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Abstract 

The building sector represents the highest share of operational energy consumption across all 
sectors, with a significant portion attributed to the inefficiency of the existing building stock. In 
this context, building retrofit plays a crucial role in enhancing energy efficiency and reducing 
environmental impact. However, conventional models for assessing retrofit scenarios are 
highly computationally expensive, thereby slowing down the retrofit process. This research 
addresses this challenge by developing an AI-based surrogate model using Multi-Task Learning 
(MTL). The proposed MTL model significantly reduces computational costs while 
simultaneously predicting energy consumption, costs, embodied carbon, and thermal comfort. 
Additionally, Multi-Objective Optimization (MOO) and Multi-Criteria Decision Making (MCDM) 
techniques are employed to select optimal retrofit solutions Results demonstrate that the MTL 
model accelerates the retrofit simulation process from 90 minutes to just 2 seconds, 
highlighting its potential to streamline and enhance retrofit decision-making processes. 

Keywords: building retrofit, energy efficiency, AI-based model, multi-task learning, surrogate 
models, computational efficiency, embodied carbon, energy consumption prediction, retrofit 
simulation 
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1. Research framework 

1.1 Background 
The large amount of greenhouse gases (GHG) we are releasing into the environment is driving 
significant climate change across the planet. As a consequence, we are witnessing a marked 
increase in the frequency and intensity of extreme weather events, a trend that is likely to 
worsen in the future. Events such as severe floods, strong heat waves, hurricanes, and 
persistent droughts are becoming increasingly common, presenting serious challenges to our 
society. These intensifying climatic disruptions will continue to strain our communities, 
economies, and ecosystems, requiring urgent efforts to mitigate their impacts and adapt to the 
changing climate. 

1.2 Problem statement 
According to the European Commission, the operational energy used in the building sector 
accounts for nearly 40% of total energy consumption and 36% of CO2 emissions (Cuffe, 2020). 
Consequently, reducing the environmental footprint of the building sector is a crucial step 
toward achieving a more sustainable environment. Policymakers seem to have a strong 
understanding of the need to improve the energy efficiency of buildings, leading to the 
establishment of energy-saving targets at both national and continental levels. For instance, in 
Europe, these targets are set by the Energy Performance of Buildings Directive (EPBD), its 
subsequent amendments, and the most recent directive with a focus on building retrofits. 

One of the key goals of the EPBD is for all new buildings to be nearly zero-energy buildings. 
While this is a necessary measure, it is not sufficient on its own to reduce the overall 
environmental impact of buildings. The implementation of advanced and efficient energy 
models to guide construction practices can ensure that new buildings operate efficiently and 
sustainably, potentially achieving nearly zero-energy status. However, constructing new 
energy-efficient buildings will only stabilize current levels of energy consumption and 
greenhouse gas (GHG) emissions, without contributing to their reduction. 

The European building stock comprises a significant number of aging structures, with 35% of 
buildings being over 50 years old and a retrofit rate of less than 1.2% per year (Cuffe, 2020). In 
the Netherlands, approximately 46.8% of the buildings were constructed more than 50 years 
ago (ministerie van Binnenlandse Zaken en Koninkrijksrelaties, 2022). Therefore, to 
meaningfully reduce energy consumption and GHG emissions, special attention must be given 
to the existing building stock. Retrofitting existing buildings is one of the most promising 
strategies in this regard. 

Building retrofits are often seen as optional decisions made by landlords, requiring substantial 
capital investment. Unfortunately, retrofitting is typically not a priority for low-income 
individuals. Without retrofitting, these residents not only continue to contribute to CO2 
emissions but also face numerous other consequences. For example, as heat waves become 
more frequent, indoor temperatures in their homes could reach dangerously high levels, 
increasing the risk of hospitalization and overburdening healthcare systems. The discomfort 
caused by high indoor temperatures can lead to serious health issues and poor living 
conditions, which in turn may have negative psychological effects and potentially increase 
crime rates among residents. 

In the Netherland, low-income families often reside in buildings managed by housing 
corporations. This means that these corporations have significant influence over a large portion 



 

 

of the building stock and are responsible for the living conditions of many low-income families. 
Given that housing corporations can impact a considerable percentage of the building stock 
and have a vested interest in upgrading their properties to comply with new regulations, they 
emerge as key stakeholders in this project. 

Building retrofit involves a wide range of interventions and it is considered a highly complex 
process, typically carried out by energy consultants. These consultants are equipped with 
specialized engineering tools to provide retrofit solutions to decision-makers. While these 
models offer great accuracy, they are also computationally expensive, which can slow down 
the entire process.  

For this reason, it is crucial to develop computationally efficient tools that can enhance the 
process and simplify building retrofits. These models could significantly accelerate the 
identification and implementation of effective retrofit measures, reducing the time and 
resources required for analysis. By making retrofitting more accessible and scalable, 
particularly for housing corporations and smaller stakeholders, such tools could help target 
interventions with high environmental and social impact. This would support efforts to lower 
energy consumption and CO2 emissions while potentially improving living conditions for 
vulnerable populations and contributing to long-term sustainability goals. 

1.3 Research objectives 
The primary goal of this project is to ensure good living conditions for low-income families while 
actively contributing to the reduction of the environmental crisis. This involves providing 
efficient, future-proof housing solutions that not only cater to the needs of low-income families 
but also reduce the CO2 emissions associated with the built environment. To achieve this 
overarching goal, the project focuses on developing an AI-based model designed to make the 
building retrofit process faster and more accessible. 

In pursuit of this goal, the following objectives must be accomplished: 

A – Development of an AI-based surrogate model 
This project aims to develop an AI-driven surrogate model to select optimal building envelope 
retrofit solutions for terraced houses, considering heat waves in the Netherlands. The choice of 
developing a surrogate model has been made since it offers a good trade-off between accuracy 
and computational efficiency. The model will be built using machine learning (ML) algorithms, 
specifically artificial neural networks (ANNs). The surrogate model will serve four primary 
purposes: 
   1. Environmental Impact: embodied carbon of materials used in envelope retrofit solutions; 
   2. Economic Impact: investment costs associated with the retrofit solution; 
   3. Thermal Comfort:  indoor thermal comfort, 
   4. Energy consumption: annual energy consumption of the retrofitted building. 

B – Development of a decision-making tool 
Implement a tool that leverages Multi-Objective Optimization (MOO) and Multi-Criteria 
Decision-Making (MCDM) methodologies to identify optimal retrofit solutions. Within this 
framework, four objectives are minimized, with thermal comfort as the sole objective targeted 
for maximization. The "optimal" solution is determined by balancing the outcomes of the 
optimization process with the client’s specific preferences and priorities. 

C – Projections of heat waves 
Project future heat wave patterns to better understand their potential impact on building 
performance and occupant comfort. 



 

 

D – Identification of conventional envelope retrofit solutions 
Identify and evaluate existing conventional envelope retrofit solutions to ensure they meet the 
project's environmental and economic goals. 

1.4 Research questions 
Given the problem statement mentioned above, the main research question of this project is: 

How to develop an AI-based surrogate model to select optimal building envelope retrofit 
solutions for a terraced house in the Netherland considering the effect of heat waves in 

future weather? 

To address the research question, the following sub-questions have been formulated: 

- Which is the complete workflow of a model that selects optimal building envelope 
retrofit solutions considering heat waves in the Netherlands? 

- Which type of AI is it better to implement for a surrogate model that identifies optimal 
building envelope retrofit solutions terraced houses? 

- What are the heat waves projection data for the future? 

- Which are commonly used building retrofit envelope solutions for a terraced house in 
the Netherlands? 

- Which are optimal building envelope retrofit solutions considering heat waves in the 
Netherlands? 

1.5 Research methodology 
Literature research 
To establish the overall framework of the project and identify a relevant research gap, a 
comprehensive state-of-the-art review is conducted across selected areas of research. Initially, 
an investigation into European retrofit policies, with a particular emphasis on the Dutch 
context, is undertaken. This is followed by an examination of the standard phases of the retrofit 
process. Subsequently, a focused study is carried out on the energy simulation models used in 
the retrofitting process. This includes an analysis of the advantages and limitations of the two 
main categories: physics-based models and data-based models. Lastly, specific attention is 
given to AI-based models employed in this context, exploring how they are typically integrated 
into the multi-criteria decision-making process. 

Base building and retrofit scenarios selection 
A typical Dutch building archetype is selected as the primary subject of analysis in this 
research, with potential expansion to other archetypes if time permits. Details regarding the 
geometry, materials, and systems of the base building are then defined, alongside reliable 
sources to guide the selection of common retrofit options for this archetype. Decisions are 
made regarding which costs associated with each retrofit option will be considered. 
Additionally, a choice is made about which aspects of environmental impact will be included in 
the analysis. Following this, reliable sources for both costs and environmental impacts 
associated with each retrofit scenario are identified. A final list of retrofit scenarios is created, 
specifying the thermal properties,  technical details, cost and embodied carbon of each 
intervention. 

Weather file generation 
A location for the analysis building is selected, along with a base weather file corresponding to 
that location. Decisions are also made regarding the specific time horizons to be included in the 



 

 

analysis. Heat wave projections for the chosen location and selected time horizons are 
researched. Finally, the base weather file is modified to incorporate heat wave data for each 
time scenario. 

EnergyPlus simulations 
To perform simulations with EnergyPlus, detailed information on the retrofit scenarios, the 
weather files for analysis, and the IDF file of the base building are required. Initially, a 
Grasshopper script is created using LadyBug Tools and Honeybee to generate the IDF file for 
the base model under analysis. Once this is completed, all necessary inputs for running the 
EnergyPlus simulations are prepared. For each retrofit scenario, the model generates specific 
IDF files, and simulations are conducted for each weather file. The desired outputs from these 
simulations are daily energy consumption and maximum indoor temperature. 

AI-Based surrogate development 
The most suitable type of AI for the research is selected, with a detailed overview of input and 
output features. Specific libraries are imported, and the input dataset is preprocessed. The 
architecture of the selected model is then implemented, and the model is trained, validated 
and tested. After that,  the implementation and testing of the Multi-Objective Optimization to 
ensure it functions as intended. 

Decision-making tool development 
The most suitable Multi Objectives Optimization algorithm and Multi Criteria Decision Making 
methodology are selected and implemented in the workflow. 

Results and conclusions 
The model is run multiple times, applying various constraints within the MOO and MCDM. The 
resulting outputs are then analyzed and interpreted. The study concludes with a discussion and 
evaluation of the tool development process, an examination of its limitations, and 
recommendations for future improvements. 

The overall research methodology is summarized and presented in Figure 1. 

 



 

 

 

Figure 1 - Overall research methodology (Source: Own Source) 
 

1.6 Boundary conditions 
The retrofit scenarios examined in this study are confined to modifications of the building 
envelope, focusing specifically on the façade, ground floor, windows (both glass and frame), 
and roof. These interventions are primarily characterized by the addition of insulation to the 
existing structural components, with the exception of the window retrofits, which involve the 
replacement of the glass and the frame across all windows in the building. 

These retrofit measures are designed for a mid-unit terraced house, representative of those 
constructed between 1946 and 1964. The final selection of the optimal retrofit solution utilizes 
Lelystad as the reference location. Furthermore, the analysis does not incorporate the 
influence of the surrounding building context on the performance outcomes.  



 

 

2. Literature review 

2.1 Retrofit policies  
The European and Dutch building stock and related energy consumption 

The energy inefficiency of many European buildings largely stems from the relatively late 
establishment of energy-related regulations and functional standards across various countries. 
The earliest building energy codes were introduced in the 1960s within Scandinavian nations 
(Furtado et al., 2023). Gradually, other European countries developed and updated these 
codes, particularly in response to European directives. From an energy perspective, the 
European Union released its initial Energy Performance of Buildings Directive in 2002 
(Economidou et al., 2020). By that time, however, most European countries had already 
developed their national energy standards, with initial versions dating back to the early 1990s. 
Consequently, much of the masonry building stock across Europe was constructed before 
energy efficiency requirements were implemented. 

Significant energy efficiency issues in European buildings are mainly due to inadequate 
insulation in building envelopes and poor thermal characteristics in façade and windows. 
Furthermore, inefficient heating, cooling, and water-heating systems in older buildings 
contribute to substantial energy consumption. Outdated lighting systems further exacerbate 
energy use and related CO₂ emissions.  

(European Commission, 2020) highlights that energy use for space heating accounts for the 
largest share in the residential sector, with an average of 67.74% of total energy consumption 
across Europe. In colder climates such as those of the Netherlands, Denmark, and Finland, the 
need for heating is closely linked to the climate, whereas in moderate climates, like those in 
Italy and Croatia, inefficiencies in building design and insulation play a significant role.  

Final household energy consumption for heating in 2020 (see Figure 2) underscores the need for 
some countries to improve the efficiency of their building stock. The graph shown shows that 
the Netherlands, together with Germany, Italy, Spain, France and Poland, rank above the 
European average consumption line of 7,618.  

Figure 2 Final energy consumption in households in 2020 (Source: Furtado et al., 2023) 

 



 

 

In the specific context of the Netherlands, useful data are provided by the European Union 
(n.d.). As indicated in Figure 3, the residential sector in the Netherlands had a final energy 
consumption of 423.45 PJ in 2021, which was significantly higher than that of the service sector. 
Furthermore, Figure 4 illustrates that the direct greenhouse gas (GHG) emissions from the 
residential sector amounted to 17.54 Mt CO2eq in the same year. 

 

Figure 3 - Final energy consumption in the Netherlands from residential and service sectors 
(Source: Eu, n.d.) 

 

Figure 4 - Direct GHG emissions in residential and services sectors in the Netherlands (Source: 
Eu, n.d.) 

Despite these high values, data from the European Union (n.d.) indicate that in 2022, 5.3% of 
the total Dutch population was unable to keep their homes adequately warm during the colder 
periods of the year. Additionally, approximately 14.8% of the population lived in dwellings 
suffering from structural issues such as leaking roofs, damp walls, or rotten window frames and 
floors. 

These statistics, both at the Dutch and European levels, underscore the urgent need to address 
the energy inefficiencies of buildings. Energy retrofitting emerges as a promising solution to not 
only reduce energy consumption but also to lower related greenhouse gas emissions. In 
response, many European states are now implementing incentives for citizens to renovate their 
homes to enhance energy performance. 

 

European policies to lower down GHG through incentivizing building retrofit 

The European Union is actively committed to achieving a carbon-neutral building stock, 
acknowledging the significant role that the built environment plays in greenhouse gas (GHG) 
emissions. To this end, the EU has developed and enacted a series of regulatory frameworks 
and policies aimed at reducing emissions from buildings, with a special emphasis on promoting 
retrofitting measures. 

A key element of these efforts is the European Green Deal, which aims for a substantial 
reduction in net GHG emissions, reaching climate neutrality by 2050. As a key component of 



 

 

this initiative, the Commission proposed a renovation initiative in 2020 to bring together 
stakeholders from the construction and architecture sectors, local governments, and other 
relevant parties. This initiative includes innovative financing schemes under InvestEU, 
specifically targeting housing associations and energy service companies. By organizing 
renovation efforts into larger projects, the initiative aims to benefit from economies of scale, 
thereby reducing costs and improving access to financing. A particular focus is placed on social 
housing renovations, which are essential for supporting low-income households facing high 
energy costs. 

In addition to this, the Fit for 55 legislative package reinforces the EU’s 2030 climate target, 
seeking a 55% reduction in emissions (Council of the European Union, n.d.). It establishes a 
comprehensive framework for transforming the building sector by promoting energy efficiency, 
renewable energy integration, and sustainable heating systems. This package includes the 
updated Energy Efficiency Directive (EED) and Renewable Energy Directive (RED), both of which 
set binding targets for energy efficiency and renewable energy adoption in buildings, focusing 
on renovations to achieve significant emissions reductions. These targets are critical to 
supporting the transition to a low-carbon economy, where retrofits of existing structures play a 
central role in reducing energy consumption.  

The Social Climate Fund, introduced under the Fit for 55 package, further supports these 
efforts. With a budget of approximately €86.7 billion from 2026 onwards, this fund aims to 
assist vulnerable communities and low-income households in meeting the costs of the green 
transition. Each EU member state is tasked with creating a national plan to allocate these 
funds, which could include financing for improved insulation, efficient heating systems like 
heat pumps, and other upgrades. By supporting those most affected by energy costs, the Social 
Climate Fund is intended to foster equity in the EU’s climate agenda, ensuring that vulnerable 
people are not left behind in the transition. 

A notable expansion within Fit for 55 is the adaptation of the EU Emissions Trading System (EU 
ETS) to include sectors such as buildings, road transport, and fuel. This new, self-standing ETS 
creates a pricing mechanism for carbon emissions in the building sector, which incentivizes 
property owners to invest in energy-efficient renovations. By embedding emissions from 
buildings in the ETS, the EU aims to create market signals that promote greener building 
practices, helping to reach both the 2030 and 2050 climate targets. 

In the Netherlands, policies are in place to meet national goals that complement EU-wide 
strategies. The Dutch government has introduced the Energy Performance Subsidy Scheme 
(EPS), which provides grants to homeowners for improving insulation and installing energy-
efficient systems. Additionally, the Netherlands has set a target to make all buildings energy-
neutral by 2050, a goal that reflects the EU’s broader climate ambitions. Through regional 
energy strategies and local partnerships, the Netherlands actively promotes building retrofits to 
meet national and EU targets, demonstrating its commitment to the shared vision of a 
sustainable, carbon-neutral future. 

To date, numerous strategies have been implemented to encourage building retrofits, a trend 
that is expected to grow in the future. This expansion will be supported not only by increasing 
funding to carry out retrofit measures but also by lowering the accepted thresholds for building 
energy consumption. 

 



 

 

2.2 Retrofit process 
The building retrofit process typically encompasses a series of structured phases. As outlined 
by Deb et al. (2021), a generic retrofit process is divided into five key phases. The first phase 
involves a pre-retrofit survey, during which the scope and objectives are established in 
collaboration with the building owner. In the second phase, energy audits and performance 
assessments are conducted to identify areas of energy inefficiency and potential savings. The 
third phase is focused on exploring retrofit options, utilizing energy models alongside economic 
analysis and risk assessment tools. Implementation and commissioning follow as the fourth 
phase, and finally, the validation and verification phase ensures the projected energy savings 
align with actual performance. 

Energy simulation tools are crucial in the third phase, where they enable stakeholders to 
evaluate different retrofit options before implementation. These tools simulate how various 
retrofit measures affect the building's energy use, facilitating informed decision-making by 
predicting performance outcomes and optimizing retrofit strategies. 

2.3 Energy Simulation Models 
Energy simulation models for building retrofitting fall into two primary categories: physics-
based models and data-driven models. Each category with its own set of strengths and 
limitations. 

2.3.1 Physics-Based Models 
Physics-Based Models use specific thermodynamic principles to simulate the energy flow 
within a building. They rely on precise physical parameters like material thermal properties, 
environmental factors, and building geometry to calculate energy performance. These models 
provide robust frameworks for studying the impact of retrofit options on building envelope, 
mechanical, and electrical systems. They are especially useful in retrofit projects involving 
complex interactions between various building components and environmental conditions. 
Crawley et al. (2018) conducted a comprehensive comparison of 20 widely used physics-based 
energy modelling tools, from which three primary software solutions emerged as the most 
prevalent. EnergyPlus stands out as a versatile and extensively used engine, commonly 
integrated within platforms such as OpenStudio and BEopt, making it well-suited for detailed 
energy simulations in building retrofitting. Another widely adopted engine, DOE-2, is 
incorporated into tools like eQuest and GBS, and is valued for its ability to achieve a balance 
between simulation speed and accuracy. TRNSYS is particularly known for its adaptability in 
modelling complex systems, making it a preferred choice for dynamic energy simulations, 
especially in buildings with unique HVAC configurations. Additionally, specialized tools like IES-
VE and TAS enable customized simulations and are frequently utilized in niche retrofit 
applications or projects with specific system requirements. 
While physics-based models are invaluable for their precision, they face limitations. These 
models often require extensive and detailed building data, which can be challenging to obtain, 
especially for existing structures. Moreover, they are computationally demanding, which 
significantly delays the assessment of retrofit scenarios. There is also a gap in modelling 
capacity for innovative retrofit technologies, such as adaptive building materials or smart HVAC 
systems, which require dynamic, real-time performance adjustments. (Kamel et al., 2019). 

