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Abstract

Urban climate affects how people move through cities, but its 
influence is difficult to capture with models based on generalized 

comfort indices that ignore individual experiences of climate. This 
thesis instead explores a bottom-up approach that uses daily Global 
Navigation Satellite System (GNSS) traces of people traversing an urban 
environment, which inherently contain each individual's personal 
influences on their mobility. A machine learning model was developed 
and trained using this dataset with the purpose of predicting future 
mobility values, while assessing the role that climate played in such 
predictions. The model employed a Spatio-Temporal Graph Neural 
Network (STGNN) architecture to capture both potential spatial 
dependencies between visited locations and temporal patterns in their 
activity.

The work draws on the Seoul Cozie dataset, which recorded six weeks 
of GNSS location data from wearable devices of 22 participants in Seoul 
during autumn 2023. Positions were aggregated into a graph structure 
with road intersections as nodes and transitions between them as edges. 
Climate features (temperature, humidity and PM10) were interpolated 
from over 1,000 weather stations using a Triangulated Irregular Network 
method and added as dynamic node features. STGNN variants were 
trained and compared based on whether they included climate node 
features.

Results show forecasts of node visits with low Mean Square Error of 
around 0.12 . However, precision and recall values for visited/unvisited 
node detection are low, peaking at 56.51%, reflecting strong class 
imbalance in the input. Adding climate attributes produced only minor 
and inconclusive improvements, in part due to the dataset’s short time 
span. The thesis proposes a reproducible framework linking climate and 
mobility, while underlining the need for richer datasets and for more 
flexible model architectures, capable of addressing class imbalances and 
representing personal mobility datasets.
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1.	 Introduction

Urban climate and its effects on people’s comfort and movement have 
become central pillars in contemporary city design (Mauree et al., 

2019; Ye and Niyogi, 2022). Studies have shown that not considering 
urban climate can have detrimental effects ranging from safety-related, 
like the creation of dangerously high heat island effects (Jeon et al., 2023; 
Gupta et al., 2025), to effectiveness-related, like the underutilization 
of new developments due to unexpected meteorological conditions 
(Fallmann and Emeis, 2020), and to cost-related, like expensive 
retrofitting and long-term operational costs (Erell, 2008; Fallmann and 
Emeis, 2020). It has therefore become apparent to governments and 
designers around the world that climate context-aware city planning 
is pivotal to creating cities that people want to and can safely live in 
(Hebbert, 2014).

However, this has proven to be a challenging goal to achieve due to 
the complexities of modern cities and the inherently personal notion 
of comfort. The former problem particularly impacts approaches 
aimed at simulating the urban ecosystem. The complexity stems from 
the sheer amount of high quality and up-to-date datasets required 
(Alva et al., 2023; Liu et al., 2024; Ignatius et al., 2024), which may not 
always be available or may be too computationally expensive to analyse 
concurrently. Additionally, these digital twins must cover a variety of 
interconnected but distinct systems that make up the overall urban 
experience, like 3d building morphology, urban material placement, 
seasonal tree shading, water management systems, traffic affluence, 
emissions levels, indoor heating usage, meteorological data and more, 
which removes the possibility of analysing phenomena potentially 
impacted by excluded systems (Shahat et al., 2021; Xia et al., 2022; 
Jeddoub et al., 2023; Mazzetto, 2024).

The second problem instead impacts the use of deterministic 
models in assessing the impact of various climate factors on human 
behaviour. Models such as the Predicted Mean Vote (PMV) allow for the 
categorization and calculation of predicted comfort-based levels on a 
variety of variables (van Hoof, 2008). This has proven effective in creating 
a baseline approach to understanding human comfort. However, since 
its results are meant to be generalized values it is unable to consider 
the individual responses to climate that differ from person to person. 
Other indices, like the Physiological Equivalent Temperature (PET) and 
the Universal Thermal Climate Index (UTCI), extend these approaches 
to outdoor urban conditions by integrating heat balance models and 
environmental parameters (Honjo, 2009; Bröde et al., 2013; Zhang et 
al., 2023). While such indices capture meteorological influences more 
comprehensively, they still operate on assumptions of an “average” 

1.1 Context and Motivation
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person and do not reflect individual variation. In fact, climate comfort is 
impacted by many high-level parameters, such as temperature, humidity 
and wind speed, but is also driven by personal, non-standardizable, low-
level ones, such as activity level, body composition, metabolism, eating 
habits and individual preferences (Jayathissa et al., 2020; Upasani et al., 
2024; Zafarmandi and Matzarakis, 2025). These cannot be considered by 
generalized approaches like the ones mentioned.

Other methods have been built around the idea of the individuality of 
perception by trying to employ a ‘bottom up’ approach in opposition 
to the ‘top down’ one of the methods presented. What this entails is 
understanding that personal reactions to climate are challenging to 
predict based solely on climate values themselves. Instead, people’s 
own behaviour can be recorded and used to model how these changes 
actually cause people to act and move. This way, conclusions can come 
directly from human data, including all the participants’ individual 
motivations, preferences and real-world influences, without having to 
simulate or generalize them (Jayathissa et al., 2020; Ignatius et al., 2024; 
Gottkehaskamp, 2024; Liu et al., 2024).

This human-centred, ‘human-as-sensors’ (HAS) method is explored in 
this research to assess the effect of climate on people’s movements at 
an urban scale. The approach is based on the Soul Cozie dataset, which 
recorded six weeks of Global Navigation Satellite Systems (GNSS) traces 
from 22 participants in Seoul during autumn 2023 using wearable 
devices. It recorded the individual movements of individuals across 
the city, intrinsically including the personal influences that led to their 
mobility choices. The use of this dataset aims to directly address the 
lack of personal influences by the climate comfort models presented 
before. In order to be able to use the Seoul Cozie dataset to analyse the 
effects of climate on personal mobility, a machine learning model was 
developed and trained with the purpose of predicting future mobility 
values and assessing the role that climate played in such predictions. 
This, paired with the HAS input would, in theory, help identify the 
mobility choices most likely affected by climate-related factors. The 
model was developed using a Spatio-Temporal Graph Neural Network 
(STGNN)-based method, chosen due to their proven implementations in 
urban traffic and mobility prediction tasks and their unique ability to 
detect spatial dpendencies of the input, which are hypothesized to be 
present in the Seoul Cozie dataset.

1.2 Relevance

The application of STGNNs and Graph Neural Networks (GNN) to urban 
mobility is extensive but has rarely touched upon personal mobility 
datasets, which record mobility by following individual people rather 
than using static frames of reference (Rico et al., 2021; Jiang and Luo, 
2022). Many of the currently proposed models are based on data 
from traffic sensors placed along major transport lines. These models 
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1.3 Thesis Outline

Chapter 2.	 will define the goals and research questions that drove the 
thesis. 

Chapter 3.	 will explore papers related to research and current state-
of-the-art developments in urban mobility STGNNs and 
climate comfort.

Chapter 4.	 will introduce the methodology used in the research, 
including a detailed description of the Seoul Cozie dataset 
which defined the project.

Chapter 5.	 will present the results of the most recent STGNN 
implementations.

Chapter 6.	 will discuss these results and their meaning relating to the 
initial research questions.

excel in making congestion and traffic predictions and do not to 
capture individual mobility, due to the nature of their static networks. 
Alternatively, Point of Interest (PoI) GNNs use identified important 
locations, like restaurants, schools and parks, to assess the relevance 
between them, usually for social media and online navigation platforms. 
While the granularity of what a node represents is closer to that of 
personal mobility, the eventual application is far from the context of the 
urban space.

In comparison, this research aims to create a model that is trained 
and based on a personal mobility dataset on a single-person scale and 
includes a variety of visited location types and transport modes taken. 
Additionally, the use of mobility to assess urban climate comfort in this 
way is also less explored, but promising. The HAS method has been 
applied to interior spaces before but has not been thoroughly explored 
on a larger urban scale with a dataset of this type.
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2.	 Research Goals
2.1 Main Research Question

How do urban climate factors impact people’s mobility choices in 
the urban landscape of Seoul and how can this be captured using 

a STGNN model?

The research aims to analyse the relationship between climate and 
mobility in the urban context of Seoul. To do this, it proposes a STGNN-
based method for predicting affluence at several main node locations 
across the city by leveraging historical position data, enriched with 
additional climate and urban morphology attributes. The following 
secondary research questions help guide the research.

2.2 Secondary Research Questions

	+ To what extent can the developed STGNN model be used to 
predict urban mobility?

	+ How is the STGNN graph structure constructed and how does 
this impact the insights the model is able to give on mobility?

	+ How can a personal mobility dataset, like the Seoul Cozie 
dataset, be integrated in a STGNN framework and what are its 
limitations?

Through these secondary aims of the research, particular attention is 
put on assessing the plausibility of the proposed STGNN method. They 
investigate whether the proposed STGNN method produces promising 
results but also question whether its theoretical set up in this research 
might have impacted its performance.

2.3 Scope

The primary objective of the research is to develop an initial STGNN 
model for predicting mobility patterns and evaluating the inclusion 
of climate parameters on its performance. The implementation and 
assessment of the model are therefore what most of the research 
focuses on to answer the main research question.

