
1

Data Lineage in the RVB

P.M.E. Gottenbos

TU Delft, Utrecht University, Twente University, Wageningen University

2

1

Table of contents
1.	 Introduction	..	3	
1.1.	 The	Rise	of	Spatial	ETL	..	4	
1.2.	 Problem	statement	..	7	
1.3.	 Research	objectives	...	8	
1.4.	 Research	question	and	scope	...	9	
1.5.	 Roadmap	...	12	

2.	 Systematic	Literature	Review	..	13	
2.1.	 Part	I	–	Conceptual	Models	and	Theoretical	Foundations	...	13	
2.2.	 Part	II	–	Practical	Systems	and	Tool-based	lineage	models	19	
2.3.	 Part	III	-	Towards	a	Lineage	Model	for	FME	Workflows	...	26	
2.4.	 Criteria	creation	for	model	..	30	
2.5.	 Closing	Summary	&	Gap	Statement	...	34	

3.	 Methodology	..	35	
3.1.	 ISO	+	GeoSPARQL	integration	..	35	
3.2.	 Technical	Implementation	...	40	

4	 Results	and	Evaluation	..	46	
4.1	 Overview	of	Selected	Workflows	..	46	
4.2	 Quantitative	Evaluation	...	61	
4.3	 Qualitative	Evaluation	...	68	

5	 Discussion	...	71	
5.1	 Technical	Limitations	...	71	

6	 Conclusion	..	73	
6.1	 Answers	to	Research	Questions	...	73	
6.2	 Recommendation	for	Future	Work	...	75	

References	...	77	
Appendix	A:	GeoSPARQL	mapping	functions	list	...	80	
Appendix	B:	Example	of	JSON	for	Capaciteitskaart	Elektriciteitsnet	81	
Appendix	C:	Example	of	JSON	for	Groenbeheer	..	84	
Appendix	D:	Example	of	JSON	for	Zon	op	Dak	...	86	
Appendix	E:	Code	...	88	

1

List of Abbreviations

Abbreviation Meaning
API Application programming interface
CRS Coordinate reference system
CSV Comma-separated values
DAG Directed acyclic graph
ETL Extract, transform, load
EIF European Interoperability Framework
FME Feature Manipulation Engine
FMW FME workspace file
GIS Geographic information system
ISO International Organization for Standardization
JSON JavaScript Object Notation
LE_Algorithm Lineage extension algorithm
LE_Processing Lineage extension processing metadata
LI_ProcessStep Lineage process step (ISO 19115 element)
LI_Source Lineage source (ISO 19115 element)
OGC Open Geospatial Consortium
OWL-S Ontology Web Language for Services
RDF Resource Description Framework
RVB Rijksvastgoedbedrijf
SRID Spatial reference identifier
UI User interface
UML Unified Modeling Language
W3C PROV W3C Provenance data model
WPS Web Processing Service
XML Extensible Markup Language

2

Abstract

The Rijksvastgoedbedrijf (RVB), the Dutch national real estate agency, relies on spatial
Extract–Transform–Load (ETL) workflows, in particular those built with the Feature
Manipulation Engine (FME), to manage complex geospatial data. However, it currently lacks
a standards-compliant, automated method to track data lineage throughout these workflows.
This gap hampers traceability, reproducibility, and compliance with data governance standards,
thereby impeding effective spatial data management and informed decision-making.

To address this challenge, a data lineage model tailored to FME-based spatial ETL workflows
was developed. The model integrates the ISO 19115 geospatial metadata standard for lineage
and leverages GeoSPARQL to define a dictionary of commonly used spatial transformations.
Implementation of the model utilizes custom Python-based parsers to automatically extract
lineage information from FME workspaces and their runtime log files. These parsers translate
FME transformer steps into standardized provenance records, which are stored in JSON format
and visualized through a Flask-based web interface. The system captures both spatial- and
attribute-level operations, including geometry calculations, coordinate reprojections, and
spatial filtering operations.

Evaluation on real-world RVB workflows and an evaluation done according to ISO 19157
confirms that the proposed approach effectively enhances traceability, auditability, and the
semantic interpretability of spatial ETL processes. Key limitations were identified, such as
partial coverage of certain FME transformer types and the lack of versioned lineage history.
Despite these limitations, the solution significantly improves transparency and reproducibility
in spatial data governance practices. It thereby provides a scalable foundation for integrating
robust provenance tracking into operational geospatial infrastructure.

Keywords: Geospatial ETL, Data Lineage, FME Workflows, ISO 19115, GeoSPARQL, Spatial
Data Governance.

3

1. Introduction

Data lineage also known as data provenance is the documented history of a dataset: where it
came from, how it was transformed, and by whom and when those transformations occurred
(Tang et al., 2019). In practice, data lineage answers five questions about any output layer:
what changed, where, how, who, and when (Closa et al., 2019). Because organizations use this
trace to prove quality, ownership, and regulatory compliance, lineage sits within the broader
practice of data governance—the policies, standards, and operating routines that keep data
trustworthy and accountable across its lifecycle (Jamedzija et al., 2021). Together, data lineage
and governance make complex data work auditable and reproducible.

Geospatial data intensifies these requirements. Government agencies routinely integrate
cadastral boundaries, building footprints, infrastructure layers, and policy zones, all of which
evolve over time and must remain spatially consistent. Typical processing involves coordinate
reference system transformations, spatial joins, topological edits, and geometry calculations.
Each of these transformations adds semantic and geometric complexity that is poorly captured
by lineage approaches designed for tabular data. As a result, organizations need lineage that
can describe not only which Table joined which, but also which geometry operations occurred
on what features, in which CRS, and with what parameters.

Within the Rijksvastgoedbedrijf (RVB), the Dutch national real estate agency, spatial ETL is a
core operational capability. RVB maintains diverse spatial datasets and automates frequent
updates to keep them authoritative and fit for purpose. Safe Software’s Feature Manipulation
Engine (FME) is central to this practice (Breunig et al., 2020). FME’s transformer-based model
allows complex geoprocessing chains to be assembled visually and run reliably at scale.
However, while FME excels at executing spatial workflows, it does not natively export those
workflows’ transformation histories as structured, standards-compliant lineage records.
Provenance is present implicitly—in workbench diagrams and execution logs—but not
captured in a form that supports consistent governance, cross-system integration, or
independent verification.

As the RVB is a government company, the RVB depends on transparent and well-documented
data workflows to uphold their data quality, validate historical decisions, and meet compliance
requirements (e.g., satisfying metadata standards like ISO 19115 for geospatial information).
However, as their ETL workflows grow in complexity and involve multiple stakeholders, the
absence of a formalized lineage-tracking mechanism increases the risk of errors, slows problem
resolution, and compromises trust in spatial data products. This gap is especially critical when
spatial data is shared externally. For example, with municipalities, contractors, or regulatory
authorities, where provenance information is essential for defensible and auditable decisions.

This thesis responds to that gap by designing and evaluating a spatially aware, standards-
aligned lineage model tailored to FME-based workflows. The remainder of this opening section
explains why spatial ETL is different from general ETL (Figure 1.1), situates FME in RVB’s
operational reality, and then states the problem this research addresses.

4

Figure 1.1 - Standard ETL pipeline vs spatial ETL pipeline

1.1. The Rise of Spatial ETL

ETL refers to the extraction of data from source systems, the transformation of that data
according to business and quality rules, and the loading of the results into target stores; in
spatial contexts, geometry operations and coordinate handling are common transformation
steps (Kimball & Ross, 2013). An ETL tool is the engine that takes raw input from many places,
applies an ordered chain of processing steps, and then writes the combined data to a centralized
system such as a data warehouse (Kumaran, 2021). ETL is divided into three main phases: the
first is extracting data from varying sources. This can include databases, flat files, APIs etc.
This extracted data is then transformed into a standard format, making sure that the data can be
used. Lastly this data is then loaded into a target storage system such as a data warehouse,
which means that the data can now be queried and used in reports and analysis.

5

ETL tools are essential for creating valuable insights through data integration however standard
ETL tools are not equipped to handle geospatial transformations (Chee, 2024). This is because
these spatial transformations introduce additional complexities, such as geometry handling and
coordinate reprojections (Di et al., 2013). To address these complexities, specialized Spatial
ETL tools such as FME, GeoKettle, and ArcGIS Data Interoperability have emerged since the
late 20th century, continually evolving to handle increasingly sophisticated geospatial
requirements. The complexity of spatial transformations, such as reprojections and spatial
joins, is clearly illustrated in Figure 1.1, comparing the workflow steps of standard ETL
pipelines with those of spatial ETL processes.

• Coordinate System Reprojections: Converting spatial data between different coordinate
reference systems (CRS) to ensure compatibility across datasets.

• Spatial Joins and Merging: Spatial joins and merging operations uniquely consider
geometric intersections and spatial proximity, unlike traditional joins based solely on
database attributes.

• Topological Edits: Performing geometry-based operations such as buffering, clipping,
and intersection analysis (Viera, 2024).

These operations introduce dependencies between geometry, attributes, and spatial logic that
are not adequately captured by conventional lineage models, which primarily focus on schema
or record-level transformations.

Although spatial ETL tools provide powerful functionalities, a significant gap remains in
lineage tracking which is the ability to trace and document how data has been transformed and
integrated. Without robust lineage tracking, organizations face risks in verifying data
provenance, undermining confidence in data-driven decisions, especially in fields requiring
regulatory compliance or environmental assessments (Closa et al., 2019). This presents a
challenge for organizations that require auditability and traceability in their workflows.
Without a mechanism to capture transformation history, it becomes difficult to verify how
datasets were created or which operations contributed to a given output (Dai et al., 2017). An
example of an FME workbench can be seen in Figure 1.2 and an example of a geospatial
transformation can be seen in Figure 1.3.

6

Figure 1.2 - Geospatial processes done in FME

Figure 1.3 – Example of a geospatial transformation done in FME

7

Given the increasing need for accountability in data-driven decision-making, the ability to track
lineage in Spatial ETL processes is becoming a necessity rather than an optional feature (Closa
et al., 2021). Addressing the lineage tracking gap will enable organizations, such as RVB, to
improve data governance by clearly documenting data transformations and origins, thereby
enhancing transparency in workflows, accuracy in spatial analyses, and accountability in audit
processes and regulatory compliance.

1.2. Problem statement

Despite the increasing adoption of spatial ETL tools to manage complex geospatial workflows,
current systems lack integrated mechanisms to capture and represent data lineage in a
structured, interoperable manner. This limitation is particularly evident in tools such as FME,
which, while technically advanced in handling spatial transformations, do not natively support
systematic documentation of transformation logic, data flow, or responsibility tracking. The
absence of such functionality represents both a technical shortcoming in operational tools and
a scholarly gap in geospatial data lineage research.

From a technical standpoint, FME’s workflow design is inherently visual and execution-driven,
with lineage implicitly encoded in the structure of the workspace. Although this visual model
supports user understanding during development, it does not produce machine-readable outputs
that capture transformation steps in formats aligned with governance standards (e.g., ISO
19115). Furthermore, changes to spatial attributes and geometries—such as reprojections,
spatial joins, or topological edits—are not exported in a reusable lineage log. This hinders
auditability, reproducibility, and long-term traceability of spatial datasets.