2.3.2 Data-based models 
Unlike physics-based models, data-driven approaches rely on patterns and correlations from 
historical or synthetic data rather than physical laws. By establishing mathematical 



 

 

relationships between variables, these models handle large data sets efficiently, making them 
well-suited for rapid simulations across diverse climate zones and building types. 
Data-driven models are particularly valuable in scenarios where detailed building data is 
unavailable or when accelerated simulations are needed, such as evaluating multiple retrofit 
options. Black-box models, for instance, can draw on pre-existing databases to generate 
reliable energy estimates without complex input parameters. 
Although they may lack the granularity of physics-based models, data-driven approaches are 
adaptable and efficient, offering a practical alternative for energy estimation when time and 
data constraints are present. (Deb et al., 2021)  

2.3.3 AI-based surrogate models in retrofitting 
Machine Learning (ML) has become a fundamental part of modern life, embedded in 
applications that range from personalized recommendations and speech recognition to 
complex systems like autonomous vehicles and market forecasting. Its ability to process large 
volumes of data and identify patterns has made ML indispensable in diverse fields, enabling 
innovations that continue to reshape how we interact with technology and make decisions. 

Another promising topic in machine learning is building retrofitting. However, it can be a 
challenging approach due to the limited availability of consistent and reliable building data. 
Many studies integrate ML within the traditional engineering-based retrofit models. For 
instance, Magnier and Haghighat (2009) pioneered a hybrid optimization approach for building 
design by combining Artificial Neural Networks with Genetic Algorithms. In their method, ANNs 
were trained to predict building energy demand, which was then used in GAs to assess design 
solutions based on total energy consumption and thermal comfort. Building on this, Asadi et al. 
(2014) adapted the method for building retrofits, using synthetic data for single and multi-
objective optimization. This approach not only identified optimal envelope and system retrofits 
but also explored how various design variables impact outcomes, focusing on energy 
consumption and retrofit costs. Ascione et al. (2017) further refined this approach by optimizing 
both energy systems and building envelopes, targeting energy use and comfort hours. They 
included a sensitivity analysis to reduce the ANN model inputs, improving simulation efficiency. 
Since GA-based retrofits often require extensive simulations (Costa-Carrapiço et al., 2019), 
methods to reduce simulation demands have emerged. Prada et al. (2018) combined support 
vector machines with GAs to develop efficient retrofit strategies, while Safarzadegan Gilan et al. 
(2015) employed an active learning Gaussian process alongside GAs to optimize building 
designs. Active learning in this context minimized the sample size needed to train models for 
energy demand prediction, resulting in a faster process than traditional simulation-optimization 
methods. However, this approach lacked a comparative reliability metric. Yuan et al. (2019) 
used Gaussian processes as a meta-model to predict energy demands across retrofit 
scenarios, which were subsequently ranked for cost-effectiveness. 

A key objective in coupling ML with optimization models is to reduce simulation costs, 
highlighting the need for computationally efficient ML models in this research. Literature 
suggests that Multi-Task Learning (MTL) models may be a strong candidate due to their ability to 
predict multiple outcomes simultaneously by utilizing shared and task-specific layers (Zhang & 
Yang, 2017). This approach could be particularly valuable in the context of this research, where 
a single MTL model could predict energy consumption, costs, embodied carbon, and comfort 
levels concurrently, avoiding the need to create and run four separate models. Since no prior 
research has been found that integrates an MTL model with an optimization algorithm in this 
context, this study aims to implement and assess its effectiveness and potential.  



 

 

3. Base building and retrofit scenarios 
selection 

3.1 Archetype selection 
The primary focus of this study is the terraced house, selected for its representation of a typical 
residential building in the Netherlands. Terraced houses typically consist of a row of 5 to 7 
units, with the units at each end of the row differing slightly in terms of materials and energy 
efficiency from those in the middle. Given that most units are located in the central part of the 
row, this research will specifically concentrate on one of these central units. 

The differences in the shape, materials, and energy efficiency of these houses depend largely 
on when they were built. Therefore, it was necessary to choose a specific period for the 
buildings being studied to get accurate baseline data for this research. The (ministerie van 
Binnenlandse Zaken en Koninkrijksrelaties, 2022) document was a key resource in making this 
choice, since it provides detailed examples of typical homes in the Netherlands. The section on 
terraced houses in this document is divided into eight parts, each part focusing on buildings 
from a specific time period, ranging from before 1945 up to 2018. 

Given that housing corporations, which lease units to families in need, are a primary focus of 
this study, it was assumed that the typical buildings leased by these corporations were 
constructed between 1946 and 1964. This period is significant because approximately 45 
percent of these units are leased, presumably mostly by housing corporations. Buildings from 
this era typically have lower energy efficiency compared to structures built in other periods, 
highlighting a pressing need for retrofit interventions (Ministerie van Binnenlandse Zaken en 
Koninkrijksrelaties, 2022). Therefore, this study uses a terraced house unit built between 1946 
and 1964 as the standard example for analysis. 

3.2 Retrofit scenarios selection 
Subsequently, TABULA WebTool (n.d.) was taken into consideration. The TABULA Webtool (n.d.) 
is a platform co-funded by the EU, aimed at standardizing residential building typologies and 
their energy performance across Europe. It offers detailed data, standardized calculation 
procedures, and practical examples of energy-saving measures. This source was crucial for 
defining the details of the base building and its associated retrofit scenarios. Once the 
archetype of the terraced house built from 1946 to 1964 was selected, it was possible to access 
a table summarizing the type of construction, a technical detail image, and the U-values for the 
roof, walls, floors, and windows. These data are available for the building in three scenarios: 
existing state, usual refurbishment, and advanced refurbishment. Usual refurbishment is 
defined as adding insulation to meet current standards, while advanced refurbishment aims for 
insulation near Zero Energy Building (ZEB) standards. This source enabled the definition of the 
U-values for envelope parameters (ground floor, façade, roof, windows) for both the existing 
state and the retrofit scenarios, categorizing the retrofit options for each component between 
current standard and nZEB. 

Since one of the objectives of the research deals with embodied carbon of retrofit measures, it 
was decided to include for each type of retrofit scenario both a commonly used insulation 
material and one with a low embodied carbon value. Consequently, for each of the four building 
envelope parameters - ground floor, façade, roof, windows - there are two types of retrofit - 



 

 

current standards and nZEB standards - and for each type of retrofit, there are two insulation 
options - a commonly used and an environmentally low-impact insulation material. 

Materials and build ups of the base building  

Concerning the existing state, the stratigraphy and thermal properties of the four building 
envelope components were sourced from the TABULA WebTool (n.d.). Specifically, the 
technical detail images were determined based on the engineering interpretations provided by 
the author under the supervision of ARUP expert Filique Nijenmanting. Thus, the building is 
assumed to have a non-insulated tiled pitched roof with structural timber elements and an air 
cavity, a solid clay-brick façade, a non-insulated timber ground floor with an air cavity, and 
wood-framed double-glazed windows. The U-values for these components are respectively 
2.08 W/m²K, 2.22 W/m²K, 2.44 W/m²K, and 2.9 W/m²K.  

Selection of material and calculation of cost for commonly used scenario 

Given the threshold U-values defined by the TABULA Webtool (n.d.) for retrofit interventions, the 
type of retrofit measure and its cost were determined using Regelhulpen voor bedrijven (n.d.), a 
platform developed by the Netherlands Enterprise Agency. By selecting the building type, the 
envelope component to be modified, and the desired thermal performance, the website 
suggests the type of intervention to be executed and provides a cost estimate per square meter. 
The cost indicators consist of four items: materials, equipment, labor, and storage. 

The interventions considered in this research are those suggested by the platform in the case of 
a residential building, multi-family house, medium size of building, and single approach. Each 
retrofit scenario was selected based on the type of existing build-up, and the intervention with 
the U-value closest to the threshold suggested by TABULA Webtool (n.d.). It is important to note 
that for the retrofit interventions related to the façade, external insulation measures were 
selected. This choice is due to external insulation being more suitable for a residential building 
with a solid brick façade. External insulation slows down the transmission of external 
temperatures into the building, keeping interiors cooler during the day and warmer at night. This 
delay in thermal transfer makes it also particularly effective for heat wave resilience, as it 
prevents extreme outdoor temperatures from quickly impacting the internal environment, thus 
maintaining a more stable and comfortable indoor climate. 

The index from Regelhulpen voor bedrijven (n.d.) of each specific scenario considered in this 
research, along with the related insulation material used and the cost, is shown Figure 7. 

Selection of material and calculation of cost for low embodied carbon scenario 

The article by Cosentino et al. (2023) includes the graph shown in Figure 5. From this graph, it is 
evident that straw bale insulation has the lowest emission values among the insulations 
considered, with hemp fiber insulation being the second lowest. After researching market 
availability in the Netherlands and consulting with experts at ARUP, who contributed to this 
project, hemp fiber insulation was found to be more commonly used and readily available. For 
this reason, this material was chosen for consideration in all low environmental impact retrofit 
scenarios. Specifically, the thermal performance and cost of this insulation were taken from 
(Thermohanf Thermo Hennep Combi Jute (n.d.). 

The total cost calculated for each retrofit option that employs hemp fiber insulation in this 
research is based on the same values for equipment, labor, and storage as those used in 
retrofit scenarios with typical environmental impacts. However, this cost estimate for the hemp 
fiber retrofit option does not include the price of commonly used insulation materials. Instead, 
it specifically accounts for the cost of the recommended hemp fiber insulation, Thermohanf 
Thermo Hennep combi Jute (n.d.), which is chosen for its thickness that satisfies the required 
thermal performance standards. 



 

 

 

 

Figure 5 – Insulation materials carbon emissions X thickness for a thermal resistance of 5 
(m2K)W (Source: Cosentino et al.) 

Calculation for Global Warming Potential of retrofit scenario 

The environmental impact considered in the research for the retrofit scenarios relates to the 
embodied carbon of the insulation materials used. Specifically, it concerns the Global Warming 
Potential (GWP) expressed in kgCO2e/m2. The embodied carbon is calculated from the total 
CO₂e emissions produced during the Life Cycle Assessment phases A1-A3 (raw material supply, 
transport, manufacturing) of the material's life cycle (see Figure 6). This data for each retrofit 
option has been sourced from Bbsr (n.d.), a database with many Environmental Product 
Declaration of common construction. A final table that summarizes all retrofit scenarios, U-
values, insulation materials, their thickness, the cost of the retrofit, and the GWP is also 
displayed in Figure 7. From this figure, it is noteworthy that the embodied carbon consistently 
increases when retrofitting to near Zero Energy Building (ZEB) standards compared to current 
standards. This occurs because achieving higher energy efficiency requires the use of more 
insulating materials, which in turn elevates the embodied carbon. Additionally, it is observed 
that, for the same thermal performance threshold, scenarios utilizing low-impact materials are 
always more costly than those employing standard materials.  



 

 

 
Figure 6 - Life-cycle stages (Source: Adapted from Life Cycle Stages by One Click LCA (n.d.), 

retrieved from https://oneclicklca.zendesk.com/hc/en-us/articles/360015064999-Life-Cycle-
Stages) 

 

 

 

https://oneclicklca.zendesk.com/hc/en-us/articles/360015064999-Life-Cycle-Stages
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Figure 7 – Summary of thermal technical details, cost and embodied carbon of retrofit and 
existing scenarios of four envelope parameters (Source: Own Work) 

Technical details 

Technical details related to the existing state and each retrofit option were developed based on 
images sourced from TABULA WebTool (n.d.). To ensure that these details do not have 
condensation issues, they were double-checked using ubakus.de | Graphical Editor ( n.d.). 
These details are illustrated in Appendix A. 
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floor 2,44 \ \ massive wooden floor, no insulation \ 0 \

façade 2,22 \ \ solid walls \ 0 \

roof 2,08 \ \ tiles - wook panel - air - wood panel \ 0 \

window 2,9 \ \ wooden frame, double glazing \ 0 \

typical PIR insulation  - WB002f (U=0,21) 100 59,7 10

low hemp fiber insulation 174
77

5,92

typical resol insulation - WB002h (U=0,18) 100 87,93 11,18

low hemp fiber insulation 206 108 7,00

typical EPS insulation - WB270 (U=0,25) 120 182,2 9,36

low hemp fiber insulation 142 179 4,83

typical EPS insulation - WB224 (U=0,15) 220 200 17,16

low hemp fiber insulation 249 222 8,50

typical mineral wool - WB230 (U=0,22) 140 89,54
23,29

low hemp fiber insulation 181 105 4,76

typical PIR insulation - WB167 (U=0,12) 185 101,96 18,5

low hemp fiber insulation 314 139 10,68
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double glazing, plastic frame (U=1,2)
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4. Weather file 

4.1 Base file 
Given the need to consider future heat wave conditions and the requirement for a EnergyPlus 
Weather File (EPW) for Energy Plus simulations, it was necessary to select a specific location 
for the building under study. As mentioned previously, the building archetype in this research is 
the terraced house. Therefore, we chose to investigate the municipality with the highest 
percentage of terraced houses in the Netherlands. According to a map shown by the Centraal 
Bureau voor de Statistiek (2023), which details the distribution of dwelling types by municipality 
in the Netherlands, Lelystad has the highest proportion of terraced houses, at 66.8%. After 
selecting this location, the corresponding weather file was downloaded from 
Climate.onebuilding.org (n.d.), a provider of weather files worldwide. 

 
Figure 8 -  Types of dwellings per municipality in the Netherlands (Source: Centraal Bureau voor 

de Statistiek, 2023) 

4.2 Heat waves predictions 
The Royal Netherlands Meteorological Institute (KNMI) is the Dutch national weather service 
that focuses on forecasting weather, monitoring climate, and seismic activity. KNMI  has 
conducted significant research on climate change and future weather predictions, such as the 
"KNMI '23 Climate Scenarios". This document investigates the impacts of climate changes and 
their projections, offering detailed analyses of expected changes in temperature, precipitation, 
sea-level rise, and extreme weather events. These projections provide critical data that 
supports the development of adaptation and mitigation strategies. In addition to this, KNMI has 
developed the KNMI Klimaatscenario’s (n.d.) tool that offers advanced features to explore 
future climate projections by transforming historical weather data into scenarios indicative of 



 

 

future climates. Once a user selects a location, a time horizon, the historical meteorological 
data to use as a basis, and an emissions scenario, the tool provides future climate projections. 

According to KNMI, a heat wave is defined as a period when the maximum temperature reaches 
at least 25°C for at least five consecutive days, which must include at least three days with 
temperatures exceeding 30°C. Given this definition, to project future heat waves, it was 
necessary to obtain predictions of daily future temperatures. The KNMI Klimaatscenario’s (n.d.) 
tool was therefore used to access data on daily minimum and maximum temperatures. 

Even though it is uncertain how much global efforts will reduce emissions, the projections used 
in this study considered the high CO2 emissions scenario (H). This choice was made because it 
accounts for the worst-case scenario, ensuring that the effects of climate change are not 
underestimated. Specifically, the Climate Scenario Tool employed the Hd scenario, which 
corresponds to high CO2, dessicant. Additionally, the transformation of historical weather data 
from 2020 has been used to generate the considered climate projections. This particular year 
was selected because it was the hottest year in the last hundred years, an important 
characteristic when using its weather data to estimate future heat waves. The time horizons 
considered in this research were the current scenario, and the 2050 and 2100 scenarios, aiming 
to analyse the present state, a near future scenario, and a distant future scenario. 

4.3 Future weather file creation 
Temperature projections for the two time horizons were analyzed, particularly by determining 
the number and duration of heat waves. These data are available for the three years considered 
in Appendix B. From those tables, it is observed that in Lelystad in 2020, one heat wave was 
recorded, lasting 12 days. The predictions from KNMI indicate that in 2050 there will be 2 heat 
waves, one lasting 5 days and the other 16 days, and in 2100 there will be 3 heat waves, lasting 
16 days, 9 days, and 25 days respectively. KNMI projections clearly show a significant increase 
in both the number of heat waves and their duration over the considered time horizons. 

The weather files in EPW format were generated by taking the base file downloaded from a 
Climate.onebuilding.org (n.d.) and replacing the maximum and minimum hourly temperatures 
of the base weather file with the values from KNMI’s predictions. This replacement was done for 
all the days identified as heat wave days by KNMI. By executing this procedure with the 
projections for both 2050 and 2100, weather files in EPW format were obtained that include 
heat wave projections for both future time horizons.  



 

 

5. EnergyPlus simulation model 

5.1 Model overview 
A model taken from GitHub (Amin-Jalilzadeh-TU, n.d.) is utilized to conduct EnergyPlus 
simulations and generate the dataset for training the AI-based model. This model operates 
within the Visual Studio Code environment and employs the EnergyPlus engine alongside 
libraries such as Pandas and Eppy. The process begins with the input of the base IDF file, EPW 
files for the weather scenarios, and the parameters that will vary for each retrofit scenario, 
focusing particularly on the properties of the envelope components and infiltration levels. 
Primarily, the model functions by creating IDF files for every retrofit scenario, using the given 
IDF as base and changing the retrofitted parameters. Subsequently, it executes all the IDF 
files using EnergyPlus as the simulation engine, using first 2020 weather file, then 2050 and 
then 2100. After the simulations, it merges the results into a single Comma-Separated 
Values(CSV) file for each weather scenario, ultimately producing a CSV file that contains all 
simulations for each scenario. The outputs include daily simulations for gas consumption, 
which accounts for energy used by the heating system and domestic hot water system. They 
also include daily building electricity, representing the electricity consumed by lighting, 
equipment, and appliances. Daily facility electricity is also included, covering the electricity 
used by HVAC systems, such as fans, cooling systems, and heat pumps. Additionally, it 
includes data on the maximum daily indoor temperature. The maximum indoor temperature is a 
critical factor in this project as it aims to enhance resilience to heat waves, making it an 
essential metric for evaluating potential overheating and thermal discomfort during such 
events.  

5.2 Input data 
To run the simulations, the necessary inputs include the IDF file of the base building, the 
parameters that will change for each retrofit scenario, and the weather scenarios. 

5.2.1 Base IDF file 

As previously mentioned, the base building considered in this research is an in-between  
terraced house unit built between 1964 and 1974. The IDF file for this building was created 
using Rhinoceros, along with Grasshopper, Ladybug, and Honeybee Tools. All data used for 
modelling the base building are detailed in Table 1; unspecified values in the table default to 
LadyBug Tools parameters. Primary data sources include (ministerie van Binnenlandse Zaken 
en Koninkrijksrelaties, 2022), (TABULA WebTool, n.d.), (Stichting Koninklijk Nederlands 
Normalisatie Instituut, 2024), and (ASHRAE, 2021). Notably, the assumptions regarding the 
thickness of each envelope component are based on the technical details discussed in Chapter 
3. 



 

 

 

Table 1 - Details of base building used in the Grasshopper Script (Source: Own Work) 



 

 

 

The Grasshopper script was created to generate a building energy model, enabling the creation 
of an IDF file usable in EnergyPlus simulations. While this script can also run simulations, it was 
not used as the main tool to produce the training dataset for the AI-based model because it 
requires modelling and running each retrofit scenario individually. In contrast, with the 
EnergyPlus simulation model used in this research, the script only needs to be executed once 
to obtain results from all retrofit scenarios for each weather scenario. The Grasshopper script 
follows a structured workflow that starts with defining key input parameters, continues through 
geometric modelling and material property assignments, and ends with the export of a fully 
defined model file. 

