
from point clouds?: Towards semi-automated cadastral boundary extraction from ALS
data. GIM international, 30:16–17, 2016. Publisher: GITC BV.

Niek Manders. Comparing AHN point clouds for their performance in representing
3D buildings in Zuid-Holland: A quantitative and qualitative performance review
between AHN3 and AHN4, 2023. URL https://www.gdmc.nl/publications/2023/

MScThesisNiekManders.pdf.

Ping Mao, Peter van Oosterom, and Azarakhsh Rafiee. A digital twin based on Land Ad-
ministration. 2024.

Roeland Willem Erik Meulmeester. BIM Legal: Proposal for defining legal spaces for apart-
ment rights in the Dutch cadastre using the IFC data model. 2019.

Tran Duong Nguyen and Sanjeev Adhikari. The Role of BIM in Integrating Digital Twin
in Building Construction: A Literature Review. Sustainability, 15(13):10462, January 2023.
ISSN 2071-1050. doi: 10.3390/su151310462. URL https://www.mdpi.com/2071-1050/15/

13/10462. Number: 13 Publisher: Multidisciplinary Digital Publishing Institute.

Bas Nottrot, Erwin Folmer, Debraj Roy, Bob Scheer, and Peter Merx. Multi-unit building
address geocoding: An approach without indoor location reference data. Transactions in
GIS, 27(1):57–83, February 2023. ISSN 1361-1682, 1467-9671. doi: 10.1111/tgis.13017. URL
https://onlinelibrary.wiley.com/doi/10.1111/tgis.13017.

Peter van Oosterom, Jantien Stoter, Hendrik Ploeger, Rod Thompson, and Sudarshan Karki.
World-wide Inventory of the Status of 3D Cadastres in 2010 and Expectations for 2014.
Bridging the Gap between Cultures, 2011.

Zaid Osama. The digital twin framework: A roadmap to the development of user- centred
digital twin in the built environment. Journal of Building Engineering, 98:111081, Decem-
ber 2024. ISSN 23527102. doi: 10.1016/j.jobe.2024.111081. URL https://linkinghub.

elsevier.com/retrieve/pii/S2352710224026494.

JungHo Park, WonGeun Choi, TaeYun Jeong, and JinJae Seo. Digital twins and land man-
agement in South Korea. Land Use Policy, 124:106442, January 2023. ISSN 02648377. doi:
10.1016/j.landusepol.2022.106442. URL https://linkinghub.elsevier.com/retrieve/

pii/S0264837722004690.

91

https://linkinghub.elsevier.com/retrieve/pii/S0264837715000174
https://linkinghub.elsevier.com/retrieve/pii/S0264837715000174
https://ieeexplore.ieee.org/document/8237503
https://ieeexplore.ieee.org/document/8237503
https://www.gdmc.nl/publications/2023/MScThesisNiekManders.pdf
https://www.gdmc.nl/publications/2023/MScThesisNiekManders.pdf
https://www.mdpi.com/2071-1050/15/13/10462
https://www.mdpi.com/2071-1050/15/13/10462
https://onlinelibrary.wiley.com/doi/10.1111/tgis.13017
https://linkinghub.elsevier.com/retrieve/pii/S2352710224026494
https://linkinghub.elsevier.com/retrieve/pii/S2352710224026494
https://linkinghub.elsevier.com/retrieve/pii/S0264837722004690
https://linkinghub.elsevier.com/retrieve/pii/S0264837722004690

Bibliography

Jacynthe Pouliot, Claire Ellul, Frédéric Hubert, Chen Wang, Abbas Rajabifard, Mohsen
Kalantari, Davood Shojaei, Behnam Atazadeh, and Peter VAN Oosterom. 3D Cadastres
Best Practices, Chapter 5: Visualization and New Opportunities. 2018.

Florent Poux. The Smart Point Cloud Model: Integration of point intelligence. December
2019. URL https://orbi.uliege.be/handle/2268/242190.

Davood Shojaei, Mohsen Kalantari, Ian D. Bishop, Abbas Rajabifard, and Ali Aien. Visual-
ization requirements for 3D cadastral systems. Computers, Environment and Urban Systems,
41:39–54, September 2013. ISSN 01989715. doi: 10.1016/j.compenvurbsys.2013.04.003.
URL https://linkinghub.elsevier.com/retrieve/pii/S0198971513000422.

A. Steed. Towards a General Model for Selection in Virtual Environments. In 3D User
Interfaces (3DUI’06), pages 103–110, March 2006. doi: 10.1109/VR.2006.134. URL https:

//ieeexplore.ieee.org/document/1647515.

Jing Sun, Siying Mi, Per-ola Olsson, Jenny Paulsson, and Lars Harrie. Utilizing BIM and GIS
for Representation and Visualization of 3D Cadastre. ISPRS International Journal of Geo-
Information, 8(11):503, November 2019. ISSN 2220-9964. doi: 10.3390/ijgi8110503. URL
https://www.mdpi.com/2220-9964/8/11/503. Number: 11 Publisher: Multidisciplinary
Digital Publishing Institute.

Christian Tiberius, Hans Van Der Marel, Rene Reudink, and Freek Van Leijen. Surveying and
Mapping. TU Delft OPEN Publishing, 2022. ISBN 978-94-6366-489-9. doi: 10.5074/T.2021.
007. URL https://textbooks.open.tudelft.nl/textbooks/catalog/book/46.

