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Abstract

High-quality 3D mesh models are increasingly used in urban applications ranging from
planning and simulation to environmental monitoring. While aerial imagery provides a
practical balance between resolution and coverage, conventional Structure from Motion
(SfM) and Multi-View Stereo (MVS) pipelines apply uniform processing to all image regions,
often overlooking their geometric relevance. This research investigates whether reconstruc-
tion efficiency can be improved by selectively focusing dense matching efforts on image
regions most critical to mesh quality.

We explore the use of the Segment Anything Model (SAM) to guide dense matching in
oblique aerial imagery, applying it for building-level segmentation and importance estima-
tion via entropy and edge-based scoring. Initially, we tested SAM for sparse reconstruction
guidance but encountered poor performance. We then shifted to evaluating whether SAM-
derived importance maps could enable region-aware thresholding to improve mesh recon-
struction. These methods were benchmarked against a simpler Canny edge-based distance
approach across varying thresholds and scenes.

Results show that SAM-based methods can reduce memory usage while maintaining mesh
quality at low to moderate thresholds (up to 0.4). However, contrary to expectations, Canny
edge detection consistently outperformed SAM across most quality and efficiency metrics,
offering better spatial coverage, lower computational overhead, and more stable perfor-
mance. While SAM-based thresholding led to file size reductions of up to 16% and marginal
runtime gains during dense matching ( 2.3%), these were offset by the costly preprocessing
pipeline required to generate segmentation masks and importance maps.

Overall, this thesis contributes an evaluation pipeline for image region-specific reconstruc-
tion strategies and highlights that while SAM shows potential for memory-efficient mod-
eling, simpler methods like Canny edge detection may offer better trade-offs for scalable,
time-sensitive workflows. Future research should focus on faster importance estimation
techniques and pipeline adaptation for more complex, city-scale datasets.
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1. Introduction

1.1. Motivation

Accurate 3D mesh models of urban environments are used in a wide range of geomatics
related applications, such as urban planning, disaster response, environmental monitoring,
and immersive virtual simulations [Biljecki et al., 2015]. They can be derived from various
image data sources, such as satellite imagery, aerial imagery and mobile mapping stations
[Remondino and El-Hakim, 2006].

Among the available data sources, aerial imagery offers a promising balance between res-
olution and coverage. It typically provides higher spatial resolution than satellite imagery
and is capable of covering larger areas more efficiently than ground-based methods such as
terrestrial laser scanning or mobile mapping [Nex and Remondino, 2014; Fraser and Cronk,
2009].

3D mesh models from aerial images are typically generated through Structure from Motion
(SfM) and Multi-view stereo (MVS) pipelines, which estimate camera poses and reconstruct
dense point clouds from overlapping images [Remondino and El-Hakim, 2006]. Recently,
deep learning-based approaches have also been introduced to these pipelines, particularly
in dense matching and depth estimation [Liu et al., 2023; Yao et al., 2018].

However, converting aerial imagery into high-quality 3D meshes remains computationally
intensive. These pipelines tend to distribute computational resources uniformly across the
entire image, regardless of whether a region contains meaningful structural detail. For
example, flat surfaces such as walls or roofs may require fewer vertices for mesh creation,
whereas architectural features like windows, balconies, or other ornaments demand greater
point density to make an effective mesh.

This research investigates whether the creation of 3D meshes from oblique aerial imagery
can be made more efficient by optimizing the dense matching process, by focusing compu-
tational resources on parts of buildings that are important for mesh quality.

To achieve this, we explore the potential of SAM, the Segment Anything Model developed by
Meta AI [Kirillov et al., 2023], as a tool for guiding adaptive point cloud densification. SAM
is a general-purpose segmentation model capable of producing high-quality segmentation
masks. In this study, we experiment with SAM in two ways:

• Segmenting buildings from oblique aerial images: we use SAM to extract instance-
specific building masks from an oblique image dataset, enabling object-level recon-
struction.

• Zooming in on each segmented building: We analyze each building mask to iden-
tify geometrically complex surfaces or features that contribute more to overall mesh
quality.
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1. Introduction

By combining SAM-based segmentation with an entropy metric and an edge-based decay
function, we aim to identify the most important parts in the images for mesh reconstruc-
tion. This approach is explorative and built on the hypothesis that SAM favors visually and
structurally salient features. While not guaranteed, this bias aligns with our aim of targeting
areas of high geometric complexity.

We apply implicit surface reconstruction techniques to convert the adaptively densified point
clouds into watertight 3D meshes, making them suitable for applications in urban planning,
simulation, and visualization. These meshes are then compared to reference meshes gener-
ated using traditional dense matching pipelines without resource allocation. Ultimately, our
goal is to maintain comparable mesh quality while significantly reducing both the compu-
tational cost of the reconstruction process and the size of the output meshes.

1.2. Geodelta

This research is conducted in collaboration with Geodelta, an engineering and consulting
firm specializing in geoinformation. Geodelta provides technical advice and software so-
lutions. Their office is located in the historic Geodesy building, close to the Architecture
faculty. For more information, visit their website at geodelta.com.

1.3. Research objectives

1.3.1. Objectives

The main research question for this thesis is:

How can SAM-based building segmentation and importance estimation in oblique
aerial imagery be used to improve the efficiency of 3D mesh reconstruction by
selectively focusing on important image regions for reconstruction quality?

The goal of this research is to explore the potential of SAM for 3D mesh reconstruction from
oblique aerial imagery, while optimizing computational resources by focusing reconstruction
efforts on the most important image regions. To achieve this, the following sub-questions
will guide the investigation:

• How can SAM be applied to accurately and efficiently segment individual buildings in
oblique aerial imagery?

• How can SAM be used to identify image regions that are most important for achieving
high-quality 3D mesh reconstruction?

• How can the effectiveness of image region importance driven resource allocation be
evaluated in terms of mesh quality, and computational efficiency?

• How does selective masking of images based on importance threshold affect quality
and efficiency of 3D mesh reconstruction across different building datasets?

2



1.3. Research objectives

1.3.2. Scope of research

The main focus of this research is on producing a mesh of comparable quality to one gener-
ated through dense reconstruction.

This research aims to develop a reconstruction algorithm using segmentation at two levels:

1. At the oblique image level

2. At the individual building level

For the oblique image level, we used SAM to extract building masks from full-scene images
in the area of interest described in Section 3.2.

Initially, our goal was to reconstruct all buildings individually within that area and apply
our selective image region-based mesh reconstruction method to a few of them. However,
as shown in Section 5.3, reconstruction based solely on building masks produced poor re-
sults.

As a result, the focus of the second research phase shifted to the Geodelta drone dataset,
where we could test importance-based thresholding for dense matching at the building level.
This adjustment was also necessary due to the high computational cost and time required
to evaluate many dense matching configurations.
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2. Related work

This chapter reviews prior work in four areas relevant to our pipeline: 3D reconstruction
from aerial images, segmentation methods, entropy-driven geometry processing, and sur-
face modeling approaches. We also reflect on how some early directions, such as point cloud
simplification, shaped our understanding, even if we ultimately did not end up using them
for the core pipeline.

2.1. 3D Reconstruction from oblique aerial imagery

Recently, several frameworks have emerged to address the unique challenges of 3D recon-
struction from oblique aerial imagery, which often suffers from occlusions, scale variability,
and inconsistent features due to varying viewpoints.

Ada-MVS [Liu et al., 2023] is a deep multi-view stereo framework designed to adaptively
aggregate view weights, mitigating issues typical in oblique images. It leverages spatial
pyramid pooling and a memory-efficient ConvGRU module, enabling accurate point cloud
generation without the computational overhead of full 3D convolutions.

Building upon this, Liu et al. [Liu and Ji, 2020] introduced a recurrent encoder-decoder
architecture tailored for aerial images with wide depth ranges. They also proposed the WHU
dataset, a large-scale aerial dataset containing diverse oblique views, specifically curated
to facilitate research in multi-view stereo for aerial applications. Although efficient, this
method is outperformed by Ada-MVS in recent evaluations.

Other approaches, like [Yu et al., 2021], focus on symbolic 3D reconstruction by generating
simplified building models, typically box, shaped footprints combined with height data.
While these models are scalable and computationally lighter, they lack detailed surface ge-
ometry and are less suitable for applications requiring mesh-level precision.

Most methods rely on the full set of images for reconstruction, reflecting the need to integrate
multiple viewpoints for robust 3D modeling.

2.2. Segmentation in oblique aerial images

Segmenting visual content into meaningful regions has long been a key preprocessing step in
computer vision, supporting applications ranging from object detection to scene understand-
ing. Before the rise of deep learning, segmentation typically relied on low-level cues such
as intensity, color, edge, continuity, or region homogeneity. Common classical techniques
include thresholding methods like Otsu’s algorithm [Otsu, 1979], edge-based segmentation
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using gradient operators, and region-growing methods [Adams and Bischof, 1994]. Cluster-
ing techniques such as k-means and mean shift [Comaniciu and Meer, 2002] have also been
widely used, particularly for segmenting images into regions of similar texture and color.

Modern AI-based techniques, using convolutional neural networks (CNNs), support seman-
tic, instance, and panoptic segmentation [Long et al., 2015; He et al., 2017; Kirillov et al.,
2019]. These methods typically require large labeled datasets and extensive training, and
their performance can degrade when tested on domains outside their training distribution.

In our work, we explore the recently introduced Segment Anything Model (SAM) [Kirillov
et al., 2023], which promises supporting zero-shot segmentation, a paradigm where the
model is capable of segmenting new objects or scenes without having seen them during
training. SAM achieves this by using a large-scale, promptable segmentation model trained
on over 1 billion masks (SA-1B dataset).

Although SAM was not explicitly trained on oblique aerial imagery, we found it promising
enough to integrate into our pipeline. Specifically, we use SAM not for classical segmenta-
tion, but rather to assist in identifying image regions that are most relevant for 3D mesh
reconstruction.

2.3. Geometric entropy

Techniques such as vertex curvature entropy [Xing and Hui, 2013] and related point cloud
simplification methods [Shi et al., 2022] quantify local geometric significance in point clouds
and meshes, typically to drive simplification by preserving important features. Our objec-
tive, however, is to invert this approach: rather than reducing existing data, we use entropy
to guide the selective generation of data from the outset. Similarly, feature-aware terrain
filtering [Yu et al., 2021] prioritizes LiDAR points based on curvature and elevation discon-
tinuities. Although developed for digital terrain models (DTMs), this principle of focusing
reconstruction effort on high-information regions aligns conceptually with our method.

Initially, we aimed to estimate entropy directly on sparse point clouds derived from seg-
mentation masks and add points adaptively in geometrically significant regions. However,
this approach introduced several challenges (discussed in more detail in Section 3.4): First,
the need for a pre-existing dense point cloud contradicted our goal of minimizing compu-
tational cost. Secondly, the quality of entropy estimates was coupled to the quality of the
initial sparse point cloud. Finally, this pipeline excluded SAM, which we sought to explore
for entropy detection. As a result, we shifted to an image-based strategy that allows entropy
estimation without requiring dense point cloud reconstruction upfront. We seek this entropy
using the following works.

The first draws on the notion of entropy from information theory, where it quantifies the
uncertainty or unpredictability in a system [Shannon, 1948]. We apply this to detecting
the uncertainty of SAM masks appearing within a local kernel, which we convolve over the
images.

The second method relies on edge information extracted using the Canny edge detector
[Canny, 1986]. This algorithm identifies significant intensity transitions in an image through
a multi-stage process involving noise reduction, gradient calculation, edge thinning, and
threshold-based edge linking.
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We leverage these edge maps to estimate geometric entropy by computing local edge density.
This measure guides image filtering in dense matching, focusing computational resources
on regions of high geometric complexity relevant for accurate reconstruction.

2.4. Implicit vs. explicit surface modeling

In 3D reconstruction, surface modeling approaches are broadly divided into explicit and im-
plicit methods, based on how the surface geometry is represented and computed. Explicit
surface modeling directly encodes geometry using discrete elements such as vertices, edges,
and faces [Bloomenthal et al., 1997]. Examples of explicit mesh reconstruction include De-
launay triangulation, which constructs meshes by connecting points in a way that maximizes
minimum angles, or mesh reconstruction methods that directly operate on point clouds. Of-
ten marching cubes [Lorensen and Cline, 1987] is used on implicit mesh representations, to
extract an explicit mesh from it, in order to visualize it.

Implicit surface modeling, on the other hand, represents surfaces as level sets of continu-
ous functions, such as signed distance fields or indicator functions. These models allow
for smooth, watertight surface generation and are often preferred in learning-based and
volumetric approaches.

An example of implicit method is Poisson surface reconstruction [Kazhdan et al., 2006],
which is also the technique we use in our pipeline. It reconstructs a surface by solving
a Poisson equation to compute an indicator function over space, from which the surface
is extracted as an isosurface (usually at the 0.5 threshold). This method is known for its
robustness to noise and ability to produce smooth surfaces, though it may oversmooth sharp
features.

Other modern learning-based implicit methods include ImpliCity [Stucker et al., 2022],
which uses neural networks to predict occupancy fields from stereo imagery, and DeepMesh
[Guillard et al., 2022], which reformulates the surface extraction step, normally a fixed, non-
trainable process, into a differentiable operation. This means the step that converts learned
volumetric data into a mesh, such as extracting an isosurface, is redesigned so that its pa-
rameters can be adjusted during training using gradients. As a result, the entire pipeline,
from raw image input to final mesh output, can be optimized.

Our approach uses Poisson reconstruction, but focuses its innovation earlier in the pipeline.
Rather than modifying the reconstruction algorithm itself, we attempt to improve efficiency
by filtering out the important regions in the input imagery, so that only the most informative
views are processed. This entropy-guided thresholding reduces unnecessary computation
while still preserving mesh reconstruction quality.
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3. Methodology

Figure 3.1.: Flowchart of the methodology

Figure 3.1 presents a flowchart of the proposed process, which will be explained in more
detail in the following sections. The workflow is divided into two main phases: Phase I
involves segmenting each building within the Area of Interest (AOI) across all oblique images
in which it is visible. Phase II focuses on generating a mesh for each building using only
those points deemed important for mesh reconstruction quality. Ideally, this process uses
the segmentation masks obtained in Phase I. However, as discussed in Chapter 4, the nature
of the segmentation masks made accurate reconstruction difficult. Therefore, Phase II was
also evaluated on an additional drone dataset, better suited for this part of the research.

We will also discuss how our methodology changed throughout the research. In phase II,
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3. Methodology

the focus is on adding points to a mesh that are beneficial for mesh reconstruction quality.
Initially, we aimed to build a sparse point cloud from the segmentation masks, then itera-
tively add points in areas of high geometric entropy, derived through point cloud analysis.
Eventually, we shifted towards an approach that identifies the most important regions in an
image for dense reconstruction.

3.1. Input Data

The main input for Phase I (segmentation in oblique images) consists of aerial imagery from
the city of Utrecht, including only oblique views. The AOI is shown in Figure 3.3a. For the
segmentation step at image level, we focus only on the oblique views. Later, we will also
apply our methods to the nadir datasets to evaluate how scalable our approach is. All spatial
data is referenced in the Amersfoort / RD New coordinate system (EPSG:28992). Additional
inputs include flight plans and camera metadata, such as interior and exterior orientation
parameters.

For Phase II, we used a separate drone dataset, comprising 200 unreferenced images of the
Geodelta office. Unlike the oblique imagery, these images offer closer views, increased over-
lap, and no available orientation parameters. Importantly, the segmentation was performed
manually rather than using SAM. The nature of this dataset was much more suited for
experimentation and evaluation in Phase II.

3.2. Linking buildings through images

To reconstruct a mesh of an individual building, we must first isolate it in all the oblique
images in which it appears. Our initial objective was to do this for every Basisregistratie
Adressen en Gebouwen (BAG) building object within the defined AOI. Although the final
implementation for phase II primarily used the drone dataset of the Geodelta office due
to better reconstruction outcomes, this section outlines the original methodology using the
oblique dataset.

We developed a method that leverages the BAG ID as a unique building identifier, along with
3D building world coordinates from the BAG. Using the orientation data from the oblique
images, we reproject the 3D world coordinates into image space. This way we know: which
images contain a given building, where the building appears in the image, and how to assign
each segmented building mask back to its corresponding BAG ID.

We propose the following approach:

1. We use the BAG dataset to identify all the bag objects within our AOI (see Figure 3.3a).

2. We use the flight plan datasets, which contains footprint polygons for all aerial images,
to determine which buildings appear in which images (see Figure 3.2a).

3. Using the internal and external camera parameters of the images, we reproject the
bounding box and centroid of the bag objects onto the image plane.

By doing so, we determine the locations of all bag objects on the image planes and associate
them with their corresponding bagid, which we can then use for segmentation (see Figure
3.3b).
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3.2. Linking buildings through images

(a) Partial flightplan example Utrecht (b) Corresponding obliques

Figure 3.2.: (a) Partial flight plan for Utrecht, showing the footprints of all oblique images.
(b) Subset of oblique image footprints intersecting with the geometry of a single BAG
object.

(a) Overview of all BAG objects within the
AOI, located within the Leidsche Rijn dis-
trict of Utrecht. Green polygons represent
building footprints. The yellow boundary
shows the oblique dataset coverage.

(b) Reprojection of BAG building coordinates onto the im-
age plane. Green boxes indicate projected locations
with a 200-pixel x-offset applied to account for build-
ing height.

Figure 3.3.
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3.3. Phase I: Segmentation in obliques using SAM

3.3.1. SAM modes

Once we have identified the position of the BAG IDs in the image planes where we need to
extract a mask, we can use different modes of SAM prompting. Below is a brief overview of
the different modes and how we use them to extract building masks from the obliques:

• Point-based prompting: A single point is provided to SAM, located at the centroid of
the BAG object. This point is obtained by reprojecting the 3D centroid from world to
image coordinates (Figure 3.4a).

• Box-based prompting: A bounding box around the BAG object is computed via re-
projection of its footprint. To account for building height and camera perspective, we
apply a buffer of 20 pixels on all sides and an additional 250 pixels vertically (Fig-
ure 3.4b).

• Foreground/background point prompting: Here, the reprojected building envelope is
filled with foreground points, while background points are placed in a buffered region
around the building (Figure 3.4c).

• Full image segmentation: Using the SamAutomaticMaskGenerator class, we segment
the entire image without explicit prompts. Masks overlapping with reprojected build-
ing coordinates are selected post hoc (Figure 3.4d).

3.3.2. Testing different building classes

To evaluate SAM’s performance across different building classes, we will test the previously
described modes on various building classes.

During this research phase, we will apply these methods to three aerial images, for each
specific building class. We will then evaluate performance based on:

1. The average confidence score assigned by SAM to each mask.

2. The percentage of buildings with a confidence score higher than 0.85.

The confidence score in SAM represents the model’s certainty about a given segmentation
mask. It is a normalized score between 0 and 1, where higher values indicate greater confi-
dence that the detected region accurately corresponds to an object boundary.

SAM generates multiple possible masks for a given input prompt (e.g., points, boxes), and
it assigns a confidence score to each mask based on how well the segmentation aligns with
the model’s learned representations. For our use case we use only use and process the mask
with the highest score.

The building classes we will examine are:

• Detached houses (see Figure 3.5c).

• Buildings taller than 30 meters (see Figure 3.5a).