At the beginning of the script, a square with a length of 4.7 meters and a depth of 7 meters is 
created to represent the base of the building. This square is extruded upward by 6 meters, 
forming the ground floor and the first floor. Next, the roof is constructed by adding a ridge line 
4.7 meters above the last floor slab, creating the attic. Once the external envelope of the 
building is complete, three floor surfaces are added. 

This building is then duplicated and pasted twice side by side to form a row of three 
terraced houses. These geometries are input into the “HB Intersection Solids” component to 
define which spaces are internal and which are external. For example, the shared walls 
between the three housing units are classified as internal walls, while the non-shared walls are 
classified as external.  

Subsequently, the geometry obtained through “HB Intersection Solids” is input into the “HB 
Room from Solids” component to create the building's rooms. For simplicity, this script 
applies the same attributes, such as schedules, energy loads, and setpoints, to all rooms. 
Additionally, this component receives inputs for a construction set, program, and roof angle - 
the latter set to 46 degrees. 

To create the construction set used as input for the “HB Room from Solids” parameter, the “HB 
ConstructionSet” component is utilized. This component assigns materials to each part of the 
building, such as the ground floor, roof, façade, or windows. Using the “HB Opaque Material” 
components, materials for each opaque envelope parameter are created. Subsequently, 
properties such as thickness, conductivity, density, specific heat, roughness, thermal 
absorptance, and solar and visual absorptance are assigned to each material (See Table 
1).  Specifically, roughness, solar absorptance, thermal absorptance, and visible 
absorptance were selected according to the model’s user manual. These values are 
consistent across all envelope parameters and are presented in Table 2. 

Roughness Thermal absorptance Solar absorptance Visible absorptance 

Smooth 0,9 0,8 0,7 

Table 2 - Details of materials of base building (Source: Energy Plus Manual) 
In this section, the temperatures of the crawl space are also provided as input and sourced by 
Castenmiller, Es, and Stichting Bouwresearch (1993). For a floor slab with a thermal resistance 
of 0.41 m²K/W, the monthly temperatures shown in the Table 3 are considered. 

 Crawl space temperature (ºC) 

January 10,7 

February 10,7 

March 11,7 



 

 

April 12,7 

May 14,5 

June 15,9 

July 17,5 

August 17,5 

September 15,9 

October 14,2 

November 12,6 

December 11,4 

Table 3 - Crawl space temperature considered for modelling the base building (Source:Own 
Work) 

The glass for the windows is assigned using the “HB Subface Subset” component, specifying 
the U Factor and solar heat gain coefficient (See Table 1). It is important to note that thermal 
bridges were not considered in this calculation. Including them would reduce the building's 
insulation performance, thereby increasing the energy required to maintain it. 

The output of this component is then input into “HB Room from Solids.” 

To create the program input for the “HB Room from Solids” parameter, the “HB ProgramType” 
component is used. In this component, no inputs are provided for people, lighting, or electric 
equipment values, so Honeybee uses its default standard values. Instead, an infiltration rate 
of 0.0005 m³/sm² and 0.042 l/sm² for natural ventilation supply with mechanical exhaust are 
input. The ventilation is continuous during the day. Additionally, no cooling set point is 
assigned because the building is not considered to have a cooling system. However, a 
heating set point is provided based on recommendations for a residential building from NEN 
(2024). The heating set points are set to 20 degrees Celsius from 10:00 to 20:00 and 16 
degrees Celsius from 20:00 to 10:00.  

After this, adjacencies are resolved using the “HB Solve Adjacency” component. Since the 
building units are supposed to be the equal, the shared walls are considered adiabatic. The 
output of this component is passed through “HB Apertures by Ratio” to create the windows. 
Based on the Ministry of the Interior and Kingdom Relations (Ministerie van Binnenlandse Zaken 
en Koninkrijksrelaties, 2022), 32% glazing is assigned to the façade, applied only to the north 
and south façades. The final modeling step adds a gas boiler to the building using the “HB 
HVAC Template” component. 

All the modelled geometric and material properties, internal loads, and HVAC systems are 
assembled into a Honeybee model using the “HB Model” component, containing all necessary 
details for simulating energy flows within the building. This model, along with the weather file 
for the 2020 scenario, is input into the “HB Model to OSM” component, which produces 
various outputs, including the IDF file. The overall workflow of the Grasshopper script is 
summarized in Figure 10. 

 



 

 

 

Figure 9 - Parametric building modelling workflow (Source: Own Work) 
 

5.2.2 Retrofit parameters 
The retrofit scenarios are integrated into the model by specifying the values for thickness, 
conductivity, and U-Factor for each contemplated intervention, corresponding to each 
parameter of the building envelope. These values are detailed in Table 4. Thickness is based on 
the drawn technical details, conductivity is sourced from the ASHRAE Handbook: 
Fundamentals (2021 edition, pp. 26.11–26.21), and U Factor is based on Tabula (n.d.).  



 

 

 

Table 4 - Values of retrofit parameters (Source: Own Work) 
It is important to note that for the scenarios that retrofit ground floor, the temperature of the 
crawl space shown in Table 5 are considered. They are sourced by Castenmiller, Es, and 
Stichting Bouwresearch (1993). 

 Crawl space temperature (ºC) 

January 5,4 

February 5,3 

March 6,9 



 

 

April 8,9 

May 11,4 

June 13,5 

July 15,0 

August 15,2 

September 13,6 

October 11,0 

November 8,4 

December 6,4 

Table 5 - Crawl space temperature considered for scenarios retrofitting ground floor (Source: 
Own Work) 

An other parameter that varies in the retrofitted options compared to the base building is the 
infiltration. In fact, when a building is better insulated is also has a lower infiltration value. For 
this reason, the infiltration of retrofit options is set to 0.0002 m3/sm2. 

By inputting these details, the model is informed of all the retrofit specifics for the four 
parameters - ground floor, façade, roof, and windows. With these inputs provided, the model 
can generate all possible combinations of retrofit interventions. For instance, as referenced in 
the aforementioned Table, it might create a building option where the windows have Retrofit 1, 
the ground floor has Retrofit 4, the roof has Retrofit 2, and the façade remains unchanged, 
thereby staying in the current scenario. 

Given that four parameters are considered, and each parameter has five scenarios including 
four retrofit options and one current scenario, the total number of building retrofit combinations 
is 54, which equals 625. These scenarios will be assessed for three different weather files, 
resulting in a total of 1875 simulations, calculated as 625 combinations multiplied by 3 weather 
files. 

5.2.3 Weather file 
The weather files used as input for the simulations are those described in Chapter 4. This 
includes the EPW files for the current, 2050, and 2100 scenarios. 

5.2.4 Output data 
The final output of the model consists of three CSV files, one for each weather scenario. Each 
file contains the results of the simulations for all 625 retrofit combinations. For each building 
configuration, there are columns detailing the thermal properties of the envelope components 
as well as daily data for every day of the year. Specifically, these files include daily simulations 
for gas consumption, which accounts for energy used by the heating system and domestic hot 
water system. They also include building electricity, representing the electricity consumed by 
lighting, equipment, and appliances. Facility electricity is also included, covering the electricity 
used by HVAC systems, such as fans, cooling systems, and heat pumps. Additionally, the files 
provide data on the maximum indoor temperature. In these simulations the average maximum 
temperature between the ground and first floors was taken into account, as the second floor 
functions as an attic and is not typically used during the day. These three CSV files are crucial 
for the development of the AI-based model, as they provide the data used to train the model. 



 

 

5.3 Intercomparison 
To ensure the reliability of the simulation results, the energy consumption due to room heating 
obtained from the simulations was compared with that derived from the 
Warmteprofielgenerator (n.d.). The Warmteprofielgenerator proved to be extremely valuable in 
this context, as it is an online tool that allows users to create thermal profiles for various types 
of homes by customizing building details to obtain accurate energy consumption data. This 
provides concrete examples that are instrumental in conducting energy analyses and assessing 
thermal efficiency. 

Specifically, this comparison analysed the simulation results of the base building against those 
of the building with the highest retrofit for all the considered envelope parameters. The 
comparison is presented in Tables 6 and 7. 

 unit Annual energy consumption 
for room heating 

Warmteprofielgenerator kWh/m2 130 
This research kWh/m2 136 

Table 6 - Annual energy consumption due to room heating for base building in analysis (Source: 
Warmteprofielgenerator (n.d.) ) 

 unit Annual energy consumption 
for room heating 

Warmteprofielgenerator kWh/m2 26 
This research kWh/m2 28 

Table 7- Annual energy consumption due to room heating for base building in analysis (Source: 
Warmteprofielgenerator (n.d.) ) 

The intercomparison between calculation models demonstrates a strong correlation. It is 
important to recognize that actual energy consumption in residences can vary widely due to 
numerous factors, including user behaviour. Notably, the energy consumption of well-insulated 
homes is often significantly higher than what model calculations predict. 

Additionally, while the EnergyPlus model utilized in this research provides data on gas 
consumption, facility electricity, and building electricity, this study concentrates exclusively on 
gas consumption. This focus is based on the retrofit scenarios examined, which do not affect 
the building’s electricity usage. Consequently, including electricity consumption in the analysis 
is considered unnecessary. Therefore, the annual energy consumption data presented in the 
Tabula WebTool (n.d.) pertains solely to the energy required for heating. 

  



 

 

6. Development of the AI-based surrogate 
model 

6.1 Multi-Task Learning model overview 

6.1.1 Overall workflow 
In the pursuit of identifying optimal retrofit solutions, the integration of artificial intelligence (AI) 
surrogate models has emerged as a promising approach. Among the various AI methodologies, 
Multi-Task Learning (MTL) stands out due to its ability to simultaneously address multiple 
interrelated tasks. However, traditional MTL approaches often encounter significant 
challenges, particularly when tasks exhibit conflicting objectives. These conflicts make it 
difficult to optimize all tasks simultaneously using a single solution, as improvements in one 
task may lead to deteriorations in another. 

To address these challenges, this research frames the MTL problem as a Multi-Objective 
Optimization (MOO) task, leveraging advanced methods to balance the trade-offs between 
multiple objectives effectively. A MTL model was developed using PyTorch, drawing on 
methodologies inspired by GumGum Tech (2020a, 2020b). The model is designed to 
simultaneously predict energy consumption, cost, carbon emissions, and comfort days across 
various building configurations. By interpreting MTL as an MOO problem, the model seeks to 
find Pareto-optimal solutions where no objective can be improved without worsening another, 
thus ensuring a balanced performance across all tasks. 

Two distinct architectures - one based on literature review and one based on data analysis - 
and two training approaches - the weighted sum method and the Multi Gradient Descent 
Algorithm - were developed and subsequently compared. The weighted sum method 
represents a traditional approach where task-specific losses are combined using predefined 
weights, which often struggle with balancing conflicting objectives. In contrast, the Multi 
Gradient Descent Algorithm employs gradient-based techniques to dynamically adjust the 
learning process by considering the gradients of each task’s loss function. This ensures that all 
tasks make progress without significantly deteriorating the performance of any individual task. 
The performance of these models was evaluated using root squared error, mean root squared 
error, and mean square error metrics to identify the most effective approach. 

Upon selecting the top-performing model, two different MOO techniques were developed to 
select sets of optimal retrofit solutions: one utilizing Pareto optimization and the other 
combining NSGA II (Non-dominated Sorting Genetic Algorithm II) with Pareto optimization. 
Users have the flexibility to choose between these two optimization methods based on their 
specific needs and preferences 

Finally, the specific optimal retrofit solution was selected through Multi-Criteria Decision 
Making (MCDM), which takes into account the weights assigned by the client to each objective. 
This step ensures that the final decision prioritizes the tasks based on the client's preferences, 
effectively translating the Pareto-optimal solutions into a tailored retrofit strategy. The overall 
workflow of the model, encompassing MTL, MOO, and MCDM processes, is illustrated in Figure 
11. 



 

 

 

Figure 10 - Overall workflow to select optimal retrofit solutions (Source: Own Work) 



 

 

6.1.2 Introduction to Multi Task Learning 

MTL is a deep learning approach where a single model is trained to perform multiple tasks 
simultaneously by sharing portions of the model’s layers. This shared learning leverages 
commonalities among tasks, enhancing efficiency. The foundational work by Caruana (1997) 
demonstrated that joint learning of related tasks can lead to superior performance compared to 
single-task learning, establishing the theoretical underpinnings of MTL. 

The selection of retrofit solutions encompasses various interconnected objectives, including 
cost, environmental impact, thermal comfort, and energy consumption. These tasks are 
inherently interrelated; for instance, strategies to minimize costs may influence energy 
consumption and thermal comfort, while efforts to reduce environmental impact might affect 
overall expenses. Utilizing an MTL model allows for the simultaneous handling of these tasks, 
capturing the intricate interdependencies among them in an integrated manner. This approach 
offers several advantages, such as lower computational costs, higher accuracy and good 
scalability, further discussed in chapter 6.1.3.  

 

Figure 11 - Overall structure of MTL model compared to multiple models (Source: Chawla, 
2024 ) 

6.1.3 Architecture of Multi-Task Learning 
The architecture of an MTL model is characterized by its division into shared and task-specific 
layers, facilitating the simultaneous learning of multiple tasks (See Figure 12). Shared 
parameters constitute the parts of the model that are common across all tasks. These 
components are responsible for extracting features from the input data that are relevant to 
multiple tasks, thereby promoting knowledge transfer and reducing redundancy. Typically, 
shared layers form the backbone of the model, capturing the underlying patterns and structures 
inherent in the data. 

Complementing the shared layers are the task-specific layers, which are unique to each task. 
These components cater to the specific nuances and requirements of individual objectives, 
refining the shared representations to produce accurate predictions tailored to each task 
without interference from others. This structure enables the model to learn both generalizable 
features applicable to all tasks and specialized features unique to each task, fostering a 
comprehensive understanding of the data. By balancing shared and task-specific parameters, 



 

 

MTL models can effectively leverage commonalities among tasks while accommodating their 
unique characteristics. 

 

Figure 12 - Architecture of MTL (Source: Chawla, 2024 ) 
Academic research supports this structural approach. For example, Ruder (2017) emphasizes 
the importance of designing architectures that balance shared and task-specific components 
to optimize performance across all tasks. Similarly, Liu et al. (2019) demonstrate how task-
specific layers can enhance the model's ability to handle fine-grained distinctions within each 
task, further validating the structural benefits of MTL in complex applications. 

6.1.4 Benefits of Multi-Task Learning 
Adopting MTL in the context of retrofit solution selection offers several key advantages. As 
showed by Ruder (2017) and Liu et al. (2019), one of the primary benefits is improved 
generalization. Sharing information across related tasks acts as an inductive bias, enabling the 
model to learn more robust and generalizable features. This is particularly beneficial when 
tasks are related, as the model can leverage shared structures in the data to enhance its 
predictive capabilities. For example, predicting both energy consumption and thermal comfort 
allows the model to understand the underlying factors that influence both, leading to more 
accurate and reliable predictions. 

Another significant advantage is the reduction of overfitting (Ruder, 2017). By sharing 
parameters among tasks, MTL serves as a regularization mechanism. This is especially useful 
when some tasks have smaller datasets, as the shared information helps prevent the model 
from overfitting to specific task data, thereby improving overall model performance. 
Additionally, MTL enhances computational efficiency (Kamali et al., 2019). A single MTL model 
can handle multiple tasks simultaneously, reducing the overall computational resources 
required compared to training and maintaining separate models for each task. This efficiency 
translates to faster training times and lower operational costs, making MTL a cost-effective 
solution for complex prediction tasks. 

Scalability is another critical benefit of MTL. The inherent scalability of MTL allows for the easy 
addition of new tasks or objectives. This flexibility is crucial for adapting to changing research 
needs and incorporating additional predictive objectives without the need for extensive model 
redevelopment. For instance, integrating a new objective such as indoor air quality prediction 
into the existing MTL framework can be accomplished with minimal adjustments, ensuring that 
the model remains relevant and adaptable to evolving requirements. This scalability is 
supported by academic findings, where Ruder (2017) discusses how scalable MTL 
architectures can accommodate an expanding set of tasks without significant architectural 
overhauls. 



 

 

6.1.5 Challenges in Multi-Task Learning 

Despite its numerous benefits, Multi-Task Learning (MTL) presents several challenges that must 
be addressed to ensure optimal performance. A primary challenge is the need for trade-offs, 
which involves balancing the performance across all tasks without disproportionately 
sacrificing one for the sake of others.  

To address these challenges, this research frames the MTL problem as a Multi-Objective 
Optimization (MOO) task. Unlike traditional MTL approaches that aim to minimize a single 
aggregated loss function, MOO seeks to minimize multiple loss functions simultaneously. This 
perspective acknowledges that it is rare for all objectives to be perfectly minimized at the same 
time, as improving one objective may worsen another. Instead, the goal is to identify Pareto 
optimal solutions—situations where no objective can be improved without degrading at least 
one other objective. By interpreting MTL through the lens of MOO, the model can effectively 
navigate the inherent trade-offs between conflicting objectives, ensuring a balanced 
performance across all tasks. This approach not only mitigates the difficulties associated with 
optimizing multiple, competing objectives but also enhances the model's ability to deliver 
comprehensive and reliable insights for retrofit solution selection. 

6.1.6 Dataset preprocessing 
The dataset discussed in Section 5.3, together with the data about costs and embodied carbon, 
was preprocessed by the Multi-Task Learning model, allowing it to more easily identify 
relationships among data. This preprocessing aimed to select only the data pertinent to the MTL 
model. The choices on how to preprocess the data were driven by the model's primary 
objectives: predicting energy consumption, thermal comfort, cost, and environmental impact in 
a retrofit scenario under varying weather conditions. 

6.1.7 Input data 

To develop a surrogate model, it is essential that its inputs align with those used in 
EnergyPlus simulations. This alignment ensures that the surrogate model accurately 
replicates the conditions and parameters of the original simulations, facilitating reliable 
predictions.  

Specifically, consistent with EnergyPlus, the input data for the MTL model includes the time 
horizon and the retrofit scenario. This is represented by the thermal properties of the building 
envelope components, specifically the thermal resistance (Rc values) of the roof, floor, façade, 
and the U-Factor of the windows. Consequently, the input dataset for the MTL model is 
composed of five parameters: floor, roof, external wall thermal resistance, windows U-
Factor, and time horizon. The U-Factor for windows is utilized instead of thermal resistance 
because it is more commonly employed in industry practice. 

Only the mentioned thermal properties of the envelope parameters were considered because 
they are essential for determining the heat transfer between the indoor and outdoor spaces, 
thus assessing the building's energy consumption and thermal comfort. While other 
parameters could have been included alongside the Rc and U-Factor, they were omitted to 
avoid complicating the input data, making it more challenging to manage. This decision is a 
limitation of the project and a point that could be explored more thoroughly in future studies. 



 

 

6.1.8 Output data   
The output dataset of the MTL model corresponds to the four tasks that the model is designed 
to predict: annual energy consumption, cost, embodied carbon, and thermal comfort. The 
outputs from the simulations run with Energy Plus provided daily energy consumption data for 
each retrofit scenario considered. However, for the purposes of this research, it is feasible to 
consider annual energy consumption instead of daily. Indeed, the overarching goal of the 
project is to minimize the building's energy usage, which can pertain to either daily or annual 
consumption. Utilizing an annual value helps to avoid the need to manage time-series data, 
which would make the model significantly more complex and time-consuming. Thus, annual 
energy consumption was calculated by summing the 365 daily values of energy consumption 
obtained from the Energy Plus simulations. 

The cost parameter in the MTL model refers to a value in euros per square meter of the building, 
calculated by summing the costs of the four envelope parameters. The investment costs of the 
retrofit interventions are the ones detailed in Chapter 3.2. 

