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Abstract

Urban climate affects how people move through cities, but its
influence is difficult to capture with models based on generalized
comfort indices that ignore individual experiences of climate. This
thesis instead explores a bottom-up approach that uses daily Global
Navigation Satellite System (GNSS) traces of people traversing an urban
environment, which inherently contain each individual's personal
influences on their mobility. A machine learning model was developed
and trained using this dataset with the purpose of predicting future
mobility values, while assessing the role that climate played in such
predictions. The model employed a Spatio-Temporal Graph Neural
Network (STGNN) architecture to capture both potential spatial
dependencies between visited locations and temporal patterns in their
activity.

The work draws on the Seoul Cozie dataset, which recorded six weeks
of GNSS location data from wearable devices of 22 participants in Seoul
during autumn 2023. Positions were aggregated into a graph structure
with road intersections as nodes and transitions between them as edges.
Climate features (temperature, humidity and PM10) were interpolated
from over 1,000 weather stations using a Triangulated Irregular Network
method and added as dynamic node features. STGNN variants were
trained and compared based on whether they included climate node
features.

Results show forecasts of node visits with low Mean Square Error of
around 0.12 . However, precision and recall values for visited /unvisited
node detection are low, peaking at 56.51%, reflecting strong class
imbalance in the input. Adding climate attributes produced only minor
and inconclusive improvements, in part due to the dataset’s short time
span. The thesis proposes a reproducible framework linking climate and
mobility, while underlining the need for richer datasets and for more
flexible model architectures, capable of addressing class imbalances and
representing personal mobility datasets.
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1. Introduction

1.1 Context and Motivation

rban climate and its effects on people’s comfort and movement have

become central pillars in contemporary city design (Mauree et al.,
2019; Ye and Niyogi, 2022). Studies have shown that not considering
urban climate can have detrimental effects ranging from safety-related,
like the creation of dangerously high heat island effects (Jeon et al., 2023;
Gupta et al., 2025), to effectiveness-related, like the underutilization
of new developments due to unexpected meteorological conditions
(Fallmann and Emeis, 2020), and to cost-related, like expensive
retrofitting and long-term operational costs (Erell, 2008; Fallmann and
Emeis, 2020). It has therefore become apparent to governments and
designers around the world that climate context-aware city planning
is pivotal to creating cities that people want to and can safely live in
(Hebbert, 2014).

However, this has proven to be a challenging goal to achieve due to
the complexities of modern cities and the inherently personal notion
of comfort. The former problem particularly impacts approaches
aimed at simulating the urban ecosystem. The complexity stems from
the sheer amount of high quality and up-to-date datasets required
(Alva et al., 2023; Liu et al., 2024; Ignatius et al., 2024), which may not
always be available or may be too computationally expensive to analyse
concurrently. Additionally, these digital twins must cover a variety of
interconnected but distinct systems that make up the overall urban
experience, like 3d building morphology, urban material placement,
seasonal tree shading, water management systems, traffic affluence,
emissions levels, indoor heating usage, meteorological data and more,
which removes the possibility of analysing phenomena potentially
impacted by excluded systems (Shahat et al.,, 2021; Xia et al., 2022;
Jeddoub et al., 2023; Mazzetto, 2024).

The second problem instead impacts the use of deterministic
models in assessing the impact of various climate factors on human
behaviour. Models such as the Predicted Mean Vote (PMV) allow for the
categorization and calculation of predicted comfort-based levels on a
variety of variables (van Hoof, 2008). This has proven effective in creating
a baseline approach to understanding human comfort. However, since
its results are meant to be generalized values it is unable to consider
the individual responses to climate that differ from person to person.
Other indices, like the Physiological Equivalent Temperature (PET) and
the Universal Thermal Climate Index (UTCI), extend these approaches
to outdoor urban conditions by integrating heat balance models and
environmental parameters (Honjo, 2009; Brode et al., 2013; Zhang et
al.,, 2023). While such indices capture meteorological influences more
comprehensively, they still operate on assumptions of an “average”



person and do not reflect individual variation. In fact, climate comfort is
impacted by many high-level parameters, such as temperature, humidity
and wind speed, but is also driven by personal, non-standardizable, low-
level ones, such as activity level, body composition, metabolism, eating
habits and individual preferences (Jayathissa et al., 2020; Upasani et al.,
2024; Zafarmandi and Matzarakis, 2025). These cannot be considered by
generalized approaches like the ones mentioned.

Other methods have been built around the idea of the individuality of
perception by trying to employ a ‘bottom up’ approach in opposition
to the ‘top down’ one of the methods presented. What this entails is
understanding that personal reactions to climate are challenging to
predict based solely on climate values themselves. Instead, people’s
own behaviour can be recorded and used to model how these changes
actually cause people to act and move. This way, conclusions can come
directly from human data, including all the participants’ individual
motivations, preferences and real-world influences, without having to
simulate or generalize them (Jayathissa et al., 2020; Ignatius et al., 2024;
Gottkehaskamp, 2024; Liu et al., 2024).

This human-centred, ‘human-as-sensors’ (HAS) method is explored in
this research to assess the effect of climate on people’s movements at
an urban scale. The approach is based on the Soul Cozie dataset, which
recorded six weeks of Global Navigation Satellite Systems (GNSS) traces
from 22 participants in Seoul during autumn 2023 using wearable
devices. It recorded the individual movements of individuals across
the city, intrinsically including the personal influences that led to their
mobility choices. The use of this dataset aims to directly address the
lack of personal influences by the climate comfort models presented
before. In order to be able to use the Seoul Cozie dataset to analyse the
effects of climate on personal mobility, a machine learning model was
developed and trained with the purpose of predicting future mobility
values and assessing the role that climate played in such predictions.
This, paired with the HAS input would, in theory, help identify the
mobility choices most likely affected by climate-related factors. The
model was developed using a Spatio-Temporal Graph Neural Network
(STGNN)-based method, chosen due to their proven implementations in
urban traffic and mobility prediction tasks and their unique ability to
detect spatial dpendencies of the input, which are hypothesized to be
present in the Seoul Cozie dataset.

1.2 Relevance

The application of STGNNs and Graph Neural Networks (GNN) to urban
mobility is extensive but has rarely touched upon personal mobility
datasets, which record mobility by following individual people rather
than using static frames of reference (Rico et al., 2021; Jiang and Luo,
2022). Many of the currently proposed models are based on data
from traffic sensors placed along major transport lines. These models
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excel in making congestion and traffic predictions and do not to
capture individual mobility, due to the nature of their static networks.
Alternatively, Point of Interest (Pol) GNNs use identified important
locations, like restaurants, schools and parks, to assess the relevance
between them, usually for social media and online navigation platforms.
While the granularity of what a node represents is closer to that of
personal mobility, the eventual application is far from the context of the
urban space.

In comparison, this research aims to create a model that is trained
and based on a personal mobility dataset on a single-person scale and
includes a variety of visited location types and transport modes taken.
Additionally, the use of mobility to assess urban climate comfort in this
way is also less explored, but promising. The HAS method has been
applied to interior spaces before but has not been thoroughly explored
on a larger urban scale with a dataset of this type.

1.3 Thesis Outline

Chapter 2. will define the goals and research questions that drove the
thesis.

Chapter 3. will explore papers related to research and current state-
of-the-art developments in urban mobility STGNNs and
climate comfort.

Chapter 4. will introduce the methodology used in the research,
including a detailed description of the Seoul Cozie dataset
which defined the project.

Chapter 5. will present the results of the most recent STGNN
implementations.

Chapter 6. will discuss these results and their meaning relating to the
initial research questions.

Introduction



2. Research Goals

2.1 Main Research Question

H ow do urban climate factors impact people’s mobility choices in
the urban landscape of Seoul and how can this be captured using
a STGNN model?

The research aims to analyse the relationship between climate and
mobility in the urban context of Seoul. To do this, it proposes a STGNN-
based method for predicting affluence at several main node locations
across the city by leveraging historical position data, enriched with
additional climate and urban morphology attributes. The following
secondary research questions help guide the research.

2.2 Secondary Research Questions

+ To what extent can the developed STGNN model be used to
predict urban mobility?

+ How is the STGNN graph structure constructed and how does
this impact the insights the model is able to give on mobility?

+ How can a personal mobility dataset, like the Seoul Cozie
dataset, be integrated in a STGNN framework and what are its
limitations?

Through these secondary aims of the research, particular attention is
put on assessing the plausibility of the proposed STGNN method. They
investigate whether the proposed STGNN method produces promising
results but also question whether its theoretical set up in this research
might have impacted its performance.

