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Abstract

Up-to-date 3D data is essential for urban planning, building inspections, and monitoring
changes in the built environment. While 2D aerial imagery is widely used, it lacks height
information and is sensitive to shadows and seasonal effects. In contrast, 3D point clouds
provide detailed spatial information and enables better interpretation.

This thesis presents a method for detecting structural building changes using bitemporal
airborne laser scanning (ALS) data from the national height model of the Netherlands (AHN)
and the Rotterdam municipality. These datasets are pre-aligned in the stelsel van de ri-
jksdriehoeksmeting (RD)-normaal Amsterdams peil (NAP) coordinate system and include
building classifications, which allows the focus of this research to be placed directly on
detecting change.

Comparing point clouds from different time epochs is challenging due to differences in
density, noise, occlusion, and scan geometry. To address this, a random forest (RF)-based
classifier is trained on synthetically generated urban scenes that simulate realistic change
scenarios. These synthetic scenes are made with different scanning parameters, incorpo-
rating diversity in the training dataset. A certainty index is introduced that combines the
model’s probability output with occlusion visibility across both epochs, providing a confi-
dence measure for each prediction.

The method is applied to real AHN and Rotterdam datasets. Since no labelled ground truth
is available, results are evaluated visually. The method successfully identifies structural
changes such as dormers and extensions, and also detects moved or temporary objects such
as sunshades or picnic tables. When combined with aerial imagery, the approach helps
distinguish static from dynamic changes.

This work is innovative in its integration of occlusion-aware certainty scoring, visual cer-
tainty feedback, and the automated generation of synthetic training data for change detec-
tion.
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Glossary

dynamic occluded Is a condition where a target point is occluded due to a structural change
in the scene, such as the removal of a building component. 32, 33, 60, 67–69, 72, 97,
100, 108, 112

epoch Is a specific moment in time at which point cloud data is captured, representing a
snapshot of the environment. v, 2, 3, 8, 11, 15, 17–19, 28, 30–35, 41, 44, 46, 47, 49–60,
67, 69, 70, 72, 78, 83, 87, 95, 99, 103, 105, 106, 109, 112–114, 129, 130, 132, 139–141, 144

reference point cloud dataset Is the point cloud dataset used as a baseline or comparison
for another (target) dataset. 3, 17, 30, 32, 34, 40, 51, 54, 58–61, 67, 70, 72, 83–86, 92, 94,
97–101, 105–108, 113, 129–131, 134–136

stability factor Is the ratio of the number of neighboring points within a sphere around a
target point to the total number of points within a vertical cylinder around the same
point, used to quantify local stability. 18, 20, 50, 52–55, 67–69, 87, 96, 99, 105–109, 112

static occluded Is a condition where a target point is occluded by a stable object that exists
in both the reference and target scans. 32, 33, 60, 68, 69, 72, 112

target point Is a specific point in the target point cloud currently being processed or ana-
lyzed. 18, 20, 50, 51, 54, 61–67, 106, 108, 149–152

target point cloud dataset Is the point cloud dataset being analyzed to detect changes rel-
ative to the reference dataset. 3, 10, 30, 34, 40, 51, 54, 59–61, 70, 72, 83, 86, 87, 99–101,
106, 108, 113, 129, 131, 134–136
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1. Introduction

The Netherlands is a well-organized country where almost all land is carefully planned and
used. However, the demand for space is increasing. Important needs such as housing, re-
newable energy, and climate adaptation, all compete for land (Evers et al., 2023). To support
good planning and decision making, detailed 3D data is becoming more important.

One widely used 3D representation are point cloud datasets. Point clouds can be used to
make 3D city models, like 3D building models of the Netherlands (3DBAG), which help with
tasks such as noise mapping, energy estimation, and city management (Biljecki et al., 2015).
Point clouds can also be used directly for analysis and measurements. In the Netherlands,
the AHN is a national point cloud dataset collected using ALS. It is used in many applica-
tions, such as dike monitoring and noise mapping (Manders, 2024). However, many users
only access the AHN data indirectly, often through rasterized 0.5-meter grids or integrated in
the 3DBAG model combined with the Dutch Key Register of Addresses and Buildings (BAG),
while only a small number use the raw point cloud data directly. Another source is the
Rotterdam point cloud dataset, which is not publicly available but is updated every year.
The municipality uses it for tasks like BAG-WOZ inspections, city planning, and maintain-
ing public spaces and historic buildings (van Bochove, 2019). Figure 1.1 shows the same
area from both datasets. The Rotterdam dataset has a higher point density, while the AHN
provides more detailed classifications.

(a) Part of the urban area in national height
model of the Netherlands number 5 (AHN5) in
Rotterdam. Color is based on height.

(b) Part of the urban area in the 2024 Rotterdam
dataset. Color is based on height.

Figure 1.1.: The same area in the AHN and Rotterdam datasets.

Point clouds play a crucial role in the development of smart cities (Lemmens, 2018) and the
management of urban environments. Detecting changes in buildings is essential for main-
taining accurate and up-to-date 3D data. This is particularly important for urban planning,
where knowing the current state of the built environment is necessary to assess space avail-
ability and plan new developments. Furthermore, it assists in legal validation by verifying
whether construction complies with approved plans and regulations, such as height limits
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1. Introduction

or building boundaries. Additionally, the detection of newly installed solar panels using
point clouds contributes to environmental monitoring and helps manage subsidy programs
and regulatory compliance.

Many studies on change detection still use aerial images because it is easier to obtain and
updated more frequently (Qin et al., 2016, Kharroubi et al., 2022, Xiao et al., 2023). But aerial
images have limitations. It does not show height, can be affected by season, and can give a
distorted view (de Gélis et al., 2021b; Kharroubi et al., 2022). In contrast, light detection and
ranging (LiDAR) point clouds maintain the true 3D shape of objects (Nofulla, 2023), can see
through trees (Politz and Sester, 2022), and are not affected by lighting conditions (Kharroubi
et al., 2022). These advantages make point clouds useful for studying city growth, damage,
and forest changes (Kharroubi et al., 2022).

Detecting changes in point clouds is a difficult task. Point clouds collected at different
times cannot be directly compared because the points do not line up exactly (Winiwarter
et al., 2021). Many factors can affect the outcome, such as how the data was collected, the
quality and density of the points, and the type of analysis used. One of the main diffi-
culties in detecting changes is distinguishing actual changes from false alarms, often called
pseudo-changes. These pseudo-changes can arise from a variety of sources depending on
the situation and goals of the detection method. Common examples include occlusions, er-
rors in aligning the point clouds (registration errors), and temporary factors such as seasonal
vegetation growth or moving objects like cars. Effectively addressing these pseudo-changes
is crucial for improving the reliability of change detection results. Occlusion, in particular,
is a common source of error: when parts of a building or area are not visible in one of the
epochs, many change detection methods may incorrectly interpret missing data as structural
change.

This research focuses on detecting structural changes in buildings. These include additions,
removals, demolitions, changes in shape, and height modifications. However, structural
damage or material changes are not considered. By limiting the scope to buildings, the
detection method can be more optimized. A complete method is developed to address the
previously discussed challenges. The goal is to classify each point on or near a building
as either ”changed” or ”unchanged.” The criteria for this classification and how it is imple-
mented are discussed in detail in the implementation chapter. The specific type of change is
not automatically determined and is intended for manual interpretation. Figure 1.2 provides
an overview of this process.

The method is trained on a synthetic dataset that includes various house types, change
scenarios, and scanner settings to represent real-world conditions. A synthetic dataset is
used so that a wide range of changes can be simulated and labelled automatically.

The algorithm consists of two main steps. First, a classification model predicts the proba-
bility that a point has changed between the two epochs. The model uses different types of
input features: features describing the point itself, features based on its local neighborhood,
and features comparing the point across two time periods. This outcome probability score
ranges from 0 to 1, where 1 indicates high confidence that the point has changed, and 0
indicates high confidence that it has not. Second, this probability score is combined with
occlusion information to derive a certainty index. The certainty index reflects the overall
confidence in the prediction by also considering whether the point was visible in both scans.
If a point is occluded in either epochs, the prediction is treated with greater caution. A
certainty index close to 0.5 reflects high uncertainty, as it lies between the extremes of full
certainty in change (1) and full certainty in no change (0). The certainty index thus integrates
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1.1. Research objectives

both model output and visibility analysis to support more reliable interpretation of change
detection results. In this research the reference point cloud dataset is the point cloud that is
compared to and the target point cloud dataset is the point cloud dataset of interest.

The final method is evaluated using real-world data from the national height model of the
Netherlands number 4 (AHN4), AHN5, and the ALS Rotterdam 2023 and 2024 datasets. The
AHN datasets are particularly well-suited for this research because they include classified
point clouds, allowing the focus to remain on change detection rather than semantic classifi-
cation. In addition, all datasets were acquired using high-quality ALS and are aligned within
the same RD-NAP coordinate reference system, ensuring spatial consistency and precise po-
sitioning of the points. The performance of the method is assessed primarily through visual
inspection of the results.

Figure 1.2.: The goal of this thesis.

This research aligns well with the Master Geomatics programme, as it focuses on 3D spatial
data, in particular, point clouds. It covers the full pipeline: from generating custom data
to processing and transforming it into valuable information. The work involves key aspects
of geomatics, such as working with geometries, visualizing 3D data, and applying these
techniques within the built environment.

This research is done in collaboration with Geodelta, a company that specializes in geo-
information. Geodelta is known for its emphasis on accuracy and quality. They support this
thesis by providing data, sharing knowledge, and offering expert advice.

1.1. Research objectives

The main research question of this thesis is:
To what extent can a building change detection method between two epochs of aligned point cloud
datasets be developed to detect structural changes, maximizing reliability by using a certainty index?

The goal is to develop a reliable algorithm that detects building changes in the national
height model of the Netherlands number 4 (AHN4), national height model of the Netherlands
number 5 (AHN5), and Rotterdam 2023 and 2024 datasets. This can be broken down into the
following sub-questions:

3
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1. Introduction

1. How can realistic urban airborne laser scanning (ALS) point cloud datasets be sim-
ulated to support the training and testing of change detection methods, including
different data quality and occluded areas?

2. How can a change detection method be created that correctly finds building changes
while dealing with uncertainty in point cloud data?

3. How can occlusion be included in the detection process to improve the certainty of the
prediction?

4. How well does the developed method perform on real-world datasets like national
height model of the Netherlands (AHN) and Rotterdam?

1.2. Thesis Outline

This thesis consists of eight chapters. After this introduction, Chapter 2 provides background
information on point clouds, change detection and the random forest (RF) algorithm. The
datasets used in this research, national height model of the Netherlands (AHN) and Rotter-
dam datasets, are described in Chapter 3. Chapter 4 explains the research method, divided
into four steps: understanding the changes and datasets, creating a simulated dataset, build-
ing a detection method, and testing it with real data. Chapter 5 describes the implementation
of these steps in detail. The results of the method are presented in Chapter 6, followed by a
discussion of the findings and limitations in Chapter 7. The main conclusions are summa-
rized in Chapter 8, and suggestions for future research are given in Chapter 9.
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2. Theoretical background and related
work

This section reviews the relevant literature for this research. It starts with a short overview of
point cloud data and storing point cloud data in Section 2.1 and Section 2.2. Then, methods
for detecting changes in point clouds are discussed in Section 2.3. The machine learning
algorithm used in this research, RF, is explained in Section 2.4. After that, the uncertainties
and errors related to point clouds are described in Section 2.5. Finally, strategies to deal with
the limitations of point cloud and change detection are presented in Section 2.6. The chapter
ends with some conclusion in Section 2.7.

2.1. Introduction to Point Cloud Data

This research focuses on point cloud datasets acquired through airborne laser scanning
(ALS). In this section, the process of capturing point clouds will be explained, followed
by an overview of common applications. Additionally, the different scanning patterns used
by ALS systems will be described.

Point clouds are collections of points that show the shape of visible objects and surfaces
in 3D space. Sometimes, they can also include surface texture information (Vosselman,
2010). These datasets can be created using photogrammetry (for example, with dense image
matching) or using light detection and ranging (LiDAR). This research focuses on the second
method, LiDAR. A LiDAR system sends out laser pulses toward the ground and measures
how long it takes for the pulses to return. Since light travels at a constant and known speed,
this time can be used to calculate the distance to the surface (Vosselman, 2010). With the
distance, the angle of the pulse, and the position of the scanner, the 3D coordinates of the
point can be determined.

Due to the nature of surfaces, a single laser pulse can produce multiple echoes. ALS systems
are usually able to record at least the first and last return, and often also intermediate
echoes (Vosselman, 2010). Besides recording the position of each point, LiDAR systems can
also measure the intensity of the reflected signal. This value shows how much of the laser
pulse was reflected by the object or surface that caused the return (Vosselman, 2010). It
is important to note that this intensity is usually not corrected or normalized. In addition
to information as position and intensity, each point in a point cloud can also store other
characteristics, such as color, the number of returns, or classification labels.

Point clouds have many applications, including monitoring of structural and environmental
changes, viewshed analysis, solar energy potential estimation, deformation studies, volume
calculations, and vegetation or hydrology analysis (van Oosterom, 2016). A key benefit of
point clouds is that they can represent environments in a realistic way without needing to
be converted into a specific model. However, their high level of detail also means they create
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2. Theoretical background and related work

very large datasets, which makes storage and processing difficult (van Oosterom, 2016).
These challenges are discussed further in Section 2.5.

Point clouds can be collected using different types of laser scanners: ALS, terrestrial laser
scanning (TLS), or mobile laser scanning (MLS). Each of these methods has its features, but
in this research, the focus is on ALS. There are various scanning patterns in ALS, which are
shown in Figure 2.1. The advantages of each pattern depend on the scanner used.

In Figure 2.1a, the rotating mirror scanner produces a point density that is evenly distributed.
In Figure 2.1b, the oscillating mirror scanner has a higher point density at the edges. Fig-
ure 2.1c shows the fibre-optic scanner, which does not require mechanical movement of its
components. Finally, in Figure 2.1d, the slanted rotating mirror scanner has the advantage of
being able to capture data from facades at the flightline, so below the scanner. (Winiwarter
et al., 2022)

Figure 2.1.: Different scanning patterns. (a) The rotating mirror. (b) The oscillating mirror.
(c) The fibre-optic line scanner. (d) The slanted rotating mirror. (e) The Risley prisms.
Source figure: Winiwarter et al. [2022].

2.2. Storage and Indexing of Point Clouds

There are several ways to store and query point clouds efficiently. This section explains
common methods such as Octrees, KD-trees, and Space-Filling Curves.

In a 2D KD-tree, see Figure 2.2, the space is split in two every time a point is inserted. The
first split is done by placing a vertical line through the point, dividing the space into left
and right parts (along the x-axis). The next point splits one of these parts with a horizontal
line (along the y-axis), dividing it into upper and lower regions. This alternating pattern
between vertical and horizontal splitting continues until a leaf node is formed, which defines
a rectangular region (van Oosterom, 1999).
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2.2. Storage and Indexing of Point Clouds

To perform a range query, the algorithm starts at the root and checks whether the query
range overlaps with the two child regions. If it does, those regions are also checked, contin-
uing until the leaf level is reached (van Oosterom, 1999). A known drawback of the KD-tree
is that the structure depends on the order in which the points are inserted. This can lead to
an unbalanced tree, which in the worst case may have one level per point, resulting in poor
performance (van Oosterom, 1999).

Figure 2.2.: A 2D example of a KD-tree structure, which recursively partitions space using
axis-aligned splits. This data structure supports efficient spatial queries. Source figure:
van Oosterom [1999].

Space-filling curves, also called tile indexing methods, convert a 2D (or 3D) space into a 1D
sequence for storage and retrieval (van Oosterom, 1999). The Morton curve, see Figure 2.3,
also known as the Z-order curve, does this by interleaving the binary representations of each
coordinate to assign a unique index to each point (Psomadaki, 2016).

A disadvantage of the Morton curve is that nearby points in the index may not be close in
space. This makes it less suitable for tasks like nearest-neighbour search. To find the nearest
neighbour using a space-filling curve, the N closest entries in the one-dimensional array
must be selected. Then, the actual distances between the query point and these candidates
must be calculated to determine which one is truly the nearest.

Figure 2.3.: Spatial subdivision using a 3D Morton (Z-order) curve. The space is traversed
in a way that preserves locality in the linear index. Source figure: Diaz et al. [2024b].
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A third method for storing point clouds is the octree, see Figure 2.4, a hierarchical data struc-
ture that divides the space into cubes (Psomadaki, 2016). The 3D space, typically organized
in a (2n, 2n, 2n) grid, is recursively split into eight smaller cubes, called octants (Psomadaki,
2016). Octrees can be used to find nearest neighbours, but they require a large amount of
storage.

Figure 2.4.: Hierarchical subdivision of 3D space using an octree. Each node recursively
divides into eight child nodes, enabling efficient spatial indexing and search. Source
figure: Psomadaki [2016])

2.3. Change Detection in Point Clouds: Methods Overview

One of the main challenges in detecting changes in point clouds is differentiating real
changes in the environment apart from false changes, often called pseudo-changes. Pseudo-
changes vary depending on the situation and goal of the change detection method. Examples
include occlusions, errors in aligning the point clouds (registration), and temporary factors
such as seasonal vegetation or moving objects like cars. Many methods have been developed
to detect changes in urban environments using point clouds. For detailed reviews, see Qin
et al. [2016], Kharroubi et al. [2022], Stilla and Xu [2023], and Xiao et al. [2023]. This section
gives an overview of the methods most relevant to this research.

Method Classifications in Literature

Before discussing specific techniques, it is helpful to understand the different types of change
detection methods used for point clouds. Kharroubi et al. [2022] divided these approaches
into three categories: traditional methods, handcrafted learning methods, and deep learning
methods. An overview of this classification is shown in Figure 2.5.

In contrast, Stilla and Xu [2023] categorized change detection methods based on how they
process point clouds. These include point-based, voxel-based, and segment-based approaches.
Point-based methods compare individual points and detect changes when the distance be-
tween corresponding points exceeds a threshold. Voxel-based methods divide the space into
a grid and compare the occupancy of each voxel between epochs. Segment-based methods
group points into objects or regions and compare these groups to detect geometric differ-
ences. This classification is illustrated in Figure 2.6.

Stilla and Xu [2023] also discussed the variety in the output of change detection methods.
Some methods only produce a binary result, showing whether a change occurred or not.
Others provide more detailed information, such as the type of change (e.g., a new tree or
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Figure 2.5.: The 3D change detection methods described by Kharroubi et al. [2022], divided
into three categories. Source figure: Kharroubi et al. [2022].

Figure 2.6.: Different strategies for point cloud change detection, as discussed by Stilla and
Xu [2023]. Source figure: Stilla and Xu [2023].
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a demolished building). Some methods also include quantitative information, such as the
amount of change in height between two time points.

Finally, Stilla and Xu [2023] emphasized that the goals of change detection vary depend-
ing on the application. Many studies focus on changes in the built environment, particu-
larly land use. Other common applications include monitoring urban building changes and
tracking construction progress.

Since this research focuses on building change detection using the national height model
of the Netherlands (AHN) and Rotterdam datasets, comparing existing change detection
methods is relevant but also challenging for two main reasons. First, the nature of the
objects under investigation strongly influences the choice of an appropriate method. For
instance, techniques designed to detect changes in soil deformation, forest environments, or
urban structures differ significantly in their assumptions, input requirements, and process-
ing strategies. Second, the performance of change detection methods varies considerably
across datasets. Differences in data quality, acquisition methods, and scene characteristics
lead to a wide range of outcomes. As a result, direct comparison between methods is dif-
ficult, particularly when each study relies on different real or synthetic datasets. A major
limitation in this field is the absence of a standardized, well-labelled dataset for benchmark-
ing. This gap has been recognized as a key issue by de Gélis et al. [2021a] and Kharroubi
et al. [2022].

Point-Based Methods: Cloud-to-Cloud and Cloud-to-Mesh

Commonly used techniques include cloud-to-cloud (C2C) and cloud-to-mesh (C2M) compar-
isons. Figure 2.7 shows an illustration of these methods. In C2C, for each point, the closest
neighbor in the other epoch is found, and the distance between them is measured. Although
C2C is simple, it is sensitive to outliers and small differences. Also, the best threshold for
change detection depends on the dataset (de Gélis et al., 2021b). In C2M, the change is mea-
sured as the distance between a point and the surface (mesh) created from the other dataset.
This method requires converting the target point cloud dataset into a mesh, but this can
create triangular surfaces with gaps or artifacts (Kharroubi et al., 2022). Both methods have
difficulties when point densities vary within or between datasets, and when parts of the data
are hidden (occlusion) (Kharroubi et al., 2022).

While C2C andC2M are straightforward techniques, their reliance on direct spatial proximity
makes them less effective in urban datasets with variable point density and frequent occlu-
sion. In contrast, this research moves beyond direct distance thresholds by incorporating
semantic and geometric features at the point and neighborhood level, trained through an
random forest (RF) classifier.

Raster-Based Approaches: DSM Differencing

A popular alternative is to convert point clouds into an digital surface model (DSM) for
change detection (Xiao et al., 2023). Figure 2.8 shows an example of the differences in DSM.
The area is divided into grid cells, and in each grid, at most one point is selected (e.g., the
lowest point). These points are then connected using triangulation, assigning one height
value per grid. To calculate changes, the grids are subtracted from each other. Kharroubi
et al. [2022], Stilla and Xu [2023], de Gélis et al. [2021b] state that this method is efficient,
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Figure 2.7.: Illustration of how Cloud-to-Cloud (left) and Cloud-to-Mesh (right) methods
work.

but introduces information loss due to interpolation and only accounts for differences in a
predefined direction. It also struggles to accurately capture precise building boundaries.

Due to these limitations, DSM differencing is not adopted in this research. However, raster-
based processing is still used in a limited scope, to associate points with specific buildings
via footprint overlays, while preserving full 3D detail for the core classification process.

Figure 2.8.: Illustration of how the DSM difference is calculated.

Learning-Based Approaches: Random Forests and Deep Learning

The use of machine learning and deep learning in change detection is increasing. Figure 2.9
shows the general workflow of a learning-based algorithm. For each point or patch of
points, features are calculated. These features are based on information from one or both
epochs. Then, a classifier (either machine learning or deep learning) is trained using a
labelled dataset with these features. Based on the labels, the algorithm identifies the changes
and the type of change (e.g., added or removed building). The RF algorithm, for example,
has shown promising results (De Gélis et al., 2021, de Gélis et al., 2021b, Kharroubi et al.,
2022, Nofulla, 2023). However, its performance is sensitive to the quality of the features
(Nofulla, 2023) and decreases as the data becomes more heterogeneous (de Gélis et al.,
2021b). Another interesting approach involves combining Siamese architectures with deep
learning, which has shown strong performance (Kharroubi et al., 2022, De Gélis et al., 2021).
Kharroubi et al., 2022 state the good performance of learning-based methods, but also states
their limitation of a class-imbalanced problem and the probability of failing in minority
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classes. de Gélis et al. [2021a] claim to be the first to use deep learning directly on raw point
clouds for change detection and characterization.

While deep learning methods such as Siamese networks have demonstrated high perfor-
mance, especially in structured environments, their effectiveness relies heavily on large la-
belled datasets and extensive training. Given the limited availability of labelled airborne
laser scanning (ALS) data in AHN and Rotterdam, this study adopts an RF model, which
performs well with smaller datasets and provides interpretable outputs. Furthermore, this
research expands the standard RF framework by incorporating occlusion-based uncertainty
modelling.

Figure 2.9.: Illustration of how a learning based algorithm works, in general.

De Gélis et al. [2021] and Kharroubi et al. [2022] suggest the development of more spatially-
aware deep neural networks for urban change detection, as these models can better un-
derstand the structured nature of objects on a global scale. Kharroubi et al. [2022] suggest
doing more research on the use of graph neural networks for change detection, integrat-
ing the progress made in 3D segmentation, and exploring finer levels of structural detail
to ensure scalability with large datasets. Stilla and Xu [2023] also highlight the importance
of integrating semantic information and addressing measurement uncertainties in future
methods.

Summary and Relevance to This Research

Table 2.1 summarizes the main point cloud change detection methods discussed in this sec-
tion. The classification is based on the categories introduced by Kharroubi et al. [2022] and
the processing strategies outlined by Stilla and Xu [2023]. The method developed in this
research positions itself between traditional geometric differencing and modern deep learn-
ing by combining a handcrafted feature-based RF model with occlusion-aware uncertainty
modelling.

2.4. Random Forest in Point Cloud Analysis

The random forest (RF) classifier is used in this research, and the reasons for selecting it will
be discussed at the end of this section. First, an overview of the RF classifier is provided.
Then, its application in point cloud change detection methods is explained.

12



2.4. Random Forest in Point Cloud Analysis

Table 2.1.: Overview of point cloud change detection methods and their characteristics, re-
lated to this research. This table is developed by the author to position the proposed
method within existing techniques.

Category Technique Input Data Strengths Weaknesses Relation to This Research

Traditional,
Point-based

C2C Raw point
clouds

Simple, intuitive Sensitive to out-
liers, dataset-specific
thresholds

Serves as baseline for evaluating
the proposed RF-based change
detection method using point-
level comparisons.

Traditional,
Point-to-surface

C2M Point clouds
and meshes

Captures surface
changes better

Mesh generation may
introduce artifacts

Inform feature design and
understanding of geometric
changes but not directly ap-
plied in this research.

Traditional,
Raster-based

DSM differ-
encing

Rasterized
DSMs

Efficient Information loss, di-
rectional bias, bound-
ary issues

Provides complementary in-
sights; not primary focus due to
geometric detail loss inherent
in rasterization.

Handcrafted
learning, Point-
Based

RF Extracted fea-
tures from
point clouds

Robust, interpretable Sensitive to feature
quality, performance
degrades with hetero-
geneous data

Core method developed here:
uses synthetic labelled datasets,
combines point features, occlu-
sion modeling, and house-level
preprocessing.

Deep learning,
Segment-Based

Siamese net-
works

Raw point
clouds or fea-
tures

High accuracy, learns
complex patterns

Needs large labelled
data, class imbalance
issues

Potential future direction.

Explanation RF Model.

The RF model is visualized in Figure 2.10. As described by Biau and Scornet [2016], an
RF classifier consists of an ensemble of M regression trees that are trained independently
on different subsets of the dataset. Each tree makes a prediction, and the final decision is
determined by a majority vote from all trees.

Figure 2.10.: Visualization of the RF classifier model. Source figure: Nofulla [2023].