This research is not meant to be an exhaustive look into this approach, 
but only an initial exploration of the STGNN case study. Additional model 
configurations or frameworks that could be implemented to achieve 
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similar analyses are not experimented or compared with, although these 
are considered as future work to assess the overall feasibility of the 
presented method. Additionally, the research is defined and limited by 
the Seoul Cozie dataset. Evaluation of the model framework on other 
datasets and contexts is also not in the scope.
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3.	 Related Work
3.1 STGNNs in Mobility Applications

The use of GNN models for forecasting applications in the urban 
mobility context has been widely studied. In recent years, this 

topic has seen particular interest and development of new approaches. 
Compared to earlier forecasting methods, like AutoRegressive Moving 
Average (ARMA) and Vector AutoRegression (VAR) and non-graph-based 
machine learning methods, like Support Vector Regression (SVR) and 
Extreme Gradient Boosting (XGBoost), GNNs can handle non-linear 
relationships in their input data and integrate crucial information 
from close locations in the learning process (Rico et al., 2021; Jiang 
and Luo, 2022). Success has also been found with other deep learning 
methods, such as Recurrent Neural Networks (RNN), Long Short-Term 
Memory (LSTM) and Gated Recurrent Units (GRU), especially regarding 
sequential forecasting. However, they still lack the integration of spatial 
relations that a graph structure can provide.

Among GNNs, Spatio-Temporal GNNs (STGNNs) have seen particular 
use due to the time forecasting goals of most urban mobility-related 

3.1.1 GNN and STGNN methods

PAPER MODEL DATASETS DATASET TYPE OUTPUT DF DS

Yu et al. (2018) STGCN BJER4, PeMSD7 Fixed sensors Future speeds ✓ ╳

Wu et al. (2019b) Graph WaveNet METR-LA, PEMS-BAY Fixed sensors Future speeds ✓ ~

Shleifer et al. (2019) Improved GWN METR-LA, PEMS-BAY Fixed sensors Future speeds ✓ ~

Kong et al. (2020) STGAT METR-LA, PEMS-BAY Fixed sensors Future speeds ✓ ~

Fang et al. (2021) STWave PeMSD3/4/7/8 Fixed sensors Future flows ✓ ~

Ma et al. (2022) Multi-Modal TaxiNYC, BikeNYC OD flows Future demand ✓ ~

Roy et al. (2022) SST-GNN PeMSD4/7/8 Fixed sensors Future speeds ✓ ╳

Sharma et al. (2023) STGGAN PeMSD4/8 Fixed sensors Future speeds ✓ ╳

Rossi et al. (2020) TGN Wikipedia, Reddit, Twitter Social media Future edges ✓ ✓

Cini et al. (2023) GDL METR-LA, PEMS, CER-E Multiple types Multi-step forecasts ✓ ✓

Liu et al. (2023) GLSP Foursquare NYC, Tokyo POI check-ins Next-POI ✓ ~

S.K.B et al. (2024) GT-LSTM NYC-style multimodal Mobile traces Travel times ✓ ✓

Wang et al. (2024) Mode-Aware GNN Wuhan CDRs Mobile traces OD flows ✓ ╳

Zhang et al. (2025) MoSTGTN Tianjin GPS Mobile traces Congestion levels ✓ ✓

Table 1.	 Overview of STGNN models and datasets used in related work. 
DF: Dynamic Features, DS: Dynamic Structure.
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models. Their main advantages over regular GNNs are that they can 
capture temporal relationships along with the spatial ones in the graph 
by introducing some level of dynamism in the definition of the model 
structure (Wu et al., 2019b; Kong et al., 2020). Their application has seen 
an improvement in forecasting accuracy, especially when comparing 
to RNN-based models (Fang et al., 2021). STGNNs share many of the 
main drawbacks common to GNNs, where the definition of the graph 
structure, composed of nodes and edges, greatly impacts the quality of 
the results. Additionally, the use of a spatial and temporal graph structure 
can sometimes lead to over-smoothing and low interpretability of the 
learned dependencies (Jiang and Luo, 2022; Roy et al., 2021; Rico et al., 
2021). Despite this, STGNN-based methods have seen great success and 
have become standard in many mobility forecasting applications (Jiang 
and Luo, 2022; Jin et al., 2023).

3.1.2 Dataset Diversity

STGNNs are employed in a wide range of methods, both regarding the 
definition of the graph structure and the model components. Table 1 
shows the differences between the models employed by the papers 
discussed in these sections.

Defining aspects of these models that vary among applications are 
the input dataset and the predicted output. One of the most common 
setups is the use of traffic sensor data to create a static graph structure 
with dynamic node traffic features. Nodes usually represent the sensor 
locations and links represent distance values or the infrastructure 
network. Important benchmark datasets, such as METR-LA (traffic 
speed dataset from detectors on the LA County road network) and 
PeMS (traffic flow and speed dataset from the CalTrans Performance 
Measurement System), have become crucial and widely used in STGNN 
research due to their wide availability and ease in application to a graph 
structure (Yu et al., 2018; Wu et al., 2019a; Kong et al., 2020; Fang et al., 
2021).

Other dataset types often found in the literature are Origin-Destination 
(OD) flows. They describe specific movements across an urban 
environment, like bicycle or taxi rides, by indicating the location and 
time of the start and end instances. The graph structure of OD flows 
STGNNs usually defines the nodes as locations and the edges as the 
recorded trips between two specific locations (Ma et al., 2022; Yeghikyan 
et al., 2020). In a similar way, Point of Interest (PoI) datasets are utilized 
to represent trips between specified locations. While the application 
of OD flows is generally more related to the study of transportation 
patterns, PoI research is closer to spatial social networks, where these 
datasets usually originate, like in the case of Foursquare NYC and TKY 
(Liu et al., 2023). In contrast with the traffic sensor-based models 
mentioned before, the OD flow and PoI ones analyse mobility from a 
more personal perspective, as they are tied to the movements patterns 
of specific people.
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3.1.3 Architecture Diversity

STGNNs applications vary widely in their architecture definitions and 
new approaches are quickly evolving. Earlier convolutional approaches, 
like the Spatio-Temporal Graph Convolutional Network (STGCN) 
introduced by Yu et al. (2018), replaced more traditional RNNs with 
temporal Convolutional Neurlal Networks (CNN), combining graph 
convolutions with gated temporal ones. This saw improvements 
in the model’s efficiency and the creation of a fully convolutional 
STGNN. Models capable of adaptively calculating the graph adjacency 
have also seen success, in particular with the introduction of Graph 
WaveNet by Wu et al. (2019a) and its refinement by Shleifer et al. (2019). 
Attention mechanisms have also been introduced within STGNNs to 
more meaningfully weigh neighbours Kong et al. (2020). Additionally, 
more complex and hybrid architectures have been proposed, which 
include using new temporal modules, like wavelet decomposition and 
separation of current and historical patterns Fang et al. (2021); Roy et al. 
(2021) and combining some of the aforementioned features with other 
components, like edge features and transformers Sharma et al. (2023); 
Zhang et al. (2025).

The graph structure of STGNN models is also one of its defining factors. 
They can be broadly divided into static and dynamic, based on whether 
its nodes and links can change throughout the model or if they are 
constant. Most research employs static graphs, as these are best suited 
for sensor networks, grids and fixed location datasets (Yu et al., 2018; 
Roy et al., 2021; Sharma et al., 2023). Dynamic graphs aim to capture 
certain structural changes in a dataset and, so, require a different graph 
definition from non-dynamic ones. This is partly the case for STGNNs 
that use an adaptive adjacency, but these are also usually based on a 
static structure (Wu et al., 2019a; Kong et al., 2020). Fully dynamic 
graphs remain relatively rare, although progress has been made to allow 
calculating changes based on memory or similarity components (Rossi 
et al., 2020; Zhang et al., 2025).

A less prevalent but still relevant dataset type is that of mobile trace 
data gathered through GNSS. These rely on mobile devices like phones, 
smartwatches or GNSS receivers to transmit a continuous record of 
positions in a certain time period. They can vary from large signalling 
datasets from mobile providers (Wang et al., 2024) to GNSS traces from 
a group of vehicles (Zhang et al., 2025; Yeghikyan et al., 2020). Compared 
to the datasets introduced so far, they are distinguished by the much 
more irregular patterns of locations that are not predefined and that 
usually require some sort of semantic grouping. This means that they 
are rich in information regarding individual and trip-level data and 
represent human movements more closely. This, however, comes at 
the cost of graph construction being less straightforward than for fixed 
sensor or location networks (Rico et al., 2021; Jiang and Luo, 2022).
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3.2 Human-Centric Modelling

Conventional approaches to climate comfort tend to rely on 
deterministic indices such as PMV or UTCI, which assume that a 
set of physical variables can adequately represent the experience of 
individuals. While such models are useful for establishing baselines, they 
can reduce a large variety of personal responses into an average value. In 
practice, comfort is not only shaped by temperature, humidity or wind 
speed but also by factors that are much harder to standardize. This gap 
left by traditional approaches has led to studies that place the human 
subject at the centre of measurement.