Several studies have explored lineage tracking for ETL workflows, but their applicability to
spatial data remains limited. For example, Dai (2017) proposes lineage tracking using minimal
attribute sets, which are the smallest collection of attributes needed to effectively track data
transformations. This approach suits basic tabular processes but does not scale adequately to
complex spatial transformations such as reprojections, spatial joins, or geometric edits.

Similarly, Tang (2019) examines lineage tracking methods within large-scale ETL
environments, but the scope is explicitly restricted to non-spatial data structures, neglecting
spatial logic and geometry handling complexities inherent to tools like FME.

Building on these efforts, Jamedzija (2021) introduces a push-based API to support real-time
lineage capture, with a focus on data ownership and access control. In this context, data
processes and data ownership refer to assigning responsibility for managing datasets and
workflows. This allows for more accountability and increased quality of the data. While this is
valuable for tracking responsibility in ETL pipelines, the approach remains focused on tabular
data and does not include spatial-specific operations such as coordinate reprojections or
topological edits.

Furthermore, while Jamedzija (2021) mentions data governance, its interpretation primarily
revolves around permission management and access-level control. Broader governance
aspects, such as structured transformation documentation, metadata integrity, and alignment
with standards like ISO 19115, an international standard defining the structure and format of
geographic metadata to ensure interoperability and transparency in spatial data management,
remain insufficiently addressed. Together, these studies show progress in the general ETL

8

lineage, but none provide a dedicated solution for spatial data. The gap lies in the absence of
an automated, ETL-integrated lineage model designed specifically for geospatial workflows,
which must address unique spatial requirements such as accurate geometry handling,
coordinate reference system transformations, spatial relationship tracking (e.g., topological
changes, spatial joins), and detailed metadata capture aligned with geospatial standards.

Moreover, even when data governance is mentioned in these studies, it is typically framed in
terms of permissioning or data ownership, without attention to spatial transformation
semantics, geometric data integrity, or metadata conformance to geospatial standards. As a
result, existing models fail to support critical use cases in geospatial domains—such as
determining how a cadastral boundary was reprojected, which features were spatially joined,
or how overlapping layers were intersected in producing a final dataset.

The implications for organizations like the RVB are significant:

• Lack of transformation traceability: If an output dataset contains incorrect or
outdated spatial information (e.g., property boundaries), there is no systematic way to
identify the specific operation or workflow that introduced the error.

• Reduced auditability and legal defensibility: When spatial datasets are shared with
municipalities or ministries, the absence of lineage information undermines trust and
accountability, especially in contexts that require regulatory validation.

• Increased risk to data quality and governance compliance: Without lineage records,
it becomes difficult to enforce access rules, verify user responsibilities, or comply with
interoperability models such as ISO 19115 or the European Interoperability Framework
(EIF).

• Inefficiencies in debugging and operational processes: Manual inspection of FME
workflows to trace data transformations is time-consuming, error-prone, and often
inconsistent, especially when datasets are shared across teams or organizational units.

These limitations collectively compromise core governance principles such as traceability,
accountability, and auditability, and hinder the effective use of spatial data in decision-making,
especially in high-stakes domains like land management, infrastructure planning, or
environmental regulation. For the RVB, where spatial data directly supports property valuation,
legal boundary definition, and public asset oversight, the absence of robust lineage tracking is
not merely an operational inconvenience—it is a critical vulnerability in their data governance
framework.

Addressing this gap requires a lineage solution that is spatially aware, workflow-integrated,
and aligned with established governance standards. Such a solution must support the capture
and representation of transformation logic at both the attribute and geometry levels, enabling
end-to-end traceability of spatial data products. The following section defines the research
objectives and outlines how this gap will be addressed through the development of a tailored
lineage model for spatial ETL workflows in FME.

1.3. Research objectives

Given the identified limitations in existing lineage tracking solutions for spatial ETL (Section
1.2), the primary objective of this research is to design an automated lineage model tailored
specifically to geospatial workflows. The goal is therefore to bridge the gap between generic

9

data lineage frameworks and the complex, geometry-driven nature of spatial data
transformations.

At a theoretical level, the research seeks to contribute a conceptual model for spatial data
lineage that incorporates geometry-level operations, semantic transformation tracking, and
standards-aligned metadata capture. By extending lineage concepts beyond traditional tabular
structures, the model addresses a critical gap in the existing literature. Namely, the absence of
spatial logic in current provenance and governance frameworks.

From a practical perspective, the research will result in a functioning prototype capable of
capturing and exporting lineage metadata from real-world FME workflows. This includes
tracking spatial operations such as coordinate reprojections, spatial joins, and topological edits,
as well as recording attribute-level changes and associated user or system actions. The resulting
lineage records will be aligned with international metadata and governance standard of the ISO
19115, ensuring applicability in institutional settings like the RVB.

By achieving these objectives, the research is expected to deliver the following contributions:

• Improved traceability across spatial ETL workflows, allowing organizations to
reconstruct and validate transformation histories from source to final dataset.

• Enhanced auditability, with lineage records enabling verification of compliance with
internal processes, regulatory requirements, and external reporting obligations.

• Stronger accountability by clearly documenting who modified spatial data, when, and
through which transformations—supporting both internal governance and external
transparency.

• Increased interoperability and standard compliance, ensuring that lineage outputs
can be integrated into existing data governance systems and exchanged with
institutional partners.

For the RVB and similar organizations, the proposed model will provide a robust mechanism
to embed data governance principles directly within operational workflows, reducing reliance
on ad hoc or manual lineage tracking approaches. In doing so, it offers a scalable and
transferable solution that strengthens the reliability and defensibility of geospatial data
products.

1.4. Research question and scope

In line with objectives stated in Section 1.3, the research is guided by one main question and a
set of sub-questions. The main research question is:

How can a geospatial data lineage model be designed and evaluated to support end-to-end
traceability, capture, and visualization of spatial transformations in geospatial ETL

processes such as FME, thereby enhancing data governance and operational efficiency
within organizations?

To systematically address this broad question, we break it down into six sub-questions:

1. What are the technical and organizational requirements and priorities for geospatial
data lineage?

10

2. What data lineage models currently exist for tracking lineage in both spatial and non-
spatial contexts, and what are their strengths and weaknesses in supporting spatial use
cases?

3. What are the existing challenges and limitations in tracking data lineage within
geospatial ETL tools, specifically when using tools such as FME?

4. How can a geospatial data lineage model be designed and implemented in FME to
enable end-to-end traceability of spatial transformations?

5. How does the proposed model align with the ISO 19157 quality assessment framework,
under the four core dimensions usability, accuracy, consistency and completeness?

6. How can the proposed model be tested to ensure that it meets the identified
requirements for geospatial data lineage, and what methods or metrics can be used to
evaluate its effectiveness in real-world scenarios?

By answering these sub-questions, the research will comprehensively cover understanding the
problem context, devising a solution, and assessing its value. The scope of the work is
deliberately focused on 2D geospatial ETL processes workflows like those in FME that handle
vector and attribute data and does not extend to domains like 3D modelling or real-time sensor
data (which have their own lineage challenges). The emphasis is on a conceptual and prototype
implementation that could be generalized, rather than a full production software product.
Nonetheless, the outcomes are intended to be practically relevant, the model should be
implementable with reasonable effort in tools such as FME and compatible with existing
governance standards so that it can integrate into the RVB’s data management framework.

The research will be structured according to a design-oriented methodology to develop a
geospatial data lineage model tailored for FME. The methodological steps to achieve this are
as follows: (1) to identify the requirements (both technical and organizational) for geospatial
data lineage tracking in an operational setting such as the RVB, (2) to review existing data
lineage and provenance models, from both spatial and non-spatial domains, to inform the
design, (3) to develop a taxonomy or schema of lineage information that captures spatial
transformations in FME workflows, (4) to prototype a tool that extracts this lineage information
(e.g., by instrumenting FME workflows or extending FME’s logging capabilities), and (5) to
validate the approach using real-world use cases from the RVB (e.g., applying the model to a
set of representative FME workspaces and evaluating how well the lineage captured reflects
the actual processes). Through these steps, shown in Figure 1.4, the research will produce a
data lineage model tailored to spatial ETL and demonstrate its value in improving data
governance outcomes.

11

Figure 1.4 – Research workflow

12

1.5. Roadmap

This thesis is organized as follows:

Chapter 2: Literature Review – Critically reviews state-of-the-art data lineage standards and
existing tools, with emphasis on identifying gaps specific to spatial ETL workflows. This
review establishes what current models and systems offer and where they fall short in
addressing geospatial transformation provenance.

Chapter 3: Methodology and Design – Translates the identified gaps into a set of design
requirements and proposes a solution architecture. In particular, it details a dual-parser lineage
architecture tailored to FME, which forms the conceptual blueprint for the lineage model and
its implementation.

Chapter 4: Results and Evaluation – Presents the outcomes of applying the prototype lineage
model to real-world RVB case studies. The chapter includes both quantitative and qualitative
evaluations of the model’s performance, using ISO 19157-derived metrics to assess data
quality dimensions.

Chapter 5: Discussion – Discusses the implications of the findings for data governance,
standards alignment, and practical usability. It also addresses the limitations of the current
model and how the results fulfil (or fall short of) the research objectives.

Chapter 6: Conclusion and Future Work – Concludes the thesis by answering the main
research question and each sub-question, highlighting how the research objectives were met. It
also outlines an implementation roadmap for the RVB and suggests directions for future work
to extend the geospatial lineage model beyond this study’s scope.

13

2. Systematic Literature Review

This chapter presents a systematic literature review to evaluate the extent to which current
lineage frameworks and systems address the structural and semantic needs of geospatial data
transformations. In other words, we ask: How well do existing models capture the unique
aspects of spatial ETL processes, and where do they fall short? Answering this question will
highlight the limitations and gaps. In alignment with the research objectives (see Chapter 1),
this review will identify limitations in present solutions and thereby inform the design
requirements for a new FME-based spatial lineage model. To provide a structured analysis, the
review is organized into three parts based on the first three research questions.

• Part I: Which lineage models and standards (e.g., W3C PROV, ISO 19115,
GeoSPARQL) currently exist, and how do they represent spatial semantics such as
geometry, CRS, and topological operations?
This section examines standard-based data lineage models such as W3C PROV, ISO
19115, and GeoSPARQL. It assesses their structural integrity, semantic capabilities,
and fitness for describing spatial processes and metadata in a consistent, standards-
aligned manner.

• Part II: How do practical systems and ETL tools—particularly FME—capture
lineage at both design-time and runtime, and what levels of granularity do they
support?
This section reviews platform-specific implementations of lineage tracking,
particularly in spatial ETL tools like FME. It highlights current capabilities,
limitations, and design trade-offs in capturing spatial transformations, including real-
world examples and emerging trends.