The environmental impact is assessed in terms of the embodied carbon of the retrofit materials 
used, referring to the values shown in Chapter 3.2. The total embodied carbon for each retrofit 
scenario is the sum of the embodied carbon from each intervention for each envelope 
parameter. 

Thermal comfort was evaluated based on daily maximum indoor temperatures, derived from 
simulations run with EnergyPlus. According to Ioannou and Itard (2017), in the Netherlands, the 
indoor thermal comfort of a residential building ranges between 18 and 26 degrees Celsius. 
Based on this range, each day was classified as either in comfort (within the range) or out of 
comfort (outside the range). After this classification analysis, the comfortable days throughout 
the year were added together. Thus, for each retrofit scenario, the number of comfortable days 
was calculated. This value was subsequently utilized by the model to account for the building's 
thermal comfort. 

6.1.9 Dataset analysis and Interpretation 

After preprocessing the data, the correlation matrix between input and output variables is 
further examined to guide the architecture of the multi-task learning (MTL) model (Architecture 
Option 2: Task-specific architectures based on data analysis, see Chapter 6.3.3). This step is 
essential to understand the strength and direction of relationships, both positive and negative, 
between inputs and outputs. Understanding these correlations allows for the identification of 
tasks that share common underlying patterns, indicating that they can effectively leverage 
shared layers within the model. Conversely, inputs with weak correlations suggest more 
complex relationships, necessitating additional shared layers to capture these nuances 
accurately. By tailoring the model architecture based on these insights, the MTL framework can 
efficiently balance shared and task-specific parameters, enhancing both computational 
efficiency and predictive performance. This approach is driven by the hypothesis that tasks with 
strong correlations benefit from shared representations, thereby improving learning efficiency, 
while maintaining flexibility for tasks with less straightforward relationships. So, the correlation 
matrix serves as a critical tool in optimizing the model’s structure, ensuring it is well-aligned 
with the data relationships. 

The generated correlation matrix is illustrated in Figure 14. This matrix is a table displaying the 
correlation coefficients between variables, providing a summary of how each pair of variables in 
the dataset is related. The values in the matrix range from -1 to 1, where 1 indicates a perfect 
positive correlation, -1 signifies a perfect negative correlation, and 0 represents no correlation 



 

 

at all. The diagonal entries of the matrix, all marked as 1.00, denote perfect self-correlation for 
each variable. 

 

 
Figure 13 - Correlation Matrix between Input and Output parameter of the MTL Model (source: 

Own Work) 
 

The matrix reveals that a lower Windows U-Factor is associated with higher total cost (-0.69) 
and total carbon emission (-0.85). This implies that improvements to the thermal performance 
of windows, while beneficial for reducing heat loss, are expensive not only in financial terms but 
also in terms of CO2e emissions. Such findings suggest that enhancing window insulation is a 
costly endeavor, both economically and environmentally. 

In terms of broader economic and environmental impacts, there is a moderate correlation 
between total cost and total carbon emission (0.55). This relationship indicates that more 
costly retrofit interventions are also more environmentally impactful. This correlation likely 
arises because achieving better energy performance often necessitates the use of more 
insulating material, thereby increasing both the cost and the environmental footprint. This 
finding is particularly intriguing in the context of low embodied carbon insulating materials, 
which, despite criticisms of their high cost, do not demonstrate this trend according to the 
matrix. This suggests a potential reconsideration of the economic and environmental trade-offs 
involved in selecting building materials. 

Furthermore, among the envelope parameters considered, the external wall shows the highest 
correlation with total cost, indicating that retrofitting the facade is the most expensive envelope 
intervention. Simultaneously, the retrofit of both the facade and the ground floor has the most 



 

 

significant effect on reducing annual energy consumption  - both correlated at -0.27 with it. 
These two envelope parameters - facade and ground floor - emerge as the most influential on 
the building's energy performance among those studied. 

Additionally, there is a weak positive correlation between annual energy consumption and 
comfort days (0.17), suggesting that higher energy consumption may be associated with 
increased indoor comfort. This relationship implies that buildings consuming more energy 
potentially maintain conditions that are more conducive to occupant comfort, highlighting a 
possible trade-off between energy efficiency and comfort levels within buildings. 

In conclusion, the analysis of the correlation matrix offers an important insight into the 
relationships between key building performance metrics. It highlights the high costs and 
environmental impacts associated with improving window insulation and suggests that facade 
and ground floor retrofits are crucial for enhancing energy efficiency. The matrix also challenges 
the prevailing views on the cost-effectiveness of low embodied carbon materials, indicating a 
need for a nuanced understanding of material selection in sustainable building practices. 

6.2 Architectures of the model 

6.2.1 Architecture options overview 
A key feature of the Multi-Task Learning model is its architecture, which incorporates both 
shared and task-specific layers that contribute to the final predictions for various tasks. Given 
this characteristic, this study aimed to explore the potential of this feature by experimenting 
with different architectures for the shared and task-specific layers. Specifically, two 
architectures were explored: 

1. Assigning a distinct type of artificial neural network (ANN) to each task-specific layer, 
following the recommendations from four key studies—Fan et al. (2017), Yun et al. (2022), 
Altikat et al. (2021), and Escandón et al. (2019). These papers have developed ANNs tailored for 
prediction tasks similar to those addressed in this study, ensuring that each layer utilizes the 
most suitable network architecture for its specific purpose; 

2. Assigning a distinct type of ANNs to each task-specific layer based on the best architecture 
for each task as determined by the data correlations analyzed in Section 6.2.3. This approach 
aims to tailor the architecture to the unique characteristics and correlations of the data 
pertaining to each task. 

Both options are implemented and compared to determine the optimal architecture for the MTL 
model. 

The development of the MTL model was primarily guided by the GitHub repository by Yaringal 
(n.d.) and the article by K (2022), both of which provide instructions for constructing an MTL 
model using PyTorch. NumPy was employed to handle arrays and execute essential 
mathematical operations, facilitating data processing within the model. Pandas was utilized to 
manage and manipulate structured data in DataFrame format, thereby streamlining data 
analysis. PyTorch served as the framework for constructing, training, and optimizing the neural 
network, leveraging its robustness in deep learning applications. To visualize data and results, 
Matplotlib was used, which aided in interpreting and understanding the model's performance. 
The Adam optimizer was selected with a learning rate of 0.001 to refine the model parameters 
effectively, and the training process was configured to run for 100 epochs, allowing sufficient 
iterations for the model to learn from the data. Additionally, the dataset was divided into 70% 
for training, 15% for validation, and 15% for testing. This division ensured a comprehensive 



 

 

approach to training the model while enabling effective validation and generalization testing on 
unseen data. 

6.2.2 Option 1: Task-specific architectures based on literature review 

This architecture option is illustrated in Figure 14. As the image shows, it begins with two 
shared fully connected layers that extract general patterns relevant to each target variable. 
These shared layers transform the four input features into a high-dimensional representation. 

The first shared layer is designed with 128 neurons, which provides a sufficient capacity to 
capture complex relationships in the input data while avoiding excessive dimensionality that 
could lead to overfitting. Empirical testing showed that starting with a higher dimensional 
representation improved the model’s ability to generalize across tasks. The choice of 128 
neurons balances computational efficiency with representational capacity, allowing the model 
to learn a broad range of patterns without excessive complexity. The second shared layer 
reduces the dimensionality to 64 neurons. This step-down in neurons is deliberate, as it 
focuses the model's representation before branching into task-specific pathways. By 
progressively reducing the dimensionality, the architecture avoids unnecessary complexity and 
encourages the shared layers to extract the most relevant features for each task. 

In this approach, each task in the MTL model branches into separate pathways, customized to 
meet its particular requirements. The model utilizes distinct Artificial Neural Networks (ANNs) 
tailored for each of the four key tasks: cost, energy consumption, embodied carbon, and 
thermal comfort prediction. 

For predicting energy consumption, the study by Fan, C., Xiao, F., & Zhao, Y. (2017) was used as 
reference. It explores the application of a Deep Neural Network (DNN) specifically for cooling 
energy prediction. The findings suggest that an effective DNN model for this task does not 
require a deeply layered architecture; instead, it operates optimally with just two hidden layers. 
The number of neurons in each layer is determined by an empirical rule commonly used in 
neural network design, which calculates the neuron count as half the sum of the number of 
inputs and outputs. For this study, this method yields 4.5, subsequently rounded down to 4 
neurons per layer. 

In cost prediction, Yun, S. (2022) presents an ANNs for construction costs prediction. It is 
configured with an input layer, an output layer, and two hidden layers of 100 and 64 nodes, 
respectively. This specific structure is tailored to enhance the accuracy of predicting both costs 
effectively. 

Regarding environmental impacts, Altikat, S. (2021) investigates the use of two distinct ANN 
configurations to predict embodied carbon emissions. One model utilizes a single learning 
function with linear transfer functions and 8 neurons, achieving 95.56% accuracy. Another 
model employs a deep learning neural network (DLNN) approach with 14 neurons in the first 
hidden layer and 10 in the second, attaining a higher accuracy of 98.29%. This increase in 
precision indicates that the DLNN is particularly suitable for accurately forecasting CO₂ 
emissions, thus recommending its use in assessing environmental impacts. 

Finally, for thermal comfort prediction, the methodology used in this research is drawn from 
Escandón, R., Ascione, F., Bianco, N., Mauro, G. M., Suárez, R., & Sendra, J. J. (2019), which 
employs a Multi-Layer Perceptron (MLP). This model integrates 18 input parameters that reflect 
various building characteristics, a single hidden layer with 6 neurons, and an output layer that 
predicts the annual percentage of discomfort hours. Such a setup is instrumental in providing 
insights into the expected comfort levels within buildings, facilitating the design of 
environments that enhance occupant comfort. 



 

 

All mentioned papers used ReLU as activation function and Adam as optimizer. The MTL model 
with this architecture has been trained, validated and tested. To assess its performances 
training and validation losses graphs, predicted vs. actual values graphs and percentage error 
distribution graphs have been generated and can be seen in Figures 15, 16, and 17 respectively. 
These graphs are further discussed in Section 6.5. 



 

 

 

Figure 14 - Visualization of architecture option 1 (Source: Own Work) 
 



 

 

 

Figure 15 - Training vs. validation losses graphs for architecture option 1 (Source: Own Work) 
 

 

Figure 16 - Predicted vs. actual values graphs for architecture option 1 (Source: Own Work) 
 



 

 

 

Figure 17 - Percentage error distribution graphs for architecture option 1 (Source: Own Work) 
 

6.2.3 Option 2: Task-specific architectures based on data analysis 
This architecture option is illustrated in Figure 18. Like the previously mentioned option, this 
architecture begins with two shared fully connected layers consisting of 128 and 64 neurons. 
Then, based on the correlation analysis, each task was assigned a customized structure to 
optimize predictive performance and leverage beneficial task interdependencies. 

For the annual energy consumption prediction task, a specific layer with 32 neurons follows the 
shared layers to capture unique insulation-related patterns, specifically from ground floor 
thermal resistance and external walls thermal resistance. These features exhibit moderate 
negative correlations with energy consumption, indicating their impact on heating and cooling 
needs. The choice of 32 neurons in this layer is based on the need for a sufficiently complex 
representation to capture patterns relevant to energy consumption, without adding excessive 
capacity that could lead to overfitting. This layer size provides a balanced approach, allowing 
the layer to learn both linear and non-linear relationships that are important for energy 
predictions. This reasoning behind selecting 32 neurons is also applied to the other task-
specific layers, as it provides enough complexity to capture essential patterns without 
unnecessary model size or risk of overfitting. The final output layer has 1 neuron, corresponding 
to the single target value for energy consumption. 

Since the correlation between cost and carbon emissions was shown not to be strong, a 
specific shared layer with 32 neurons for these two tasks has been built. With this strategy, the 
model will be more likely to capture interdependencies the two involved tasks. After this shared 
layer, each task has a separate output layer with 1 neuron to produce its specific target value, 



 

 

enabling the model to fine-tune predictions for cost and carbon emission independently, even 
after sharing intermediate representations. 

For the comfort days task, the structure diverges into a distinct section with its own fully 
connected layer containing 32 neurons and a dedicated output layer with 1 neuron. Comfort 
days showed weak correlations with the other targets, indicating that it benefits from an 
independent structure to avoid interference from unrelated tasks. This design ensures that the 
model captures any unique factors influencing comfort days without being influenced by the 
other tasks.  

The MTL model with this architecture has been trained, validated and tested. To evaluate its 
performances training vs. validation losses graphs, predicted vs. actual values graphs and 
percentage error distribution graphs have been generated and can be seen in Figures 19, 20, 
and 21 respectively. These graphs are further discussed in Section 6.5. 



 

 

 

Figure 18 - Visualization of architecture option 2 (Source: Own Work) 



 

 

 

Figure 19 - Training vs. validation losses graphs for architecture option 2  (Source: Own Work) 
 

 

Figure 20 - Predicted vs. actual values graphs for architecture option 2 (Source: Own Work) 
  



 

 

 

 

Figure 21 - Percentage error distribution graphs for architecture option 2 (Source: Own Work) 

6.3 Training functions 
The development of the Multi-Task Learning involves several key training functions to ensure its 
effectiveness. A specific loss function is designed to balance the multiple objectives, ensuring 
that each task contributes appropriately to the overall model performance. To enhance 
generalization and prevent overfitting, an early stopping mechanism is implemented, 
monitoring the model's performance and terminating training at the optimal point. Additionally, 
two distinct trainers  - the Weighted Sum method and the Multiple Gradient Descent 
Algorithm (MGDA) - are employed separately to optimize the model. A comparative analysis is 
conducted to evaluate the performance of the MTL model using each optimization method, 
highlighting the differences in their ability to achieve accurate results. 

6.3.1 Loss function 
• Loss function of the model 

In multi-task learning (MTL), the traditional loss function used to optimize multiple tasks 
simultaneously. It is defined as: 

min
𝜃

∑ λ𝑡

𝑇

𝑡=1

𝐿𝑡(𝜃)  

where: 



 

 

• 𝑇 is the total number of tasks. 

• 𝐿𝑡(𝜃) represents the loss for task t, parameterized by θ. 

• λ𝑡  are weighting coefficients that determine the relative importance of each task's loss. 

This formulation requires careful tuning of the coefficients 𝑐𝑡 to balance the tasks,  which can 
be a complex challenge. To address this, the Multi-Task Learning problem is reformulated as 
a Multi-Objective Optimization problem, utilizing the following loss function: 

min 
𝜃

(𝐿1 (𝜃), 𝐿2(𝜃), … , 𝐿𝑇(𝜃)) 

where: 

• 𝑇 is the total number of tasks. 

• 𝐿𝑡(𝜃) represents the loss for task t, parameterized by θ. 

This formulation treats each 𝐿𝑇(𝜃) as separate objective, seeking solutions that are Pareto 
optimal across all tasks. 

• Loss functions of each task 

In MTL each output represents a different task setup. In particular, the model predicts the 
following: 

1. Task 1 – Energy consumption 

In this task, the output is the annual energy consumption, which is a continuous 
variable. The task is a regression problem, and the objective is to minimize the error 
between the predicted and actual energy consumption values. 

𝑂𝑏𝑗𝑒𝑐𝑡𝑖𝑣𝑒 1: min
𝜃

𝐿𝑒𝑛𝑒𝑟𝑔𝑦 = 𝑎𝑛𝑛𝑢𝑎𝑙_𝑒𝑛𝑒𝑟𝑔𝑦_𝑐𝑜𝑛𝑠𝑢𝑚𝑝𝑡𝑖𝑜𝑛  

2. Task 2 – Predict total cost 

In this task, the output is the total cost, which is a continuous variable. The task is a 
regression problem, and the objective is to minimize the error between the predicted 
and actual cost values. 

𝑂𝑏𝑗𝑒𝑐𝑡𝑖𝑣𝑒 2: min
𝜃

𝐿𝑐𝑜𝑠𝑡 = 𝑡𝑜𝑡𝑎𝑙_𝑐𝑜𝑠𝑡 

3. Task 3: Predict total embodied carbon 

In this task, the output is the total embodied carbon, which is a continuous variable. The 
task is a regression problem, and the objective is to minimize the error between the 
predicted and actual embodied carbon values. 

𝑂𝑏𝑗𝑒𝑐𝑡𝑖𝑣𝑒 3: min
𝜃

𝐿𝑐𝑎𝑟𝑏𝑜𝑛 = 𝑡𝑜𝑡𝑎𝑙_𝑐𝑎𝑟𝑏𝑜𝑛_𝑒𝑚𝑖𝑠𝑠𝑖𝑜𝑛𝑠  

4. Task 4 – Predict comfort days 

In this task, the output is the total number of comfort days, which is a continuous 
variable. The task is a regression problem, and the objective is to minimize the error 
between the predicted and actual comfort days values. 

𝑂𝑏𝑗𝑒𝑐𝑡𝑖𝑣𝑒 4: max
𝜃

𝐿𝑐𝑜𝑚𝑓𝑜𝑟𝑡 = 𝑐𝑜𝑚𝑓𝑜𝑟𝑡_𝑑𝑎𝑦𝑠 



 

 

Each task can be framed as a regression problem, with its own loss function to be minimized 
during training. 

For each task, a separate loss function is defined. Since all tasks are regression-based, 
Mean Squared Error (MSE) is used as loss function for each task: 

𝐿𝑒𝑛𝑒𝑟𝑔𝑦(𝑦𝑡𝑟𝑢𝑒 , 𝑦𝑝𝑟𝑒𝑑) =  
1

𝑛
∑(𝑦𝑡𝑟𝑢𝑒

𝑒𝑛𝑒𝑟𝑔𝑦(𝑖) −  𝑦𝑝𝑟𝑒𝑑
𝑒𝑛𝑒𝑟𝑔𝑦(𝑖))2

𝑛

𝑖=1

 

𝐿𝑐𝑜𝑠𝑡(𝑦𝑡𝑟𝑢𝑒 , 𝑦𝑝𝑟𝑒𝑑) =  
1

𝑛
∑(𝑦𝑡𝑟𝑢𝑒

𝑐𝑜𝑠𝑡(𝑖) −  𝑦𝑝𝑟𝑒𝑑
𝑐𝑜𝑠𝑡 (𝑖))2

𝑛

𝑖=1

 

𝐿𝑐𝑎𝑟𝑏𝑜𝑛(𝑦𝑡𝑟𝑢𝑒 , 𝑦𝑝𝑟𝑒𝑑) =  
1

𝑛
∑(𝑦𝑡𝑟𝑢𝑒

𝑐𝑎𝑟𝑏𝑜𝑛(𝑖) −  𝑦𝑝𝑟𝑒𝑑
𝑐𝑎𝑟𝑏𝑜𝑛(𝑖))2

𝑛

𝑖=1

 

𝐿𝑐𝑜𝑚𝑓𝑜𝑟𝑡(𝑦𝑡𝑟𝑢𝑒 , 𝑦𝑝𝑟𝑒𝑑) = − 
1

𝑛
∑(𝑦𝑡𝑟𝑢𝑒

𝑐𝑜𝑚𝑓𝑜𝑟𝑡(𝑖) −  𝑦𝑝𝑟𝑒𝑑
𝑐𝑜𝑚𝑓𝑜𝑟𝑡(𝑖))2

𝑛

𝑖=1

 

where: 

•  𝑦𝑡𝑟𝑢𝑒 is the true value of each output. 

• 𝑦𝑝𝑟𝑒𝑑  is the predicted value of each output. 

• 𝑛 is the number of data points 

6.3.2 Early stopping mechanism 
The early stopping mechanism is integrated into the model to enhance time efficiency and 
prevent overfitting during the training process. This method continuously monitors the model's 
performance on a validation set and stops training prematurely if there is no significant 
improvement over a specified number of consecutive epochs, referred to as "patience" (Smith 
at al., 2023). In this implementation, the patience is set to 10 epochs. 