• Buildings with a surface area greater than 300 square meters (see Figure 3.5b).
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(a) Point prompt in SAM at the centroid of a bag
object.

(b) Box prompt in SAM on the bounding box of a
bag object.

(c) Building envelope prompt: foreground and
background points.

(d) Full image segmentation using SAM.

Figure 3.4.: Different segmentation prompting methods using SAM.
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(a) Buildings higher than 30 meters (b) Buildings with surface larger than 300 square
meters

(c) Detached houses

Figure 3.5.: Different building classes used for segmentation testing.
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3.4. Phase II: Initial plans and methodology Shift

Figure 3.6.: Initial plan for adding geometrically important points for mesh reconstruction
quality

Our initial objective was to create a sparse point cloud for each building, matched across
different oblique images (see Figure 5.1), using segmentation masks. This sparse point cloud
would serve as the foundation for computing geometric entropy and identifying regions
where additional points could be added to improve reconstruction quality (see Figure 3.6).

At this stage, we asked ourselves: “How can we adaptively add points to the sparse point cloud
such that only those most important for mesh reconstruction quality are included?” We explored
point cloud analysis methods based on curvature entropy, edge features, and density fea-
tures, inspired by the work of Shi et al. [2022] (see Appendix B).

In regions with high combined scores from these features, we explored sampling additional
points using the following strategies:

• Surface fitting: Fit surfaces (e.g., via least squares) to high-scoring points and sample
additional points from them.

• Normal-based sampling: For high-entropy points, sample along the normal vector to
obtain new surface points.

• Hierarchical sampling: Use octree-based subdivision to increase sampling resolution
in high-scoring regions.

However, this presented an issue: where should we sample from? If we sample arbitrarily in
high-entropy regions, the new points may not correspond to the actual building surface.
Thus, we needed to sample from a dense point cloud that had to be reconstructed before-
hand, undermining our goal of reducing computational cost and mesh size.

Another limitation: the initial sparse point cloud plays a major role in determining where
high-scoring regions are. If those scores are misleading due to poor initial coverage, we may
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be reinforcing errors with each iteration. This issue could be addressed by simplifying the
full dense point cloud using curvature, edge, and density features. However, this would
turn into a point cloud simplification problem, and we would still need to first perform
dense matching on the full point cloud.

Finally, this approach did not involve SAM, which we really wanted to explore, particularly
its potential for capturing geometric entropy.

Eventually we came up with a methodology shift towards an image-based point addition
method (see Section 3.6). In this approach, we hypothesize three strategies for identifying
the most important parts of an image for mesh reconstruction quality. We still used sparse
reconstruction (Section 5.3), now on the thresholded images to explore which configura-
tions (threshold, method) were suitable for generating a mesh, and as a basis for the dense
matching.

3.5. Phase II: Segmentation on building Level

Now that we have the segmented building masks, we zoom in further and segment these
masks as well. In contrast to the oblique segmentation step, where we used a box prompt,
we now apply the full SamAutomaticMaskGenerator mode from SAM. These segmentations of
the individual building masks form the basis for our next step: identifying important regions
in images for reconstruction. Two out of the three strategies we propose rely directly on this
SAM based segmentation.

The goal here is to reduce the runtime and size of the dense matching process. To do that,
we want to leave out less important parts of the images and keep only the relevant areas
for matching. We are interested in seeing if segmentation from SAM can help indicate which
parts of an image are important for reconstruction.

In later sections, we explain how we go from SAM outputs to normalized entropy maps that
reflect importance. But for now, the main point is that we use SAM in this step. In our
implementation, we also test different configurations of the full-image segmentation to find
the best setup.
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Figure 3.7.: Example of building-level segmentation.

3.6. Phase II: Identifying important image regions for
reconstruction quality

(a) SAM mask kernel entropy (b) SAM mask edge distance (c) Canny edge distance

Figure 3.8.: Comparison of edge detection and entropy computation methods.

The goal of this part is to identify areas in images that are important for mesh reconstruction
quality. For example, large planar surfaces on buildings typically offer little geometric in-
formation, while more complex regions such as ridges, corners or window details are more
valuable for reconstruction. If we can identify and keep only the parts of the image that
contribute the most, we can reduce both memory usage and computation time.

To estimate geometric importance or complexity within an image, we explore three strate-
gies. Two of these are based on segmentations from SAM, and one uses Canny edge detection
as a comparison.

The first SAM-based strategy uses a sliding kernel to compute local entropy values over
the segmentation masks. The assumption is that regions with more overlapping or diverse
masks indicate higher geometric complexity, while flat areas produce fewer masks and lower
entropy.
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The second strategy also starts from the SAM masks, but focuses on the distance from mask
edges. The idea is that SAM tends to outline meaningful building features such as windows,
doors, and rooflines. We apply a decaying distance function that assigns higher importance
to pixels near these edges.

Finally, we use Canny edge detection directly on the building-masked images. This serves
as a baseline to compare against the SAM-based approaches and to evaluate whether SAM
adds any meaningful advantage over traditional edge-based methods.

3.6.1. SAM mask kernel entropy

Our first SAM-based metric uses a kernel-based entropy approach applied to segmented
mask images. The steps are as follows:

1. Segmentation: We use the building-level segmentation masks (Section 3.5) as input.

2. Kernel Convolution: We slide a fixed-size kernel over the segmented image and ana-
lyze the diversity of segment labels within each kernel.

3. Entropy Computation: For each kernel position, we compute the entropy using:

HG(x, y) = −
n

∑
j=0

pj log pj (3.1)

where pj is the proportion of pixels belonging to segment j within the local window:

pj =
count of pixels from segment j

total pixels in the window
(3.2)

This method accounts for both the number and distribution of unique segment labels, offer-
ing a more informative metric than simply counting unique segments.

3.6.2. SAM mask edge distance entropy

The second metric leverages the distance from the edges of segmentation masks. Since
mask boundaries typically align with building features, such as windows and doors, these
regions are often geometrically significant. First, we run the segmentation again on the
building mask, and then we apply the following formula:

Hedge = Hmask · e−α·distance (3.3)

Where:

• α is a constant that controls the rate of fading.

• Hmask is the mean entropy value derived from the kernel-based geometric entropy.
Alternatively, Hmask = 1 if the effect is to be purely based on the distance from the
edge of the mask.
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3.7. Phase II: Targeted point addition based on KPI

3.6.3. Image-based Canny Edge Entropy

Additionally, we also used Canny Edge detection directly on the building mask. This was
to have a comparison against SAM to see if it adds any value.

3.7. Phase II: Targeted point addition based on KPI

In this section, we use the importance maps from the previous section to create a sparse
reconstruction based on image regions from those importance maps.

We begin by performing sparse reconstructions on all building datasets listed in Table 4.3.
This serves two purposes: (1) to assess the general effectiveness of the reconstruction pipeline
on each dataset, and (2) to identify which datasets are suitable for further dense reconstruc-
tion. As shown in the results (Section 5.3), many oblique aerial datasets with SAM-based
segmentation struggle to reconstruct a meaningful sparse point cloud, even when using un-
thresholded masks. Applying thresholding in such cases is unlikely to help and may worsen
the outcome. Therefore, we limit dense reconstruction efforts to those datasets where sparse
reconstruction indicates promising potential.

To prepare the inputs, we apply pixel-wise thresholding to the original RGB images using
normalized importance maps (values in [0, 1]). Pixels below the threshold are removed
(set to black), while higher-entropy regions are preserved. This allows us to evaluate how
selective masking affects reconstruction quality across datasets and threshold levels.

• The method is applied to seven building datasets, as detailed in Table 4.3.

• For each dataset, we evaluate all three importance map methods: SAM-based kernel
entropy, SAM-based edge distance, and Canny edge distance.

• For each method-dataset combination, we apply nine different threshold levels in the
range [0.0, 0.1, ..., 0.9].

We then use COLMAP to perform sparse 3D reconstruction on each filtered dataset. Our
objective here is to analyze how different combinations of threshold level, importance map
method, and dataset affect sparse reconstruction quality. We can use these results to see
which datasets we want to test for the mesh quality reconstruction, using dense matching
later. The following reconstruction metrics are reported:

• Threshold: Original pixel values are retained if the normalized entropy map value
(ranging from 0.0 to 1.0) is higher than this threshold.

• Extraction time: Time taken to extract features from all images in the dataset.

• Matching time: Time taken to match features across all images in the dataset.

• Reconstruction time: Time taken to incrementally perform SfM.

• # Mean observations/Image: average number of 2D feature observations per registered
image.

• # Images: Number of registered images used in the SfM reconstruction.

• # Points: Number of reconstructed 3D points.
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• Mean track length: Average number of images in which each 3D point is observed.

• Mean reprojection error: Average pixel error between observed image points and their
reprojected 3D positions.

Table 3.1.: Overview of building datasets and their configurations
Building Number of images Capture method Mask extraction method bag-id

1 detached house 28 Aerial SAM 0344100000157740
1 detached house 45 Aerial Manual 0344100000157740
2 tall building 29 Aerial SAM 0344100000080618
3 apartment block 39 Aerial SAM 0344100000149906
3 apartment block 70 Aerial Manual 0344100000149906
4 bouwpub groundbased 53 Phone Manual 0503010000044548
5 geodelta drone 200 Drone Manual 503010000003065

3.7.1. Threshold levels

To exclude pixels that, according to our entropy estimation, are less informative for 3D re-
construction, we thresholded the original images using the normalized entropy maps (values
in the range [0, 1]). Pixels with entropy values above a given threshold were kept, while the
rest were removed.

We applied a range of thresholds: [0.0, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9].
A value of 0.0 keeps all original pixels, while higher values keep increasingly smaller regions
with higher entropy. Figure 3.9 illustrates the effect of different thresholds.

(a) Threshold: 0.9 (b) Threshold: 0.6 (c) Threshold: 0.3 (d) Threshold: 0.0

Figure 3.9.: Entropy thresholding results at various levels.

3.7.2. Building types datasets

We ran the pipeline on different buildings and under several configurations to test various
aspects and better understand the pipeline. Three of the datasets originate from Phase I, seg-
mented from the oblique aerial imagery of Utrecht. Two additional datasets—the Bouwpub
(captured with a phone) and the Geodelta office (captured by drone), were included because
they contain significantly more images and offer greater viewpoint overlap. See Table 4.3
for dataset details.

Since we did not apply SAM-based segmentation to the Bouwpub and Geodelta drone datasets
(because our algorithm described in Section 3.2 requires a reprojected BAG bounding box),
we manually masked the building from the rest of the image. To see if the segmentation
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method affects the result (as opposed to factors like the number of images or the close-up
nature of the data), we also manually masked a few images from the 1 detached house and
4 apartment block datasets.

To investigate whether the number of images significantly impacts reconstruction quality
(since the Geodelta drone dataset contains significant more images (200) than the others),
we ran the pipeline on that dataset using subsets of [10, 40, 75, 150, 200] random picked
images. This helps isolate the effect of image count from other factors like distance to the
subject, segmentation method, or building complexity (e.g., the Geodelta building has many
distinctive features that may aid in feature matching).

3.7.3. Sparse reconstruction

We performed feature extraction, feature matching, and sparse reconstruction using COLMAP.
Each reconstruction yielded a sparse point cloud, which we evaluated using the following
metrics:

• Threshold: Original pixel values are retained if the normalized entropy map value
(ranging from 0.0 to 1.0) exceeds this threshold.

• Extraction time: Time required to extract features from all images in the dataset.

• Matching time: Time required to match features across image pairs.

• Reconstruction time: Time required for incremental Structure-from-Motion (SfM).

• # Mean observations/image: Average number of 2D feature observations per regis-
tered image.

• # Images: Number of registered images used in the SfM reconstruction.

• # Points: Number of reconstructed 3D points in the sparse model.

• Mean track length: Average number of images in which each 3D point appears.

• Mean reprojection error: Average pixel error between observed and reprojected image
points.

3.8. Phase II: Implicit mesh creation

In this phase, we generate 3D surface meshes from dense point clouds. The dataset selected
for this purpose is the Geodelta office drone dataset, which demonstrated the highest recon-
struction potential in the previous phase based on metrics such as the number of registered
images, number of sparse points, and mean reprojection error. Using dense point clouds
generated from this dataset, we apply Poisson surface reconstruction in the open-source
software Meshlab to produce a mesh for each combination of importance map method and
threshold. These meshes form the basis for the mesh quality evaluation presented in Sec-
tion 3.9.
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3.8.1. Poisson surface reconstruction

To produce watertight and smooth 3D meshes, we use the Poisson surface reconstruction
method, see Section 5.4.

We explored how varying three key parameters of the Poisson reconstruction affects mesh
quality and complexity:

• Reconstruction Depth: depth of the octree, meaning higher values offer more detail
at a computational cost. Only an upper bound, as it adapts to the sampling density.

• Minimum Number of Samples per Node: minimum number of sample points per oc-
tree node, with higher values providing smoother, more noise-resistant reconstruction.

• Interpolation Weight: determines the importance of point sample interpolation, with
higher values capturing more detail.

Table 3.2 shows the parameter ranges we tested for each parameter.

Table 3.2.: Tested parameter ranges for Poisson surface reconstruction

Parameter 1 2 3 4 5 6 7 8 9

Reconstruction Depth 5 6 7 8 9 10 11 12 13
Minimum # Samples 1 2 3 5 10 15 25 50 100
Interpolation Weight 1 2 4 8 16 32 64 128 256

3.8.2. Mesh quality evaluation configuration

For each parameter, we performed a sweep while fixing the others, recording both visual
outputs and complexity metrics (vertex/face counts). Based on this analysis, we selected
an optimal configuration, which was then used to reconstruct meshes for all 27 dense point
clouds from the Geodelta office drone dataset (9 thresholds × 3 importance methods). In
addition, we generated a reference mesh using the full, unmasked images, which serves as
the ground truth for evaluation. These meshes form the basis for the quality comparison
presented in Section 3.9.

3.9. Phase II: Mesh quality evaluation

To evaluate the geometric quality of the reconstructed meshes, we compared each mesh
against a reference mesh generated through full-image dense matching, which serves as the
ground truth. This evaluation was conducted across all three importance methods and a
range of threshold values.
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3.9.1. Mesh quality distance metrics

We evaluated the quality of each mesh by computing vertex-to-face distances from every
vertex in the evaluated mesh to the nearest face on the ground truth mesh. The following
distance-based metrics were computed:

• Mean distance: The average Euclidean distance from each vertex to the closest face of
the ground truth mesh.

• Median distance: The median of the distance distribution.

• Hausdorff distance: The maximum distance from any vertex in the evaluated mesh to
the nearest surface of the reference mesh.

In addition to geometry error, we will also evaluate several metrics related to computational
efficiency and mesh complexity.

• # Vertices (input): The number of vertices in the dense point cloud prior to surface
reconstruction

• # Vertices / Faces (mesh): The vertex and face count of the reconstructed mesh.

• Dense matching time: The processing time required to generate the dense point cloud
using COLMAP.

3.9.2. High vs. low density

Our hypothesis is that thresholding based on image entropy will retain image regions that
contribute most to mesh reconstruction quality, such as regions with more geometric detail,
while discarding regions like large planar surfaces. As a result the reconstructed mesh
should be denser in areas retained in the thresholded images and sparser where pixels have
been discarded.

Because the dense matching algorithm uses the same image content as input, we expect the
reconstructed geometry in high-density regions to closely follow the ground truth mesh. On
the other hand, sparsely reconstructed regions may be less accurate, but ideally not by a
large amount if they correspond to uninformative image areas for mesh reconstruction.

To test this hypothesis, we further subdivide each evaluated mesh into two subsets based on
local vertex density (see also Figure 3.10):

• Top 50% density vertices (denser regions of the mesh, corresponding to retained parts
of the input images)

• Bottom 50% density vertices (sparser regions, corresponding to discarded parts of the
input images)

We compute the same distance metrics (mean, median, Hausdorff) for each subset individ-
ually, comparing them against the reference mesh as described in Section 3.9.1.
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(a) Bottom 50% density points (b) Top 50% density points

Figure 3.10.: Top 50% density points
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4. Implementation

4.1. Input Data

The input data used for the retrieval of building masks in phase I, consist of oblique aerial
images, flight plans, and camera interior and exterior parameters (see Table 4.1). All spatial
data is referenced in the Amersfoort / RD New coordinate system (EPGS:28992).

Dataset Type Amount Size (GB)
Oblique .jpg 2,562 files, 4 folders 456
Nadir .jpg 620 files, 1 folder 262
Flight plans .shp 1 file -
Camera int./ext. .opt/.txt 1 file -

Table 4.1.: Input data

The image data is stored on Geodelta’s internal server. The oblique dataset contains four
folders: Back, Fwd, Left, and Right. It also contains the corresponding .xyz files with image
positions, and .opt files with camera specifications and orientation data. Examples of the
.opt and .xyz file structure can be found in Figure 4.2. The flight plan shapefile contains
the projected footprints of each aerial image (see Figure 3.2).

4.2. Linking buildings through images

Database structure

All orientations are delivered with the image dataset in an .opt file. Figure 4.2 shows a few
lines as an example. A custom Python script was developed to extract interior and exterior
orientation parameters from the .opt file. The output is split into separate CSV files for
camera and image parameters, which are then imported into the PostgreSQL database.

Shapefiles of the flight plans and AOI were imported using shp2pgsql command-line tool that
comes with PostGIS. The database structure can be seen in Figure 4.1.

This database supports the segmentation phase. Where we use a script that iterates over
the images in the dataset and retrieve information from this database to determine which
BAG IDs are present in each image and to obtain the orientation data needed to reproject
the BAG coordinates into image space. This then tells us where to segment, and allows each
segmentation mask to be linked back to a corresponding BAG ID.

The image specs and camera specs tables store the external and internal parameters, re-
spectively. The flightplans table contains the geometry of each image footprint. This
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Figure 4.1.: Database structure used for linking image data with building geometries. The
image specs table stores exterior orientation parameters (x, y, z, omega, phi, kappa) and
references the camera id in camera specs, which holds the internal camera parameters.
The flightplans table contains the footprint geometry of each image. The bag in image

table lists, for each image, the BAG objects IDs present and their bounding boxes in world
coordinates. The bag in testarea table, contains full geometry and metadata for each
building project.

footprint can be intersected with the geometries in the bag in testarea table, which con-
tains all the BAG IDs in our AOI, to determine which buildings appear in which images. The
bag in image table then stores, for every image, all BAG IDs present and their corresponding
bounding boxes.

We used the 3D BAG coordinates and the known camera orientations to determine which
buildings appear in which images, as well as their locations within those images. Based on
this information, we perform segmentation in the following section.

Figure 4.2.: .opt file example

Reprojecting 3D bounding boxes onto Image Planes

To project building geometries onto image planes, we first identify which buildings intersect
each image footprint. This is done by intersecting the image footprints in the flightplans

table with the building geometries in the bag in testarea table using a spatial join in Post-
GIS.
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For each matching building-image pair, the 3D terrain points are reprojected into pixel co-
ordinates using the collinearity equations implemented in the Geodelta.Photogrammetry

library. This transformation uses both the internal camera parameters (from camera specs)
and the external orientation parameters (from image specs). A 2D bounding box is then
computed from the projected points and stored in the database in WKT polygon format.

These bounding boxes are stored in a table that links each image to the visible BAG IDs
and their pixel-space locations (table bag in image). When performing segmentation on
the oblique images using SAM (as described in Section 4.3), we retrieve this information
by querying the PostgreSQL database through a connection established with the psycopg2

package.