A decision tree is a supervised learning model that partitions data into subsets by applying
decision rules based on feature values. These splits are chosen to maximize the homogeneity,
or purity, of the resulting subsets. A node is considered pure when all samples within it
belong to the same class. To guide these splits, the model uses impurity metrics, such as the
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Gini impurity, which is defined as:

G = 1−
C

∑
i=1

p2
i (2.1)

where pi is the proportion of samples belonging to class i within a node, and C is the
total number of classes. A lower Gini impurity indicates a purer node, with a value of
0 representing a completely pure node (i.e., all samples are of the same class). The tree
construction process selects feature splits that most effectively reduce impurity. However,
it is important to control the depth of the tree, as overly deep trees may capture noise in
the training data and result in overfitting, reducing generalization performance [Yıldırım,
2020].

In addition to predicting the final class, an RF model can also estimate the probability for
each class. These probabilities are based on how many training samples of each class are
found in the leaf nodes. For each decision tree, the probability is calculated as the fraction
of samples in the leaf that belong to a given class. Then, the average is taken over all trees
in the forest (Biau and Scornet, 2016). The formula is:

P̂(y = 1 | x) =
1
T

T

∑
t=1

P̂t(y = 1 | x) (2.2)

Where:

• T is the number of trees in the forest,

• P̂t(y = 1 | x) is the predicted probability from tree t, which is the fraction of training
samples of class 1 in the leaf where x ends up.

Niculescu-Mizil and Caruana [2005] point out that RF classifiers often do not produce prob-
ability values that are very close to 0 or 1. This happens because each decision tree is trained
on a random subset of the data and features, a technique known as bagging. As a result,
not every tree sees all the important information. This can make the final prediction more
cautious, meaning the probability values tend to stay away from the extremes of 0 and 1.

Application in Point Cloud Change Detection.

The application of an RF model for 3D change detection has demonstrated significant ef-
fectiveness, as evidenced by the study of Tran et al. [2018]. This approach provides several
notable advantages: (1) resistance to overfitting, (2) fast and efficient processing of large
datasets, and (3) the ability to perform well even with relatively small training datasets,
unlike convolutional neural networks. More specifically, Tran et al. [2018] reported a pre-
cision of 90.93% and 92.04% when using an RF classifier. Other benefits of RF include their
robustness to noisy data and the interpretability of their results (Belgiu and Drăguţ, 2016).
However, there are also limitations. For example, de Gélis et al. [2021a] note that RF can
struggle when the training data and test data is different, while Nofulla [2023] highlights
that RF is sensitive to feature quality.

In point cloud change detection, features are often grouped into three types:
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• Single-point features are computed for each point individually and reflect its geomet-
ric or radiometric properties.

• Neighborhood-based features are derived from the local context around a point, help-
ing to understand surface structure or noise characteristics.

• Multi-temporal features compare values across different time epochs to capture changes
over time, which is essential in change detection tasks.

Tran et al. [2018] employed a combination of the above feature types. Among the single-point
features, the height above the digital terrain model (DTM) was utilized. Neighborhood-
based features included EchoRatio, ZRange, and ZRank, which are derived from the local
neighborhood surrounding each point. Specifically, EchoRatio characterizes the vertical dis-
tribution of points within the neighborhood; ZRange quantifies the height difference be-
tween the lowest and highest points in a local 3D patch; and ZRank indicates the relative
vertical position of the point of interest with respect to its neighbors. Additionally, geo-
metric descriptors such as linearity, planarity, and omnivariance were used to describe the
local surface shape around each point. Multi-temporal features were also incorporated by
comparing information across different time steps. These included the number of points
from a previous epoch within a specified search radius, height differences between epochs,
and a stability metric (further explained in Section 2.6). Kharroubi et al. [2025] additionally
introduced a distance uncertainty feature, which represents the confidence interval of M3C2
displacement, and a surface variation feature, calculated from the dispersion of normal vec-
tors in the point’s neighborhood.

Designing Features.

In an RF, different methods can be used to measure the importance of each feature. Un-
derstanding the importance of characteristics helps interpret the model and predictions.
One common method is called permutation feature importance. In this method, the values of
a feature are randomly shuffled across the rows. Then, the model’s accuracy is checked
again. If the accuracy drops, it means that the feature was important for making predictions
(Breiman, 2001). Another method is feature importance based on mean decrease in impurity. This
model calculates how much each feature reduces impurity (e.g., Gini) across all trees. If a
feature helps reduce impurity across many trees, it is considered more important. However,
this method can be biased toward features with more categories or continuous values.

Argumentation Use RF in This Research.

The advantages and disadvantages of using RF have been discussed above. It is selected for
this research for several reasons:

1. It has shown promising results in previous studies.

2. It can be improved by adding or removing features, making it flexible for different
datasets.

3. It works well with large datasets and handles high-dimensional data efficiently.

4. It is able to provide probability estimates for its predictions, which is useful for under-
standing the confidence of the model.
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5. Due to bagging and the combination of decision trees, an RF reduces the risk of over-
fitting and increases generalization performance.

2.5. Sources of Uncertainty in ALS Data

Some challenges related to change detection methods were discussed in the previous section
(Section 2.3). However, the characteristics of the dataset itself also have a significant impact
on the effectiveness of these methods. As noted by Stilla and Xu [2023], the way data
is acquired plays a key role in selecting an appropriate change detection approach. This
section outlines important dataset characteristics and common sources of uncertainty that
influence change detection results. Understanding these factors helps in developing a model
that can better handle such limitations.

• Point density and distribution. The density and spatial distribution of points in a
point cloud directly affect how well different scans can be aligned and compared (Stilla
and Xu, 2023). When point clouds have inconsistent densities, it becomes more difficult
to detect real changes. In contrast, when two point clouds have similar and evenly
spread point distributions, it is easier to identify true environmental changes rather
than artifacts from how the points were collected. de Gélis et al. [2021b] compared
datasets with different densities and added noise. Their results showed that changes
in point density had a larger effect on detection performance than noise. Specifically,
depending on the method, the accuracy decreases around 6% to 14% due to lower
density, while added noise decreases around 6% to 7%.

• Information per point. Semantic labels help in understanding changes at the object
level (Stilla and Xu, 2023). Object-level analysis focuses on entire objects, such as cars,
trees, or buildings, rather than looking at single points. Raw point clouds only contain
geometric data (like X, Y, Z coordinates), but adding semantic labels allows each point
to be linked to a specific type of object. This makes it possible to detect both geometric
changes (e.g., movement) and attribute changes (e.g., an object changing its function
or class).

• Scan properties. The properties of the scan itself can also affect change detection
results. Kharroubi et al. [2022] highlight that factors such as the scan time, sensor po-
sition, weather conditions, sensor settings, sensing range, and background differences
can all lead to real or false detections of change. Additionally, each light detection
and ranging (LiDAR) sensor type has its own technical characteristics, such as scanning
pattern, frequency, and beam divergence, which affect the quality and accuracy of the
data, as well as the processing methods required.

Errors in point clouds create additional challenges for change detection. According to
de Gélis et al. [2021b], noise makes it harder to clearly define the boundaries of detected
changes. For example, if an extension is partially added to a roof, noise can make it unclear
where exactly the change begins and ends.

Winiwarter et al. [2021] describe several types of measurement uncertainty. Each point in a
point cloud is defined using polar coordinates (distance, azimuth, and polar angle), and each
of these values has its own uncertainty. Laser beams do not hit just one point, they cover
a small surface area. The reflected signal can come from anywhere within that area. When
scanning tilted surfaces, like house walls, the footprint becomes larger, which increases the
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error. Also, angular values are recorded in fixed steps, so there can be small errors when the
actual value falls between these steps. The accuracy of distance measurements also depends
on the scanning distance, the material of the object, and atmospheric conditions. Longer
distances produce larger beam footprints, which leads to greater uncertainty.

In addition to measurement errors, object properties also affect the quality of the scan. For
example, surfaces that reflect light poorly or in unpredictable ways, like water or glass, can
cause gaps or noise in the point cloud. These surfaces may return weak or no laser signals,
which can result in one scan detecting points while another does not. This can lead to false
positive change detections (Kharroubi et al., 2022).

Many change detection methods struggle to detect small urban structural changes. Khar-
roubi et al. [2022] and Xu et al. [2015] highlight this by setting a filter for registration errors
or false changes, like parked cars, which can also unintentionally exclude real changes, such
as the addition of a dormer on a roof. Another reason they are mentioning is the low density
of points representing small features (or other limitations in the dataset).

Large-scale point cloud datasets such as national height model of the Netherlands (AHN)
require efficient data storage and access methods. van Oosterom et al. [2022] stress the
importance of proper spatio-temporal data organization. Many valuable datasets are not
fully used because of poor management, limited accessibility, and insufficient support from
current software tools. Improving how these datasets are stored and accessed is essential for
scalable and practical change detection.

2.6. Strategies to Mitigate Dataset Limitations

This section outlines potential strategies to address the challenges described in the previous
sections.

Solving Occlusion.

Xu et al. [2015] address the problem of occlusion as follows. Related points in two epochs
with a greater distance of 1 meter that lack any nearby points in one of the epochs within
a horizontal plane are labelled as unknown. For walls, they label points as unknown if
the neighboring roof has no change. They state this will also exclude lack of data due to
pulse absorption by the surface material, e.g., water. But this method has some limitations,
balconies and sun shades are far away from the roof and could be detected as changed and
not as unknown.

Hebel et al. [2013] propose a method that uses a voxel structure to have a fast search opera-
tion on the fly while processing the airborne laser scanning (ALS) data. The reference point
cloud dataset is organized in that voxel structure with wide cells (five times the average
point-to-point distance) to reduce memory space, while maintaining efficient spatial index-
ing for queering. Two types of grid cells are then created, one representing the positions
of the point cloud and another tracking the paths of laser beams traversing through each
cell. For the last type, they applied Bresenham’s 3D algorithm to calculate a raster line of
that beam, identifying all the cells it traverses. Each voxel can have none, one, or multiple
indices. With this information and the understanding of a point being a spatial extent rather
than being a precise point (due to the laser’s footprint, measurement uncertainty, and point
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density), they modeled a gradual transition between empty, occupied, and unknown cells.
Each cell is assigned belief masses of these states, following the Dempster–Shafer theory of
evidence. Xiao et al. [2013] applied this to mobile laser scanning (MLS) and states it is an
accurate method that distinguishes occlusion from real changes.

Liu et al. [2022] addressed occlusion detection in the context of detecting and reconstructing
vehicle-related ground occlusions. In his approach, the ground surface is divided into a 2D
grid, where each cell is marked as either occupied, empty, or boundary. The boundary is
defined based on a concave shape, approximated using the α-shape algorithm. Within this
α-shape boundary, there may be potential non-ground areas. In a separate step, cars are
segmented, and based on the known 2D bounding boxes of these cars, the corresponding
occluded raster cells are marked.

Stability Factor.

Tran et al. [2018] introduce the concept of a stability factor for each point in a light detec-
tion and ranging (LiDAR) dataset. This feature is calculated as the ratio of the number of
neighboring points within a sphere in the other epoch to the total number of points within a
vertical cylinder also in the other epoch, see Figure 2.11. They recommended using a search
radius that is twice the average point spacing. Their findings showed that changed buildings
and ground typically have a very low stability factor value, close to 0%, while unchanged
buildings have a value of 100%. However, because vegetation is partially transparent to
LiDAR, its stability factor values tend to vary and are less likely to be near 0% or 100%.
de Gélis et al. [2021b] also use this stability factor as a feature for the random forest (RF)
classifier, which gave more precise results.

Figure 2.11.: Illustration of the search areas used for the stability factor feature. For several
target points, both the 2D and 3D search areas are shown, along with the corresponding
potential stability factor values. Adapted from Tran et al. [2018].

Highlighting Errors Accuracies.

Many factors can affect the quality of a LiDAR dataset. These include positional uncertain-
ties, density, the precise alignment of the laser beam, errors from the laser device itself, the
curvature of the local surface, and the geometry of the scanning process (Mayr et al., 2020).
Lague et al. [2013] introduce the concept of the Level of Detection, which is the smallest
detectable change in the data. Level of Detection is a spatially varying value that considers,

18



2.6. Strategies to Mitigate Dataset Limitations

for every region in both epochs, the variances, point counts, and registration uncertainty
(Winiwarter et al., 2021). Winiwarter et al. [2021] propose an improved version of Level of
Detection. Unlike the original method, which assumes a constant registration error, their
approach incorporates measurement and alignment uncertainties by using error propaga-
tion. Measurement uncertainties are derived from the laser scanner’s angular and range
measurements, while alignment uncertainties are calculated using an Iterative Closest Point
algorithm in OPALS, which also generates a covariance matrix to represent these uncertain-
ties.

According to Scaioni et al. [2018], LiDAR intensity can be used as an indicator of the quality
of point cloud data. Their experiments show that there is a relationship between intensity
and range noise. The intensity values are affected by several factors. One important factor
is the material of the surface, especially its reflectivity and roughness (Kashani et al., 2015).
Another group of factors relates to the scanning conditions. These include the power of the
laser, the distance to the object (range), the angle at which the laser hits the surface (angle
of incidence), the effect of the atmosphere (atmospheric transmittance), the spreading of
the laser beam (beam divergence), and how sensitive the sensor is (detector responsivity)
(Kashani et al., 2015).

Since dataset characteristics influence the results of change detection methods (see Sec-
tion 2.5), metrics to measure these characteristics can be useful. Manders [2024] investi-
gated the characteristics of two versions of national height model of the Netherlands (AHN),
focusing on point density and point spacing, both of which affect computer algorithms.
By computer algorithms, the author refers to the computer’s ability to interpret and un-
derstand the structure of 3D objects. To assess point spacing, the author uses a Delaunay
triangulation for all buildings in a specific area. Triangles larger than a certain threshold
were considered gaps.

Size Datasets.

To be able to handle the large size of point clouds, Diaz et al. [2024b] developed a fast, space-
filling curve-based method to calculate distances in epochs. They utilize a Morton curve to
efficiently query neighboring points in the other epoch.

Another interesting approach for managing large point cloud datasets is the use of different
levels of detail, as explained by Kharroubi et al. [2022]. This concept involves adjusting the
level of detail depending on the specific needs of the task. When more detailed information
is required, a higher level of detail is used by keeping more points, which works best for
analyzing smaller areas. For larger areas, a lower level of detail with fewer points is used to
reduce the amount of data that needs to be processed. However, the effect of using different
levels of detail on the accuracy of change detection results has not yet been fully studied.
This method has already been used in visualization tasks. van Oosterom et al. [2022] expand
on this idea by introducing a continuous scale of detail. In their method, whether a point is
displayed in a view depends on how far it is from the camera and its continuous detail value.
This value is also used to organize and index the point cloud more efficiently. Liu [2022]
interpret the continuous detail value in another way. In their work, this value represents
how important a point is compared to other points in the dataset. This importance measure
helps decide which points should be prioritized for processing or storage.
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2.7. Conclusion Related Work

This section summarizes the main findings from the literature and clarifies the focus of this
research.

There are many different methods for point cloud change detection. Choosing the right
approach depends heavily on the goal of the research, as it influences the architecture of the
method, the type of output, and the level of processing, whether at point-level, patch-level,
or by converting the data to raster or models.

Many change detection methods struggle when working with real-world datasets due to
their limitations. Common issues include misalignment between datasets, differences in
point density, scanner-specific artifacts, and missing or incomplete data. These factors can
significantly affect the performance and reliability of change detection.

The most widely used methods are those based on raster differencing (such as digital surface
model (DSM) subtraction) and nearest-neighbour distance comparisons. These approaches
are relatively simple to implement and are useful for initial exploration. However, they
perform poorly in areas with occlusion or large variations in point density. They also require
predefined thresholds to identify change, which limits flexibility.

Learning-based methods, especially using the random forest (RF) algorithm, have shown
promising results. RF models are relatively easy to interpret and can be adapted by changing
the input features. They also handle large datasets well, which is essential for processing
point clouds. Another key benefit is their ability to output probability estimates for each
point, which can be used to construct a certainty index. In addition, RF can model non-
linear patterns in the data.

Some practical suggestions are available for designing a learning-based change detection
method. One example is the stability factor, which compares the number of neighbouring
points in a sphere to those in a cylinder around the target point. It is also useful to include
both local and global features to improve classification accuracy.

Finally, the large size of point cloud datasets plays a role in performance. Efficient storage
and querying techniques, such as using octrees or space-filling curves, can make processing
tasks like change detection faster and more scalable.
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3. Datasets

This chapter describes the datasets used in this research. Several key components are ex-
plained. The type of scanner used for each dataset is discussed, as this information is
important for modelling occlusion in this research. In addition, the dataset requirements
and results of the quality control are outlined, as they provide essential input for generating
the synthetic scene. Further relevant details are also included to give more understanding
and enable a proper comparison between the datasets in the end.

3.1. National Height Model of the Netherlands (AHN4 and
AHN5)

This research focuses on the national height model of the Netherlands (AHN) datasets. This
section explains the dataset and its applications, describes how the data is calibrated, and
provides additional relevant information. It concludes with an overview of the scanners
used to collect the dataset.

The AHN provides height data for the entire Netherlands. It contains classified point cloud
data collected using airborne laser scanning (ALS). The AHN is made in cooperation with
water authorities, provinces, and Rijkswaterstaat. It offers a detailed dataset with a high
point density. There are five different datasets, collected in different years. In this research,
only national height model of the Netherlands number 4 (AHN4) and national height model
of the Netherlands number 5 (AHN5) are used. Both AHN4 and AHN5 have a systematic error
of 5 cm and a random error (stochastic) of 5 cm. AHN4 and AHN5 have a minimum point
density of 10–14 points per square meter, with higher densities (20–24 points/m2) around
Schiphol Airport. The data uses the stelsel van de rijksdriehoeksmeting (RD) coordinate sys-
tem and the normaal Amsterdams peil (NAP) for height. Along with point data, information
about the flightlines is also available. In addition, Geotiles provides RGB color values for
each point in the AHN datasets. However, as noted by Nofulla [2023], these RGB values can
be inaccurate because the images and point clouds were taken at different times. According
to an AHN update, the goal is now to capture images and point data at the same time.

The light detection and ranging (LiDAR) data calibration begins by correcting rotational mis-
alignments in the overlapping flight strips using three parameters: roll, pitch, and heading
(or yaw). These represent rotations around the aircraft’s front-to-back axis, side-to-side axis,
and vertical axis, respectively. Adjusting these parameters helps ensure that features such
as gable roofs align correctly between overlapping strips by correcting angular deviations.
Once rotational corrections are applied, the data undergoes horizontal alignment, where the
XY positions of points are refined by ensuring that corresponding features in different strips
overlap on a 2D plane. Following horizontal alignment, vertical alignment focuses on height
accuracy. Using overlap areas, height differences between flight strips at ground level are
computed and adjusted. Besides that, it also involves comparing measured heights against
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3. Datasets

known reference surfaces (e.g., calibrated fields with precise NAP height values) to correct
any systematic vertical offsets.

This combined approach, first correcting orientation via rotation parameters, then adjusting
horizontal and vertical positions, results in a geometrically consistent, well-calibrated LiDAR
point cloud.

Flightline and flight strip data for AHN4 and AHN5 are available in the AHN data room.
Flightlines are stored as LineString or MultiLineString geometries. In certain areas, espe-
cially near coasts or islands, flightlines are interrupted by water, resulting in MultiLineStrings.
Each flightline comes with metadata such as acquisition date and LineID. Flight strips are
represented as (multi)polygons, which correspond to the convex hulls of the point clouds
along each flightline. These polygons also contain metadata similar to that of flightlines. For
AHN5, more detailed metadata was provided by Geodelta, including aircraft speed, scanner
type, pulse repetition rate (PRR), scan rate, field of view (FOV), overlap, and points per square
meter (ppm), reflecting Geodelta’s role in performing AHN5 quality control.

Most of the AHN4 data was collected using the RIEGL VQ-1560i scanner. A smaller part
of the dataset was captured with the newer VQ-1560II model. Both scanners use the same
scanning pattern, as described in the manufacturer’s manual (Figure 3.1). The scanner op-
erates with two laser channels. In the (x,y)-plane, channel 1 scans from the lower left to the
upper right, and channel 2 scans from the lower right to the upper left. The angle between
the two channels is 14◦ across-track. Additionally, each channel is tilted either forward or
backward by 8◦. However, the manual does not specify which channel is tilted forward and
which one is tilted backward. This detail was interpreted from Figure 3.3, which shows an
aircraft on its flight path (black line) for capturing AHN4. The green areas represent points
that have already been collected, while the grey areas show the locations that are yet to be
scanned. The crossing point of both channels appears to lie to the right of the flightline.
This suggests that channel 1 is tilted backward and channel 2 is tilted forward. Based on
this interpretation, the scanning geometry shown in Figure 3.2 was created.

Figure 3.1.: Scanning pattern from the official RIEGL manual. Source figure: RIEGL Laser
Measurement Systems GmbH [2017].
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3.1. National Height Model of the Netherlands (AHN4 and AHN5)

(a) Backward-tilted scan channel with a 14◦

across-track angle and 8◦ backward tilt.
(b) Forward-tilted scan channel with a 14◦

across-track angle and 8◦ forward tilt.

Figure 3.2.: Custom scan line visualizations for the RIEGL VQ-1560i, VQ-1560i-DW, and VQ-
1560II scanners.

Figure 3.3.: The airplane is shown along its trajectory (black line). Green points represent
the points already captured by the airplane up to its current position. Gray points are
points yet to be captured, either on the current flightline or on another flightline. Note:
There is a spatial offset between the aircraft’s actual position and the cross-points of the
scan channels.

23



3. Datasets

In contrast, all AHN5 data was collected using the Leica CityMapper-2, which uses an oblique
LiDAR scanning system. This system scans in a cone-shaped pattern, shown in Figure 3.4. To
also visualize this in the AHN5 data, see Figure 3.5.

Figure 3.4.: Conical scan pattern used in oblique LiDAR systems like the Leica CityMapper-2
in AHN5. Source figure: Bacher [2022].

3.2. Rotterdam ALS Dataset

The Rotterdam airborne laser scanning (ALS) datasets cover the entire municipality of Rot-
terdam. These datasets are not publicly available and can be obtained through Geodelta.
There are datasets available for the years 2021, 2022, 2023, and 2024. This research uses only
the 2023 and 2024 datasets.

Both datasets require a minimum point density of 30 points per square meter. This density
could not always be reached in the city center due to the presence of tall buildings. To
improve coverage in this area, extra flightlines were added. All data is provided in the
stelsel van de rijksdriehoeksmeting (RD) and normaal Amsterdams peil (NAP) coordinate
systems.

A calibration flight was carried out before the data collection to set and verify the system
parameters of the scanner. Quality control was performed in several ways. For absolute
horizontal accuracy, ground control points were used. These are white areas on the ground
that were compared to the intensity values of the point cloud. For relative horizontal ac-
curacy, the gable roof method was applied, as described earlier in the context of national
height model of the Netherlands (AHN) alignment. To check the absolute height accuracy,
ground control points were compared with the elevation values from the point cloud. For
relative height accuracy, height difference grids were created in overlapping flightline areas.
These grids were compared to check for consistency between flightlines. The results of these
checks are shown in Table 3.1.

The datasets include general point classifications such as ground, non-ground, and unclas-
sified. They also contain metadata about flightlines and flightstrips, which are relevant for
this study.

Both datasets were collected using the Leica CityMapper-2 sensor, the same system used for
national height model of the Netherlands number 5 (AHN5). A visualisation of this scanner
is shown in Figure 3.4.
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3.2. Rotterdam ALS Dataset

Figure 3.5.: The airplane is shown along its trajectory path (black line). Blue points indicate
the points already captured by the airplane up to its current position. Gray points repre-
sent points still to be captured, either on the current flightline or on another one.

Table 3.1.: Accuracy Statistics of the Rotterdam Datasets (2023 and 2024)
Metric 2023 Dataset 2024 Dataset
Maximum individual vertical deviation (z) 0.050 m 0.053 m
Standard deviation in z (σz) 0.010 m 0.014 m
Maximum individual horizontal deviation (dxy) 0.050 m 0.093 m
Standard deviation in dxy (σxy) 0.019 m 0.017 m
Maximum systematic horizontal error (dxy) 0.061 m 0.152 m
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4. Research Methodology

This chapter describes the methodology used to design and evaluate a point-based building
change detection method for ALS datasets. A key part of the method is the introduction
of a certainty index, which takes occlusion into account when estimating how reliable each
detected change is.

The core of the method is developed in Phase 1 and Phase 2. These are framed by two other
stages: an initial pre-phase and a final test phase.

• Pre Phase (Section 4.1): This phase focuses on understanding the types of structural
changes present in the AHN datasets, as well as exploring the limitations of basic geo-
metric comparison techniques.

• Phase 1 (Section 4.2): In this phase, synthetic ALS point clouds are generated. These
simulations include different types of changes and acquisition conditions, and allow
for automatic labelling of changed and unchanged points.

• Phase 2 (Section 4.3): This phase covers the development of the actual detection
method using an random forest (RF) model. It also includes occlusion detection and
how this is used to calculate a certainty score for each predicted change.

• Test Phase (Section 4.4): The final phase applies the developed method to real-world
datasets ( the national height model of the Netherlands number 4 (AHN4), the AHN5,
and Rotterdam). This phase includes the practical steps needed to prepare and evalu-
ate the method on real data.

The chapter concludes with a brief summary of the methodology process in Section 4.5.

4.1. Pre Phase: Data Understanding and Change Definition

The goal of this phase is to explore how building-related changes between national height
model of the Netherlands number 4 (AHN4) and national height model of the Netherlands
number 5 (AHN5) can be identified, and to understand which characteristics of the data
influence change detection. This step is essential for defining what constitutes a meaning-
ful change, identifying data limitations, and guiding the feature design of the detection
method.
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Visual Exploration and Area Selection

To support this, five urban areas were selected for closer inspection, each containing various
building types and change scenarios. These areas were downloaded from GeoTiles [van
Natijne and Optical and Laser Remote Sensing group TU Delft, 2025], which provide sub-
divided national height model of the Netherlands (AHN) tiles for more efficient processing.
The selected areas are shown in Figure 4.1.

Figure 4.1.: Areas of interest in AHN4 and AHN5 for the exploration phase. Background map
from © OpenStreetMap contributors, ODbL.

To visually explore the point clouds, the PotreeDesktop viewer of [Schütz et al., 2020] was
used, see Figure 4.2. This enabled a detailed inspection of point attributes such as classifica-
tion, height, and intensity across both epochs.

Initial Change Detection: Nearest-Neighbor Methods

To evaluate simple change detection approaches, both 2D and 3D nearest neighbor distance
metrics were applied. This helped assess how small changes (e.g., dormers, solar panels)
appear in point-level comparisons and where traditional methods fall short.