2.3 Scope

The primary objective of the research is to develop an initial STGNN
model for predicting mobility patterns and evaluating the inclusion
of climate parameters on its performance. The implementation and
assessment of the model are therefore what most of the research
focuses on to answer the main research question.

This research is not meant to be an exhaustive look into this approach,
but only an initial exploration of the STGNN case study. Additional model
configurations or frameworks that could be implemented to achieve



similar analyses are not experimented or compared with, although these
are considered as future work to assess the overall feasibility of the
presented method. Additionally, the research is defined and limited by
the Seoul Cozie dataset. Evaluation of the model framework on other
datasets and contexts is also not in the scope.

Research Goals



3. Related Work

3.1 STGNNSs in Mobility Applications

3.1.1 GNN and STGNN methods

he use of GNN models for forecasting applications in the urban

mobility context has been widely studied. In recent years, this
topic has seen particular interest and development of new approaches.
Compared to earlier forecasting methods, like AutoRegressive Moving
Average (ARMA) and Vector AutoRegression (VAR) and non-graph-based
machine learning methods, like Support Vector Regression (SVR) and
Extreme Gradient Boosting (XGBoost), GNNs can handle non-linear
relationships in their input data and integrate crucial information
from close locations in the learning process (Rico et al.,, 2021; Jiang
and Luo, 2022). Success has also been found with other deep learning
methods, such as Recurrent Neural Networks (RNN), Long Short-Term
Memory (LSTM) and Gated Recurrent Units (GRU), especially regarding
sequential forecasting. However, they still lack the integration of spatial
relations that a graph structure can provide.

Among GNNs, Spatio-Temporal GNNs (STGNNs) have seen particular
use due to the time forecasting goals of most urban mobility-related

PAPER MODEL DATASETS DATASET TYPE OUTPUT DF DS
Yu et al. (2018) STGCN BIER4, PeMSD7 Fixed sensors Future speeds v X
Wu et al. (2019b) Graph WaveNet METR-LA, PEMS-BAY Fixed sensors Future speeds v ~
Shleifer et al. (2019) Improved GWN METR-LA, PEMS-BAY Fixed sensors Future speeds v ~
Kong et al. (2020) STGAT METR-LA, PEMS-BAY Fixed sensors Future speeds v ~
Fang et al. (2021) STWave PeMSD3/4/7/8 Fixed sensors Future flows v ~
Ma et al. (2022) Multi-Modal TaxiNYC, BikeNYC OD flows Future demand v ~
Roy et al. (2022) SST-GNN PeMSD4,/7/8 Fixed sensors Future speeds v X
Sharma et al. (2023) STGGAN PeMSD4/8 Fixed sensors Future speeds v X
Rossi et al. (2020) TGN Wikipedia, Reddit, Twitter Social media Future edges v v
Cini et al. (2023) GDL METR-LA, PEMS, CER-E Multiple types Multi-step forecasts v v
Liu et al. (2023) GLSP Foursquare NYC, Tokyo POI check-ins Next-POI v ~
S.K.B et al. (2024) GT-LSTM NYC-style multimodal Mobile traces Travel times v v
Wang et al. (2024) Mode-Aware GNN Wuhan CDRs Mobile traces OD flows v X
Zhang et al. (2025) MoSTGTN Tianjin GPS Mobile traces Congestion levels v v

Table 1. Overview of STGNN models and datasets used in related work.
DF: Dynamic Features, DS: Dynamic Structure.



models. Their main advantages over regular GNNs are that they can
capture temporal relationships along with the spatial ones in the graph
by introducing some level of dynamism in the definition of the model
structure (Wu et al., 2019b; Kong et al., 2020). Their application has seen
an improvement in forecasting accuracy, especially when comparing
to RNN-based models (Fang et al., 2021). STGNNs share many of the
main drawbacks common to GNNs, where the definition of the graph
structure, composed of nodes and edges, greatly impacts the quality of
the results. Additionally, the use of a spatial and temporal graph structure
can sometimes lead to over-smoothing and low interpretability of the
learned dependencies (Jiang and Luo, 2022; Roy et al., 2021; Rico et al.,
2021). Despite this, STGNN-based methods have seen great success and
have become standard in many mobility forecasting applications (Jiang
and Luo, 2022; Jin et al., 2023).

3.1.2 Dataset Diversity

STGNNs are employed in a wide range of methods, both regarding the
definition of the graph structure and the model components. Table 1
shows the differences between the models employed by the papers
discussed in these sections.

Defining aspects of these models that vary among applications are
the input dataset and the predicted output. One of the most common
setups is the use of traffic sensor data to create a static graph structure
with dynamic node traffic features. Nodes usually represent the sensor
locations and links represent distance values or the infrastructure
network. Important benchmark datasets, such as METR-LA (traffic
speed dataset from detectors on the LA County road network) and
PeMS (traffic flow and speed dataset from the CalTrans Performance
Measurement System), have become crucial and widely used in STGNN
research due to their wide availability and ease in application to a graph
structure (Yu et al., 2018; Wu et al., 2019a; Kong et al., 2020; Fang et al.,
2021).

Other dataset types often found in the literature are Origin-Destination
(OD) flows. They describe specific movements across an urban
environment, like bicycle or taxi rides, by indicating the location and
time of the start and end instances. The graph structure of OD flows
STGNNs usually defines the nodes as locations and the edges as the
recorded trips between two specific locations (Ma et al., 2022; Yeghikyan
et al., 2020). In a similar way, Point of Interest (Pol) datasets are utilized
to represent trips between specified locations. While the application
of OD flows is generally more related to the study of transportation
patterns, Pol research is closer to spatial social networks, where these
datasets usually originate, like in the case of Foursquare NYC and TKY
(Liu et al., 2023). In contrast with the traffic sensor-based models
mentioned before, the OD flow and Pol ones analyse mobility from a
more personal perspective, as they are tied to the movements patterns
of specific people.

Related Work



A less prevalent but still relevant dataset type is that of mobile trace
data gathered through GNSS. These rely on mobile devices like phones,
smartwatches or GNSS receivers to transmit a continuous record of
positions in a certain time period. They can vary from large signalling
datasets from mobile providers (Wang et al., 2024) to GNSS traces from
a group of vehicles (Zhang et al., 2025; Yeghikyan et al., 2020). Compared
to the datasets introduced so far, they are distinguished by the much
more irregular patterns of locations that are not predefined and that
usually require some sort of semantic grouping. This means that they
are rich in information regarding individual and trip-level data and
represent human movements more closely. This, however, comes at
the cost of graph construction being less straightforward than for fixed
sensor or location networks (Rico et al., 2021; Jiang and Luo, 2022).

3.1.3 Architecture Diversity

STGNNs applications vary widely in their architecture definitions and
new approaches are quickly evolving. Earlier convolutional approaches,
like the Spatio-Temporal Graph Convolutional Network (STGCN)
introduced by Yu et al. (2018), replaced more traditional RNNs with
temporal Convolutional Neurlal Networks (CNN), combining graph
convolutions with gated temporal ones. This saw improvements
in the model's efficiency and the creation of a fully convolutional
STGNN. Models capable of adaptively calculating the graph adjacency
have also seen success, in particular with the introduction of Graph
WaveNet by Wu et al. (2019a) and its refinement by Shleifer et al. (2019).
Attention mechanisms have also been introduced within STGNNs to
more meaningfully weigh neighbours Kong et al. (2020). Additionally,
more complex and hybrid architectures have been proposed, which
include using new temporal modules, like wavelet decomposition and
separation of current and historical patterns Fang et al. (2021); Roy et al.
(2021) and combining some of the aforementioned features with other
components, like edge features and transformers Sharma et al. (2023);
Zhang et al. (2025).

The graph structure of STGNN models is also one of its defining factors.
They can be broadly divided into static and dynamic, based on whether
its nodes and links can change throughout the model or if they are
constant. Most research employs static graphs, as these are best suited
for sensor networks, grids and fixed location datasets (Yu et al., 2018;
Roy et al., 2021; Sharma et al., 2023). Dynamic graphs aim to capture
certain structural changes in a dataset and, so, require a different graph
definition from non-dynamic ones. This is partly the case for STGNNs
that use an adaptive adjacency, but these are also usually based on a
static structure (Wu et al, 2019a; Kong et al,, 2020). Fully dynamic
graphs remain relatively rare, although progress has been made to allow
calculating changes based on memory or similarity components (Rossi
et al., 2020; Zhang et al., 2025).

Related Work



3.2 Human-Centric Modelling

Conventional approaches to climate comfort tend to rely on
deterministic indices such as PMV or UTCI, which assume that a
set of physical variables can adequately represent the experience of
individuals. While such models are useful for establishing baselines, they
can reduce a large variety of personal responses into an average value. In
practice, comfort is not only shaped by temperature, humidity or wind
speed but also by factors that are much harder to standardize. This gap
left by traditional approaches has led to studies that place the human
subject at the centre of measurement.