• Part III: Where do existing, approaches fail relative to ISO 19115/GeoSPARQL
alignment, operational feasibility, and integration into governance workflows?
Drawing on gaps identified in the preceding sections, this final part introduces the
conceptual foundation for a novel, standards-compliant lineage model. This proposed
model integrates ISO 19115 and GeoSPARQL to enable interpretable, machine-
readable, and FME-compatible provenance representations.

Together, these three research questions form a comprehensive foundation for understanding
the current landscape of geospatial data lineage and for motivating the development of an
operationally feasible, standards-aligned model suited to spatial ETL environments.

2.1. Part I – Conceptual Models and Theoretical Foundations

This section examines common frameworks and ontologies for spatial data lineage, evaluating
their structure, scope, and suitability for capturing geospatial data provenance. Four main
models are widely cited in the literature for provenance and geospatial metadata: W3C PROV,
ISO 19115, OWL-S, and GeoSPARQL. Each offers distinct capabilities and has specific
constraints in the context of spatial ETL workflows. The following review highlights how well
it represents spatial transformations and what gaps remain for real-world adaption for FME.

14

2.1.1. W3C PROV

The W3C PROV model is a flexible, graph-based standard for representing provenance
information across domains (World Wide Web Consortium, 2013). Its object-oriented structure
centers on three core classes: prov:Entity, prov:Activity, and prov:Agent, with relationships
such as wasGeneratedBy, used, and wasAttributedTo linking them into directed provenance
graphs (Figure 2.1; Belhajime et al., 2012).

One of PROV’s strengths is its abstract treatment of entities. A dataset, an individual feature,
or even a single attribute value can each be modeled as a prov:Entity, enabling provenance
capture at multiple granularities within the same framework (Closa et al., 2017). This
scalability is particularly relevant for spatial ETL, where workflows may require lineage at:

• Dataset level (e.g., a shapefile representing cadastral parcels)
• Feature level (a single cadastral boundary within that dataset)
• Attribute or geometry level (the geometry of a parcel or a specific attribute such as

area)

By not prescribing fixed semantic categories for entities or activities, PROV allows ETL
designers to tailor lineage graphs to the operational and governance needs of their organization.
This flexibility makes it theoretically well-suited for documenting the chain of spatial data
transformations in platforms such as FME.

However, core PROV has important limitations for geospatial contexts. Geometry, coordinate
reference systems (CRS), and topological operations are not first-class concepts in the standard.
The model offers a generic prov:Location attribute, but this provides no structured way to
represent geometries or spatial relationships. As a result, spatial semantics must be
incorporated via external ontologies, such as GeoSPARQL for geometry and spatial predicates.
Without such extensions, PROV records for spatial ETL risk being semantically shallow,
making it difficult to capture the specific parameters of operations like reprojection, buffering,
or intersection.

Figure 2.1 – PROV-model (Belhaijme et al., 2012)

15

2.1.2. ISO 19115

The ISO 19115 standard is the international standard for geospatial metadata, including lineage
documentation. In ISO 19115 lineage information is captured in a structured section called
LI_Lineage (Closa et al, 2017). The lineage model from 2003 included two main components
the LI_Source which describes the datasets used and LI_ProcessStep which describes the
process or transformation applied. This basic model provides a way to document the general
process and source data in a structured and standardized manner. In 2009 an extension was
introduced to improve the overall lineage detail. This was done through adding in additional
fields such as LE_ProcessStep and LE_Algorithm (Jiang et al., 2018). The process step allows
one to add in information on the procedure name, parameters and processing time (Closa et al.,
2017). It supports metadata elements such as CRS, spatial extent, resolution, and lineage
descriptions. Crucially, ISO 19115 is designed to serialize metadata in XML, aligning well
with spatial ETL tools such as FME, which also serialize workflows as XML-based FMW files.
A complete view of the ISO 19115 can be seen in figure 2.2.

Figure 2.2 – ISO 19115 overview

Despite its strengths ISO 19115 has some limitations. Closa et al. mentioned that ISO lineage
is less structured than W3C PROV and as a result results in more nestled structures when the
lineage gets more complex (Closa et al., 2019). For example ISO allows one to specify lineage

16

at various scopes (“dataset”, “feature type”, “feature instance”, “attribute instance”) (Jiang et
al., 2018) In theory this covers granularity, but in practice nesting lineage for every feature or
attribute becomes unwieldy – the metadata XML would become extremely large and complex
if one tried to document provenance for each feature in a dataset. As noted by Closa et al.
(2017), the hierarchical tree structure “generates a very deep structure that hinders
comprehensibility” when used for fine-grained (feature-level) provenance (Closa et al, 2017).
As a result, ISO lineage is most often used at the dataset level (or dataset series level), providing
a summary of how the entire dataset was derived, rather than a detailed record of each operation
in a workflow (Granell et al., 2013).

2.1.3. OWL-S

OWL-S (Ontology Web Language for Services) is an OWL-based ontology for describing web
services’ capabilities, inputs, outputs, and process workflows. It provides a semantic
framework to annotate what a service does and how it can be invoked, facilitating automated
service discovery and chaining. In the mid-2000s, researchers in the GIS domain explored
OWL-S to achieve semantic interoperability of geo-services (Fallahi et al., 2008). Lemmens
(2006), for example, applied OWL-S to geospatial processes, demonstrating that one can create
an ontology of geo-operations and use OWL-S to mark-up services like coordinate
transformations or map overlay operations. By doing so, each operation’s functional meaning
(e.g. “buffers a polygon by distance X”) is formally described, enabling reasoning engines to
understand and even compose complex geoprocessing workflows based on these descriptions.
This is particularly valuable for semantic transformation logic – OWL-S can capture the intent
of a transformation (e.g., a “clip” or “merge” function) in a way that is software-agnostic and
machine-readable. Studies have shown that using OWL-S and related ontologies can improve
the discovery of appropriate geo-processing services and the automated chaining of them into
larger workflows (Lemmens, 2006).

Despite these strengths in semantic description, OWL-S has significant shortcomings for data
lineage tracking. It was not built to record the history of data through a sequence of operations;
rather, it focuses on describing types of services and how to invoke them. OWL-S by itself
does not maintain provenance relationships (which output came from which input, which agent
executed it, etc.) in the manner that PROV or ISO lineage do. Lemmens’ work and others
illustrate OWL-S as a planning/annotation tool, not a logging mechanism for executed
processes. In a geospatial ETL context like FME, OWL-S could be used to semantically
annotate each transformer (e.g., label a “Bufferer” transformer as an instance of a
“BufferOperation” class), thereby clarifying its role. However, OWL-S would not
automatically link that transformer to a specific output dataset or timestamp without an
additional provenance model. In essence, traceability is not OWL-S’s function. It lacks a notion
of data instances flowing through a chain – the very essence of lineage. Therefore, while OWL-
S contributes a rich semantic layer (answering what kind of operation each step is in a formal
sense), it must be integrated with a provenance framework to capture when, by whom, and with
which inputs/outputs those operations occurred. This makes it a complementary piece in
lineage modelling, rather than a standalone solution.

2.1.4. GeoSPARQL

GeoSPARQL is an OGC standard (first adopted in 2012) that defines a vocabulary and query
extension for representing geospatial information in RDF graphs (Abhayaratna et al., 2020).

17

While GeoSPARQL is not a provenance or lineage model per se, it provides the necessary
geospatial vocabulary (classes, properties, and functions) to describe geometry, spatial
relationships, and spatial reference systems in a Semantic Web context. In a provenance
knowledge graph dealing with spatial data, GeoSPARQL can play a crucial role by enabling
one to capture the “where” aspect of data and transformations: the geometry of datasets, the
spatial region affected by a process, the coordinate reference systems, and topological relations
between inputs and outputs.

Key features of GeoSPARQL include:

• A class geo:Feature for spatial features (which could be anything with a geometry,
e.g., a road segment, a land parcel, a dataset that covers a region).

• A class geo:Geometry for geometric objects (points, lines, polygons, etc.).
• The property geo:hasGeometry linking a Feature to its Geometry.
• A set of spatial relationship predicates (e.g., geo:sfWithin, geo:sfIntersects, etc., based

on the Simple Features relations) and spatial functions that can be used in SPARQL
queries (like geof:distance, geof:buffer, etc. in GeoSPARQL 1.1).

• Support for specifying the Coordinate Reference System (CRS) of geometry literals via
URI identifiers.

GeoSPARQL can also help describe spatial transformations themselves. For instance, a
transformation such as reprojection can be partly described by indicating that the output
geometry is in a different CRS than the input geometry (GeoSPARQL allows specifying the
CRS URIs in the geometry literal).

GeoSPARQL enriches geospatial provenance by providing the language to describe spatial
properties of data within the provenance model. It addresses the “spatial context” aspect that
pure provenance models leave unspecified. By combining GeoSPARQL with PROV or other
lineage representations, we achieve a more complete lineage record: not only do we know
which operations produced a dataset, but also what the spatial characteristics of those inputs
and outputs were (coverage, location, geometry shapes). This is particularly useful when
tracking lineage in scenarios like spatial data integration (where overlapping regions matter) or
change detection workflows (where you want to know the footprint of data that was compared).

2.1.5. Summary

Each model brings a unique perspective to capturing geospatial provenance. Table 2.1
summarizes the comparative strengths of W3C PROV, ISO 19115, OWL-S, and GeoSPARQL
across key criteria relevant to spatial ETL lineage: process traceability, spatial metadata
support, semantic description of transformations, and geometry-level detail.

18

Table 2.1: Comparison of provenance models/ontologies relevant to geospatial ETL lineage. PROV and ISO 19115 address, respectively, execution-time
provenance and metadata lineage containers, while OWL-S can provide a domain-specific process vocabulary and GeoSPARQL contributes geometry
representations and standardized spatial relations/functions.

Criteria W3C PROV ISO 19115 OWL-S GeoSPARQL
Process
traceability

Strong—domain-neutral provenance
with Entities, Activities, Agents;
supports edges like wasGeneratedBy,
used, wasDerivedFrom. Granularity
depends on how you model Activities,
no native spatial context.

Good at dataset/metadata
level—LI_Lineage with
LI_ProcessStep and
LI_Source records stepwise
lineage in metadata; typically,
descriptive (free text + roles).

Limited for lineage—describes
service/process types
(inputs/outputs,
preconditions/effects) but not
execution provenance chains. Use
with a provenance model for run
histories.

None—does not model processes or
workflow order; must be combined
with PROV/ISO to represent
“how/when”.

Spatial
metadata

Minimal—no built-in CRS, extent, or
data quality; can be extended in a
domain profile.

Strong—designed for geospatial
metadata (identification, extent,
quality, spatial reference);
lineage sits naturally in this
schema.

Minimal—domain-neutral; you
can reference spatial ontologies,
but OWL-S itself has no
CRS/extent elements.

Moderate—first-class geometry
literals (WKT/GML/GeoJSON) and
some geometry properties (e.g.,
spatial resolution/accuracy in 1.1),
but not full dataset-level
metadata/quality reports.