Jayathissa et al. (2020) propose this concept as “humans-as-sensors” 
in the context of buildings. Their work collected repeated subjective 
comfort feedback from occupants and linked it to concurrent 
environmental conditions, showing that the frequency of responses 
allowed the construction of more precise indoor comfort models 
than standard methods. Upasani et al. (2024) instead emphasized that 
comfort cannot be separated from the characteristics of the individual 
and the specific building they inhabit. By explicitly modelling personal 
and contextual attributes they showed that comfort prediction can 
improve significantly.

This more individualized logic has also been applied to the outdoor 
space. Ignatius et al. (2024) embedded wearable data into a digital twin 
that also included weather records and street-view imagery, linking 
physiological signals directly to the surrounding built environment and 
its walkability implications. Liu et al. (2024) developed a human-centric 
digital twin for Singapore that integrates morphology, meteorology and 
remote sensing data to estimate outdoor comfort distributions across 
the city. Alva et al. (2023) extended this perspective by presenting a 
bottom-up digital twin platform that combines city-scale datasets on 
energy, mobility and emissions, demonstrating how integrated urban 
data can support multiple use cases for planning and management.

Walkability and urban mobility have also been studied using this 
human-scale approach. Jonietz (2016) argued that pedestrian’s different 
priorities and trajectories cannot be summarized into single general 
walkability score. Jonietz and Bucher (2017) later introduce a more 
holistic framework for movement trajectory analysis that considers the 
spatiotemporal context in addition to just their geometry. Some work 
on mobility prediction through graph-based methods (Terroso-Sáenz 
and Muñoz, 2021) and data fusion for synthetic populations (Vo et al., 
2025) shows that bottom-up datasets can, in fact, support predictive 
modelling at multiple scales.
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3.3 Climate Comfort and Urban Design

Urban climate research has long been linked to city design. Hebbert 
(2014) reviewed the evolution of this field and showed how climatology 
entered planning in the mid-twentieth century, with tools such as the 
Klimaatlas designed to translate atmospheric analysis into planning 
guidance. Erell (2008) described the same gap from another angle: 
although impacts of form, material and density on microclimate are well 
established, their systematic use in practice has been limited due to 
technical, organizational and economic constraints.

Several reviews highlight the complexity of connecting climate 
processes with planning. Mauree et al. (2019) evaluated methods for 
outdoor comfort, building energy demand and energy systems and 
noted that these domains are usually studied separately despite strong 
interdependence. Ye and Niyogi (2022) argued for a convergence of 
urban climate science and planning practice to address increasing risks 
from heat, flooding and extreme rainfall. Gupta et al. (2025) focused 
on thermal hazards and urban heat islands, pointing to “blue-green” 
infrastructure, optimized morphology and governance as central 
strategies while also stressing financing and equity barriers.

Case studies show how these issues appear at different scales. Jeon 
et al. (2023) analysed seasonal land surface temperatures in Seoul and 
found that vegetation and water reduce heat compared to dense fabric. 
Peng et al. (2022) used climate walks along a waterfront and showed that 
shading and water proximity directly shape comfort perception. Liu et 
al. (2024) and Ignatius et al. (2024) applied digital twins, one combining 
weather and morphology at city scale and the other fusing wearables, 
weather and imagery for pedestrian comfort. Fallmann and Emeis (2020) 
reviewed measures such as greening, reflective materials and biophilic 
design from a meteorological perspective and stressed that translation 
into planning requires interdisciplinary dialogue. Despite different 
methods and scales, these studies converge in showing that thermal 
comfort depends not only on climate variables but also on vegetation, 
shading, building form, water and planning decisions.

3.4 Open Challenges and Future Directions

Several surveys and reviews point to open challenges in the use of 
STGNNs. Among them, the use of dynamic graphs is an area that can see 
particular growth. Models such as those proposed by Rossi et al. (2020) 
and Longa et al. (2023) show the difference between snapshot-based 
and event-based dynamic graphs, noting that most applications still rely 
on static or semi-dynamic adjacency. Another open problem regards 
the integration of heterogeneous data sources. Reviews like Rico et al. 
(2021), Jiang and Luo (2022) and Jin et al. (2023) emphasize that traffic 
forecasting problems often require additional factors such as weather 
or calendar effects.
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Several recent works have started to address some of these issues. S.K.B 
et al. (2024) integrates mobility traces with public transport schedules, 
land use information and weather data in a multi-modal framework. 
Wang et al. (2024) includes transport mode choice explicitly by building 
separate car and transit-based adjacency matrices and Zhang et al. 
(2025) combine taxi and bike GNSS data while also calculating dynamic 
adjacency at each time step. Despite this progress, studies seem to not 
consider climate as a key driver of mobility in a spatiotemporal graph 
model. Climate data is rarely integrated, even though identified as an 
important external factor (Rico et al., 2021; Jiang and Luo, 2022).



PERFORMANCE
COMPARISON

spatial 
grouping and

clustering

climate data
interpolation

node 
visit count 
prediction

node 
visit count 
prediction

• building footprint
• green areas

• road network
• admin. boundaries

URBAN 
MORPHOLOGY

• temperature
• humidity

• PM10

 
S-DOT

• coordinates
• timestamps

SEOUL
COZIE

DATASETS

STGNN 
CONSTRUCTION

chronological 
agency

LINKS

CLIMATE+URBAN URBAN-ONLY

NODES

survey 
responses

train val test

12

4.	 Methodology
4.1 Overview

Figure 1.	 Methodology diagram showing the dataset 
utilized and construction of the STGNNs.

This chapter will describe the steps taken to develop a STGNN model 
for mobility prediction using the Seoul Cozie dataset and analyse 
its performance in relation to the research questions on the effects 
of climate parameters, mobility definition and compatibility with a 
personal mobility dataset. This section will provide an overview of the 
chapter, briefly introducing each step from the data processing, graph 
construction, architecture definition, evaluation and experimentation, 
as presented in figure 1. 

The first step saw the acquisition, cleaning and processing of the used 
datasets to prepare them as input to the graph construction (Section 
4.2). The Seoul Cozie dataset is cleaned to account for errors in the 
GNSS traces and timestamp inaccuracies. Readings from the Seoul 
Data of Things (S-DoT) weather station network are used to interpolate 
climate parameters across the city during the same time frame of the 
Seoul Cozie dataset. Urban morphology data in the form as building 
footprints and green areas are also gathered to enrich the input.



13

Methodology

4.2 Datasets

4.2.1 Seoul Cozie Dataset

The dataset utilized to develop and evaluate the proposed STGNN 
model is the Seoul Cozie dataset gathered by Mosteiro-Romero et al. 
(2024) during their experiment on the emergent role of district-scale 
and occupant-scale data in urban environments. Conducted at Chung-
Ang University (CAU) in Seoul, South Korea, the experiment aimed to 
collect subjective from individuals in a real-world setting. The study 
saw 22 university students, aged 20 to 31, agree to have their location 
and physiological data recorded for a period of 6 weeks (October 4 
to November 13, 2023). This was done using Apple Watches that were 
loaned or previously owned by the participants. Through the iOS 
application Cozie, GNSS coordinates and body measurements, such as 
resting heart rate and wrist temperature, were collected (Tartarini et 
al., 2023). Additionally, micro surveys would be sent out on an hourly 
basis to ask participants about their past activities, current location 
and temperature comfort. Each submission of these surveys would also 
record their GNSS coordinates.

The final gathered dataset was composed of 54,322 records with 
individual and valid recorded coordinates. Due to the number of 
participants and their similar profiles, the recorded positions are mostly 
concentrated in the vicinity of CAU buildings (fig. 2) but also extend 
to other popular areas of the city and even beyond its boundaries, 
capturing trips to Cheongju, Gangneung, Daegu, Jeju Island and more 
(fig. 3). 

After processing, the datasets are used to create the graph structure 
(Section 4.3). Different methods of meaningfully group the Seoul Cozie 
coordinates are tested to eventually define the graph nodes and edges. 
The graph elements are then enriched with features from the climate 
and urban datasets and divided into training, validation, and testing time 
bin.

The architecture of the STGNN model is then defined, as it takes the 
past snapshots of the graph to predict its next-bin state (Section 4.4). 
The model is trained to output the node visit counts. Once trained, the 
model is evaluated and experimented on to answer the initial research 
questions (Section 4.5). Two almost identical models, Climate+Urban 
and Urban-only, were trained with the same architecture and graph 
structure above that differed on the inclusion of climate parameters to 
assess their influence on model performance. The evaluation step saw 
a quantitative analysis of performance metrics and a qualitative look at 
implementation of the models in real case scenarios. From these insights 
the results and conclusions of the research are drawn.
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Figure 3.	 Recorded positions of the Cozie dataset across South Korea.

Figure 2.	 Recorded positions of the Cozie dataset in Seoul.
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Figure 4.	 ”Jumps” error before and after cleaning.

Due to the dataset not being explicitly gathered with the purpose of 
STGNN development, certain preprocessing steps had to be performed. 
Firstly, several features and records that were not relevant to the 
research were omitted, including all physiological readings and records 
that were not geolocated or had invalid (0.0, 0.0) coordinates. Records 
that were outside of the administrative boundaries of Seoul were also 
discarded to focus on the urban scale.

Additional cleaning was done to tackle irregularities found in the 
coordinate records. Occasional big “jumps” would appear caused by 
a distant coordinate interrupting a single participant’s path (fig. 4). To 
highlight these and other suspicious nodes, a speed value was calculated 
based on the distance between consecutive coordinate records.  