Two spatial indexing methods were tested: SciPy’s KDTree for exact nearest-neighbor search,
and the Morton curve algorithm from Diaz et al. [2024b] for approximate nearest-neighbor
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4.2. Phase 1: Synthetic Point Cloud Generation

Figure 4.2.: PotreeDesktop visualization of Area 5, with point clouds colored using aerial
imagery.

search based on spatial locality. For each point in AHN5, the nearest point in AHN4 was
identified, and both 3D Euclidean distance and height difference (∆Z) were recorded.

Definition of Change Types

Through this analysis and a review of related work, a set of relevant building change types
was defined to be included in the synthetic training dataset. These represent common struc-
tural modifications observed in Dutch urban areas and include:

1. Addition or removal of balconies and dormers,

2. Modifications to roof type and height,

3. Horizontal and vertical extensions of buildings,

4. Installation of solar panels with varying thicknesses (4–16 cm),

5. Addition or removal of buildings (detached and row houses),

6. Geometric variations in building shape to increase scene diversity.

These change types were later used in the simulation of synthetic urban environments and
informed the feature design for the random forest (RF) classifier developed in Phase 2. It is
the goal of the developed method to detect these changes.

4.2. Phase 1: Synthetic Point Cloud Generation

The goal of this phase is to create synthetic, labelled airborne laser scanning (ALS) point
cloud datasets that closely resemble real-world data. These datasets will be used for training,
validating, and testing the change detection model. Several datasets are generated to cover
these purposes.

This step is important because in Phase 2, an random forest (RF) will be used for the change
detection method, and this method needs labelled data. Some labelled data is already avail-
able, but it is limited and does not cover all types of changes that are studied in this research.
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In addition, by creating synthetic data, it is possible to control the settings of the scanner
and other parameters. This helps to make sure that the algorithm is trained well and can
work with the national height model of the Netherlands (AHN) and Rotterdam datasets.

Scene Design and Building Changes

Synthetic urban scenes are created using Blender, where 3D building models are generated
or imported from the 3D building models of the Netherlands (3DBAG) dataset. The scene
includes a variety of house types and predefined structural changes. The buildings are
placed on a flat ground plane, with no additional landscape elements.

Simulation ALS Point Cloud Datasets with Helios++

Helios++ is used to simulate ALS data over the synthetic scenes. The tool allows full control
over scanner parameters such as scan angle, frequency, aircraft speed, and pulse repetition
rate. Two types of scenes are created:

• A large urban scene designed to mimic national height model of the Netherlands
number 4 (AHN4) (epoch 1, reference point cloud dataset) and national height model
of the Netherlands number 5 (AHN5) (epoch 2, target point cloud dataset). The scanner
configurations are adapted based on real metadata from AHN4 and AHN5, ensuring that
the synthetic datasets reflect the characteristics of real ALS surveys. Parameters such
as platform height, point density, and beam divergence are fine-tuned using visual
comparisons with real data.

• A smaller test scene, used to generate multiple variations in acquisition settings. To
evaluate the algorithm’s robustness under different data conditions, five synthetic
scene variants are simulated. These differ in scanner models, scanning patterns, pulse
repetition rate (PRR), and flightline configurations. This variation allows investigation
of how uncertainty in acquisition affects detection performance.

Automatic Labelling the Synthetic Data

Once the simulated point clouds are generated, the next step is automatic labelling of
changes. This is done by matching each point to the surface of the 3D models. The la-
belling process includes:

• Determining whether a point belongs to a roof or wall,

• Classifying the type of change (added, removed, modified, or unchanged),

• Assigning a change category (e.g., dormer, solar panel).

House-level labelling is also performed: if at least one point within a house is changed, the
entire house is labelled accordingly. Ground points are generated and classified separately
to support height-based features.
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4.3. Phase 2: Change Detection Method Design

Output and Applications

The final output of this phase is a set of synthetic, fully labelled point cloud datasets. These
datasets are used for:

• Training and validating the change detection algorithm,

• Comparing the varied acquisition scenarios,

• Supporting error analysis and performance interpretation based on ground truth.

This controlled simulation and labelling approach enables systematic evaluation of algo-
rithm performance under known conditions.

4.3. Phase 2: Change Detection Method Design

This phase focuses on developing a method that predicts, for each point in a point cloud,
whether it has changed between two epochs. The method is trained using the synthetic,
labelled datasets created in Phase 1.

Based on the literature discussed in Section 2.3, the following principles are important when
developing a point cloud change detection method:

1. Avoid converting point clouds into raster or voxel formats, as this can lead to a loss of
geometric detail.

2. Include both global and local spatial information.

3. Learning-based methods tend to perform well.

4. The method should work with different input datasets, making it more robust.

Although deep learning models can give high accuracy, they are not used here. These
models need large labelled datasets, are harder to interpret, and require a lot of computing
power. These issues make them less practical for large-scale datasets like national height
model of the Netherlands (AHN). Instead, an random forest (RF) model is used, with an
additional step to handle occlusion for better reliability.

The RF model works directly on point cloud data and does not convert it to raster form. It
is trained using labelled points and uses input features that include both local and global
spatial patterns, satisfying the first three design principles. The method also follows the
fourth principle by using several different synthetic datasets and by including features that
capture uncertainty (such as distance to the flightline).

The method produces two outputs for each point: a classification label (”changed” or ”un-
changed”) and a certainty score. The certainty score shows how confident the method is
in its prediction and whether the point was visible in both scans. Occlusion is handled by
checking the visibility of each point in both epochs. If a point is not visible, the prediction
may be less reliable. The certainty score combines the predicted probability of the RF model
(see Equation 2.2) with occlusion information. The certainty score ranges from 0 to 1: values
close to 0 indicate high certainty the point is unchanged, while values close to 1 indicate
high certainty it has changed. A score around 0.5 suggests a high level of uncertainty. This
concept is shown in Figure 4.3.
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Figure 4.3.: Horizontal color map showing distinction the certainty score.

This method is developed in two steps, explained below. Step 1 estimates the probability
that each point has changed using an RF model. Step 2 improves how uncertainty is handled
by incorporating occlusion information.

Step 1: Train Random Forest to Detect Point-level Changes

In the first step, an RF classifier is used to estimate the probability that each point has
changed. The model uses three types of input features:

• Intrinsic features: Describe properties of the point itself, such as the distance to the
flightline.

• Inter-epoch features: Capture changes between the two epochs, such as differences in
height.

• Dataset-level features: Include general scan properties like point density, beam diver-
gence, or scanner accuracy.

Redundant or irrelevant features are removed to improve model performance. The classifier
then gives a probability value for each point, indicating how likely the point has changed.

Step 2: Integrate Occlusion to certainty Score

The second step improves the interpretation of the results by considering occlusion. Occlu-
sion occurs when a point is not visible in one of the scans, which can make change detection
less reliable. Each point is assigned to one of three occlusion classes (see Figure 4.4):

• Class 0 (Visible): Point is visible in both epochs.

• Class 1 (Static occluded): Point is blocked by a stable object present in both scans.

• Class 2 (Dynamic occluded): Point is blocked because of a structural change, such as
a removed building part.

The occlusion class is determined using ray tracing, based on aircraft positions and the
reference point cloud dataset. Two visibility checks are done for each point, this is described
in Section 5.6.

Two methods are tested to include occlusion in the model:
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4.3. Phase 2: Change Detection Method Design

Figure 4.4.: Types of occlusion. Red points are static occluded (hidden in both epochs). Blue
points are dynamic occluded (hidden due to change). Green points are visible in both
epochs.

• Incorporating occlusion as an additional input feature for a second RF model. This
secondary model receives the initial probability scores from the first RF model, both for
individual points and their neighbours, and combines them with occlusion information
to produce a refined certainty score that accounts for visibility constraints.

• Post-processing the probability scores to generate a certainty score based on the occlu-
sion status of each point. Examples of this approach include:

– Decreasing the certainty score for points that are statically occluded, reflecting
higher uncertainty in those predictions.

– Retaining the original score for dynamically occluded points.

Validation and Evaluation

The method results are evaluated using both numerical metrics and visual inspection. For
each class (changed or unchanged), the following are reported:

• Precision: The proportion of predicted changes that are correct.

• Recall: The proportion of actual changes that are correctly detected.

• Error by change type: Accuracy is also reported for different kinds of changes, such
as dormer additions, solar panels, or other changes.

• Visual Assessment: Precision and recall only show whether points are classified as
changed or unchanged. They do not show how confident the method is. Visual in-
spection allows direct analysis of the certainty scores. Visual assessment is also useful
because changes often affect groups of points, not just single ones. For example, if a
dormer affects 20 points and 18 are correctly classified, the change is still clearly visible
in the certainty map. In such cases, visual inspection provides useful information that
standard metrics might miss.

33



4. Research Methodology

The effect of different synthetic dataset settings is also evaluated. This shows which scanning
conditions or point cloud properties most influence accuracy.

Finally, the impact of occlusion on change detection is also visually assessed by checking
whether points were assigned the correct occlusion class.

Exploratory Step: House-Level Change Detection (Discarded)

An early version of the method tested change detection at the building (house) level. This
aimed to reduce processing time by first filtering out unchanged areas. The rule-based
approach checked for differences in footprint area, maximum height, and roof shape using
concave hulls, height comparisons, and histogram correlation. Details of this approach are
in Appendix F.

While this method worked well for large changes (e.g., new floors or large roof modifica-
tions), it had limitations. The concave hull method was sensitive to point density and often
misclassified unchanged houses. Smaller changes, like dormers or solar panels, were often
missed unless they had a large effect on height or shape. Histogram-based methods also
lacked consistent thresholds due to differences in data quality and building complexity.

Because of these issues, this step was removed from the final method.

4.4. Test Phase: Testing on Real-World Datasets (AHN and
Rotterdam)

In this phase, the developed change detection algorithm is applied to real-world datasets,
specifically national height model of the Netherlands number 4 (AHN4), national height
model of the Netherlands number 5 (AHN5), and a separate dataset covering the urban area
of Rotterdam. These datasets were selected due to their high spatial resolution, availability,
and widespread use in various applications in the Netherlands. Before applying the method,
the datasets must be properly registered, as accurate alignment between epochs is crucial
for reliable change detection. Since this research focuses solely on detecting changes, not
on point cloud registration, this preprocessing step is necessary but not part of the method
itself.

This phase is included to acknowledge that certain preparatory steps are necessary before
applying the algorithm to real-world datasets.

To focus specifically on building changes, a filtering step is used to isolate the relevant
points. Because the classification between datasets differs (see Chapter 3), the scene is first
rasterized. For AHN4 and AHN5, any raster cell that contains at least one building-classified
point is marked as a building cell. All points in the target point cloud dataset that fall
within these cells are then checked to see whether they differ from the reference point cloud
dataset. Since the Rotterdam datasets do not contain building classifications, the rasterized
scene from the corresponding national height model of the Netherlands (AHN) dataset is
overlaid onto the Rotterdam point cloud. All points within the overlapping building cells
are then included in the analysis for the target point cloud dataset. This process is explained
in more detail in Section 5.8.
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After filtering, the change detection method is applied to the selected areas. As there are
no ground truth change labels available for the AHN or Rotterdam datasets, a qualitative
evaluation is performed. This involves visually inspecting the results to assess whether the
algorithm correctly identifies structural building changes.

Finally, the impact of occlusion on the certainty score is also examined, similar to the process
used for the synthetic data. This is done by visually checking whether points have been
assigned the correct occlusion type, based on their visibility in each epoch.

4.5. Conclusion Methodology

The methodology consists of four main phases. The first phase explores the national height
model of the Netherlands number 4 (AHN4) and national height model of the Netherlands
number 5 (AHN5) datasets to understand how building changes appear in point clouds and
to compare different nearest neighbour methods.

In the second phase, synthetic point cloud datasets are created by simulating airborne laser
scanning (ALS) data using Helios++. These datasets are automatically labelled to mark
changed and unchanged areas, allowing training and validation of the change detection
model. Six bitemporal datasets are generated: one designed to mimic AHN4 and AHN5, and
five with different scanning parameters.

The third phase focuses on developing a point-level change detection algorithm based on an
random forest (RF) model. This model uses intrinsic, inter-epoch, and dataset-level features
while maintaining the geometric fidelity of the input point clouds. The RF model outputs
a probability score for each point, representing the likelihood of change. To enhance the
reliability of these predictions, occlusion information is integrated to adjust the probability
score into a certainty score. Two strategies are evaluated for incorporating occlusion: the
first introduces a second RF model in which occlusion is included as an additional input
feature; the second applies a post-processing step that modifies the probability score based
on the occlusion status of each point.

Finally, in the fourth phase, the trained method is applied to real-world datasets, including
AHN4, AHN5, and the Rotterdam ALS datasets from 2023 and 2024. Although no ground
truth data is available, visual evaluation will be conducted to determine whether the method
effectively detects structural changes in buildings. The use of occlusion information will also
be verified by comparing the visibility of building facades between epochs with the occlusion
features assigned to points.

The below figure shows an overview of the methodology.
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Figure 4.5.: Overview of the research workflow, including methodological design, synthetic
data generation, and final testing on real-world datasets.
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5. Implementation

This chapter describes how the proposed method was implemented, following the pipeline
shown in Figure 5.1. The process consists of three key steps that transform raw bitemporal
ALS data into point-level change detection outputs enriched with a certainty index. Each
step is detailed in one or more of the following sections.

Figure 5.1.: Overview of the process.

The first step involves the creation of a synthetic labelled dataset to train and validate the
change detection model. This includes four sections. (1) A visual exploration of the national
height model of the Netherlands (AHN) datasets (Section 5.1). (2) The design of a 3D syn-
thetic urban scene (Section 5.2). (3) Simulation of ALS point clouds over this scene (Sec-
tion 5.3). (4) Automatic labelling of changed and unchanged regions in the point cloud
(Section 5.4).

Next, in the change probability estimation step, an RF classifier is used to predict the like-
lihood of change at the point level, based on a combination of geometric, contextual, and
temporal features (Section 5.5).

The third step focuses on occlusion-aware certainty modeling. This involves first identifying
where occlusions occur in the point clouds (Section 5.6) and then incorporating this visibility
information into the model’s certainty score (Section 5.7).

Finally, the trained method is applied to real-world ALS datasets, the AHN4, AHN5, and the
Rotterdam dataset, to assess the performance and visualize the outcomes (Section 5.8).
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The chapter concludes with a summary of the implementation process in Section 5.9.

5.1. Exploratory Analysis Implementation Details

This section describes the technical implementation of the exploratory analysis steps per-
formed on the national height model of the Netherlands (AHN) datasets. These steps were
designed to support the data understanding and change definition tasks discussed in Sec-
tion 4.1.

The AHN tiles were processed using GeoTiles [van Natijne and Optical and Laser Remote
Sensing group TU Delft, 2025], which subdivide standard AHN tiles into 25 smaller GeoTiles.
These smaller tiles allowed for more efficient loading and processing during both visual
exploration and automated analysis.

Point cloud visualization was carried out using PotreeDesktop [Schütz et al., 2020]. The tool
was used to visually inspect areas of interest for anomalies, such as occlusion, misclassifi-
cation, or gaps in data. AHN point clouds were converted to Potree-compatible format and
overlaid with orthophotos to assist with manual inspection.

The 2D distance between each point and its corresponding flightline was calculated using
the NetTopologySuite library. Each point in the dataset contains a source id, which corre-
sponds to the flightline id. Flightlines were modeled as LineString or MultiLineString
geometries, and distances were computed using the library’s Distance method.

Intra-point distance was computed by finding the average distance from each point to its k
nearest neighbors, where k = 8, based on the recommendation of Diaz et al. [2024a]. This
metric was later used to define neighborhood-based features and thresholding strategies in
change detection.

To compare the spatial location of points between national height model of the Netherlands
number 4 (AHN4) and national height model of the Netherlands number 5 (AHN5), two
nearest neighbor search strategies were implemented:

• KDTree: Provided by the NetTopologySuite.Index library, for efficient exact nearest-
neighbor lookup in 2D or 3D space.

• Morton Curve: An approximate indexing method based on space-filling curves, im-
plemented following Diaz et al. [2024b]. For each point in AHN5, the N = 100 closest
candidates were found along the Morton curve, and the point with the smallest 3D
Euclidean distance was selected as the nearest neighbor.

Both 3D and height-only (∆Z) distances were stored as attributes for further analysis and
visualization. The calculated distances were stored in the GPS-time of the point in a struc-
tured format to allow overlay and filtering during Potree visualization and later training.
This step supported the manual validation of detected changes and the design of training
labels and features in subsequent phases.

38

https://geotiles.citg.tudelft.nl/
https://github.com/potree/PotreeDesktop
https://nettopologysuite.github.io/NetTopologySuite/index.html


5.2. Designing the Synthetic Urban Scene

5.2. Designing the Synthetic Urban Scene

In this section, it is explained how the city scene is created. This step is important for this
research because:

• the scene will be used as input for Helios++, which will simulate the data needed to
train the algorithm,

• the scene can be changed in a controlled way, so the author knows exactly what has
changed,

• the building surfaces (faces) are labelled so the labelling process can be done automat-
ically,

• the scene includes challenges that most change detection methods usually struggle
with,

• different types of houses and different kinds of building changes are included.

To ensure the synthetic dataset is suitable for training and testing the algorithm, it is essen-
tial to create a realistic city scene. This is accomplished using Blender. First, several houses
are downloaded from 3D building models of the Netherlands (3DBAG). These include ter-
raced houses, semi-detached houses, detached houses, apartment blocks, and more complex
structures, such as the Aula and the Architecture building at TU Delft, as shown in Fig-
ure 5.2a. To ensure the input is compatible with Helios++, the faces of the houses must be
valid. For example, no three or more points in a polygon should be collinear. Additionally,
faces with five vertices were not recognized by the Helios++ ’aircraft’, so these planes were
divided into multiple faces to ensure the simulation runs smoothly.

To begin, the complexity of the first four types of houses is reduced by simplifying their
geometry, such as removing unnecessary vertices. This makes the next step, modifying the
houses, much easier. The adjustments made to one type of house are shown in Figure 5.2b.
Similar changes are then applied to the other house types.

(a) Various types of houses included in the city
scene.

(b) Various modifications made to the houses in
the city scene.

Figure 5.2.: Different house types and modifications made in the city scene.

As described in Section 4.2, two synthetic scenes are created. One is a larger city that is
designed to simulate the structure of national height model of the Netherlands number
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4 (AHN4) and national height model of the Netherlands number 5 (AHN5). The other is a
smaller scene, used to create multiple versions with different scanner settings.

Larger Scene

The larger scene is built using several types of houses. This setup, shown in Figure 5.3,
contains seven different groups. Each group is made to test a specific situation:

• Group A: Tests how detection works at different distances from the flightline. All
houses in this group have the same change in one row from the reference point cloud
dataset to the target point cloud dataset.

• Groups B and F: Represent areas with many closely placed houses.

• Group C: Contains houses placed at different angles.

• Group D: Includes more complex building shapes.

• Group E: Contains flats (apartment buildings) that cause occlusion.

• Group G: Features large, detached houses.

Figure 5.3.: The structure of the city scene. Each group of houses is designed to test a specific
aspect of the change detection method.
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Figure 5.3 shows the setup for the first epoch. For the second epoch, several types of changes
are applied to the buildings, including new structures, removals, and other modifications.
Most of the buildings in the scene are changed, which makes the dataset imbalanced (more
changed than unchanged buildings) when doing the houselevel change detection (which is,
in the end, discarded). To fix this, extra copies of unchanged buildings are added. These
copies include different types of buildings and unchanged versions with added dormers and
balconies. They are also rotated and placed in new locations to increase variation. This helps
create a better balance between the changed and unchanged buildings in the dataset.

Smaller Scene

Figure 5.4 shows the smaller scene. This scene includes all types of buildings and changes,
just like the larger one, but is made smaller to reduce processing time. In the next section, it
will be explained how different scanning parameters are used to create multiple versions of
this scene.

Figure 5.4.: Smaller scene used for generating variations in acquisition settings.

Finally, all scenes are exported in the .obj format, making them compatible with Helios++,
which is used in the next phase of the workflow. The changes made to houses are listed in
Section 4.2.

In addition to the houses, a flat surface is added beneath them to represent the ground. The
scene does not include other elements such as trees or roads; it consists only of buildings
and the ground.
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5.3. Simulating ALS Scans from Synthetic Data

In this section, it is explained how a point cloud is created from the city scene, which is
described in Section 5.2. This step is important for this research because:

• the data is needed to train the algorithm,

• the exact locations of the changes are known,

• the bigger scene is designed to mimic the national height model of the Netherlands
number 4 (AHN4) and national height model of the Netherlands number 5 (AHN5)
datasets as closely as possible,

• the smaller scene incorporates different types of scanners and dataset characteristics
to make sure the algorithm works well in many different situations.

In this section, different datasets are created. The first area is a larger scene designed to
match the AHN4 and AHN5 datasets. The second area is smaller and is used to test different
scanner types and various settings. After explaining these areas, the implementation of
Helios++ will be described.

Mimic Synthetic Scene with AHN4 and AHN5

To make sure the synthetic scene matches AHN4 and AHN5, the following scanner settings
can be adjusted: the height of the aircraft, the spacing between flightlines, the speed of the
aircraft, the scan angle, the pulse repetition rate (PRR), and the scan rate.

To check if the synthetic dataset matches the real data, a part of the Netherlands is down-
loaded from both the national height model of the Netherlands (AHN) and 3D building
models of the Netherlands (3DBAG) datasets. Two areas are selected, Area 1 and Area 3,
as shown in Figure 4.1. Area 1 is used for AHN5 because the edges of the flight strips are
straight, making it easier to compare the scan settings. Area 3 is used for AHN4 for the same
reason. This can be seen in Figure 5.5.

Using 3DBAG and flightline data, synthetic versions of AHN4 and AHN5 were created for the
same geographic location. These synthetic point clouds were visually compared to the real
datasets, with a focus on evaluating whether occluded (hidden) building walls align cor-
rectly. This visual inspection also allowed for manual adjustment of simulation parameters,
as described in the sections below.

The ground surface is not included in the synthetic scene, and the 3DBAG buildings already
match the real AHN data in both height and coordinate system. As a result, the synthetic and
real point clouds are spatially aligned without the need for additional transformations.

For both AHN4 and AHN5, the scanner type is recorded in the flight strip metadata, as
explained in Section 3.1. The Leica scanner used in AHN5 is not available in the Helios++

database. Therefore, a custom scanner was created, as shown in Appendix E.

Helios++ does include the Riegl vq-1560i scanner, but it could not generate points from
heights above 600 meters. Since all AHN4 flights were flown at altitudes above 1100 meters,
using this scanner would produce different results and could not recreate the same scene.
At first, the same approach as with the Leica CityMapper was tried, but this resulted in
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5.3. Simulating ALS Scans from Synthetic Data

(a) Area 3 from Figure 4.1, showing AHN4. Col-
ors represent the source id of the points.

(b) Area 1 from Figure 4.1, showing AHN5.
Colors represent the source id of the
points.

Figure 5.5.: Scenes used to match scanning parameters with AHN4 and AHN5.

missing wall points and roof parts in all scenes. For this reason, the Riegl vq-880g scanner
was used instead, which gave results that were more similar and complete.

For AHN data, the aircraft height is found by calculating the median height for each flight-
line.

Next parameter is the distance between flightlines. This estimation of flightline spacing
in the real AHN datasets is used to configure the synthetic scanner’s flightline distance,
ensuring the same overlap and coverage pattern in the simulated data. To calculate this, the
direction (angle) of each segment in a flightline is first determined, and the average angle is
then computed. Each flightline is processed in a loop, where a 2000-meter buffer is created
around it. This buffer helps identify nearby flightlines using the ”intersects” method. Only
those flightlines with similar directions (i.e., matching angles) are retained. The distance
from each filtered flightline to the main flightline is then calculated, and the closest one is
selected. This process is repeated for all flightlines, and the resulting distances are stored.

Some of the distances are zero, which is expected. As shown in Figure 5.6, green flightlines
overlap at the ends with orange flightlines, resulting in a zero distance. Additionally, there
are flightlines, such as the red one, which have no nearby neighbors. For the final distance
calculation for AHN4 and AHN5, only those flightlines with a closest distance of more than
300 meters are considered.

For the scan angle the Areas 1 and 3 are compared as described earlier. The scan angle is
adjusted until the flight strips of the AHN and the simulated dataset match. The correct scan
angle depends on the aircraft’s height, the distance between flightlines, and the amount of
overlap.
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Figure 5.6.: Flightlines in South Holland from AHN4. The green lines have 0 distance to their
nearest neighbor because they overlap. The red line has no close neighboring flightlines.

AHN4 AHN5
Scannername Riegl VQ 780i Leica Citymapper2
Platform name sr22 sr22
Height aircraft (m) 1354.35 1251
Distance Flightlines (m) 1032.96 801.5
Move speed (m/s) 10 135
Scan Frequency (Hz) 100 75
Scan angle (deg) 26.9 23.1
Pulse Frequency (Hz) 464900 2789000

To find the right PRR, a small area on top of a building is selected in the scenes shown in
Figure 5.5. The point density of this area is calculated for both AHN4 and AHN5, as well
as for the simulated datasets. PRR is then adjusted until the densities match. Since the
flightlines are the same for both the real and simulated data, the point density should be
made similar.

For AHN5, the aircraft speed is available in the flightstrip data. For AHN4, the speed is
manually adjusted to match the expected point density.

For AHN5, the scan frequency is taken directly from the scan rate in the flightstrip data. For
AHN4, it is manually adjusted to match the expected point density.

Generate Synthetic Scenes with Different Parameters

To ensure that the algorithm can handle different dataset characteristics, the smaller test
scene (Figure 5.4) was created. Several simulated survey scenes were then generated using
Helios++ over this area.

The scanners and their settings used to create the five synthetic scenes are shown in Table 5.1.
In Scene 1, all settings are identical. In Scene 2, the PRR differs between the two epochs. In
Scene 3, the main difference lies in the scanning pattern and beam divergence. Scene 4 varies
in the flightlines used. In Scene 5, the main difference lies in the accuracy between the two
scanners.
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Scanner Scanning Pattern PRR (Hz) Flightlines
Name Scene E1 E2 E1 E2 E1 E2 E1E2
Scene 1 Riegl VQ-880g Riegl VQ-880g Conic Conic 450000 450000 Same
Scene 2 Riegl VQ-880g Riegl VQ-880g Conic Conic 100000 600000 Same
Scene 3 Leica ALS50-ii Riegl LMS-q560 Oscillating Rotating 450000 450000 Same
Scene 4 Riegl VQ-880g Riegl VQ-880g Conic Conic 450000 450000 Different
Scene 5 Optech 3100 Leica ALS50 Oscillating Oscillating 450000 450000 Same

Table 5.1.: Overview of the five scenes with different scanners and acquisition settings.