Jayathissa et al. (2020) propose this concept as “humans-as-sensors”
in the context of buildings. Their work collected repeated subjective
comfort feedback from occupants and linked it to concurrent
environmental conditions, showing that the frequency of responses
allowed the construction of more precise indoor comfort models
than standard methods. Upasani et al. (2024) instead emphasized that
comfort cannot be separated from the characteristics of the individual
and the specific building they inhabit. By explicitly modelling personal
and contextual attributes they showed that comfort prediction can
improve significantly.

This more individualized logic has also been applied to the outdoor
space. Ignatius et al. (2024) embedded wearable data into a digital twin
that also included weather records and street-view imagery, linking
physiological signals directly to the surrounding built environment and
its walkability implications. Liu et al. (2024) developed a human-centric
digital twin for Singapore that integrates morphology, meteorology and
remote sensing data to estimate outdoor comfort distributions across
the city. Alva et al. (2023) extended this perspective by presenting a
bottom-up digital twin platform that combines city-scale datasets on
energy, mobility and emissions, demonstrating how integrated urban
data can support multiple use cases for planning and management.

Walkability and urban mobility have also been studied using this
human-scale approach. Jonietz (2016) argued that pedestrian’s different
priorities and trajectories cannot be summarized into single general
walkability score. Jonietz and Bucher (2017) later introduce a more
holistic framework for movement trajectory analysis that considers the
spatiotemporal context in addition to just their geometry. Some work
on mobility prediction through graph-based methods (Terroso-Saenz
and Munoz, 2021) and data fusion for synthetic populations (Vo et al.,
2025) shows that bottom-up datasets can, in fact, support predictive
modelling at multiple scales.

Related Work



3.3 Climate Comfort and Urban Design

Urban climate research has long been linked to city design. Hebbert
(2014) reviewed the evolution of this field and showed how climatology
entered planning in the mid-twentieth century, with tools such as the
Klimaatlas designed to translate atmospheric analysis into planning
guidance. Erell (2008) described the same gap from another angle:
although impacts of form, material and density on microclimate are well
established, their systematic use in practice has been limited due to
technical, organizational and economic constraints.

Several reviews highlight the complexity of connecting climate
processes with planning. Mauree et al. (2019) evaluated methods for
outdoor comfort, building energy demand and energy systems and
noted that these domains are usually studied separately despite strong
interdependence. Ye and Niyogi (2022) argued for a convergence of
urban climate science and planning practice to address increasing risks
from heat, flooding and extreme rainfall. Gupta et al. (2025) focused
on thermal hazards and urban heat islands, pointing to “blue-green”
infrastructure, optimized morphology and governance as central
strategies while also stressing financing and equity barriers.

Case studies show how these issues appear at different scales. Jeon
et al. (2023) analysed seasonal land surface temperatures in Seoul and
found that vegetation and water reduce heat compared to dense fabric.
Peng et al. (2022) used climate walks along a waterfront and showed that
shading and water proximity directly shape comfort perception. Liu et
al. (2024) and Ignatius et al. (2024) applied digital twins, one combining
weather and morphology at city scale and the other fusing wearables,
weather and imagery for pedestrian comfort. Fallmann and Emeis (2020)
reviewed measures such as greening, reflective materials and biophilic
design from a meteorological perspective and stressed that translation
into planning requires interdisciplinary dialogue. Despite different
methods and scales, these studies converge in showing that thermal
comfort depends not only on climate variables but also on vegetation,
shading, building form, water and planning decisions.

3.4 Open Challenges and Future Directions

Several surveys and reviews point to open challenges in the use of
STGNNSs. Among them, the use of dynamic graphs is an area that can see
particular growth. Models such as those proposed by Rossi et al. (2020)
and Longa et al. (2023) show the difference between snapshot-based
and event-based dynamic graphs, noting that most applications still rely
on static or semi-dynamic adjacency. Another open problem regards
the integration of heterogeneous data sources. Reviews like Rico et al.
(2021), Jiang and Luo (2022) and Jin et al. (2023) emphasize that traffic
forecasting problems often require additional factors such as weather
or calendar effects.

Related Work



Several recent works have started to address some of these issues. S.K.B
et al. (2024) integrates mobility traces with public transport schedules,
land use information and weather data in a multi-modal framework.
Wang et al. (2024) includes transport mode choice explicitly by building
separate car and transit-based adjacency matrices and Zhang et al.
(2025) combine taxi and bike GNSS data while also calculating dynamic
adjacency at each time step. Despite this progress, studies seem to not
consider climate as a key driver of mobility in a spatiotemporal graph
model. Climate data is rarely integrated, even though identified as an
important external factor (Rico et al., 2021; Jiang and Luo, 2022).

Related Work



4. Methodology

4.1 Overview
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Figure 1.  Methodology diagram showing the dataset
utilized and construction of the STGNNS.

This chapter will describe the steps taken to develop a STGNN model
for mobility prediction using the Seoul Cozie dataset and analyse
its performance in relation to the research questions on the effects
of climate parameters, mobility definition and compatibility with a
personal mobility dataset. This section will provide an overview of the
chapter, briefly introducing each step from the data processing, graph
construction, architecture definition, evaluation and experimentation,
as presented in figure 1.

PERFORMANCE
COMPARISON

The first step saw the acquisition, cleaning and processing of the used
datasets to prepare them as input to the graph construction (Section
4.2). The Seoul Cozie dataset is cleaned to account for errors in the
GNSS traces and timestamp inaccuracies. Readings from the Seoul
Data of Things (S-DoT) weather station network are used to interpolate
climate parameters across the city during the same time frame of the
Seoul Cozie dataset. Urban morphology data in the form as building
footprints and green areas are also gathered to enrich the input.



After processing, the datasets are used to create the graph structure
(Section 4.3). Different methods of meaningfully group the Seoul Cozie
coordinates are tested to eventually define the graph nodes and edges.
The graph elements are then enriched with features from the climate
and urban datasets and divided into training, validation, and testing time
bin.

The architecture of the STGNN model is then defined, as it takes the
past snapshots of the graph to predict its next-bin state (Section 4.4).
The model is trained to output the node visit counts. Once trained, the
model is evaluated and experimented on to answer the initial research
questions (Section 4.5). Two almost identical models, Climate+Urban
and Urban-only, were trained with the same architecture and graph
structure above that differed on the inclusion of climate parameters to
assess their influence on model performance. The evaluation step saw
a quantitative analysis of performance metrics and a qualitative look at
implementation of the models in real case scenarios. From these insights
the results and conclusions of the research are drawn.

4.2 Datasets

4.2.1 Seoul Cozie Dataset

The dataset utilized to develop and evaluate the proposed STGNN
model is the Seoul Cozie dataset gathered by Mosteiro-Romero et al.
(2024) during their experiment on the emergent role of district-scale
and occupant-scale data in urban environments. Conducted at Chung-
Ang University (CAU) in Seoul, South Korea, the experiment aimed to
collect subjective from individuals in a real-world setting. The study
saw 22 university students, aged 20 to 31, agree to have their location
and physiological data recorded for a period of 6 weeks (October 4
to November 13, 2023). This was done using Apple Watches that were
loaned or previously owned by the participants. Through the iOS
application Cozie, GNSS coordinates and body measurements, such as
resting heart rate and wrist temperature, were collected (Tartarini et
al., 2023). Additionally, micro surveys would be sent out on an hourly
basis to ask participants about their past activities, current location
and temperature comfort. Each submission of these surveys would also
record their GNSS coordinates.

The final gathered dataset was composed of 54,322 records with
individual and valid recorded coordinates. Due to the number of
participants and their similar profiles, the recorded positions are mostly
concentrated in the vicinity of CAU buildings (fig. 2) but also extend
to other popular areas of the city and even beyond its boundaries,
capturing trips to Cheongju, Gangneung, Daegu, Jeju Island and more

(fig. 3).
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Figure 2. Recorded positions of the Cozie dataset in Seoul.
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b

Figure 3.  Recorded positions of the Cozie dataset across South Korea.



Due to the dataset not being explicitly gathered with the purpose of
STGNN development, certain preprocessing steps had to be performed.
Firstly, several features and records that were not relevant to the
research were omitted, including all physiological readings and records
that were not geolocated or had invalid (0.0, 0.0) coordinates. Records
that were outside of the administrative boundaries of Seoul were also
discarded to focus on the urban scale.