Figure 5.	 Redundant coordinate error before and after cleaning.

before

after

before after
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Coordinates with unfeasibly high-speed values (above 400 km/h) were 
selected. This allowed to identify different groups of errors and address 
them individually.
A large portion of errors came from a mismatch between the Cozie 
timestamps and coordinates, due to them both differentiating between 
readings triggered by completing a survey and ones triggered by opening 
the Cozie app or by background tasks of the device. This was solved by 
creating unified coordinate and timestamp fields that took into account 
each type of record.

Another group was identified as redundant coordinates that recorded 
the participant’s position multiple times over less than one second. This 
extremely short time distance between records, supposedly caused by a 
device or application error, caused the speed value to balloon. While not 
necessarily incorrect data points, their temporal accuracy was widely 
out of scale with the rest of the dataset, which instead saw intervals 
between coordinates in the 20 minutes to 1 hour range. Therefore, 
coordinates that were recorded less than five minutes after the previous 
one were dropped (fig. 5).

The data cleaning also addressed problems caused by overlapping 
consecutive positions, which were usually followed by a third position 
with an impossibly high speed value. The identical values of the 
coordinates implied some error in the data writing process, again 
probably due to a temporary malfunction with the participant’s device or 
application which caused a previous coordinate to overwrite the current 
one. Since the dataset stored coordinates as latitude and longitude 
with up to 15 decimal places, it was highly unlikely to produce the same 
value for even the same location, making these errors easy to identify. 
The inaccurate larger distance between records caused by this paired 
with their accurate timestamps, led to the high speed values. This was 
resolved by omitting records that had identical coordinate values to the 
previous record.

The dataset cleaning therefore tackled most time/coordinate 
inconsistencies, “jumps”, redundant positions and overlapping 
coordinates to obtain a final dataset most closely resembling the 
participants’ everyday trajectories. Due to the dynamic and inconsistent 
nature of the dataset, it is possible that additional processing could have 
been applied. This, however, was deemed an acceptable level for the 
purposes and scope of the research.

Finally, the experiment was performed on weekdays (Monday to Friday) 
from 09:00 to 18:00, and participants were not required to respond to 
surveys or wear the devices outside these hours. For this reason, the 
number of records on weekends and between 24:00 and 08:00 see a 
drastic fall in the number of records. Interestingly, the ranges of 18:00 
to 24:00 and 08:00 to 09:00 do not see this same fall, despite being 
outside the official experiment duration. Therefore, the records were 
also filtered to only include ones on weekdays and from 08:00 to 24:00.
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4.2.2 S-DoT Dataset

To enrich the nodes of the STGNN that would take into account climate, 
additional features were integrated from the S-DoT network. S-DoT 
comprises over 1000 weather stations distributed across Seoul. They 
record temperatures, humidity, air quality, wind speed, illumination, 
UV radiation, vibration and noise levels at two-minute intervals which 
are then averaged into hourly values (Seoul Metropolitan Government, 
2021; Song et al., 2023). The stations are installed at 3-4m height on 
poles and building walls predominantly in dense urban areas (87%) as 
well as near rivers (9%) and in mountain areas and parks (4%), giving 
a spatial resolution of around 0.75km (Song et al., 2023). The data can 
be on occasion subject to missing records due to overheated sensors, 
power failures or telecom failures (Kim et al., 2023).

S-DoT has been used to clearly detect urban heat island patterns, 
consistently showing one to three degrees of difference between the 
mountain and downtown areas. They also function as a public data 
source for the Smart Seoul Map to guide heat stress prevention and air 
quality information (Seoul Metropolitan Government, 2021).

Out of the 16 measured parameters, 3 were chosen to be implemented 
in the STGNN: temperature, humidity and PM10 (coarse particulate 
matter with a diameter of 10 micrometers or less). Other parameters 

Table 2.	 Features captured by S-DoT sensors and the qualities that 
influenced them being included as node features. U: used 
as node features, C: is the data (mostly) complete?, NR: is 
the feature not directly related with another?, G: can it be 
generalized across space?

FEATURE UNIT DESCRIPTION U? C? NR? G?

Temperature C Air temperature near the station ✓ ✓ ✓ ✓

Humidity % Relative humidity of the air ✓ ✓ ✓ ✓

PM10 μg/m3 Concentration of particles ≤ 10 μm in air ✓ ✓ ✓

PM2.5 μg/m3 Concentration of particles ≤ 2.5 μm in air ✓ ✓

Wind speed m/s Air movement past the sensor ✓ ✓

Illuminance lux Level of visible light at ground ✓ ✓

UV UV Intensity of UV sun radiation ✓ ✓

Noise dB Ambient sound level at the site ✓ ✓

Vibration mm/s Vibration velocity along 3 axes ✓ ✓

NO2 ppm Nitrogen dioxide concentration ✓

SO2 ppm Sulfur dioxide concentration ✓

NH3 ppm Ammonia concentration ✓

H2S ppm Hydrogen sulfide concentration ✓

O3 ppm Ozone concentration ✓
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were omitted due to having too many missing values, being too reliant 
on the positioning of the station and not being generalized to the area 
around it or being too correlated with another field (specifically for 
PM2.5). Table 2 gives a full overview of the captured S-DoT parameters 
and the reasoning for their omission. 

Figure 6.	 S-DoT station invalid-value counts before and after filtering.

a. Invalid values per feature. Weekends in red; 24:00–08:00 in blue.

b. After excluding weekends and 24:00–08:00.

To assign to each node in the STGNN graph structure a temperature, 
humidity and PM10 value at each time bin, some cleaning needed to 
be done on the S-DoT dataset that would account for occasional null 
values. Then, a triangular irregular network (TIN) method was applied 
to interpolate climate features at each node’s coordinate from the 
S-DoT locations.

Although the chosen S-DoT features were chosen in part due to 
their high data availability, they still encountered some data loss 
that needed to be dealt with before interpolation. Many stations 
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saw a spike in null values during late hours, specifically between 24:00 
and 08:00 (fig. 6a). Another noticeable rise in null values was apparent 
from 24:00 of October 23 to 08:00 of October 24, 2023. During this 
period, none of the S-DoT stations recorded any data (fig. 6b). Both 
these patterns affected a large number of stations and might have been 
caused by some known issues cited by Kim et al. (2023), such as power 
or telecom outages. The 24:00 to 08:00 time frame was already filtered 
out from the Seoul Cozie dataset, due to its own low data points in that 
period, so no additional cleaning was required. However, the 32-hour 
time period between October 23 and 24 needed to be addressed, and so 
it had to be filtered out to prevent multiple time-bins having no climate 
data. The omission of these records was also applied to the STGNN 
that did not use climate features to make sure it would not affect their 
comparison.

After addressing these most noticeable and largest missing data 
records, some station-specific missing values still existed throughout 
the dataset, possibly caused by local issues of overheating or temporary 
breakages. A single approach was utilized for them: if the station had a 
valid reading from at most 90 minutes before or after the missing value 
timestamp, a new value would be generated by performing a simple 
linear interpolation between the real values. Otherwise, the null value 
would remain and be dealt with during the interpolation phase.

The chosen interpolation method was a TIN-based one. TIN 
interpolation has been proven to be time efficient while being able to 
account for irregularly placed data points, in contrast to other methods 
that usually excel only in one of the two (Ledoux et al., 2024). This was 
ideal for the S-DoT dataset due to the unevenly distributed locations of 
the weather stations, which often avoided parks, mountains and the Han 
River crossing the city.

The interpolation worked by firstly creating a Delaunay triangulation 
of the S-DoT network using the stations as the vertices and creating 
triangles that were as equilateral as possible. Then, at each time bin, a 
node’s location within one of these triangles and its vertices’ weather 
features was used to calculate the node’s interpolated temperature, 
humidity and PM10 values (fig. 7). This was done by transforming the 
node’s coordinates into barycentric coordinates, which represent its 
position in relation to the three stations. These barycentric coordinates 
then acted as weights to the weather values of the stations to calculate 
the interpolated values, meaning that a node would have more similar 
values to the closest stations in its triangle (fig. 8). 
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Figure 7.	 Triangulation of the weather stations (purple) and the node 
positions (cyan) overlaid on the Seoul extents.

Figure 8.	 Barycentric coordinates of a triangle. The weight wi of a 
point pi can be thought of as the area Ai of its corresponding 
triangle created by the point x and the other two points pj 
and pk (Ledoux et al., 2024).
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to interpolate a node's temperature 
from its 3 weather stations: 

tn= A1t1 + A2t2 + A3t3
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This general approach was applied to most nodes across time-bins, but 
some exceptional cases needed to be dealt with individually. Firstly, 
nodes that were outside the convex hull of the triangulation, would 
not have been inside any triangle and so could not have barycentric 
coordinates and interpolated values according to the TIN method. The 
simple nearest neighbour (NN) method was used that would take the 
value of the closest weather station. This same method was also applied 
in the cases of triangles with at least one station having a remaining 
null value from the initial S-DoT cleaning. Since the null value would 
not allow for valid barycentric coordinates, this was a simple fix to still 
make sure that each node would have valid weather features, without 
having to rebuild a triangulation for every time bin with invalid station 
readings.