Semantic
transformation
logic

Basic—asserts that an Activity
occurred; no standard vocabulary of
geo-operations (needs extensions or
domain ontologies).

Descriptive—can label/classify
LI_ProcessStep but does
not standardize operations like
“buffer” or “clip”.

Enables process vocabularies—
provides a formal process model
so you can define a domain
ontology of operations, but ships
with no geospatial operation set
by default.

Strong (spatial)—standardized spatial
relations and functions for reasoning
and queries.

Geometry-level
detail

Weak—no native geometry types;
geometry must be modeled externally.

Moderate—can record spatial
extent/CRS as metadata for
datasets/outputs, but not per-
feature geometry lineage.

Weak—can describe a service that
produces/consumes geometries,
but not geometry representation or
predicates.

Excellent—geometry classes/literals
and rich spatial predicates and
functions; queryable in SPARQL.

Execution /
temporal
capture

Yes—prov:startedAtTime,
prov:endedAtTime, qualified
associations; good for run histories.

Limited—LI_ProcessStep can
include date/time, responsibility
and description, but
implementations are often free-
text; weaker for fine-grained run
events.

No—models process types and
I/O, not actual executions;
requires pairing with a
provenance model.

N/A—focuses on spatial descriptions
and functions, not temporal/run
events (combine with PROV/ISO).

19

Evaluating the above models highlights that no single standard fully meets the needs of spatial
data lineage in complex ETL workflows. W3C PROV provides a rigorous structure for process
documentation but lacks spatial awareness; ISO 19115 ensures essential geospatial context but
is semantically shallow regarding transformation logic; OWL-S richly describes process
semantics but without lineage chaining; and GeoSPARQL offers detailed spatial descriptors
yet no notion of temporal or process flow. To capture the lineage of FME-based workflows in
a complete, standards-aligned manner, a hybrid approach is necessary. This thesis adopts
ISO 19115 combined with GeoSPARQL as the conceptual foundation for the lineage
framework. The choice is grounded in both the comparative analysis above and
recommendations in recent literature.

2.2. Part II – Practical Systems and Tool-based lineage models

Building on the conceptual frameworks discussed earlier, this section examines how data
lineage is implemented in models, with an emphasis on geospatial ETL tools like FME. It
reviews existing systems and prototypes that attempt to capture or visualize data lineage,
highlighting their current capabilities, limitations, and design trade-offs. By analysing these
practical implementations – including real-world examples and emerging industry trends one
can identify how well they support spatial transformations and where gaps remain. This
practical review sets the stage for the prototype development in later chapters by pinpointing
gaps that the proposed model will address.

2.2.1. Search Strategy and Selection Criteria

Relevant literature is sourced from academic databases including Google Scholar, Scopus, and
Web of Science, using focused keywords such as data lineage, geospatial ETL, geospatial data
governance, and transformation tracking. A structured three-stage filtering strategy is applied
to refine the selection:

● Primary inclusion criteria: Publications that present ETL-focused lineage workflows
or applied technical methodologies.

● Secondary inclusion criteria: Studies discussing lineage in ETL workflows but don’t
have a concrete solution, only mention ETL in passing.

● Exclusion criteria: Works with no relation to ETL workflows.

2.2.2. Relevance Categorization and Key Contributions

To support comparative analysis, reviewed publications are classified into three tiers based on
their applicability to the research objectives. The search strategy can be seen in figure 2.3.

High Relevance (Green):

● Studies that present tools, frameworks, or models directly applicable to automated data
lineage tracking within geospatial ETL workflows. This includes literature that
discusses methodologies for capturing transformation steps, spatial data flows, and
metadata extraction, specifically tailored for tools like FME or similar spatial ETL
environments.

Moderate Relevance (Yellow):

20

● Literature that offers conceptual alignment with data lineage and governance models
but provides limited detail on geospatial-specific challenges or practical
implementations in spatial transformation contexts. These works might address general
ETL lineage tracking principles that are only partially applicable to spatial data
scenarios.

Low Relevance (Red):

● Works with minimal technical contribution or relevance to the challenges of geospatial
data transformations. These studies may discuss ETL lineage tracking in non-spatial
contexts or contribute only marginally to the understanding of spatial transformation
logic (such as geometry operations or coordinate changes).

21

Figure 2.3 – PRISMA methodology for the found literature

2.2.1. Summary of Key Publications (2015–2025)

Table 2.2 presents a matrix of high-relevance studies on automated geospatial data lineage. It
outlines each publication’s year, authors, methodology, the tool or platform context, the spatial
focus (e.g., whether it captures feature-level geometry/attribute transformations), and key
contributions.

22

Table 2.2 - Key publications on automated geospatial data lineage (2015–2025), with focus on methodologies, platforms, and contributions relevant to spatial
ETL workflows.

Author, year & title Methods Key findings Gaps in literature Tool/platfor
m used

Spatial
specificity

Formats handled Degree of
automation

Closa et al., 2019 —
“A provenance
metadata model
integrating ISO
geospatial lineage and
the OGC WPS”

Conceptual model +
implementation in
MiraMon; integrates ISO
19115(-1/-2) lineage with
OGC WPS

Demonstrates automatic
capture of process/source
lineage via WPS; improves
completeness of
geoprocessing provenance

Needs a spatial query
vocabulary
(topology), not
covered by ISO
lineage alone

MiraMon
WPS + ISO
19115(-1/-2)

Spatial Raster and vector
(use case demo is
raster)

High
(automatic
within WPS)

Zhang, Jiang, Zhao,
Yue & Zhang, 2020 —
“Coupling OGC WPS
and W3C PROV for
provenance-aware
geoprocessing
workflows”

Coupled WPS–PROV
model + XML schema +
prototype

Combined WPS and PROV
yields more complete,
interoperable workflow
provenance

No native spatial
topology predicates;
relies on external
vocabularies for
geometry semantics

OGC WPS +
W3C PROV

Spatial WPS process
inputs/outputs
(data-type
agnostic)

Medium–High
(model +
implemented
workflow)

Schoenenwald et al.,
2021 — “Collecting
and visualizing data
lineage of Spark jobs”

Uses Spline Agent to digest
Spark execution plans;
property-graph storage;
web UI

Reliable coarse-/fine-
grained Spark lineage;
practical visualization
principles

Spark-centric; no
geospatial semantics

Apache Spark
+ Spline

Non-
spatial
(general
ETL)

Spark SQL
pipelines

High (agent-
based,
automatic)

Tang et al., 2019 —
“SAC: A System for
Big Data Lineage
Tracking”

Spark-Atlas-Connector;
metadata model + REST +
UI

Cross-job lineage across
HBase/HDFS/Hive/SQL/M
L/streaming; production
deployment

Coarse-grained;
Spark/Atlas-
dependent; no
geometry/topology
semantics

Apache Spark
+ Apache
Atlas (SAC)

Non-
spatial

HDFS, Hive,
HBase, Kafka

High
(automatic)

Zheng, Alawini &
Ives, 2019 — “Fine-
Grained Provenance
for Matching & ETL
(PROVision)”

Provenance system for
matching/ETL; extends DB
provenance to capture
equivalences & selective
eval

Achieves cell/record-level
provenance for complex
matching & ETL

Relational focus; no
geospatial geometry
lineage

PROVision
prototype

Non-
spatial

Relational Tables High (system
implementatio
n)

Jamedžija & Đurić,
2021 — “Moonlight: A
Push-based API for
Tracking Data
Lineage in Modern
ETL processes”

Push-based REST API;
jobs call API per step

Low integration overhead
across platforms; simple
ingestion model

Requires manual/API
instrumentation; no
spatial semantics

Moonlight
API server

Non-
spatial

JSON/API events Medium
(semi-
automatic)

23

Closa, Masó, Julià &
Pons, 2021 —
“Geospatial Queries
on Data Collection
Using a Common
Provenance Model”

Combines ISO 19115-2
lineage elements with
PROV relations; queryable
graph + demo

Shows how ISO lineage
classes + PROV relations
support graph queries over
geospatial provenance

Not ETL-tool-
specific; limited
discussion of runtime
evidence capture

ISO 19115-2
+ W3C
PROV

Spatial General geospatial
datasets
(vector/raster)

Medium
(implemented
query system)

24

2.2.2. Trends in Geospatial Lineage Tracking Approaches

Although the limitations highlighted in section 2.5 indicate that no tool is fully capable of
capturing, storing and visualizing data lineage in a usable way, the tools do allow for insights
that are core to the building of a new tool.

Automation in lineage tooling

Multiple studies reviewed in the literature emphasize the critical role of automation in
enhancing the efficiency and reliability of data lineage tools. A notable example is presented
by Closa et al. (2019), who developed a GIS-based solution utilizing a Web Processing Service
(WPS) to automatically extract lineage from both raster and vector datasets. Their tool is
compliant with ISO 19115-1 and ISO 19115-2 metadata standards, ensuring standardized
lineage documentation across diverse geospatial outputs.

The preference for automated lineage captures over manual methods is grounded in several
practical advantages. First, an automation eliminates human error in documenting
transformation steps and metadata attributes. This is particularly important in complex
workflows where oversight can compromise data integrity or traceability. Additionally,
automated tools enforce a consistent structure and method for collecting and presenting lineage
information. This uniformity is vital for standardization and enables comparative analysis,
facilitating data audits, and ensuring clarity when datasets are shared across teams or
organizations.

Second, from an operational standpoint, automation accelerates lineage extraction, integrates
seamlessly into real-time or batch processing environments, and supports scalable
implementation across large datasets. In business contexts where decision-making relies on
reliable analytics, the benefits of automatic lineage; accuracy, repeatability, and clarity, are not
just technical preferences but operational necessities.

Visualization and user interaction

Beyond the automation of data lineage capture, the literature also emphasizes the importance
of making lineage information usable and accessible to end users. As noted by Malaverri et al.
(2012), high-quality lineage is only truly valuable if it can be easily interpreted and applied by
analysts, data managers, and other stakeholders within an organization. Usability extends
beyond technical accuracy as it encompasses clarity, accessibility, and relevance in
presentation.

One of the primary challenges in this area is that raw lineage data, especially in formats such
as JSON, can be overwhelming or unintelligible to non-technical users. While structured logs
may retain all necessary details, their utility is limited without appropriate presentation. To
address this, several studies advocate for the use of visual representations, such as diagrams,
graphs, or flow-based models, to communicate lineage. These formats not only reduce
cognitive load but also allow for quicker comprehension of complex workflows, dependencies,
and data transformations.

When visualizations are generated through automated tools, as discussed in the previous
section, the result is a consistent and standardized lineage output. This standardization ensures

25

that every user interacts with the lineage data in the same visual context, enabling easier
comparison, validation, and reuse across projects. In practical terms, this transforms data
lineage from a back-end traceability mechanism into a front-line asset that supports data
governance, quality assurance, and collaborative analysis.