Mathematically, the early stopping criterion can be expressed as follows: 

𝐼𝑓 𝑣𝑎𝑙_𝑙𝑜𝑠𝑠𝑡 < 𝑏𝑒𝑠𝑡_𝑙𝑜𝑠𝑠 − 𝛿,  𝑡ℎ𝑒𝑛 𝑢𝑝𝑑𝑎𝑡𝑒 𝑏𝑒𝑠𝑡_𝑙𝑜𝑠𝑠 𝑎𝑛𝑑 𝑟𝑒𝑠𝑒𝑡 𝑐𝑜𝑢𝑛𝑡𝑒𝑟 

𝐸𝑙𝑠𝑒,  𝑖𝑛𝑐𝑟𝑒𝑚𝑒𝑛𝑡 𝑐𝑜𝑢𝑛𝑡𝑒𝑟 𝑏𝑦 1 

 𝐼𝑓 𝑐𝑜𝑢𝑛𝑡𝑒𝑟 ≥ 𝑝𝑎𝑡𝑖𝑒𝑛𝑐𝑒,  𝑡ℎ𝑒𝑛 𝑡𝑟𝑖𝑔𝑔𝑒𝑟 𝑒𝑎𝑟𝑙𝑦 𝑠𝑡𝑜𝑝𝑝𝑖𝑛𝑔  

Here, 𝑣𝑎𝑙_𝑙𝑜𝑠𝑠𝑡represents the validation loss at epoch 𝑡, 𝑏𝑒𝑠𝑡_𝑙𝑜𝑠𝑠 is the lowest recorded 
validation loss, and 𝛿 a is a small threshold (set to 1 × 10−4) that determines the minimum 
improvement required to consider the validation loss as having decreased significantly. 

When the validation loss decreases by at least δ, the model's state is saved, and the counter is 
reset to zero, indicating an improvement in performance. If the validation loss does not improve 
by the specified  over consecutive epochs equal to the patience parameter, the early stopping 
condition is met, and training is terminated. This approach not only conserves computational 
resources and reduces training time but also ensures that the model retains its ability to 
generalize to new, unseen data by preventing it from learning noise or irrelevant patterns in the 
training set. 

By implementing early stopping, the model stops training at the point where the validation 
performance peaks, thereby avoiding the risk of overfitting. This strategic termination of the 



 

 

training process maintains the model's robustness and enhances its generalization 
capabilities, ensuring reliable performance in selecting optimal retrofit solutions. 

6.3.3 Weighted sum method 
The weighted sum method is a traditional technique employed to synchronize the training 
process across multiple tasks within a Multi-Task Learning (MTL) framework. Building upon the 
previously defined MTL loss function, which aims to optimize several tasks simultaneously, the 
weighted sum method refines this approach by combining the individual loss functions of each 
task into a single, cohesive objective. This combination is achieved by assigning specific 
weights to each task's loss, thereby guiding the model to balance its performance across all 
tasks effectively. 

Mathematically, the weighted sum method modifies the general MTL loss function as follows: 

𝐿𝑡𝑜𝑡𝑎𝑙(𝜃) =  ∑ λ𝑖𝐿𝑖(θ) 

4

𝑖=1

 

where: 

• 𝐿𝑡(𝜃) represents the loss for task 𝑖, parameterized by θ. 

• λ𝑖 are weighting coefficients that determine the relative importance of each task's loss. 

For this study, each weight λ𝑖 is set to 0.25, ensuring that the sum of all weights equals one: 

𝜆1 = 𝜆2 = 𝜆3 = 𝜆4 = 0.25  

𝑎𝑛𝑑 

∑ λ𝑖 = 1

4

𝑖=1

  

This equal weighting reflects the assumption that each of the four tasks contributes equally to 
the overall performance of the model. By assigning a weight of 0.25 to each task, the model 
ensures that no single task dominates the optimization process, thereby maintaining a 
balanced focus across all tasks. By equally weighting these tasks, the model is encouraged to 
develop a holistic understanding and performance across all dimensions. 

The weighted sum method aligns with traditional multi-objective optimization techniques, 
where multiple objectives are combined into a single scalar objective to facilitate simultaneous 
optimization (GumGum Tech, 2020). However, it is important to acknowledge that this 
approach assumes prior knowledge of the relative importance of each task. In cases where the 
significance of tasks may vary or is not well-defined, determining appropriate weights can be 
challenging and may require empirical experimentation or domain-specific insights. 

6.3.4 Multi-Gradient Descent Algorithm (MGDA) 
In the pursuit of optimizing multiple tasks simultaneously within the MTL framework, the 
Multiple Gradient Descent Algorithm (MGDA) emerges as a robust alternative to traditional 
weighting methods (Sener et al., 2018) . Unlike the Weighted Sum method, which necessitates 
the specification of task-specific weights, MGDA dynamically determines the optimal 
combination of gradients to ensure that all tasks are improved concurrently. This capability is 
particularly advantageous in scenarios where tasks may have conflicting objectives, as it 
facilitates the identification of Pareto optimal solutions - configurations where enhancing one 
task inherently compromises another. 



 

 

MGDA operates by first computing the gradient of each task's loss function with respect to the 
shared model parameters. Let 𝐿𝑡(𝜃)  denote the loss for task 𝑡, and 𝛻𝜃𝐿𝑡(𝜃) represent its 
corresponding gradient. The algorithm seeks to find a weighted combination of these gradients 
that points in a descent direction beneficial to all tasks. Mathematically, this is formulated as 
the following optimization problem: 

𝑚𝑖𝑛
𝛼1,𝛼2,…,𝛼𝑇

‖∑ 𝛼𝑡𝛻𝜃𝐿𝑡(𝜃)

𝑇

𝑡=1

‖

2

𝑠𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜 ∑ 𝛼𝑡 = 1

𝑇

𝑡=1

 

 

Here, 𝛼𝑡are the weights assigned to each task's gradient, and 𝑇 represents the total number of 
tasks (Momma et al., 2022). The constraints ensure that the weights form a convex 
combination, promoting a balanced update that does not disproportionately favor any single 
task. 

The implementation of MGDA within the MTL model for selecting optimal retrofit solutions 
involves several key steps: 

1. Gradient Computation: For each task, the gradient 𝛻𝜃𝐿𝑡(𝜃) is calculated with respect 
to the shared parameters 𝜃. This step captures the direction in which each task's loss 
can be minimized. 

2. Optimization Problem: The core of MGDA lies in solving the aforementioned quadratic 
programming (QP) problem to determine the optimal weights 𝜃𝑡. By minimizing the 
norm of the combined gradient, MGDA ensures that the update direction is as beneficial 
as possible for all tasks simultaneously. 

3. Descent Direction and Parameter Update: Once the optimal weights are determined, 
the gradients are combined into a single vector: 

𝜃 ← 𝜃 − 𝑛 ∑ 𝛼𝑡𝛻𝜃ℎ𝐿𝑡(𝜃)

𝑇

𝑡=1

 

where 𝑛 is the learning rate. This unified update direction adjusts the shared parameters in a 
manner that accounts for the contributions of all tasks, thereby fostering balanced 
improvements. 

The application of MGDA in this research addresses several limitations inherent to the 
Weighted Sum method. By eliminating the need for predefined weights, MGDA circumvents the 
often challenging task of weight tuning, which can be both time-consuming and suboptimal 
without domain-specific insights. Additionally, MGDA inherently manages conflicts between 
tasks by seeking a Pareto optimal solution, ensuring that improvements in one task do not 
disproportionately degrade another. 

However, the implementation of MGDA is not without challenges. The primary concerns include 
computational complexity and scalability, especially when dealing with many tasks or 
complex models such as deep neural networks. Traditional MGDA requires separate backward 
passes for each task to compute their respective gradients, leading to increased computational 
overhead proportional to the number of tasks. To mitigate this, an upper bound 
approximation of MGDA can be employed. This approximation simplifies the gradient 
computation by leveraging a single backward pass across all tasks, thereby significantly 
reducing the computational burden while still approaching Pareto optimality. 

In practice, the MGDA approach applied in this study involves the following process: 



 

 

• Loss Calculation: For each of the four tasks - energy consumption (𝐿1 ), total cost (𝐿2 ), 
carbon emissions (𝐿3 ), and comfort days (𝐿4 ) - the respective loss 𝐿𝑡(𝜃) is computed. 

• Gradient Computation: The gradient 𝛻𝜃𝐿𝑡(𝜃) for each task is determined with respect 
to the shared parameters 𝜃. 

• Optimization Problem Solving: The QP problem is solved to find the optimal weights 
𝛼𝑡  that minimize the combined gradient norm, subject to the constraints 
∑ 𝛼1 = 1 𝑎𝑛𝑑 𝛼𝑡 ≥ 0  4

𝑡=1 for all 𝑡. 

• Parameter Update: The shared parameters 𝜃 are updated using the weighted sum of 
the task-specific gradients, guided by the optimal weights 𝛼𝑡. 

This methodological framework ensures that the MTL model maintains a balanced and effective 
optimization across all tasks. By dynamically adjusting the influence of each task's gradient, 
MGDA fosters a robust learning process that is resilient to task conflicts and capable of 
achieving comprehensive performance improvements. 

 

6.4 Model evaluation 

6.4.1 Model options evaluation 

Four distinct multi-task learning models were developed: literature-based models using MGDA, 
data-based models using MGDA, literature-based models employing the weighted sum 
method, and data-based models employing the weighted sum method. The performance of 
each model is assessed using Mean Absolute Error (MAE), Root Mean Square Error (RMSE), and 
R-squared (R2) for each task (see Table 9, 10, 11, and 12), as well as average MAE, RMSE and R2 
across all tasks (see Table 8).  

These metrics are defined as follows: 

𝑀𝐴𝐸 =  
1

𝑛
∑|𝑦𝑖 −  �̂�𝑖|

𝑛

𝑖=1

 

 

𝑅𝑀𝑆𝐸 =  √
1

𝑛
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𝑛
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𝑅2 =  1 −
∑ (𝑦𝑖 −   �̂�𝑖)2𝑛

𝑖=1

∑ (𝑦𝑖 − �̅�)2𝑛
𝑖=1

  

where: 

• 𝑛 represents the total number of observations. 

• 𝑦𝑖  is the actual value. 



 

 

•  �̂�𝑖  is the predicted value. 

• �̅� is the mean of the actual values. 

A comparative analysis is conducted to demonstrate the relative efficacy of the training 
methods and architectural approaches employed. 

Model option MAE RMSE R2 

Literature-based, MGDA 39.86 44.68 0.832 

Data-based, MGDA 41.00 48.59 0.797 

Literature-based, weighted sum 42.40 48.78 0.791 

Data-based, weighted sum 42.86 49.74 0.787 

Table 8 – Average MAE, RMSE and R2 across all tasks of each of the four model's options 
considered (Source: Own Work) 

 

Model option MAE RMSE R2 

Literature-based, MGDA 1.14 1.47 0,920 

Data-based, MGDA 1.26 1.49 0.918 

Literature-based, weighted sum 1.14 1.56 0.910 

Data-based, weighted sum 1.26 1.59 0.906 

Table 9 - MAE, RMSE and R2 for energy task of each of the four model's options considered 
(Source: Own Work) 

 

Model option MAE RMSE R2 

Literature-based, MGDA 136.08 149.49 0,610 

Data-based, MGDA 136.49 160.18 0.552 

Literature-based, weighted sum 140.38 160.48 0.540 

Data-based, weighted sum 142.24 163.18 0.535 

Table 10 - MAE, RMSE and R2 for cost task of each of the four model's options considered 
(Source: Own Work) 

 

Model option MAE RMSE R2 

Literature-based, MGDA 17.03 25.06 0,773 

Data-based, MGDA 20.39 26.48 0.746 

Literature-based, weighted sum 21.70 27.13 0.734 

Data-based, weighted sum 22.60 27.13 0.734 

Table 11 - MAE, RMSE and R2 for emission task of each of the four model's options considered 
(Source: Own Work) 

 



 

 

Model option MAE RMSE R2 

Literature-based, MGDA 6.37 7.84 0.969 

Data-based, MGDA 5.97 7.10 0.967 

Literature-based, weighted sum 5.34 6.24 0,958 

Data-based, weighted sum 5.21 6.11 0.948 

Table 12 - MAE, RMSE and R2 for comfort task of each of the four model's options considered 
(Source: Own Work) 

Comparison of training approaches: MGDA and Weighted Sum Method 

The first comparison focuses on the training methodologies—MGDA and the Weighted Sum 
method. The results indicate a clear performance advantage for models utilizing MGDA over 
those employing the Weighted Sum approach. Specifically, the literature-based architecture 
combined with MGDA achieves an average MAE of 39.86 and an average RMSE of 44.68, while 
its counterpart using the Weighted Sum method records higher errors (average MAE = 42.40, 
average RMSE = 48.78). Similarly, the data-based architecture with MGDA outperforms the 
Weighted Sum variant (average MAE = 41.00, average RMSE = 48.59 versus average MAE = 
42.86, average RMSE = 49.74). 

Examining the performance across individual tasks further substantiates the superiority of 
MGDA. For the energy task, both MGDA-based models exhibit lower MAE and RMSE compared 
to their Weighted Sum counterparts, with the literature-based MGDA model achieving an MAE 
of 1.14 and an RMSE of 1.47 versus 1.14 and 1.56 for the Weighted Sum method. In the cost 
task, MGDA consistently outperforms the Weighted Sum approach, with the literature-based 
MGDA model recording an MAE of 136.08 and an RMSE of 149.49 compared to 140.38 and 
160.48, respectively. This trend is also observed in the emission task, where the literature-
based MGDA model achieves an MAE of 17.03 and an RMSE of 25.06, outperforming the 
Weighted Sum method’s MAE of 21.70 and RMSE of 27.13. However, for the comfort task, the 
Weighted Sum method shows competitive performance, with the data-based Weighted Sum 
model achieving slightly lower MAE and RMSE (5.21 and 6.11) compared to the MGDA-based 
models (MAE = 5.97, RMSE = 7.10). 

The superior performance of MGDA can be attributed to its dynamic adjustment of task-
specific gradients, which facilitates a balanced optimization across all tasks. Unlike the 
Weighted Sum method, which relies on predefined weights to aggregate task losses, MGDA 
autonomously determines the optimal combination of gradients. This dynamic weighting 
mechanism effectively mitigates conflicts between tasks, ensuring that improvements in one 
objective do not disproportionately detract from others. Consequently, MGDA fosters a more 
efficient convergence, as evidenced by the lower average MAE and RMSE values observed. 

In contrast, the Weighted Sum method assigns equal weights to each task's loss function, 
operating under the assumption of equal task importance. While this approach simplifies the 
optimization process, it may fail to capture the specific interdependencies and varying 
degrees of task significance inherent in the dataset. The static weighting scheme can lead to 
suboptimal performance, particularly in scenarios where tasks exhibit conflicting gradients or 
differential relevance to the overall model objectives. The empirical results underscore the 
limitations of the Weighted Sum method, highlighting the necessity for more adaptive training 
strategies like MGDA in complex MTL settings. 

 



 

 

Comparison of training approaches: MGDA and Weighted Sum Method 

The second comparison examines the architectural choices: data-based versus literature-
based task-specific layers. The findings reveal that literature-based architectures 
consistently outperform their data-based counterparts across both training methodologies. 
Specifically, under the MGDA framework, the literature-based model achieves an average MAE 
of 39.86 and an average RMSE of 44.68, compared to the data-based model's average MAE of 
41.00 and RMSE of 48.59. Similarly, when employing the Weighted Sum method, literature-
based architectures maintain superior performance (average MAE = 42.40, average RMSE = 
48.78) relative to data-based architectures (average MAE = 42.86, average RMSE = 49.74). 

Analyzing the performance across individual tasks further supports the advantage of literature-
based architectures. For the energy task, both literature-based models demonstrate superior 
R² values (0.920 and 0.910) compared to the data-based models (0.918 and 0.906). In the cost 
task, literature-based models not only exhibit lower MAE and RMSE but also achieve higher R² 
values (0.610 and 0.540) compared to data-based models (0.552 and 0.535), indicating better 
explanatory power. The emission task also favors literature-based architectures, with higher R² 
values (0.773 and 0.734) versus data-based models (0.746 and 0.734). However, in the comfort 
task, data-based architectures perform competitively, particularly with the Weighted Sum 
method, where the data-based model achieves a slightly higher R² (0.948) compared to the 
literature-based counterpart (0.958). 

The enhanced performance of literature-based architectures can be attributed to their 
foundation on established academic insights and empirical evidence. By leveraging 
architectural designs that have been validated in prior research, literature-based models 
benefit from optimized configurations tailored to the specificities of the tasks at hand. These 
architectures likely incorporate proven mechanisms for feature extraction, parameter sharing, 
and task-specific processing, which collectively contribute to more accurate and reliable 
predictions. 

In contrast, data-based architectures, which are derived from correlations identified within 
the dataset, may lack the theoretical robustness and generalizability inherent in literature-
informed designs. While data-driven approaches offer the flexibility to capture unique patterns 
and relationships specific to the dataset, they may also be susceptible to overfitting or fail to 
encapsulate broader task interactions effectively. The comparatively higher average MAE and 
RMSE values observed in data-based models suggest that these architectures may not fully 
exploit the underlying structures essential for optimal multi-task performance. Additionally, the 
lower R² values in several tasks indicate that data-based models may have less explanatory 
power in capturing the variance in the target variables. 

Furthermore, literature-based architectures likely benefit from a comprehensive understanding 
of the domain, enabling more strategic parameter sharing and task prioritization. This informed 
architectural design facilitates better coordination among tasks, enhancing the model's ability 
to generalize and perform consistently across diverse predictive objectives. For instance, in the 
cost task, which exhibits the highest errors and lowest R² values, literature-based models 
demonstrate more robust performance, suggesting that domain-informed architectural choices 
play a crucial role in managing more challenging prediction tasks. 

 

Conclusions  

The comparative analysis underscores the critical impact of both training methodologies and 
architectural choices on the performance of MTL models. MGDA emerges as a superior 
training method relative to the Weighted Sum approach, primarily due to its ability to 
dynamically balance task-specific gradients and navigate conflicting objectives effectively. This 



 

 

advantage is particularly evident in tasks with higher error rates, such as the cost task, where 
MGDA-based models consistently outperform Weighted Sum counterparts. Concurrently, 
literature-based architectural designs demonstrate a consistent performance advantage 
over data-based architectures, benefiting from theoretically grounded and empirically 
validated configurations. 

These findings highlight the importance of adopting adaptive training strategies and leveraging 
established architectural principles in the development of robust MTL models.  

Given these considerations, the MTL model with literature- review based architectures using 
MGDA method has been used in the next steps of this research.  

6.4.2 Evaluation of best-ranked model 
Figure 22 shows the evolution of the loss function during both training and validation phases for 
the model with architectures based on literature-review and using MGDA. 

 

Figure 22 - Training vs. validation losses graphs for best performing model, where task 1 is 
energy, task 2 is cost, task 3 is carbon and task 4 is comfort (Source: Own Work) 

The plot on the left illustrates how the total loss changes over the training epochs for both the 
training set (blue line) and the validation set (red line). At the beginning of the training process, 
the total loss is relatively high, but it decreases quickly as the model learns from the data. 
Within the first 20 epochs, the loss rapidly converges to substantially lower values, indicating 
that the model’s predictive capability is improving. As training progresses, the training loss 
continues to decrease at a slower pace, while the validation loss stabilizes at a level 
comparable to or even slightly lower than the training loss. The absence of a significant gap 
between training and validation losses, combined with the lack of a late increase in validation 
loss, suggests that the model is not overfitting. So, the generalization ability of the model 
remains strong, allowing it to perform well on unseen data. 