Table 3 shows other methods that were considered and their reason 
for ultimately not being chosen: nearest neighbour (NN) could be too 
simplistic and give the same value to differently placed nodes, inverse 
distance weighting (IDW) would have been better at estimating different 
values for the nodes but would have struggled in areas with less 
concentrated stations, C1 or C2 smoothed TIN methods would have been 
unnecessary and overly complicated for the simple weather dataset and 
costed in computational efficiency, Kriging could have provided more 
realistic values but would have required additional contextual datasets 
and development time which went outside the scope of the research.

Table 3.	 Comparison of interpolation methods considered for assigning S- DoT climate 
features to STGNN nodes.

METHOD PROS CONS

TIN Time efficient; handles irregular station 
placement well; straightforward to 
implement; flexible fallback to NN for 
nodes outside convex hull or triangles with 
null station values

Cannot  interpolate  outside convex hull 
without fallback; barycentric interpolation 
only uses three nearest stations (may miss 
broader patterns)

NN Very simple; fast to compute; always 
produces a value

Too simplistic, assigns identical values to 
many nodes; loses spatial granularity

IDW Produces  smoother  variation than NN; 
relatively easy to implement

Sensitive to irregular or sparse station 
placement (e.g.  gaps along rivers or linear 
distributions);  may be unreliable in poorly 
covered areas

C1/C2 TIN Generates smoother surfaces; better 
continuity across triangles

Computationally more expensive;  
unnecessary complexity for relatively 
simple weather datasets

Kriging Statistically rigorous; can incorporate 
spatial autocorrelation; potentially provides 
most realistic estimates

Requires more contextual data;
high computational cost; timeconsuming
and outside scope of this research
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4.2.3 Urban Morphology Datasets  

Datasets on the morphology and features of Seoul’s urban environment 
were also used for the purpose of defining the graph structure and 
enriching the model features. Building footprint and heights were 
acquired from the Municipality of Seoul and required cleaning to ensure 
valid and non-overlapping geometries. Green areas, including city parks, 
riversides, and forests, were acquired from Open Street Map (OSM). 
Cleaning again had to account for overlapping geometries, both within 
the dataset and with the building footprints. When an overlap between 
the two datasets occurred, the building geometry took precedence, 
and the shared area was excluded from the respective green area. OSM 
Road network lines were also used and cleaned to merge double lines 
representing double-way lanes. Finally, the administrative boundaries of 
Seoul, its municipalities, and its sub-municipalities were also acquired 
from the Municipality of Seoul.

4.3 Graph Structure

4.3.1 Mobility as a Graph

The STGNNs were built using the same graph structure. Nodes 
represented locations across Seoul gathered from semantically 
grouping the Seoul Cozie coordinates, as explained in section 4.3.2. 
Edges connected pairs of node locations that were visited in succession 
by at least one participant. Constructing this graph required translating 
the raw Cozie GNSS traces into a form that could capture meaningful 
urban positions since the coordinates collected by the devices were 
irregular and not directly tied to distinct places in the city. A single 
GNSS point cannot by itself represent a location in the urban sense, as 
it just represents a coordinate point with no semantic value. To address 
this, a method was needed to group multiple records into nodes that 
could stand for semantically comparable locations. This was the central 
step in defining the graph: deciding at what spatial scale positions would 
be merged and how edges would then connect these nodes based on 
observed participant movements.
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Figure 9.	 Nodes from morphological grouping (left) and from intersections grouping (right)

4.3.2 Node Grouping

A first grouping strategy explored was based on urban morphology. The 
aim was to preserve as much detail as possible, letting nodes represent 
the actual places participants visited. Several datasets were combined 
for this: the Cozie survey responses, the building footprint dataset 
from the Seoul Metropolitan Government and the OSM green areas 
layer. Indoor responses were matched to the nearest building, outdoor 
responses inside polygons of green areas were grouped as park nodes 
and the remaining outdoors points were clustered using the Hierarchical 
Density-Based Spatial Clustering of Applications with Noise (HDBSCAN) 
algorithm with a minimum cluster size of 5 and a minimum sample 
size of 3. (fig. 9). In principle, this would allow nodes to correspond to 
categories like specific buildings, parks, or clustered street locations. 
In practice, however, most recorded positions did not have survey 
responses attached indicating whether the participant was inside a 
building, which meant many indoor coordinates were incorrectly treated 
as outdoors. The varying horizontal accuracy of GNSS coordinates 
contributed to this as locations close to buildings could not be reliably 
assigned as indoors. Furthermore, the method produced very fine-
grained results near the university, where data was dense, but quickly 
broke down in the rest of the city. Locations that were visited once or by 
a single participant created nodes with extremely low activity, resulting 
in strong class imbalance between frequently and rarely visited nodes. 
This approach was tested but discarded after it produced poor model 
performance.

A second method was then developed to address these issues by 
lowering the spatial granularity of the nodes. Instead of trying to 
represent nodes as exact places, each coordinate was assigned to its 
closest road intersection derived from the OSM street network. In this 
way, one node represented one intersection, which positioned the graph 
more at the scale of an urban transport network, while still utilizing 
the personal mobility records. The model no longer tried to capture 
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whether a participant was inside a specific building or in a certain park, 
but rather which intersection they were closest to. The idea was similar 
in spirit to what Ma (2022) described, although in this case the grouping 
logic itself was changed rather than merging nodes afterwards. At the 
edges of the city, where visits were rare and often only by one or two 
participants, even this scale was still too fine and resulted in many 
commonly unvisited nodes. These cases were merged further into 
single nodes representing whole municipalities or sub-municipalities, 
depending on their number of records and unique visitors (fig. 9). This 
method reduced the number of nodes, enriched the data available per 
node and lowered the class imbalance. The imbalance did not disappear 
entirely, as central intersections remained much more visited than 
peripheral ones, but it was less severe than in the morphology-based 
approach. This second grouping definition was therefore adopted as the 
graph structure used in the rest of the project.

4.3.3 Node and Edge Features

Once the Cozie coordinates were grouped into nodes and the edges 
were constructed by connecting these nodes based on the participant’s 
movements, additional information was added to both graph 
components.

Nodes were enriched with both static features, that remain the same 
throughout the time bins and dynamic ones, which would change 
based on the timebin. These were the node coordinates (static), urban 
morphology parameters (static) and a visit count of the number of times 
participants passed through the node during the time bin duration 
(dynamic). Dynamic climate features were also added to the nodes of the 
climate STGNN as described in section 4.2.2. Each node’s urban features 
were calculated using a 100-meter buffer around its coordinates and 
incorporating building footprint and green area datasets (fig. 10). The 
following metrics were chosen due to their ability to generally describe 
and differentiate different urban areas (Maiullari 2023): Ground Space 
Index (GSI), area-Weighted Mean, Building Height (WMHB), Green 
Coverage Ratio (GrCR), GD (Green Distance). Table 4 details how each of 
them are calculated.

Edges were enriched with only dynamic features, as the edges themselves 
were also dynamic. These were the number of movements between the 
two nodes connected by the edges during the time bin duration and 
the average transport mode derived from the average speed of such 
movements. The transport mode was categorized based on the average 
collective speed of movements on the edge. A 7.5 m/s threshold on this 
value was used to distinguish between slower personal mobility, like 
walking running, and biking, from faster motorised mobility, like cars, 
metro, and trains.
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Table 4.	 Description of node urban features.

FEATURE DESCRIPTION

GSI Ground Space Index Footprint area / buffer area

WMBH area-Weighted Mean Building Height ∑ building height • footprint / ∑ footprint

GrCD Green Coverage Ratio green area / buffer area

GD Green Distance distance to closest green area

Figure 10.	 Examples of nodes, their buffers and urban features calculated based on building 
and green morphology.

Node 1 Node 6 Node 49

Node 68 Node 93 Node 151

4.3.4 Binning

The graph structure described was used to create multiple graphs 
bins that would represent different time instances across the Seoul 
Cozie dataset duration. Bins were defined as two-hour periods, that 
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would be able to consistently represent different parts of the day. Each 
bin’s graph was composed of all the nodes, with their static features 
remaining unchanged and their dynamic ones being aggregated to the 
two-hour period. Node count visits were summed, and climate features 
were averaged. Edges between nodes were included in a time bin only 
when at least one person travelled between them. Edge counts were 
averaged, and transport was calculated using the speed values of only 
the movements occurring in the bin duration. 

Following this, the bins were divided into training, testing and validation 
groups. Entire days, and all two-hour bins inside them, were assigned 
to each group following a four (training) - two (validation) - three 
(training) - one (testing) recurring pattern, which was chosen to have 
an even distribution of weekdays in all groups across the entire dataset. 
This was done to limit the effects of patterns that might emerge only 
during specific weekdays or at different time periods during the Seoul 
Cozie dataset time span and to keep a train/validation/test split of 
70%/20%/10% (fig. 11).

It was also enforced that bins would be able to act as prediction targets 
only for their own binning group to avoid data leakage between them. 
Moreover, any bins used as input for a prediction could be reused 
as a target only for inputs in its same group. This meant that when 
chronologically switching between bin groups a gap would remain 
where the bins were only used are inputs for the next bins of the same 
type, but not as targets for the previous bin group.