Quality and reproducibility

A recurring theme across the literature is the critical role of reproducibility in data lineage
frameworks (Closa et al., 2021). Closely tied to automation and standardization, reproducibility
ensures that, given the same inputs and processes, identical outputs can be regenerated reliably.
This is especially feasible when the lineage capture is fully automated, as consistent metadata
collection and transformation tracking eliminate variability introduced through manual
methods.

Reproducibility strengthens the credibility of provenance data by enabling independent
validation of results. It allows analysts and auditors to trace not only what was done, but also
to re-execute workflows to verify outcomes. From a business operations standpoint, this
supports accountability, transparency, and quality assurance in geospatial data processing.

In addition to verification, reproducibility contributes to operational security. By maintaining
precise records of when changes were made, by whom, and to which components of a dataset,
organizations gain insights into potential vulnerabilities, such as the propagation of sensitive
or restricted source data into downstream products. This kind of traceability is fundamental for
compliance and for managing data access policies.

While some GIS platforms are beginning to embed reproducibility features, current
implementations remain limited. For example, ArcGIS Pro provides geoprocessing history logs
that track certain operations. However, these logs still require manual metadata exports and do
not deliver a fully queryable, standardized provenance graph. As such, current tools
demonstrate the potential for reproducibility but fall short of delivering fully integrated,
platform-independent solutions. This highlights an area for continued development, especially
in building tools that can deliver reproducibility, automation, and usability as part of a cohesive
data lineage framework.

2.2.3. Comparative Insights from Tools and Platforms

While FME is a powerful spatial ETL platform, it still lacks a native, queryable lineage
repository, its execution logs record Reader, Transformer, and Writer events but do not
constitute a standards-compliant provenance store. Community threads from 2022 and 2025
(Safe Software, 2025) confirm that users must build ad-hoc solutions to export these logs into
external catalogues, underscoring the demand for an integrated lineage system.

There is one tool on the market that has an integrated lineage that is of AWS. As cloud
infrastructure becomes more integrated into enterprise data strategies, the need for detailed and
continuously updated data lineage has grown. AWS DataZone addresses this by offering an
API-driven environment for managing and governing data across organizational and external
boundaries. A key feature of AWS DataZone is its support for column-level lineage tracking,
which records the full lifecycle of data as it moves through various stages. This includes initial
ingestion of raw data, transformation during ETL processes, and final usage in analytics,

26

reporting, or client-facing systems. The lineage information is not static; it is actively updated
and visualized through interactive graphs, making the data flow transparent and easier to audit.
These lineage views are tightly connected to governance policies. Every transformation step
and access point are logged, which supports data quality management, access control, and
compliance requirements.

In practice, this means that teams can trace specific data values back to their origin, verify
processing steps, and ensure that outputs are based on trusted inputs. Compared to traditional
metadata catalogues, DataZone’s integration of real-time lineage and automated updates
reduces manual documentation work. It also improves visibility across workflows, especially
when data moves between services or teams. This supports reproducibility, simplifies error
tracking, and enhances security by allowing organizations to identify and isolate weak points
in data flows. AWS DataZone currently provides one of the most complete implementations
of end-to-end lineage in a production cloud environment. Its ability to scale across platforms
while maintaining updated lineage graphs makes it a strong candidate for organizations aiming
to mature their data governance strategy (Amazon Web Services, 2024; Interlandi et al., 2018).

However, this tool is firstly not based around spatial data but only focuses on general data
lineage. Second, as AWS is a company that has multiple platforms, the RVB would have to
adopt these multiple platforms for this tool to work effectively. This is not only against the
RVB policy to not have a large reliance on one vendor but also would increase the risk of
vendor lock-in. This is ultimately why this tool is not directly applicable to spatial data, and
hence the RVB.

2.3. Part III - Towards a Lineage Model for FME Workflows

Drawing on the gaps identified in the review; this section introduces a conceptual foundation
for a hybrid spatial lineage model. The need for this model arises due to current models lacking
integration with standards and ETL tools. This research proposes a hybrid lineage model that
explicitly addresses these shortcomings. The model is designed to be both standards-aligned
and operationally compatible with FME-based workflows.

The proposed approach integrates ISO 19115 for metadata structure with GeoSPARQL as a
semantic ontology. ISO 19115 is widely adopted for describing geospatial datasets and their
lineage (Di et al., 2013; Closa et al., 2019), but it does not natively capture the meaning of
spatial transformations. However, ISO 19115 is natively structured in XML, which aligns with
FME’s .FMW file architecture. This makes it well-suited for extracting and representing the
static components of a workflow. Including the origin of datasets, the spatial extent of
operations, and the formal history of processing steps. However, while ISO 19115 excels at
documenting structural lineage, it does not provide the semantics of spatial operations
themselves. For example, it cannot distinguish between a spatial join, a buffer operation, or a
reprojection in terms of functional intent.

Therefore, to complement ISO 19115’s structural metadata approach GeoSPARQL’s ontology
was combined with ISO 19115 standards. While GeoSPARQL was originally designed for
semantic web and linked data contexts, it has increasingly been used to enhance semantic
querying and reasoning in spatial infrastructures. For example, He et al. (2014) proposed
adding geospatial-based semantics to spatial data infrastructures (SDIs) to track transformation
logic across services. Similarly, Ivanova et al. (2017) and Battle et al. (2012) identified

27

GeoSPARQL as a key enabler for interoperable provenance queries in distributed
geoprocessing systems. These studies demonstrate that GeoSPARQL can serve not just as a
query language, but also as a lightweight ontology for formally describing the intent and logic
of spatial workflows.

In the proposed model, GeoSPARQL is used in exactly this way: to characterize each spatial
operation in the FME workflow with a semantic description. Each process step in the lineage
is annotated with a GeoSPARQL term that denotes its geospatial function. For example, an
FME Clipper transformer (which trims features to a boundary) can be represented by the
GeoSPARQL function vocabulary term geof:difference. Likewise, the FME Reprojector
transformer (which changes a dataset’s CRS) corresponds to a geof:transform operation. By
encoding each transformation step with such semantic annotations, the lineage model gains a
high level of transparency. Rather than merely logging that a step occurred, it records what
kind of spatial operation was performed, in a formal notation that both humans and machines
can interpret (Open Geospatial Consortium, 2024).

Using this existing vocabulary ensures that the lineage captures spatial operations in a
consistent, interoperable manner. This alignment offers several benefits. First, it supports more
interpretable and audiTable lineage than flat transformer logs. Second, it enhances
interoperability with other systems that already support GeoSPARQL. Third, it creates a
foundation for semantic filtering, reasoning, and validation of workflow correctness based on
spatial logic.

To illustrate the practicality of this approach, consider a simplified real-world scenario: an
FME workspace takes a set of raw satellite images, reprojects them from WGS84 to a national
coordinate system, clips them to a study area boundary, and then mosaics the results. Using the
hybrid lineage model, we would capture an ISO 19115 lineage record with three process steps
(Reprojection, Clipping, Mosaicking), each with its input sources and output. Enhancing this,
each step would be annotated. For example, Step 1 has a GeoSPARQL semantic tag indicating
a coordinate transformation, Step 2 a spatial clipping (geometry difference), Step 3 an
aggregation/merging operation. At runtime, FME’s log might also provide the exact parameter
values (e.g., the EPSG codes of source/target CRS, the polygon used for clipping, the list of
image IDs mosaicked), which the model can record as well. The end result is therefore a
comprehensive, standards-based lineage graph in JSON formatting. This data can allow users
to query the data, “show me all workflows that produced data in Coordinate System X” or “find
the workflow steps that involve mosaic operations and which images they combined,” and so
on.

By combining ISO 19115 for structural metadata with GeoSPARQL for spatial semantics, the
proposed hybrid model delivers a standards-aligned lineage approach that is directly
compatible with spatial ETL workflows. This integration addresses the key gaps identified
earlier. Embedding GeoSPARQL enables the model to capture the semantic intent of spatial
operations and at the same time, structuring the model around ISO 19115 ensures consistency
with established geospatial metadata standards.

2.3.1. Lineage Extraction Methods in FME

To bridge the conceptual model into a practical solution for FME workflows, we identify four
complementary methods for extracting data lineage in FME-based spatial ETL processes. FME

28

does not natively provide a comprehensive, standards-based lineage repository, so a
combination of static and dynamic extraction techniques is needed. The four practical methods
are: (1) Static parsing of FME workspace files (.FMW), (2) FME built-in logging, (3) targeted
transformer logging, and (4) FMW flow job history. Table 2.3 summarizes these methods
across key evaluation dimensions (lineage completeness, debugging effectiveness,
maintainability, and standards compatibility), followed by a discussion of how a hybrid
strategy leverages their advantages.

29

Table 2.3 – Comparison of FME Lineage Extraction Methods (static vs. dynamic approaches).

Method Evidence scope Granularity &
completeness

Debugging /
tracing value

Ops & maintainability Standards mapping effort Design decision for this
thesis

FMW file
parsing
(read .fmw
workspace
)

Design-time (declared
Readers/Writers/Trans
formers; connections;
published parameters)

High for
configuration
graph; no data-
dependent
branching or run
outcomes

Good for impact
analysis and
dependency graphs
before execution

Needs a parser; Table
across runs; update
when FME schema
changes

Low–Medium: map to ISO
19115 lineage (LI_Lineage /
LI_ProcessStep / LI_Source);
add GeoSPARQL only when
naming spatial functions

Use as the primary
source for the process
graph and static metadata

Built-in
FME job
logs
(Workben
ch/Flow)

Runtime (what
executed;
warnings/errors;
feature counts;
timings)

Moderate–High for
executed steps;
detail depends on
log level; not full
transformer
semantics

Strong for post-run
debugging; shows
which
sources/targets ran
and when

Generated by default;
parsers must tolerate
minor format/version
changes; easy to
centralize/rotate

Medium: transform text/JSON
into ISO 19115 process steps
with
dateTime/responsibility;
GeoSPARQL not native

Use as the primary
source for timestamps,
counts, and execution
status

Embedded
per-
transforme
r logging
(Logger /
PythonCal
ler)

Runtime, targeted (you
choose which steps
emit structured events)

High for
instrumented steps
(operation name,
key params, sample
stats); zero for
uninstrumented
steps

Excellent for
localizing errors
and validating
semantics (e.g.,
buffer distance
actually used)

Adds overhead if
blanket-applied; keep
scoped and
configurable; version-
safe if you centralize a
reusable subgraph

Medium: transform text/JSON
into ISO 19115 process steps
with
dateTime/responsibility;
GeoSPARQL not native

Not Used

FME Flow
job history
/ archived
logs (files
or REST)

Runtime, historical
(multi-run audit;
parameters; status)

Mirrors built-in
logs; completeness
depends on
retention and log
level

Effective for
compliance, SLA,
and longitudinal
lineage

Low: Flow auto-
archives; REST gives
structured access;
straightforward to
warehouse

Medium: transform text/JSON
into ISO 19115 process steps
with
dateTime/responsibility;
GeoSPARQL not native

Not Used

30

Each of these methods supports different aspects of provenance tracking in FME workflows.
Design-time lineage can be obtained by parsing the static .FMW workspace files, which yields
the declared structure of the workflow (readers, transformers, writers and their connections)
without needing to run it. This static approach cleanly captures the intended data flow and
transformation steps configured by the user, aligning well with formal metadata elements from
the ISO 19115 lineage schema. For example, an FME Reader or Writer in the workspace
corresponds to an ISO 19115 source description (LI_Source), and each configured transformer
can be represented as an LI_ProcessStep entry describing a processing step. By extracting these
elements, the static parser builds a structural provenance. The limitation of this approach is that
it does not reflect any runtime parameters such as time of run, execution time, etc.