The plot on the right shows how each individual task’s loss evolves over time for both the 
training and validation sets. Each task’s training loss (solid lines) and validation loss (dashed 
lines) follow a similar pattern: an initial steep decline, followed by stabilization at relatively low 
values. Notably, the close correspondence between training and validation curves across all 
tasks indicates that the multi-objective optimization strategy is well managed. This effective 
balance is achieved thanks to the use of the Multi-Gradient Descent Algorithm (MGDA), 
which ensures that the model does not disproportionately prioritize one objective over the 
others. Consequently, all tasks converge together towards a stable solution without significant 
trade-offs or degradation in performance on any single objective. 



 

 

Figure 23 shows plots that compare the actual target values (horizontal axis) to the model’s 
predicted values (vertical axis) for each of the four tasks. Each plot includes a red dashed line 
representing the ideal scenario where predicted and actual values match exactly. 

 

Figure 23 - Predicted vs. actual values graphs for best performing model (Source: Own Work) 
Energy task 
In the energy prediction plot, most data points cluster closely around the diagonal line, 
indicating that the model’s predictions are generally well aligned with the actual values. The 
spread of points is relatively narrow, suggesting a high level of accuracy and a strong 
correlation between predicted and actual energy consumption. While minor deviations exist, 
the model appears to capture the underlying patterns in energy demand effectively. 

Cost task 
For the cost predictions, the points also follow the diagonal trend, but the scatter broadens 
somewhat, especially at higher cost values. Despite this increased variance, the model still 
maintains a positive relationship between actual and predicted costs. This indicates that while 
the model is less precise as cost values grow larger, it still successfully understands the main 
trends. Some under- or overestimation is visible, showing potential areas for further fine-tuning 
or additional feature engineering. 

Emissions task 
In the emissions task, there is an overall alignment with the diagonal line, indicating that total 
carbon emissions are predicted reasonably well. However, the predicted values are notably 
divided into three distinct clusters. The three clusters observed likely correspond to the 
different retrofit scenarios considered in the dataset. The first, representing the current 
scenario without any retrofit, incurs minimal environmental impact since no additional 
materials are introduced, resulting in the lowest emissions cluster. The second cluster, 



 

 

associated with a standard retrofit, displays a moderate level of environmental impact as it 
involves an average amount of insulation material added. Lastly, the cluster corresponding to 
the nZEB (near zero-energy building) scenario shows the highest environmental impact, 
reflecting the big quantity of material required. Further investigation could help clarify why the 
data form these clusters and improve accuracy. Additional checks or refinement may be 
necessary to ensure that the model is capturing the nuances that drive the differences in 
embodied carbon. 

Comfort task 
For the comfort task, the predictions also show a good positive correlation with the actual 
values. Most points cluster near the line, indicating that the model reliably estimates the 
number of comfort days. There is some clustering and slight deviation in certain value ranges, 
which might indicate that the model tends to slightly underpredict or overpredict comfort days 
under certain conditions. Still, the general trend suggests that the model is capable of providing 
useful guidance for predicting comfort days. 

Figure 24 shows the percentage error distribution graphs of each task for the selected model. 

 

Figure 24 - Percentage error distribution graphs for best performing model (Source: Own Work) 
 

Energy task 
The error distribution for energy predictions is relatively symmetric and centered near zero, with 
the majority of errors falling between about -15% and +5%. This suggests that the model 
generally estimates energy consumption reasonably well, with minimal systematic bias 
toward over- or underestimation. 



 

 

Cost task 
For the cost predictions, there is a good number of predictions with errors close to zero, 
suggesting that the model often gets the costs right. However, there are also cases where the 
errors are larger. Such deviations may arise because the model struggles to fully comprehend 
the relationship between retrofit extent and material choice. For example, when a retrofit 
scenario is identical (meaning it reaches the same thermal properties) except for the insulation 
material used, the model may fail to recognize that a standard insulation material results in 
a lower cost, while a low embodied carbon material leads to a higher cost. Learning this 
complex correlation may require exposing the model to a more comprehensive dataset that 
includes a variety of standard and low embodied carbon materials, along with their respective 
price ranges. Such data enrichment could help the model better understand and predict these 
cost variations. 

Emissions task 
The distribution of emissions errors is broader, indicating that the model struggles to 
accurately predict embodied carbon. This expanded range of errors likely reflects the 
complexity of factors influencing emissions, such as material selections, retrofit scenarios, and 
the interplay of multiple parameters. In particular, considering only five different materials may 
have limited the model’s ability to fully interpret the relationship between retrofit measures and 
embodied carbon. Without a sufficiently diverse training dataset that includes a wider array of 
both standard and low-embodied-carbon materials, the model cannot fully capture these 
intricate dynamics. By expanding the dataset to encompass more varied materials, the 
model’s capacity to predict emissions should improve. Such enhancements would likely 
lead to a more narrowly clustered error distribution, signaling more precise and reliable 
emissions forecasts. 

Comfort task 
The comfort task exhibits the strongest performance among the four tasks considered. 
Specifically, all prediction errors fall within a range of -8% to +5%. The error distribution is 
relatively narrow and slightly below zero, indicating a small tendency to underestimate actual 
comfort days. The majority errors remain confined to a small percentage range, suggesting that 
the model provides consistently accurate predictions for comfort-related outcomes. 

Overall conclusions 

The evaluation of the MTL model across energy, cost, emissions, and comfort tasks 
underscores its good performance and generalization capabilities. Analysis of the loss 
functions (Figure 22) reveals a consistent decrease in both training and validation losses, with 
minimal overfitting, referable to the effective multi-objective optimization provided by the 
Multi-Gradient Descent Algorithm (MGDA). This balance ensures that the model maintains 
high performance across all tasks without disproportionately favouring any single objective. In 
terms of predictive accuracy (Figure 23), the model performs good in energy and comfort 
tasks, demonstrating tight clustering around the ideal prediction line, which reflects high 
reliability and strong correlation with actual values. While cost predictions generally follow the 
expected trend, increased variance at higher values suggests the need for further refinement to 
capture complex cost dynamics more precisely. The emissions task, although aligned with 
actual values, exhibits broader error distributions and distinct clustering, indicating challenges 
in accurately predicting embodied carbon due to limited material diversity in the training data. 
Error distribution analyses (Figure 24) reinforce these findings, highlighting minimal bias and 
narrow error ranges for energy and comfort, while cost and emissions predictions reveal 
areas for improvement. Notably, the predictive accuracy for cost and emissions can be 
enhanced by expanding the dataset to encompass a wider array of both standard and low-
embodied-carbon materials along with their related costs. Overall, the model demonstrates 
significant predictive strengths and effective generalization, with opportunities for 



 

 

enhancement through expanded datasets and refined feature engineering to address identified 
limitations. Future work should focus on these areas to further improve the model’s accuracy 
and reliability across all tasks. 

6.4.3 Time efficiency 
A significant innovation presented in this study is the substantial reduction in computational 
time required for assessing retrofit scenarios. This enhancement is pivotal for accelerating the 
retrofit process, enabling timely and efficient decision-making. To quantify these time savings, 
four comparative analyses were conducted between the developed Multi-Task Learning (MTL) 
model and the conventional retrofit process. The following sections detail these comparisons 
and their outcomes. 

1. Simulation time per run 

The first comparison evaluates the time required to execute a single simulation using both 
approaches. The conventional retrofit process involves running the simulation in EnergyPlus. As 
shown from Table 13, the MTL model reduces the simulation time from 38 seconds to 0.3 
seconds, representing a 125-fold decrease in computational time. 

Usual retrofit process MTL Model 

38 s 0.3 s 

Table 13 - Comparison of needed time to run one simulation (Source: Own Work) 
2. Simulation time including IDF creation 

The second comparison incorporates the time required to prepare the IDF file alongside the 
simulation run. For the conventional process, creating the IDF file manually demands around 8 
hours, whereas the MTL model requires minimal effort. As shown from Table 14, when 
accounting for IDF file creation, the MTL model completes the process in 5.3 seconds 
compared to 8 hours and 38 seconds for the conventional method. This signifies a reduction 
from approximately 30,628 seconds to 5.3 seconds, highlighting an immense time-saving 
advantage. 

 Usual retrofit process MTL Model 

Calculation 8 h + 38 s 5 s + 0.3 s 

Result 8h 38 s 5.3 s 

Table 14 - Comparison of needed time to create one idf file and run one simulation (Source: 
Own Work) 

3. Input modelling and computational time for one district 

Expanding the comparison to a district level demonstrates even greater time efficiencies. 
Assuming a district comprises approximately 60,000 buildings, the time savings become more 
pronounced. In the conventional retrofit process, creating an IDF file for each retrofit scenario 
requires an additional 5 minutes per building. This significant time investment accumulates 
rapidly when scaled to a large number of buildings. As shown from Table 15, for a single district 
the MTL model requires 3 days and 16 hours, whereas the conventional process would take 
approximately 235 days and 1 hour. This comparison underscores the MTL model's capability 
to drastically reduce the time from nearly eight months to under four days by eliminating the 
need for extensive manual IDF file creation for each retrofit scenario. 

 Usual retrofit process MTL Model 



 

 

Calculation  (8 h + 38 s) + (5 min + 38 s)x 60 000 (5 s + 0.3 s) x 60 000 

Result  235 days and 1 hour 3 days and 16 hours 

Table 15 - Comparison of needed time to create one idf file and run simulation for a district 
(Source: Own Work) 

4. Input modelling and computational time for one city 

The final comparison scales the analysis to the entire city of Amsterdam, encompassing around 
600,000 buildings. This scenario illustrates the model's potential impact on a large urban 
scale. As shown in Table 16, applying the MTL model to the entire city reduces the required time 
to 36 days and 20 hours, in stark contrast to the conventional approach, which would 
necessitate approximately 1,958 days and 8 hours. This dramatic reduction highlights the MTL 
model's scalability and efficiency for large-scale retrofit assessments. 

 Usual retrofit process MTL Model 

Calculation  (8 h + 38 s) + (5 min + 38 s)x 499 999 (5 sec + 0.3 sec) x 600 000 

Result  1958 days and 8 h 36 days and 20 hours 

Table 16 - Comparison of needed time to create one idf file and run simulation for one city 
(Source: Own Work) 

 

The comparative analyses clearly demonstrate that the use of the MTL model offers 
significant time savings across various scales of application. Whether for single simulations 
or city-wide assessments, the MTL model consistently outperforms the traditional retrofit 
process by drastically reducing computational time. Specifically, a single simulation with the 
MTL model is completed approximately 125 times faster than with EnergyPlus. For larger-
scale applications, such as district or city-wide assessments, the MTL model achieves time 
reductions ranging from over 60 times to nearly 54 times faster. These enhancements not only 
improve the efficiency of retrofit assessments but also facilitate more rapid and informed 
decision-making, enabling the timely implementation of energy-efficient measures. 

However, it is important to recognize that while the MTL model significantly accelerates the 
simulation process, EnergyPlus simulations provide only indoor temperature and energy 
consumption data. In contrast, the MTL model offers additional metrics such as comfort days, 
cost, and embodied carbon. Therefore, the comparison between the two methods is valid only 
to a certain extent, based on the specific metrics each provides. Additionally, the 
computational time required for EnergyPlus simulations can vary greatly depending on the 
complexity of the IDF file. For the purposes of this comparison, the time measured pertains 
specifically to the IDF file of the base building used in this study. 

  



 

 

7. Selection of optimal retrofit solutions 

This study aims to determine the most effective building retrofit strategies by simultaneously 
considering multiple objectives, including cost, carbon emissions, energy consumption, and 
the number of days within acceptable comfort levels. To manage these often conflicting 
objectives, this research employs multi-objective optimization (MOO) and multi-criteria 
decision-making (MCDM) methods. 

MOO is used first to generate a set of optimal trade-off solutions, represented as a "Pareto 
front." Rather than focusing on a single objective, MOO finds a range of solutions that balance 
the four criteria, ensuring that no single aspect (e.g., minimizing cost) compromises another 
objective (e.g., reducing emissions) excessively.  

After MOO has identified a spectrum of potential solutions, MCDM techniques are employed to 
select the best individual solution from this set. MCDM methods systematically evaluate the 
trade-off solutions against a specific set of weighted criteria, making it possible to prioritize 
certain objectives over others and thereby determine a single optimal scenario. 

In this study, two different MOO approaches are developed to enhance the robustness and 
flexibility of the optimization process. Each approach interprets the problem differently, thereby 
broadening the range of potential solutions. Further explanation of these methods is provided in 
the following sections (see Figure 11). 

7.1 Multi-Objectives Optimization 

7.1.1 Optimization based on dataset 
In the pursuit of identifying optimal retrofit solutions, it is essential to balance multiple, often 
conflicting objectives such as minimizing costs, reducing carbon emissions, lowering energy 
consumption, and maximizing occupant comfort. To achieve this, a decision-making 
framework utilizing MOO is employed. This chapter delves into the first type of MOO applied in 
this study, detailing the step-by-step methodology, the mathematical foundations, and the 
implementation specifics that underpin the identification of Pareto-optimal retrofit scenarios. 

The optimization problem is structured around four primary objectives: 

1. minimizing annual energy consumption,  

2. minimizing total retrofit cost,  

3. minimizing embodied carbon, and  

4. maximizing comfort days.  

These objectives are influenced by several decision variables, including the time horizon for 
retrofit measures, windows U-factor, ground floor thermal resistance, external walls thermal 
resistance, and roof thermal resistance. Given the conflicting nature of these objectives (for 
instance, reducing energy consumption and carbon emissions may lead to increased retrofit 
costs) a multi-objective optimization framework is crucial for exploring and identifying the most 
effective retrofit strategies that offer balanced improvements across all criteria. 



 

 

The foundation of the MOO approach lies in the predictions generated by the MTL model. This 
model forecasts the four objectives based on different retrofit scenarios, producing a dataset 
structured as a NumPy array with dimensions corresponding to the number of samples and the 
four objectives. To facilitate the optimization process, the objectives are extracted and 
appropriately transformed. Notably, since MOO frameworks typically operate under a 
minimization paradigm, the comfort days objective, which is inherently a maximization 
criterion, is converted into a minimization objective by negating its values. This transformation 
ensures consistency across all objectives, allowing them to be compared and optimized 
simultaneously. 

Once the objectives are prepared, they are consolidated into a structured format using a 
Pandas DataFrame. This consolidation includes both the decision variables and the 
transformed objectives, enabling a comprehensive analysis of how different retrofit strategies 
impact each objective. Organizing the data in this manner simplifies the management and 
manipulation of information during the optimization process, with each row in the DataFrame 
representing a specific retrofit scenario detailing the unique configuration of decision variables 
and the corresponding values of each objective. 

A custom Pareto efficiency function is then employed to identify non-dominated solutions 
within the dataset. A solution is deemed Pareto-efficient if there exists no other solution 
that improves one objective without causing a detriment to at least one other objective. 
Mathematically, a solution 𝑥 is Pareto-efficient if there does not exist another solution 𝑥′ such 
that: 

∀𝑖 ∈ {1, 2, 3, 4} ,   𝑓𝑖(𝑥′) ≤ 𝑓𝑖(𝑥) 

𝑎𝑛𝑑 ∃𝑗 ∈ {1, 2, 3, 4} 𝑠𝑢𝑐ℎ 𝑡ℎ𝑎𝑡 𝑓𝑗(𝑥′) < 𝑓𝑗(𝑥) 

where: 

• 𝑓𝑖 represents the objective functions: 

o 𝑓1 annual energy consumption 

o 𝑓2 total retrofit cost 

o 𝑓3 total embodied carbon 

o 𝑓4 comfort days (transformed to 𝑓4
′ =  −𝑓4 for minimization) 

By transforming all objectives to a minimization framework, the optimization process becomes 
more straightforward, allowing for uniform application of the Pareto efficiency condition across 
all objectives. 

The Pareto efficiency function operates by first adjusting the objectives designated for 
maximization, such as comfort days, by negating their values to convert them into minimization 
objectives. Subsequently, it performs a dominance check for each solution in the dataset. 
Domination is defined by one solution being at least as good as another in all objectives and 
strictly better in at least one objective. An efficiency mask is then generated, marking each 
solution as Pareto-efficient or not based on these dominance checks. 

Applying this Pareto efficiency function to the consolidated dataset allows for the 
identification of Pareto-optimal solutions, forming the Pareto front. This front represents 
the set of best trade-offs among the four objectives, where each solution offers a unique 
combination of objectives such that improving one would necessitate compromising another. 



 

 

The implementation of this MOO approach is executed using the "Pymoo: Multi-objective 
Optimization in Python" (n.d.-b) library is referenced as primary resource. Key parameters in 
this approach include setting the maximize parameter to [False, False, False, True], indicating 
that only the fourth objective (comfort days) should be maximized, while the remaining 
objectives are treated as minimization criteria. 

7.1.2 Optimization based on constraints 

Building upon the initial Multi-Objective Optimization approach discussed earlier, this chapter 
introduces a different methodology that leverages the Non-dominated Sorting Genetic 
Algorithm II (NSGA-II). This approach retains the core objectives of minimizing costs, carbon 
emissions, and energy consumption while maximizing occupant comfort. Additionally, it offers 
the ability to explore novel retrofit scenarios beyond those available in the initial dataset. 

The optimization framework focuses on four primary objectives: minimizing annual energy 
consumption, minimizing total retrofit cost, minimizing embodied carbon, and maximizing 
comfort days. These objectives are influenced by five decision variables: the Time Horizon for 
retrofit measures, windows U-Factor, ground floor thermal resistance, external walls thermal 
resistance, and roof thermal resistance. 

Unlike the first MOO approach, which relied solely on existing scenarios from the dataset 
used to train the MTL model, the NSGA-II-based method allows users to define ranges for these 
decision variables. This flexibility enables the generation of innovative retrofit scenarios that 
were not previously considered, thereby expanding the solution space and uncovering 
configurations that may offer superior performance across multiple objectives. 

The foundation of this approach is the NSGA-II algorithm, following the considerations of Zhan 
et al. (2024). By enabling user-specified ranges for each decision variable, the algorithm can 
explore a broader solution space, potentially uncovering retrofit configurations that offer 
superior performance across multiple objectives. 

Mathematically, the optimization problem is formalized as follows: 

 

where: 

• 𝑥 =  [𝑥1, 𝑥2, 𝑥3, 𝑥4, 𝑥5]represents the decision variables: 

o 𝑥1 time horizon 

o 𝑥2 windows U-factor 

o 𝑥3 external walls thermal resistance 

o 𝑥4 roof thermal resistance 

• 𝑓1(𝑥) is annual energy consumption 



 

 

• 𝑓2(𝑥) is total retrofit cost 

• 𝑓3(𝑥) is total embodied carbon 

• 𝑓4(𝑥) is comfort days (transformed to −𝑓4(𝑥) for minimization) 

The transformation of the Comfort Days objective into a minimization problem −𝑓4(𝑥) 
standardizes the objectives, facilitating uniform application of the optimization algorithm. The 
decision variables are constrained within predefined bounds, defining the feasible region 𝑋 for 
the optimization process. 

Implementing the NSGA-II-based MOO approach involves several key steps. Initially, users 
specify the minimum and maximum values for each decision variable, allowing the 
exploration of a wide array of retrofit scenarios beyond the initial dataset. This user-defined 
flexibility is crucial for uncovering innovative configurations that may offer enhanced 
performance. 

Next, the pre-trained MTL model and associated scalers are loaded to ensure accurate 
predictions of the four objectives based on various retrofit configurations. A custom 
optimization problem is then defined by extending the ElementwiseProblem class from 
"Pymoo: Multi-objective Optimization in Python" (n.d.-b). This custom class encapsulates the 
decision variables, objective functions, and constraints, facilitating seamless integration with 
the NSGA-II algorithm. 

The NSGA-II algorithm is configured with specific parameters, including a population size of 
100 and 200 generations. NSGA-II maintains a diverse population of solutions by applying 
genetic operators such as selection, crossover, and mutation to evolve the population 
toward optimality. The algorithm prioritizes solutions based on Pareto dominance, ensuring 
that the Pareto front encompasses a wide range of trade-off scenarios. At each generation, 
non-dominated sorting ranks solutions, and crowding distances are calculated to maintain 
diversity. Selected solutions are reproduced through genetic operations, and the population is 
updated by merging parent and offspring populations, retaining the top solutions based on their 
ranks and crowding distances. This process continues for the specified number of generations, 
resulting in a set of Pareto-optimal solutions that represent the best trade-offs among the 
defined objectives. 