Figure 11.	 Distribution of binning groups across the total time frame.

4.4 STGNN Architecture and Training

4.4.1 Architecture Overview

The STGNN model was designed to take as input graph instances from 
five previous time bins, representing a ten-hour period, and outputting 
predictions for visit counts for all nodes at the next time bin. The 
utilized architecture is presented in this section, further detailed in the 
subsections below, and shown in figure 12.
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The input graph bins pass first through a decoder. Its first two layers 
use the node features (visits, climate, morphology) and the dynamic 
edges (count, average transport mode) at each past time bin. An edge-
conditioned MLP encodes the edge features into weights for each one. 
These are then used in a message passing layer along with node features 
to exchange information between neighbours and calculate embeddings 
for each node. Then, a Gated Recurrent Unit (GRU) layer is applied at 
each node to retain important information from its embedding in past 
bins and updates the embeddings once again.

The decoder takes the final learned node embeddings from the encoder 
and maps each one to a single predicted node visit count value. The 
model is iteratively trained using Mean Square Error (MSE) loss over all 
train bins and over 60 epochs.

Figure 12.	 Diagram explaining model architecture and components.

4.4.2 Input

The input consisted of a sliding window of five consecutive time bins,     
(t − W, ..., t − 1) with W = 5, each represented as a graph with nodes, edges 
and their attributes. Predictions were then made for the next unseen bin 
t. This setting allowed the network to condition its forecasts not only on 
the spatial structure of the graph but also on the short-term temporal 
dynamics of mobility.
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4.4.3 Encoder

where V is the set of nodes, Ek the set of edges observed in bin k, Xk the 
node features and Ef

k the edge features.

The encoder combined edge-conditioned spatial message passing with 
a re- current temporal update. For each bin in the input window, node 
embed- dings were first updated with an edge conditioned convolution 
(NNConv). The weight matrices used in the message passing were 
produced by a small neural network applied to the edge attributes, 
making the aggregation dependent on the type of connection.

For a node i, the update at step k can be expressed as

where e(k)
ij are the features of edge (i, j) at time k, ϕ is the edge network 

mapping them to a weight matrix and x(k)
j is the feature vector of 

neighbour j.

The outputs of the convolution were then passed through a GRU which 
maintained a hidden state across the five time steps. This allowed 
the encoder to integrate the temporal evolution of each node. The 
recurrence can be written as

Each node contained both static and dynamic features. The static part 
included the normalized coordinates of the node and, when available, the 
surrounding morphology features. These attributes did not vary across 
time. The dynamic part was recalculated for each bin and included the 
number of visits recorded at the node during that interval.

Each edge carried attributes describing the temporal context (hour and 
day, normalized), the number of movements recorded and the average 
speed of these movements. The speed values were normalized across 
the dataset, with a threshold of 7.5 m/s separating slower personal 
mobility from faster motorised travel.

Formally, a graph at time k can be written as

with h(0)
i
 initialized to zero. After processing the full sequence, the final 

embedding h(W)
i represented the node at the end of the input window.
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4.4.4 Decoder

From the node embeddings, the decoder produced predictions for the 
next bin. It was conditioned on the temporal encoding of the target bin, 
given by the normalized hour and day values Τt. To predict the number 
of visits per i node, for node i, the embedding h(W)

i was concatenated 
with Τt and passed through a regression network to give the predicted 
visit count      :

4.5.1 Model Configurations

To isolate the effect of contextual information on predictive 
performance, a total of four model configurations were trained under 
the same experimental method. All variants share the same architecture 
detailed in section 4.4 and they use the same graph structure, optimizer, 
learning rate and train-test-validation split. The difference between 
them only concerns the node features utilised.

The Climate+Urban model is the main configuration that incorporates 
both climate features interpolated from the S-DoT dataset (temperature, 
humidity and PM10) and urban features from the morphological datasets 
(GSI, WMBH, GrCR, and GD) aligned to the 2-hour time bins. The Urban-
only variant removes the climate features, while keeping the urban 
morphology ones. These two configurations were the ones in the initial 
scope of the research, as the latter was meant to count as the baseline 
for the former. However, a Climate-only and a Baseline variant were also 
introduced to isolate the results from the urban features, if necessary. 
The former omits the urban features but retains the climate ones, while 
the latter removes both.

The dataset was split along entire days to prevent overlap between 
training and evaluation windows. Optimization used an initial learning 
rate of 0.01, which reduced whenever the validation loss plateaued. The 
objective used mean squared loss to train the node visits.

4.5 Experiments and Evaluation

Table 5.	 Presence of climate and urban features across model configurations.

CLIMATE+URBAN CLIMATE-ONLY URBAN-ONLY BASELINE

Climate node features ✓ ✓ ╳ ╳

Urban node features ✓ ╳ ✓ ╳
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4.5.2 Metrics

The evaluation of the models focuses on the next-bin node count 
regression trast and a derived node presence value. For counts, MSE 
between predicted and observed counts is reported (table 6). Presence 
is instead a value derived from the predicted counts that informs on 
whether a node is visited by at least one person. It is defined from 
the ground truth as visited when the node count is at least one, while 
for the model outputs a threshold of 0.30 is used. We use this binary 
inactive/active classification to describe Presence through the metrics 
of Accuracy, Precision, Recall and F1-score.

4.5.3 Scenarios

To further investigate the performance and applicability of the 
different model configurations, performance was also analysed in 
specific contexts of the Seould Cozie dataset. Two types of scenarios 
are considered: time-of-day and weather. In both cases scenarios are 
constructed from bins that meet the requirements of the scenario, and 
the five preceding bins are used as input.

The chosen time-of-day scenarios were four two-hour time bins that 
cover typical daily patterns: 8:00-10:00 for morning rush, 12:00-14:00 
for mid-day/lunch period, 16:00-18:00 for afternoon rush and 18:00-
20:00 for early evening.  These scenarios are built to reveal whether the 
models capture differences in activity pattern across daily cycles.

For the weather scenarios, city-level daily weather statistics were 
calculated using the S-DoT dataset by taking, for each day, the median 

Table 6.	 Evaluation metrics used in this study on node count (NC) and 
node presence (NP). NP metrics are computed by thresholding 
predicted counts; a node is active if its predicted count > 0.3.

METRIC DESCRIPTION RANGE NOTES

NC MSE Mean squared error between predicted and observed node 
visit counts per time bin.

≥ 0 Sensitive to scale; dominated by many zeros.

NP Accuracy Share   of   correctly classified  nodes  (active/inactive)    
after thresholding  predicted counts.

[0, 1] Can be inflated by class imbalance. Threshold 
= 0.3.

NP Precision TP/(TP + FP) for  the active class; proportion of predicted-
active  nodes that were truly active.

[0, 1] Reflects false positive control. Threshold = 0.3.

NP Recall TP/(TP + FN) for the active class; proportion of truly active 
nodes detected.

[0, 1] Reflects sensitivity. Threshold = 0.3.

NP F1 Score Harmonic   mean   of precision  and  recall (2 PR/(P + R)) for 
the active class.

[0, 1] Balances precision/recall. Threshold = 0.3.

Pearson Corr. Pearson correlation coefficient between predicted and  
observed  node counts.

[−1, 1] Can appear high when both series are mostly 
zeros; interpret with care.
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across stations of each station’s daily mean temperature, humidity 
and PM10 values. Days with insufficient coverage of less than 30% of 
the stations reporting are discarded.  Three scenarios were defined: 
hot days with a mean temperature above 23°C (fig. 13a), cold days with 
a mean temperature below 10°C (fig. 13b), and humid days with mean 
humidity above 70% (fig. 13c). For each, the days that meet the threshold 
are selected and evaluate within the same four time-of-day windows. 
The resulting slices allow us to examine whether climate-sensitive 
model configurations have improved performance relative to those 
without climate features. 

Figure 13.	 Histograms of days with mean S-DoT values used for the 
scenarios sampling.

a. Hot days (threshold: ≥23°C) 

b. Cold days (threshold: ≤10°C)

c. Humid days (threshold: ≥70%)
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5.1 Main Models Results

The Climate+Urban and Urban-only STGNN models performed 
similarly in their node count prediction task. They both achieved low 

overall MSE values of around 0.13 and high accuracies above 98% (table 
7). When looking into their node presence metrics, they again perform 
similarly with Precision at around 76% and Recall at a lower 56%. 
Although similar, Climate+Urban performs slightly better in all metrics, 
especially in node presence Precision and Recall, where it surpassed 
Urban-only by a whole percentage point in both.

Table 7.	 Evaluation results across model configurations.