In contrast, runtime lineage is best captured through FME’s logging mechanisms or feature
caches, which document what happened when the workspace executed. The FME log records
each step of execution, including the initiation of readers and writers, the invocation of
transformers, numbers of features processed. These dynamic details are crucial for validating
the integrity of the lineage. For instance, confirming that all expected steps were executed.
Feature caching through a custom bult insert for FME goes even further by preserving the state
of the data at each transformation step, which ensures complete ground-truth lineage for that
run. Both, logs and caches can reveal runtime-specific behaviours.

Given the strengths and weaknesses of each method mentioned in Table 2.3, the most effective
solution is a dual-parser strategy that combines a static and a dynamic approach. In the
proposed framework, a static parser first extracts the metadata from the .FMW workspace such
as the readers, transformers, writers, and their configured parameters, producing a baseline
lineage structure that is compliant with ISO 19115’s core lineage. This satisfies the requirement
for standards alignment and provides a container for all declared process steps and source
references. Then, a dynamic parser (operating on FME’s execution log outputs) supplements
this model with operational details – such as actual runtime parameters, timestamps for each
process step, feature counts run times. By merging these two sources, we obtain a
comprehensive and semantically enriched lineage model that covers both the planned workflow
and its executed reality. This hybrid approach also enables semantic annotations of the
transformations: as the dynamic parser recognizes specific FME transformers at runtime, it can
tag them with corresponding concepts from an ontology (GeoSPARQL) to capture the spatial
operation semantics. This strategy lays the groundwork for the implementation of an automated
lineage extraction tool, as will be detailed in Chapter 3.

2.4. Criteria creation for model

The criteria for the model are based on ISO 19157 that defines a set of quality measure for
evaluating geospatial data. Through treating the lineage information generated by the model as
a type of geospatial dataset, one can evaluate its quality using the same criteria that ISO 19157
defines for data (International Organization for Standardization, 2013):

• Completeness: the degree to which all required lineage information is present, and no
extra information is included. This therefore covers both data omission and data
commission, which is excess data that should not be present (Gerhard, 2006). For the
model, completeness therefore means capturing all relevant FME process steps without
skipping any and avoiding recording any false or irrelevant steps. This can be checked,

31

through establishing if every transformation in a workflow that is supposed to be logged
in the lineage is actually captured, and that nothing extra was added.

• Logical Consistency: the adherence of the lineage information to the defined rules and
schemas. This includes conceptual consistency (conformance to the conceptual schema
or ontology), domain consistency (using valid values and references), and format
consistency (correct structure/format of the output) in the context of the model. For
example, the model should assign each FME transformer to the correct GeoSPARQL
definition and produce a lineage output that conforms to the JSON schema. Any
violation (e.g. a transformer mapped to an incorrect class, or an invalid coordinate
reference system code in the output) would indicate a lack of consistency.

• Accuracy: the correctness of the quantitative attributes in the lineage metadata. One
can consider several aspects when considering accuracy: positional accuracy, this refers
to the correct recording of spatial reference information (e.g. coordinate reference
system) for each data source or transformation. Temporal accuracy, meaning the correct
timestamps and ordering of process steps are documented. Thematic accuracy, which
here refers to the correctness of attribute-related information, such as classification of
operations or feature counts. Overall, the model’s lineage should timestamp each
process step in the proper sequence, and it should accurately reflect values like feature
counts or class labels as reported by FME.

• Usability: the degree to which the lineage information is understandable and useful for
end-users. In the criteria, usability encompasses the interpretability of the lineage, the
scenario fit, and governance alignment. These aspects ensure the model is not only
technically sound but also practically valuable for data governance.

Ureña-Cámara et al. (2019) propose a method for checking the quality of geographic metadata
by adapting ISO 19157’s quality elements to metadata records (Urena-Camara et al., 2019;
IGN France International, 2013). Their approach introduces specific metrics, for example,
counting the proportion of metadata elements present (completeness) or the rate of
errors/inconsistencies in metadata fields, and then evaluate those metrics against target
thresholds to determine if the metadata meets the quality expectations. Other studies that have
used the ISO 19157 criteria help to establish baselines for the criteria are those by Drobinjak
which gives insight into the thresholds that can be adopted (Drobnjak et al., 2016). As a result,
the criteria that are expressed in Table 2.4 were chosen and established. By measuring
completeness, consistency, accuracy, and usability of the model’s outputs, a foundation was
created for objectively validating the obtained lineage data in Chapter 4 and 5.

32

Table 2.4 – ISO 19157 criteria and their standards and specific measures

Code	 ISO data-quality	
element	

Sub-element	 Description	 Tool-speci;ic	measure	 Tolerance / target	

A01	

Completeness	

Commission	 Excess	data	present	in	a	
dataset	–	features,	
attributes,	or	
relationships	that	should	
not	exist.	

False-positive	rate	in	
transformer	mapping	(1 − P)	=	
Count FP transformers	÷	
total mapped	

≤ 5 %	(P ≥ 95 %)	

A02	 Omission	 Required	features,	
attributes,	or	
relationships	missing	
from	a	dataset.	

1 − COV	=	(Actual Steps	−	
Captured Steps)	÷	Actual Steps	

≤ 5 %	(COV ≥ 95 %)	

A03	

Logical	
consistency	

Conceptual	
consistency	

Adherence	to	the	rules	of	
the	conceptual	schema.	

Semantic	accuracy	of	
GeoSPARQL	class	assignment	P	
=	TP / (TP + FP)	on	class	labels	

≥ 95 %	

A04	 Domain	consistency	 Attribute	values	fall	
within	their	permitted	
domains.	

Validity	of	CRS & ontology	URIs	
AC	=	Filled	valid-URI	\ields	÷	
expected	

≥ 90 %	

A05	 Format	consistency	 Degree	to	which	data	
conform	to	the	agreed	
physical	storage	structure.	

JSON-schema	validation	pass	
rate	(no	errors	in	JSON	output)	

100 %	

A06	

Positional	
accuracy	

Absolute / external	 Closeness	of	reported	
coordinate	values	to	
accepted	true	values.	

Presence	of	
sourceReferenceSystem	
attribute	(CRS	recorded)	AC	=	
CRS	\illed	in LI_Source	records	÷	
total LI_Source	records	

≥ 90 %	

A07	 Temporal	
accuracy	

Accuracy	of	time	
measurement	

Closeness	of	reported	
time	measurements	to	
accepted	true	values.	

Millisecond	resolution	of	
dateTime	stamps	

All	timestamps	
present,	± 1 s	

33

A08	 Temporal	
consistency	

Correctness	of	the	order	
of	events.	

Chronological	order	of	
LI_ProcessStep	records	

0	inversions	
allowed	

A09	 Temporal	validity	 Data	values	fall	within	the	
correct	time	period.	

Run	time	lies	within	declared	
job	window	(compare	dateTime	
against	job	start–end)	

Pass / Fail	

A10	

Thematic	
accuracy	

Classi\ication	
correctness	

Correctness	of	class	
assignments	for	features	
or	attributes.	

Correct	GeoSPARQL	mapping	P	
=	TP / (TP + FP)	on	class	labels	

≥ 95 %	

A11	 Non-quantitative	
attribute	
correctness	

Whether	a	
non-quantitative	attribute	
is	correct	or	incorrect.	

Field	names & units	correctly	
copied	AC	=	Filled	non-numeric	
\ields	÷	expected	

≥ 90 %	

A12	 Quantitative	
attribute	accuracy	

Closeness	of	a	quantitative	
attribute	to	its	accepted	
true	value.	

Feature-count	delta	between	
FME	log	and	lineage	

Expect ± 0	
difference	

A13	

Usability	

	
Quality	information	
describing	a	dataset’s	
suitability	for	a	particular	
application	or	
conformance	to	
user-speci\ic	
requirements.	

Scenario	Fit,	Interpretability,	&	
Governance	Alignment	QC	UX	
(post-test	survey)	

Mean	score ≥ 4 / 5	

34

2.5. Closing Summary & Gap Statement

This chapter evaluated the current landscape of data lineage models and tooling in the context
of spatial ETL workflows. It assessed both conceptual frameworks—such as W3C PROV, ISO
19115, GeoSPARQL, and OWL-S—and practical implementations, including log-based
lineage in FME and cloud-native platforms like AWS DataZone. The focus was on their ability
to support spatial data transformations across varying use cases.

Among the conceptual models, W3C PROV provides a strong foundation for capturing
process-oriented provenance, particularly in terms of agents, activities, and entities. However,
it lacks native support for spatial semantics, limiting its applicability in geospatial workflows.
ISO 19115, by contrast, is explicitly designed for geospatial metadata and integrates well with
XML-based representations such as those used in FME workspaces, making it structurally
compatible with spatial ETL environments. GeoSPARQL contributes spatial reasoning
capabilities through SPARQL extensions and geometry vocabularies but does not
independently support provenance chaining. OWL-S facilitates semantic annotation of
processes but operates largely outside of lineage-specific contexts, offering little alignment
with data transformation histories.

From a tooling perspective, the review confirmed that no existing platform, including for ETL
tools such as FME, provides a native, standards-aligned, and spatially expressive lineage
model. Most general-purpose solutions are optimized for tabular or big data scenarios, with
limited support for spatial data such as geometry manipulation, coordinate reference system
(CRS) transformations, or topological operations. Even platforms with visual and automated
lineage capabilities, such as AWS DataZone, lack spatial data integration and introduce risks
around vendor lock-in, constraints that are particularly problematic for companies like the
RVB.

Three critical deficiencies were identified in the current ecosystem. First, there is a consistent
absence of formal spatial semantics: most lineage systems fail to represent spatial
transformations in a machine-readable and human-interpretable way. Second, reproducibility
is constrained by limited metadata granularity; even where transformations are logged, the
detail is often insufficient to fully reconstruct spatial workflows. Third, tool-level
fragmentation undermines integration: in FME, for instance, lineage metadata is split between
static workspace files and runtime logs, with no unified model or persistent repository.
Furthermore, no existing solution successfully combines ISO 19115 and GeoSPARQL in a
way that delivers both standards compliance and operational feasibility.

2.5.1. Proposed Research Contribution

To address these gaps, the next chapter introduces a dual-parser lineage model purpose-built
for spatial ETL environments. This model integrates static parsing of FME .FMW files with
dynamic extraction from execution-time logs, producing a comprehensive and queryable
lineage graph. The proposed framework is aligned with existing standards: ISO 19115 is used
to structure core metadata, while GeoSPARQL provides the semantic foundation for
representing spatial relationships and operations. The approach is designed to be fully
compatible with FME’s internal metadata model, enabling integration without requiring
significant changes to existing workflows.