4.3. Segmentation in obliques using SAM

4.3.1. SAM configuration

The SAM operates in two modes: full-image segmentation and prompted segmentation. Full-
image segmentation is performed using the SamAutomaticMaskGenerator class, whereas the
SamPredictor class is used for handling point, box, and other types of prompts, as described
in Section 3.3.1.

SAM offers three model checkpoint variants: ViT-H (default), ViT-L, and ViT-B. These cor-
respond to different Vision Transformer (ViT) architectures, with ViT-H being the largest and
ViT-B the smallest. In our process, we used the ViT-B model. This made it more efficient to
run on a large number of images.

We ran the ViT-B model on an NVIDIA GeForce RTX 3050 Ti laptop GPU with CUDA
support, see Table 4.2 for more information.

System Information Details

Operating System Windows 11 Pro 64-bit (10.0, Build 22631)
System Manufacturer Dell Inc.
System Model Vostro 7620
BIOS 1.23.0
Processor 12th Gen Intel(R) Core(TM) i7-12700H (20 CPUs)
Memory 16,384 MB RAM
DirectX Version DirectX 12

Table 4.2.: System specifications of the Dell Vostro 7620.

Segmentation using SAM

Segmentation is performed in a Jupyter Notebook using the SamPredictor box prompts.

In our methodology (Section 3.3.1), we explored four different ways of prompting SAM.
Ultimately, we opted for the box prompt in our implementation. The point prompt often
produced high-quality masks but generally lacked awareness of the building’s scale. As a
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Figure 4.3.: Reprojected bounding box (red square, also used as the box prompt) within the
cropped image. The image is the result of adding a 250-pixel buffer on each side of the
original bounding box.

result, it frequently returned accurate masks of smaller, uniform parts of the building, such
as a solar panel or window, rather than the entire structure. The bounding box prompt
consistently produced better segmentation results by guiding the model to focus on the full
building.

We also experimented with using the building envelope as a prompt, along with foreground
and background points. However, this approach introduced significant complexity and in-
stability. It required reprojection not only of the bounding box but of the full building
envelope, including appropriate perspective corrections. Finally, we chose not to use the au-
tomatic full-image segmentation mode because it often failed to identify the target building,
attempting instead to segment all prominent objects in the image indiscriminately.

The segmentation pipeline proceeds as follows:

1. Data retrieval: For each oblique image, we query the PostgreSQL database to retrieve
the associated bag ids and bounding boxes. These bounding boxes are preprocessed
and stored in image coordinate space.

2. Image Loading and Cropping: Images are loaded using the OpenCV library Bradski
[2000]. To reduce computational load, we avoid prompting on the full-resolution im-
age. Instead, we crop the image around each bounding box, adding a buffer of 250
pixels to ensure the entire building is included. The box prompt is then applied to the
cropped image. This approach is significantly faster because the image input to the
SAM model is much smaller, reducing the encoding time.

28



4.4. Segmentation on building level

Note: This buffer is applied during segmentation for computational efficiency and dif-
fers from the earlier buffer (100 pixels on each side and 250 pixels on the height side)
that was used to convert the reprojected BAG bounding box into a prompt box for the
SamPredictor.

3. Segmentation: The cropped image and bounding box are passed to the SamPredictor,
which generates a mask for the building (see Figure 3.4b).

4. Output: For each image, we saved three outputs: the mask applied to the original im-
age, the full-resolution image with masks, and the cropped image version, see Figure
4.4.

(a) Mask applied to the original
image

(b) Full-resolution image with
masks (c) Cropped image version

Figure 4.4.: Saved segmentation outputs: (a) mask on original, (b) full-resolution with masks,
and (c) cropped image used for prediction.

4.4. Segmentation on building level

We applied the SamAutomaticMaskGenerator for full-image segmentation to identify de-
tailed regions within building images. The results of this segmentation are used as input
for the next step, where we aim to detect important regions in the images that contribute
to dense matching and mesh reconstruction quality. This section outlines the method and
configuration process used to select suitable parameter values. Evaluation results and visual
comparisons can be found in Section 5.2.

4.4.1. Segmentation process

Different configurations of parameters for the SamAutomaticMaskGenerator were tested on
the Geodelta drone image set. This dataset consists of 200 drone images that are manually
segmented, and which is also used in following sections for mesh reconstruction. More
details in Table 4.3.
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For each parameter, we varied its value while keeping all other parameters at their default
settings. To ensure consistency, each configuration was tested on the same 10 images selected
from the dataset. For each run, we recorded:

• Mean runtime per image (in seconds),

• Mean predicted IoU score (mask quality),

• Mean number of masks generated per image.

4.4.2. Parameters Evaluated

• points per side

• points per batch

• pred iou thresh

• stability score thresh

• stability score offset

• box nms thresh

4.4.3. Evaluation on different building types

Once the final configuration of the SamAutomaticMaskGenerator was selected, we applied it
across different building types as defined in Table 4.3. For each building, we report:

• Mean number of masks per image,

• Mean predicted IoU,

• Mean stability score.

Table 4.3.: Overview of building datasets and their configurations
Building Number of Images Capture Method Mask Extraction Method BAG-ID

1 detached house 28 Aerial SAM 0344100000157740
1 detached house 45 Aerial Manual 0344100000157740
2 tall building 29 Aerial SAM 0344100000080618
3 apartment block 39 Aerial SAM 0344100000149906
3 apartment block 70 Aerial Manual 0344100000149906
4 bouwpub groundbased 53 Phone Manual 0503010000044548
5 geodelta drone 200 Drone Manual 0503010000003065

4.5. Identifying important image regions for reconstruction
quality

In this section, we describe the workflow used to compute the three importance maps that
identify important regions for mesh reconstruction.
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4.5.1. Overview

Our pipeline takes as input building-level segmentation masks (produced by SAM according
to Section 4.4) for the two SAM-based methods, or the original building masks in the Canny
edge detection method. They then produce normalized importance maps highlighting what
the method thinks is the important part of the image for mesh reconstruction quality. The
process is implemented in Python using OpenCV [Bradski, 2000], SciPy [Virtanen et al.,
2020], and scikit-image [van der Walt et al., 2014] libraries.

4.5.2. SAM mask kernel entropy

The SAM building-level segmentation outputs an RGB image with a different colour for each
mask. We convert them to grayscale here, where each grayscale pixel value corresponds to
a unique segment.

• We then use a sliding window with a kernel size set to 1/8 of the image’s largest
dimension. A kernel too small would only capture one edge of a mask at a time,
basically recreating the segmentation masks again. A kernel too big would smooth the
output map too much.

• At each kernel position, compute the entropy of the segment labels within the window,
according to equation 3.1.

• We normalize the resulting entropy map to [0, 1].

We used scipy.ndimage.generic filter with a custom entropy function to compute local
entropy. Alternatively, for more intense data, a faster approximation using scikit-image’s
entropy function with a disk-shaped structuring element can be applied.

4.5.3. SAM mask edge distance

As with the SAM mask kernel entropy, the SAM building-level segmentation outputs were
also converted to grayscale.

• Extract the edges of the masks.

• Compute the Euclidean distance transform from each pixel to the nearest edge.

• Calculate an exponentially decaying map from the mask edges using equation 3.3.

• Normalize the resulting map to [0,1].

The decay parameter α controls how quickly the importance decreases with distance from
the edges; we set it to 0.01. When desired (as we did), the kernel-based entropy term Hkernel
can be replaced with a constant 1 to generate a purely distance-based map.
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4.5.4. Image-based Canny edge distance

For the Canny edge distance maps, we used the raw building masks converted to grayscale
instead of the SAM outputs.

• Apply Canny edge detection directly on the grayscale building masks using thresholds
260 and 300, which control the sensitivity for detecting edges: the lower threshold (260)
marks strong edges, and the higher threshold (300) helps suppress noise by filtering
out weaker edges.

• Compute the Euclidean distance transform to the nearest detected edge.

• Generate the importance map using the same exponential decay formula as above with
α = 0.01.

• Normalize the resulting map to the range [0, 1].

4.6. Targeted point addition based on building complexity

To ensure reproducibility, we summarize the core implementation steps for filtering input
images and reconstructing sparse point clouds using COLMAP. The pipeline consists of two
main components:

4.6.1. Image thresholding

We applied different thresholding levels on the original image pixels using the importance
maps. This was done using a custom Python script.

• Inputs: Raw RGB images and corresponding normalized entropy maps (grayscale,
values in [0.0–1.0]).

• Thresholding logic: Pixels with entropy values ≥ threshold are retained; others are
set to black.

• Thresholds: [0.0, 0.1, ..., 0.9]

4.6.2. Reconstruction with COLMAP

We performed sparse 3D reconstruction using the COLMAP GUI for each combination of
dataset, importance map method, and threshold level. The reconstruction settings were as
follows: data type set to individual images, quality set to high, with both shared intrinsics
and shared intrinsics per sub-folder disabled. Only sparse models were generated (no dense
reconstruction).

The procedure involved loading the thresholded images into COLMAP, running the full
reconstruction pipeline (feature extraction, matching, and incremental SfM), and extracting
statistics via the built-in Show Model Statistics tool.

In cases where COLMAP produced multiple disconnected models, we retained only the
model with the highest number of registered images. Reconstructions with fewer than 20%
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of the input images successfully registered were considered uninformative and excluded
from further analysis. This explains why some result tables in Section 5.3 do not include all
threshold levels.

The following metrics were recorded for each valid reconstruction:

• Feature extraction time

• Feature matching time

• Reconstruction time

• Number of registered images

• Number of reconstructed 3D points

• Mean track length

• Mean reprojection error

• Average number of observations per image

Table 4.4.: Overview of building datasets and their configurations
Building Number of images Capture method Mask extraction method bag-id

1 detached house 28 Aerial SAM 0344100000157740
1 detached house 45 Aerial Manual 0344100000157740
2 tall building 29 Aerial SAM 0344100000080618
3 apartment block 39 Aerial SAM 0344100000149906
3 apartment block 70 Aerial Manual 0344100000149906
4 bouwpub groundbased 53 Phone Manual 0503010000044548
5 geodelta drone 200 Drone Manual 0503010000003065

4.7. Implicit mesh creation

4.7.1. Dense matching

For the Geodelta office drone dataset, we performed dense matching for all 27 image subsets,
corresponding to 9 threshold values across 3 importance map methods (SAM-entropy, SAM-
edge distance, and Canny edge detection). Additionally, a dense reconstruction using the
full (unmasked) image set was generated to serve as the ground truth. All dense matching
was carried out using the COLMAP graphical user interface.

4.7.2. Poisson configuration

To determine optimal Poisson surface reconstruction parameters, we conducted a parameter
sweep on the full-image dense point cloud. Meshes were generated using the open-source
application MeshLab, which implements the Poisson surface reconstruction method based
on [Kazhdan et al., 2006].

For each parameter sweep (see Table 4.5), we recorded the following metrics:

• Number of mesh vertices
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• Number of mesh faces

• Number of input points in the dense cloud

Table 4.5.: Tested parameter ranges for Poisson surface reconstruction

Parameter 1 2 3 4 5 6 7 8 9

Reconstruction Depth 5 6 7 8 9 10 11 12 13
Minimum # Samples 1 2 3 5 10 15 25 50 100
Interpolation Weight 1 2 4 8 16 32 64 128 256

4.7.3. Final meshes generation

Based on the configuration experiment, we selected the following reconstruction parameters:
depth 10, minimum number of samples 50, and interpolation weight 1. These parameters
provided a balanced trade-off between mesh detail and processing efficiency.

Using this configuration, we applied Poisson surface reconstruction in MeshLab to all 27
dense point clouds from the Geodelta dataset. The resulting meshes were exported in ASCII-
format .PLY files to be used in the mesh quality evaluation described in Section 3.9.

4.8. Mesh Quality Evaluation

4.8.1. Dense matching and Poisson surface reconstruction

We performed minor manual pre-cleaning of the input point clouds in MeshLab. Points
not belonging to the building, such as trees or other foreground elements, were removed.
These would otherwise interfere with the Poisson surface reconstruction and cause artifacts,
as shown in Figure 4.5. In all cases, this involved only a small number of points (around
100–200) out of point clouds containing between 1 and 7 million points.
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4.8. Mesh Quality Evaluation

Figure 4.5.: Poisson reconstruction on point cloud with outliers

For the mesh quality evaluation, we then performed dense matching using COLMAP for
all 27 mesh configurations (i.e., combinations of importance map type and threshold value)
from the Geodelta drone office dataset. Subsequently, we generated the surface meshes in
MeshLab using the Poisson surface reconstruction settings described in Section 4.7.3.

4.8.2. Mesh-alignment

Because the image datasets lack a fixed global reference frame, the different models exhibit
arbitrary rotation, translation, and scale. An example of this misalignment is shown in
Figure 4.6. To properly compare the two meshes using distance measures, they must be
precisely aligned. We used the meshlab-alignment tool for this purpose, which allows
you to select at least four corresponding points on both meshes and computes the rotation
matrix accordingly. For each mesh, we selected ten points (to ensure accuracy) and applied
the computed transformation to align the compared mesh with the ground truth mesh, see
Figure 4.7. In all 27 cases, the ground truth mesh was kept fixed, and the evaluated mesh
was aligned and scaled to match it
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Figure 4.6.: Misalignment of ground truth mesh and 0.7 Image-based Canny Edge Entropy
thresholded mesh.

Figure 4.7.: Mesh alignment in Meshlab.

4.8.3. Distances computation

We then implemented a custom comparison pipeline in C# that parses the aligned mesh files
in .PLY format. For each vertex in the evaluated mesh, we computed the shortest Euclidean
distance to the nearest face (triangle) of the ground truth mesh.

To do so, the following steps were performed:

1. The ground truth mesh was loaded and its triangle faces reconstructed from the vertex
and face information.
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4.8. Mesh Quality Evaluation

2. For each vertex in the evaluated mesh, the closest face in the ground truth mesh was
identified using a spatial index (k-d tree) to accelerate nearest-neighbor queries.

3. The point-to-triangle distance was computed analytically for each evaluated vertex,
using standard geometry formulas that calculate the perpendicular distance from a
point to a triangle in 3D space.

4. All resulting distances were stored and used to compute the final statistics:

• Mean Distance: the arithmetic average of all distances.

• Median Distance: the median of the sorted distance values.

• Hausdorff Distance: the maximum of the computed minimal distances.
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5. Results

5.1. Segmentation in obliques using SAM

5.1.1. Overall performance

In total, 3,522 segmentation masks were generated and evaluated across the selected build-
ing samples. The average confidence score assigned by SAM across all masks was 0.746,
indicating a generally high level of confidence in the generated masks, especially consider-
ing the complexity of oblique aerial imagery.

We further quantified performance by computing the percentage of high, confidence masks,
defined as masks with a score greater than 0.85, per building. This threshold was chosen
to reflect strong segmentation certainty. The distribution of high-confidence masks varies
significantly among buildings, suggesting that SAM’s segmentation quality is affected by
building-specific characteristics.

5.1.2. Interpretation of high-confidence Masks

The percentage of high-confidence masks (> 0.85) across buildings shows a wide range:

• Some buildings achieved perfect segmentation confidence (e.g., 100% of masks above
threshold, such as BAG IDs: 0344100000053378, 0344100000019816).

• Others had poor performance, with no high-confidence masks (e.g., 0344100000017828,
0344100000080200).

• A significant number of buildings achieved over 75% high-confidence segmentation,
indicating that SAM performs well for many cases even under oblique conditions.

5.1.3. Examples of segmentation quality

Figure 5.1 provides visualizations of segmentation masks from various viewing angles (front,
back, left, right) for a selected building (BAG ID: 0344100000157740). While some views yield
masks with tight alignment to building boundaries, others show more uncertainty, which
may be reflected in their confidence scores.
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(a) Fwd 1 (b) Fwd 2 (c) Back 1 (d) Back 2

(e) Left 1 (f) Left 2 (g) Right 1 (h) Right 2

Figure 5.1.: Selection of masks for a specific building (BAG ID: 0344100000157740)

5.2. Segmentation on building level

Our goal here is to find a configuration of the SamAutomaticMaskGenerator that has a bal-
ance between runtime, segmentation quality and number of generated masks. We evaluated
several configurations of the SamAutomaticMaskGenerator on the Geodelta drone dataset.
For each parameter, we analyzed its impact on runtime, average predicted IoU, and number
of masks. This section includes a table and a figure for each parameter configuration. Note
that the table presents average values across 10 images, while the figure shows only the
first image in the dataset for illustrative purposes. For each parameter, the default value is
indicated in bold.

5.2.1. Effect of points per side on segmentation quality and runtime

For the points per side parameter, increasing the value results in greater segmentation
detail, but also significantly higher runtime. The runtime grows by factors ranging from
approximately 2.3 to nearly 3.8 as the value doubles, while the number of masks increases
rapidly up to 32 points per side and more gradually beyond that. This indicates diminishing
returns in detail relative to computational cost, making 32 a balanced and efficient choice.
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Table 5.1.: Effect of varying points per side (points per side) on runtime, average mask
score, and number of masks.

Value Avg. runtime (s) Avg. mask score Avg. # masks

8 0.78 0.9673 5.5
16 1.77 0.9685 15.60
32 5.25 0.9692 34.40
64 19.93 0.9690 46.70

(a) 16 (b) 32 (c) 64 (d) 128

Figure 5.2.: Segmentation masks generated using varying values of points per side
(points per side)

5.2.2. Effect of points per batch on segmentation quality and runtime

The points per batch parameter controls how many point prompts are processed in paral-
lel during mask generation. This influences runtime and memory usage but has no effect on
mask quality or count. As shown in Table 5.2, varying the value between 16 and 128 results
in nearly identical average runtimes and identical mask scores and counts. This indicates
that the parameter has minimal impact on performance within this range. Therefore, we
will keep this default value of 64 for our configuration.

Table 5.2.: Effect of varying points per batch points per batch on runtime, average mask
score, and number of masks.

Value Avg. runtime (s) Avg. mask score Avg. # masks

16 5.60 0.9694 34.50
32 5.32 0.9694 34.50
64 5.36 0.9694 34.50
128 5.88 0.9694 34.50

41



5. Results

(a) 16 (b) 32 (c) 64 (d) 128

Figure 5.3.: Segmentation masks generated using varying values of points per batch
(points per batch)

5.2.3. Effect of pred iou thresh on segmentation quality and runtime

The pred iou thresh parameter controls the minimum confidence (predicted IoU)1 required
to retain a mask. Lower values allow more masks, capturing finer details but with slightly re-
duced reliability. As shown in Table 5.3, decreasing the threshold from 0.95 to 0.75 increases
the average number of masks from 7.2 to 45.4, while the average mask score decreases only
slightly. Runtime remains unaffected. Since a lower threshold yields more masks without
significantly compromising mask quality or runtime, we opted to reduce the value from the
default and selected 0.75 for our configuration.

Table 5.3.: Effect of varying minimum confidence (predicted IoU) pred iou thresh on run-
time, average mask score, and number of masks.