Helios++ Implementation

Below the implementation of Helios++ is explained. For Helios++, two files need to be
created:

1. A scene file, which defines which ‘.obj‘ file to use, and how to place, scale, or rotate
it in the scene.

2. A survey file, which contains information about the scanner setup. This includes
which scanner is used, its path, and the values of its parameters. Paths are defined
using ”legs”, where each leg is a straight line between two 3D points (xyz). The same
parameters are used throughout each leg. Scanners can be set as active or inactive for
each leg.

Different types of scanners can be used. A list of the available scanners Helios++ uses can
be found in this XML file.

The software generates a point cloud for each leg in ‘.xyz‘ format. Each point includes its x,
y, z coordinates, intensity value, number of returns, return number, and GPS time. It also
creates a text file that shows the scanner’s trajectory for each leg.

5.4. Automatic Labelling of Changes

This section explains how the synthetic point cloud dataset and the ground truth (the .obj

scene) are combined to create a labelled point cloud dataset. This labelling shows which
points have changed and which have not. This step is important for the research because:

• the workflow includes many iterations, and this method automatically updates labels
when the city scene or simulated scene is changed: no manual relabelling is needed,

• one large scene and five small scenes are created: this method allows labels to be
generated automatically for each scene, which avoids manual labelling and saves time
during testing and training,

• this approach is more accurate than manual labelling, since it matches each point to a
specific face,

• it also gives insight into the type of change, because each point is matched to a specific
face, and the type of face it belongs to.
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In this section, the steps of the labelling process are explained. First, the faces in the .obj

files are labelled. Second, the .obj houses are imported in C#. Third, the points are matched
to each house. Fourth, the points inside each house are matched to a face. Fifth, the .obj

houses from different epochs are matched to compare changes. After these steps, it is ex-
plained how the ground points are identified and separated.

Labelling Faces in OBJ Files

This subsection describes the first step of the process: labelling the faces in the OBJ files.

In Blender, each face of a house is assigned a specific material name that encodes the type
of change that has occurred. This material name begins with three important numbers. The
first number indicates the face type: 1 represents a roof, while 0 or 2 indicates a wall. The
second number describes the nature of the change:

• 1 means the face has been added in the current epoch,

• 2 means it has been removed compared to the previous epoch, and

• 3 indicates a complete replacement, such as when a building is entirely rebuilt.

• If the second number is another value or separated by a comma, it means no change
occurred.

The third number represents the category of the change, with the following mapping:

• 1: House

• 2: Barn

• 3: Height or Roof change

• 4: Width expansion

• 5: Dormer

• 6: Balcony

• 7: Solar panel (4 cm thick)

• 8: Solar panel (8 cm thick)

• 9: Solar panel (12 cm thick)

• 0: Solar panel (16 cm thick)

This encoded information allows for the identification of which parts of a house have
changed and in what way. It is also important that, when a feature is removed between
epochs, the corresponding faces are stored separately in the epoch where they are removed.
This is illustrated in Figure 5.7. Otherwise, if the roof consists of a single face, all points
would be classified as either ”no change” or ”changed.” If all faces are grouped without
distinction, any point matched to that surface would incorrectly be associated with either no
change or all changes. An illustration of this separation is shown in Figure 5.7.
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(a) Two types of buildings with additions. The
left house has a new dormer, and the right
house has an extension in width.

(b) Two types of buildings with removals. The
left house lost a dormer, and the right house
had a width reduction.

Figure 5.7.: Visual examples of added (a) and removed (b) parts in two building epochs,
used to link 3D geometry with the synthetic point clouds.

Importing OBJ Houses

This subsection describes the second step of the process: importing the obj houses.

Import the 3D house models from OBJ files, and a custom parser was implemented to ex-
tract both geometric and semantic information. Each building is identified by o or g tags
within the OBJ file, which denote object or group boundaries. Vertex definitions (v) are
parsed to collect 3D coordinates, which are then used to construct polygonal surfaces from
face definitions (f). The usemtl tags encodes metadata about each surface, including the type
of face (roof or wall), the nature of change (add, remove, or modify), and the specific com-
ponent affected (e.g., house, dormer, balcony). This encoded information is decoded using
a mapping function and associated with each face. All labelled surfaces are grouped into a
HousePolygonsByLabel object, which encapsulates the house name, a collection of labelled
polygonal faces, and metadata indicating whether any change occurred. Each labelled face
also maintains an initially empty list of associated point cloud points. This list is later pop-
ulated with the closest light detection and ranging (LiDAR) points, allowing for labelling the
points since the type of change for the faces is known.

Matching LiDAR Points to Each House

This subsection describes the third step of the process: matching the synthetically generated
LiDAR points to individual houses.

The next step is to match the LiDAR points to each HousePolygonsByLabel. The most accu-
rate method is to calculate the 2D distance between each point and every house, represented
as a multipolygon, and assign the point to the house with the shortest distance. However,
this method is very slow. An alternative approach is to store the points in a KdTree and
use a bounding box (Envelope) for each multipolygon. For each envelope, a spatial query
is performed on the KdTree. Since the envelope covers the entire bounding area of a house,
it may include points that do not belong to the building, such as nearby architectural fea-
tures. Additionally, due to sensor inaccuracies in the synthetic dataset, LiDAR points may
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be slightly misaligned, which can be problematic, especially in areas with terrace houses.
Although using envelopes is faster, it can lead to incorrect matches. Therefore, the method
of checking each point against every house was chosen as the most reliable approach.

See Algorithm G.1 for the pseudocode of this part.

Matching LiDAR Points to Faces Inside the House

This subsection describes the fourth step of the process: matching the synthetically gener-
ated LiDAR points to faces inside the house.

To assign labels to the LiDAR points, they need to be matched to the faces within each
HousePolygonsByLabel, as these faces contain the information about whether and how a
part of the house has changed. Figure 5.8 illustrates how the distance from a 3D point to a
3D polygon is calculated. First, a plane must be extracted from the polygon. This is done by
selecting three non-collinear points from the polygon, creating two vectors between them,
and calculating the normal vector using the cross product. The normal vector’s X, Y, and
Z components are denoted as A, B, and C, while D is computed using one of the polygon’s
points. This gives the plane equation:

Ax + By + Cz + D = 0.

The perpendicular distance from the point to the plane is then calculated using:

Axpoint + Bypoint + Czpoint + D
√

A2 + B2 + C2
.

To find the closest point on the plane, this distance is subtracted in the direction of the
normal vector:

p⃗closest = p⃗original −
Axpoint + Bypoint + Czpoint + D

A2 + B2 + C2 ·

A
B
C

 .

This gives the projection of the point onto the plane. To check if this point lies inside the
polygon, the method IsPointInsidePolygon is used. It applies a 3D ray-casting approach:
a ray is cast from the point in a direction that lies in the same plane as the polygon and is
perpendicular to the normal vector. For each polygon edge, the method checks if the ray
intersects it. If the number of intersections is odd, the point is inside the polygon; if even, it
is outside. If the projected point is outside, the shortest distance to the polygon is calculated
by checking the distance from the point to each edge of the polygon.

See Algorithm G.2 for the pseudocode of this part. The distance to the face is explained
above and not shown in the pseudocode.
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Figure 5.8.: Visualization of determining the distance between a point and a face of a house
in 3D.

Matching OBJ Houses from Different epochs

This subsection describes the fifth step of the process: matching the houses from the two
epochs.

The process of matching houses from two different epochs involves comparing each house
from the first epoch with all houses from the second epoch using the convex hull of their
respective polygons. For each house, the intersection area between its convex hull and that
of the potential matches is computed. If the intersection area exceeds 60% of the area of the
first house’s convex hull, the intersection rate is calculated as the maximum ratio between
the intersection area and the area of either of the two houses’ convex hulls. When a match
with a high intersection rate is identified, the two houses are added to the matchedHouses

list. If no match is found, the house is marked as removed in the first epoch. After processing
all houses from the first epoch, any remaining unmatched houses from the second epoch are
marked as added.

See Algorithm G.3 for the pseudocode of this part.

Ground Points

As explained in Section 5.2, a flat surface (plane) is added below the houses to act as the
ground. Then, a synthetic point cloud is generated for the ground without the houses. After
that, all points located underneath a house are removed, and the remaining ground points
are given a LiDAR classification value of 2.

Including ground points is important because they are needed to calculate the height differ-
ence feature. This feature is used by the random forest (RF) classifier in Section 5.5, especially
for detecting houses that have been extended in width.
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Output

From the matching process, the following information can be obtained for each house:
whether it has been changed and the type of change that occurred. Additionally, for each
point, the output includes its classification (e.g., wall or roof) and whether it has been altered
compared to the other epoch, along with the type of change (added, removed, modified, or
unchanged). A ”modified” change refers to cases where a house has been removed and
replaced by a new one, for example.

See Algorithm G.4 for the pseudocode of the general pipeline of the labelling process.

5.5. Point-Level Change Probability Estimation

This section explains how the random forest (RF) classifier is trained, to compute a point-
level classification. This step is important for the research because:

• it incorporates point features, both individually and in context, such as distance to the
flightline and the stability factor,

• it takes into account dataset characteristics, like differences in point density or accuracy
between the datasets,

• it gives each point a probability of being changed or unchanged.

In this section, all the features of the points are explained. These include the features as
outline in Table 5.2.

Table 5.2.: Overview of input features used for change detection

Feature Type Description

Point-Level Features

Distance to flightline Horizontal distance to the nearest flightline
Tilt Angle Measures angle of a fitted plane through the neighbouring points
3D Density The amount of points around the target point
stability factor around point Measures the stability factor in the local neighborhood
Height difference Vertical difference between epochs
stability factor difference Change in local geometric consistency
3D point density difference Change in 3D point density around the point
2D point density difference Change in density when projected on 2D plane
Linearity difference Change in the degree to which points form a line
Planarity difference Change in the degree to which points form a plane
Sphericity difference Change in the degree to which points form a sphere

Dataset-Level Features

Beam divergence difference Change in beam spread between datasets
Point density difference Overall point density variation
Planimetric accuracy difference Difference in horizontal accuracy
Height accuracy difference Difference in vertical accuracy
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To illustrate the features at each point, the scene shown below is used (Figure 5.9). Individual
points are color-coded to represent their respective features.

(a) Simulated scene of the reference point cloud
dataset.

(b) Simulated scene of the target point cloud
dataset.

Figure 5.9.: Synthetic dataset showing two different epochs of the same scene. This example
will be used again later to help visualize point-level features.

Figure 5.10.: Combined view of the scene from both epochs. Points from the reference point
cloud dataset are shown in green, and points from the target point cloud dataset are
shown in black. For the separate views, refer to Figure 5.9a and Figure 5.9b.

Intrinsic Point-Level Features

The first feature of the category Intrinsic Point-Level Features represents the distance
to the flightline within the epoch when the point was recorded. This feature captures the in-
creased uncertainty that appears when points are farther from the flightline. The calculation
method for the distance between a point and a flightline is explained in Section 5.1.

The second feature is the tilt angle, which helps to differentiate vertical surfaces (such as
walls) from horizontal surfaces (such as roofs). This angle is calculated based on the 3D
positions of the nearest neighbouring points around the target point. First, the covariance
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matrix of the local neighbourhood is computed. Then, eigenvalue decomposition is per-
formed to find the main directions. The third eigenvector (corresponding to the smallest
eigenvalue) estimates the surface normal, representing the direction with the least variation
in point distribution. The angle between this surface normal and the vertical axis (Z-axis)
gives the tilt angle of the local surface. A tilt angle near 0 or 180 degrees indicates a horizon-
tal surface, while an angle near 90 degrees suggests a vertical surface. Results are presented
in Figure 5.11.

Figure 5.11.: Visualization of the second epoch of the synthetic dataset shown in Figure 5.9.
Points are color-coded based on the Tilt Angle feature: yellow indicates a high angle
(approximately 180 degrees), and dark blue indicates a low angle (approximately 0 de-
grees).

The third feature is the 3D density around the point within its point cloud. This feature is
important because the accuracy of the tilt angle depends on the number and distribution of
neighbouring points. The result is illustrated in Figure 5.12.

The fourth feature is the stability factor around the point. As described in Section 2.6
and shown in Figure 2.11, this factor is the ratio between the number of points in a 2D
neighbourhood and those in a 3D neighbourhood (Tran et al., 2018). It is calculated as:

Stability Factor =
Nspherical

Ncylindrical
, (5.1)

Where Nspherical is the number of points inside a sphere of fixed radius, and Ncylindrical is the
number of points inside a vertical cylinder of the same radius but extended in height. The
result is illustrated in Figure 5.13.
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Figure 5.12.: Visualization of the second epoch of the synthetic dataset shown in Figure 5.9.
Points are color-coded based on the 3D Density feature: yellow indicates a high density
(25 neighbouring points), and dark blue indicates a low density (0 neighbouring points).

Figure 5.13.: Visualization of the second epoch of the synthetic dataset shown in Figure 5.9.
Points are color-coded based on the stability factor feature: yellow indicates a high
stability factor of 1, and dark blue indicates a low stability factor of 0.
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Point Features Compared Between epochs

The first features of the category Point Features Compared Between epochs require find-
ing the nearest neighbours in the other epoch, both in 2D and 3D space. A method based on
the KdTree data structure was implemented to enable fast spatial queries. For each target
point, a square search window in the 2D plane (X and Y coordinates) is defined using a
given threshold distance. This window forms a bounding box used to query the KdTree for
nearby points. The query is first executed on the KdTree containing only building points
from the reference point cloud dataset. If no neighbours are found within the 2D threshold,
the query is repeated on the full reference point cloud dataset, which includes all object
types. To identify 3D neighbours, points found in 2D are filtered by height (Z coordinate).
Only points with height differences smaller than the threshold remain. The same process is
repeated for the target point cloud dataset. The chosen threshold distance is 0.5 meters.

The first feature is the height difference. This feature is based on observations from the
exploration phase (see Section 6.1). To calculate it, 2D neighbours within 0.5 meters are
considered. If none exist, the threshold increases by 1 meter repeatedly until at least one
neighbour is found. Then, the 3D distances to these neighbours are calculated, and the
smallest distance is used as the feature value. For the scene in Figure 5.9, the Height Differ-
ence is shown in Figure 5.14.

Figure 5.14.: Visualization of the second epoch of the synthetic dataset shown in Figure 5.9.
Points are color-coded by the absolute Height Difference feature: blue indicates a higher
height in the current epoch compared to the previous, red indicates a lower height, and
gray indicates minimal difference.

The second feature is the Difference in stability factor relative to the nearest neighbour in
the other epoch. This factor was explained earlier in this section. For the scene in Figure 5.9,
the stability factor Difference is shown in Figure 5.15.

The third feature measures the Difference in 3D point density around the point. This is
calculated by counting the number of neighbouring points within a set radius. The corre-
sponding visualization is in Figure 5.16.
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Figure 5.15.: Visualization of the second epoch of the synthetic dataset shown in Figure 5.9.
Points are color-coded by the stability factor Difference feature: blue indicates a
higher stability factor in the current epoch compared to the previous, red indicates a
lower stability factor, and grey indicates minimal difference.

Figure 5.16.: Visualization of the second epoch of the synthetic dataset shown in Figure 5.9.
Points are color-coded by the absolute 3D Density Difference feature: blue indicates
higher density in the current epoch, red indicates lower density, and grey indicates mini-
mal difference.
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The fourth feature represents the Difference in 2D density around the point. The corre-
sponding visualization is in Figure 5.17.

Figure 5.17.: Visualization of the second epoch of the synthetic dataset shown in Figure 5.9.
Points are color-coded by the 2D Density Difference feature: blue indicates higher den-
sity in the current epoch, red indicates lower density, and grey indicates minimal differ-
ence.

The fifth, sixth, and seventh features are the differences in linearity, planarity, and spheric-
ity. These geometric features describe the local neighbourhood within the same epoch as
the point.

• Linearity measures how closely the points align along a straight line. Higher values
mean a more linear shape.

• Planarity measures how well the points lie on a plane. Larger values mean a flatter
surface.

• Sphericity measures how close the points are to forming a sphere. Higher values mean
a more spherical (isotropic) shape.

These features are computed from the eigenvalues of the covariance matrix of the neigh-
bourhood points, sorted as λ1 ≥ λ2 ≥ λ3. The formulas are:

Sphericity =
λ3

λ1
, Linearity =

λ1 − λ2

λ1
, Planarity =

λ2 − λ3

λ1
. (5.2)

The eigenvalues λi describe:

• λ1: Variance along the main direction, representing the dominant axis.

• λ2: Variance in the second direction, showing the spread on a plane.

• λ3: Variance in the smallest direction, indicating thickness or depth.
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Figure 5.18.: Visualization of the second epoch of the synthetic dataset shown in Figure 5.9.
Points are color-coded based on the Linearity Difference feature: blue represents low
linearity, red represents high linearity.

Figure 5.19.: Visualization of the second epoch of the synthetic dataset shown in Figure 5.9.
Points are color-coded based on the Planarity Difference feature: blue represents low
planarity, red represents high planarity.
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Figure 5.20.: Visualization of the second epoch of the synthetic dataset shown in Figure 5.9.
Points are color-coded based on the Sphericity Difference feature: blue represents low
sphericity, red represents high sphericity.

Dataset-Level Features

For each scene, several dataset-level characteristics are measured and employed as input
features. So when a real dataset is the input, those features need to be calculated. The four
calculated values for each scene include:

1. Beam divergence difference: The difference between the beam divergence values of
the two scanners involved in the scene.

2. Point density difference: The difference in point density between epochs. In synthetic
scenes, this is calculated by dividing the number of points by the surface area of the
building polygons.

3. Planimetric accuracy difference: The difference in horizontal accuracy. With ground
truth available for synthetic data, two buildings are selected, and the average horizon-
tal offset of the wall points is computed.

4. Height accuracy difference: The difference in vertical accuracy. For the same two
buildings, the average vertical offset of the roof points is calculated.

These values are listed in Table 5.3. Scene 6 corresponds to the matched national height
model of the Netherlands number 4 (AHN4) national height model of the Netherlands num-
ber 5 (AHN5) dataset.

Scene 2 from Table 5.3 is excluded from the training and validation datasets due to low point
cloud quality in the reference point cloud dataset. The lower pulse repetition rate (PRR) in
the reference point cloud dataset leads to significantly sparser point coverage with large
gaps, producing unrealistic patterns that do not represent real airborne scans. This sparse,
uneven point distribution causes lower data quality, which supports the exclusion of the
reference point cloud dataset in Scene 2 from training and validation due to its negative
impact on model performance. This is visible in Figure 5.21.
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5.5. Point-Level Change Probability Estimation

Scanner Beam Divergence Density Planimetric Accuracy Height Accuracy
[mrad] [pts/m²] [cm] [cm]

Name Scene E1 E2 E1 E2 E1 E2 E1 E2 E1 E2
Scene 1 Riegl VQ-880g Riegl VQ-880g 0.3 0.3 9.74 9.73 13.0 14.8 5.87 6.92
Scene 2 Riegl VQ-880g Riegl VQ-880g 0.3 0.3 2.17 13.04 13.2 14.7 5.65 6.78
Scene 3 Leica ALS50-ii Riegl LMS-q560 0.22 0.5 7.22 4.92 4.4 14.7 0.26 1.90
Scene 4 Riegl VQ-880g Riegl VQ-880g 0.3 0.3 12.24 14.34 20.0 17.2 6.43 5.74
Scene 5 Optech 3100 Leica ALS50 0.424 0.33 7.82 7.55 8.9 7.50 1.22 0.58
Scene 6 Riegl VQ-1560i Leica CityMapper-2 0.18 0.23 19.06 12.82 12.8 5.77 1.17 0.29

Table 5.3.: Differences in scanner specifications and accuracy between epochs E1 and E2 for
each scene.

(a) The reference point cloud dataset of Scene 2,
showing low PRR and resulting low point den-
sity.

(b) target point cloud dataset 2 of Scene 2, show-
ing high PRR and resulting high point density.

Figure 5.21.: Maximum difference in pulse frequency between epochs in Scene 2.

Feature Selection, RF Parameters, and Evaluation

Before training the classifier, the dataset is balanced by applying stratified under-sampling
to the changed points and uniform sampling to the unchanged points, resulting in approx-
imately 58% unchanged and 42% changed points. This approach avoids naive over- or
under-sampling while maintaining a representative distribution. Minor changes, such as
the addition of a balcony, are included to ensure completeness. The data is then split into
training, validation, and testing subsets.

The validation set is used to select the most effective input features and determine the best-
performing feature combinations. Two methods are used to identify the most important
features for point-level classification: permutation feature importance and RF feature im-
portance. These approaches help to measure how much each feature contributes to model
performance. Further details are provided in Section 2.4.

Different combinations of input feature types and change scenarios were tested on a valida-
tion dataset to determine which configurations perform best. The possible types of changes
include balcony additions, dormers, height increases, complete house changes, house width
extensions, and solar panels with thicknesses of 4, 8, 12, and 16 cm. The following input
feature sets were evaluated:

1. Set 1: Includes all change types and all dataset-level features.

2. Set 2: Excludes intrinsic point-level features: tilt angle and 3D point density. This
choice is motivated by visual inspection (Figure 5.11), where the tilt angle did not
show clear discrimination power. Additionally, the 3D density feature was excluded
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5. Implementation

because tilt angle values can be misleading when few neighboring points exist, causing
exaggerated tilt measurements.

3. Set 3: Excludes most dataset-level features: beam divergence difference, planimetric
accuracy difference, and height accuracy difference. This set was used to evaluate
whether the model effectively uses these features, which are constant for all points
within the same dataset and thus have limited variability. The only dataset-level fea-
ture retained here is the density difference, as it showed the most promising results.

4. Set 4: Excludes all dataset-level features, including density difference, to further test
the model’s reliance on these features.

5. Set 5: Removes training data involving solar panels with thicknesses of 4 cm and 8
cm by filtering them out during data balancing. These small changes are excluded
to examine whether they negatively impact the detection of unchanged areas. Since
the accuracy of most datasets is limited to changes larger than 8 cm, this set tests if
excluding thinner panels improves model performance.

For visualizing these results, two sets will be selected based on the found accuracy scores.

5.6. Occlusion Type Classification per Point

This section explains how it is checked if a point is hidden (occluded) in one of the epochs,
and what type of occlusion it is. To know the different types of occlusions, see Figure 4.4.
This step is important because:

• It helps to handle occlusion at the point level, which is a common problem in many
change detection methods that causes false changes. Most methods detect these areas
as changed since a lot of information (points) are missing and it is hard to compare.
For this research these areas should be detected as unknown.

To decide which occlusion class a point belongs to (static occluded, dynamic occluded, or
visible), two booleans (True/False) are checked:

• Boolean 1: Is the point hidden when using the point cloud and aircraft positions from
the reference point cloud dataset? This is called Occluded with reference point cloud
dataset Aircraft Positions.

• Boolean 2: Is the point hidden when using the point cloud from the reference point
cloud dataset and aircraft positions from the target point cloud dataset? This is called
Occluded with target point cloud dataset Aircraft Positions.

The occlusion class is assigned based on these checks:

• If Boolean 1 is True, the point is Class 0 (Visible).

• If both Boolean 1 and Boolean 2 are False, the point is Class 2 (dynamic occluded).

• If Boolean 1 is False and Boolean 2 is True, the point is Class 1 (static occluded).

Each boolean is calculated in four steps:

60



5.6. Occlusion Type Classification per Point

1. Find the relevant flightlines. For the first boolean, the flightlines from the reference
point cloud dataset are used. For the second boolean, the flightlines from the target
point cloud dataset are used.

2. Get the aircraft positions along these flightlines.

3. Select all points that lie between the aircraft and the point we want to check.

4. From these, filter the points that block the view to the point.

Step 1: Identifying Flightlines That Could See the Point

First, the flightlines that could have observed the point are identified. This is done by
representing each flight strip as a polygon and checking whether it contains the target point
in the (x,y) plane.

See Algorithm G.5 for the pseudocode of this part.

Next, in step 2 the positions of the aircraft on the flightlines are determined. This step con-
siders the viewing angles of the aircraft and the light detection and ranging (LiDAR) scan-
ning pattern. As described in Section 3.1, national height model of the Netherlands number
4 (AHN4) uses a zigzag scanning pattern, while national height model of the Netherlands
number 5 (AHN5) employs an oblique LiDAR scanner, requiring different approaches.

Step 2a: Determining Aircraft Positions on Flightlines in the Synthetic
Dataset

In the synthetic dataset, each point and each coordinate along a flightline is associated with
a GPS timestamp. This level of detail is not available in the AHN4 and AHN5 flightlines; it is
only stored at the point. Due to the availability of GPS time information, the position of the
scanner (or aircraft) at the moment a point was captured can be estimated.

The estimation process begins by identifying the closest flightlines to the target point. For
each of these flightlines, neighbouring points are selected if their GPS times fall within the
start and end times of the flightline. Among these, the 3D neighbour closest to the target
point is identified.

Using the GPS time of this nearest neighbour, two consecutive coordinates on the flightline
that enclose the GPS time are found. The position of the scanner is then calculated through
linear interpolation between these two coordinates. This provides an estimated position of
the aircraft at the time the neighbour point was recorded.

See Algorithm G.6 for the pseudocode of this part.
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5. Implementation

Step 2b: Determining Aircraft Positions on Flightlines Leica CityMapper-2

The scanning pattern for AHN5 is shown in Figure 3.4. Based on this pattern and the
knowledge of which flightlines could potentially observe the point, there are two possi-
ble aircraft positions for each flightline. These positions are illustrated in the middle part of
Figure 5.22.

To determine these positions, a buffer is created around the target point. The radius of
this buffer corresponds to the scanning range of the oblique scanner. The points where
the flightline’s (multi)linestring intersects the boundary of this buffer represent the aircraft
positions that could have scanned the point.

The radius of the scanning circle is calculated as follows:

• The Field of View (field of view (FOV)) for each flightline is extracted from the flight
strip data.

• The aircraft height must be determined. This is done per flightline by taking the
median of the elevation coordinates of the (multi)linestring representing the flightline.

• The radius of the scanning circle is then calculated as:

radius = tan
(

FOV

2

)
× aircraft height. (5.3)

This ensures that the correct aircraft positions are identified based on the scanning geome-
try.

Figure 5.22.: The left part of the figure presents an example scenario. The middle part illus-
trates which oblique scans are capable of observing the point. The right part depicts the
buffer around the target point, which is used to determine the possible aircraft positions.