CONFIGURATION NODE COUNT 
ACCURACY

NODE PRESENCE 
ACCURACY (%)

NODE PRESENCE 
PRECISION (%)

NODE PRECISION 
RECALL (%)

NODE PRESENCE 
F1 SCORE (%)

Climate+Urban 0.1250 98.09 76.41 56.51 0.6497

Urban-only 0.1314 98.04 75.33 55.53 0.6393

Cliamate-only 0.1240 97.77 67.16 56.27 0.6123

Baseline 0.1174 97.99 74.33 54.79 0.6308

Figures 14a and 14b show the training and validation losses of all models. 
The training loss curves of Climate+Urban shows a big drop in the first 
20 epochs and then continues to go down more slowly until leveling off 
at epoch 50 until 60. Its validation loss curve similarly shows big drops 
in the first 20 epoch but then continues to have a few small spikes until 
dropping again in the last 15 epochs. The Urban-only training loss also 
sees initial large drops with gradual decreases in the last 30 epochs. Its 
validation loss curve, in contrast to the Climate+Urban one, sees most of 
its drop in the first five epochs and then sees a few medium spikes until 
plateauing and even seeing a slight increase towards the last epochs. 
Although the exact trends vary between curves, it is noticeable that all 
losses see a constant decline indicating that the models are learning and 
optimizing to some level.

Plotting the results from the Climate+Urban model shows the 
distribution of the node prediction in the urban space of the best 
performing model (fig. 15). It is notable how the nodes around CAU 
buildings see the highest level of both overall mean values as well as 
peak values from the entire time frame. Other nodes that see particular 
activity are ones in proximity of the university ones, especially following 
in the North-South direction. Other points with medium to low activity 
seem scattered throughout the city and its periphery. Lastly, the rest of 
the nodes, which make up most the majority, appear to have overall low 
and null values indicating that they are frequently predicted as unvisited.
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Figure 14.	 Node count MSE loss curves across model configurations

a. Training losses b. Validation losses

Figure 15.	 Climate-Urban node count predictions at urban and neighborhood scale.        
CAU buildings are highlighted in purple and railway stations in red.

a. Mean values b. Peak values
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5.2 Urban Features Ablation

The Climate-only and Baseline STGNN models were evaluated in the 
same way as the main models, with the difference being their omission 
of urban features to control for their influence on the results. Again, the 
models do not perform too differently from each other when looking 
at their evaluation metrics (table 7), with close MSE values of 0.124 
and 0.1174 and Accuracies of 97.77% and 97.99% respectively. The node 
presence metrics instead show some differences. Climate-only performs 
poorer in Precision at 67.17% compared to Baseline’s 74.33%, while better 
in Recall with 56.27% compared to 54.79%. These values show that the 
Climate-only model was able to more often identify real active nodes, at 
the cost of more false active node predictions.

The loss curves also perform similarly to the other models, with the 
training losses gradually decreasing until the last epoch (fig. 14a). A 
notable spike is seen in the Baseline model at epoch 24, but it quickly 
stabilises. The losses of Climate-only and Baseline reach around 0.15, 
compared to the lower 0.10 achieved by the previous models. The 
validation losses also act similarly (fig. 14b), with more spikes throughout 
the curve that still overall sees the values decrease to around 0.22 and 
0.25. Interestingly, these losses at the last epoch are slightly lower than 
the Urban-only model’s but are still higher than the Climate+Urban 
model’s. 

When comparing these models’ performance with the Climate+Urban 
and Urban-only models, we can see how they are outperformed by 
them in each metric. Climate+Urban remains the best performing model 
of the experiment, with the lowest MSE and highest Precision, Recall, 
and F1 score, indicating that it was the best model at both predicting 
node counts and when nodes will be active. In a similar way, Urban-
only outperforms Baseline to be the best model to not include climate 
features. This improvement in metrics in the models containing urban 
features, however, is not drastic and sees only slight improvements, 
apart from Precision between Climate+Urban and Climate-only. This 
seems to point to the urban features adding some valuable additional 
information to the model but not enough to make a stark difference in 
its prediction task.

The scenarios defined in section 4.5.3 were used to apply the trained 
models to specific subgroups of the total dataset timeframe. The day-
of-time scenario was performed using the best performing model, 
Climate+Urban, and grouped by morning (08:00-10:00), mid-day (12:00-
14:00), afternoon (16:00-18:00) and evening (18:00 to 20:00). For each, 
Figures 16 and 17 show the mean and peak node count values predicted 
by the model. Looking at the mean values, the nodes closest to the CAU 

5.3 Scenario Results
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buildings see the most predicted activity at all times, with the highest 
mean visits occurring in the mid-day window with around 12 to 15 
visits. Other nodes outside the university neighbourhood also see mean 
predicted activity, but this is more sporadic with values around 1 to 2 
visits. The peak values show the same trend of centralized activity at 
CAU during mid-day and afternoon but also help show trends of less 
consistently visited nodes. In the morning, peaks are higher in nodes 
surrounding the university neighbourhood reaching about 7 peak visits. 
During the mid-day and afternoon, some more spread-out activity is 

Figure 16.	 Mean predicted node count values of the time-of-day scenarios at urban and 
neighborhood scale.

8:00-10:00 12:00-14:00 16:00-18:00 18:00-20:00

Figure 17.	 Peak predicted node count values of the time-of-day scenarios at urban and 
neighborhood scale.

8:00-10:00 12:00-14:00 16:00-18:00 18:00-20:00
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predicted south of CAU, on nodes close to train stations and near the 
river. The evening continues this trend and the nodes closest to CAU 
buildings decrease in activity.

The weather scenarios that looked at hot, cold and humid days were 
performed on both the Climate+Urban and Urban-only models to 
compare the addition of climate features in more extreme weather 
conditions. To this end, node count MSE, node presence Precision and 
Recall were also calculated. Only peak values are shown in figure 18, as 
they seemed more expressive in capturing predictive patterns compared 
to mean values. As in the time-of-day scenarios, peaks in all weather 
scenarios are highest in the nodes closest to CAU buildings at mid-day 
and in the afternoon. However, some specific behaviour for the weather 
scenarios can still be seen: hot days seem to have slightly higher peaks 
in nodes closer to the river during the afternoon (fig. 18a), cold days 
seem to have more spread out node counts during midday (fig. 18b), and 
humid days seem to have more highly concentrated peak values in the 
nodes closest to the CAU buildings (fig. 18c).

The calculated metrics between Climate+Urban and Urban-only models 
in these scenarios show only minor differences. The former usually 
has slightly higher MSE and Recall than the latter, while the opposite 
occurs for Precision. This could mean that climate features make the 
model overall less cautious, leading to a slight increase of correctly 
predicted active nodes at the cost of precision. Interestingly, all the 
evaluation metrics calculated on these scenarios perform lower than the 
overall metrics shown in section 5.1, reaching lows of 0.48 for MSE, 53% 
for Precision and 0.26 for Recall, although this might be due to a lower 
number of considered time bins, sometimes reaching just 8 bins, which 
might make the values easily skewed.

Figure 18.	 Peak predicted node count values of the weather scenarios using the 
Climate+Urban model at urban and neighborhood scale.

a. Hot days (≥23°C) 16:00-18:00 b. Cold days (≤10°C) 12:00-14:00 c. Humid days (≥70%) 16:00-18:00
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6.	 Conclusion
6.1 Discussion

The results across the tested node feature model variations did not 
overall stray too far from each other. The models all achieved very 

low levels of MSE, between 0.1174 and 0.1314, and high node presence 
Accuracies, between 97.77% and 98.09%. While initially these may 
appear as good performance indicators, node presence Precision and 
Recall paint a more realistic picture. Precision values between 0.6716 
and 0.7641 show that when the model predicts a node to be visited at 
least once, it is mostly correct. Recall values between 0.5479 and 0.5651 
instead show that the model can identify only slightly more than half of 
visited nodes and often predicts them as inactive. These values reveal 
that the models are highly susceptible to the class imbalance of visited 
and unvisited nodes even after having reduced the spatial granularity 
of the graph through the intersection node grouping. This causes them 
to skew towards predicting zero visit counts in order to achieve lower 
MSE. For this reason, the node presence Presence and Recall metrics 
became more meaningful metrics in comparing the different model 
configurations than the stable MSE and Accuracy levels.

Looking at the role of climate and urban features in the model variations’ 
performances, some small differences can be found despite their close 
results. Models that included either urban or climate features overall 
performed better than their counterparts, especially in Recall, and the 
best performing one in all metrics was Climate+Urban, which included 
both. The improvement is, however, not too drastic and saw on average 
a 1-2% increase in Presence and Recall, with the exception of the Climate 
model which underperformed in Precision. Looking qualitatively at the 
scenario experiments shows that the models are able to capture some 
general trends as they relate to time of day and weather conditions, but 
nothing substantial that drastically differentiates the model variations. 
Generally, it is possible that the climate features provided a positive 
effect on the model performance, as highlighted by the small increase in 
node presence metrics, but, along with the urban features, they had less 
of an impact that was expected. The short time span and low changes in 
weather of the Seoul Cozie dataset might have played a role. With only 
six weeks in an autumn that saw late a seasonal switch, the differences 
in temperature and humidity were small, which limited the variability 
available for the model to learn from.

The node visit count prediction task of the STGNN meant that Mobility 
within the model was defined as location based. The road intersection 
grouping of the Seoul Cozie positions created a network that somewhat 
resembled a sensor network used in vehicle traffic forecasting models, 
but personalized to the locations visited by the participants across all 
transportation types. Therefore, the output of the model when looked 
at a single instance or averaged over long periods of times can appear 
static. Activity peaks can be observed at the highly visited nodes, like 
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6.2 Limitations

The research encountered various limitations in its process to reach 
the research goals, which encompassed the input datasets, the chosen 
model architecture, and the integration of node features. 