Matthias Trapp, Christian Beesk, Sebastian Pasewaldt, and Jürgen Döllner. Interactive
Rendering Techniques for Highlighting in 3D Geovirtual Environments. In Thomas H.
Kolbe, Gerhard König, and Claus Nagel, editors, Advances in 3D Geo-Information Sci-
ences, pages 197–210. Springer, Berlin, Heidelberg, 2011. ISBN 978-3-642-12670-3. doi:
10.1007/978-3-642-12670-3 12. URL https://doi.org/10.1007/978-3-642-12670-3_12.

Peter Van Oosterom. Research and development in 3D cadastres. Computers, Environment
and Urban Systems, 40:1–6, July 2013. ISSN 01989715. doi: 10.1016/j.compenvurbsys.2013.
01.002.

George Vosselman, editor. Airborne and terrestrial laser scanning. Whittles Publ, Caithness,
repr edition, 2011. ISBN 978-1-904445-87-6 978-1-4398-2798-7.

Chen Wang, Jacynthe Pouliot, and Frédéric Hubert. Visualization Principles in 3D Cadastre:
A First Assessment of Visual Variables. 2012.

Fang Wang and Zijian Zhao. A survey of iterative closest point algorithm. In 2017 Chinese Au-
tomation Congress (CAC), pages 4395–4399, October 2017. doi: 10.1109/CAC.2017.8243553.
URL https://ieeexplore.ieee.org/abstract/document/8243553.

Paul R. Wolf, Bon A. Dewitt, and Benjamin E. Wilkinson. Coordinate Transformations.
McGraw-Hill Education, New York, 4th edition edition, 2014. ISBN 978-0-07-176112-
3. URL https://www.accessengineeringlibrary.com/content/book/9780071761123/

back-matter/appendix3.

Xuetao Yin, Peter Wonka, and Anshuman Razdan. Generating 3D Building Models from
Architectural Drawings: A Survey. IEEE Computer Graphics and Applications, 29(1):20–30,
January 2009. ISSN 1558-1756. doi: 10.1109/MCG.2009.9. URL https://ieeexplore.

92

https://orbi.uliege.be/handle/2268/242190
https://linkinghub.elsevier.com/retrieve/pii/S0198971513000422
https://ieeexplore.ieee.org/document/1647515
https://ieeexplore.ieee.org/document/1647515
https://www.mdpi.com/2220-9964/8/11/503
https://textbooks.open.tudelft.nl/textbooks/catalog/book/46
https://doi.org/10.1007/978-3-642-12670-3_12
https://ieeexplore.ieee.org/abstract/document/8243553
https://www.accessengineeringlibrary.com/content/book/9780071761123/back-matter/appendix3
https://www.accessengineeringlibrary.com/content/book/9780071761123/back-matter/appendix3
https://ieeexplore.ieee.org/document/4736453/?arnumber=4736453
https://ieeexplore.ieee.org/document/4736453/?arnumber=4736453
https://ieeexplore.ieee.org/document/4736453/?arnumber=4736453

Bibliography

ieee.org/document/4736453/?arnumber=4736453. Conference Name: IEEE Computer
Graphics and Applications.

Wuming Zhang, Jianbo Qi, Peng Wan, Hongtao Wang, Donghui Xie, Xiaoyan Wang, and
Guangjian Yan. An Easy-to-Use Airborne LiDAR Data Filtering Method Based on Cloth
Simulation. Remote Sensing, 8(6):501, June 2016. ISSN 2072-4292. doi: 10.3390/rs8060501.
URL https://www.mdpi.com/2072-4292/8/6/501. Number: 6 Publisher: Multidisci-
plinary Digital Publishing Institute.

Volkan Çağdaş, Abdullah Kara, Anka Lisec, Jesper M. Paasch, Jenny Paulsson, Tanja L.
Skovsgaard, and Amalia Velasco. Determination of the property boundary – A review
of selected civil law jurisdictions. Land Use Policy, 124:106445, January 2023. ISSN
02648377. doi: 10.1016/j.landusepol.2022.106445. URL https://linkinghub.elsevier.

com/retrieve/pii/S0264837722004720.

93

https://ieeexplore.ieee.org/document/4736453/?arnumber=4736453
https://ieeexplore.ieee.org/document/4736453/?arnumber=4736453
https://ieeexplore.ieee.org/document/4736453/?arnumber=4736453
https://ieeexplore.ieee.org/document/4736453/?arnumber=4736453
https://www.mdpi.com/2072-4292/8/6/501
https://linkinghub.elsevier.com/retrieve/pii/S0264837722004720
https://linkinghub.elsevier.com/retrieve/pii/S0264837722004720

Colophon

This document was typeset using LATEX, using the KOMA-Script class scrbook. The main
font is Palatino.

	Introduction
	Introduction
	Research Objectives
	Scope
	Thesis Outline

	Related Work
	Point Cloud
	Floor Plan
	LADM and IFC
	3D LAS Visualization

	Methodology
	Parsing the floor plan
	Segmenting AHN Point Cloud
	Generating Synthetic Point Cloud
	Storing Point Cloud to LADM
	Visualizing 3D LAS

	Implementation
	Tools
	Datasets

	Results
	Parsing Floor Plan
	Segmenting Point Cloud
	Synthetic Point Cloud Construction
	Point Cloud to LADM Storage
	3D Land Administration System Visualization
	Reflection of Application

	Conclusion
	Conclusion of research question
	Future Work

	Reproducibility self-assessment
	Marks for each of the criteria
	Self-reflection

	LADM UML Model
	Georeference Method Explanation