Upon completion of the optimization process, the Pareto-optimal solutions are extracted, 
encompassing both the decision variables and the corresponding objective values. These 
solutions form the Pareto front, providing a comprehensive set of optimal trade-offs.  

7.2 Multi-Criteria Decision Making  
Following MOO, Multi-Criteria Decision Making is employed to evaluate and select the most 
suitable solution from the Pareto set determined by MOO. MCDM facilitates the decision-
making process by systematically considering the trade-offs between the different objectives to 
identify an optimal compromise that aligns with the user’s preferences. 

MCDM is a methodological framework that addresses decision-making scenarios involving 
multiple, often conflicting, criteria. Unlike single-objective optimization, which focuses on 
optimizing one criterion, MCDM acknowledges the complexity of real-world decisions where 
multiple factors must be simultaneously considered. The process begins with the 



 

 

identification and evaluation of relevant criteria, followed by the assessment of various 
alternatives based on these criteria. The ultimate goal of MCDM is to synthesize the 
information from multiple objectives to support informed and balanced decision-making. This 
is particularly pertinent in the context of selecting retrofit solutions, where improvements in 
energy efficiency must be weighed against costs, comfort levels, and environmental impacts. 

In the implemented MCDM process using Pymoo: Multi-objective Optimization in Python (n.d.-
b), both Compromise Programming and Pseudo Weights methodologies are employed to 
evaluate the Pareto set generated by MOO. Compromise Programming utilizes the manually 
defined weights to identify the best compromise solution by minimizing the weighted deviations 
from the ideal point. Concurrently, the Pseudo Weights method dynamically adjusts these 
weights based on the performance of each solution, thereby refining the selection process to 
better reflect the inherent trade-offs among the objectives. 

In this study, two MCDM approaches are developed: 

1. Compromise programming with user-assigned weights: This approach involves users 
assigning weights to each of the four tasks based on their preferences. For example, if a 
user is highly interested in energy efficiency, they would assign a higher weight to the 
energy consumption task. 

2. Compromise programming with pseudo weights: This method combines 
Compromise Programming with pseudo weights, which are dynamically derived based 
on the performance of solutions relative to each criterion, in addition to the user-
assigned weights. 

7.2.1 Compromise programming 
Compromise programming is a significant method within the MCDM framework aimed at 
finding a balanced solution that minimizes the distance to an ideal point. The ideal point 
represents the most favourable levels of all criteria, where each objective attains its best 
possible value. Compromise programming operates on the principle that optimal decisions 
often involve trade-offs among conflicting objectives rather than the optimization of a single 
criterion. In this approach, weights are assigned to each objective to reflect their relative 
importance in the decision-making process, typically determined by the user based on their 
preferences. For instance, if a user prioritizes energy consumption over cost, a higher weight is 
assigned to the energy consumption criterion. These weights guide the selection of the most 
balanced solution within the Pareto set by minimizing the weighted deviations from the ideal 
point, ensuring alignment with the user's priorities. 

7.2.2 Pseudo-weights  

Pseudo weights complement compromise programming by providing a computational method 
to determine the significance of each criterion without relying solely on subjective judgments. 
Instead of requiring explicit weight assignments from the user, Pseudo weights are dynamically 
derived based on the performance of solutions relative to each criterion. This is achieved by 
normalizing the distance to the worst solution for each objective using the following formula 
(Pymoo: Multi-objective Optimization in Python, n.d.-b): 

𝑤𝑖 =  
(𝑓𝑖

𝑚𝑎𝑥 − 𝑓𝑖(𝑥)) (𝑓𝑖
𝑚𝑎𝑥 − 𝑓𝑖

𝑚𝑖𝑛)⁄

∑ (𝑓𝑖
𝑚𝑎𝑥 − 𝑓𝑖(𝑥)) (𝑓𝑖

𝑚𝑎𝑥 − 𝑓𝑖
𝑚𝑖𝑛)⁄𝑀

𝑚=1

 



 

 

This equation calculates the normalized distance to the worst solution regarding each 
objective 𝑖. It ensures that objectives with smaller deviations from the ideal point receive higher 
weights, thereby emphasizing their importance in the selection process.  
By incorporating Pseudo weights, the MCDM process gains flexibility and adaptability, allowing 
the weights to adjust in response to the evolving understanding of the solution space. This 
reduces the subjectivity inherent in traditional weighting methods and enhances the 
robustness of the selected solution by ensuring that no single criterion disproportionately 
influences the outcome. The integration of Pseudo Weights with Compromise Programming 
ensures that the decision-making process not only reflects the initial user preferences but 
also balances the inherent trade-offs among the objectives more effectively, leading to a 
more resilient and well-rounded selection of retrofit solutions. 

  



 

 

8. Results 

8.1 Optimization based on dataset 
The main research question of this project aims to assess the optimal retrofit solution, where 
"optimal" is defined based on client preferences. In the optimization based on dataset, 
“optimal” is translated into the weights given to the four objectives of this research. While many 
preferences could be considered, this research focused on a selection of - what is considered 
to be - the most realistic client requests. It is important to note that no task was assigned a 
weight less than 0.1 out of 1, ensuring that no single task was disproportionately undervalued. 
Furthermore, the results presented below are derived from the MCDM process, using 
compromise programming together with pseudo weights. 

The scenarios assessed are: 

- Option 1: Minimizing Cost 

This option targets clients with limited financial resources who still wish to retrofit their 
building. The lowest intervention cost was explored by assigning equal low weights (0.1) to 
energy consumption, embodied carbon, and comfort, with the highest possible weight (0.7) 
assigned to cost. The results of this option are shown in Table 17. 

 

Option 1 

Thermal properties 4 tasks predictions 

Rc 
façade 

(m2K/W) 

Rc roof 
(m2K/W) 

Rc 
ground 

floor 
(m2K/W) 

U Factor 
windows 
(W/m2K) 

Annual 
energy 

consumption 
(kWh/m2) 

Total 
cost 

(€/m2) 

Total 
embodied 

carbon 
(kgCO2e/m2) 

Comfort 
days 

0,45 0,48 5,50 2,90 123 108 7 322 

Table 17 - Results for Option 1 (source: Own Source) 
- Option 2: Minimizing Embodied Carbon 

This scenario is for clients interested in minimizing environmental impact in terms of embodied 
carbon. It involves assigning low weights (0.1) to energy consumption, comfort, and cost, with 
the highest weight (0.7) to embodied carbon. The results of this option are shown in Table 18. 

Option 2 

Thermal properties 4 tasks predictions 

Rc 
façade 

(m2K/W) 

Rc roof 
(m2K/W) 

Rc 
ground 

floor 
(m2K/W) 

U Factor 
windows 
(W/m2K) 

Annual 
energy 

consumption 
(kWh/m2) 

Total 
cost 

(€/m2) 

Total 
embodied 

carbon 
(kgCO2e/m2) 

Comfort 
days 

4,40 0,48 0,41 2,90 82 176 4 293 

Table 18 - Results for Option 2 (Source: Own Source) 
- Option 3: Minimizing Annual Energy Consumption 



 

 

This option addresses clients whose primary goal is the energy efficiency of their building. A 
weight of 0.7 was assigned to the energy consumption task, and 0.1 to the other three tasks. 
The results of this option are shown in Table 19. 

Option 3 

Thermal properties 4 tasks predictions 

Rc 
façade 

(m2K/W) 

Rc roof 
(m2K/W) 

Rc 
ground 

floor 
(m2K/W) 

U Factor 
windows 
(W/m2K) 

Annual 
energy 

consumption 
(kWh/m2) 

Total 
cost 

(€/m2) 

Total 
embodied 

carbon 
(kgCO2e/m2) 

Comfort 
days 

6,75 4,70 4,80 0,81 35 655 191 316 

Table 19 - Results for Option 3 (Source: Own Source) 
- Option 4: Maximizing Comfort Days 

For clients focused on maximizing indoor comfort, this option assigns a weight of 0.7 to the 
comfort task and 0.1 to the other three tasks. The results of this option are shown in Table 20. 

Option 4 

Thermal properties 4 tasks predictions 

Rc 
façade 

(m2K/W) 

Rc roof 
(m2K/W) 

Rc 
ground 

floor 
(m2K/W) 

U Factor 
windows 
(W/m2K) 

Annual 
energy 

consumption 
(kWh/m2) 

Total 
cost 

(€/m2) 

Total 
embodied 

carbon 
(kgCO2e/m2) 

Comfort 
days 

4,40 8,70 0,41 1,20 50 464 92 358 

Table 20 - Results for Option 4 (Source: Own Source) 
- Option 5: All Objectives Treated Equally 

This scenario assumes a client equally interested in all four objectives, assigning an equal 
weight of 0.25 to each task. The results of this option are shown in Table 21. 

Option 5 

Thermal properties 4 tasks predictions 

Rc 
façade 

(m2K/W) 

Rc roof 
(m2K/W) 

Rc 
ground 

floor 
(m2K/W) 

U Factor 
windows 
(W/m2K) 

Annual 
energy 

consumption 
(kWh/m2) 

Total 
cost 

(€/m2) 

Total 
embodied 

carbon 
(kgCO2e/m2) 

Comfort 
days 

6,70 0,48 0,41 1,20 71 406  158 316 

Table 21 - Results for Option 5 (Source: Own Source) 

8.2 Optimization based on constraints 
Unlike the methods discussed in the previous chapter, optimization based on constraints 
defines "optimal" not only as a solution that meets the task weights assigned by the client but 
also excels within the client's specified constraints. This means that a client can define both an 
upper and lower bound for the thermal transmittance and U-Factor of the four envelope 
parameters. Additionally, the client can specify a preferred time horizon. 



 

 

While numerous client preferences can be accommodated, this research primarily utilized 
constraint-based optimization to highlight differences in the retrofit solutions suggested across 
three different yearly scenarios. Consequently, three analyses were conducted with the same 
constraints on the thermal properties of the envelope parameters but set against three different 
time horizons. The ranges of the thermal properties defined for each option are presented in 
Table 22. These ranges were selected based on the lowest and highest values from the retrofit 
interventions studied in Chapter 3.2, rounded up for simplicity. Furthermore, each task is 
weighted equally, with each having a weight of 0.25. 

 Lower bound Upper bound 

Windows U Factor (W/m2K)  0,8 3,0 

Groundfloor Rc (m2K/W) 0,4 6,0 

External Wall Rc (m2K/W) 0,4 7,0 

Roof Rc (m2K/W) 0,4 9,0 

Table 22 - Ranges of values considered as input for constraint-based optimization (source: Own 
Source) 

- Option 1: Best scenario for 2020 

The results of the constraint-based optimization for 2020 scenario are shown in Table 23. 

Option 1 

Thermal properties 4 tasks predictions 

Rc 
façade 

(m2K/W) 

Rc roof 
(m2K/W) 

Rc 
ground 

floor 
(m2K/W) 

U Factor 
windows 
(W/m2K) 

Annual 
energy 

consumption 
(kWh/m2) 

Total 
cost 

(€/m2) 

Total 
embodied 

carbon 
(kgCO2e/m2) 

Comfort 
days 

6,70 0,48 0,41 0,80 71 406 158 326 

Table 23 - Results for Option 1 (Source: Own Source) 
- Option 2: Best scenario for 2050 

The results of the constraint-based optimization for 2050 scenario are shown in Table 24. 

Option 2 

Thermal properties 4 tasks predictions 

Rc 
façade 

(m2K/W) 

Rc roof 
(m2K/W) 

Rc 
ground 

floor 
(m2K/W) 

U Factor 
windows 
(W/m2K) 

Annual 
energy 

consumption 
(kWh/m2) 

Total 
cost 

(€/m2) 

Total 
embodied 

carbon 
(kgCO2e/m2) 

Comfort 
days 

6,7 0,48 0,41 0,8 71 406 158 318 

Table 24 - Results for Option 2 (Source: Own Source) 
- Option 3: Best scenario for 2100 

The results of the constraint-based optimization for 2050 scenario are shown in Table 25. 

Option 3 

Thermal properties 4 tasks predictions 



 

 

Rc 
façade 

(m2K/W) 

Rc roof 
(m2K/W) 

Rc 
ground 

floor 
(m2K/W) 

U Factor 
windows 
(W/m2K) 

Annual 
energy 

consumption 
kWh/m2) 

Total 
cost 

(€/m2) 

Total 
embodied 

carbon 
(kgCO2e/m2) 

Comfort 
days 

6,70 0,48 0,41 0,80 69 406 158 304 

Table 25 - Results for Option 3 (Source: Own Source) 

  



 

 

9. Results discussion 

Once the model selects the best combination of thermal properties based on client 
preferences, these values can be translated into technical details for the retrofit intervention. 
This interpretation is conducted based on the engineering judgment of the author, taking into 
account the dataset with which the model was trained, validated, and tested. The retrofit 
interventions suggested in the interpretation of results thus refer to the retrofit scenarios 
examined in Chapter 3.2. 

Specifically, in the case of optimization based on dataset, the retrofit measures suggested by 
the model are chosen from those provided as input - namely, those analysed in Chapter 3.2. 
However, in the case of optimization based on constraints, the model may suggest values that 
differ from those with which it was trained, thereby potentially recommending new retrofit 
scenarios not considered in Chapter 3.2. 

9.1 Optimization based on dataset 
- Option 1: Minimizing cost 

The results suggest retrofitting measures to the ground floor only, by adding 
polyisocyanurate (PIR) insulation to reach nZEB standards. The findings indicate that 
retrofitting fewer envelope parameters results in lower costs. Even though the model has 
adequately considered tasks related to energy consumption and comfort days, it still 
recommends retrofitting one out of four parameters - the ground floor. This outcome 
demonstrates that if only one parameter must be chosen for intervention, the best choice is to 
focus on the ground floor. 

These results also show that along with cost, the embodied carbon is significantly low. This is 
primarily due to the intervention being limited to just one parameter rather than all four. 
Moreover, energy consumption is reduced by 10% compared to the building's current state. 
While this reduction is modest, it is reasonable given that only a single envelope parameter has 
been retrofitted. 

- Option 2: Minimizing embodied carbon 

The optimal result for minimizing embodied carbon, while also valuing the other three tasks, is 
to retrofit façade to current standards using a low environmental impact material, such as 
hemp fiber. This outcome demonstrates reasonably that to minimize embodied carbon, it is 
necessary to reduce the number of envelope parameters that are targeted for intervention. 
Consequently, the cost of the intervention is also low because fewer interventions lead to lower 
costs. With this option, energy consumption is reduced by 40% compared to the building's 
current state. This result underscores the significant energy savings achievable through retrofit 
interventions on the façade. Therefore, the façade plays a crucial role in the building's 
overall energy performance. 

- Option 3: Minimizing annual energy consumption 

In this option, all the envelope parameters are retrofitted, which is logical because to 
enhance the energy performance of a building, robust performance across all the 
parameters of its envelope is essential. Specifically, the retrofit includes windows with triple 
glazing and plastic frames, and hemp fiber insulation is used to meet nZEB standards for 
façade. Moreover, ground floor and roof are retrofitted to meet current standards using PIR 
insulation and mineral wool respectively. Under this scenario, energy consumption is reduced 



 

 

by 74% compared to the building's current state. This substantial reduction is expected, as 
the primary objective of this option is to minimize energy usage. It demonstrates that retrofitting 
all four envelope parameters can achieve significant energy savings, indicating considerable 
potential for improvement in the building's existing condition. 

- Option 4: Maximizing comfort days 

When the primary goal is to maximize the number of comfort days, the chosen retrofit option 
involves installing windows with plastic frames and HR++ glazing, using hemp fiber insulation to 
meet nZEB standards for the roof, and current standards for the façade. The floor is to remain 
as existing state. This approach achieves a maximum of 358 comfort days per year, meaning 
the building remains comfortable for all but two days annually. In this scenario, energy 
consumption is reduced by 63%. The substantial energy reduction is due to the retrofitting of 
three envelope parameters. These results demonstrate that increasing the number of comfort 
days leads to more extensive retrofitting and greater energy savings. Consequently, costs 
and embodied carbon are expected to rise. 

- Option 5: All objectives treated equally 

When all four objectives are considered with equal importance, it is recommended to adopt 
windows with plastic frames and HR++ glazing. Additionally, hemp fiber insulation is used to 
meet nZEB standards on the façade. This indicates that when equal importance is given to the 
four tasks, the retrofit measures should focus on façade and windows. Therefore, these two 
parameters significantly influence both energy consumption and comfort, and their 
retrofits involve moderate costs and embodied carbon. For this option, annual energy 
consumption is reduced by 47% compared to the building's current state, demonstrating that 
substantial energy reductions can be achieved by retrofitting just two out of four envelope 
parameters. 

Comparison 

Insulation is an effective measure for reducing heating demand; however, its impact is 
predominantly realized at lower R-values. For instance, option 2, which upgrades the facade 
to current standards, results in a 40% reduction in energy consumption. In contrast, Retrofit 
Option 5 involves upgrading facades to nZEB  standards and windows to current standards, 
achieving a 50% reduction in energy consumption—a 10% improvement over Option 2. This 
outcome indicates that significant enhancements in a building's energy performance can 
be achieved by modifying even a limited number of envelope parameters with a moderate 
level of retrofit. Moreover, option 3 achieves the highest energy reduction compared to the 
building's existing state, with a 74% decrease in energy consumption. This result demonstrates 
that an investment of €655 per square meter can substantially reduce heating-related energy 
consumption across various building types. 

Among the building components and associated renovation measures, the facade and glazing 
exhibit the largest potential impact on heating demand. Specifically, in option 5, which 
addresses all objectives, these two parameters are prioritized for retrofit interventions. 

Overall, a positive correlation is observed between embodied carbon and cost. This 
correlation arises because retrofitting fewer envelope parameters leads to lower costs 
and reduced embodied carbon. While this finding is logical, it also reveals that the model does 
not fully capture the fact that low embodied carbon materials typically have a low 
environmental impact but may incur higher costs. This limitation likely stems from the model 
only considering hemp fiber insulation as a low embodied carbon material. Incorporating a 
broader range of low embodied carbon materials in the training dataset could enhance the 
model's ability to accurately reflect this correlation. 



 

 

Finally, it is important to note that measures aimed at reducing heating demand can 
increase the risk of overheating during the summer months. For instance, in option 3, where 
energy consumption is prioritized, all four envelope parameters are retrofitted. While this 
results in a substantial reduction in heating demand, it also leads to a decrease in comfort days 
by 276, meaning that the building experiences nearly three months of discomfort due to 
overheating. Similarly, in option 2, which involves only the facade retrofit, the number of 
comfort days decreases by 293, resulting in over two months of overheating conditions. These 
findings demonstrate that while retrofitting the facade significantly reduces heating 
demand, it also elevates the risk of overheating. Specifically, adding insulation enhances a 
building's ability to retain heat, which can cause excessive internal heat accumulation during 
periods of high temperatures, thereby increasing the likelihood of overheating. 

9.2 Optimization based on constraints 

The interpretations of the following results are based on the retrofit options considered 
in section 3.2 and suggest a thickness of insulation material to be added, calculated 
according to the thermal performance to be achieved and the material details 
mentioned in section 3.2. The results I analyzed using this type of optimization are 
focused on assessing the effects of future weather. Therefore, three options were 
considered: best scenario for 2020, 2050 and 2100. 