Additional cleaning was done to tackle irregularities found in the
coordinate records. Occasional big “jumps” would appear caused by
a distant coordinate interrupting a single participant’s path (fig. 4). To
highlight these and other suspicious nodes, a speed value was calculated
based on the distance between consecutive coordinate records.

before

after

Figure 4. “Jumps” error before and after cleaning.
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Figure 5.  Redundant coordinate error before and after cleaning.
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Coordinates with unfeasibly high-speed values (above 400 km/h) were
selected. This allowed to identify different groups of errors and address
them individually.

A large portion of errors came from a mismatch between the Cozie
timestamps and coordinates, due to them both differentiating between
readings triggered by completing a survey and ones triggered by opening
the Cozie app or by background tasks of the device. This was solved by
creating unified coordinate and timestamp fields that took into account
each type of record.

Another group was identified as redundant coordinates that recorded
the participant’s position multiple times over less than one second. This
extremely short time distance between records, supposedly caused by a
device or application error, caused the speed value to balloon. While not
necessarily incorrect data points, their temporal accuracy was widely
out of scale with the rest of the dataset, which instead saw intervals
between coordinates in the 20 minutes to 1 hour range. Therefore,
coordinates that were recorded less than five minutes after the previous
one were dropped (fig. 5).

The data cleaning also addressed problems caused by overlapping
consecutive positions, which were usually followed by a third position
with an impossibly high speed value. The identical values of the
coordinates implied some error in the data writing process, again
probably due to a temporary malfunction with the participant’s device or
application which caused a previous coordinate to overwrite the current
one. Since the dataset stored coordinates as latitude and longitude
with up to 15 decimal places, it was highly unlikely to produce the same
value for even the same location, making these errors easy to identify.
The inaccurate larger distance between records caused by this paired
with their accurate timestamps, led to the high speed values. This was
resolved by omitting records that had identical coordinate values to the
previous record.

The dataset cleaning therefore tackled most time/coordinate
inconsistencies, “jumps”, redundant positions and overlapping
coordinates to obtain a final dataset most closely resembling the
participants’ everyday trajectories. Due to the dynamic and inconsistent
nature of the dataset, it is possible that additional processing could have
been applied. This, however, was deemed an acceptable level for the
purposes and scope of the research.

Finally, the experiment was performed on weekdays (Monday to Friday)
from 09:00 to 18:00, and participants were not required to respond to
surveys or wear the devices outside these hours. For this reason, the
number of records on weekends and between 24:00 and 08:00 see a
drastic fall in the number of records. Interestingly, the ranges of 18:00
to 24:00 and 08:00 to 09:00 do not see this same fall, despite being
outside the official experiment duration. Therefore, the records were
also filtered to only include ones on weekdays and from 08:00 to 24:00.

Methodology



4.2.2 S-DoT Dataset

FEATURE UNIT DESCRIPTION u? C? NR? G?
Temperature C Air temperature near the station v v v v
Humidity % Relative humidity of the air v v 4 v
PM,, pg/m? Concentration of particles < 10 pm in air v v v
PM, ug/m? Concentration of particles < 2.5 um in air v v
Wind speed m/s Air movement past the sensor v v
[lluminance lux Level of visible light at ground v v
uv uv Intensity of UV sun radiation v v
Noise dB Ambient sound level at the site v 4
Vibration mm/s Vibration velocity along 3 axes 4 v
NO, ppm Nitrogen dioxide concentration v
SO, ppm Sulfur dioxide concentration v
NH, ppm Ammonia concentration v
H,S ppm Hydrogen sulfide concentration v
O, ppm Ozone concentration v

Table 2. Features captured by S-DoT sensors and the qualities that
influenced them being included as node features. U: used
as node features, C: is the data (mostly) complete?, NR: is
the feature not directly related with another?, G: can it be
generalized across space?

To enrich the nodes of the STGNN that would take into account climate,
additional features were integrated from the S-DoT network. S-DoT
comprises over 1000 weather stations distributed across Seoul. They
record temperatures, humidity, air quality, wind speed, illumination,
UV radiation, vibration and noise levels at two-minute intervals which
are then averaged into hourly values (Seoul Metropolitan Government,
2021; Song et al., 2023). The stations are installed at 3-4m height on
poles and building walls predominantly in dense urban areas (87%) as
well as near rivers (9%) and in mountain areas and parks (4%), giving
a spatial resolution of around 0.75km (Song et al., 2023). The data can
be on occasion subject to missing records due to overheated sensors,
power failures or telecom failures (Kim et al., 2023).

S-DoT has been used to clearly detect urban heat island patterns,
consistently showing one to three degrees of difference between the
mountain and downtown areas. They also function as a public data
source for the Smart Seoul Map to guide heat stress prevention and air
quality information (Seoul Metropolitan Government, 2021).

Out of the 16 measured parameters, 3 were chosen to be implemented
in the STGNN: temperature, humidity and PM10 (coarse particulate
matter with a diameter of 10 micrometers or less). Other parameters
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were omitted due to having too many missing values, being too reliant
on the positioning of the station and not being generalized to the area
around it or being too correlated with another field (specifically for
PM2.5). Table 2 gives a full overview of the captured S-DoT parameters
and the reasoning for their omission.

Stations with missing values per bin (mean features)
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Figure 6.  S-DoT station invalid-value counts before and after filtering.

To assign to each node in the STGNN graph structure a temperature,
humidity and PM10 value at each time bin, some cleaning needed to
be done on the S-DoT dataset that would account for occasional null
values. Then, a triangular irregular network (TIN) method was applied
to interpolate climate features at each node’s coordinate from the
S-DoT locations.

Although the chosen S-DoT features were chosen in part due to
their high data availability, they still encountered some data loss
that needed to be dealt with before interpolation. Many stations



saw a spike in null values during late hours, specifically between 24:00
and 08:00 (fig. 6a). Another noticeable rise in null values was apparent
from 24:00 of October 23 to 08:00 of October 24, 2023. During this
period, none of the S-DoT stations recorded any data (fig. 6b). Both
these patterns affected a large number of stations and might have been
caused by some known issues cited by Kim et al. (2023), such as power
or telecom outages. The 24:00 to 08:00 time frame was already filtered
out from the Seoul Cozie dataset, due to its own low data points in that
period, so no additional cleaning was required. However, the 32-hour
time period between October 23 and 24 needed to be addressed, and so
it had to be filtered out to prevent multiple time-bins having no climate
data. The omission of these records was also applied to the STGNN
that did not use climate features to make sure it would not affect their
comparison.

After addressing these most noticeable and largest missing data
records, some station-specific missing values still existed throughout
the dataset, possibly caused by local issues of overheating or temporary
breakages. A single approach was utilized for them: if the station had a
valid reading from at most 90 minutes before or after the missing value
timestamp, a new value would be generated by performing a simple
linear interpolation between the real values. Otherwise, the null value
would remain and be dealt with during the interpolation phase.

The chosen interpolation method was a TIN-based one. TIN
interpolation has been proven to be time efficient while being able to
account for irregularly placed data points, in contrast to other methods
that usually excel only in one of the two (Ledoux et al., 2024). This was
ideal for the S-DoT dataset due to the unevenly distributed locations of
the weather stations, which often avoided parks, mountains and the Han
River crossing the city.

The interpolation worked by firstly creating a Delaunay triangulation
of the S-DoT network using the stations as the vertices and creating
triangles that were as equilateral as possible. Then, at each time bin, a
node’s location within one of these triangles and its vertices’ weather
features was used to calculate the node’s interpolated temperature,
humidity and PM10 values (fig. 7). This was done by transforming the
node’s coordinates into barycentric coordinates, which represent its
position in relation to the three stations. These barycentric coordinates
then acted as weights to the weather values of the stations to calculate
the interpolated values, meaning that a node would have more similar
values to the closest stations in its triangle (fig. 8).
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Barycentric coordinates of a triangle. The weight wi of a
point pi can be thought of as the area Ai of its corresponding

triangle created by the point x and the other two points pj
and pk (Ledoux et al., 2024).
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This general approach was applied to most nodes across time-bins, but
some exceptional cases needed to be dealt with individually. Firstly,
nodes that were outside the convex hull of the triangulation, would
not have been inside any triangle and so could not have barycentric
coordinates and interpolated values according to the TIN method. The
simple nearest neighbour (NN) method was used that would take the
value of the closest weather station. This same method was also applied
in the cases of triangles with at least one station having a remaining
null value from the initial S-DoT cleaning. Since the null value would
not allow for valid barycentric coordinates, this was a simple fix to still
make sure that each node would have valid weather features, without
having to rebuild a triangulation for every time bin with invalid station
readings.