Value Avg. runtime (s) Avg. mask score Avg. # masks

0.75 5.39 0.9679 45.40
0.88 5.31 0.9694 34.50
0.92 5.31 0.9711 22.40
0.95 5.28 0.9719 7.20

(a) 0.75 (b) 0.88 (c) 0.92 (d) 0.95

Figure 5.4.: Segmentation masks generated using varying values of the minimum confidence
value (pred iou thresh)

1Intersection over Union (IoU) measures the accuracy of a predicted mask by comparing its overlap with the
ground truth mask. Since the ground truth isn’t available during inference, the predicted IoU is the model’s
estimated confidence score indicating how well the mask likely fits the object.
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5.2.4. Effect of stability score thresh on segmentation quality and
runtime

The stability score thresh parameter sets the minimum stability score required for a
mask to be kept, reflecting how consistently the mask appears under small image changes.
As the threshold increases, the number of masks decreases. Although runtime decreases
slightly and average mask score improves with higher thresholds, the 0.75 thresholds tends
to prioritize smaller, less important masks, causing some good masks to be lost. Visual
inspection (Figure 5.5) shows that values around 0.85 and 0.95 better capture relevant details
compared to the lowest threshold. Considering this, we selected 0.85 for our configuration.

Table 5.4.: Effect of varying the stability score threshold stability score thresh on run-
time, average mask score, and number of masks.

Value Avg. runtime (s) Avg. mask score Avg. # masks

0.75 7.36 0.9412 51.20
0.85 6.97 0.9516 48.40
0.95 5.40 0.9694 34.50
0.99 4.66 0.6950 1.20

(a) 0.75 (b) 0.85 (c) 0.95 (d) 0.99

Figure 5.5.: Segmentation mask generated using varying values of the stability score thresh-
old (stability score thresh).

5.2.5. Effect of stability score offset on segmentation quality and
runtime

The stability score offset shifts the stability scores before applying the stability score threshold,
influencing which masks are considered stable. We chose a lower value of 0.8 because it
produces more masks with a similar average mask score and no additional runtime cost,
improving detail capture without sacrificing efficiency
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Table 5.5.: Effect of varying the stability score offset (stability score offset) on runtime,
average mask score, and number of masks

Value Avg. runtime (s) Avg. mask score Avg. # masks

0.8 5.71 0.9723 39.70
1.0 5.85 0.9694 34.50
1.1 5.59 0.9682 32.00
1.3 6.11 0.9657 27.40

(a) 0.8 (b) 1.0 (c) 1.1 (d) 1.3

Figure 5.6.: Segmentation masks generated using varying values of the stability score thresh-
old (stability score offset)

5.2.6. Effect of box nms thresh on segmentation quality and runtime

The box nms thresh parameter controls the non-maximum suppression (NMS) threshold for
bounding boxes, determining how much overlap is allowed between masks. As shown in
Table 5.6, varying this parameter does not change the metric much. Therefore, we kept this
at the default value in our configuration.

Table 5.6.: Effect of varying (NMS) threshold for bounding boxes (box nms threshold) on
runtime, average mask score, and number of masks.

Value Avg. runtime (s) Avg. mask score Avg. # masks

0.2 5.28 0.9697 33.40
0.5 5.39 0.9696 33.90
0.7 5.27 0.9694 34.50
0.9 5.33 0.9692 37.40
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(a) 0.2 (b) 0.5 (c) 0.7 (d) 0.9

Figure 5.7.: Segmentation masks generated using varying values of (NMS) threshold for
bounding boxes (box nms threshold)

5.2.7. Effect of crop n layers on segmentation quality and runtime

The crop n layers parameter enables recursive cropping for a specified number of layers.
As shown in Table 5.7 and Figure 5.8, higher values significantly increase the number of
masks but also increase runtime. Mask quality remains consistent across values. We opted
for one level deeper than the default and chose a value of 1. To offset the runtime in-
crease, we set the crop n points downscale parameter to 2, which reduces the density of
points per side in the recursive layers, reducing runtime.

Table 5.7.: Effect of varying the cropping depth (number of recursive layers, crop n layers)
on runtime, average mask score, and number of masks.

Value Avg. runtime (s) Avg. mask score Avg. # masks

0 5.20 0.9728 19
1 24.44 0.9661 83
2 96.96 0.9706 213
3 398.41 0.9740 436

(a) 0 (b) 1 (c) 2 (d) 3

Figure 5.8.: Segmentation masks generated with varying cropping depth values
(crop n layers)

5.2.8. Final building level SAM configuration

To conclude, the parameters settings for the SamAutomaticMaskGenerator that we used on
our datasets can be found in Table 5.9.
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Parameter Value
points per side 32
points per batch 64
pred iou thresh 0.75

stability score thresh 0.85
stability score offset 0.8

box nms thresh 0.7
crop n layers 1

crop n points downscale factor 2

Figure 5.9.: Configuration parameters
used for the segmentation

Figure 5.10.: Final configuration on the image
used in testing

5.3. Targeted point addition based on building complexity

In this section, we present the results of feature extraction, matching, and sparse reconstruc-
tion for the different building-type datasets, importance maps, and threshold levels.

We report the set of reconstruction metrics described in Section 3.7, including:

• Threshold level

• Extraction, matching, and reconstruction time

• Number of registered images and 3D points

• Mean track length, reprojection error, and observations per image

In this results section, we present the most important result tables, figures, and their in-
terpretations. A complete set of all results, including full tables, is available in Appendix
C.

Note: In some cases, COLMAP produced multiple disconnected models—especially at higher
thresholds where larger portions of the input images were masked. In these situations, we
report results only from the model with the highest number of registered images. This
also influenced the reported reconstruction time: occasionally, a lower threshold may result
in a longer reconstruction time due to the reconstruction process attempting an additional
model.

For our first dataset, we include all reconstruction tables. The first dataset we tested on was
the 1 detached house dataset, segmented from the oblique images using SAM. Although the
results are listed here across all thresholds and entropy methods, not a single valid sparse
model was constructed. Even without any thresholding, only 17 images were registered in
the reconstruction—resulting in a skewed and incomplete model.

We do observe a decline in extraction, matching, and reconstruction times as thresholding
increases and less information is retained from the images. This trend will continue through-
out all models. An exception to this is threshold 0.3 in Table C.3, where the reconstruction
time does not follow the expected pattern. This is an example where COLMAP attempted
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to initiate a separate model from different perspectives, resulting in multiple disconnected
models. Similar behavior can be seen in the following datasets.

Another consistent trend across all building datasets is that Canny edge detection typically
results in the longest extraction, matching, and reconstruction times. This is due to Canny-
thresholded images retaining the highest number of pixels on average.

5.3.1. 1 detached house (SAM) - 28 input images

Table 5.8.: SfM results for 1 detached house with SAM kernel entropy
Threshold Extr. Time Match. Time Reconstr. Time # Images Mean observations/image # Points Mean track length Mean reproj. error

0.0 0.088 0.006 0.311 17 490.123 1,359 4.71421 0.653123
0.1 0.086 0.005 0.287 12 418.333 1,193 4.20788 0.656676
0.2 0.088 0.004 0.113 7 187.143 384 3.41146 0.536607
0.3 0.089 0.005 0.265 6 179.833 340 3.17353 0.531796
0.4 0.084 0.004 0.030 4 122.25 194 2.52062 0.491187
0.5 0.086 0.003 0.003 2 60 60 2.0000 0.279012
0.6 0.080 0.002 0.009 4 112.5 168 2.67857 0.4359
0.7 0.084 0.001 0.004 2 29 29 2.0000 1.11085
0.8 0.082 0.002 0.000 0 0 0 0 0
0.9 0.081 0.001 0.000 0 0 0 0 0

Table 5.9.: SfM results for 1 detached house with SAM edge-detection
Threshold Extr. Time Match. Time Reconstr. Time # Images Mean observations/image # Points Mean track length Mean reproj. error

0.0 0.088 0.006 0.311 17 490.123 1,359 4.71421 0.653123
0.1 0.096 0.005 0.525 14 470.357 1,401 4.70021 0.679753
0.2 0.088 0.006 0.361 4 448.75 670 2.6791 0.473758
0.3 0.086 0.006 0.511 11 164.818 332 5.46084 0.71258
0.4 0.088 0.005 0.157 7 1.14286 4 2.0000 0.000017
0.5 0.085 0.005 0.202 9 365.444 965 3.40829 0.664438
0.6 0.085 0.005 0.030 4 67.75 99 2.73737 0.548408
0.7 0.088 0.005 0.024 4 120 123 2.93848 0.738290
0.8 0.093 0.006 0.025 4 170 222 3.06306 0.802794
0.9 0.083 0.004 0.008 4 140.5 205 2.74146 0.839855

Table 5.10.: SfM results for 1 detached house with edge-detection
Threshold Extr. Time Match. Time Reconstr. Time # Images Mean observations/image # Points Mean track length Mean reproj. error

0.0 0.088 0.006 0.311 17 490.123 1,359 4.71421 0.653123
0.1 0.087 0.005 0.486 11 331.545 694 5.25504 0.674564
0.2 0.099 0.006 0.717 12 549 1,487 4.4304 0.792753
0.3 0.092 0.005 0.351 5 368 626 2.9393 0.468019
0.4 0.086 0.006 0.470 17 468.412 1,895 4.20211 0.705464
0.5 0.090 0.006 0.518 11 322.273 697 5.08608 0.693039
0.6 0.089 0.006 0.505 4 389.25 576 2.70313 0.481089
0.7 0.086 0.007 0.375 12 253.083 818 3.71271 0.564703
0.8 0.089 0.008 0.084 5 316.4 440 3.59545 0.617071
0.9 0.086 0.006 0.019 3 292.667 386 2.27461 0.501573

5.3.2. 1 detached house (manual segmentation) - 45 input images

We also manually segmented the building masks after we saw that the SAM segmented
masks were not able of producing a good reconstruction. Therefore, for this same building
the number of input images increases from 28 to 45, and also the quality of the masks
increases see Figure 5.11. However, even though the number of registered images increased,
not a single reconstruction accurately represented the real-world structure.
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Table 5.11.: SfM results for 1 detached house (manual) with SAM kernel entropy
Threshold Extr. Time Match. Time Reconstr. Time # Images Mean observations/image # Points Mean track length Mean reproj. error

0.0 0.110 0.037 3.673 35 1576.06 7,253 7.6054 0.911192
0.1 0.055 0.012 1.801 22 681.682 2,837 5.28622 1.02639
0.2 0.052 0.010 1.565 19 498.368 2,042 4.63712 1.10220
0.3 0.052 0.013 0.139 4 1.5 3 2 0.000028
0.4 0.050 0.016 0.089 4 279.75 490 2.28367 0.460264
0.5 0.046 0.009 0.019 3 0 0 0 0
0.6 0.044 0.008 0.006 2 176 176 2 0.600909
0.7 0.042 0.005 0.004 2 52 52 2 0.890843
0.8 0.036 0.003 0.001 2 25 25 2 0.575599
0.9 0.039 0.000 0.000 — — — — —

(a) SAM-segmented masks (28 input images).
(b) Manually segmented masks (45 input im-

ages).

Figure 5.11.: Comparison of reconstruction input masks for the same building. After ob-
serving poor reconstructions using SAM-generated masks, we manually segmented the
building. This increased the number of input images from 28 to 45 and improved mask
quality.

For the dataset with the tall building we observe the same trends. However, we would like
to mention here that out of all the oblique imagery datasets, the 0.1 threshold here produced
the only reconstruction that was an accurate representation of the real world geometry, we
show it in Figure 5.12
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5.3. Targeted point addition based on building complexity

Table 5.12.: SfM results for 2 tall building with edge detection
Threshold Extr. Time Match. Time Reconstr. Time # Images Mean observations/image # Points Mean track length Mean reproj. error

0.0 0.309 0.064 2.402 15 1,921 4,241 3.12012 0.829121
0.1 0.304 0.106 2.886 10 1,716.4 5,219 3.28875 0.782024
0.2 0.291 0.104 3.444 19 1,721.21 9,782 3.34318 0.702166
0.3 0.264 0.102 6.101 14 1,663.21 7,760 3.00064 0.90227
0.4 0.279 0.098 1.967 13 1,249.69 5,316 3.05606 0.842655
0.5 0.305 0.100 3.205 10 69 267 2.58427 1.10686
0.6 0.296 0.102 2.430 11 200.636 791 2.79014 0.923647
0.7 0.291 0.095 3.539 12 550 2,222 2.9703 0.85611
0.8 0.290 0.088 2.332 6 4.83333 14 2.07143 0.000013
0.9 0.295 0.087 1.402 2 4 4 2 0.954711

(a) Input photo used in the successful reconstruc-
tion.

(b) Resulting sparse model from threshold 0.1,
aligned with real-world geometry.

Figure 5.12.: Example from the 2 tall building dataset. Threshold 0.1 produced the only
sparse model closely resembling the real structure.

5.3.3. 3 apartment block (SAM) - 39 input images

5.3.4. 3 apartment block (manual segmentation) - 70 input images

Both the SAM segmented and manually segmented datasets of the apartment block did not
give any good reconstructions, we only include one table here as an example. All other
tables for both datasets can be found in Appendix C.

Table 5.13.: SfM results for 3 apartment block with SAM kernel entropy
Threshold Extr. Time Match. Time Reconstr. Time # Images Mean observations/image # Points Mean track length Mean reproj. error

0.0 0.990 0.202 9.274 10 642.7 2,817 2.28151 0.922359
0.1 1.266 0.205 4.720 11 622.091 3,296 2.07615 0.938021
0.2 1.055 0.192 4.964 10 1,213.8 4,639 2.61651 1.152
0.3 0.860 0.180 4.136 15 713 3,422 3.12537 0.681197
0.4 0.833 0.149 3.441 14 997.429 3,900 3.58051 0.855569
0.5 0.670 0.118 2.312 13 1,150.92 3,765 3.97397 0.791224
0.6 0.552 0.066 1.730 11 933.909 2,761 3.72075 0.729669
0.7 0.446 0.025 0.336 9 585.778 1,416 3.72316 0.72576
0.8 0.324 0.009 0.126 6 292.5 602 2.91528 0.74585
0.9 0.326 0.007 0.019 2 61 61 2 0.409424
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5.3.5. 4 bouwpub (manual segmentation) - 53 input images

The Bouwpub dataset, which was captured using a smartphone and manually segmented,
represents one of the first datasets from which we obtain realistic reconstructions.

Figure 5.13 we can see the results of the bouwpub dataset for the main metrics.

(a) Extraction + Matching Time (b) Number of Images

(c) Observations per Image (d) Number of Points

(e) Mean Track Length (f) Reprojection Error

Figure 5.13.: SfM evaluation metrics for Bouwpub dataset.

We observe in Figure 5.13a that extraction and matching times decrease as the thresholds
increase. The SAM kernel entropy method has the lowest extraction and matching time
overall, whereas the other two methods show similar performance.

A similar trend is visible in the number of registered images versus threshold, see Figure
5.13b. Up until a threshold of 0.2, all three methods reconstruct using all 53 input images.
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5.3. Targeted point addition based on building complexity

After that, SAM kernel entropy starts to drop off, while the other two methods retain all
images until around threshold 0.5.

The mean observations per image in Figure 5.13c are significantly lower for SAM kernel
entropy compared to the other methods, indicating that this method discards more pixels.
This also reflects in the number of points versus threshold in Figure 5.13d.

The mean track length in Figure 5.13e is the most comparable metric across the three meth-
ods. However, after threshold 0.6, the reconstruction quality for SAM kernel entropy declines
due to insufficient image information.

A similar pattern appears in the mean reprojection error in Figure 5.13f, which decreases for
SAM kernel entropy at higher thresholds. However, this is likely due to the reduced number
of images and points, rather than improved reconstruction accuracy.

Table 5.14.: SfM results for 4 bouwpub (manual) with edge detection
Threshold Extr. Time Match. Time Reconstr. Time # Images Mean observations/image # Points Mean track length Mean reproj. error

0.0 0m20s 0m26s 1m32s 53 3,068.72 40,725 3.99366 1.10242
0.1 0m20s 0m26s 1m36s 53 2,992.75 40,023 3.96312 1.09889
0.2 0m17s 0m26s 1m32s 53 2,811.66 38,224 3.89855 1.10369
0.3 0m17s 0m24s 1m27s 53 2,464.81 34,500 3.78652 1.09756
0.4 0m16s 0m21s 1m19s 53 2,124.09 30,801 3.65498 1.08972
0.5 0m15s 0m19s 1m6s 53 1,757.58 27,019 3.44765 1.08829
0.6 0m14s 0m14s 1m5s 50 1,421.2 21,573 3.29393 1.10230
0.7 0m13s 0m9s 0m36s 46 1,060.2 15,914 3.06453 1.09169
0.8 0m11s 0m6s 1m27s 28 898.464 8,773 2.86755 1.07772
0.9 0m10s 0m3s 0m16s 22 480.545 4,330 2.44157 1.07777

Table 5.15.: SfM results for 4 bouwpub (manual) with SAM edge detection
Threshold Extr. Time Match. Time Reconstr. Time # Images Mean observations/image # Points Mean track length Mean reproj. error

0.0 0m20s 0m26s 1m32s 53 3,068.72 40,725 3.99366 1.10242
0.1 0m18s 0m25s 1m51s 53 2,965.55 39,463 3.98282 1.10395
0.2 0m18s 0m24s 1m53s 53 2,745.38 37,116 3.92092 1.10973
0.3 0m17s 0m23s 1m52s 53 2,467.55 34,088 3.83654 1.11244
0.4 0m17s 0m22s 1m51s 53 2,180.53 31,059 3.72092 1.10269
0.5 0m15s 0m20s 1m25s 53 1,865.47 27,563 3.58706 1.11416
0.6 0m15s 0m16s 1m12s 52 1,505.38 22,637 3.45806 1.08461
0.7 0m14s 0m11s 1m41s 22 1,479.91 9,266 3.51371 1.09432
0.8 0m12s 0m6s 0m36s 32 917.344 9,415 3.11790 1.11087
0.9 0m9s 0m4s 0m24s 18 288.111 2,124 2.44162 1.14011

Table 5.16.: SfM results for 4 bouwpub (manual) with SAM kernel entropy
Threshold Extr. Time Match. Time Reconstr. Time # Images Mean observations/image # Points Mean track length Mean reproj. error

0.0 0m20s 0m26s 1m32s 53 3,068.72 40,725 3.99366 1.10242
0.1 0m20s 0m22s 1m16s 53 2,223.13 31,398 3.75266 1.08451
0.2 0m17s 0m18s 1m11s 53 1,838.26 26,503 3.67611 1.08779
0.3 0m16s 0m13s 0m55s 51 1,456.43 20,563 3.61222 1.03688
0.4 0m13s 0m8s 0m41s 43 1,081.12 12,885 3.60792 0.974324
0.5 0m9s 0m4s 1m1s 33 704.121 6,653 3.49256 0.858625
0.6 0m8s 0m2s 0m16s 22 414.591 2,570 3.54903 0.758927
0.7 0m7s 0m1s 0m1s 2 67.000 67 2.0000 0.294403
0.8 0m6s 0m1s 0m1s 3 2.000 2 3.0000 0.000600
0.9 0m6s 0m1s 0m1s 2 39.000 39.000 2.0000 0.205755

5.3.6. 5 geodelta drone (manual segmentation) - 200 input images

For the GeoDelta Drone Office dataset, we observe a consistent decrease in extraction and
matching times as the thresholds increase, particularly for the SAM kernel entropy method,
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which becomes significantly faster than the other two beyond threshold 0.4. The SAM edge
detection and entropy methods show similar extraction and matching times until threshold
0.3, after which edge detection maintains slightly more consistent durations.