See the first part of Algorithm G.7 for the pseudocode of this part.

Step 2c: Determining Aircraft Positions on Flightlines Riegl VQ-1560i
Scanner

The scanning pattern for AHN4 is illustrated in Figure 3.2 and further visualized in 3D in
Figure 5.23.
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5.6. Occlusion Type Classification per Point

(a) Channel 1 conducting a point at the right side
of the flightline. Angles are visible in one draw-
ing. 2D drawings visible in Figure 3.2a.

(b) Channel 2 conducting a point at the right side
of the flightline. Angles are visible in one draw-
ing. 2D drawings visible in Figure 3.2b.

Figure 5.23.: For both scanners of the Riegl VQ-1560, the angles are shown in one drawing
when seeing a point.

The process of determining the aircraft position from a given target point is illustrated in
Figure 5.24 and Figure 5.25. Below is a detailed breakdown of the steps:

1. First, after identifying which flightlines could potentially see the point, a line segment
is created for each flightline. Since flightlines are stored as (multi)linestrings, some
computations of the next step can be challenging. To simplify the process, each flight-
line is temporarily represented as a straight line segment, using its first and last points.
Later, the segment will be mapped back onto the original (multi)linestring. These seg-
ments exist in the (x,y) plane. This step corresponds to the first step of Figure 5.24.

2. The next step is to determine the closest point (Ci) on each of these line segments to
the target point. This step is illustrated in the second step in Figure 5.24.

3. Since the LiDAR scanner is tilted at an angle of 14◦ in the (x, y)-plane, this needs to be
accounted for. The correction is applied by multiplying the distance from the target
point to C1 and C2 by the tangent of 14 degrees. This adjustment ensures that the
position of the aircraft accounts for the tilted scanning angle. The resulting new points
are labelled D1, D2, D3, and D4. This step corresponds to the third step in Figure 5.24.

4. Next, lines are drawn from the target point to D1, D2, D3, and D4. These lines are then
extended until they intersect in the (x,y) plane with the flightlines. The intersection
points, which represent the projected positions on the original (multi)linestrings, are
labelled E1, E2, E3, and E4. This step is illustrated in the fourth step in Figure 5.25.

5. A buffer is then applied around E1, E2, E3, and E4 in the (x,y)-plane. The size of
this buffer is calculated as the tangent of 8◦ multiplied by the z-coordinate of the
point itself (i.e., the height of Ei). This accounts for the forward and backward scan
angles when scanning in a non-nadir direction. The intersection points between these
buffer boundaries and the flightlines represent the possible aircraft positions. This
step generates eight possible positions, labelled F1, ..., F8, each having x, y, and z
coordinates. This step corresponds to the fifth step in Figure 5.25.

6. For each flightline, the flight direction is determined by checking which coordinate is
saved first and which is saved last in the (multi)linestring geometry. Additionally, it is
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determined whether the target point is located to the left or right of the flightline’s di-
rection. This is calculated using the orientation index function applied to the flightline
segment:

• -1: The point is to the right of the flightline.

• 1: The point is to the left of the flightline.

• 0: The point and the flightline segment are collinear.

This step corresponds to the sixth step in Figure 5.25.

7. Finally, to determine the true aircraft positions from the eight possible points (F1, ...,
F8), three key factors are considered:

a) The flight direction

b) Whether the target point is left or right of the flightline.

c) Whether the point was scanned by Scanner 1 or Scanner 2.

The scanner type can be identified using Figure 3.2:

• If the point is to the right of the flightline, the first aircraft position (in flight
direction corresponds to Scanner 1.

• If the point is to the left of the flightline, the first aircraft position (in flight direc-
tion corresponds to Scanner 2.

Scanner 1 has a backward-facing scanner, so the last possible position (in flight direc-
tion is the correct one. Scanner 2 has a forward-facing scanner, so the first possible
position (in flight direction) is the correct one. This final selection process is illustrated
in the seventh step in Figure 5.25.

Figure 5.24.: The initial condition and the first three steps in determining the aircraft po-
sitions for a Riegl VQ-1560i scanner that could have observed the target point. The left
section shows an example of two flightlines near the point. The middle section illustrates
the first step, which involves fitting line segments. The next step identifies the closest
point on the line segment to the target point. The right section depicts how the projected
point shifts to account for the 14-degree tilt of the scan angle.

See the third part of Algorithm G.7 for the pseudocode of this part.
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5.6. Occlusion Type Classification per Point

Figure 5.25.: The final four steps in determining the aircraft positions for a Riegl VQ-1560i
scanner that could have observed the target point. The left section shows the step where
lines are fitted from the target point to the projected points, followed by their intersection
with the flightline. The next step applies a buffer to account for the forward and backward
scan angles and finds intersection points between the buffer boundaries and the flightlines.
The right two sections focus on selecting the correct points based on the flight direction,
whether the point is to the left or right of the flightline, and whether it was scanned by
channel 1 (Figure 5.23a) or channel 2 (Figure 5.23b).

Step 3: Selecting Relevant Points

With the known positions of the aircraft, a 3D ray is created from the target point to the
aircraft. If the point cloud is stored in a NetOctree, all points located along this ray can be
retrieved within a certain distance. The radius of the ray is calculated using Equation 5.4:

rray = 2 · tan
(

θdiv
2

)
· haircraft + 2 · σhor + 2 · σver. (5.4)

Where θdiv is the laser beam divergence angle (in radians), haircraft is the height of the air-
craft, σhor is the horizontal accuracy of the scanner, and σver is the vertical accuracy of the
scanner.

The laser beam divergence determines the footprint size of the laser pulse on the ground.
It represents the angle between the laser beam’s normal and the boundary of its footprint.
This divergence defines the effective width of the laser beam and is used to set a tolerance
threshold around the visibility ray. For each aircraft position, a 3D ray is constructed from
the target point towards the aircraft position. The direction vector is normalized, and the
full distance to the aircraft is computed. An allowable error margin is calculated based on
the laser divergence and the aircraft’s height above the target point. This margin represents
the radius around the ideal laser path within which potential occluders can exist. Using a
spatial index (specifically a PointOctree), all points near the ray within the threshold margin
are retrieved.

Only those with the same values for Return Number and Number of Returns are kept from
the retrieved points. This ensures that the characteristic LiDAR behavior of penetrating
through tree canopies is preserved.
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Step 4: Determining Occlusion

The points selected in the previous step may belong to the same surface as the target point
or to an obstacle that could block it. To determine whether the target point is occluded, a
check is performed to see if any of the selected points are within a certain distance. If such
points are present, the target point is not occluded. Otherwise, it is considered occluded.

Another approach involves fitting 3D planes through the selected points. If no well-fitting
plane is found that includes the target point, it is assumed that it is occluded. To fit a 3D
plane, points are first grouped based on their distance. Then, for each group, the best-fitting
plane is computed following the method described in Eberly [2024]. The process consists of
the following steps:

1. Compute the mean of each coordinate (X, Y, Z).

2. Center the points by subtracting the mean value.

3. Calculate the covariance matrix of the centered points.

4. Perform eigenvalue decomposition to obtain eigenvectors and eigenvalues.

5. Identify the eigenvector corresponding to the smallest eigenvalue, which represents
the normal of the plane.

6. Compute the plane parameter d using the normal and mean values.

Ultimately, this method was not used because it requires a long computation time.

The third and final selected approach is carried out as follows. Each nearby point is evalu-
ated using the following conditions:

• The point is located along the segment between the target point and the aircraft, based
on its projection onto the direction of the laser ray.

• The point is positioned at least a small distance ahead of the target point, in the di-
rection of the ray. This distance is defined by a threshold called ErrorHeight, which
ensures the point is slightly in front of the target point and not on the same plane. The
ErrorHeight is equal to the radius of the ray, as defined in Equation 5.4.

These checks confirm whether a point is physically in a position to block the line of sight
between the aircraft and the target point. If three or more points meet the above occlusion
conditions, the target point is classified as occluded. If no such points are found along the
ray from any aircraft position, the target point is classified as not occluded.

See Algorithm G.8 and Algorithm G.9 for the pseudocode of this step and the previous step
(step 3).

5.7. Integrating Occlusion into Certainty Scoring

This section describes how occlusion is used to estimate uncertainty and improve the re-
liability of the change detection algorithm. Two methods are explored. The first includes
occlusion as an input feature for a second random forest (RF) model. The second method
modifies the probability score from the first RF model to reflect uncertainty.
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Model 1: Second RF Model With Occlusion as Input

For the second RF model, several input features are used. The first is the type of occlusion
for the target point. The types of occlusion are explained in Section 5.6 and illustrated in
Figure 4.4. There are two occlusion boolean values, from which the occlusion type of each
point is determined.

The second feature is the probability score from the first RF model for the same point. The
third feature is the average probability score of neighboring points, referred to as the ratio
probability. This feature helps to smooth predictions by including context from nearby points.
It aims to reduce the influence of outliers and move from a purely local to a more global
interpretation.

Model 2: Post-processing Probability Scores Using Occlusion

The second method adjusts the output probability score from the first RF model based on
occlusion status. The idea is that if a point is not visible to the scanner, it is uncertain whether
a change has occurred, because no reliable data is available for that region. In such cases,
the prediction should be less confident, and the certainty score should be 0.5, representing
uncertainty. This approach is explained conceptually in Figure 4.3.

Again, the types of occlusion are described in Section 5.6 and visualized in Figure 4.4.
Figure 5.26 shows the binary occlusion labels for the synthetic scene. In Figure 5.26b, most
wall points should ideally appear green (visible). However, walls facing the x-direction
appear red, indicating dynamic occluded. According to the boolean rules in Section 5.6,
these points are incorrectly labelled as dynamic occluded. This problem frequently occurs
for wall points.

(a) Occlusion based on reference point cloud
dataset aircraft positions.

(b) Occlusion based on target point cloud aircraft
positions.

Figure 5.26.: Visualization of the second epoch of the synthetic dataset (see Figure 5.9). Points
are color-coded according to the two occlusion feature values. Red indicates occlusion;
green indicates visibility under the corresponding boolean condition.

Before applying occlusion-related rules, it is helpful to identify whether a point belongs to
a wall. To make this distinction, the stability factor (defined in Equation 5.1) is used. Fig-
ure 5.27 visualizes this: points with a stability factor greater than 0.5 are shown in one color,
while those with 0.5 or less are shown in another. This threshold effectively differentiates
roof from wall surfaces.
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Figure 5.27.: stability factor threshold visualization. Points with a value above 0.5 are sep-
arated from those with a value of 0.5 or below. This distinction helps to differentiate
between roof and wall surfaces.

To improve the reliability of method predictions, the probability scores from the first RF
model are adjusted based on both the occlusion type and the stability factor of the point.
This adjustment is only applied to points with an initial probability score greater than 0.5.
The adjustment rules are as follows:

1. Visible: The score remains unchanged.

2. Dynamic occluded with a stability factor > 0.5: The score remains unchanged.

3. Static occluded with a stability factor > 0.5: The score is reduced to 0.5.

4. Static occluded with a stability factor ≤ 0.5: The score is reduced to 0.5.

5. Dynamic occluded with a stability factor ≤ 0.5, and more than 20% of neighbor-
ing points are static occluded: The score is reduced to 0.5. The 20% threshold was
determined through visual inspection. In many wall regions, most points are incor-
rectly marked as occluded, while only a small portion is correctly identified as visible.
Therefore, a relatively low threshold (20%) is used to trigger the adjustment.

These rules aim to reduce false positives in regions where visibility is compromised due to
occlusion, particularly on wall surfaces where scanner line-of-sight is often blocked.

An overview of the rule-based adjustment process is shown in Figure 5.28.

5.8. Application to Real Datasets (AHN and Rotterdam)

This section details how the trained random forest (RF) classifiers and occlusion logic are
applied to the national height model of the Netherlands (AHN) and Rotterdam datasets.
This application serves three main purposes:

68



5.8. Application to Real Datasets (AHN and Rotterdam)

Figure 5.28.: Overview of conditions used to adjust the probability scores based on occlusion.
Adjustments are only made for points with an initial probability score above 0.5. dynamic
occluded refers to points that become occluded due to changes between epochs, while
static occluded refers to permanent obstructions present in both epochs. A stability factor
above 0.5 generally indicates roof surfaces; lower values correspond to walls.
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• It demonstrates the performance of the trained models on real-world data.

• It highlights limitations of the current approach, providing insights that can inform
improvements to the synthetic training data, making it more representative of datasets
like national height model of the Netherlands number 4 (AHN4), national height model
of the Netherlands number 5 (AHN5), and Rotterdam.

• It illustrates the generalizability of the algorithm across two distinct data sources.

Furthermore, this section outlines the method used to group light detection and ranging
(LiDAR) points into individual building, a crucial step for building-level change detection.

Filtering Building Points in AHN

Because the classification differs per dataset, the first step is to group LiDAR points that
belong to the same building. This is achieved using a raster-based clustering technique. The
area is divided into a 2D grid of raster cells, each representing a fixed ground area based
on a chosen resolution. Each cell stores the list of points it contains and a boolean flag
indicating whether any of them are labelled as building points.

Clustering is performed by scanning each cell. For each unvisited cell containing building
points, a flood-fill algorithm (using depth-first search) identifies all neighboring building-
containing cells. These connected cells form a building cluster and are assigned a unique
identifier, BuildingGroup. Two cells are considered connected if they share a horizontal or
vertical edge.

The raster resolution is defined as four times the average intra-point distance of the dataset
(see Section 5.1). To ensure consistent clustering across different epochs, the resolution
is based on the largest intra-point distance across all datasets. This guarantees alignment
between rasters, which is essential for comparing buildings across time.

A cell is marked as ContainsBuildingPoints = true if it contains at least one point labelled
as a building. This approach compensates for inconsistencies in labelling, especially in AHN5,
where wall surfaces are not labelled as building. Including such points ensures a more
complete building representation. Figure 5.29 and Figure 5.30 illustrate the results of this
clustering on the AHN4 dataset.

Matching and Change Classification

After clustering, each building cluster in the target point cloud dataset is matched to a
corresponding cluster in the reference point cloud dataset. If no suitable match is found, the
cluster is assumed to represent a newly constructed building. In that case, all points within
its raster cells are labelled as changed with maximum certainty (score = 1).

Because of variations in point density, noise, and occlusion between epochs, buildings may
appear split or merged. As a result, the matching strategy must accommodate both one-to-
many and many-to-one relationships between clusters.

In some cases, a building extension present in the reference point cloud dataset may be
removed in the target point cloud dataset. To handle such cases, the method also considers
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Figure 5.29.: 2D raster clustering result for Area 5 from Figure 4.1. Each color represents a
unique building cluster. Light blue cells contain no building points.

Figure 5.30.: Raster visualization of poorly captured buildings in AHN4 (see Figure 6.4a).
These cases highlight challenges in clustering when input data quality is low.
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points in the target point cloud dataset that are closest to any building points in the reference
point cloud dataset, ensuring that removed segments are properly accounted for.

Once clusters are matched, each point within the building group is evaluated using the
trained RF classifier. The classifier produces a binary prediction indicating whether a point
has changed. For points classified as changed (i.e., with a score above 0.5), an occlusion-
aware adjustment is applied to refine the certainty score. This refinement helps reduce false
positives, especially in areas affected by occlusion.

Applying to Rotterdam

The Rotterdam dataset only includes ground and non-ground labels, which makes direct
clustering infeasible. To overcome this, building outlines from the AHN dataset are reused
to define building regions in Rotterdam. Consequently, the Rotterdam dataset is primarily
used for qualitative evaluation rather than independent building segmentation.

Assessment

To assess the method’s performance, multiple areas within the AHN and Rotterdam datasets
are analyzed. These regions feature a variety of change types, allowing for qualitative eval-
uation of detection accuracy. Special attention is given to solar panels, which must be man-
ually identified due to the lack of labelled data. This is done by visually inspecting roof
intensity patterns across epochs, as shown in Figure 6.3.

The evaluation is carried out by visually comparing the predicted changes showed in the
point cloud with orthophotos from Beeldmateriaal Nederland. A prediction is considered
successful if the method detects a change that can be confirmed through visual inspection.

5.9. Conclusions Implementation

This chapter described the translation of the proposed methodology into a fully operational
pipeline for detecting building changes in point cloud data. Beginning with an exploratory
analysis of the national height model of the Netherlands (AHN) dataset, a synthetic urban
scene was created to simulate airborne laser scanning (ALS) acquisition under varying scan-
ner configurations. This enabled the generation of richly varied and automatically labelled
datasets for training and testing.

The key steps of the pipeline included the estimation of the probability of point change
using an random forest (RF) classifier, supported by a diverse set of handcrafted features
capturing geometric and temporal properties. To improve the reliability of these predictions,
an occlusion detection module was developed that distinguishes between dynamic occluded
and static occluded. Two alternative strategies were implemented to incorporate occlusion
information into the certainty score; their effectiveness will be assessed in the subsequent
results chapter.

The complete pipeline was successfully applied to both synthetic and real-world datasets, in-
cluding the AHN and Rotterdam datasets, confirming the feasibility of the approach. Design
decisions, such as feature selection, automated labelling strategies, and the integration of
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uncertainty modelling, were made with the goal of ensuring robustness and generalizability
across datasets with differing acquisition properties.

Chapter 6 will evaluate the ability of the method to distinguish between changed and un-
changed points, as well as its effectiveness in expressing uncertainty through the certainty
index.
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6. Results and Analysis

This chapter presents the results obtained from the different stages of the implementation.
First, in Section 6.1, the outcomes of the exploratory analysis are discussed. These observa-
tions helped in tuning the parameters and making key design choices for the method. Then,
in Section 6.2, the generated labelled point cloud datasets are evaluated in terms of quality
and suitability for training and testing. Section 6.3 presents the performance of the occlu-
sion detection module and illustrates how different types of occlusion were classified. In
Section 6.4 and Section 6.5, the performance of the proposed method on the synthetic scenes
is shown. The first section focuses on the outcomes of the RF classifier, while the second dis-
cusses how the inclusion of occlusion information influences the certainty index. Finally, in
Section 6.6, the method is applied to real-world data from the national height model of the
Netherlands number 4 (AHN4), national height model of the Netherlands number 5 (AHN5),
and Rotterdam datasets, and the results are assessed visually.

6.1. Configuration of Features and Parameters

This section presents key findings from the exploratory analysis of the national height model
of the Netherlands (AHN) datasets, as introduced in Section 5.1. These observations informed
the selection of input features used in the change detection algorithm.

Effect of Distance to the Flightline

The feature Distance to the Flightline is relevant because it helps explain systematic
differences in data quality and coverage across the point clouds. This subsection will show
the results related to this feature.

As shown in Figure 6.1a, the national height model of the Netherlands number 4 (AHN4)
point cloud exhibits missing or incomplete data on vertical surfaces located near the flight-
line. This effect is less prominent in national height model of the Netherlands number
5 (AHN5), as illustrated in Figure 6.1b. The variation is primarily attributed to differences
in scanning technology: AHN4 was collected using a zigzag scanner that tilts forward and
backward, while AHN5 employed an oblique light detection and ranging (LiDAR) scanner
that better captures vertical elements.

In some areas close to the flightline, a linear or striped pattern is visible in AHN5, as shown
in Figure 6.2a. By contrast, Figure 6.2b displays a more irregular point distribution further
from the flightline. These patterns may result from limitations in the scanner’s geometry or
beam divergence. At greater distances, the laser footprint becomes wider, which introduces
additional uncertainty in point positioning.
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(a) Part of Area 1 in AHN4.

(b) Part of Area 1 in AHN5.

Figure 6.1.: Color indicates proximity to the flightline (purple: close, red: far). Vertical wall
coverage near the flightline varies between AHN4 and AHN5.
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(a) Part of Area 1 in AHN5 near the flightline.

(b) Part of Area 1 in AHN5 far from the flightline.

Figure 6.2.: Elevation visualized through color gradients.
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Point Intensity

Intensity values in the point cloud are another important feature, as they may reveal material
differences or changes between acquisition epochs. This subsection will show the results of
this point characteristic.

Figure 6.3 shows a case where roofs with solar panels exhibit distinct intensity values com-
pared to the rest of the roof surface. These differences are consistent across both AHN4
and AHN5, suggesting that intensity values can be used to identify added or removed solar
panels. In this example, roof surfaces have intensity values between 700 and 1000 in AHN4
and between 1400 and 1900 in AHN5. In contrast, the solar panel areas show lower values,
ranging from 100 to 400 in AHN4, and from 600 to 800 in AHN5.

In addition, another case highlights buildings that are poorly captured in AHN4, as illustrated
in Figure 6.4. Some houses contain very few points, and those that are present show low
intensity values. Although similar issues occasionally occur in AHN5, they are generally less
severe. Aerial imagery from Beeldmateriaal confirms that the houses have not changed in
structure and appear to have been built around the same time. One possible explanation
for the poor capture quality is the presence of water near the buildings, which could have
interfered with the laser scanner. This further supports the use of intensity as a diagnostic
feature, particularly in identifying regions of poor data quality.

It is important to note that intensity values should only be interpreted within the same
dataset, so the relative values. Differences in scanner type, sensor calibration, flight pa-
rameters, and environmental conditions result in significant variations between AHN4 and
AHN5. As discussed in Section 2.6, these factors make direct comparison of intensity values
across datasets unreliable. Intensity is also influenced by the angle of incidence, material
reflectance, and distance to the flightline.

Although intensity demonstrates potential as a discriminative feature, it was ultimately ex-
cluded from the automated change detection algorithm. This decision was primarily due
to difficulties integrating intensity into the synthetic training data. Further discussion of
this limitation is provided in Section 7.1. However, intensity was still used during manual
inspection to identify solar panels in both the AHN and Rotterdam datasets, and to qualita-
tively assess whether the algorithm correctly detected such changes.

Analysis of Nearest Neighbour Distances

This subsection evaluates four different methods for computing nearest neighbour distances
between corresponding point clouds. These methods inform the design of the height differ-
ence feature used in the random forest (RF) model.

The following variants were tested:

1. 3D nearest neighbour search, reporting the full 3D Euclidean distance.

2. 3D nearest neighbour search, reporting only the vertical (Z) height difference.

3. 3D nearest neighbour search within a 2D-bounded column (XY search area), reporting
the full 3D Euclidean distance.

4. 3D nearest neighbour search within a 2D-bounded column (XY search area), reporting
only the vertical (Z) height difference.
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(a) Part of AHN4. Darker shades indicate lower intensity.

(b) Part of AHN5. Darker shades indicate lower intensity.

(c) Street view from Zaltbommel showing solar panels.
Source: Google [2021].

Figure 6.3.: Part of Area 2 from Figure 4.1. Differences in intensity suggest the presence of
solar panels.
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(a) AHN4. Several houses are poorly captured. Darker colors represent lower
intensity values.

(b) AHN5. Same area as in AHN4. Color indicates intensity.

Figure 6.4.: Part of Area 2 from Figure 4.1. Comparison of building coverage and intensity
in AHN4 and AHN5.
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All resulting visualizations are available in Appendix B. An example scene illustrating the
differences is shown in Figure B.1, which includes both AHN4 and AHN5. Results from
the 3D search methods are shown in Figure B.2, while the 2D methods are presented in
Figure B.3.

Based on the comparison, the following observations were made:

• In the area shown (Figure B.1, Figure B.2, Figure B.3), a new apartment building was
added. The 3D nearest neighbour search struggles to clearly define the edges of this
new building, causing inconsistent distance values around it.

• Nearby buildings have some walls that were not visible in AHN4 but are present in
AHN5. Even though these buildings did not change, the 2D nearest neighbour search
reports large differences, especially near those newly visible walls. The 3D search is
less affected but still picks up some of this noise.

• For small changes like an added balcony, the 3D Euclidean method gives a clearer
signal of change. In contrast, 2D methods tend to overestimate the change because
they ignore height differences.

• When dealing with vertical surfaces like walls, a 2D neighbour may be found at a very
different height, which can lead to large and misleading vertical differences.

These insights directly informed the design of the height difference feature used in the point-
level change detection. Specifically, neighbours are first identified within a 0.5-meter radius
in the 2D (x, y) plane, after which the closest among these candidates is selected based on
the full 3D Euclidean distance.

6.2. Evaluation of Synthetic Datasets as Model Input

This section presents the labelled synthetic datasets and evaluates their suitability for train-
ing and testing the change detection algorithm.

A synthetic scene was constructed to replicate the characteristics of the national height model
of the Netherlands number 4 (AHN4) and national height model of the Netherlands number
5 (AHN5) datasets. For two selected areas, the real national height model of the Netherlands
(AHN) point clouds were compared to synthetic point clouds generated from corresponding
3D building models of the Netherlands (3DBAG)-based scenes. Simulation parameters of the
light detection and ranging (LiDAR) sensors were adjusted to closely match those of the real-
world acquisitions. The evaluation focused on the following aspects (corresponding figures
are provided in Appendix C):

• Flight Strip Coverage: The synthetic flight strips were designed to mirror the spatial
coverage of the actual AHN flight paths. As shown in Figure C.1 and Figure C.3, both
synthetic and real datasets encompass the same areas. In the real data, the flight
paths exhibit minor deviations due to natural flight dynamics, whereas the simulated
paths are perfectly linear. Despite this difference, the overall coverage is sufficiently
comparable for training purposes.
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• Wall and Roof Coverage: Figure C.2 and Figure C.4 compare the coverage of verti-
cal and horizontal surfaces. Discrepancies are visible particularly near surface edges,
where real data often exhibits missing points due to occlusions or scanner range limi-
tations. The synthetic 3DBAG-based models, in contrast, lack finer architectural details
and thus provide simplified geometric representations. As a result, alignment with the
real point clouds is imperfect, particularly in areas affected by structural complexity
or occlusions. Furthermore, the spatial distribution of points differs: real data tends
to show a more scattered and irregular pattern, while the synthetic data exhibits a
structured, grid-like arrangement.

• Point Density: Point density was measured in points per square meter over selected
rooftop areas. The results show comparable densities between the real and synthetic
datasets. This outcome must be the case, as both datasets were simulated using iden-
tical flight trajectories and similar sensor parameters.

Figure 6.5.: Part of the labelled synthetic dataset. Green points represent unchanged areas;
blue points are labelled as changed. The inset highlights an example of a potentially
mislabelled point. The right-hand panel shows relevant point attributes.
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6.3. Assessment of Occlusion Detection Accuracy

A key component of this research is the integration of occlusion detection into the change
detection methodology. This section presents the results of the occlusion detection method
and evaluates its performance.

Before examining the outcomes, it is important to recall the two types of occlusion intro-
duced earlier (see Figure 4.4), as well as the two Boolean variables implemented to differen-
tiate them (see Section 5.6).