Table 3 shows other methods that were considered and their reason
for ultimately not being chosen: nearest neighbour (NN) could be too
simplistic and give the same value to differently placed nodes, inverse
distance weighting (IDW) would have been better at estimating different
values for the nodes but would have struggled in areas with less
concentrated stations, C1 or C2 smoothed TIN methods would have been
unnecessary and overly complicated for the simple weather dataset and
costed in computational efficiency, Kriging could have provided more
realistic values but would have required additional contextual datasets
and development time which went outside the scope of the research.

METHOD PROS CONS

Methodology

TIN

Time efficient; handles irregular station
placement well; straightforward to
implement; flexible fallback to NN for
nodes outside convex hull or triangles with

null station values

Cannot interpolate outside convex hull
without fallback; barycentric interpolation
only uses three nearest stations (may miss

broader patterns)

NN Very simple; fast to compute; always Too simplistic, assigns identical values to
produces a value many nodes; loses spatial granularity
IDW Produces smoother variation than NN; Sensitive to irregular or sparse station
relatively easy to implement placement (e.g. gaps along rivers or linear
distributions); may be unreliable in poorly
covered areas
C1/C2 TIN Generates smoother surfaces; better Computationally more expensive;
continuity across triangles unnecessary complexity for relatively
simple weather datasets
Kriging Statistically rigorous; can incorporate Requires more contextual data;

spatial autocorrelation; potentially provides

most realistic estimates

high computational cost; timeconsuming
and outside scope of this research

Table 3. Comparison of interpolation methods considered for assigning S- DoT climate
features to STGNN nodes.
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4.2.3 Urban Morphology Datasets

Datasets on the morphology and features of Seoul’s urban environment
were also used for the purpose of defining the graph structure and
enriching the model features. Building footprint and heights were
acquired from the Municipality of Seoul and required cleaning to ensure
valid and non-overlapping geometries. Green areas, including city parks,
riversides, and forests, were acquired from Open Street Map (OSM).
Cleaning again had to account for overlapping geometries, both within
the dataset and with the building footprints. When an overlap between
the two datasets occurred, the building geometry took precedence,
and the shared area was excluded from the respective green area. OSM
Road network lines were also used and cleaned to merge double lines
representing double-way lanes. Finally, the administrative boundaries of
Seoul, its municipalities, and its sub-municipalities were also acquired
from the Municipality of Seoul.

4.3 Graph Structure

4.3.1 Mobility as a Graph

The STGNNs were built using the same graph structure. Nodes
represented locations across Seoul gathered from semantically
grouping the Seoul Cozie coordinates, as explained in section 4.3.2.
Edges connected pairs of node locations that were visited in succession
by at least one participant. Constructing this graph required translating
the raw Cozie GNSS traces into a form that could capture meaningful
urban positions since the coordinates collected by the devices were
irregular and not directly tied to distinct places in the city. A single
GNSS point cannot by itself represent a location in the urban sense, as
it just represents a coordinate point with no semantic value. To address
this, a method was needed to group multiple records into nodes that
could stand for semantically comparable locations. This was the central
step in defining the graph: deciding at what spatial scale positions would
be merged and how edges would then connect these nodes based on
observed participant movements.
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4.3.2 Node Grouping

Figure 9.  Nodes from morphological grouping (left) and from intersections grouping (right)

A first grouping strategy explored was based on urban morphology. The
aim was to preserve as much detail as possible, letting nodes represent
the actual places participants visited. Several datasets were combined
for this: the Cozie survey responses, the building footprint dataset
from the Seoul Metropolitan Government and the OSM green areas
layer. Indoor responses were matched to the nearest building, outdoor
responses inside polygons of green areas were grouped as park nodes
and the remaining outdoors points were clustered using the Hierarchical
Density-Based Spatial Clustering of Applications with Noise (HDBSCAN)
algorithm with a minimum cluster size of 5 and a minimum sample
size of 3. (fig. 9). In principle, this would allow nodes to correspond to
categories like specific buildings, parks, or clustered street locations.
In practice, however, most recorded positions did not have survey
responses attached indicating whether the participant was inside a
building, which meant many indoor coordinates were incorrectly treated
as outdoors. The varying horizontal accuracy of GNSS coordinates
contributed to this as locations close to buildings could not be reliably
assigned as indoors. Furthermore, the method produced very fine-
grained results near the university, where data was dense, but quickly
broke down in the rest of the city. Locations that were visited once or by
a single participant created nodes with extremely low activity, resulting
in strong class imbalance between frequently and rarely visited nodes.
This approach was tested but discarded after it produced poor model
performance.

A second method was then developed to address these issues by
lowering the spatial granularity of the nodes. Instead of trying to
represent nodes as exact places, each coordinate was assigned to its
closest road intersection derived from the OSM street network. In this
way, one node represented one intersection, which positioned the graph
more at the scale of an urban transport network, while still utilizing
the personal mobility records. The model no longer tried to capture
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whether a participant was inside a specific building or in a certain park,
but rather which intersection they were closest to. The idea was similar
in spirit to what Ma (2022) described, although in this case the grouping
logic itself was changed rather than merging nodes afterwards. At the
edges of the city, where visits were rare and often only by one or two
participants, even this scale was still too fine and resulted in many
commonly unvisited nodes. These cases were merged further into
single nodes representing whole municipalities or sub-municipalities,
depending on their number of records and unique visitors (fig. 9). This
method reduced the number of nodes, enriched the data available per
node and lowered the class imbalance. The imbalance did not disappear
entirely, as central intersections remained much more visited than
peripheral ones, but it was less severe than in the morphology-based
approach. This second grouping definition was therefore adopted as the
graph structure used in the rest of the project.

4.3.3 Node and Edge Features

Once the Cozie coordinates were grouped into nodes and the edges
were constructed by connecting these nodes based on the participant’s
movements, additional information was added to both graph
components.

Nodes were enriched with both static features, that remain the same
throughout the time bins and dynamic ones, which would change
based on the timebin. These were the node coordinates (static), urban
morphology parameters (static) and a visit count of the number of times
participants passed through the node during the time bin duration
(dynamic). Dynamic climate features were also added to the nodes of the
climate STGNN as described in section 4.2.2. Each node’s urban features
were calculated using a 100-meter buffer around its coordinates and
incorporating building footprint and green area datasets (fig. 10). The
following metrics were chosen due to their ability to generally describe
and differentiate different urban areas (Maiullari 2023): Ground Space
Index (GSI), area-Weighted Mean, Building Height (WMHB), Green
Coverage Ratio (GrCR), GD (Green Distance). Table 4 details how each of
them are calculated.

Edges were enriched with only dynamic features, as the edges themselves
were also dynamic. These were the number of movements between the
two nodes connected by the edges during the time bin duration and
the average transport mode derived from the average speed of such
movements. The transport mode was categorized based on the average
collective speed of movements on the edge. A 7.5 m/s threshold on this
value was used to distinguish between slower personal mobility, like
walking running, and biking, from faster motorised mobility, like cars,
metro, and trains.
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FEATURE DESCRIPTION

GSI Ground Space Index Footprint area / buffer area

WMBH area-Weighted Mean Building Height Y. building height  footprint / ). footprint
GrCD Green Coverage Ratio green area / buffer area

GD Green Distance distance to closest green area

Table 4. Description of node urban features.
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Figure 10. Examples of nodes, their buffers and urban features calculated based on building

and green morphology.

4.3.4 Binning

The graph structure described was used to create multiple graphs
bins that would represent different time instances across the Seoul
Cozie dataset duration. Bins were defined as two-hour periods, that
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would be able to consistently represent different parts of the day. Each
bin’s graph was composed of all the nodes, with their static features
remaining unchanged and their dynamic ones being aggregated to the
two-hour period. Node count visits were summed, and climate features
were averaged. Edges between nodes were included in a time bin only
when at least one person travelled between them. Edge counts were
averaged, and transport was calculated using the speed values of only
the movements occurring in the bin duration.

Following this, the bins were divided into training, testing and validation
groups. Entire days, and all two-hour bins inside them, were assigned
to each group following a four (training) - two (validation) - three
(training) - one (testing) recurring pattern, which was chosen to have
an even distribution of weekdays in all groups across the entire dataset.
This was done to limit the effects of patterns that might emerge only
during specific weekdays or at different time periods during the Seoul
Cozie dataset time span and to keep a train/validation/test split of
70%,/20% /10% (fig. 11).

It was also enforced that bins would be able to act as prediction targets
only for their own binning group to avoid data leakage between them.
Moreover, any bins used as input for a prediction could be reused
as a target only for inputs in its same group. This meant that when
chronologically switching between bin groups a gap would remain
where the bins were only used are inputs for the next bins of the same
type, but not as targets for the previous bin group.
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Figure 11.  Distribution of binning groups across the total time frame.