All methods start with 201 registered images, but SAM kernel entropy and edge detection
both show a rapid drop in image count beyond threshold 0.5, with kernel entropy dropping
to only 7 images at threshold 0.9. This trend also reflects in the number of points and mean
observations per image, both of which decline sharply as the image masks become more
sparse.

(a) Extraction + Matching Time (b) Number of Images

(c) Observations per Image (d) Number of Points

(e) Mean Track Length (f) Reprojection Error

Figure 5.14.: SfM evaluation metrics for GeoDelta Drone dataset.

Our initial plan was to explore mesh reconstruction for all datasets, but due to poor SfM re-
sults from the oblique-derived datasets, we focused instead on the GeoDelta Drone dataset.
With more images and higher overlap, it produced the most complete and consistent recon-
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5.4. Implicit mesh reconstruction

Table 5.17.: SfM results for 5 Geodelta drone with edge detection
Threshold Extr. Time Match. Time Reconstr. Time # Images Mean observations/image # Points Mean track length Mean reproj. error

0.0 5m15s 6m18s 13m34s 201 5,595.12 212,625 5.28922 0.98005
0.1 4m39s 6m38s 12m25s 200 5,507.8 216,269 5.09347 0.982634
0.2 6m55s 6m43s 13m33s 200 5,500.65 217,849 5.04997 0.988194
0.3 6m55s 6m43s 11m56s 200 5,352.19 218,915 4.88974 1.00084
0.4 4m36s 6m41s 11m49s 200 5,263.3 223,275 4.71463 1.01127
0.5 6m54s 6m42s 11m3s 197 5,197.9 226,189 4.52713 1.02545
0.6 5m27s 6m57s 13m45s 188 5,076.54 217,971 4.37851 1.04974
0.7 3m36s 7m11s 11m43s 189 4,867.19 218,592 4.20829 1.05362
0.8 4m8s 6m42s 10m59s 185 4,473.37 202,852 4.07969 1.0636
0.9 4m11s 6m26s 13m39s 172 3,847.78 169,543 3.90355 1.0684

Table 5.18.: SfM results for 5 Geodelta drone with SAM edge detection
Threshold Extr. Time Match. Time Reconstr. Time # Images Mean observations/image # Points Mean track length Mean reproj. error

0.0 5m15s 6m18s 13m34s 201 5,595.12 212,625 5.28922 0.98005
0.1 3m28s 6m41s 10m56s 201 5,216.94 215,316 4.87007 0.98635
0.2 3m28s 4m42s 12m24s 201 4,820.04 212,044 4.56900 0.99577
0.3 3m28s 6m41s 16m32s 195 4,499.99 203,484 4.31237 1.00809
0.4 4m46s 6m16s 10m55s 190 4,163.51 193,712 4.08373 1.01948
0.5 3m34s 6m17s 14m37s 176 4,048.31 187,623 3.79752 1.03436
0.6 3m27s 6m11s 12m34s 164 3,838.39 175,753 3.58171 1.05837
0.7 2m43s 5m25s 9m34s 158 3,386.99 162,049 3.30237 1.07905
0.8 2m58s 4m33s 14m0s 133 2,679.07 117,663 3.02828 1.12399
0.9 2m34s 4m21s 8m57s 40 750.975 12,856 2.33657 1.19275

Table 5.19.: SfM results for 5 Geodelta drone with SAM kernel entropy
Threshold Extr. Time Match. Time Reconstr. Time # Images Mean observations/image # Points Mean track length Mean reproj. error

0.0 5m15s 6m18s 13m34s 201 5,595.12 212,625 5.28922 0.98005
0.1 3m9s 6m6s 11m47s 200 5,163.67 212,185 4.86714 0.980572
0.2 3m2s 5m47s 9m55s 200 4,841.91 205,527 4.7117 0.981102
0.3 2m45s 5m36s 9m16s 200 4,416.39 195,804 4.51103 0.980386
0.4 2m16s 5m22s 9m31s 200 3,879.08 183,980 4.21685 0.983975
0.5 2m3s 4m23s 7m10s 194 3,122.97 153,196 3.95478 0.977657
0.6 1m39s 2m29s 5m2s 171 2,133.85 96,284 3.78972 0.983343
0.7 1m19s 0m48s 3m10s 154 952.896 41,018 3.5776 0.951435
0.8 1m6s 0m13s 2m47s 101 274.010 8,383 3.30132 0.892823
0.9 1m2s 0m5s 0m3s 7 119.000 282 2.9539 0.64008

structions, making it better suited for dense point cloud generation and mesh reconstruc-
tion.

5.4. Implicit mesh reconstruction

In this section, we present the results of our Poisson surface reconstruction parameter ex-
periments conducted on the full-image dense point cloud. By systematically varying recon-
struction depth, minimum number of samples, and interpolation weight, we analyze the
impact of each parameter on mesh complexity and visual quality. Based on these findings,
we identify an optimal configuration that is later applied to all 27 dense reconstructions.
The selected configuration and corresponding reference mesh will serve as a basis for mesh
quality evaluation in the following section.

53



5. Results

5.4.1. Reconstruction depth

In Figure 5.15, we can visually inspect the different configurations of the reconstruction
depth. Table 5.20 and Figure 5.16 show the corresponding number of vertices and faces for
each parameter value.

Up until a depth of 7 or 8, there is a noticeable lack of detail. From 9 onwards, finer features
such as window frames and the façade become visible. This level of detail continues to
improve noticeably up to the final depth tested. Starting at depth 10 and beyond, we also
observe some overfitting in the Poisson reconstruction, visible in the appearance of a small
blob above the dome.

Considering both the vertex and face counts, a reconstruction depth of 10 appears to offer
the best trade-off between visual detail and computational cost. Depths 11 and 12 more than
double the memory cost, resulting in meshes that become increasingly difficult to process
efficiently.

Table 5.20.: Number of vertices and faces for varying reconstruction depth (min samples =
10, interpolation weight = 4)

Depth 4 5 6 7 8 9 10 11 12

# Vertices 525 2083 5153 17368 74962 310334 1225572 4480679 13051596
# Faces 961 4004 10131 34566 149751 620395 2450966 8961366 26103701

4 5 6 7 8 9 10 11 12
0
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1 · 107
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2.5 · 107
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Mesh Complexity vs. Reconstruction Depth

Vertices Faces Input Point Cloud Vertices

Figure 5.16.: Number of vertices and faces as a function of reconstruction depth (min samples
= 10, interpolation weight = 4). The dashed gray line indicates the number of vertices in
the original point cloud.
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(a) Depth 4 (b) Depth 5 (c) Depth 6

(d) Depth 7 (e) Depth 8 (f) Depth 9

(g) Depth 10 (h) Depth 11 (i) Depth 12

Figure 5.15.: Surface reconstructions for varying reconstruction depth parameters (min sam-
ples = 1.5, interpolation weight = 4).

5.4.2. Minimum number of samples

In Figure 5.17, we can visually inspect the different configurations of the minimum number
of samples parameter. Table 5.21 and Figure 5.18 show the corresponding number of vertices
and faces for each parameter value.

With a small number of samples (1–5), we observe overfitting (with a blob above the dome
again) and a higher number of vertices and faces. As the number increases, the mesh be-
comes smoother. Up to around 25–50 samples, the reconstruction still preserves considerable
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detail. However, at 100 samples, there is a noticeable loss of detail.

We want to choose a minimum number of samples that avoids both overfitting with excessive
geometric complexity and underfitting with loss of detail. In this case, selecting a value
between 5 and 25 appears to offer a good trade-off.

(a) 1 sample (b) 2 samples (c) 3 samples

(d) 5 samples (e) 10 samples (f) 15 samples

(g) 25 samples (h) 50 samples (i) 100 samples

Figure 5.17.: Surface reconstructions for varying minimum number of samples per octree
node.
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5.4. Implicit mesh reconstruction

Table 5.21.: Number of vertices and faces for varying minimum number of samples (recon-
struction depth = 10, interpolation weight = 4)

Min. Samples 1 2 3 5 10 15 25 50 100

# Vertices 1234454 1217085 1198881 1158782 298373 944975 826041 607630 287818
# Faces 2468562 2434027 2397732 2317656 596828 1890180 1652330 1215448 575809
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Figure 5.18.: Number of vertices and faces as a function of the minimum number of samples
per octree node (depth = 10, interpolation weight = 4). The dashed gray line indicates the
number of vertices in the original point cloud.

5.4.3. Interpolation Weight

In Figure 5.20, we can visually inspect the different configurations of the interpolation weight
parameter. Table 5.22 and Figure 5.21 show the corresponding number of vertices and faces
for each parameter value.

A low interpolation weight smooths the surface, reducing noise and generating a cleaner
mesh. In contrast, a high interpolation weight can lead to overfitting, capturing noise from
the point cloud. In this case, the lower weight (1) is preferable, producing a smoother
and more visually coherent result than the higher weight (50), which introduces visible
artifacts.

Figure 5.21 shows that the interpolation weight has a small influence on the number of
vertices and faces compared to reconstruction depth and the minimum number of samples.
The increase in complexity is only slight as the interpolation weight increases, so the memory
cost is not significantly affected.
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(a) Low interpolation weight (1) (b) High interpolation weight (50)

Figure 5.19.: Effect of interpolation weight on mesh reconstruction

(a) Interpolation weight 1 (b) Interpolation weight 2 (c) Interpolation weight 4

(d) Interpolation weight 8 (e) Interpolation weight 16 (f) Interpolation weight 32

(g) Interpolation weight 64 (h) Interpolation weight 128 (i) Interpolation weight 256

Figure 5.20.: Surface reconstructions for varying interpolation weight parameters (min sam-
ples = 10, reconstruction depth = 10).
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Table 5.22.: Number of vertices and faces for varying interpolation weights (reconstruction
depth = 10, min samples = 1.5)

Interpolation Weight 1 2 4 8 16 32 64 128 256

# Vertices 1202488 1213238 1225570 1240264 1256398 1275351 1299997 1329035 1364598
# Faces 2404665 2426221 2450962 2480442 2512886 2550864 2600088 2658372 2729727
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Figure 5.21.: Number of vertices and faces as a function of the interpolation weight (recon-
struction depth = 10, min samples = 1.5). The dashed gray line shows the number of
vertices in the original point cloud.

5.4.4. Final Poisson mesh reconstruction configuration

Based on this analysis, we chose the following Poisson reconstruction parameters for all
point clouds: reconstruction depth 10, minimum number of samples 50, and interpolation weight
1. Depth 10 balances detail and resource usage. A minimum sample count of 50 effectively
smooths noise while preserving geometry. Interpolation weight 1 avoids overfitting and
artifacts.

The result of this surface reconstruction on the dense point cloud using the full images can
be seen in Figure 5.22, which will be used as the ground truth. This configuration was
applied to all 27 point clouds (9 thresholds x 3 methods), resulting in 27 meshes.
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(a) Ground Truth View 1 (b) Ground Truth View 2

Figure 5.22.: Reference ground truth mesh views used for comparison with the reconstructed
meshes.

5.5. Mesh quality evaluation

We evaluated three importance-region strategies: SAM kernel entropy, SAM edge distance,
and Canny edge distance, across threshold levels ranging from 0.1 to 0.9. Mesh quality was
assessed using the mean, median, and Hausdorff distances to a ground truth mesh. To pro-
vide additional insight into memory and runtime performance, we also report the number
of input point cloud vertices, resulting mesh vertices and faces, and the time required for
dense matching.

5.5.1. SAM kernel entropy

The reconstruction results for the SAM kernel entropy method are presented in Table 5.23,
as well as visualized in Figure 5.23. For the mean reconstruction error, this method closely
follows the performance of Canny edge distance up to a threshold of 0.2. Median distance
remains comparable to Canny edge performance until threshold 0.5. However, beyond this
point, both mean and median errors increase significantly. Hausdorff distance shows a
similar trend: relatively stable until threshold 0.5, followed by a sharp rise.

Visual inspection aligns with the observed trends. Figure 5.24 shows mesh reconstructions
at increasing entropy thresholds. At threshold 0.4, the overall structure of the mesh is still
preserved. However, from threshold 0.5 onward, larger portions of the input images are ex-
cluded, leading to visible holes and geometric distortions in the resulting mesh. Figure 5.24e
illustrates an thresholded input image at 0.5, highlighting the removal of image regions at
higher thresholds.
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(a) Mean reconstruction error. (b) Median reconstruction error.

(c) Hausdorff reconstruction error.

Figure 5.23.: Mesh reconstruction accuracy across threshold values for all three methods.
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(a) Threshold 0.4 (b) Threshold 0.5

(c) Threshold 0.6 (d) Threshold 0.7

(e) Threshold 0.5 input image

Figure 5.24.: Visual examples of mesh reconstruction at different SAM kernel entropy thresh-
olds. The final image shows a corresponding input image at threshold 0.5, highlighting
the loss of information leading to reconstruction artifacts.
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Table 5.23.: Mesh quality metrics for SAM Mask Kernel Entropy
Threshold Mean Dist. Median Dist. Hausdorff Dist. # Vertices (input) # Vertices # Faces Dense match. (time)

0.0 0.0 0.0 0.0 7,564,981 580,800 1,161,704 5h3m
0.1 0.005463 0.003953 1.065408 6,842,222 534,254 1,068,540 4h56m
0.2 0.006826 0.004495 1.279737 6,353,980 510,493 1,020,999 4h56m
0.3 0.008034 0.004849 1.455565 5,663,213 465,265 930,449 4h57m
0.4 0.011218 0.005102 2.025437 3,785,706 326,051 651,946 4h59m
0.5 0.011797 0.005225 1.859387 2,533,572 228,682 457,319 5h0m
0.6 0.023519 0.006664 2.814955 1,157,186 119,809 239,515 4h24m
0.7 0.064950 0.014365 3.935143 442,145 53,199 106,258 3h48m
0.8 0.804311 0.682607 4.461905 53,149 14,115 28,054 2h10m
0.9 2.079102 1.702971 6.759951 1,404 1,096 2,065 0h4m

5.5.2. SAM edge distance

SAM edge distance has the highest distance errors for mean distance up untill a threshold of
0.4, and for 0.6 for median distance. For the Hausdorff distance it is similar to SAM kernel
entropy and only becomes higher than that at high thresholds 0.8, 0.9 when accuracy is
already low.

SAM mask edge distance-based mesh reconstruction has some similar issues to the kernel
entropy-based approach. In general, it finds the important parts of the image for mesh
reconstruction pretty well. However, when it misses something, it can lead to noticeable
errors in the mesh—see Figure 5.25.

(a) SAM edge distance based mesh reconstruction
with threshold 0.6

(b) Example image for SAM edge distance based
with threshold 0.6

Figure 5.25.: SAM edge detection based mesh reconstruction and its artifacts
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Table 5.24.: Mesh quality metrics for SAM edge distance
Threshold Mean Dist. Median Dist. Hausdorff Dist. # Vertices (input) # Vertices # Faces Dense match. (time)

0.0 0.0 0.0 0.0 7,564,981 580,800 1,161,704 5h3m
0.1 0.007805 0.005860 1.225450 7,339,276 580,580 1,161,275 5h2m
0.2 0.009519 0.006152 1.456943 6,673,821 541,141 1,082,180 5h1m
0.3 0.009938 0.006321 1.461223 5,539,212 453,234 892,342 5h2m
0.4 0.010819 0.006541 1.466547 4,520,885 388,853 777,651 5h0m
0.5 0.011563 0.006887 1.664933 3,522,776 328,475 656,892 4h44m
0.6 0.014719 0.006529 2.887796 2,498,264 259,305 518,417 4h16m
0.7 0.036951 0.017453 4.140401 1,728,857 206,635 413,067 4h7m
0.8 0.058049 0.019476 8.208295 982,411 132,591 265,048 3h30m
0.9 1.369602 1.011981 7.940171 108,029 25,801 51,393 1h31m

5.5.3. Canny edge detection distance

Canny edge detection yields the lowest reconstruction errors overall when compared to the
ground truth mesh (see Figure 5.23). Even at a high threshold of 0.8, it still preserves sig-
nificant mesh detail without introducing major artifacts (see Figure 5.26a). The two primary
artifacts observed are mesh-related and texture-related. In Figure 5.26b, the yellow circle
highlights an area where many pixels are retained due to strong edge responses caused
by surface texture, despite the fact that the region is geometrically flat. This illustrates a
common characteristic of Canny edge detection: it can sometimes misclassify textured flat
regions as edge-rich. Secondly, in the red square, the reconstruction is generally accurate,
though the roof appears unnaturally dark. This is not due to geometric error, but rather a
limitation in texture mapping, since that region is poorly visible in the original images, the
mesh must infer appearance. Despite this, the underlying geometry aligns closely with the
ground truth.

(a) Canny edge mesh at threshold 0.8. The red
part shows that

(b) Example image for SAM-based edge distance
with threshold 0.8

Figure 5.26.: Canny edge detection based mesh reconstruction and its artifacts
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Table 5.25.: Mesh quality metrics for edge detection
Threshold Mean Dist. Median Dist. Hausdorff Dist. # Vertices (input) # Vertices # Faces Dense match. (time)

0.0 0.0 0.0 0.0 7,564,981 580,800 1,161,704 5h3m
0.1 0.005878 0.004282 1.324103 7,425,792 556,027 1,112,052 5h5m
0.2 0.006593 0.004874 1.459109 7,248,932 559,047 1,118,061 5h2m
0.3 0.006403 0.004580 1.526472 7,070,308 553,533 1,107,082 5h3m
0.4 0.007237 0.005385 1.641304 6,743,709 532,761 1,065,523 5h3m
0.5 0.007668 0.005020 0.924883 6,306,428 509,423 1,018,794 5h2m
0.6 0.007374 0.005348 0.985115 5,996,500 499,133 998,067 4h55m
0.7 0.010405 0.006573 1.521736 5,041,322 464,917 929,439 4h48m
0.8 0.014257 0.007399 2.056343 4,484,251 446,582 893,005 4h38m
0.9 0.014872 0.007610 2.651838 3,326,978 356,556 712,934 4h25m

5.5.4. Results: memory efficiency and mesh quality trade-offs

This section quantitative and qualitative results of our memory efficiency evaluation using
the three different thresholding methods: SAM kernel entropy, SAM edge distance, and Canny
edge distance.

5.5.5. Memory usage overview

In this analysis, we focus on evaluating memory efficiency based on properties of the output
meshes, specifically the number of vertices and faces, as well as the size of the input dense
point clouds.

5.5.6. Memory reduction

Table 5.26.: Input point count and memory savings across entropy thresholds for all three
methods. Percentage savings are relative to the baseline threshold (0.0).