Results Boolean 1: Occlusion Using Aircraft Positions from the reference
point cloud dataset

This subsection evaluates the occlusion detection method based on the scanner positions
from the reference point cloud dataset (Boolean 1).

To assess the correctness of Boolean 1, the visibility of points in one epoch is compared to
the actual point coverage in the second epoch. Specifically, points from the earlier dataset
(reference point cloud dataset) are tested for visibility using the aircraft positions from that
same dataset. These visibility predictions are then compared to the second dataset (target
point cloud dataset) to verify consistency.

If a structure (e.g., wall or roof) is visible in the reference point cloud dataset, the same part
should ideally be marked as visible (green) in the target point cloud dataset. Conversely, if
an area is not captured in the reference point cloud dataset, e.g., due to occlusion by another
object, then the corresponding area in the target point cloud dataset should be marked as
not visible (red). This comparison helps validate whether the occlusion detection method
accurately identifies regions that were blocked from the scanner’s line of sight.

Figure 6.6b displays visibility results for national height model of the Netherlands number
4 (AHN4), with coloring derived from the scanner positions in national height model of
the Netherlands number 5 (AHN5). Green points are marked as visible, red as occluded. For
reference, the original AHN5 point cloud is shown in Figure 6.6a. Visual comparison between
the two figures confirms the method’s validity. For instance, missing wall segments in AHN5
align with red-labelled occluded areas in AHN4, while walls present in both epochs appear
green. Overall, the method performs well. Ground points in AHN4 that were later blocked
by new buildings in AHN5 are correctly labelled as occluded. The “Pontsteigergebouw,” a
large apartment complex, also demonstrates effective detection, its unscanned walls in AHN5
are accurately marked red in AHN4. Some inaccuracies exist, such as visible walls incorrectly
labelled as occluded, likely due to minor inconsistencies in the point cloud, including multi-
layer wall representations.

Figure 6.7a and Figure 6.7b show similar results for another test area, this time using the
zigzag scanning pattern from AHN4. Here, the red-labelled occluded points in Figure 6.7b
match the missing structures in the AHN4 scan (Figure 6.7a). For instance, a partially cap-
tured house wall in the foreground is correctly divided between visible and occluded re-
gions, confirming the method’s performance in this context.

Figure 6.8a and Figure 6.8b show results from the synthetic dataset. The first figure presents
the reference point cloud dataset, while the second illustrates the visibility status of the target
point cloud dataset based on scanner positions from the reference point cloud dataset. While
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(a) Houthaven, Amsterdam visualized using AHN5. Coloring represents elevation.

(b) Houthaven, Amsterdam visualized using AHN4. Points are colored based on
occlusion status in AHN5. Green = visible, red = occluded.

Figure 6.6.: Occlusion detection results using AHN5 as the reference point cloud dataset. Red
points in AHN4 indicate areas not visible from scanner positions in AHN5.

84
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(a) Nootdorp visualized using AHN4. Coloring represents elevation.

(b) Nootdorp visualized using AHN5. Points are colored by occlusion status in
AHN4. Green = visible, red = not visible.

Figure 6.7.: Occlusion detection results using AHN5 as reference point cloud dataset. Red
points in AHN4 show areas not visible in AHN5.
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roof surfaces are generally well detected, many walls that should be visible are incorrectly
marked as occluded.

There are two primary reasons for this difference:

1. The method of calculating scanner positions differs for synthetic data compared to real
datasets (see Section 5.6).

2. In this region, the incidence angle between scanner and wall surfaces is small. At
shallow angles, parts of a wall may block other segments of the same wall, even though
they are theoretically within scanner range.

(a) Synthetic scene, reference point cloud dataset. Coloring
shows elevation.

(b) Synthetic scene, target point cloud dataset. Points are
colored by occlusion status in the reference point cloud
dataset. Green = visible, red = occluded.

Figure 6.8.: Occlusion detection results in a synthetic scene. Red points in the target point
cloud dataset denote areas not visible from the scanner positions in the reference point
cloud dataset.

Results Boolean 2: Occlusion Using Aircraft Positions from the target
point cloud dataset

This subsection evaluates the occlusion detection method based on the scanner positions
from the target point cloud dataset (Boolean 2).
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The second occlusion check (Boolean 2) assesses the visibility of points from the first epoch
based on the aircraft positions of the second epoch. This approach differs from Boolean 1,
as it uses the scanner positions that actually captured the target point cloud dataset.

In most cases, points from the first epoch should be visible (green), since the second epoch’s
aircraft positions were able to observe them. Only areas affected by real changes, such as
newly introduced obstructions, should be marked as not visible (red).

Figure 6.9 illustrates the occlusion detection results for a selected area in Nootdorp using the
national height model of the Netherlands (AHN) dataset. Green points are considered visible,
while red points are classified as occluded. The results show that several wall surfaces are
incorrectly labelled as occluded, even though they are clearly captured in both datasets. This
may be due to the aircraft’s flight path being almost directly above the buildings.

Figure 6.9b highlights a similar issue on roof surfaces, where some areas are incorrectly
marked as occluded, despite no actual change having occurred. This is likely the result
of local misalignment between the two datasets, as nearby houses do not display the same
error.

In both cases, the misclassified wall and roof points, the occlusion threshold parameter may
be too strict. This threshold defines the maximum number of points allowed between the
aircraft and the surface before a point is marked as occluded. If set too low, it can cause
visible surfaces to be incorrectly classified as hidden.

Results for the synthetic dataset are shown in Figure 6.10. In this area, no actual changes
occurred between the epochs, meaning all points should ideally be marked as visible. How-
ever, all west-facing walls are labelled as occluded, while most south-facing walls are cor-
rectly marked as visible. This difference is likely due to the geometry of the scan angle.
When the angle between the scanner and a wall is small, segments of the wall itself may
occlude neighboring points, resulting in incorrect classifications.

6.4. Performance of Change Probability Estimation on
Synthetic Data Using a Random Forest Model

This section presents the performance of the random forest (RF) model on the synthetic
dataset. The model assigns each point a probability score between 0 (very likely no change)
and 1 (very likely a change). In the next section, occlusion-aware results will be discussed.

As explained in Section 5.5, five different feature and training set configurations were eval-
uated. Table 6.1 shows the classification accuracy for each change type across these five
configurations.

Feature importance for Set 1 is shown in Figure 6.11. The most informative features are the
stability factor difference and height difference.

Although tilt angle and 3D density were intended to help distinguish between roof and wall
surfaces, Figure 5.11 shows they do not perform this task effectively. In contrast, the stability
factor (Figure 5.13) proves more reliable. Since excluding tilt angle and 3D density does not
reduce accuracy, they were removed for simplicity.

Furthermore, Table 6.1 shows that excluding most dataset-level features generally improves
accuracy. These features are not informative (Figure 6.11) and may even introduce noise. A
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(a) Part 1.

(b) Part 2.

Figure 6.9.: Boolean 2 occlusion results for Nootdorp using AHN5. Green points are visible to
the scanner; red points are incorrectly labelled as occluded due to possible misalignment
or threshold settings.
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Figure 6.10.: Boolean 2 occlusion results for the synthetic scene. No structural changes
occurred in this area. Red points are marked as occluded, and green points are visible to
the scanner. Errors appear primarily on west-facing walls due to low-angle occlusion.

Change Type Total Points Set 1 Set 2 Set 3 Set 4 Set 5
Balcony Add/Remove 3591 85.6% 86.9% 87.0% 87.0% 86.9%
Dormer Add/Remove 13663 89.4% 89.3% 89.0% 89.3% 88.6%
Height House Add/Remove 15000 93.8% 94.7% 94.9% 94.9% 95.2%
House Add/Changed 15000 89.9% 91.2% 88.5% 89.0% 89.2%
SP04 Add 6837 48.1% 53.1% 53.4% 53.0% 7.6%
SP08 Add 6696 56.6% 59.7% 60.4% 60.9% 19.2%
SP12 Add 6933 67.1% 70.4% 70.2% 71.2% 48.8%
SP16 Add 3117 69.5% 70.4% 71.4% 70.4% 59.9%
Width House Add/Remove 7706 93.9% 94.8% 95.5% 96.5% 96.4%
No Change 105000 94.5% 94.4% 94.4% 94.3% 97.5%
Total Accuracy 88.4% 88.5% 88.2% 88.6% 87.1%

Table 6.1.: Classification accuracy for each change type using Feature and Input Sets 1 to 5.
The percentage indicates the proportion of points of each change type that were correctly
classified. Feature Set 1 includes all features. Set 2 excludes tilt angle and 3D density. Set
3 removes most dataset-level features, keeping only density difference. Set 4 excludes all
dataset-level features. Set 5 excludes training data containing solar panel changes of 4 cm
and 8 cm thickness. The ground truth is based on the labelled synthetic dataset.
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Figure 6.11.: Permutation importance of point- and dataset-level features in the RF model
trained on Set 1.
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likely reason is that they lack per-point variability, which limits the model’s ability to learn
from them. Therefore, they are omitted in the final model.

Two final models were selected:

1. Model 1: Trained with all change types.

2. Model 2: Trained without solar panel changes of 4 cm and 8 cm. These changes are
still used in testing.

Model hyperparameters were optimized using RandomizedSearchCV. Final settings:

• Number of trees: 393 (Set 1), 121 (Set 2).

• Max tree depth: 19 (Set 1), 5 (Set 2).

Table 6.2 reports precision and recall for both classes using the synthetic test dataset. Preci-
sion and recall scores on the test dataset show that Model 1 generally performs better than
Model 2. In particular, the recall of Model 2 for detecting changed points is low. This means
that many actual changes were incorrectly classified as unchanged. One possible reason is
that Model 2 was not trained on examples of small solar panel additions (4 cm and 8 cm),
even though these were part of the test dataset.

Metric Unchanged Class (0) Change Class (1)
Model 1 Model 2 Model 1 Model 2

Precision 0.87 0.76 0.93 0.98
Recall 0.95 0.99 0.81 0.58

Table 6.2.: Precision and recall for changed and unchanged points for both models.

The following figures compare Model 1 and Model 2 across three synthetic scenes:

• Figure 6.12: General performance and sensitivity to different change types.

• Figure 6.13: Influence of flight path distance on prediction.

• Figure 6.14: Effects of occlusion by tall buildings.

F1 scores for both classes across five synthetic scenes are listed in Table 6.3. Each scene uses
different scanner parameters. Descriptions of the scenes can be found in Table 5.3. While
Table 6.3 shows that Model 2 often achieves higher F1 scores per scene, these scores do not
provide the full picture. So figures will be shown below.

Scene Description F1 Score – Unchanged Class F1 Score – Change Class
Model 1 Model 2 Model 1 Model 2

Scene 1 Same scanner settings 0.99 1.00 0.70 0.83
Scene 2 Different pulse repetition rate (PRR) 0.79 0.82 0.11 0.11
Scene 3 Different beam divergence 0.97 0.99 0.47 0.64
Scene 4 Different flightlines 0.97 0.99 0.50 0.73
Scene 5 Different scanner accuracy 0.96 0.98 0.51 0.70

Table 6.3.: F1 scores for both models across synthetic scenes with different scanner settings.

In the figures, both models identify similar types of changes. Additions of solar panels
with heights of 8 cm and 12 cm are detected by Model 1 and are partially visible in Model 2.
There is also a notable difference in the predicted probability scores. Model 1 tends to assign
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(a) Reference point cloud dataset. Coloring based on height of the point.

(b) Part of the synthetic scene, colored by the probability score output from RF
Model 1. The visualized changes include: (A) house extension or removal,
(B) addition of a solar panel with a thickness of 12 cm, (C) addition of a
solar panel with a thickness of 16 cm, (D) height increase or decrease, (E)
construction of a new house, and (F) addition of a dormer.

(c) Part of the same synthetic scene, colored by the probability score from RF
Model 2.

Figure 6.12.: Probability scores from RF classifiers. Yellow indicates high change probability;
dark blue indicates low. Based on national height model of the Netherlands number
4 (AHN4)/national height model of the Netherlands number 5 (AHN5) settings. Subfigures
show the same area for Model 1 and Model 2, highlighting changes A–F.
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(a) Probability scores from RF Model 1.

(b) Probability scores from RF Model 2.

Figure 6.13.: Probability scores for identical house types at varying distances from the flight-
line. Scanner settings match AHN4/AHN5. Results illustrate the influence of scanner posi-
tion on predictions.
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(a) The reference point cloud dataset. Coloring based on height of
the point.

(b) Part of the synthetic scene, colored by the probability score
from RF Model 1. The visible changes include: (A) addition of a
dormer, (B) construction of a new house, and (C) removal of a
balcony.

(c) Part of the same synthetic scene, colored by the probability
score from RF Model 2.

Figure 6.14.: Probability scores from RF classifiers for a synthetic scene with tall buildings.
Occlusion can result in false positives due to missing data.
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probabilities around 0.5 for unchanged roof surfaces. In Model 2, probability scores around
0.5 occur more frequently on unchanged walls, particularly when those areas are occluded
in one of the epochs. According to Figure 6.13, the performance of Model 1 declines as
the distance from the flightline increases. In those areas, Model 1 tends to classify more
unchanged points as changed. Both models have difficulty with occlusion but that will be
covered when incorporating occlusion. Model 2 will be used to test on the real datasets.

Comparison Between Scenes

Five synthetic scenes were generated with varying scanner configurations, as shown in Ta-
ble 5.1. The following section presents a comparison between these scenes.

When comparing across scenes, Scene 2 shows the weakest performance. This scene had a
different PRR, which appears to affect the quality of the point cloud and the model’s ability
to detect changes. This is consistent with Figure 5.21, where the house in Scene 2 was poorly
captured. The best results are found in Scene 1, where the scanner settings were identical
between the two epochs. This scene also had minimal occlusion, contributing to the higher
performance. Scenes 3, 4, and 5 show similar performance based on the F1 score.
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6.5. Effect of Occlusion-Based Uncertainty on Synthetic
Scene

As described in Section 5.7, two strategies were explored to incorporate occlusion informa-
tion into the change detection approach.

In Model 1, occlusion was introduced as an additional input feature for a second random
forest (RF) classifier. However, this approach proved ineffective, as the classifier is designed
to predict categorical labels, such as change or no change, while occlusion instead provides
information about prediction confidence or uncertainty. As such, including occlusion as a
feature did not improve classification accuracy. The second RF model also included derived
features such as ratio probability and ratio occlusion. Including these features resulted in
predictions shifting further toward the extremes (0 or 1), leading to overconfident classifi-
cations. Since the initial predictions from the first model were already near these extremes,
this effect was amplified, decreasing the model’s ability to reflect uncertainty in ambigu-
ous regions, particularly those affected by occlusion or data inconsistencies. Consequently,
this approach was not adopted. Figure 6.15 illustrates this effect in a scene with no real
changes.

(a) Probability score from RF 1. (b) Certainty score from RF 2.

Figure 6.15.: Comparison between RF 1 and RF 2 in a scene without actual changes. Yellow
indicates high certainty of change; dark blue indicates high certainty of no change.

The results indicate that incorporating occlusion directly as a model feature leads to overcon-
fident predictions that do not accurately represent uncertainty in some regions. To mitigate
this limitation, an alternative approach, Model 2, was developed.

Model 2 uses two criteria to determine whether a prediction should be modified to reflect
uncertainty: the occlusion type and the point’s stability factor. If these indicate a high
level of uncertainty, the probability score is adjusted to a certainty score of 0.5, representing
maximal uncertainty. This process is illustrated in Figure 5.28.

To demonstrate the application of this method in the synthetic scene, two examples are
provided below:
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Figure 6.16.: Section of the synthetic scene. Same area as in Figure 6.14. Colored by the final
certainty score.

• Figure 6.16 presents the certainty score for the same region shown in Figure 6.14.
Compared to Figure 6.14c, a subset of points, particularly along the roof edges, are now
assigned a certainty score of 0.5, indicating uncertainty. This adjustment is particularly
effective in identifying uncertainty on the roofs of terraced houses that are partially
occluded by adjacent taller structures. In addition, some roof edge points are marked
as uncertain due to self-occlusion, which is a correct assessment.

• Figure 6.17 shows three views of a second area: (a) the original reference point cloud
dataset colored by height, (b) the initial probability scores from the RF model, and (c)
the certainty scores after incorporating occlusion. In the final image, some boundaries
of changed regions have been adjusted to 0.5 to reflect uncertainty. For instance, for the
building on the left, where a change in roof height occurred, the walls were initially as-
signed a high probability of change, but are now marked as uncertain in the certainty
score. While this adjustment is not entirely correct, the roof area still retains a high
change score, which supports human interpretation to see a change has happened.
Additionally, other dynamic occluded effects, such as the appearance or disappear-
ance of dormers, continue to produce high change probabilities, which aligns with
expectations.
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(a) Reference point cloud dataset. Colored by point height.

(b) Initial probability scores from the RF model.

(c) Final scores after incorporating occlusion.

Figure 6.17.: Comparison of predictions before and after integrating occlusion information.98
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6.6. Method Performance on Real Datasets

The performance of the change detection algorithm was visually assessed using the national
height model of the Netherlands number 4 (AHN4) as reference point cloud dataset and
national height model of the Netherlands number 5 (AHN5) as target point cloud dataset.
Comparison was done with ortophotos from Beeldmateriaal. Points in the target point cloud
dataset are color-coded according to their certainty score: values near 0 or 1 indicate strong
confidence in no-change or change, respectively, whereas values close to 0.5 reflect uncer-
tainty. The findings are presented below, organized by object type and observed change
pattern. The corresponding figures can be found in Appendix D. The below observations
are visually supported by colored points of AHN5, what has been changed from AHN4.

Building Modifications and Structural Changes

• Dormers: Newly constructed dormers are clearly detected, with high certainty at the
relevant points (see Figure D.1).

• Extensions: Lateral and vertical building extensions are consistently identified with
high confidence (see Figure D.2).

• New Buildings: Newly build buildings are reliably classified as changed, even if sim-
ilar in shape to previous structures. These are often more apparent in the point cloud
data than in orthophotos (see Figure D.6).

• Removed Structures: Removed sections of buildings are detected, typically showing
high change probabilities in the corresponding ground-level points (see Figure D.7).

• Incomplete reference point cloud dataset: In cases where buildings are poorly cap-
tured in the AHN4 dataset (which is happening for Figure 6.4, the algorithm tends to
predict high change probabilities due to insufficient comparison data (see Figure D.8).

• Infills Between Existing Structures: For newly added buildings situated between pre-
existing structures, roof points typically show high certainty of change, while wall
points often remain uncertain due to low stability factor values in the reference point
cloud dataset (see Figure D.9).

Roof Objects and Temporary Elements

• Solar Panels: Angled solar panels mounted on roofs generally receive scores around
0.75, contrasting with unchanged roof areas that score near 0. Smaller panels aligned
with roof slopes are detected less reliably (see Figure D.3).

• Temporary Objects: In Amsterdam, temporary objects such as cars or furniture on
rooftops are often detected as structural changes, given their presence in only one
epoch (see Figure D.10).

• Scaffolding: The removal of scaffolding between epochs can result in adjacent ground
points being marked with high certainty of change (see Figure D.11).

Vegetation and Ground-Related Observations

• Trees in Building Raster Cells: Tree points misclassified within building-labelled
raster cells may result in falsely detected changes (see Figure D.4).
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• Opaque Vegetation and dynamic occluded: If dense vegetation in AHN4 blocks all
laser pulses and is later removed in AHN5, the occluded areas may remain classified as
changed due to the persistent lack of visibility (see Figure D.4).

• Ground Points: Some individual ground points are falsely detected as changes. These
are generally isolated and not visually meaningful (see Figure D.12).

Occlusion and Systematic Uncertainty Patterns

• Occluded Walls: Wall segments initially detected as changed often become more un-
certain after applying occlusion corrections (see Figure D.5).

• Distance to Flightline Effects: Unchanged points located approximately 129–138 me-
ters from the flightline have an increased certainty score, with scores ranging between
0.5 and 0.7. This suggests a potential systematic effect related to the scanning geometry
(see Figure D.13).

The performance of the change detection method was also evaluated using the Rotterdam
2023 dataset as the reference point cloud dataset and AHN5 as target point cloud dataset.
Additionally, a second setup used AHN4 as reference point cloud dataset and the Rotterdam
2024 dataset as target point cloud dataset. Visual comparison was supported by orthophotos
from Beeldmateriaal and satellite imagery from Topotijdreis. Since many results are similar
to those discussed above in this section, this part focuses on the main differences introduced
by using the Rotterdam datasets.

First, the setup with Rotterdam 2023 as reference point cloud dataset and AHN5 as target
point cloud dataset is discussed. It is worth noting that these datasets differ by only one
year, as the AHN5 data for Rotterdam was acquired in 2024. Examples of the results are
shown in Figure D.14 and Figure D.15.

• Unchanged areas are predicted with high confidence, especially where neighbouring
points have similar values. This results in a clear visual distinction for actual changes,
due to strong contrast in point cloud color differences. The dense point cloud of the
Rotterdam dataset as reference point cloud dataset contributes to this clarity.

• Occlusions are minimal in the reference point cloud dataset, again due to the high
density of the Rotterdam point cloud.

• One geotile had to be subdivided into smaller tiles for processing because of long
runtime. In certain smaller tiles, the occlusion check incorrectly labelled all points as
occluded, a result that did not occur in other tiles. This inconsistency may indicate a
processing mistake. This issue manifested as a repeated misclassification across tiles
containing the same building geometry.

Next, the setup with AHN4 as reference point cloud dataset and the Rotterdam 2024 dataset
as target point cloud dataset is discussed. In this case, the temporal gap is four years.
Relevant figures are shown in Figure D.17 and Figure D.18. Key differences are summarised
below:

• Small architectural features such as church towers are not always well captured in
AHN4, resulting in changed parts of that building in the colored Rotterdam 2024 point
cloud dataset.

• Compared to the previous setup, prediction certainty is lower. Probabilities vary more
across neighbouring points, as illustrated in Figure D.16.
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6.6. Method Performance on Real Datasets

The previous sections provided visual comparisons and qualitative validations of the change
detection results. Although no ground truth is available for the real-world datasets, Table 6.4
presents a numerical summary based on the distribution of certainty scores. These scores are
grouped into 0.1 intervals to give insight into the model’s confidence levels across different
dataset pairs.

Table 6.4.: Distribution of Certainty Scores in 0.1 intervals for each dataset pair.

Certainty Score Range AHN4–AHN5 Rotterdam2023–AHN5 AHN4–Rotterdam2024

0.0 ≤ score < 0.1 28.40% 68.79% 50.47%
0.1 ≤ score < 0.2 14.99% 21.97% 23.28%
0.2 ≤ score < 0.3 29.18% 4.69% 10.00%
0.3 ≤ score < 0.4 9.79% 2.18% 5.45%
0.4 ≤ score < 0.5 5.44% 0.94% 3.21%
0.5 ≤ score < 0.6 3.34% 0.64% 6.99%
0.6 ≤ score < 0.7 0.85% 0.19% 0.15%
0.7 ≤ score < 0.8 0.78% 0.13% 0.08%
0.8 ≤ score < 0.9 0.57% 0.09% 0.07%
0.9 ≤ score ≤ 1.0 3.46% 0.39% 0.30%

Looking at the table, some clear patterns appear. First, for high certainty in no change
scores (below 0.4), the datasets that include Rotterdam data, whether as the reference point
cloud dataset or target point cloud dataset, have the highest percentages in the most certain
category (0.0 ≤ score < 0.1). After that, the percentages steadily decrease as certainty goes
down (meaning the score increases towards 0.5). In contrast, the AHN4–AHN5 pair peaks
in the 0.2 ≤ score < 0.3 range, and it also shows relatively high percentages across other
uncertain ranges.

For certainty scores of change (above 0.6), all three dataset pairs reach their highest peak in
the most certain range (0.9 ≤ score ≤ 1.0). Interestingly, for all pairs, the second highest
percentages appear in the 0.6 ≤ score < 0.7 range, but these are still very small compared
to the peak at the highest certainty category.

It is important to note that structures present exclusively in the Rotterdam dataset but absent
in the corresponding national height model of the Netherlands (AHN) dataset cannot be
detected. Since the Rotterdam point clouds are unclassified, the algorithm can only compare
objects classified as buildings in the AHN datasets.
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This chapter presents the meaning of the results and outlines their limitations. It focuses on
four main aspects of the research and ends with a theoretical comparison to existing change
detection methods for point clouds. The four aspects are: the interpretation of the synthetic
scene generated, the design choices made for the random forest (RF) model, the detection
and integration of occlusion into the method, and the evaluation of the performance of
the method on real-world datasets. It will end with a theoretical comparison between the
developed method and existing methods.

7.1. Synthetic Dataset

In general, the synthetic scenes exhibit reasonable alignment with the real national height
model of the Netherlands (AHN) datasets. It should be noted that the national height model
of the Netherlands number 4 (AHN4) synthetic scene was generated using a different scanner
from the one used to acquire the real AHN4 data. As a result, some variation in point capture
is expected.

A significant limitation in the scene is the simplified composition. Only buildings were
included in the synthetic model, excluding other common urban elements such as trees,
vehicles, and street furniture. Moreover, due to time constraints, no post-processing was
applied. Several enhancements are proposed for future iterations of the synthetic dataset:

• Introduce minor horizontal perturbations to reduce linear patterns in point distribu-
tions, especially for surfaces with uniform geometry.

• Add a small number of intentionally misclassified points to emulate classification er-
rors.

• Incorporate Gaussian noise to simulate realistic measurement uncertainties.

To show the performance of Helioss++, a noteworthy example is Scene 1 in Table 5.3, where
both epochs employed identical scanner settings and flightlines. Despite this, minor dif-
ferences in accuracy and point density are observed, as indicated in the same table. This
suggests that Helios++ inherently introduces a certain degree of noise during simulation.

Several issues arose during the simulation process. For example, certain parts of buildings,
particularly surfaces with complex geometry, such as faces with five or more vertices, were
not correctly captured by the scanner. This issue is depicted in Figure 7.1, where a section
of a roof was missed and points were generated incorrectly on the ground level.

Another issue relates to the simulated intensity values, which do not align with realistic
expectations. While the simulation incorporates effects related to scan angle and distance
from the flight path, it omits material properties and surface reflectance. Some model sur-
faces were assigned different material types (e.g., glass, metal, or rough surfaces), but only
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the metallic percentage parameter in Blender influenced the resulting intensity values.
These factors (material properties and surface reflectance) are crucial for realistic intensity
simulation.

In real datasets such as AHN4 and national height model of the Netherlands number 5
(AHN5), intensity values vary with the distance from the flight path. This behavior was
not replicated in the synthetic dataset. However, in the synthetic scene the intensity differed
when the surface was angled instead of flat, which is correct.