4.4 STGNN Architecture and Training
4.4.1 Architecture Overview

The STGNN model was designed to take as input graph instances from
five previous time bins, representing a ten-hour period, and outputting
predictions for visit counts for all nodes at the next time bin. The
utilized architecture is presented in this section, further detailed in the
subsections below, and shown in figure 12.
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Figure 12. Diagram explaining model architecture and components.

The input graph bins pass first through a decoder. Its first two layers
use the node features (visits, climate, morphology) and the dynamic
edges (count, average transport mode) at each past time bin. An edge-
conditioned MLP encodes the edge features into weights for each one.
These are then used in a message passing layer along with node features
to exchange information between neighbours and calculate embeddings
for each node. Then, a Gated Recurrent Unit (GRU) layer is applied at
each node to retain important information from its embedding in past
bins and updates the embeddings once again.

The decoder takes the final learned node embeddings from the encoder
and maps each one to a single predicted node visit count value. The
model is iteratively trained using Mean Square Error (MSE) loss over all
train bins and over 60 epochs.

4.4.2 Input

The input consisted of a sliding window of five consecutive time bins,
(t-W,..,t-1)with W=5, each represented as a graph with nodes, edges
and their attributes. Predictions were then made for the next unseen bin
t. This setting allowed the network to condition its forecasts not only on
the spatial structure of the graph but also on the short-term temporal
dynamics of mobility.
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Each node contained both static and dynamic features. The static part
included the normalized coordinates of the node and, when available, the
surrounding morphology features. These attributes did not vary across
time. The dynamic part was recalculated for each bin and included the
number of visits recorded at the node during that interval.

Each edge carried attributes describing the temporal context (hour and
day, normalized), the number of movements recorded and the average
speed of these movements. The speed values were normalized across
the dataset, with a threshold of 7.5 m/s separating slower personal
mobility from faster motorised travel.

Formally, a graph at time k can be written as

G = (V, By Xy, Ef )

where V is the set of nodes, E, the set of edges observed in bin k, X, the
node features and E/, the edge features.

4.4.3 Encoder

The encoder combined edge-conditioned spatial message passing with
a re- current temporal update. For each bin in the input window, node
embed- dings were first updated with an edge conditioned convolution
(NNConv). The weight matrices used in the message passing were
produced by a small neural network applied to the edge attributes,
making the aggregation dependent on the type of connection.

For a node i, the update at step k can be expressed as

= 5 g{cf)ath

where e®, are the features of edge (i, j) at time k, ¢ is the edge network
mapping them to a weight matrix and x®, is the feature vector of
neighbour j.

The outputs of the convolution were then passed through a GRU which
maintained a hidden state across the five time steps. This allowed
the encoder to integrate the temporal evolution of each node. The
recurrence can be written as

2

mY = GRU(m{” n{")

with h©, initialized to zero. After processing the full sequence, the final
embedding h™), represented the node at the end of the input window.
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4.4.4 Decoder

From the node embeddings, the decoder produced predictions for the
next bin. It was conditioned on the temporal encoding of the target bin,
given by the normalized hour and day values Tt. To predict the number
of visits per i node, for node i, the embedding h™), was concatenated
with Tt and passed through a regression network to give the predicted
visit count ¥;:

5= o [1,71))

The dataset was split along entire days to prevent overlap between
training and evaluation windows. Optimization used an initial learning
rate of 0.01, which reduced whenever the validation loss plateaued. The
objective used mean squared loss to train the node visits.

4.5 Experiments and Evaluation
4.5.1 Model Configurations

To isolate the effect of contextual information on predictive
performance, a total of four model configurations were trained under
the same experimental method. All variants share the same architecture
detailed in section 4.4 and they use the same graph structure, optimizer,
learning rate and train-test-validation split. The difference between
them only concerns the node features utilised.

The Climate+Urban model is the main configuration that incorporates
both climate features interpolated from the S-DoT dataset (temperature,
humidity and PM10) and urban features from the morphological datasets
(GSI, WMBH, GrCR, and GD) aligned to the 2-hour time bins. The Urban-
only variant removes the climate features, while keeping the urban
morphology ones. These two configurations were the ones in the initial
scope of the research, as the latter was meant to count as the baseline
for the former. However, a Climate-only and a Baseline variant were also
introduced to isolate the results from the urban features, if necessary.
The former omits the urban features but retains the climate ones, while
the latter removes both.

CLIMATE+URBAN CLIMATE-ONLY URBAN-ONLY BASELINE
Climate node features v v X X
Urban node features v X v X

Table 5. Presence of climate and urban features across model configurations.
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Methodology

4.5.2 Metrics

The evaluation of the models focuses on the next-bin node count
regression trast and a derived node presence value. For counts, MSE
between predicted and observed counts is reported (table 6). Presence
is instead a value derived from the predicted counts that informs on
whether a node is visited by at least one person. It is defined from
the ground truth as visited when the node count is at least one, while
for the model outputs a threshold of 0.30 is used. We use this binary
inactive/active classification to describe Presence through the metrics
of Accuracy, Precision, Recall and Fl-score.

METRIC DESCRIPTION RANGE NOTES

NC MSE Mean squared error between predicted and observed node >0 Sensitive to scale; dominated by many zeros.

visit counts per time bin.

NP Accuracy Share of correctly classified nodes (active/inactive) [0,1] Can be inflated by class imbalance. Threshold
after thresholding predicted counts. =0.3.

NP Precision TP/(TP + FP) for the active class; proportion of predicted- [0, 1] Reflects false positive control. Threshold = 0.3.
active nodes that were truly active.

NP Recall TP/(TP + FN) for the active class; proportion of truly active [0, 1] Reflects sensitivity. Threshold = 0.3.
nodes detected.

NP F1 Score Harmonic mean of precision and recall (2 PR/(P +R)) for [0, 1] Balances precision/recall. Threshold = 0.3.
the active class.

Pearson Corr. Pearson correlation coefficient between predicted and [-1,1] Can appear high when both series are mostly
observed node counts. zeros; interpret with care.

Table 6. Evaluation metrics used in this study on node count (NC) and
node presence (NP). NP metrics are computed by thresholding
predicted counts; a node is active if its predicted count > 0.3.

4.5.3 Scenarios

To further investigate the performance and applicability of the
different model configurations, performance was also analysed in
specific contexts of the Seould Cozie dataset. Two types of scenarios
are considered: time-of-day and weather. In both cases scenarios are
constructed from bins that meet the requirements of the scenario, and
the five preceding bins are used as input.

The chosen time-of-day scenarios were four two-hour time bins that
cover typical daily patterns: 8:00-10:00 for morning rush, 12:00-14:00
for mid-day/lunch period, 16:00-18:00 for afternoon rush and 18:00-
20:00 for early evening. These scenarios are built to reveal whether the
models capture differences in activity pattern across daily cycles.

For the weather scenarios, city-level daily weather statistics were
calculated using the S-DoT dataset by taking, for each day, the median
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across stations of each station’s daily mean temperature, humidity
and PMI10 values. Days with insufficient coverage of less than 30% of
the stations reporting are discarded. Three scenarios were defined:
hot days with a mean temperature above 23°C (fig. 13a), cold days with
a mean temperature below 10°C (fig. 13b), and humid days with mean
humidity above 70% (fig. 13c). For each, the days that meet the threshold
are selected and evaluate within the same four time-of-day windows.
The resulting slices allow us to examine whether climate-sensitive
model configurations have improved performance relative to those
without climate features.

74 ---- threshold = 23.0

Number of days

175 20.0
Value

a. Hot days (threshold: >23°C)

5 ---- threshold = 10.0

Number of days

10.0 125
Value

b. Cold days (threshold: <10°C)

4.0 q ~--- threshold = 70.0

3.54

3.0

2.5

2.0

Number of days

1514

1.01

0.54

0.0-

60 65
value

c. Humid days (threshold: >70%)

Figure 13. Histograms of days with mean S-DoT values used for the
scenarios sampling.
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5. Results

5.1 Main Models Results

he Climate+Urban and Urban-only STGNN models performed

similarly in their node count prediction task. They both achieved low
overall MSE values of around 0.13 and high accuracies above 98% (table
7). When looking into their node presence metrics, they again perform
similarly with Precision at around 76% and Recall at a lower 56%.
Although similar, Climate+Urban performs slightly better in all metrics,
especially in node presence Precision and Recall, where it surpassed
Urban-only by a whole percentage point in both.

CONFIGURATION NODE COUNT NODE PRESENCE ~ NODE PRESENCE ~ NODE PRECISION ~ NODE PRESENCE
ACCURACY ACCURACY (%) PRECISION (%) RECALL (%) F1 SCORE (%)
Climate+Urban 0.1250 98.09 76.41 56.51 0.6497
Urban-only 0.1314 98.04 75.33 55.53 0.6393
Cliamate-only 0.1240 97.77 67.16 56.27 0.6123
Baseline 0.1174 97.99 74.33 54.79 0.6308

Table 7. Evaluation results across model configurations.