Threshold SAM Kernel Entropy SAM Edge Distance Entropy Canny Edge Entropy
Points % Savings Points % Savings Points % Savings

0.0 7,564,981 0% 7,564,981 0% 7,564,981 0%
0.1 6,842,222 9.6% 7,339,276 3.0% 7,425,792 1.8%
0.2 6,353,980 16.0% 6,673,821 11.8% 7,248,932 4.2%
0.3 5,663,213 25.1% 5,539,212 26.8% 7,070,308 6.5%
0.4 3,785,706 50.0% 4,520,885 40.2% 6,743,709 10.9%
0.5 2,533,572 66.5% 3,522,776 53.4% 6,306,428 16.6%
0.6 1,157,186 84.7% 2,498,264 66.9% 5,996,500 20.7%
0.7 442,145 94.2% 1,728,857 77.1% 5,041,322 33.4%
0.8 53,149 99.3% 982,411 87.0% 4,484,251 40.7%
0.9 1,404 99.98% 108,029 98.6% 3,326,978 56.0%

We observe clear reductions in point cloud size as threshold values increase. As shown
in Table 5.26, the SAM kernel entropy method achieves the most significant memory sav-
ings, reducing input point cloud size by up to 66.5% at a threshold of 0.5 and over 99% at
threshold 0.9. In contrast, Canny edge detection retains more input data, resulting in only
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a 16.6% reduction at threshold 0.5, and 56.0% at threshold 0.9. SAM edge distance reduces
the input point cloud size with 53.4% at threshold 0.5, and similar to SAM kernel entropy to
98.6% at threshold 0.9. A part of this observation can be attributed to how much pixels are
retained, which obviously the canny edge detection method retains a lot more pixels with
the thresholding, see Figure 5.27.

(a) Example image for SAM-
based kernel entropy with
threshold 0.9

(b) Example image for SAM-based
edge distance with threshold
0.9

(c) Example image for Canny
edge distance with threshold
0.9

Figure 5.27.: Example images at threshold 0.9 for the three different thresholding methods.
The differences in retained pixel regions highlight how aggresively each method filters
image content at high thresholds. Canny edge detection preserves significanlty more
structure, which helps explian its more stable reconstruction quality at high thresholds.

5.5.7. Quality-to-size tradeoff

In Figure 5.28a, we see that, as previously discussed, Canny edge distance achieves the
lowest reconstruction errors on average. However, as shown in Figures 5.28b and 5.28c, it
also produces the largest input point cloud and output mesh sizes compared to the two
SAM-based methods.

To better assess memory efficiency, we compute the ratio of reconstruction error to both
input and output size, shown in Figure 5.29. This normalization allows for a more mean-
ingful comparison across methods, accounting for both accuracy and data size. We observe
that Canny edge detection consistently has the lowest quality-to-size ratio across nearly all
thresholds, indicating the most efficient trade-off between geometric accuracy and memory
usage. It performs similarly to the SAM kernel entropy method at low thresholds (0.1–0.2),
but clearly outperforms both SAM-based methods beyond that point.

Between the two SAM-based approaches, the kernel entropy method shows better perfor-
mance than the edge distance method up to a threshold of 0.5, after which it is slightly
surpassed. However, since mesh quality degrades significantly beyond 0.5, the comparison
is more relevant at lower thresholds, where the kernel entropy method performs best.

66



5.5. Mesh quality evaluation

(a) Median reconstruction error. (b) Input point cloud size.

(c) Output mesh complexity.

Figure 5.28.: Reconstruction metrics across threshold levels for all three entropy-based
threshold methods. (a) Median distance to the ground truth mesh shows how geomet-
ric accuracy degrades with increasing threshold. (b) Input point cloud size illustrates how
thresholding reduces fused point cloud size, particularly for SAM-based methods. (c) Fi-
nal mesh complexity, shown by vertex and face counts, correlates with both input sparsity
and filtering strategy.
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(a) Median Distance / Input Points (b) Median Distance / Output Vertices

(c) Median Distance / Output Faces

Figure 5.29.: Normalized mesh quality (median distance) per memory-related factor. Lower
is better.
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5.5.8. Visual comparison

To better understand how thresholding reduces mesh and file size, we include a visual
inspection of the meshes behind the numbers in Figure 5.30. This comparison shows the
difference between the ground truth mesh and the mesh reconstructed using thresholded
images at 0.5 from the SAM-edge distance method.

Even at the overview level, Figures 5.30c and 5.30d clearly show that the face and vertex
density in the mesh corresponds to the input image coverage in Figures 5.30a and 5.30b.
Areas with fewer input pixels result in visibly lower mesh density. This becomes even more
apparent when zooming into a planar roof section (Figures 5.30e and 5.30f): edge detail is
largely preserved, while flat regions are simplified significantly.

5.6. Results: runtime efficiency

This section shows the runtime efficiency results through the proposed methods. We com-
pare the dense matching runtimes of reconstructions using thresholded images against a
baseline that performs dense matching on the full image set.

The dense matching runtime results in Table 5.27 and Figure 5.31 show that performance
improvements are minimal for thresholds below 0.5. Only the SAM Kernel Entropy method
yields a modest 2.3% gain at threshold 0.1, with negligible benefits from the other methods.
At threshold 0.5, SAM Edge Distance begins to show moderate improvement (6.3%), but it
is not until threshold 0.6 and above that substantial runtime reductions emerge, reaching
24.8% for SAM Kernel Entropy and 18.5% for SAM Edge Distance at threshold 0.7. These
improvements closely follow the reduction in the number of registered images during the
SfM stage, which directly influences dense matching load.

The Canny edge detection method demonstrates slower runtime improvements, achieving
gains of up to 12.5%, likely due to its more conservative thresholding behavior. However,
it maintains superior mesh quality at higher thresholds (see Figure 5.31a), underscoring a
trade-off between runtime efficiency and geometric fidelity. To more objectively evaluate this
trade-off, we compute a quality-to-runtime ratio across thresholds in the following section,
as was done for the memory efficiency results.

5.6.1. Quality-to-runtime ratio analysis

In this section, we normalize mesh quality by runtime to compute a quality-to-runtime
ratio, enabling comparison across methods and threshold levels. The results are shown in
Figure 5.32.

These results reflect trends similar to those observed in the memory efficiency analysis. Both
Canny Edge Entropy and SAM Kernel Entropy achieve the lowest quality-to-runtime ratios,
indicating more efficient reconstructions in terms of quality per unit time, up to a threshold
of 0.5. Beyond this point, the performance of SAM Kernel Entropy deteriorates rapidly,
while Canny exhibits a more gradual decline. In contrast, SAM Edge Distance consistently
yields higher (i.e., less favorable) ratios across thresholds, only converging with SAM Kernel
Entropy after threshold 0.6, where both methods experience significant drops in efficiency.
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(a) Example input without thresholding (used for
ground truth mesh). 580,801 vertices, 1,161,704
faces

(b) Example image threshold 0.5 SAM-edge dis-
tance. 328,475 vertices, 656,892 faces.

(c) Ground truth mesh (d) Mesh SAM-edge distance threshold 0.5

(e) Zoomed in part (red) on ground truth mesh (f) Zoomed in part (red) on mesh threshold 0.5

Figure 5.30.: Visual comparison of reconstruction quality using SAM edge distance thresh-
olding at 0.5.
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Table 5.27.: Dense matching runtime and relative savings across entropy thresholds for all
three methods. Percentage savings are relative to the baseline threshold (0.0).

Threshold SAM Kernel Entropy SAM Edge Distance Entropy Canny Edge Entropy
Time (min) % Savings Time (min) % Savings Time (min) % Savings

0.0 303 0% 303 0% 303 0%
0.1 296 2.3% 302 0.3% 303 0.0%
0.2 296 2.3% 301 0.7% 302 0.3%
0.3 297 2.0% 302 0.3% 303 0.0%
0.4 299 1.3% 300 1.0% 303 0.0%
0.5 300 1.0% 284 6.3% 302 0.3%
0.6 264 12.9% 256 15.5% 295 2.6%
0.7 228 24.8% 247 18.5% 288 5.0%
0.8 130 57.1% 210 30.7% 270 10.9%
0.9 4 98.7% 91 70.0% 265 12.5%

(a) Median reconstruction error
across thresholds.

(b) Dense matching runtime
across thresholds.

(c) Number of registered images
across thresholds

Figure 5.31.: Runtime and accuracy metrics for all three entropy-based filtering methods
across threshold levels. (a) Median error provides insight into reconstructed mesh quality.
(b) Runtime trends indicate performance improvements with increasing thresholds. (c)
The number of registered images reflects how many images were used in the reconstruc-
tion during the SfM stage.
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Figure 5.32.: Normalized reconstruction error relative to dense matching time. Lower values
indicate more efficient reconstructions in terms of quality per unit time.

5.6.2. Low vs. high density points mesh quality

We split mesh points into top and bottom 50% based on local reconstruction density. Fig-
ure 3.10 shows representative examples. We then evaluated how well each entropy strategy
performs in sparse vs. dense regions.

According to our hypothesis that importance-based thresholding preserves geometrically
informative regions, we expect lower reconstruction error in the top 50% vertex density
regions compared to the bottom 50%. Figure 5.33 shows this exactly: across all entropy
strategies and thresholds, the median distance to the ground truth is consistently lower for
high-density (top 50%) mesh regions. on the other hand, the bottom 50% regions, which
correspond to the areas discarded by the thresholding, exhibit higher error, although within
acceptable range.

(a) SAM Kernel Entropy (b) SAM Edge Entropy (c) Canny Edge Detection

Figure 5.33.: Median distance comparison for top and bottom 50% mesh density across dif-
ferent entropy strategies.

Finally, if we compare the bottom 50% subsets across all entropy measures (Figure 5.34),
we observe that both the SAM kernel and Canny edge methods achieve the lowest recon-
struction errors up to a threshold of 0.5. This suggests that these two methods are more
effective at discarding low-importance regions without significantly degrading mesh quality
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in sparse areas. Beyond this point, however, the error for the SAM kernel increases sharply,
indicating that too much useful detail may be discarded at higher thresholds. In contrast, the
Canny-based approach maintains a more stable performance, suggesting greater robustness
to aggressive thresholding. What is more interesting is that when we normalize this with
the input point cloud size in Figure 5.35a, this is the first metric in the whole research where
the Canny edge distance is clearly outperformed by the two SAM based methods, especially
on lower thresholds.

Figure 5.34.: Median distance in bottom 50% density regions across all entropy measures.
Canny and SAM kernel perform best up to a threshold of 0.5, with Canny showing more
robustness at higher thresholds.

Table 5.28.: Distance metrics for SAM mask kernel entropy
Threshold Mean Mean Bottom Mean Top Median Median Bottom Median Top Hausdorff Hausdorff Bottom Hausdorff Top

0.1 0.0054 0.0064 0.0029 0.0044 0.0058 0.0028 1.0654 1.3544 0.0768
0.2 0.0068 0.0094 0.0040 0.0045 0.0057 0.0039 1.7797 1.5351 0.0190
0.3 0.0080 0.0116 0.0047 0.0048 0.0063 0.0042 1.4556 1.6546 0.0447
0.4 0.0152 0.0198 0.0048 0.0049 0.0069 0.0043 2.1254 2.2613 0.0523
0.5 0.0118 0.0187 0.0049 0.0052 0.0074 0.0043 1.8594 1.9021 0.0539
0.6 0.0235 0.0431 0.0059 0.0067 0.0105 0.0048 2.8150 3.0046 0.0560
0.7 0.0649 0.1277 0.0116 0.0144 0.0236 0.0104 3.9351 4.1836 0.0631
0.8 0.8043 0.9620 0.6515 0.6826 0.7341 0.6731 4.4619 4.1379 1.4781
0.9 2.0791 2.7417 1.9587 1.7030 2.1459 1.8859 6.7600 6.8468 4.5773

Table 5.29.: Distance metrics for SAM edge distance entropy
Threshold Mean Mean Bottom Mean Top Median Median Bottom Median Top Hausdorff Hausdorff Bottom Hausdorff Top

0.1 0.0078 0.0099 0.0058 0.0059 0.0071 0.0052 1.2255 1.4129 0.0276
0.2 0.0095 0.0121 0.0068 0.0062 0.0076 0.0052 1.4569 1.4569 0.0707
0.4 0.0108 0.0145 0.0075 0.0080 0.0094 0.0070 1.4665 1.9761 0.0253
0.5 0.0116 0.0172 0.0062 0.0069 0.0088 0.0059 1.6649 1.8767 0.0324
0.6 0.0147 0.0236 0.0058 0.0065 0.0090 0.0052 2.8878 2.5247 0.0374
0.7 0.0370 0.0561 0.0180 0.0175 0.0237 0.0133 4.1404 4.0636 0.1184
0.8 0.0580 0.1023 0.0147 0.0155 0.0257 0.0114 8.2083 7.5961 0.1078
0.9 1.3696 1.8178 0.8940 1.0120 1.5476 0.6445 7.9402 7.9402 3.5129
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(a) Median distance divided by input point cloud
size for the bottom 50% of mesh vertices.

(b) Median distance divided by dense matching
runtime for the bottom 50% of mesh vertices.

Figure 5.35.: Efficiency analysis of mesh quality: normalizing the median distance error by
(a) input point cloud size and (b) runtime, across entropy-based and edge-based thresh-
olding methods.

Table 5.30.: Distance metrics for image-based canny edge detection
Threshold Mean Mean Bottom Mean Top Median Median Bottom Median Top Hausdorff Hausdorff Bottom Hausdorff Top

0.1 0.0059 0.0079 0.0038 0.0043 0.0052 0.0037 1.3241 1.2759 0.0159
0.2 0.0066 0.0090 0.0044 0.0049 0.0059 0.0043 1.4591 1.5225 0.0224
0.3 0.0064 0.0087 0.0041 0.0046 0.0056 0.0040 1.5265 1.4516 0.0183
0.4 0.0064 0.0087 0.0041 0.0046 0.0057 0.0040 1.6671 1.4229 0.0336
0.5 0.0077 0.0100 0.0054 0.0060 0.0075 0.0053 0.9249 1.3412 0.0403
0.6 0.0074 0.0097 0.0050 0.0053 0.0070 0.0046 0.9851 0.6777 0.0561
0.7 0.0104 0.0137 0.0069 0.0066 0.0085 0.0055 1.5217 1.7268 0.0631
0.8 0.0143 0.0208 0.0080 0.0074 0.0101 0.0057 2.0563 2.5397 0.0495
0.9 0.0149 0.0221 0.0075 0.0076 0.0105 0.0057 2.6518 2.5519 0.0473
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6.1. Segmentation using SAM in oblique aerial imagery

This section evaluates the effectiveness and limitations of applying SAM for segmenting
buildings in oblique aerial imager, addressing the subquestion ”How can SAM be applied to
accurately and efficiently segment individual buildings in oblique aerial imagery?”

We constructed a pipeline that used the orientation data from the oblique images in com-
bination with BAG objects to segment buildings with SAM. The results showed that it was
possible to segment buildings within an image, generating datasets with building masks
linked to specific BAG objects. The box prompt mode of SAM proved effective in many cases.
However, we observed that the SAM confidence score could be overly optimistic, sometimes
assigning high confidence to objects not part of the building.

The goal of this stage was to support the rest of our research by generating building masks
from oblique aerial images, and using those for 3D reconstruction. We applied our ap-
proach to several buildings and attempted reconstruction by generating sparse point clouds.
However, as shown in Section 5.3, none of the aerial oblique datasets produced usable re-
constructions.

There are possible improvements to this pipeline. We experimented with prompting using
foreground and background points around the building (see Figure 3.4c). To automate this,
the building footprint needs to be reprojected into the oblique image spaces, and it has to
align very precisely. If it doesn’t, background points can distort the segmentation. Because
of this, automation wasn’t an option for now, and we only tested it manually. But when we
did, it gave very good results.

However, even when we manually segmented two buildings, resulting in near-perfect masks,
reconstruction still failed. This suggests that the issue lies in the information loss from
using segmented masks instead of full images. If we want to extract buildings from oblique
imagery, we may need to first reconstruct from the full image set, and only then perform
segmentation on the resulting 3D point cloud, using real-world coordinates. Figure 6.1a
shows the dense point cloud generated from all full oblique images containing BAG object
0344100000157740. As shown in Figure 6.8b, this results in a much more complete point
cloud at the building level. However, this approach diverges from the original research goal
of reconstructing buildings using only the most relevant input data, as it involves using full
images.

This leads into the question of scalability. Will this approach also work for other datasets,
and is it adaptable to different scenarios? In principle, any oblique image can be segmented
with SAM if one provides the appropriate prompt coordinates. However, to automate seg-
mentation at scale across hundreds of images, we need metadata similar to the BAG: world
coordinates of the target objects and image orientation data for reprojection. If those are
available, the pipeline is scalable.
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(a) Dense matched point cloud for all images
containing BAG object 0344100000157740. The
building position is shown in red.

(b) Extracted points for BAG object
0344100000157740.

Figure 6.1.: Performing dense reconstruction on the full oblique images and then extracting
the target building results in a more complete point cloud than reconstructing directly
from segmented masks.

That said, there are challenges depending on the dataset. We tested on the city of Utrecht,
where the dataset contains mostly low-rise buildings, and only one remotely tall building
(see Figure 3.5a). In a city like Manhattan, reprojection of building footprints would be far
less reliable. Occlusion by other buildings is a major issue, and a reprojected footprint could
easily end up on the side of an entirely different structure.

Although there is room to improve the prompting strategy, for this dataset it wouldn’t make
a major difference, since even perfect masks didn’t lead to usable reconstructions. Instead,
future work could explore reconstructing from full oblique images first, and only segmenting
buildings afterward in 3D space. In this case, SAM wouldn’t be involved anymore. Another
possible direction is research into occlusion detection, particularly to ensure that the building
being prompted is not partially or fully occluded by high-rise structures. This could support
more accurate projection in dense urban areas.

In summary, while SAM can segment buildings from oblique images with reasonable ac-
curacy using box prompts, the lack of reliable reconstruction from these masks highlights
limitations in using segmented oblique imagery directly for 3D modeling.

6.2. Using SAM to identify geometrically important image
regions

We also explored whether SAM could assist in identifying the image regions that matter
most for producing high-quality 3D meshes, addressing the question: ”How can SAM be used
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to identify image regions that are most important for achieving high-quality 3D mesh reconstruc-
tion?” The zero-shot segmentation mode from SAM sparked our interest to see if its mask
predictions could highlight areas of geometric importance. Our assumption was that regions
with many segments likely correspond to parts of the image with more geometric detail of
the building. We tried to capture this by applying a kernel in a convolution over the seg-
mented image. We also assumed that if SAM would segment objects of the building, such as
windows, doors, or parts of the roof, areas near the edges of those masks would represent
important features for the geometric construction of the mesh.

Our translation from those assumptions to a way to pick those elements took place by mak-
ing the sliding kernel approach using the entropy formula on the segmented masks, and a
decaying edge distance function from the mask edges (see Section 3.6). We saw that they
were able to generate qualitatively good meshes at low thresholds of those importance maps,
and thereby reduce memory usage. While this was promising, it was outperformed by the
image-based Canny edge detection method on nearly all memory efficiency metrics. Even
after accounting for the fact that the Canny-based edge distance retained more of its pix-
els, the kernel approach only matched its performance at a few threshold values. Still, at
some low thresholds, especially in the kernel-based method using SAM, it performed about
as efficiently as the Canny edge distance method. This suggests that SAM does hold some
potential for identifying image regions that are most important for achieving mesh quality
in reconstruction.