The Seoul Cozie dataset was the basis for much of the research and 
for the construction of the STGNN model. This allowed to reach the 
results presented in the previous sections but was also the cause of 
some setbacks. Its size was relatively small for the use that it served. 
With 22 participants and spanning less than two months, the datapoints 
were often not dense enough to train a model at an urban scale and was 
one of the causes of the large number of unvisited nodes. At the same 
time, the spatial and temporal resolution of the GNSS traces also were 
not adequate for the neighbourhood-scale. Only the areas surrounding 
the CAU buildings could be analysed more in-depth due to their higher 
visits by all participants, but even then, precise positions could often 
not be determined, which led to the use of intersection-based nodes. 
Additionally, the dataset required extensive cleaning relating to GNSS 
irregularities, jumps, repeating values, and mismatched timestamps. 
Many of these were addressed, but it is possible that errors remained 
and were then fed into the developed models, introducing noise and 
overall incorrect inputs. 

When defining the graph structure, the node grouping method simplified 
and flattened the dynamic nature of the Seoul Cozie dataset. Although 
necessary based on the dataset’s own limitations, the aggregation to 
street intersection and municipality nodes decreased the level of detail. 
A node, therefore, did not represent an exact place, building, or park, 
but rather entire blocks or, in some cases, entire municipalities. Other 
than limiting the intput and output detail of the model, this also affected 
the precision and meaningfulness of a node’s climate and morphology 
features. These were caluclated using the node’s coordinates to 
represent positions inside its buffer, which might not have always 
provided accurate and rich feature information. 

The developed STGNN architecture also could also have introduced 
limitations to the findings of the research. Using a simple decoder, 

those close to the university neighbourhood, and lower values portray 
which locations across the city are less popular. This model output 
by itself can show some relations between activity levels between 
neighbouring nodes but does not give too much insight of the actual 
movements between them present in the original dataset.  However, 
using multiple outputs of tailored scenarios to compare activity across 
different times and weather conditions can indirectly portray patterns 
in movements between the locations and across the urban environment. 
This allows do draw some qualitative conclusions on the movement of 
people as time passes.
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composed of an edge-conditioned message passing layer and a GRU 
layer, might not have given the model enough chances to learn the 
spatial and temporal pattern present in the input structure. Additionally, 
the window used as input was of five time bins encompassing a total 
of ten hours. While enough to potentially predict short-term patterns, 
the model would not have been able to identify longer-term influences. 
Additionally, the choice of a GNN-based architecture in the first place 
could have also hindered the research, as it was sensitive to the way its 
structure was defined and highly dependent on spatial links that would 
inform the message passing. These factors, together with the large class 
imbalance of unvisited nodes, might have caused the graph to be too 
sparse, directly impacting its performance more drastically than other 
non-graph-based methods. 

The factors mentioned above also contributed to limitations in how 
the concept of mobility could be approached in relation to climate. The 
model predictions of node count values across time bins, while allowing 
some qualitative recognition of patterns in the scenario experiments, 
depict mobility as location-based and static. This was in large part due 
to the dataset resolution and graph structure, which would not allow for 
more granular detection, like the choice of specific paths, shaded areas, 
or indoor buildings. Additionally, mobility was largely affected by regular 
university commuting and free time, like weekends and late evenings, 
could not be trained on due to an inconsistent number of records at 
those times. Therefore, the hours where participants were most likely 
to enact mobility choices based on their own choices and, possibly 
in reaction to the climate, could not be captured in the research. In 
a similar way and again due to the low dataset resolution and strict 
graph structure, usage of transport methods was not implemented 
in the prediction stage, which might have given insight on transport 
preferences in differing weather conditions. 

Finally, the integration of node climate features was also constrained. 
Out of the variables collected by the S-DoT stations, only three were 
used: temperature, humidity and PM10. These were chosen due to their 
low missing data and relatively stability across stations. Other potentially 
relevant parameters, such as wind speed, solar radiation, or shading 
effects, did not meet these requirements and were excluded. This means 
that only some of the climate conditions experienced by participants 
was accounted for in the model. Additionally, when interpolating the 
features, values were efficiently assigned to the nodes but naturally 
required a level of smoothening that could not reproduce potentially 
relevant micro-scale variations. For example, temperature differences 
between shaded and sunlit areas or airflow along narrow streets would  
have been too detailed to capture.

6.3 Conclusion and Takeaways

This research set out to explore whether urban climate factors leave 
a measurable trace in people’s mobility choices and whether a STGNN 
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could capture such effects. This was approached by running versions 
of the same model that differed only in the inclusion of dynamic node 
climate features. Their performance in a node visit count prediction task 
was analysed. Overall, the models performed similarly and were able to 
produce stable forecasts of node visits from the Seoul Cozie dataset. 
However, the outcomes showed that much of high accuracy values 
(>98%) stemmed from the dominance of inactive nodes in the graph 
structure. This led to an over-prediction of unvisited nodes, which 
greatly hindered the capabilities of the model. Nonetheless, the Recall 
values of predicted active nodes remained above 50%, indicating that 
the model at least identified them at a better rate than random chance. 
Adding climate features lead to minor improvements. Performance 
showed a small increase in metrics that point to climate influencing the 
mobility dataset. However, this was less than initially expected and as 
such relations or patterns between urban climate and mobility could 
not be definitively identified. The efficacy of this STGNN approach in 
mobility prediction therefore proved to be limited during evaluation. 
The task that the model was trained for, predicting next-step node 
visits, allowed to clearly identify peaks in activity in different areas 
of the city but proved more difficult in directly portraying mobility. A 
possible real use of such a model was experimented through the use of 
specific scenarios. By applying the model on these specifically chosen 
time bin subsets, the node count predictions could be used as indicators 
of shifting activity based on the chosen factors, such as time of day, 
temperature and humidity.

Many of the conclusions above stemmed from the way the construction 
of a graph structure from the Seoul Cozie dataset was approached. The 
grouping of GNSS traces into road intersection nodes allowed for a 
working node set that aimed at balancing their spatial expressiveness 
and data richness. This, while allowing to have a working implementation 
of the model, still could not counteract the effect of the class imbalance 
between visited locations inherent to the dataset. Additionally, the way 
mobility could be interpreted largely relied on this decision. Whether by 
looking at overall peaks or comparing scenarios, the model would only 
be able to give readings of people’s activity in relation to their closest 
road intersection, a scale in between the urban and neighbourhood 
level.

Overall, the work made several contributions. It demonstrated that 
raw GNSS traces, like the Seoul Cozie dataset, can be successfully 
used as input into a dynamic graph and applied in a spatiotemporal 
framework. It showed that both morphology and climate attributes 
can be integrated in this structure, and it established a foundation that 
can be extended with richer datasets and alternative graph structures. 
Although no strong claims about the effect of climate on mobility could 
be definitively reached, an initial STGNN framework using a personal 
mobility dataset was proposed to be built upon.
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6.4 Future Work

Building on this study, several directions could extend and strengthen 
the results. Starting from the input used, new datasets could be gathered 
more tailored to the goal of STGNN construction. They could be based 
off individual peoples' mobile traces, much like the Seoul Cozie dataset, 
but improve in more consistent positional information that would allow 
to create much more precise node profiles. The time variations between 
recorded coordinates across participants could be more standardised. 
Input from the user on their location information, indicating whether 
they are inside, outside, or taking transportations, could also be more 
frequent, or at least enough to infer the rest from the existing ones. To 
further aid the creation of meaningful nodes, a locationing method, like 
Wi-Fi fingerprinting, could be used to identify when participants are 
visiting specific public locations, like a university building or railway 
station. A larger study size, comprising of more than 22 participants 
from different backgrounds and spanning a longer time period, would 
also help in enriching the graph structure with movement information 
and in capturing more meaningful patterns with changing weather 
conditions.

The construction of the graph could also be improved by future 
research. A dynamic, event-based, temporal structure could be explored 
in comparison to the binning one used in the researched, which could 
allow for finer and less static temporal sensitivity. Different ways of 
grouping the Seoul Cozie dataset into nodes could be investigated, 
like grouping based on city blocks or with a uniform grid system. 
Additionally, distance-aware edges between nodes could be introduced 
to improve the model’s understanding of relationships between close 
nodes. The features considered could also be expanded to include more 
relevant information to urban factors, such as terrain height, sky view 
factor, shading, tree coverage, and more.

The chosen STGNN architecture could be focused on to improve 
its learning capabilities. Additional components commonly used in 
GNNs for mobility and transport forecasting tasks might be beneficial. 
Explicit long/short-term split modules would give the model a better 
understanding of daily patterns and more localized events. An attention 
component applied to the edge or nodes might also prove to be effective 
in more consistently helping the model identify important relationships 
between nodes. More broadly, the analysis of mobility and urban climate 
within the Seoul Cozie dataset could be approached with alternatives 
to the STGNN used.  Edge-centric GNNs would model flows directly, 
representing movements as edges and predicting origin-destination 
counts rather than node ones. Sequence models, like RNNs and LSTMs 
can learn regularities in node visits using per-person sequences, with 
spatial context added as exogenous features. Each choice could come 
as a trade-off between spatial expressiveness and simplicity, and future 
work could quantify when each is preferable.
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