Based on these observations, it is concluded that the simulated intensity values do not faith-
fully represent real-world conditions. Therefore, intensity data from the synthetic scene was
excluded from both the dataset and the developed model.

The labelling results are encouraging. As illustrated in Figure 6.5, the majority of points in
the synthetic dataset were correctly classified. Furthermore, the dataset includes useful class
labels that distinguish various types of changes. These labels can be employed to filter the
data, evaluate the performance of the change detection method, and analyze which types of
changes are accurately identified and which are not.

Figure 7.1.: Generated points illustrating a missing roof segment, with points incorrectly
projected onto the ground.

7.2. Design Decisions in the Random Forest Model

The final method was not trained to detect small height changes of 4 and 8 cm. Including
these small differences introduced uncertainty, even in areas without actual change. This is
likely because the scanner accuracy is close to these values, making it inherently difficult to
distinguish such small geometric differences using only shape-based features. Additional
data attributes, such as intensity or color, could improve the detection of subtle changes like
the addition of thin solar panels. For this reason, the smallest height difference included
during training was 12 cm. In hindsight, it would have been better to include smaller
changes consistently, so that the minimum detectable change would be clearly defined.
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During the development of the random forest (RF) model, it became evident that standard
performance metrics such as precision and recall do not fully represent the practical quality
of change detection in point clouds. This is due to two main reasons:

• In certain areas, insufficient data from one of the epochs prevents the method from
making a confident prediction. Precision and recall evaluate only binary outcomes
(’yes’ or ’no’) and do not account for such uncertain regions.

• Visual interpretation of change relies heavily on contrast between changed and un-
changed areas. For example, if 20 points have truly changed but only 12 are classified
as such, and the remaining points receive a certainty score around 0.4, the area will
still be visually perceived as changed, even though classification accuracy is only 60%.

When labelled data is available, visual evaluation is often more informative than relying
solely on precision, recall, or accuracy metrics.

The impact and behavior of specific features are discussed below:

• Stability factor difference: This feature often reaches a value of 1 in changed areas
and -1 near building edges, where fewer points are captured in the reference point
cloud dataset. The sensitivity of this feature depends strongly on the radius used
during its calculation. Smaller additions may be missed due to the default 0.5 m
radius, although added dormers are still detectable. The method assumes no points
beneath buildings, so in cases where windows reveal interior walls or floors, the feature
becomes unreliable. For newly constructed buildings, walls often receive incorrect
stability factor values, so the feature mainly reflects roof changes. Boundaries between
changed and unchanged regions are very distinct in this feature, and neighboring
points tend to show consistent values.

• Height difference: This feature is more effective than the stability factor difference for
detecting added structures, as it identifies both wall and roof changes. However, it
offers less contrast at the transition boundaries. The feature can be either positive or
negative, making it informative about the nature of the change. However, it is more
variable among neighboring points and more sensitive to occlusions.

• Distance to flightline: As shown in Figure D.13, a clear jump in certainty score occurs
between 129 m and 138 m from the flightline. This feature is not used to detect change
directly but instead helps method uncertainty. Laser beams widen with distance, and
coverage differs depending on overlap from multiple flightlines. This feature captures
those acquisition effects. Although it would have been interesting to evaluate the
performance without this feature, this was not tested. According to Figure 6.11, overall
performance would decrease if the feature were removed.

• Density differences (2D and 3D): These features had low importance. Visualizations
show strong variation in overlap zones between flightlines and in areas directly un-
derneath the scanner path. These features are also highly sensitive to occlusion and
vary across datasets. They were retained in the model as they provide complementary
information to the stability factor.

• Linearity, planarity, and sphericity differences: These features also had low impor-
tance but were included to capture scan inconsistencies. Differences can be observed
even on the same roof surface when captured from different scan lines, while wall
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surfaces tend to show more consistent values. These features mainly highlight mis-
alignment between scan lines and are illustrated in Figure 5.18, Figure 5.19, and Fig-
ure 5.20. The sphericity feature might have been more useful had trees been included
in the synthetic scene, as it could help model their complex geometry.

• stability factor of the target point: This feature gives insight into the geometry of a
point within its own epoch. It helps distinguish roofs from walls and supports the
interpretation of the stability factor difference.

Several dataset-level features were initially considered, with the idea of helping the method
to determine thresholds (e.g., minimum height difference for change) based on dataset prop-
erties. However, since these values were constant across all points in a dataset, they showed
little variance and were not useful for the model. Instead, training on a wide variety of
dataset types was considered a better approach for improving generalization across differ-
ent scenes.

7.3. Occlusion Detection

Before interpreting the results, it is important to recall the two approaches used for occlusion
detection: one based on aircraft positions from the reference point cloud dataset (Boolean
1), and the other using positions from the target point cloud dataset (Boolean 2). In both
approaches, occlusion is assessed relative to the reference point cloud dataset. For both
occlusion models, similar observations can be made:

• In general, areas that are expected to be occluded, especially roof surfaces, are detected
correctly. This is evident in Figure 6.6 and Figure 6.7. However, some exceptions
occur. In Figure 6.9b, certain roof areas are incorrectly classified as occluded. A likely
explanation is misalignment of these buildings with respect to surrounding structures.
Increased roof tilt can also reduce occlusion detection accuracy, for the same reason
that walls generally perform worse: visibility is harder to assess at steeper angles.

• For wall surfaces, errors occur when multiple point layers are present or when the
scanner’s view angle is limited. In such cases, visible points are sometimes incorrectly
marked as occluded. This is visible in Figure 6.10. The smaller the angle between
the scanner direction and the vertical axis, the more difficult it becomes to determine
visibility accurately.

• On the synthetic dataset, the occlusion detection performs less reliably than on real
data, as shown in Figure 6.8b. Several wall surfaces that should be visible are mistak-
enly classified as occluded. One likely reason is the way aircraft positions were defined
in the simulation. Additionally, the simulated viewing angle is steep, almost vertical,
for these parts of the scene, which further complicates visibility assessment.

• Vegetation introduces additional challenges. When a tree is located between the air-
craft position and the surface of the target point, points underneath are often still
marked as occluded. This occurs even though the method is designed to consider dif-
ferences in the number of returns as a visibility cue. In these cases, points should have
been retained but are still discarded.
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In general, the occlusion detection method performs reasonably well and contributes mean-
ingfully to the overall change detection pipeline. The ability to distinguish between wall
and roof surfaces, based on the stability factor, adds another layer of logic. Still, several
limitations remain:

• The 20% threshold used in one of the conditions in Figure 5.28 in Section 5.7 is cur-
rently based on visual inspection. This threshold might not generalize well to other
datasets and could benefit from optimization, even within this dataset.

• The use of the stability factor to differentiate walls from roofs is not always reliable. In
greenhouses, for instance, points below glass roofs lower the stability factor, which can
cause the roof to be misclassified as a wall. Similarly, when trees overhang rooftops,
the reduced stability factor leads to incorrect classification. Unconventional building
designs, such as inward-sloping walls, can also distort stability factor values and affect
classification accuracy.

7.4. Interpretation of the Method’s Performance on Real
Datasets (AHN4, AHN5, Rotterdam)

This section reflects on the visual interpretation of the results produced by the trained
random forest (RF) model and the integration of occlusion logic in the final certainty score.
The real-world datasets considered are national height model of the Netherlands number
4 (AHN4), national height model of the Netherlands number 5 (AHN5), and the Rotterdam
2023 and 2024 point clouds.

Evaluation Setup and Limitations

Only visual assessment was performed on the change detection results; no quantitative
ground-truth comparison was used. As a result, definitive performance claims (e.g., “all
dormers are detected”) cannot be made, only cautious observations like “most dormers are
detected.” Additionally, only selected areas were analyzed, and thus, the findings do not
generalize to the full datasets.

The method is computationally intensive, especially during occlusion analysis and flightline
proximity calculations. This significantly limited the number and size of areas that could be
processed within a reasonable timeframe. Moreover, the performance characteristics indicate
that this method is not suitable for real-time or on-the-fly applications.

Observed Change Detection Behavior

Building additions, such as dormers, roof expansions, and new constructions, are consis-
tently detected with high certainty. Even minor features, like tilted solar panels, are often
recognized, while flat or low-profile objects are more likely to be missed.

Building removals or reductions, including partial demolitions, are generally visible in the
point cloud data. However, interpreting the type of change requires additional context, such
as the reference point cloud dataset, since the point cloud alone is insufficient.
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The smallest trained change was 12 cm, and these small alterations, such as subtle roof
modifications, are typically detected. The model also picked up temporary objects like
traffic cones, confirming high spatial sensitivity, as illustrated in Figure 6.12c.

Contextual Clarifications and Data Fusion

Temporary objects (e.g., parked cars, rooftop furniture) are sometimes misclassified as per-
manent changes. Orthophotos can clarify such ambiguities, suggesting an efficient work-
flow: use the point cloud to flag changes, and verify with orthophotos.

Point clouds can reveal changes that are obscured in orthophotos by shadows or vegetation,
particularly for small or complex changes. This emphasizes the complementary strengths of
3D and 2D data. This approach is likely faster than manually inspecting orthophotos and is
particularly helpful for identifying small or geometrically complex changes. In addition, the
3D geometry of point clouds often makes it possible to look around the object.

Challenges from Data and Model Limitations

Some structures in AHN4, like church towers or houses, are poorly captured, leading to
false change detection. These cases expose a model weakness where certainty is based on
unreliable reference data. A building-level pre-check could flag such structures and reduce
certainty scores accordingly.

Integrating occlusion into the model significantly improves reliability. Occlusion is detected
based on mismatches in return number and number of returns between the aircraft and
the target point. This approach generally reduces false positives in shadowed or obscured
regions. However, a systematic misclassification occurs when a building or tree is removed
from the reference point cloud dataset to the target point cloud dataset. If this removed
object had previously caused occlusion for a nearby building, the model incorrectly marks
the newly visible region as dynamic occluded. This issue is visualized in Figure D.4 and
reflects a limitation of the occlusion integration.

A recurring pattern was observed: unchanged points located 129–138 meters from the
flightline received disproportionately high certainty scores. This indicates an issue with
the distance-to-flightline feature, which needs more critical integration with occlusion han-
dling.

Impact of Dataset Characteristics

Datasets with higher point densities as the reference point cloud dataset, like Rotterdam
2023, tend to produce higher stable certainty scores and clearer change detection results. As
shown in Table 6.4, including a dataset with higher point density makes the certainty scores
more confident in unchanged areas. This effect is strongest when the denser point cloud is
used as the reference point cloud dataset.

Glass roof surfaces sometimes allow internal points to be captured, lowering the stability
factor and degrading results.
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Due to differences in classification schemes between AHN5 and the Rotterdam datasets, all
points within the raster cells labelled as buildings were treated as such. This led to some
misclassifications (e.g., cranes or overhanging vegetation).

7.5. Theoretical and Qualitative Comparison to Existing
Methods

This section discusses how the developed method compares to several existing approaches
for point cloud change detection, as introduced in Section 2.3. While no direct quantita-
tive benchmarking could be performed, due to time constraints, the following qualitative
comparison highlights the key differences in methodology, assumptions, and observed be-
havior.

Raster-based Differencing. A commonly used approach involves converting point clouds
into raster grids (e.g., digital surface model (DSM)s) and subtracting them to identify changes.
While computationally efficient, this process reduces the 3D structure into a 2.5D representa-
tion, where each cell stores a single height value. As a result, fine-grained geometric details
are lost, and object-level interpretation becomes more difficult.

Point-to-Point Comparison. Traditional methods such as cloud-to-cloud (C2C) or cloud-to-
mesh (C2M) comparisons rely on nearest-neighbour distances and require threshold tuning
to distinguish real changes from noise. These approaches are sensitive to occlusion and
variations in point density. In contrast, the method developed in this research includes a sta-
bility factor feature and integrates occlusion reasoning, reducing false positives in occluded
areas. For example, our method avoids labelling walls as changed if they were occluded in
one epoch.

Mesh-based Approaches. Some methods convert point clouds to surface meshes before
comparing epochs. While this adds continuity, it also introduces interpolation artifacts and
smoothing parameters that can obscure smaller changes. By working directly with raw point
clouds, our approach avoids these simplifications and retains the ability to detect localized
and high-frequency changes.

Deep Learning Methods. Deep learning approaches have shown strong performance, es-
pecially in structured environments. However, they require large, diverse training datasets
that are typically unavailable for airborne laser scanning (ALS) building change detection
in the Netherlands. Moreover, their predictions often lack interpretability. Our approach,
by using an random forest (RF) classifier trained on synthetic data, is more transparent and
better suited to datasets with limited labelled examples. Certainty values at the point level
provide interpretable outputs and support visual verification.

Advantages of the Proposed Method

In summary, the developed method of this researc offers several qualitative advantages over
existing approaches:

• Occlusion Handling: By explicitly modelling occlusion, the method reduces false pos-
itives, especially on building façades.

109



7. Discussion & Limitations

• Interpretability: Certainty scores are assigned at the point level, helping users un-
derstand where predictions are reliable. Visualization is consistent, making small and
large changes equally visible.

• Threshold-Free Learning: The model learns decision boundaries from the data, avoid-
ing manual tuning of height or distance thresholds, which are often dataset-dependent.
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This chapter provides answers to the research sub-questions. At the end, a brief summary
of the main research question is presented.

How can realistic urban ALS point cloud datasets be simulated to support
the training and evaluation of change detection algorithms, including
variations in data quality and occlusion?

Simulating realistic urban ALS point cloud datasets is essential for developing and evaluating
reliable change detection algorithms. To achieve this, a synthetic urban scene was created
with a variety of building modifications, such as adding or removing balconies, dormers,
houses, and solar panels. This controlled setup enables automatic labelling of changes,
which is often difficult in real-world datasets.

Using Blender allowed the incorporation of various types of buildings and architectural
styles, enhancing the representativeness of the synthetic environment. Moreover, incorpo-
rating realistic challenges such as occlusions caused by tall buildings and varying distances
from the flight path helped simulate key factors that affect data quality and change de-
tectability in airborne laser scanning.

The Helios++ simulator further contributed by realistically modelling the scanning process,
including noise and various parameters of the scanner and flight path. This flexibility en-
ables the generation of datasets with diverse scanning characteristics, allowing the training
and evaluation of algorithms under different conditions and improving their generalizabil-
ity.

Although the synthetic datasets retain certain idealisations, such as linear point distribu-
tion and the absence of natural elements like vegetation, they offer a valuable foundation
for controlled experimentation. The comparable performance of the developed method on
both synthetic and real-world scenes suggests that training with synthetic data is effective
in this context. Moreover, the framework is designed for flexibility, allowing for straightfor-
ward extension with additional building types, scanning configurations, or environmental
features.

In summary, the developed simulation approach balances control and realism, providing
richly labelled and varied datasets that explicitly account for data quality variations and
occlusion effects. This approach supports the development of change detection methods that
can better generalise to real-world ALS data, while leaving room for future enhancements
towards even more realistic scenarios.
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How can a change detection method be developed that accurately
identifies building changes while accounting for uncertainties in point
cloud data?

A set of point-level features was developed for the model, divided into three groups: (1)
basic features extracted from each point cloud, (2) features comparing the two epochs, and
(3) dataset-related features. The third group was tested but later removed since it did not
improve performance. The use of multiple synthetic datasets during training, however,
helped the model learn from data with varying quality and uncertainty.

The final feature set captures both local information and differences between epochs. The
most informative features were height difference and the difference in the stability factor
(see Figure 2.11). The model learns decision boundaries from labelled examples, avoiding
manual threshold selection.

Small changes below 12 cm were not included in training because they fall within typical
scanner accuracy limits, making it difficult to design reliable geometric features for them.

Uncertainty was addressed in two ways: by training on data with different scanning proper-
ties and by including a feature measuring the distance to the flightline, since points further
away generally have lower quality.

The output probability score provides richer information than just height differences. Com-
bined with occlusion information, this score forms the certainty index, which will be dis-
cussed in the answers of the next subquestion.

How can occlusion be incorporated into the change detection process to
improve prediction certainty?

Occlusion was handled by determining whether each point was visible from the scanner in
each epoch. Points were assigned one of three occlusion categories:

• Visible: The point was visible.

• static occluded: The point was blocked in both epochs by an unchanged object.

• dynamic occluded: The point was blocked due to a change, for example when an
object was removed or lowered.

This occlusion classification was combined with the RF model’s output probabilities to adjust
change likelihoods, resulting in a certainty score.

The certainty score improves visualization compared to just showing height differences.
Since the certainty values range between 0 and 1, all detected change, small or large, are
clearly visible through color mapping. Height difference alone can be dominated by outliers,
making subtle changes hard to see.

Moreover, the certainty score reflects both the point properties and occlusion status, incor-
porating uncertainty directly. This is important because some areas simply cannot confirm
change from point cloud data alone. Using height difference without this uncertainty mea-
sure leaves ambiguous areas unclear.
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Beyond change detection, the occlusion detection framework developed here offers potential
applications in several other areas, such as:

1. Navigation in point clouds: By highlighting occluded areas, such as walls or barriers,
this framework can improve path planning by marking zones that are unknown or
blocked.

2. Building mesh generation: For projects like 3D building models of the Netherlands
(3DBAG), which build detailed models of buildings from multiple epochs, the frame-
work can identify facades that remain occluded. This information can guide flight
planning to ensure those areas are fully captured in future scans.

3. Validation of point cloud epoch alignment: As demonstrated in Figure 6.9b, this
method can highlight misalignments between epochs. Here, misalignment means the
epochs differ beyond a defined threshold, measured by the ErrorHeight metric, which
corresponds to the radius defined in Equation 5.4.

How well does the developed change detection algorithm perform when
applied to real-world datasets such as national height model of the
Netherlands (AHN) and Rotterdam?

The model performs effectively on real-world datasets, accurately detecting building exten-
sions, dormers, and new constructions in national height model of the Netherlands number
4 (AHN4), national height model of the Netherlands number 5 (AHN5), and Rotterdam point
clouds. Subtle changes, such as small roof elements, are identified when they exceed the
12 cm detection threshold established during training. The method also captures removed
structures, though it cannot independently differentiate between temporary and permanent
changes.

False positives primarily arise from sparse data coverage, glass surfaces, or complex occlu-
sion caused by vegetation. The assigned certainty scores assist in interpreting these uncertain
cases and help guide manual visual verification. Integrating orthophotos into the workflow
is recommended to improve semantic understanding of detected changes.

This research also demonstrates the value of synthetic point cloud datasets for training
change detection algorithms applied to real data. Key differences between synthetic and
real datasets include the absence of elements like trees (which could be added in future
work) and variations in point feature intensity.

Another important observation is the improved performance when using a denser point
cloud dataset, such as the Rotterdam dataset. The results indicate that optimal outcomes are
achieved when the denser point cloud is used as the reference point cloud dataset, enabling
the target point cloud dataset to produce more accurate predictions.
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Main Research Question: To what extent can a building change detection
method between two epochs of aligned point cloud datasets be developed
to maximize reliability using a certainty index, incorporating dataset
characteristics, applied to the AHN and Rotterdam datasets?

Using point-level certainty scores and by explicitly incorporating occlusion reasoning, the
developed method effectively addresses common challenges in ALS-based building change
detection. Although some limitations remain, particularly in handling vegetation and tem-
porary objects, the results demonstrate that combining 3D feature engineering, supervised
learning, and occlusion-aware logic enables reliable and interpretable change detection.

This research is innovative and novel for the combination of the following:

• Automatic Bi-Temporal Change Labelling: The approach generates synthetic bi-temporal
point cloud datasets with automatically labelled building changes, including detailed
change types.

• Integration of Occlusion: Occlusion is incorporated both in the synthetic data simula-
tion and directly into the change detection method by transforming the random forest
model’s probability output into a certainty score that accounts for occlusion.

• Certainty Score Visualization: Instead of only showing the magnitude of change, the
method provides a certainty score reflecting confidence in the change detection. The
visualization uses consistent coloring for all detected changes, ensuring that small and
large changes are equally visible.

• Use of Raw Point Clouds: The method operates directly on raw point clouds at the
individual point level, preserving the full 3D data without conversion or simplification.

• Threshold-Free Decision Making: Rather than relying on manually set thresholds,
the model learns decision boundaries automatically from the training data.

• Trained on Diverse Scanning Conditions: The algorithm was trained on synthetic
datasets generated with varying scanning parameters. This diversity enables the method
to generalize well and perform reliably across different ALS datasets.

In conclusion, this research contributes to the larger goal of maintaining reliable and up-
to-date urban data. Detecting structural changes in buildings is essential for applications
such as urban planning, cadastral maintenance, and environmental analysis. The developed
method introduces a new framework that combines synthetic, labelled training data with
occlusion-aware reasoning and a certainty-based output. It improves automated change
detection in 3D point clouds and demonstrates good generalizability to real-world datasets.
The resulting pipeline is reproducible and can serve as a foundation for future research and
operational workflows involving digital twins and urban monitoring.

This work also fits into the wider context of the Master Geomatics programme and the so-
cietal challenges it addresses. It covers the full geomatics pipeline: from generating and
simulating spatial data to extracting valuable information. The project involved working
with complex geometries, visualizing 3D data, and applying the results to the built envi-
ronment. Accurate and timely 3D information supports spatial planning. The method was
developed through an iterative process, balancing concept design, algorithm development,
and real-world validation. By integrating both simulated and real datasets, the approach
remained adaptable and realistic within the time constraints of the thesis.
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Data Availability: The trained RF algorithm, selected results from the AHN4–AHN5 datasets,
and the synthetic datasets generated in this study are publicly available at the following
repository: here or https://drive.google.com/drive/folders/1z6u_rhH-baqwG_XcdseNyPGTykUJ6uRe?
usp=sharing.
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9. Future Research

This chapter outlines potential directions for future research, based on the limitations en-
countered and findings derived during this study. The first section discusses ideas that
could have been implemented within the scope of this research, given more time. The sec-
ond section presents broader suggestions for future studies that build upon or complement
this work.

9.1. Within the Scope of This Study

Several extensions to the current approach were identified during the research process.
These are listed below and could serve as valuable directions for further refinement.

• Occlusion Analysis in the Rotterdam Dataset: Occlusion detection did not yield the
expected results for several areas in the Rotterdam dataset. A more detailed investiga-
tion is needed to determine whether this is due to incorrect aircraft position predictions
or inappropriate code settings. Insights from this analysis could improve the occlusion
model.

• Expanding Scene Variability: The synthetic scene could be made more representa-
tive by introducing a wider range of urban elements. For instance, trees located near
buildings should not be misclassified as structural changes. Features like sphericity
may help distinguish such cases. Additional elements, such as crane parts or semi-
transparent features like roof windows, could be included to simulate more complex
real-world conditions.

• Pre-Evaluation at Building Level: Some buildings are poorly captured in national
height model of the Netherlands number 4 (AHN4), resulting in incomplete represen-
tations. A building-level pre-check could address this by adjusting the certainty scores
of buildings with sparse point coverage (e.g., less than 90% of raster cells populated).
This would extend the occlusion correction mechanism to a broader building-level
assessment. An example is shown in Figure 5.30.

• More Variation in Flightline Configuration: Deviations observed around 129–138 me-
ters from the flightline suggest limitations in the current random forest (RF) model. To
mitigate overfitting to specific distance intervals, synthetic scenes should incorporate
greater variation in flightline configurations.

• Increased Number and Diversity of Synthetic Scenes: Currently, only five synthetic
scenes were generated, each with controlled acquisition parameter variations. Expand-
ing the dataset to include more scenes, each combining multiple parameter variations,
would provide deeper insight into the effects of point density, scan angle, and occlu-
sion on classification confidence. It would also enable more context-sensitive adjust-
ments to certainty thresholds.
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9. Future Research

• Further Evaluation of Feature Importance: After implementing the above extensions,
features such as planarity, sphericity, and linearity should be re-evaluated to assess
their actual contribution to classification accuracy. Some features may prove more
useful under increased scene complexity and with the addition of pre-filtering steps.

9.2. Future Directions for Other Researchers

Beyond the current scope, several directions are suggested for researchers interested in ad-
vancing change detection in airborne point clouds.

Graph Neural Networks for Context-Aware Classification

A key limitation of the current method is the point-wise classification approach, where
nearby points may receive different predictions even though they belong to the same object.
This can lead to fragmented or unstable results. An alternative would be to incorporate
spatial context during classification. Graph Neural Networks are designed to capture local
and global relationships between points by representing the point cloud as a graph. Each
point becomes a node, and edges represent spatial proximity or similarity. Prior research
by de Gélis et al. [2021b] and Kharroubi et al. [2022] shows that Graph Neural Networks
can improve consistency in predictions and enhance structural understanding, especially in
complex urban environments.

Solar Panel Detection via Intensity Change

Visual inspection indicated noticeable intensity changes associated with solar panel installa-
tions. This suggests potential for using intensity as a proxy for detecting added or removed
solar panels. A dedicated study could evaluate how consistent and reliable this intensity
shift is under various acquisition conditions and whether it can be used for specialized
change detection.

Use of Intensity and Color Information

Both intensity and color contain valuable semantic information. While these were not avail-
able in the synthetic data used here, future work could focus on generating or annotating
real datasets where these attributes are present. Combining aerial imagery with point clouds
could facilitate semi-automatic labelling. A hybrid approach, starting with image-based
change detection followed by manual refinement, could result in a high-quality dataset for
training intensity-aware or color-sensitive classifiers.
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9.2. Future Directions for Other Researchers

Extent Certainty Index

The certainty index introduced in this research offers a promising way to express confidence
in change detection outcomes. Several extensions could further enhance its reliability and
interpretability.

One possible improvement is to incorporate the distance to the flightline directly into the
certainty index, rather than using it as a standalone feature. This requires a more detailed
understanding of how distance influences point density, occlusion, and scanning quality.
Controlled experiments that vary only the flightline geometry could help isolate these effects
and support a more data-driven integration.

Additionally, if more detailed knowledge becomes available about how specific scanner
types and flight parameters influence the classification results, the certainty index could
be tailored to those acquisition settings. This would make the index more adaptable and
trustworthy across datasets with varying characteristics.

Introduce a spatial component by examining the labels of neighbouring points. If a point is
surrounded by points with the same label, the certainty can be increased. If neighbouring
labels are inconsistent, the certainty should be decreased accordingly.

Runtime Considerations

The current implementation of the method is computationally expensive and time-consuming.
For future research, it would be valuable to explore a multi-resolution or hierarchical ap-
proach to change detection. As discussed in Section 2.6, an initial coarse-level detection
could be applied over large areas to identify potential changes, followed by a more detailed
analysis when zooming in on specific regions of interest. This could significantly reduce
processing time while preserving accuracy where it matters most.
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A. Reproducibility Self-Assessment

A.1. Marks for Each of the Criteria

Figure A.1.: Reproducibility criteria to be assessed.