The main reason for this difference is that SAM is less consistent and less evenly distributed
over the image compared to the Canny edge distance method. If we take a look at Figure 6.2,
we can see that in Figure 6.2a it captures quite a lot of detail. However, in the red circles in
Figure 6.2b, there are around 10 sunscreens, of which only two are segmented. Additionally,
it segments the area in the yellow circle as a whole, while it clearly features some impor-
tant edges for meshes. Thus, although it is quite good in segmenting parts of the image,
overall mesh quality, as we show in the results, suffers from the missing parts. We can see
the difference in importance maps for SAM kernel entropy in Figure 6.2c and Canny edge
distance in Figure 6.2d. The Canny edge distance importance map shows a much denser
detection of important areas, whereas the SAM-based map is more sparse. This behaviour is
visible throughout the datasets. Even after tuning SAM’s parameters to improve segmenta-
tion quality and mask coverage, this uneven and sometimes sparse segmentation remained
a limiting factor. We explored several configurations of the SamAutomaticMaskGenerator to
strike a balance between segmentation detail, runtime, and the number of generated masks
(see Section 5.2).

In the end, we only tested these two SAM-based methods and the Canny edge detection
method as an alternative for comparison. Of course, these two methods may be either
suboptimal or actually quite effective, more variants should be explored. This could also
mean exploring different ways to incorporate SAM, or maybe combining the options we
presented using weighted averages for the importance maps.

The main limitation here is: before we know how well an importance map operates, we have
to do the dense matching and mesh reconstruction, which can take a lot of time. Then we
need to do that for all kinds of different methods and threshold values. This bottleneck in
the pipeline limits the swift exploration of new methods, or for example, training a neural
network. But this is exactly where future work can build: this project lays the foundation
for a workflow that connects mesh quality to regions in the images. It must now be worked
on further by optimizing the framework for easier and quicker testing, so that you can
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(a) SAM-based segmentation output used to
guide entropy filtering.

(b) Corresponding mesh reconstruction high-
lighting filtered high-entropy regions.

(c) Importance map derived from SAM mask
contours and edge distance.

(d) Importance map based on Canny edge detec-
tion and distance transform.

Figure 6.2.: Comparison of segmentation-driven and edge-driven entropy estimation meth-
ods. Top row: SAM-generated segmentation and its influence on mesh detail. Bottom
row: Image-space entropy maps used to guide selective reconstruction, based on edge
and segmentation mask distance metrics.
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analyze those results and see a direction to go in, or perform a lot more tests with different
variants.

Another limitation of our results we should discuss is that these are results for only this
building and image dataset. We can conclude that, for example, the SAM kernel entropy-
based approach with threshold 0.3 works very well here, and that we save up to 2.0% in
time and up to 25.1% in memory, while still maintaining good mesh quality. However, it is
hard to extrapolate that to other datasets because it is so specific to this building and the
way the images are shot. If we perform this on another building, as we saw with a lot of
the aerial imagery in Section 5.3, this might not even make a good sparse reconstruction. Or
for another dataset, we might employ threshold 0.5 or 0.6 and have the same mesh quality
while achieving much higher savings. It remains dataset-specific.

6.3. Assessing mesh quality of selected image regions

To address the question, “How can the effectiveness of image region importance-driven resource
allocation be evaluated in terms of mesh quality and computational efficiency?” we linked the se-
lected image regions directly to the resulting mesh. Specifically, we generated meshes from
the selected image areas and compared them to the ground truth using distance metrics. By
applying different threshold levels, we obtained datasets with varying sizes of pixel regions,
where higher thresholds corresponded to fewer but more important pixels according to the
entropy method. Since the ground truth mesh represents the target quality, it served as a
natural reference for assessing our improvements.

We explored Poisson surface reconstruction to create a visually detailed mesh that didn’t
take too much runtime while remaining smooth and not overfitting to the points. This gave
us a good ground truth to compare other meshes to.

We then used the mean, median, and Hausdorff distances to capture the distances between
the points of the evaluated mesh and the nearest face of the ground truth. In the end, we
discussed most of our results in the results section based on the median distance. Because
the Poisson surface reconstruction tries to create a watertight mesh around the points, it
almost always produced a kind of rounded finish at the bottom of the mesh, as shown
in Figure 6.3. This influences the mean and Hausdorff distance the most. For the mean,
it introduces outliers because points on that part of the mesh that are evaluated against
the closest face of the ground truth will inevitably show greater distances, thus skewing
the mean. For the Hausdorff distance, it is even worse: since it finds the maximum of all
minimum distances, this value will almost always lie in the part of the mesh that contains
the bottom artifact.

This part of the pipeline currently relies only on median distances, which could be improved
in the future. For example, instead of computing distances globally, one could introduce
region masks that exclude known artifacts, such as the underside of the mesh. Another
option would be to compute an importance value for the points being evaluated and then
restrict the evaluation to the top 75%, for instance. This would allow the evaluation to focus
only on meaningful geometry and reduce the influence of non-informative regions.

In this light we also explored the low vs high density points, with the hypothesis that high
density points belonged to the parts that are retained in the images, and the low density
points the parts that are removed by thresholding. These results give a more detailed view
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Figure 6.3.: Mesh from the SAM kernel entropy method with threshold 0.3, showing the
underside of the mesh clearly as an artifact

of how thresholding affects different parts of the mesh. The breakdown into high and low
density regions helps to isolate where the reconstruction actually degrades and whether that
matters. The fact that the bottom 50 percent of points, from sparser and less informative ar-
eas, still show good accuracy up to a certain threshold suggests that the method works as
intended. It filters out mostly redundant regions without harming quality too much. Espe-
cially when normalized for point cloud size, the SAM-based methods show real potential
and even outperform the Canny edge method at lower thresholds.

This normalization is necessary because, in our pipeline, the three methods are thresholded
over a range from 0.1 to 0.9. However, effectiveness cannot be judged solely by distances to
the ground truth. This is due to the different nature of the importance maps, where each
method thresholds pixels more or less aggressively. For example, Canny edge detection
retains more pixel data, which explains its higher stability at higher thresholds. To account
for this, we post-processed and normalized results by dividing by input/output point cloud
mesh size or runtime.

To make comparisons more balanced, future work could improve this by equalizing the
importance maps during thresholding. Instead of applying fixed value thresholds, a fixed
percentage of the normalized entropy map could be retained, such as selecting pixels within
a range from 10 to 90 percent. This approach would ensure each threshold level corresponds
to a consistent portion of selected pixels across methods, making comparisons fairer and
easier to interpret.

6.4. Impact of selective image masking on 3D mesh
reconstruction quality and computational efficiency

In this section, we look at the question: ”How does selective masking of images based on impor-
tance threshold affect the quality and efficiency of 3D mesh reconstruction across different building
dataset?” The goal was to explore whether focusing only on the most relevant image regions
could reduce the computational cost of reconstruction, without compromising the quality of
the resulting meshes. While the initial plan was to evaluate this across multiple datasets, in
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6.4. Impact of selective image masking on 3D mesh reconstruction quality and computational efficiency

the end we focused on the Geodelta drone dataset, since it was (next to the bouwpub dataset)
the only one where the results were consistent enough to draw meaningful conclusions.

As discussed earlier, particularly at lower thresholds, good quality meshes can still be ob-
tained despite removing less important image regions through thresholding. Although we
initially expected SAM to perform very well in predicting regions important for mesh recon-
struction, it was outscored on many metrics by the simpler Canny edge detection distance
strategy. Mesh quality remained generally stable up to a threshold of 0.4 for both SAM-based
methods, but it dropped off more sharply for these methods compared to the Canny edge
distance method. These results were influenced by the number of retained pixels in the in-
put images, which was higher for the Canny edge method. Even after normalizing for input
point cloud size and runtime, Canny edge had more efficient ratios except at thresholds
below 0.2. The SAM methods only showed higher quality when focusing on the sparse parts
of the mesh relative to the input point cloud size.

For the efficiency evaluation part, we look into file size reduction and runtime reduction. In
the results, we see that we can achieve decent reductions in file size and slight reductions
in runtime. Even when looking at the low-thresholded images in the 0.1 to 0.2 range, we
observe significant size reductions—up to 16.0% with the SAM kernel entropy method, and
11.8% for the SAM edge distance method. For dense matching, we see runtime reductions of
up to 2.3% at the 0.2 thresholds across all methods. Even these small reductions, when ap-
plied to good mesh results, can lead to considerable savings if extrapolated to neighborhood
or city-scale datasets.

However, it is important to note that the full processing pipeline generates additional inter-
mediate data, such as segmentation masks, entropy maps, and thresholded image subsets
for the entire dataset. An example of this data flow (for threshold = 0.4) is shown in Fig-
ure 6.4. While this intermediate data can be safely discarded, either before mesh generation
(such as SAM-based building segmentation and entropy maps) or immediately after (such as
the thresholded image dataset), it is still something to consider when evaluating the overall
efficiency of the pipeline.
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6. Discussion

Figure 6.4.: Overview of the memory usage pipeline during mesh reconstruction. While
the full pipeline consumes more memory than dense reconstruction alone (682 MB), SAM
Kernel Entropy uses 997 MB, SAM Edge Distance 1135 MB, and Canny Edge Detection
1234 MB. However, all intermediate data can be discarded directly after use. Therefore,
our analysis focuses only on the datasets highlighted in yellow.

For the runtime efficiency part, we compared the dense matching time of our thresholded
image datasets across all three methods against the original dense matching time.

We expected to see more runtime improvements by removing parts of the images. However,
the dense matching time remained roughly the same, around five hours, compared to the
ground truth dense matching time for all three methods. Only when the threshold reached
levels that no longer produced quality meshes (0.6 for SAM kernel entropy, 0.5 for SAM edge
distance, and 0.7 for Canny edge distance) did the runtime start to decrease noticeably.

As with the memory efficiency results, we focused in the results section only on this isolated
dense matching step. Looking at the complete runtime, shown in Figure 6.5 for an example
with threshold 0.4, we see that to fully understand the efficiency gains, the full context must
be considered. While dense matching is a major component, additional overhead comes
from upstream processes like SAM-based segmentation, importance map generation, and
image thresholding. Unlike the full memory pipeline, these steps cannot be discarded and
are required before dense matching. Therefore, overall processing time might not actually
improve despite some runtime savings during dense matching itself.
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6.5. Scalability to full nadir and oblique datasets

Figure 6.5.: Overview of the runtime pipeline during mesh reconstruction, illustrated for
threshold 0.4.

For efficiency, we should therefore look into methods that can not only produce accurate
importance maps, but also do so quickly. SAM clearly takes a significant amount of time in
the full processing pipeline, while we see that Canny edge detection requires only a fraction
of that time and still produces good results.

We can conclude that, in terms of memory efficiency, excluding the intermediate data gen-
erated during processing allows for noticeable savings when using the SAM importance
maps. However, regarding runtime efficiency, this selective masking approach does not
provide improvements; in fact, it tends to increase overall processing time due to the over-
head from upstream steps like segmentation and importance map generation. Therefore,
while SAM-based methods show promise for reducing memory usage, optimizing runtime
remains a challenge and may benefit from faster or more lightweight importance estimation
techniques.

6.5. Scalability to full nadir and oblique datasets

To test whether our importance region-based thresholding approach could be applied di-
rectly to full oblique and nadir datasets, we moved beyond the controlled setting of the
drone images over the Geodelta office. Figure 6.6 shows that, for building datasets, apply-
ing a Canny edge distance threshold of 0.7 still results in a reasonable mesh. The structure
is preserverd, and only some texture detail is lost in areas where the pixels are discarded.

Figures 6.7 and 6.8 show that applying the same approach to a full oblique or nadir dataset
does not produce the desired results. This is mainly because of how the important parts
in the image are determined. On the building-level scale, it is much easier to distinguish
parts that are geometrically important than at the city-level scale, where the distinction of
important parts plays out on a much smaller scale in the image. With the current approach,
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6. Discussion

Figure 6.6.: Example of the Geodelta office mesh with Canny edge distance threshold of 0.7,
still exhibiting a good mesh. Only the texture is affected in regions where the pixels are
discarded.

we often lose entire sections of roofs or even full buildings. Our importance region detection
is simply not fine-grained enough to handle full-scene inputs, especially not at this high of
a threshold. The idea of removing unimportant parts of the image for reconstruction still
holds, but the way of steering the importance base maps for full-scene views is something
that should be researched further.

(a) Mesh from oblique dataset with 0.7 threshold-
ing

(b) Mesh from oblique dataset without thresh-
olding

Figure 6.7.: Exaple of our approach on oblique dataset.
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6.5. Scalability to full nadir and oblique datasets

(a) Example thresholded nadir input image. (b) Mesh from nadir dataset with Canny edge dis-
tance threshold 0.7

Figure 6.8.: Example of our approach on nadir dataset.

85



6. Discussion

6.6. Conclusion

This section will conclude our research and answer our main research question:

How can SAM-based building segmentation and importance estimation in oblique
aerial imagery be used to improve the efficiency of 3D mesh reconstruction by
selectively focusing on important image regions for reconstruction quality?

At the start of this research, we planned to enhance sparse reconstruction by adding geomet-
rically important points derived from point cloud analysis. However, practical challenges,
such as requiring a dense point cloud beforehand and the risk of reinforcing errors, led us to
shift the methodology toward an image-based approach. This new strategy leverages SAM
and other importance estimation methods to selectively mask image regions, streamlining
dense reconstruction without relying on sparse point cloud augmentation.

SAM shows potential in identifying important image regions for mesh reconstruction and
segmenting buildings from oblique aerial imagery. Our results indicate that it can reduce
output size while maintaining mesh quality, particularly in terms of the ratio of sparse points
to input size, where it outperformed the Canny edge-based method.

However, SAM-based approaches fall short in optimizing the full runtime pipeline. Runtime
improvements were minimal, especially once the additional segmentation time was consid-
ered. Gains in dense matching speed were only noticeable when images were aggressively
thresholded, at the cost of reconstruction quality. As a preprocessing step for building-level
reconstruction, the method also failed to preserve sufficient image context for successful SfM
matching, highlighting the importance of full-scene information in oblique imagery.

This research contributes a pipeline that integrates BAG data, oblique image orientation, and
SAM to generate building masks across an entire AOI. It also introduces a method to evaluate
image region importance by comparing resulting meshes to ground truth.

Nonetheless, several limitations remain. The approach struggles in scenes with heavy occlu-
sion, such as dense urban areas. Importance estimation methods like SAM are also relatively
slow, and faster alternatives (e.g., Canny edge detection) may offer more practical trade-offs.
Additionally, our evaluation was based on a single dataset (Geodelta drone office), limiting
the generalizability of the configurations (importance-based methods, thresholds).

Future work should focus on:

• Improve importance estimation techniques to enhance mesh quality while keeping the
process fast (unlike SAM, which can take up to 6 hours).

• Enhancing evaluation metrics to focus only on relevant reconstruction regions.

• Adapting the pipeline for more complex or large-scale datasets, including nadir and
full oblique scenes.

• Try performing sparse reconstruction on the full images, followed by dense reconstruc-
tion using the selectively masked image regions.
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A. SamAutomaticMaskGenerator
parameters

Parameter Description
model The SAM model instance used for mask generation. Re-

quired.
points per side Number of sampling points per image side. Total = N2. If

None, point grids must be provided. Default: 32.
points per batch Number of point prompts evaluated in parallel. Affects

speed and memory. Default: 64.
pred iou thresh Filters masks with low predicted IoU scores (quality

threshold). Range: [0,1]. Default: 0.88.
stability score thresh Filters unstable masks (those sensitive to binarization).

Range: [0,1]. Default: 0.95.
stability score offset Offset used when computing the stability score. Default:

1.0.
box nms thresh IoU threshold for suppressing duplicate masks (Non-Max

Suppression). Default: 0.7.
crop n layers Enables recursive cropping. Sets number of refinement

layers. Default: 0 (no cropping).
crop nms thresh NMS threshold for duplicate filtering across crops. De-

fault: 0.7.
crop overlap ratio Amount of overlap between crop regions. Default:

512/1500 ≈ 0.341.
crop n points downscale factorReduces point density in each crop layer: Ni = N/factori.

Default: 1.
point grids Optional list of custom point grids (normalized [0,1]). Ex-

clusive with points per side. Default: None.
min mask region area Filters small or disconnected mask regions. Requires

OpenCV. Default: 0 (no filtering).
output mode Format of returned masks: "binary mask",

"uncompressed rle", or "coco rle". Default:
"binary mask".
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B. Point cloud indices computation

We briefly describe these features here, following the methodology of Shi et al. [2022].

B.1. Curvature Entropy Feature

Curvature alone does not always reflect the geometric importance of a region. To improve
upon this, we followed the entropy-based curvature metric proposed in Xing and Hui [2013],
building on the PCA-based curvature estimation from [Hoppe et al., 1992].

A local covariance matrix is constructed for a point’s neighborhood:

Q =
1
m


P1

j − Oj
...

Pm
j − Oj




P1
j − Oj

...
Pm

j − Oj


T

(B.1)

The computed curvature values for the neighborhood K = {Ki0 , Ki1 , . . . , Kin} are then used
to calculate entropy:

Hi = −
n

∑
j=0

pj log pj, where pj =
Kj

∑n
i=0 Ki

(B.2)

This value is then normalized as:

Ci =
Hi

Hi,max
(B.3)

B.2. Edge Feature

The edge index quantifies how much a point deviates from the centroid of its local neigh-
borhood:

Edgej =

∣∣∣∣∣Rj −
1
m

m

∑
i=1

Ri

∣∣∣∣∣ (B.4)
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B. Point cloud indices computation

This identifies points located near edges or acting as outliers in the point cloud distribu-
tion.