- Option 1 - Best scenario for 2020 

The retrofit solution selected for this case involves retrofitting the windows and façade 
to nZEB standards. Specifically, 20 cm of EPS insulation is added to the façade to 
enhance its thermal performance, and triple glazing is installed for the windows to 
improve insulation and reduce heat loss. It is noted that the total embodied carbon has 
a relatively high value, and for this reason, the interpretation of the suggested retrofit 
scenario includes the use of EPS insulation, triple-glazed windows, and plastic 
frames. The other envelope parameters remain the same. 

- Option 2 - Best scenario for 2050 

The selected retrofit approach for this option involves upgrading the windows and 
façade to meet nZEB standards. It has been observed that the total embodied carbon is 
relatively high, meaning that low embodied carbon materials are not used. Therefore, 
the proposed retrofit plan includes the addition of 19 cm of EPS insulation to the 
façade and the installation of triple glazing for the windows, as well as the use of 
plastic window frames. The ground floor and roof remain unchanged. 

- Option 3 - Best scenario for 2100 

The chosen retrofit measures for this option focuses on upgrading the windows to 
meet nZEB standards. Also, the facade is brought up to compliance with current 
regulations. It is worth noting that the total embodied carbon is relatively high. 
Consequently, the proposed retrofit scenario incorporates the use of EPS insulation 
and plastic frames for the windows, while maintaining the other envelope parameters 
unchanged. 

 

Comparison 



 

 

Upon comparing the three scenarios considered, it is evident that the number of 
comfort days decreases as the year of consideration progresses. This trend highlights 
the escalating impact of heat waves, which are projected to become more intense in 
the future. With rising temperatures and an increasing frequency of heat waves, 
maintaining a comfortable indoor environment within buildings will become 
progressively more challenging. Specifically, there is a reduction of 22 comfort days 
between the years 2020 and 2100. 

Furthermore, it is noteworthy that in all three analysed scenarios, retrofitting of 
windows and façades is consistently recommended. This outcome demonstrates 
that these two components significantly influence the building's energy consumption 
and achieve a favourable balance among the research objectives. In other words, 
retrofitting windows and façades not only decreases energy consumption but also 
increases the number of comfort days, all while maintaining relatively balanced 
economic and environmental costs. 

Additionally, in the 2100 scenario, one of the two envelope parameters retrofitted - the 
façade - is upgraded to a lesser extent compared to the other scenarios. This finding 
suggests that as heat waves become more frequent and temperatures continue to 
rise, substantially increasing the thermal resistance of a building's envelope may 
not be the optimal strategy. Specifically, while enhancing thermal resistance - 
particularly of the façade - can reduce heating demand during winter, it may also lead 
to the trapping of heat during the summer months. 

  



 

 

10. Conclusion 

10.1 Answering research questions 
Given the severe climate crisis we are currently experiencing, which is predicted to worsen in 
the coming years, it is urgent to address its causes to mitigate its impact. In particular, 
considering the significant role the built environment plays in contributing to GHG emissions, it 
is essential to intervene in this sector to reduce its environmental footprint. Given the key role 
of pollution produced by existing buildings, it is crucial to assess retrofit options that ensure 
both energy efficiency and future-proofing, making buildings more sustainable and resilient to 
the challenges of a changing climate. 

This study focuses on selecting optimal envelope retrofit scenarios for the typical Dutch 
archetype, the terraced house. It emphasizes the building’s resilience to heat waves, a 
phenomenon that severely affects both our buildings and societies and is projected to become 
increasingly prolonged and intense in the future. To address this, an AI-based model is 
developed that encompasses two key components. First, a deep learning-based surrogate 
model is employed to efficiently estimate factors such as cost, embodied carbon, energy 
consumption, and comfort across various retrofitting solutions. Second, an optimization 
technique is utilized to identify the most optimal retrofit scenario based on these estimates.  

Therefore, the aim of this research is to answer the following research question: 

How to develop an AI-based surrogate model to select optimal building envelope retrofit 
solutions for a terraced house in the Netherland considering the effect of heat waves in 

future weather? 

In order to answer to the main research question, the answers to the following sub-questions 
are needed. 

Which are commonly used building retrofit envelope solutions for a terraced house in the 
Netherlands? 

This study considers terraced houses built between 1946 and 1964. These buildings typically 
consist of a massive clay brick façade, a timber roof with clay tiles, a double-deck timber 
ground floor, and double-glazed wooden-framed windows. They lack insulation, making them 
highly energy inefficient. 

As shown in Chapter 3, retrofit measures for these buildings can follow either current 
standards or nZEB standards. In both cases, external insulation is usually applied to the 
façade, and the cavities in the ground floor and roof are filled with insulation material. The 
windows are replaced with plastic-framed windows and HR++ glazing for current standards, 
while triple glazing is used for nZEB standards. Commonly used insulation materials include 
PIR insulation, RESOL insulation, mineral wool, and EPS. 

 

What are the heat waves projection data for the future? 

This study considers heat wave projections for 2050 and 2100 in Lelystad, the municipality with 
the highest percentage of terraced houses in the Netherlands. 

According to KNMI projections, a significant increase in the frequency and duration of heat 
waves is expected compared to 2020. By 2050, the number of heat waves will double, 
increasing from 1 to 2 events - a 100% rise - and their total duration will grow by 75%, from 12 to 



 

 

21 days. By 2100, the number of heat waves is projected to increase by 200%, with three 
events expected, and their total duration will increase by 317%, reaching up to 44 days. 

These projections indicate a growing intensity and frequency of heat waves over the next 
century, highlighting the destructive effects of climate change and the excessive amount of 
greenhouse gases being released into the atmosphere. This underscores the urgency of 
reducing emissions from the built environment and designing future-proof buildings to mitigate 
these impacts. 

 

Which type of AI is it better to implement for a surrogate model that identifies optimal 
building envelope retrofit solutions in terraced houses? 

This research employs a Multi-Task Learning  model based on Artificial Neural Networks. 
Specifically, the MTL model developed for this study is designed to predict annual energy 
consumption, intervention costs, the embodied carbon of materials used in retrofitting, and the 
number of comfort days within the building throughout the year. The model requires inputs 
such as the thermal resistance of the ground floor, façade, and roof, as well as the U-Factor of 
the windows. 

As discussed in Chapter 6.5, among the various options considered, the most effective model 
for this purpose incorporates task-specific layer architectures recommended by Fan et al 
(2017), Yun et al (2022), Altikat (2021), Escandron et al (2019) and utilizes the Multi-Gradient 
Descent Algorithm to automatically balance tasks gradients and identify a common optimal 
direction. This approach enhances learning for each specific task by simultaneously addressing 
multiple related tasks, thereby leveraging shared information to improve the model’s 
generalization capabilities. 

Implementing this model in the retrofit process reduces the time required to achieve the 
objectives by approximately 98% compared to traditional methods, as detailed in Chapter 
6.5.3. This significant reduction in time makes the energy efficiency improvements of buildings 
and the management of related operational emissions and embodied carbon much simpler and 
faster, thereby advancing the overall goal of decarbonization. 

 

Which is the complete workflow of a model that selects optimal building envelope retrofit 
solutions considering heat waves in the Netherlands? 

The workflow begins with the Grasshopper script generating the IDF file of the building to be 
retrofitted. Next, a model using EnergyPlus as its engine is employed. In this model, the 
thermal performance of the retrofit scenarios, the weather files to be considered, and the 
previously created IDF file must be provided as inputs. The output of this model includes daily 
energy consumption and maximum indoor temperature. 
This dataset is then pre-processed and provided to the MTL model, along with data on the cost 
and embodied carbon of the retrofit intervention. Once the MTL model is trained, validated, and 
tested, it is used in Multi-Objective Optimization and Multi-Criteria Decision-Making 
processes to identify optimal retrofit solutions based on the client’s preferences. (see Figure 1 
and Figure 11) 

 

Which are optimal building envelope retrofit solutions considering heat waves in the 
Netherlands? 

The answer to this question depends on the definition of "optimal." Generally, insulation serves 
as an effective strategy for reducing heating demand, particularly at lower R-values. For 



 

 

example, upgrading the facade to current standards can lead to a 40% reduction in energy 
consumption. Enhancing both the facade to nZEB standards and the windows to current 
standards further increases this reduction to 50%, marking a significant improvement. The 
most substantial energy savings, however, are achieved by retrofitting all four envelope 
parameters, which can decrease energy consumption by 74%. This comprehensive approach, 
though more costly, demonstrates that substantial improvements in a building's energy 
performance are attainable with targeted modifications. 

Among the various building components, the facade and glazing are paramount in influencing 
heating demand. Retrofitting these elements not only reduces energy consumption but also 
strikes a favourable balance between economic and environmental costs. This is consistently 
recommended across different scenarios. 

While enhancing insulation significantly lowers heating demand, it also increases the risk 
of overheating during warmer months. Comprehensive retrofitting can lead to a substantial 
decrease in comfort days, with reductions of up to three months, as improved insulation 
enhances a building's ability to retain heat, causing excessive internal heat accumulation 
during periods of high temperatures. Therefore, balancing energy efficiency measures with 
the need to prevent overheating is essential. Retrofitting windows and facades remains a 
consistent recommendation due to their significant impact on reducing energy consumption 
and enhancing comfort. However, particularly in future scenarios where heat waves become 
more prevalent, it may be necessary to moderate the extent of thermal resistance 
enhancements to avoid trapping heat during summer months, negating winter heating benefits.  

 

To reduce emissions in the built environment, this thesis has demonstrated that a Multi-Task 
Learning surrogate model can be effectively integrated into the decision-making process to 
suggest optimal retrofit measures that balance costs, thermal comfort, embodied carbon, and 
energy consumption. This research enhances the selection process for retrofit scenarios, 
significantly reducing computational costs while enabling the simultaneous consideration of 
four crucial objectives. By improving the efficiency of the retrofit process, this thesis 
addresses one of the most pressing challenges facing the built environment: 
decarbonization. In doing so, it promotes the development of a future-proof and planet-
friendly built environment, paving the way for more sustainable practices in the construction 
and architecture sectors. 

10.2 Research limitations 
This research does not account for several factors that could impact the interpretation and 
application of its findings. Notably, the economic analysis of retrofit interventions for future 
scenarios does not consider changes in cost over time, which could be influenced by market 
fluctuations and inflation. Only the upfront cost of interventions is considered, excluding 
considerations such as the payback period. Furthermore, the thermal comfort analysis is based 
on a static temperature range (18-26 degrees Celsius), not incorporating the theory of thermal 
adaptive comfort, which could significantly change the estimation of comfort days throughout 
the year. The model simplifies the evaluation of retrofit measures by primarily considering the 
thermal resistance of windows, ground floors, and facades, and the U-Factor of windows. This 
simplification omits other parameters like density, thickness, specific heat, and thermal 
transmittance, which can be crucial for assessing a material’s thermal performance. 
Additionally, the study exclusively considers hemp fiber insulation for low embodied carbon, 
limiting the scope of analysis concerning the cost-to-embodied carbon ratio due to the narrow 



 

 

material sample. These limitations highlight critical areas where the study's methodology and 
conclusions may lack broader applicability. 

9.3 Further Research Recommendations 

The methodology applied in this study has demonstrated potential for adaptability across 
different building archetypes and construction years. To enhance the robustness and 
applicability of the findings, it would be beneficial to integrate a wider range of building types 
and construction periods into the model. This expansion would allow the model to cater to a 
more diverse set of architectural contexts and historical construction techniques, thereby 
broadening the scope and utility of the research. 

Furthermore, the database used for refurbishment scenarios could be significantly expanded to 
include a greater variety of materials used for insulation and different build-ups of the 
interventions. By employing a larger and more diverse dataset, the model could be improved to 
better generalize across various conditions. This would enhance the predictive accuracy and 
relevance of the model, particularly in the context of sustainable building practices. 

To advance results of the research, developing a model that incorporates time-series data 
would be particularly valuable. Utilizing ANNs such as Long Short-Term Memory (LSTM) 
networks, a type of artificial neural network that has proven effective in handling such data, 
could enable daily predictions of energy consumption and indoor comfort levels. This approach 
would not only refine the predictions but also offer dynamic insights into the daily fluctuations 
and their implications on energy efficiency and occupant comfort. 

Additionally, considering retrofit interventions not just at the envelope level but also at the level 
of energy systems could provide a more comprehensive understanding of the potential impacts 
and benefits. This broader perspective would allow for a more integrated approach to energy 
efficiency. 

These recommendations aim to extend the capabilities of the current research framework, 
providing a more detailed and predictive understanding of building retrofit impacts. 

  



 

 

11. Reflection 

Graduation Process 

In my graduation project, I addressed a significant challenge within the built environment by 
leveraging innovative technologies, including artificial intelligence. The project evaluated 
optimal, future-proof retrofit strategies by analysing key factors such as occupant comfort, 
energy efficiency, cost-effectiveness, and environmental sustainability. The methodology used 
integrates façade, climate, and computational design, creating a cohesive approach. This 
interdisciplinary strategy is fundamental to the Building Technology Graduation Studio, where 
connecting knowledge from diverse fields is essential for developing innovative solutions that 
yield positive societal and environmental impacts. 

The primary goal of my thesis was to develop an AI-based surrogate model for selecting optimal 
building envelope retrofit solutions, specifically designed to address heat waves in the 
Netherlands. This goal was successfully met, despite the considerable challenges posed by the 
project's ambitious scope and tight time constraints. Indeed, the research considered multiple 
complex topics, including building envelope design, future weather predictions, building energy 
simulation models, and artificial intelligence.  

It is important to note that within the research context, the project introduces two main 
innovations. Firstly, the simulation process and selection of optimal retrofit scenarios 
incorporate future heat wave predictions, an aspect not considered in the reviewed papers. 
Specifically, the time horizons considered are 2050 and 2100. This approach aims to ensure the 
future-proofing and enhance the sustainability of the built environment. Secondly, unlike the 
existing literature reviewed, this project explores both the potential and limitations of using a 
Multi-Task Learning model within this research context. 

Although this project may seem technical, it demonstrates a strong correlation between 
research and design. Initially, the investigation into common retrofit strategies for the 
considered building archetype was translated into specific technical design details for each 
refurbishment intervention. Moreover, following the selection of the thermal properties for 
optimal retrofit solutions, these properties were interpreted into necessary design interventions 
across the four envelope parameters: roof, ground floor, façade, and windows. 

I started this journey with no prior knowledge of machine learning, driven purely by my keen 
interest in the field. The learning curve was steep, and the guidance from my professors were 
essential in managing complexity with ease. They helped me gain a thorough understanding of 
the subject matter and provided critical support throughout the project. During the thesis 
process, I often found myself overly focused on minor details. However, the feedback from my 
mentors was crucial in learning to maintain an overall perspective on the project and to keep 
the ultimate objective in sight. This project taught me how to manage a complex challenge by 
breaking it down into manageable themes and studying them with the appropriate depth, while 
also making critical connections between different areas. 

The success of my research approach can largely be attributed to the expert guidance I 
received for each topic addressed within the project. I was supported by a team of experts, 
including university professors, PhD researchers, and specialists from Arup, the company with 
which I collaborated. This continuous support and the extensive feedback I received were 
crucial in applying the correct methodologies to all studied topics. 

This experience has been profoundly educational, not only in terms of technical knowledge and 
skills but also in project management and prioritization. It has prepared me to tackle future 
challenges with a balanced approach and a strategic mindset. 



 

 

Societal impact 

Sustainability in its various forms has always been a central topic in the development of this 
project. The overarching goal was to contribute to the decarbonization of our society, 
particularly by reducing the environmental impact of the built environment. Moreover, the 
project aimed to ensure sustainable and future-proof development. In pursuit of this goal, it 
considered the resilience of buildings to heat waves and investigated retrofit options that used 
materials with low embodied carbon. 

The primary stakeholders of the project are housing corporations, which are responsible for the 
housing conditions of many low-income families. The project thus assists these corporations in 
deciding the best retrofit interventions to implement, simplifying a process that benefits a large 
percentage of inhabitants and the building stock. By improving the living conditions of these 
families, the project enhances their quality of life and, consequently, their physical and mental 
health. Simultaneously, it reduces the energy consumed by the built environment and 
decreases the amount of greenhouse gases emitted. 

Transferability  

Another important aspect to address is the transferability of knowledge within the framework. 
While the research primarily uses Python for analysis, the reliance on multiple separate tools 
reduces the framework's efficiency and fluidity. Developing an integrated data platform could 
improve interoperability and streamline the process. Moreover, the framework should be 
designed to communicate not only with specific target users but also with non-experts. 
Enhancing this aspect would broaden the applicability of the research and facilitate the 
collection of external feedback for further refinement.  

In addition to this, the framework is specifically designed to assist clients in selecting retrofit 
solutions that best meet their needs. While the approach is adaptable to various user 
preferences, it is tailored specifically for terraced houses owners. Therefore, if a client needs to 
retrofit a different type of building, this research may not provide the most suitable retrofit 
scenario. Additionally, if the user desires to precisely adjust design parameters, significant 
modifications to the framework would be required. 
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Appendix A 

External wall 

 

 

Figure 25 - External wall technical detail of existing state (Source: Own Work) 
 

 

Figure 26 - External wall technical details of retrofit scenarios (Source: Own Work) 
 

 

 

Groundfloor  



 

 

 

Figure 27 - Groundfloor technical detail of existing state (Source: Own Work) 
 

 

Figure 28 - Groundfloor technicals detail of retrofit scenarios (Source: Own Work) 
 

Windows 

 



 

 

 

Figure 29 - Window technical detail of existing state (Source: Own Work) 
 

 

Figure 30 - Window technicals detail of retrofit scenarios (Source: Own Work) 
 

Roof  

 

 

 

 

 

 



 

 

 

 

 

 

 

 

Figure 31 - Roof technical detail of existing state (Source: Own Work) 
 



 

 

 

Figure 32 - Roof technical details of retrofit scenarios (Source: Own Work) 
  



 

 

Appendix B 

 

Figure 33 - Days under heat wave during 2020 (Source: KNMI, n.d.) 

 

Figure 34 - Days under heat wave during 2050 (Source: KNMI, n.d.) 

month day

maximum 

temperature 

(*C)

minimum 

temperature 

(*C)

8 5 27 13

8 6 28 13

8 7 32 15

8 8 32 15

8 9 30 19

8 10 32 16

8 11 33 19

8 12 32 19

8 13 32 17

8 14 28 18

8 15 26 19

8 16 29 16

month day

maximum 

temperature 

(*C)

minimum 

temperature 

(*C)

6 23 26 13

6 24 30 15

6 25 31 15

6 26 32 18

6 27 27 19

8 5 30 15

8 6 30 15

8 7 35 17

8 8 35 18

8 9 33 21

8 10 35 19

8 11 36 21

8 12 35 21

8 13 35 20

8 14 20 20

8 15 29 22

8 16 32 19

8 17 27 17

8 18 25 15

8 19 29 15

8 20 30 21

8 21 31 18



 

 

 

Figure 35 - Days under heat wave during 2100 (Source: KNMI, n.d.) 
 

month day

maximum 

temperature 

(*C)

minimum 

temperature 

(*C)

6 12 30 18

6 13 28 19

6 14 27 20

6 15 26 19

6 16 25 19

6 17 27 17

6 18 26 19

6 19 26 16

6 20 25 15

6 21 28 16

6 22 25 15

6 23 29 15

6 24 32 18

6 25 34 18

6 26 35 21

6 27 29 21

6 28 25 16

7 23 28 16

7 24 27 19

7 25 27 20

7 26 27 18

7 27 29 18

7 28 26 19

7 29 25 14

7 30 30 12

7 31 36 17

8 1 30 20

8 2 27 17

8 3 25 16

8 4 26 15

8 5 33 18

8 6 34 19

8 7 29 21

8 8 40 22

8 9 37 26

8 10 39 23

8 11 40 25

8 12 39 26

8 13 39 24

8 14 34 25

8 15 33 26

8 16 36 23

8 17 31 20

8 18 29 19

8 19 33 19

8 20 34 26

8 21 35 22

8 22 28 22

8 23 26 21

8 24 26 18

8 25 25 18