The reproducibility of this research is self-assessed based on five criteria, with a score of 0
to 3 for each:

1. Input Data: 1

2. Preprocessing: 3

3. Methods: 3

4. Computational Environment: 3

5. Results: 2

A.2. Self-Reflection

Input Data. The workflow of this research uses the national height model of the Netherlands
number 4 (AHN4) and national height model of the Netherlands number 5 (AHN5) datasets,
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A. Reproducibility Self-Assessment

which are open and publicly available. For validation and testing, the Rotterdam point cloud
datasets were used. These are not open datasets and were only accessible through Geodelta.
This limits full reproducibility for this part of the research.

Preprocessing. The steps taken for preprocessing the data are explained in detail, including
how the features were generated and labelled. The synthetic data generation pipeline is
described and supported by custom figures to improve understanding.

Methods. The methodology and implementation are explained step-by-step in Chapter 4
and Chapter 5. All key software used, Helios++, Blender, Python (with open packages),
Potree, CloudCompare, and QGIS, are open-source. One closed-source C# library provided
by Geodelta was used to read .laz files, but the same functionality could be replicated in
Python using the open pylas package.

Computational Environment. The tools used are well-documented and freely available,
making it possible to recreate the computational environment with limited setup. No pro-
prietary software was used for processing or analysis, aside from the optional C# module
mentioned above.

Results. The thesis document, including all figures, results, and discussion, will be made
publicly available. The trained Random Forest model and some processed national height
model of the Netherlands (AHN) tiles are shared here. However, results based on the Rotter-
dam dataset cannot be published due to restrictions set by the data provider (Geodelta).
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B. Figures Nearest Neighbour Distances

(a) Part of Area 1 in AHN4. (b) Part of Area 1 in AHN5.

Figure B.1.: Visual comparison between AHN4 and AHN5 for evaluating the four nearest
neighbour methods.

(a) AHN5 points colored by their 3D Euclidean
distance to the nearest AHN4 point (3D search).

(b) AHN5 points colored by their vertical (Z) dif-
ference to the nearest AHN4 point (3D search).

Figure B.2.: 3D nearest neighbour search: comparison of Euclidean vs. height difference.
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B. Figures Nearest Neighbour Distances

(a) AHN5 points colored by their 3D Euclidean
distance to the nearest AHN4 point (2D search).

(b) AHN5 points colored by their vertical (Z) dif-
ference to the nearest AHN4 point (2D search).

Figure B.3.: 2D nearest neighbour search: comparison of Euclidean vs. height difference.
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C. Figures Evaluation of the Model Input:
Synthetic Datasets

(a) Simulated scene (top view), showing both
flightstrips (red and light blue). Dark blue rep-
resents the flightlines.

(b) AHN4 dataset (top view), colored by source id

indicating flightline. Black lines are aircraft po-
sitions.

Figure C.1.: Comparison of simulated and real flight strips in the AHN4 dataset for Area 3
(see Figure 4.1). Keep in mind, the bounding boxes are different.
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C. Figures Evaluation of the Model Input: Synthetic Datasets

(a) Building roofs and facades in the AHN4
dataset.

(b) Building roofs and facades in the simulated
dataset.

Figure C.2.: Comparison between AHN4 and the simulated scene for Area 3.

(a) Simulated scene (top view), showing all three
flightstrips (light blue, red and pink). Dark blue
represents the flightlines.

(b) AHN5 dataset (top view), colored by source id

indicating the originating flightline. Black lines
are aircraft positions.

Figure C.3.: Flight strip visualization in the simulated AHN5 dataset for Area 1. Keep in
mind, the bounding boxes are different.
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(a) Building facades in the AHN5 dataset. (b) Building facades in the simulated dataset.

Figure C.4.: Comparison between AHN5 and the simulated scene for Area 1.

127





D. Figures AHN4 - AHN5 Results

D.1. AHN

Figure D.1.: Change detection results for a building where a dormer was added between
the national height model of the Netherlands number 4 (AHN4) (reference point cloud
dataset) and national height model of the Netherlands number 5 (AHN5) (target point
cloud dataset) epochs. The added structure is identified with high certainty in change.
Orthophotos from 2021 and 2024 are provided for context, source: Beeldmateriaal Neder-
land.

Figure D.2.: Detection of a lateral extension to a building structure, constructed between
AHN4 and AHN5 epochs. The newly added portion is highlighted with high certainty of
change. Orthophotos support the structural modification, source: Beeldmateriaal Neder-
land.

D.2. AHN-Rotterdam
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D. Figures AHN4 - AHN5 Results

Figure D.3.: Angled solar panels installed on a roof between AHN4 and AHN5 are detected
with moderate to high change probabilities. Panels aligned with the roof slope are less
reliably identified. Orthophotos from 2021 and 2024 are provided for context, source:
Beeldmateriaal Nederland.

Figure D.4.: False change detection due to tree points within building-labelled raster cells
(blue circle). In addition, removed opaque vegetation between epochs results in regions
consistently labelled as changed due to persistent occlusion in the reference point cloud
dataset (red circle). Orthophotos from 2021 and 2024 are provided for context, source:
Beeldmateriaal Nederland.

Figure D.5.: Initially detected changes on occluded walls become more uncertain after apply-
ing occlusion corrections. This reflects the model’s capacity to adjust incorporate occlusion
into the certainty score. Orthophotos from 2021 and 2024 are provided for context, source:
Beeldmateriaal Nederland.
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D.2. AHN-Rotterdam

Figure D.6.: Newly constructed buildings are identified between AHN4 (reference point cloud
dataset) and AHN5 (target point cloud dataset) point clouds. The detection algorithm
assigns high change probability values to the new structures. Orthophotos from 2021 and
2024 are provided for context, source: Beeldmateriaal Nederland.

Figure D.7.: Removal of a building section detected between AHN4 and AHN5. The ground
points in the former building footprint show high change probability, accurately reflecting
the structural disappearance. Orthophotos from 2021 and 2024 are provided for context,
source: Beeldmateriaal Nederland.

Figure D.8.: A building poorly captured in the AHN4 (reference point cloud dataset) scan
results in false positive detections of change in AHN5 due to incomplete data. Change
probabilities are high in areas where comparison is unreliable. Orthophotos from 2021
and 2024 are provided for context, source: Beeldmateriaal Nederland.
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D. Figures AHN4 - AHN5 Results

Figure D.9.: A building inserted between two existing structures is partially detected. High
certainty is observed on the roof, while walls remain uncertain.

Figure D.10.: Temporary rooftop objects (e.g., cars, furniture) present in only one scan epoch
are classified as changes due to their transient nature. These high-probability detections
are visible in Amsterdam’s dense urban areas. Orthophotos from 2021 and 2024 are pro-
vided for context, source: Beeldmateriaal Nederland.

Figure D.11.: Scaffolding removed between AHN4 and AHN5 is interpreted as a structural
change. The change detection algorithm highlights adjacent points with high probability
where the scaffolding previously existed.
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D.2. AHN-Rotterdam

Figure D.12.: Isolated ground points misclassified as changes. These points are sparse and
not visually significant.

Figure D.13.: Points located approximately 129–138 meters from the flightline show reduced
certainty, with change probability values between 0.5 and 0.7. This may suggest systematic
uncertainty related to scan angle or density.
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D. Figures AHN4 - AHN5 Results

Figure D.14.: Overview of change detection between Rotterdam 2023 (reference point cloud
dataset) and national height model of the Netherlands number 5 (AHN5) (target point
cloud dataset).

Figure D.15.: Detection of angled solar panels installed between Rotterdam 2023 and AHN5.
Panels placed at an angle are detected with moderate to high certainty of change. Those
aligned with the roof slope are less reliably detected. Orthophotos from 2022 and 2024 are
shown for reference point cloud dataset. Source: Beeldmateriaal Nederland.
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D.2. AHN-Rotterdam

Figure D.16.: Comparison between the two dataset pairs. Left: Rotterdam 2023 (reference
point cloud dataset) and AHN5 (target point cloud dataset). Right: national height model
of the Netherlands number 4 (AHN4) (reference point cloud dataset) and Rotterdam 2024
(target point cloud dataset). Coloring is based on the certainty score.

Figure D.17.: Overview of change detection between AHN4 (reference point cloud dataset)
and Rotterdam 2024 (target point cloud dataset).
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D. Figures AHN4 - AHN5 Results

Figure D.18.: Change detection result showing a dormer added between AHN4 (reference
point cloud dataset) and Rotterdam 2024 (target point cloud dataset). The added structure
is clearly detected with high certainty of change. Orthophotos from 2021 and 2024 are
included for context. Source: Beeldmateriaal Nederland.

136

https://fsn1.your-objectstorage.com/hwh-ortho/AUX/viewer/index.html?flight=HRL&year=2025&style=RGB&label=1&x=120418.97392&y=489029.35968&z=14&r=0


E. Scanner Information Leica Citymapper2

Listing E.1: Custom Leica Citymapper 2 Definition in XML
<?xml vers ion =”1.0” encoding=”UTF−8”?>
<document>

<scanner id =” l e i ca c i t ym ap pe r2 ”
accuracy m =”0.05”
beamDivergence rad =”0.00023”
name=” Leica CityMapper −2”
o p t i c s =” conic ”
pulseFreqs Hz =”2000000”
pulseLength ns =”4”
rangeMin m=”300”
rangeMax m=”5500”
scanAngleMax deg=”36”
scanAngleEffectiveMax deg =”36”
scanFreqMin Hz =”60”
scanFreqMax Hz=”150”
wavelength nm=”1064”>

<beamOrigin x=”0” y =”0.085” z=”0.06”>
<r o t a x i s =”x” angle deg =”0” />
<r o t a x i s =”z” angle deg =”0” />

</beamOrigin>
<headRotateAxis x=”0” y=”0” z=”1”/>

</scanner>

</document>
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F. House Level Classifying Synthetic
Dataset

This appendix describes an implementation that classifies changes at the house level us-
ing synthetic data. The goal was to reduce computational complexity by first identifying
potentially changed houses, before applying detailed point-level analysis. In the end, this
approach was not included in the final pipeline. First, the implementation is explained,
followed by the results, and then a short discussion.

F.1. Implementation

The classification process first groups light detection and ranging (LiDAR) points by house,
using the closest building from the synthetic city model (OBJ houses). Two main approaches
are used: rule-based requirements and geometric distance metrics.

Rule-Based Requirements.

Three rule-based checks are applied to detect changes between epochs:

1. Area of Concave Hull — This requirement checks whether the 2D concave hull area of
a house has changed between epochs. A significant area difference suggests a change
in the house’s footprint, such as an extension. An example is shown in Figure F.1.

2. Maximum Height Difference — This check compares the highest LiDAR point of a
house across epochs. A large height difference indicates a vertical change, such as
adding an extra floor. Visual results are shown in Figure F.2.

3. Roof Shape Similarity — This method compares the height distributions of LiDAR
points using histograms. Walls are challenging to analyze because of their vertical
orientation. Due to occlusion and their orientation, they are often only partially cap-
tured in point clouds, which can negatively impact the detection results. To reduce
their impact, bins associated with wall surfaces are removed. A Pearson correlation
coefficient is then calculated between the two normalized histograms. The full process
is illustrated in Figure F.3 to Figure F.5.

The correlation coefficient r is computed as:

r = ∑n
i=1(xi − x̄)(yi − ȳ)√

∑n
i=1(xi − x̄)2 ∑n

i=1(yi − ȳ)2
, (F.1)
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F. House Level Classifying Synthetic Dataset

(a) LiDAR points and the 2D concave hull of a syn-
thetic house in the first epoch, showing the orig-
inal house.

(b) LiDAR points and the 2D concave hull of
the same synthetic house in the second epoch,
showing an expansion.

Figure F.1.: Comparison of 2D concave hull areas between two epochs for a synthetic house
with a width expansion.

(a) Side view of LiDAR points for a synthetic house
in the first epoch, showing the original house.

(b) Side view of LiDAR points for the same syn-
thetic house in the second epoch, showing an
increase in height.

Figure F.2.: Height difference between two epochs for a synthetic house with a height ex-
pansion.
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F.1. Implementation

where xi and yi are the normalized histogram bin values, and x̄, ȳ are their respective
means.

Figure F.3.: Histogram of height (z-value) distributions for a synthetic house in two epochs.
Blue represents epoch 1; red represents epoch 2.

Figure F.4.: Normalized height histograms from Figure F.3, accounting for variations in point
count.

Distance-Based Metrics.

Three geometric distance metrics are also calculated to measure differences between point
clouds of the same house in two epochs:

• Chamfer Distance — Calculates the average distance between each point in one epoch
and its nearest neighbor in the other.

• One-sided Hausdorff Distance — Measures the largest distance from a point in one
epoch to the closest point in the other.

• Point Cloud Alignment (ICP) — Uses Iterative Closest Point (ICP) to align the two
point clouds. The resulting fitness value and inlier root mean squared error (RMSE)
indicate how well the clouds align.

These methods are implemented using the Point Cloud Utils and Open3D libraries.
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Figure F.5.: Final height histograms after removing bins representing wall surfaces, based on
a frequency change threshold.

F.2. Results

The results of the three rule-based checks are shown in Figure F.6. Houses are grouped by
type of change: footprint extension, height increase, or roof modification (e.g., dormers or
solar panels). Changed houses are shown on the left, and unchanged houses on the right. A
logarithmic scale is used in the left two graphs for clarity.

Figure F.6.: Scatterplots showing the outputs of the three rule-based requirements. Each dot
represents one house. Changed houses are grouped by type: extensions, roof changes,
and rooftop additions. Each requirement targets one of these types. The left side of each
graph shows the changed houses; the right side shows the unchanged ones.

The six distance-based metrics are visualized in Figure F.7. Red dots represent changed
houses; green dots are unchanged. A logarithmic scale is used for clarity.

F.3. Discussion

The results from the house-level classification suggest several findings:

• Footprint Extensions (Area Change) — The method struggled to separate changed
houses from unchanged ones using the concave hull area. With the lowest possible
threshold, a lot of unchanged houses were falsely marked as changed. This may be due
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F.3. Discussion

Figure F.7.: Scatterplots showing the results of six distance metrics. Red dots are changed
houses; green dots are unchanged. Each plot represents one metric.

to difficulties in concave hull generation on synthetic data with linear point patterns.
The alpha parameter used for the concave hull significantly affects the result, especially
near corners or gaps.

• Vertical Changes (Height Difference) — This requirement worked well when the
highest point of a house was changed (e.g., roof raised). However, it was less effective
for localized height changes, such as small rooftop extensions. Partial modifications
that do not affect the highest point were often missed.

• Roof Modifications (Histogram Correlation) — This method showed promising re-
sults. In general, changed and unchanged houses had different correlation values.
However, some changed houses had correlations close to 1.0, making it difficult to
define a strict threshold. Several factors could influence this:

– Removing wall bins may also remove roof data, especially with complex roof
shapes like gables.

– Uneven point density due to flight lines passing directly over part of a house.

– For large houses, small changes like a single dormer may not significantly impact
the height histogram.

Although the rule-based approach is limited, it offers useful insights. Some suggestions for
improvement include:

• Raster-Based Comparison — Convert house-level point clouds into raster grids. Label
cells as wall or roof, and compare height histograms only for roof cells.
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• Graph-Based Similarity — Model each house as a graph (e.g., nodes = segments,
edges = connections), and compute similarity between graphs across epochs.
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G. Pseudocodes

G.1. Labelling Pseudocodes

Algorithm G.1: Assign LiDAR points to house polygons using spatial querying
Input: Houses – List of house polygons;

Raster – 2D grid where each cell contains zero or more LiDAR points
Output: List of houses with LiDAR points spatially assigned to the corresponding

list of polygons (house)
1 Function MatchLiDARPointsWithHouses(Houses, Raster):
2 Build spatial index from house geometries;
3 foreach raster cell in Raster do
4 if cell contains building points then
5 Get bounding box and geometry of the cell;
6 Query index for candidate houses;
7 if exactly one candidate then
8 Assign all points to that house;
9 else if multiple candidates then

10 Filter intersecting houses;
11 if none intersect then
12 Find closest house by distance;
13 Assign all points to that house;
14 else
15 foreach point in cell do
16 Assign to closest intersecting house;

17 else
18 Expand buffer until candidates found;
19 Assign points to closest house;

20 return Updated list of Houses;
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Algorithm G.2: Assign LiDAR points to individual polygonal faces within each
house

Input: Houses – List of houses with points assigned (output of Algorithm G.1)
Output: Each face of every house contains a list of 0 or more spatially matched

LiDAR points
1 Function MatchPointsToPolygonFaces(Houses):
2 foreach house in Houses do
3 if house is unchanged then
4 Assign all points to the first face;
5 continue;

6 foreach point in house do
7 threshold← 0.2;
8 while threshold ≤ 8 do
9 Find nearby candidate faces;

10 foreach face in candidates do
11 if point is within threshold then
12 Compute distance to face;
13 if distance is smallest so far then
14 Store as closest face;

15 if a face was matched then
16 Assign point to face;
17 break;

18 else
19 threshold← threshold +0.1;

20 return Updated Houses with face-level point mapping;
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G.1. Labelling Pseudocodes

Algorithm G.3: Match corresponding houses between two epochs and identify
additions/removals

Input: HousesEpoch1, HousesEpoch2 – List of houses with per-face points for
epoch 1 and 2 (from Algorithm G.2)

Output: Matched house pairs; lists of unmatched (added/removed) houses
1 Function MatchHousesOnHouseLevel(HousesEpoch1, HousesEpoch2):
2 Initialize matchedHouses, notMatchedEpoch1, notMatchedEpoch2;
3 foreach house1 in HousesEpoch1 do
4 Compute convex hull and area;
5 bestMatch← null, bestScore← 0;
6 foreach house2 in HousesEpoch2 do
7 Compute intersection area;
8 if intersection ratio > 0.6 then
9 Compute symmetric intersection score;

10 if score > bestScore then
11 bestMatch← house2;

12 if bestMatch exists then
13 Add to matchedHouses;
14 Remove bestMatch from HousesEpoch2;

15 else
16 Label house1 as removed;
17 Add to notMatchedEpoch1;

18 foreach remaining house in HousesEpoch2 do
19 Label as added;
20 Add to notMatchedEpoch2;

21 return matchedHouses, notMatchedEpoch1, notMatchedEpoch2;
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G. Pseudocodes

Algorithm G.4: Complete building change labelling pipeline using LiDAR data
from two epochs

Input: CityEpoch1, CityEpoch2 – List of houses for each epoch;
Raster1, Raster2 – Corresponding 2D LiDAR rasters

Output: Labelled house objects, optionally saved per house or per change class
1 Function GeneralLabelling(CityEpoch1, CityEpoch2, Raster1, Raster2):
2 Points1← GeneralLabelling(MatchLiDARPointsWithHouses(CityEpoch1,

Raster1));
3 Points2← GeneralLabelling(MatchLiDARPointsWithHouses(CityEpoch2,

Raster2));
4 Faces1← GeneralLabelling(MatchPointsToPolygonFaces(Points1));
5 Faces2← GeneralLabelling(MatchPointsToPolygonFaces(Points2));
6 matched, unmatched1, unmatched2←

GeneralLabelling(MatchHousesOnHouseLevel(Faces1, Faces2));
7 if SaveHouseLevelResults then
8 foreach matched house pair do
9 Save points and face labels to LAZ;

10 foreach unmatched house do
11 Save full building as added or removed;

12 if SavePointLevelResults then
13 Group points by face labels;
14 Export grouped points;
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G.2. Occlusion Detection

G.2. Occlusion Detection

Algorithm G.5: positionsAircraft: Initialization and flightline filtering
Input: epochFlightlines – List of flightlines, including flightstrip information;

Scanner – Scanner object with scanner details;
Synthetic – Boolean flag indicating synthetic (true) or real data (false);
Reference – Boolean flag for first occlusion boolean calculation (see Section 5.6).

Output: closestFlightlines – Candidate flightlines possibly seeing the point;
XYZPoints, XYPoints, kdtree – Points used to check occlusion between

aircraft and target point.
1 if Re f erence then
2 XYZPoints← XYZRe f erenceNeighbours
3 XYPoints← XYRe f erenceNeighbours
4 kdtree← Re f erencePointCloudKDtree
5 else
6 if Synthetic then
7 foreach f lightLineEntry in epoch f lightLines do
8 Determine FinalPosition by interpolating GPSTime on flightLineEntry

coordinates
9 if FinalPosition is not null then

10 Add FinalPosition to positionAircra f ts
11 return positionAircra f ts
12 XYZPoints← XYZTargetNeighbours
13 XYPoints← XYTargetNeighbours
14 kdtree← TargetPointCloudKDtree
15 Initialize empty dictionary closestFlightLines
16 foreach line in epoch f lightLines do
17 if line.GeometryFlightLine ̸= null and line.StripEnvelope contains PointO f Interest then
18 if line.GeometryStrip contains PointO f Interest then
19 closestFlightLines[line]← distance from line.GeometryFlightLine to

PointO f Interest
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G. Pseudocodes

Algorithm G.6: positionsAircraft: Synthetic final position estimation per flightline,
continuation of Algorithm G.5.

Input: See Algorithm G.5.
Output: positionAircrafts – Estimated aircraft positions (x, y, z) that can see the

target point.
1 if Synthetic then
2 if XYZPoints contains points with classification 6 then
3 Neighbours← XYZPoints
4 else if XYPoints contains points with classification 6 then
5 Neighbours← XYPoints
6 else
7 Initialize ClosestNeighbours as empty list
8 newThreshold← ThresholdNeighbours + 0.5
9 while no point in ClosestNeighbours has classification 6 do

10 Define EnvelopePoint with newThreshold around PointO f Interest
11 ClosestNeighbours← kdtree.Query(EnvelopePoint)
12 newThreshold← newThreshold + 1
13 Neighbours← ClosestNeighbours
14 foreach ( f lightLine, distance) in closestFlightLines do
15 Get coords from f lightLine.GeometryFlightLine
16 Initialize PointsCurrentFlightline as empty list
17 foreach nb in Neighbours do
18 if nb.GpsTime in [tStart, tEnd] then
19 Add nb to PointsCurrentFlightline
20 if PointsCurrentFlightline is empty then
21 continue
22 FinalPosition← null
23 ClosestDistance← ∞
24 foreach nb in PointsCurrentFlightline do
25 distance← Distance3D(PointO f Interest, nb)
26 if distance < ClosestDistance then
27 Interpolate position on coords at nb.GpsTime
28 ClosestDistance← distance
29 Update FinalPosition
30 if FinalPosition ̸= null then
31 Add FinalPosition to positionAircra f ts
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G.2. Occlusion Detection

Algorithm G.7: positionsAircraft: Handling scanner types for real data (non-
synthetic), continuation of Algorithm G.5.

Input: See Algorithm G.5.
Output: positionAircrafts – Estimated aircraft positions (x, y, z) that can see the

target point.
1 if Scanner.ScannerName = “Leica CityMapper - 2” then
2 foreach line in closestFlightLines do
3 Compute radius circle based on FOV and average height
4 Create buffer circle around PointO f Interest with radius circle
5 Find intersection points between circle boundary and flightline
6 Add intersection points to positionAircra f ts
7 else if Scanner.ScannerName = “Riegl VQ-780i” then
8 foreach line in closestFlightLines do
9 Find closest point on flightline segment to PointO f Interest

10 Compute height of closest point by linear interpolation
11 Add closest point with computed height to positionAircra f ts
12 else if Scanner.ScannerName = “Riegl VQ-1560i” then
13 foreach f lightLine in closestFlightLines do
14 Compute angles in radians
15 Determine if PointO f Interest is left, right or collinear to flightline segment
16 if collinear then
17 Compute forward/backward offset and intersection points
18 Add intersection points to positionAircra f ts
19 continue
20 Compute distances and tilted distances
21 Compute two candidate tilted points on line segment
22 Extend lines from PointO f Interest through tilted points
23 Compute intersection points of extended lines with flightline
24 Calculate aircraft altitudes and forward/backward offsets
25 Compute buffered zones and intersection scans
26 Determine forwardLeft and backwardRight aircraft positions based on geometry
27 Add these positions to positionAircra f ts
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G. Pseudocodes

Algorithm G.8: isOccluded: Determine if target point is occluded from all given
aircraft positions

Input: positionsAircrafts – List of aircraft positions (x, y, z);
PointTree – Octree of points in the scene;
Scanner – Scanner parameters including accuracy and laser divergence.

Output: occluded – Boolean indicating if target point is occluded (true) or visible
(false).

1 laserDivergence← Scanner.LaserDivergence mrad / 1000
2 targetPoint← vector(PointOfInterest.X, PointOfInterest.Y, PointOfInterest.Z)
3 foreach positionAircraft in positionsAircrafts do
4 aircraftPos← vector(positionAircraft.X, positionAircraft.Y, positionAircraft.Z)
5 direction← normalize(aircraftPos - targetPoint)
6 rayLength← distance(aircraftPos, targetPoint)
7 ray← Ray(origin=targetPoint, direction=direction)
8 thresholdError← 2× tan(laserDivergence/2)× positionAircra f t.Z + 2×

(Scanner.HorizontalAccuracy + Scanner.VerticalAccuracy)
9 ptsAlongRay← points in PointTree near ray within thresholdError filtered by projection

distance along ray between thresholdError and rayLength
10 if count(ptsAlongRay) ¡ 3 then
11 return false
12 end
13 end
14 return true

Algorithm G.9: CalculateOcclusionPoint: Main occlusion boolean calculation for
target point

Input: flightLinesEpoch – List of flightlines for the epoch;
PointTree – Octree of points;
ScannerReference – Scanner parameters;
Synthetic – Boolean flag if data is synthetic;
OccludedReference – Boolean flag for first occlusion boolean calculation.

Output: occluded – Boolean indicating if target point is occluded (true) or visible
(false).

1 positionsAircrafts← positionsAircraft(flightLinesEpoch, ScannerReference, Synthetic,
OccludedReference)

2 occluded← isOccluded(positionsAircrafts, PointTree, ScannerReference)
3 return occluded
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de Gélis, I., Lefèvre, S., and Corpetti, T. (2021a). 3D URBAN CHANGE DETECTION WITH
POINT CLOUD SIAMESE NETWORKS. ISPRS International Archives of the Photogram-
metry, Remote Sensing and Spatial Information Sciences, XLIII-B3-2021:879–886. Publisher:
Copernicus GmbH (Copernicus Publications).
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