Figures 14a and 14b show the training and validation losses of all models.
The training loss curves of Climate+Urban shows a big drop in the first
20 epochs and then continues to go down more slowly until leveling off
at epoch 50 until 60. Its validation loss curve similarly shows big drops
in the first 20 epoch but then continues to have a few small spikes until
dropping again in the last 15 epochs. The Urban-only training loss also
sees initial large drops with gradual decreases in the last 30 epochs. Its
validation loss curve, in contrast to the Climate+Urban one, sees most of
its drop in the first five epochs and then sees a few medium spikes until
plateauing and even seeing a slight increase towards the last epochs.
Although the exact trends vary between curves, it is noticeable that all
losses see a constant decline indicating that the models are learning and
optimizing to some level.

Plotting the results from the Climate+Urban model shows the
distribution of the node prediction in the urban space of the best
performing model (fig. 15). It is notable how the nodes around CAU
buildings see the highest level of both overall mean values as well as
peak values from the entire time frame. Other nodes that see particular
activity are ones in proximity of the university ones, especially following
in the North-South direction. Other points with medium to low activity
seem scattered throughout the city and its periphery. Lastly, the rest of
the nodes, which make up most the majority, appear to have overall low
and null values indicating that they are frequently predicted as unvisited.
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Figure 14. Node count MSE loss curves across model configurations
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5.2 Urban Features Ablation

The Climate-only and Baseline STGNN models were evaluated in the
same way as the main models, with the difference being their omission
of urban features to control for their influence on the results. Again, the
models do not perform too differently from each other when looking
at their evaluation metrics (table 7), with close MSE values of 0.124
and 0.1174 and Accuracies of 97.77% and 97.99% respectively. The node
presence metrics instead show some differences. Climate-only performs
poorer in Precision at 67.17% compared to Baseline’s 74.33%, while better
in Recall with 56.27% compared to 54.79%. These values show that the
Climate-only model was able to more often identify real active nodes, at
the cost of more false active node predictions.

The loss curves also perform similarly to the other models, with the
training losses gradually decreasing until the last epoch (fig. 14a). A
notable spike is seen in the Baseline model at epoch 24, but it quickly
stabilises. The losses of Climate-only and Baseline reach around 0.15,
compared to the lower 0.10 achieved by the previous models. The
validation losses also act similarly (fig. 14b), with more spikes throughout
the curve that still overall sees the values decrease to around 0.22 and
0.25. Interestingly, these losses at the last epoch are slightly lower than
the Urban-only model's but are still higher than the Climate+Urban
model’s.

When comparing these models’ performance with the Climate+Urban
and Urban-only models, we can see how they are outperformed by
them in each metric. Climate+Urban remains the best performing model
of the experiment, with the lowest MSE and highest Precision, Recall,
and F1 score, indicating that it was the best model at both predicting
node counts and when nodes will be active. In a similar way, Urban-
only outperforms Baseline to be the best model to not include climate
features. This improvement in metrics in the models containing urban
features, however, is not drastic and sees only slight improvements,
apart from Precision between Climate+Urban and Climate-only. This
seems to point to the urban features adding some valuable additional
information to the model but not enough to make a stark difference in
its prediction task.

5.3 Scenario Results

The scenarios defined in section 4.5.3 were used to apply the trained
models to specific subgroups of the total dataset timeframe. The day-
of-time scenario was performed using the best performing model,
Climate+Urban, and grouped by morning (08:00-10:00), mid-day (12:00-
14:00), afternoon (16:00-18:00) and evening (18:00 to 20:00). For each,
Figures 16 and 17 show the mean and peak node count values predicted
by the model. Looking at the mean values, the nodes closest to the CAU
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buildings see the most predicted activity at all times, with the highest
mean visits occurring in the mid-day window with around 12 to 15
visits. Other nodes outside the university neighbourhood also see mean
predicted activity, but this is more sporadic with values around 1 to 2
visits. The peak values show the same trend of centralized activity at
CAU during mid-day and afternoon but also help show trends of less
consistently visited nodes. In the morning, peaks are higher in nodes
surrounding the university neighbourhood reaching about 7 peak visits.
During the mid-day and afternoon, some more spread-out activity is
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Figure 17.  Peak predicted node count values of the time-of-day scenarios at urban and
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predicted south of CAU, on nodes close to train stations and near the
river. The evening continues this trend and the nodes closest to CAU
buildings decrease in activity.

The weather scenarios that looked at hot, cold and humid days were
performed on both the Climate+Urban and Urban-only models to
compare the addition of climate features in more extreme weather
conditions. To this end, node count MSE, node presence Precision and
Recall were also calculated. Only peak values are shown in figure 18, as
they seemed more expressive in capturing predictive patterns compared
to mean values. As in the time-of-day scenarios, peaks in all weather
scenarios are highest in the nodes closest to CAU buildings at mid-day
and in the afternoon. However, some specific behaviour for the weather
scenarios can still be seen: hot days seem to have slightly higher peaks
in nodes closer to the river during the afternoon (fig. 18a), cold days
seem to have more spread out node counts during midday (fig. 18b), and
humid days seem to have more highly concentrated peak values in the
nodes closest to the CAU buildings (fig. 18c).

The calculated metrics between Climate+Urban and Urban-only models
in these scenarios show only minor differences. The former usually
has slightly higher MSE and Recall than the latter, while the opposite
occurs for Precision. This could mean that climate features make the
model overall less cautious, leading to a slight increase of correctly
predicted active nodes at the cost of precision. Interestingly, all the
evaluation metrics calculated on these scenarios perform lower than the
overall metrics shown in section 5.1, reaching lows of 0.48 for MSE, 53%
for Precision and 0.26 for Recall, although this might be due to a lower
number of considered time bins, sometimes reaching just 8 bins, which
might make the values easily skewed.
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Figure 18. Peak predicted node count values of the weather scenarios using the
Climate+Urban model at urban and neighborhood scale.
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6. Conclusion

6.1 Discussion

he results across the tested node feature model variations did not

overall stray too far from each other. The models all achieved very
low levels of MSE, between 0.1174 and 0.1314, and high node presence
Accuracies, between 97.77% and 98.09%. While initially these may
appear as good performance indicators, node presence Precision and
Recall paint a more realistic picture. Precision values between 0.6716
and 0.7641 show that when the model predicts a node to be visited at
least once, it is mostly correct. Recall values between 0.5479 and 0.5651
instead show that the model can identify only slightly more than half of
visited nodes and often predicts them as inactive. These values reveal
that the models are highly susceptible to the class imbalance of visited
and unvisited nodes even after having reduced the spatial granularity
of the graph through the intersection node grouping. This causes them
to skew towards predicting zero visit counts in order to achieve lower
MSE. For this reason, the node presence Presence and Recall metrics
became more meaningful metrics in comparing the different model
configurations than the stable MSE and Accuracy levels.

Looking at the role of climate and urban features in the model variations’
performances, some small differences can be found despite their close
results. Models that included either urban or climate features overall
performed better than their counterparts, especially in Recall, and the
best performing one in all metrics was Climate+Urban, which included
both. The improvement is, however, not too drastic and saw on average
a1-2% increase in Presence and Recall, with the exception of the Climate
model which underperformed in Precision. Looking qualitatively at the
scenario experiments shows that the models are able to capture some
general trends as they relate to time of day and weather conditions, but
nothing substantial that drastically differentiates the model variations.
Generally, it is possible that the climate features provided a positive
effect on the model performance, as highlighted by the small increase in
node presence metrics, but, along with the urban features, they had less
of an impact that was expected. The short time span and low changes in
weather of the Seoul Cozie dataset might have played a role. With only
six weeks in an autumn that saw late a seasonal switch, the differences
in temperature and humidity were small, which limited the variability
available for the model to learn from.

The node visit count prediction task of the STGNN meant that Mobility
within the model was defined as location based. The road intersection
grouping of the Seoul Cozie positions created a network that somewhat
resembled a sensor network used in vehicle traffic forecasting models,
but personalized to the locations visited by the participants across all
transportation types. Therefore, the output of the model when looked
at a single instance or averaged over long periods of times can appear
static. Activity peaks can be observed at the highly visited nodes, like
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those close to the university neighbourhood, and lower values portray
which locations across the city are less popular. This model output
by itself can show some relations between activity levels between
neighbouring nodes but does not give too much insight of the actual
movements between them present in the original dataset. However,
using multiple outputs of tailored scenarios to compare activity across
different times and weather conditions can indirectly portray patterns
in movements between the locations and across the urban environment.
This allows do draw some qualitative conclusions on the movement of
people as time passes.