35

3. Methodology

Based on the gaps and requirements identified in the previous chapter, this research adopts a
design-oriented methodology to develop and evaluate a geospatial data lineage solution. The
approach is structured in three main phases: conceptual model design, prototype development,
and validation. In the following overview, we outline each phase and how it contributes to
strengthening data governance at the RVB.

3.1 Conceptual Model Design: The first phase focused on developing a comprehensive
lineage framework grounded in established standards. Guided by the findings from the
literature review and criteria defined in Chapter 2, the model’s design uses ISO 19115
(and its extended lineage elements from ISO 19115-2) as the foundational schema for
geospatial metadata. On top of this baseline, the design incorporates GeoSPARQL
constructs to semantically represent FME’s geospatial operations.

3.2 Technical Implementation: In the second phase, the conceptual model was translated
into a working prototype system. A custom dual-parser tool was developed to extract
lineage information from FME workflows by processing both the static workspace
definition (.FMW file) and the dynamic execution log (.log file) in parallel. One parser
component scans the FME workspace file to capture design-time metadata (readers,
transformers, writers and their configurations), while another component parses the
runtime log to capture execution details such as transformer order, parameter values,
and processing timestamps. The extracted details from these two sources are then
mapped into the predefined conceptual model structure. In practice, each FME Reader
and Writer in a workflow is mapped to an ISO 19115 LI_Source (documenting input
or output dataset, coordinate reference system, etc.), and each transformation step (FME
Transformer) is recorded as an LI_ProcessStep enriched with GeoSPARQL
descriptors for the spatial operation performed. The two streams of metadata are merged
into a unified JSON lineage record conforming to the conceptual model.

3.3 Deployment and Evaluation: The final phase involved deploying the lineage
prototype and evaluating its performance and usefulness in real-world scenarios. The
JSON lineage output was integrated into a lightweight web application (built with
Flask) to visualize and interact with the captured lineage. This interface allowed users
to browse the end-to-end transformation graph of an FME workflow – for example,
tracing which source datasets were used, what transformations (buffer, clip, join, etc.)
were applied, and how results were produced. The research then validated the lineage
model and tool using actual FME workflows provided by the RVB. Several
representative ETL workflows were run through the system to check if the captured
lineage met the evaluation criteria from ISO 19157 which was set up in chapter 2 to
assess if the model accurately reflected the transformations that occurred.

In summary, this three-phase methodology ensured that the research not only designed a
lineage model aligned with geospatial standards and FME’s capabilities but also implemented
a functional prototype and evaluated it. Together, these sections provide a comprehensive
account of how the lineage model was realized and assessed within FME-based spatial ETL
workflows.

3.1. ISO + GeoSPARQL integration

36

To ensure that the lineage data captured is interoperable so that it can be used in the RVB, it is
necessary to select a standard provenance model that is native to geospatial data. In specific,
the ISO 19115 was chosen, which was later updated to 19115-2 to include more elements as it
is specialized standards for geospatial data. The main class used is the provenance metadata
class LI_Lineage, from which 3 subclasses are defined:

● The process step (LI_ProcessStep), which captures the processing information. This
includes the execution time, status, and parameters.

● The source (LI_Source), which is used to store the input and output information such
as the reference system and the name of the data source.

● The output is placed into (LE_Source). This is not native to ISO 19115 but was added
for FME parsing as FME has readers and writers. This would then map to the writer’s
element of FME to keep this clear distinction.

As this is a generic geospatial lineage data model, the main question remains how this translates
into FME. An FME workbench has a standard workflow of a reader, transformers, and a writer.

• FME Reader → LI_Source (Input): Each Reader in an FME workflow is responsible
for pulling in a source dataset. In the model, every FME Reader is represented as an
LI_Source entry capturing the input dataset’s identity and properties. For example, the
source’s name or path becomes the LI_Source’s description or citation, and its
coordinate reference system can be recorded in the source’s metadata.

• FME Transformer → LI_ProcessStep: Each Transformer (the FME component that
transforms or manipulates data) is mapped to an LI_ProcessStep in the lineage model.
The LI_ProcessStep records the overall description of the process, the date time the
process was run and the overall runtime.

• FME Writer → LE_Source (Output): Each FME writer creates the final output that
will then be written to a Datawarehouse. Like the LI_Source this documents the source
reference system, the extent and the overall description of the output.

While this captures a foundational structure, it does not fully encapsulate the semantic intent
of spatial operations embedded in FME workflows. This is because semantics such as
geometric operations like intersections, reprojections, or spatial predicates such as overlaps and
within are not accurately captured.

To address this gap, the lineage model design incorporates semantic enrichment by integrating
concepts from the OGC GeoSPARQL standard. GeoSPARQL provides a formal ontology and
functions for representing geospatial operations and relationships in a machine-interpretable
way. GeoSPARQL extends SPARQL with geospatial functions and vocabulary, giving the
lineage model a standard semantic layer that matches FME’s spatial operations. The use of
GeoSPARQL was chosen based on three main factors:

1. Standards Alignment:
As a recognized international standard maintained by OGC, it is suitable for use
within governments and companies and ensures consistent updates (Open Geospatial
Consortium, 2024).

37

2. Ontology:
It provides a clear ontology for describing common geospatial operations, which links
closely to those found in FME.

3. Compatibility:
Many of the spatial transformations in FME correspond to those found in GeoSPARQL
(OGC, 2024).

Our approach extends the ISO model by utilizing the additional lineage classes defined in ISO
19115-2, namely LE_Processing and LE_Algorithm, as hooks for GeoSPARQL annotations.
ISO 19115-2 introduced these classes to allow detailed documentation of the processing
procedure and algorithm used in a process step. We leveraged them in the following manner:

• Each LI_ProcessStep/LE_ProcessStep in the model is extended with an
LE_Algorithm entry that describes the underlying spatial operation in a formal way.
Rather than just a text description, we insert a reference to a corresponding
GeoSPARQL function or concept. This mapping of FME transformers to GeoSPARQL
terms was done by creating a lookup dictionary of 68 GeoSPARQL functions against
FME’s library of transformers it was established that 17 unique GeoSPARQL functions
had an FME transformer equivalent and only those were semantically annotated.
Transformers without a direct equivalent were left unannotated to avoid inaccurate
semantics.

• The LE_Processing class is used to group the algorithm information and any
parameters or processing notes for the step. Within each process step entry,
LE_Processing serves as a container indicating that, for example, “this step performed
a spatial buffer operation using GeoSPARQL’s geof:buffer function”. Technical
parameters (like the buffer distance, coordinate reference details, etc.) can also be
included here or in the LE_Algorithm description, ensuring that the semantics are
accompanied by the quantitative details of execution.

By integrating GeoSPARQL in this way, the lineage model gains a semantic layer on top of
the ISO structural layer. This hybrid approach (ISO 19115 for structure + GeoSPARQL for
meaning) yields a lineage record that is both human-readable and machine-interpretable. An
example of this worked into the ISO 19115 workflow can be seen in Figure 3.2.

38

Figure 3.2 - ISO 19115-2 lineage model with GeoSPARQL Extensions

With the mapping in place, the parser (developed in Section 3.4) applies it during the lineage
extraction process: as it iterates through the transformers in an FME workspace, it checks each
transformer’s type against the GEO_REL_MAP. If a match is found (i.e. the transformer has a
GeoSPARQL equivalent), the parser augments that process step’s metadata by inserting the
GeoSPARQL function into the lineage record. Concretely, the parser creates an LE_Algorithm
entry for the process step and adds two key pieces of information: the geo:function
corresponding to the transform (e.g. geof:buffer for a Bufferer transformer), and the
geo:hasGeometry property linking to the geometry or geometric parameter involved. By
including both the operation and the geometry, we capture what was done and to what it was
done, aligning with GeoSPARQL’s modelling of geospatial operations. This semantic
annotation is then embedded in the output lineage JSON. Only transformers that have a defined
GeoSPARQL equivalent receive this treatment – ensuring that every spatial operation we can
semantically describe is described using a standard term. In this way, the ISO lineage structure
is complemented, not replaced: the LI_ProcessStep still records the basic details (e.g. a
description of the step, timing, etc.), and now an LE_Algorithm within it carries the
GeoSPARQL term that precisely characterizes the spatial operation performed. Figure 3.2
(from the conceptual model) illustrates this approach, showing how a standard ISO lineage
model can be extended with GeoSPARQL concepts in the algorithm and processing elements.

Table 3.1 below presents a selection of the mapping between FME transformers and their
equivalent GeoSPARQL functions (using the GeoSPARQL function namespace prefix geof.
This sample demonstrates how common spatial transformers are semantically annotated in our
model:

39

FME Transformer Equivalent GeoSPARQL Function
Bufferer geof:buffer
Clipper geof:difference
Intersector geof:intersection
Unioner geof:union
AreaCalculator geof:area
LengthCalculator geof:length

Table 3.1: Examples of FME transformers and their corresponding GeoSPARQL functions.
The GeoSPARQL function names (right column) provide a semantic definition of the operation
performed by each FME transformer (left column).

In these examples, the semantic enrichment is straightforward: for instance, an FME Bufferer
transformer (which creates a buffer polygon around a geometry) is annotated with the
GeoSPARQL function geof:buffer, indicating the standard buffer operation as defined by
OGC. Similarly, the Intersector transformer (finding geometric intersections) is linked to
geof:intersection, and the AreaCalculator (computing the area of a geometry) corresponds to
geof:area. By incorporating these terms, any lineage record exported from the system can be
understood in terms of standard geospatial operations. This means that external systems or
analysts familiar with GeoSPARQL can readily interpret the lineage: for example, they would
know a step labelled geof:buffer is performing a buffer, even without deep knowledge of
FME’s internal naming. The full mapping covers 17 unique GeoSPARQL functions (see
Appendix A for the complete list of mapped transformers), which include most of the
frequently used spatial transformations in FME.

The process of annotating FME process steps with GeoSPARQL terms was implemented as
part of the custom parser (detailed in Section 3.4). Conceptually, for each transformer
encountered in an FME workspace file, the parser follows these steps: (1) retrieve the
transformer’s type/name, (2) consult the GEO_REL_MAP dictionary to see if a GeoSPARQL
function is defined for that type, and (3) if so, insert the corresponding geo:function (and
related geometry information) into the lineage metadata for that step. For example, if the parser
reads a transformer of type “Bufferer”, it finds "Bufferer": "geof:buffer" in the dictionary
and thus adds an entry in the output JSON like: "LE_Algorithm": { "geo:function":
"geof:buffer", "geo:hasGeometry": [...] } within that process step’s record. This
effectively tags the step with a semantic identifier.