B.3. Density Feature

The density index measures the average distance from a point to its neighboring points:

Densityj =
1
m

m

∑
i=1

∣∣Rj − Ri
∣∣ (B.5)

A kd-tree is used to efficiently find neighboring points, as detailed in Section ??.
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C. Structure from motion results

C.1. 1 detached house (SAM) - 28 input images

Table C.1.: SfM results for 1 detached house with SAM kernel entropy
Threshold Extr. Time Match. Time Reconstr. Time # Images Mean observations/image # Points Mean track length Mean reproj. error

0.0 0.088 0.006 0.311 17 490.123 1,359 4.71421 0.653123
0.1 0.086 0.005 0.287 12 418.333 1,193 4.20788 0.656676
0.2 0.088 0.004 0.113 7 187.143 384 3.41146 0.536607
0.3 0.089 0.005 0.265 6 179.833 340 3.17353 0.531796
0.4 0.084 0.004 0.030 4 122.25 194 2.52062 0.491187
0.5 0.086 0.003 0.003 2 60 60 2.0000 0.279012
0.6 0.080 0.002 0.009 4 112.5 168 2.67857 0.4359
0.7 0.084 0.001 0.004 2 29 29 2.0000 1.11085
0.8 0.082 0.002 0.000 0 0 0 0 0
0.9 0.081 0.001 0.000 0 0 0 0 0

Table C.2.: SfM results for 1 detached house with SAM edge-detection
Threshold Extr. Time Match. Time Reconstr. Time # Images Mean observations/image # Points Mean track length Mean reproj. error

0.0 0.088 0.006 0.311 17 490.123 1,359 4.71421 0.653123
0.1 0.096 0.005 0.525 14 470.357 1,401 4.70021 0.679753
0.2 0.088 0.006 0.361 4 448.75 670 2.6791 0.473758
0.3 0.086 0.006 0.511 11 164.818 332 5.46084 0.71258
0.4 0.088 0.005 0.157 7 1.14286 4 2.0000 0.000017
0.5 0.085 0.005 0.202 9 365.444 965 3.40829 0.664438
0.6 0.085 0.005 0.030 4 67.75 99 2.73737 0.548408
0.7 0.088 0.005 0.024 4 120 123 2.93848 0.738290
0.8 0.093 0.006 0.025 4 170 222 3.06306 0.802794
0.9 0.083 0.004 0.008 4 140.5 205 2.74146 0.839855

Table C.3.: SfM results for 1 detached house with edge-detection
Threshold Extr. Time Match. Time Reconstr. Time # Images Mean observations/image # Points Mean track length Mean reproj. error

0.0 0.088 0.006 0.311 17 490.123 1,359 4.71421 0.653123
0.1 0.087 0.005 0.486 11 331.545 694 5.25504 0.674564
0.2 0.099 0.006 0.717 12 549 1,487 4.4304 0.792753
0.3 0.092 0.005 0.351 5 368 626 2.9393 0.468019
0.4 0.086 0.006 0.470 17 468.412 1,895 4.20211 0.705464
0.5 0.090 0.006 0.518 11 322.273 697 5.08608 0.693039
0.6 0.089 0.006 0.505 4 389.25 576 2.70313 0.481089
0.7 0.086 0.007 0.375 12 253.083 818 3.71271 0.564703
0.8 0.089 0.008 0.084 5 316.4 440 3.59545 0.617071
0.9 0.086 0.006 0.019 3 292.667 386 2.27461 0.501573
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C. Structure from motion results

C.2. 1 detached house (manual segmentation) - 45 input
images

Table C.4.: SfM results for 1 detached house (manual) with SAM kernel entropy
Threshold Extr. Time Match. Time Reconstr. Time # Images Mean observations/image # Points Mean track length Mean reproj. error

0.0 0.110 0.037 3.673 35 1576.06 7,253 7.6054 0.911192
0.1 0.055 0.012 1.801 22 681.682 2,837 5.28622 1.02639
0.2 0.052 0.010 1.565 19 498.368 2,042 4.63712 1.10220
0.3 0.052 0.013 0.139 4 1.5 3 2 0.000028
0.4 0.050 0.016 0.089 4 279.75 490 2.28367 0.460264
0.5 0.046 0.009 0.019 3 0 0 0 0
0.6 0.044 0.008 0.006 2 176 176 2 0.600909
0.7 0.042 0.005 0.004 2 52 52 2 0.890843
0.8 0.036 0.003 0.001 2 25 25 2 0.575599
0.9 0.039 0.000 0.000 — — — — —

C.3. 2 tall building (SAM) - 29 input images

Table C.5.: SfM results for 2 tall building with SAM kernel entropy
Threshold Extr. Time Match. Time Reconstr. Time # Images Mean observations/image # Points Mean track length Mean reproj. error

0.0 0.309 0.064 2.402 15 1,921 4,241 3.12012 0.829121
0.1 0.289 0.061 1.989 5 2,282 3,785 3.01453 0.735958
0.2 0.240 0.062 1.390 6 1,196.17 2,591 2.76997 0.643824
0.3 0.226 0.062 0.466 3 1,002 1,426 2.10799 0.616121
0.4 0.253 0.052 0.091 3 11.33 17 2 0.111202
0.5 0.193 0.038 0.110 3 216.333 298 2.17785 0.783954
0.6 0.171 0.025 0.084 3 19 28 2.03571 0.406427
0.7 0.159 0.013 0.021 2 64 64 2 0.67827
0.8 0.157 0.006 0.005 2 57 57 2 0.62476
0.9 0.157 0.003 0.003 2 24 24 2 1.87786

Table C.6.: SfM results for 2 tall building with SAM edge detection
Threshold Extr. Time Match. Time Reconstr. Time # Images Mean observations/image # Points Mean track length Mean reproj. error

0.0 0.309 0.064 2.402 15 1,921 4,241 3.12012 0.829121
0.1 0.244 0.055 2.075 19 567.842 2,942 3.66723 0.768535
0.2 0.256 0.059 0.882 3 639.667 868 2.21083 0.695119
0.3 0.218 0.064 0.681 5 1,495 2,705 2.7634 0.750072
0.4 0.219 0.070 0.591 6 967.833 2,108 2.75474 0.756143
0.5 0.203 0.072 0.402 7 692.286 1,820 2.66264 0.767264
0.6 0.188 0.070 0.390 7 661.571 1,703 2.71932 0.795041
0.7 0.221 0.076 0.217 3 235.333 337 2.09496 0.89953
0.8 0.223 0.075 0.207 2 155 155 2 1.21997
0.9 0.169 0.071 0.177 2 206 206 2 1.06122

Table C.7.: SfM results for 2 tall building with edge detection
Threshold Extr. Time Match. Time Reconstr. Time # Images Mean observations/image # Points Mean track length Mean reproj. error

0.0 0.309 0.064 2.402 15 1,921 4,241 3.12012 0.829121
0.1 0.304 0.106 2.886 10 1,716.4 5,219 3.28875 0.782024
0.2 0.291 0.104 3.444 19 1,721.21 9,782 3.34318 0.702166
0.3 0.264 0.102 6.101 14 1,663.21 7,760 3.00064 0.90227
0.4 0.279 0.098 1.967 13 1,249.69 5,316 3.05606 0.842655
0.5 0.305 0.100 3.205 10 69 267 2.58427 1.10686
0.6 0.296 0.102 2.430 11 200.636 791 2.79014 0.923647
0.7 0.291 0.095 3.539 12 550 2,222 2.9703 0.85611
0.8 0.290 0.088 2.332 6 4.83333 14 2.07143 0.000013
0.9 0.295 0.087 1.402 2 4 4 2 0.954711

92



C.4. 3 apartment block (SAM) - 39 input images

C.4. 3 apartment block (SAM) - 39 input images

Table C.8.: SfM results for 3 apartment block with SAM kernel entropy
Threshold Extr. Time Match. Time Reconstr. Time # Images Mean observations/image # Points Mean track length Mean reproj. error

0.0 0.990 0.202 9.274 10 642.7 2,817 2.28151 0.922359
0.1 1.266 0.205 4.720 11 622.091 3,296 2.07615 0.938021
0.2 1.055 0.192 4.964 10 1,213.8 4,639 2.61651 1.152
0.3 0.860 0.180 4.136 15 713 3,422 3.12537 0.681197
0.4 0.833 0.149 3.441 14 997.429 3,900 3.58051 0.855569
0.5 0.670 0.118 2.312 13 1,150.92 3,765 3.97397 0.791224
0.6 0.552 0.066 1.730 11 933.909 2,761 3.72075 0.729669
0.7 0.446 0.025 0.336 9 585.778 1,416 3.72316 0.72576
0.8 0.324 0.009 0.126 6 292.5 602 2.91528 0.74585
0.9 0.326 0.007 0.019 2 61 61 2 0.409424

Table C.9.: SfM results for 3 apartment block with SAM edge-detection
Threshold Extr. Time Match. Time Reconstr. Time # Images Mean observations/image # Points Mean track length Mean reproj. error

0.0 0.990 0.202 9.274 10 642.7 2,817 2.28151 0.922359
0.1 1.530 0.195 12.240 3 1,733.33 1,916 2.71399 0.749354
0.2 2.563 0.196 12.565 11 736.545 3,428 2.36348 1.14071
0.3 1.336 0.236 2.761 4 2,601.25 4,180 2.48923 0.575091
0.4 3.084 0.192 5.222 4 1,293.25 2,453 2.10885 0.439248
0.5 1.779 0.175 7.205 10 1,100 3,482 3.1591 1.07109
0.6 1.745 0.166 2.783 16 505.313 2,509 3.2224 0.953957
0.7 0.792 0.164 1.358 10 752.5 3,128 2.40569 0.624312
0.8 0.638 0.142 1.046 5 348.6 713 2.71844 0.787391
0.9 0.526 0.110 1.225 2 68 68 2 1.86575

Table C.10.: SfM results for 3 apartment block with edge-detection
Threshold Extr. Time Match. Time Reconstr. Time # Images Mean observations/image # Points Mean track length Mean reproj. error

0.0 0.990 0.202 9.274 10 642.7 2,817 2.28151 0.922359
0.1 1.158 0.213 8.317 12 1793.6 4,141 2.72894 0.861123
0.2 1.326 0.219 7.843 13 1957.2 5,067 2.87561 0.884502
0.3 0.822 0.201 7.323 13 2229.08 10,082 2.87423 0.866354
0.4 0.798 0.188 6.761 11 1724.3 7,981 2.81627 0.844139
0.5 0.746 0.179 5.598 10 1581.4 6,941 2.79283 0.839871
0.6 0.730 0.211 3.171 10 1150.0 5,000 2.75000 0.820000
0.7 0.688 0.183 2.269 9 897.1 3,826 2.64287 0.794208
0.8 0.657 0.148 1.044 6 468.4 1,839 2.53742 0.718529
0.9 0.620 0.120 0.524 2 70.0 70 2.00000 0.680000

C.5. 3 apartment block (manual segmentation) - 70 input
images

Table C.11.: SfM results for 3 apartment block (manual) with SAM kernel entropy
Threshold Extr. Time Match. Time Reconstr. Time # Images Mean observations/image # Points Mean track length Mean reproj. error

0.0 4.340 0.730 32.351 18 127 658 3.47416 1.25129
0.1 4.691 0.738 21.536 16 1,001.8 4,819 3.32642 0.905801
0.2 3.745 0.729 16.476 14 1,275 4,107 4.34624 0.772198
0.3 3.123 0.672 14.707 15 249.533 747 5.01071 0.971711
0.4 3.720 0.675 20.814 19 1,929.84 12,690 2.88944 0.700181
0.5 2.044 0.600 12.718 22 59.2727 651 2.00307 0.965215
0.6 0.973 0.438 11.844 16 990.625 3,619 4.37966 0.876918
0.7 0.895 0.213 2.311 11 507.727 1,867 2.99143 0.597973
0.8 0.656 0.058 0.648 11 292.364 1,143 2.81365 0.908988
0.9 0.477 0.021 0.023 2 51 51 2 0.516273
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C. Structure from motion results

Table C.12.: SfM results for 3 apartment block (manual) with SAM edge-detection
Threshold Extr. Time Match. Time Reconstr. Time # Images Mean observations/image # Points Mean track length Mean reproj. error

0.0 4.340 0.730 32.351 18 127 658 3.47416 1.25129
0.1 3.248 0.794 14.383 17 669.824 4,961 2.2953 1.1907
0.2 3.730 0.771 21.676 14 1,657.07 9,160 2.53264 0.660949
0.3 4.543 0.762 19.627 13 1,661.23 7,972 2.70898 0.77843
0.4 4.077 0.757 8.994 22 551.227 2,978 4.0722 1.15726
0.5 4.267 0.783 13.800 18 64.3333 451 2.56763 1.02932
0.6 4.617 0.767 8.500 7 63.8571 223 2.00448 1.2863
0.7 3.583 0.717 8.383 15 1005.13 5,214 2.89164 0.854771
0.8 3.245 0.612 6.173 10 742.4 3,062 2.70652 0.928545
0.9 2.893 0.465 3.720 6 354.1 1,497 2.12789 0.990324

Table C.13.: SfM results for 3 apartment block (manual) with edge-detection
Threshold Extr. Time Match. Time Reconstr. Time # Images Mean observations/image # Points Mean track length Mean reproj. error

0.0 4.340 0.730 32.351 18 127 658 3.47416 1.25129
0.1 5.357 0.746 12.567 19 265.368 1,347 3.74313 1.2072
0.2 3.175 0.750 17.359 19 914 3,737 4.64704 1.16424
0.3 4.206 0.751 19.708 15 560.733 1,622 5.18557 1.04486
0.4 3.216 0.731 8.444 16 1,579.81 10,780 2.34481 0.785153
0.5 4.157 0.737 25.021 13 496.846 2,832 2.28072 0.892665
0.6 3.169 0.710 15.976 14 1,830 11,514 2.22512 0.635354
0.7 3.445 0.691 13.190 14 1600.5 9,025 2.48277 0.725661
0.8 3.691 0.655 10.101 10 1,055.2 4,071 2.59199 0.782113
0.9 3.570 0.560 10.981 14 469.5 2,925 2.24718 1.17148

C.6. 4 bouwpub (manual segmentation) - 53 input images

Table C.14.: SfM results for 4 bouwpub (manual) with edge detection
Threshold Extr. Time Match. Time Reconstr. Time # Images Mean observations/image # Points Mean track length Mean reproj. error

0.0 0m20s 0m26s 1m32s 53 3,068.72 40,725 3.99366 1.10242
0.1 0m20s 0m26s 1m36s 53 2,992.75 40,023 3.96312 1.09889
0.2 0m17s 0m26s 1m32s 53 2,811.66 38,224 3.89855 1.10369
0.3 0m17s 0m24s 1m27s 53 2,464.81 34,500 3.78652 1.09756
0.4 0m16s 0m21s 1m19s 53 2,124.09 30,801 3.65498 1.08972
0.5 0m15s 0m19s 1m6s 53 1,757.58 27,019 3.44765 1.08829
0.6 0m14s 0m14s 1m5s 50 1,421.2 21,573 3.29393 1.10230
0.7 0m13s 0m9s 0m36s 46 1,060.2 15,914 3.06453 1.09169
0.8 0m11s 0m6s 1m27s 28 898.464 8,773 2.86755 1.07772
0.9 0m10s 0m3s 0m16s 22 480.545 4,330 2.44157 1.07777

Table C.15.: SfM results for 4 bouwpub (manual) with SAM edge detection
Threshold Extr. Time Match. Time Reconstr. Time # Images Mean observations/image # Points Mean track length Mean reproj. error

0.0 0m20s 0m26s 1m32s 53 3,068.72 40,725 3.99366 1.10242
0.1 0m18s 0m25s 1m51s 53 2,965.55 39,463 3.98282 1.10395
0.2 0m18s 0m24s 1m53s 53 2,745.38 37,116 3.92092 1.10973
0.3 0m17s 0m23s 1m52s 53 2,467.55 34,088 3.83654 1.11244
0.4 0m17s 0m22s 1m51s 53 2,180.53 31,059 3.72092 1.10269
0.5 0m15s 0m20s 1m25s 53 1,865.47 27,563 3.58706 1.11416
0.6 0m15s 0m16s 1m12s 52 1,505.38 22,637 3.45806 1.08461
0.7 0m14s 0m11s 1m41s 22 1,479.91 9,266 3.51371 1.09432
0.8 0m12s 0m6s 0m36s 32 917.344 9,415 3.11790 1.11087
0.9 0m9s 0m4s 0m24s 18 288.111 2,124 2.44162 1.14011
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C.7. 5 geodelta drone (manual segmentation) - 200 input images

Table C.16.: SfM results for 4 bouwpub (manual) with SAM kernel entropy
Threshold Extr. Time Match. Time Reconstr. Time # Images Mean observations/image # Points Mean track length Mean reproj. error

0.0 0m20s 0m26s 1m32s 53 3,068.72 40,725 3.99366 1.10242
0.1 0m20s 0m22s 1m16s 53 2,223.13 31,398 3.75266 1.08451
0.2 0m17s 0m18s 1m11s 53 1,838.26 26,503 3.67611 1.08779
0.3 0m16s 0m13s 0m55s 51 1,456.43 20,563 3.61222 1.03688
0.4 0m13s 0m8s 0m41s 43 1,081.12 12,885 3.60792 0.974324
0.5 0m9s 0m4s 1m1s 33 704.121 6,653 3.49256 0.858625
0.6 0m8s 0m2s 0m16s 22 414.591 2,570 3.54903 0.758927
0.7 0m7s 0m1s 0m1s 2 67.000 67 2.0000 0.294403
0.8 0m6s 0m1s 0m1s 3 2.000 2 3.0000 0.000600
0.9 0m6s 0m1s 0m1s 2 39.000 39.000 2.0000 0.205755

C.7. 5 geodelta drone (manual segmentation) - 200 input
images

These are the results of extraction, matching and reconstruction for a dataset of 200 drone
photos of the monumental Geodelta office.

Table C.17.: SfM results for 5 Geodelta drone with edge detection
Threshold Extr. Time Match. Time Reconstr. Time # Images Mean observations/image # Points Mean track length Mean reproj. error

0.0 5m15s 6m18s 13m34s 201 5,595.12 212,625 5.28922 0.98005
0.1 4m39s 6m38s 12m25s 200 5,507.8 216,269 5.09347 0.982634
0.2 6m55s 6m43s 13m33s 200 5,500.65 217,849 5.04997 0.988194
0.3 6m55s 6m43s 11m56s 200 5,352.19 218,915 4.88974 1.00084
0.4 4m36s 6m41s 11m49s 200 5,263.3 223,275 4.71463 1.01127
0.5 6m54s 6m42s 11m3s 197 5,197.9 226,189 4.52713 1.02545
0.6 5m27s 6m57s 13m45s 188 5,076.54 217,971 4.37851 1.04974
0.7 3m36s 7m11s 11m43s 189 4,867.19 218,592 4.20829 1.05362
0.8 4m8s 6m42s 10m59s 185 4,473.37 202,852 4.07969 1.0636
0.9 4m11s 6m26s 13m39s 172 3,847.78 169,543 3.90355 1.0684

Table C.18.: SfM results for 5 Geodelta drone with SAM edge detection
Threshold Extr. Time Match. Time Reconstr. Time # Images Mean observations/image # Points Mean track length Mean reproj. error

0.0 5m15s 6m18s 13m34s 201 5,595.12 212,625 5.28922 0.98005
0.1 3m28s 6m41s 10m56s 201 5,216.94 215,316 4.87007 0.98635
0.2 3m28s 4m42s 12m24s 201 4,820.04 212,044 4.56900 0.99577
0.3 3m28s 6m41s 16m32s 195 4,499.99 203,484 4.31237 1.00809
0.4 4m46s 6m16s 10m55s 190 4,163.51 193,712 4.08373 1.01948
0.5 3m34s 6m17s 14m37s 176 4,048.31 187,623 3.79752 1.03436
0.6 3m27s 6m11s 12m34s 164 3,838.39 175,753 3.58171 1.05837
0.7 2m43s 5m25s 9m34s 158 3,386.99 162,049 3.30237 1.07905
0.8 2m58s 4m33s 14m0s 133 2,679.07 117,663 3.02828 1.12399
0.9 2m34s 4m21s 8m57s 40 750.975 12,856 2.33657 1.19275

Table C.19.: SfM results for 5 Geodelta drone with SAM kernel entropy
Threshold Extr. Time Match. Time Reconstr. Time # Images Mean observations/image # Points Mean track length Mean reproj. error

0.0 5m15s 6m18s 13m34s 201 5,595.12 212,625 5.28922 0.98005
0.1 3m9s 6m6s 11m47s 200 5,163.67 212,185 4.86714 0.980572
0.2 3m2s 5m47s 9m55s 200 4,841.91 205,527 4.7117 0.981102
0.3 2m45s 5m36s 9m16s 200 4,416.39 195,804 4.51103 0.980386
0.4 2m16s 5m22s 9m31s 200 3,879.08 183,980 4.21685 0.983975
0.5 2m3s 4m23s 7m10s 194 3,122.97 153,196 3.95478 0.977657
0.6 1m39s 2m29s 5m2s 171 2,133.85 96,284 3.78972 0.983343
0.7 1m19s 0m48s 3m10s 154 952.896 41,018 3.5776 0.951435
0.8 1m6s 0m13s 2m47s 101 274.010 8,383 3.30132 0.892823
0.9 1m2s 0m5s 0m3s 7 119.000 282 2.9539 0.64008
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