6.2 Limitations

The research encountered various limitations in its process to reach
the research goals, which encompassed the input datasets, the chosen
model architecture, and the integration of node features.

The Seoul Cozie dataset was the basis for much of the research and
for the construction of the STGNN model. This allowed to reach the
results presented in the previous sections but was also the cause of
some setbacks. Its size was relatively small for the use that it served.
With 22 participants and spanning less than two months, the datapoints
were often not dense enough to train a model at an urban scale and was
one of the causes of the large number of unvisited nodes. At the same
time, the spatial and temporal resolution of the GNSS traces also were
not adequate for the neighbourhood-scale. Only the areas surrounding
the CAU buildings could be analysed more in-depth due to their higher
visits by all participants, but even then, precise positions could often
not be determined, which led to the use of intersection-based nodes.
Additionally, the dataset required extensive cleaning relating to GNSS
irregularities, jumps, repeating values, and mismatched timestamps.
Many of these were addressed, but it is possible that errors remained
and were then fed into the developed models, introducing noise and
overall incorrect inputs.

When defining the graph structure, the node grouping method simplified
and flattened the dynamic nature of the Seoul Cozie dataset. Although
necessary based on the dataset’s own limitations, the aggregation to
street intersection and municipality nodes decreased the level of detail.
A node, therefore, did not represent an exact place, building, or park,
but rather entire blocks or, in some cases, entire municipalities. Other
than limiting the intput and output detail of the model, this also affected
the precision and meaningfulness of a node’s climate and morphology
features. These were caluclated using the node’s coordinates to
represent positions inside its buffer, which might not have always
provided accurate and rich feature information.

The developed STGNN architecture also could also have introduced
limitations to the findings of the research. Using a simple decoder,
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composed of an edge-conditioned message passing layer and a GRU
layer, might not have given the model enough chances to learn the
spatial and temporal pattern present in the input structure. Additionally,
the window used as input was of five time bins encompassing a total
of ten hours. While enough to potentially predict short-term patterns,
the model would not have been able to identify longer-term influences.
Additionally, the choice of a GNN-based architecture in the first place
could have also hindered the research, as it was sensitive to the way its
structure was defined and highly dependent on spatial links that would
inform the message passing. These factors, together with the large class
imbalance of unvisited nodes, might have caused the graph to be too
sparse, directly impacting its performance more drastically than other
non-graph-based methods.

The factors mentioned above also contributed to limitations in how
the concept of mobility could be approached in relation to climate. The
model predictions of node count values across time bins, while allowing
some qualitative recognition of patterns in the scenario experiments,
depict mobility as location-based and static. This was in large part due
to the dataset resolution and graph structure, which would not allow for
more granular detection, like the choice of specific paths, shaded areas,
or indoor buildings. Additionally, mobility was largely affected by regular
university commuting and free time, like weekends and late evenings,
could not be trained on due to an inconsistent number of records at
those times. Therefore, the hours where participants were most likely
to enact mobility choices based on their own choices and, possibly
in reaction to the climate, could not be captured in the research. In
a similar way and again due to the low dataset resolution and strict
graph structure, usage of transport methods was not implemented
in the prediction stage, which might have given insight on transport
preferences in differing weather conditions.

Finally, the integration of node climate features was also constrained.
Out of the variables collected by the S-DoT stations, only three were
used: temperature, humidity and PM10. These were chosen due to their
low missing data and relatively stability across stations. Other potentially
relevant parameters, such as wind speed, solar radiation, or shading
effects, did not meet these requirements and were excluded. This means
that only some of the climate conditions experienced by participants
was accounted for in the model. Additionally, when interpolating the
features, values were efficiently assigned to the nodes but naturally
required a level of smoothening that could not reproduce potentially
relevant micro-scale variations. For example, temperature differences
between shaded and sunlit areas or airflow along narrow streets would
have been too detailed to capture.

6.3 Conclusion and Takeaways

This research set out to explore whether urban climate factors leave
a measurable trace in people’s mobility choices and whether a STGNN

Conclusion

39



could capture such effects. This was approached by running versions
of the same model that differed only in the inclusion of dynamic node
climate features. Their performance in a node visit count prediction task
was analysed. Overall, the models performed similarly and were able to
produce stable forecasts of node visits from the Seoul Cozie dataset.
However, the outcomes showed that much of high accuracy values
(>98%) stemmed from the dominance of inactive nodes in the graph
structure. This led to an over-prediction of unvisited nodes, which
greatly hindered the capabilities of the model. Nonetheless, the Recall
values of predicted active nodes remained above 50%, indicating that
the model at least identified them at a better rate than random chance.
Adding climate features lead to minor improvements. Performance
showed a small increase in metrics that point to climate influencing the
mobility dataset. However, this was less than initially expected and as
such relations or patterns between urban climate and mobility could
not be definitively identified. The efficacy of this STGNN approach in
mobility prediction therefore proved to be limited during evaluation.
The task that the model was trained for, predicting next-step node
visits, allowed to clearly identify peaks in activity in different areas
of the city but proved more difficult in directly portraying mobility. A
possible real use of such a model was experimented through the use of
specific scenarios. By applying the model on these specifically chosen
time bin subsets, the node count predictions could be used as indicators
of shifting activity based on the chosen factors, such as time of day,
temperature and humidity.

Many of the conclusions above stemmed from the way the construction
of a graph structure from the Seoul Cozie dataset was approached. The
grouping of GNSS traces into road intersection nodes allowed for a
working node set that aimed at balancing their spatial expressiveness
and data richness. This, while allowing to have a working implementation
of the model, still could not counteract the effect of the class imbalance
between visited locations inherent to the dataset. Additionally, the way
mobility could be interpreted largely relied on this decision. Whether by
looking at overall peaks or comparing scenarios, the model would only
be able to give readings of people’s activity in relation to their closest
road intersection, a scale in between the urban and neighbourhood
level.

Overall, the work made several contributions. It demonstrated that
raw GNSS traces, like the Seoul Cozie dataset, can be successfully
used as input into a dynamic graph and applied in a spatiotemporal
framework. It showed that both morphology and climate attributes
can be integrated in this structure, and it established a foundation that
can be extended with richer datasets and alternative graph structures.
Although no strong claims about the effect of climate on mobility could
be definitively reached, an initial STGNN framework using a personal
mobility dataset was proposed to be built upon.
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6.4 Future Work

Building on this study, several directions could extend and strengthen
the results. Starting from the input used, new datasets could be gathered
more tailored to the goal of STGNN construction. They could be based
off individual peoples' mobile traces, much like the Seoul Cozie dataset,
but improve in more consistent positional information that would allow
to create much more precise node profiles. The time variations between
recorded coordinates across participants could be more standardised.
Input from the user on their location information, indicating whether
they are inside, outside, or taking transportations, could also be more
frequent, or at least enough to infer the rest from the existing ones. To
further aid the creation of meaningful nodes, a locationing method, like
Wi-Fi fingerprinting, could be used to identify when participants are
visiting specific public locations, like a university building or railway
station. A larger study size, comprising of more than 22 participants
from different backgrounds and spanning a longer time period, would
also help in enriching the graph structure with movement information
and in capturing more meaningful patterns with changing weather
conditions.

The construction of the graph could also be improved by future
research. A dynamic, event-based, temporal structure could be explored
in comparison to the binning one used in the researched, which could
allow for finer and less static temporal sensitivity. Different ways of
grouping the Seoul Cozie dataset into nodes could be investigated,
like grouping based on city blocks or with a uniform grid system.
Additionally, distance-aware edges between nodes could be introduced
to improve the model’s understanding of relationships between close
nodes. The features considered could also be expanded to include more
relevant information to urban factors, such as terrain height, sky view
factor, shading, tree coverage, and more.

The chosen STGNN architecture could be focused on to improve
its learning capabilities. Additional components commonly used in
GNNs for mobility and transport forecasting tasks might be beneficial.
Explicit long/short-term split modules would give the model a better
understanding of daily patterns and more localized events. An attention
component applied to the edge or nodes might also prove to be effective
in more consistently helping the model identify important relationships
between nodes. More broadly, the analysis of mobility and urban climate
within the Seoul Cozie dataset could be approached with alternatives
to the STGNN used. Edge-centric GNNs would model flows directly,
representing movements as edges and predicting origin-destination
counts rather than node ones. Sequence models, like RNNs and LSTMs
can learn regularities in node visits using per-person sequences, with
spatial context added as exogenous features. Each choice could come
as a trade-off between spatial expressiveness and simplicity, and future
work could quantify when each is preferable.
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