While the GeoSPARQL integration markedly improves the semantic detail of the lineage
model, there are some limitations and design decisions to acknowledge. For example, not all
FME transformers have a direct equivalent in the GeoSPARQL standard. A few specialized
transformers or those dealing with non-geometric data (e.g. attribute manipulation, format
conversion) fall outside the GeoSPARQL vocabulary. In our implementation, such
transformers are omitted from semantic mapping. Essentially this means that the parser filters
out any transformer that lacks a GeoSPARQL definition when compiling the semantic lineage.
This selective capture was intentional: it keeps the lineage graph focused on spatial operations
(addressing the “granularity” concern that logging every single operation can overwhelm the
user) and avoids mislabelling any process with an inexact term. The downside is a slight
reduction in completeness but as the main focus is on spatial transformations this is acceptable.

40

The next section (Section 3.3) details the Metadata Capture and Parser Implementation,
describing how FME workbench files and logs are parsed to automatically generate the lineage
records following this model, and how the GeoSPARQL mapping is programmatically applied
to real workflow data.

3.2. Technical Implementation

The parsers’ structure outlines in figure 3.1 and then further explained in section 3.4. Figure
3.1 illustrates how design-time metadata (.FMW) and runtime logs (.log) feed into two parallel
parsers, merge into a JSON store, and are visualized via a Flask app.

Figure 3.1 - Methodology flow for FME lineage model. Workflows defined in the .FMW and
.log files are parsed in parallel, merged into a single JSON store, and visualized through the

Flask app.

41

Figure 3.2 - Overview of the workings of the parser

3.2.1. FMW Parser: Static Metadata Extraction

The first part of the tool is a parser that was designed to extract the static metadata of the FME
workspace through parsing of the .FMW files. These files, as mentioned, are in the form of XML
and define the readers, writers, and transformers used.

The FMW parser was created in Python and outputs a JSON structure aligning with the
conceptual model created in section 3.3.

Input and Preprocessing

FME workspaces contain internal metadata lines prefixed by #! and #, which are not part of
the valid XML tree. The parser removes these prefixes and truncates the content after the
closing </WORKSPACE> tag to isolate the relevant structure:

Remove comment lines and FME prefixes
if line.startswith('#! '):
 cleaned.append(line[3:])
elif line.startswith('#!'):
 cleaned.append(line[2:])
elif line.startswith('#'):
 continue
To ensure XML validity, a missing XML declaration is automatically added if not present:
if not xml_content.strip().startswith('<?xml'):
 xml_content = '<?xml version="1.0" encoding="UTF-8"?>\n' + xml_content

Parsing Strategy

The cleaned XML is parsed using ElementTree.fromstring, and traversal focuses on the
<TRANSFORMER> elements within the <TRANSFORMERS> section. These are used to extract input
sources, spatial process steps, and outputs.

42

Extracting Input Sources (LE_Source)

Input datasets are represented by FeatureReader transformers. The parser identifies them by
filtering for the TYPE="FeatureReader" attribute and extracts relevant metadata such as name,
source citation, and description:

if transformer.get('TYPE') == 'FeatureReader':
 for output_feat in transformer.findall('OUTPUT_FEAT'):
 if name and name not in ['<SCHEMA>', '<OTHER>', 'INITIATOR', '<REJECTED>']:
 readers.append({
 "name": name,
 "sourceCitation": ...,
 ...
 })

These are stored under the LE_Source element in the output JSON.

Extracting Spatial Process Steps (LI_ProcessStep)

The parser loops through all transformers and checks if each has a geospatial function by
referencing a predefined dictionary GEO_REL_MAP, which maps FME transformer types to
GeoSPARQL functions:

geo_relation = GEO_REL_MAP.get(ttype, None)
if geo_relation:
 lineage.append({
 "description": ttype,
 "LE_Algorithm": {
 "geo:function": geo_relation,
 ...
 },
 ...
 })

Each matching transformer becomes a LI_ProcessStep, enriched with two nested
components:

● LE_Algorithm: holds the semantic operation using GeoSPARQL
● LE_Processing: holds technical metadata such as software version and identifier

Extracting Output Datasets (LI_Source)

Output datasets are identified via FeatureWriter transformers. Similar to the input extraction
logic, metadata such as writer name, target dataset, and writer parameters are recorded:

if t.get('TYPE') == 'FeatureWriter':
 sources.append({
 "name": dataset_param.get('PARM_VALUE', ''),
 "description": parms.get('XFORMER_NAME', ''),
 ...
 })

These are stored in the second LE_Source entry, representing the output.
The resulting JSON structure is organized as follows:
"verversen.FMW": {

43

 "LE_Source": [
 {
 "name": "Beheerregio",
 "description": "FeatureReader",
 "sourceCitation": "$(DataDir)<solidus>*.mdb"
 }
],
 "LI_ProcessStep": [
 {
 "description": "GeometryExtractor",
 "LE_Algorithm": {
 "geo:function": "geof:asGeoJSON"
 },
 "LE_Processing": {
 "identifier": "TR001",
 "softwareReference": "FME 2023.1.0.0"
 }
 }
],
 "LI_Source": [
 {
 "description": "PostGISWriter",
 "sourceCitation": "stg_klein.invasieve_exoten"
 }
]
}

This output is saved to a JSON file and becomes the input for visualization and further
processing.

3.2.2. Log Parser

While the FMW parser captures the overall structure of the FME workbench it does not provide
the execution metadata that can only be obtained through log files after the FME workbench
has been run. Therefore, another parser was developed that can parse the outputted log files.

Implementation Strategy

The parser uses Python’s re module to identify relevant log lines using pattern matching. It is
composed of three core functions:

Input Metadata Extraction

The parse_input_dataset function looks for lines that mention the FME workspace name
and coordinate system. These values are used to populate the LE_Source entry with real-time
metadata:

if "FME_MF_NAME" in msg:
 m_FMW = re.search(r"FME_MF_NAME is '([^']+\.FMW)'", msg)
 input_info['sourceCitation'] = m_FMW.group(1)
 input_info['description'] = 'FME Workspace'

if "|INFORM|Coordinate System" in line:
 m_coord = re.search(r"\|INFORM\|Coordinate System `([^`]+)'", line)
 input_info['sourceReferenceSystem'] = m_coord.group(1)
Timestamps are extracted from the beginning of each log line using:
timestamp = line.strip().split('|')[0].strip()

44

Process Step Extraction

The parse_transformation_steps function identifies the execution of FME transformers
using a regular expression that matches log lines with transformer activity:

transformer_re = re.compile(r'^([A-Za-z0-9_]+?)\s*\(([^)]+)\)')

For each match, the parser checks whether the transformer name exists in the GeoSPARQL
mapping (FME_TO_GEOSPARQL). If a match is found, the transformer is recorded as a process
step with its runtime timestamp and semantic function:

for fme_name, geosparql_func in FME_TO_GEOSPARQL.items():
 if fme_name in step_name:
 geo_relation = geosparql_func

Only spatially meaningful transformations are retained by filtering for non-null geoRelation
values.

Output Dataset Extraction

The parse_output_dataset function matches log lines containing writer activity, feature
statistics, and target Tables. For example:

● Writer detection:

writer_re = re.compile(r'\b([A-Za-z0-9]+Writer)\b')

● Table name extraction:

Table_re = re.compile(r"Table '([^']+)'")

● Feature statistics:

stats_re = re.compile(r"STATS \|([^|]+)\s+([0-9,]+)")

All outputs are stored in a list, each enriched with its name, timestamp, coordinate system, and,
where available, feature count.

An enriched LI_ProcessStep entry from the log parser might look like:

{
 "description": "LengthCalculator",
 "processor": "LengthCalculator",
 "geoRelation": "geof:length",
 "dateTime": "2024-10-30 14:35:52"
}
{
 "description": "PostGISWriter",
 "sourceCitation": "stg_klein.invasieve_exoten",
 "sourceReferenceSystem": "EPSG:28992",
 "feature_count": 3827,

45

 "dateTime": "2024-10-30 14:36:02"
}

3.2.3. Lineage storage and visualization

To improve accessibility for end users, a lightweight web-based visualization tool was
developed using Flask. The application provides an interactive interface for browsing,
inspecting, and interpreting the contents of the lineage model. It was originally created during
my internship at the RVB to provide insight into the lineage across their entire Datawarehouse.
Through the interface, users can view lineage trees tracing data flows from the Datawarehouse
to GeoServer and ultimately to the Heron viewer (Gottenbos, 2025).

As part of this work, the application was extended to incorporate FME scripts into the lineage.
This enhancement enables users to follow the complete flow of data from its source – as defined
within the FME workspaces – through the Data Warehouse, and on to the final viewer. This
provides a more complete representation of the technical workflow, connecting the ETL
processes to their published outputs.

An example of the interface and a downstream search result is shown in Figure 3.3. Section 4
presents the Flask interface for each of the three individual examples, illustrating how these
lineage views are delivered to end users.

Figure 3.3 – Example of Flask application visualization the lineage data

46

4 Results and Evaluation

This section presents the extracted data lineage structures generated by the dual-parser
implementation described in Chapter 3. The goal is to empirically demonstrate how FME-based
spatial ETL workflows can be transformed into semantically enriched, standards-aligned
provenance records. By aligning transformer outputs with ISO 19115 and GeoSPARQL, the
model supports auditability, traceability, and machine-readable workflow reconstruction. The
output structures are evaluated across three use cases, each designed to test the model's ability
to capture both declarative and operational metadata.

4.1 Overview of Selected Workflows

To evaluate the practical application of the proposed lineage model, a set of representative
FME workflows from the RVB were selected. These workflows serve as test cases to assess
the model’s ability to capture, document, and visualize spatial data transformations in
operational settings. The selected cases differ in spatial complexity, governance relevance, and
transformation logic, allowing for a full evaluation of the parser’s accuracy and
generalizability. The cases were evaluated based on the evaluation criteria defined in section
2.5.

The lineage model outputs a hierarchical JSON structure consisting of three primary entities,
derived from ISO 19115-2 and extended with GeoSPARQL semantics:

• LE_Source: Describes input datasets, including identifiers, coordinate reference
systems (CRS), source citations, and optional timestamps. In FME this is representative
of the reader. Is not native to ISO 19115 however this helps to distinguish the input
from the output.

• LI_Source: Describes the output dataset, including identifiers, coordinate reference
systems (CRS), source citations, and optional timestamps. This maps to FME’s readers.

• LI_ProcessStep: Captures the spatial operations performed, including a textual
description, the transformer identifier, execution time (where available), and a semantic
mapping to a corresponding spatial function. This maps to FME’s transformers.

• LE_Algorithm / LE_Processing: These subcomponents detail the semantic logic
(geo:function) and software environment (e.g., transformer name, version, runtime
parameters).

GeoSPARQL mappings are embedded under LE_Algorithm.geo:function, enabling the
functional intent of FME transformers to be represented in a queryable and standards-compliant
form. A representative excerpt is shown below:

{
 "LI_ProcessStep": [
 {
 "description": "AreaCalculator",
 "LE_Algorithm": {
 "geo:function": "geof:area"
 },
 "LE_Processing": {
 "identifier": "TR_004",
 "softwareReference": "FME 2023.1"
 },
 "dateTime": "2025-06-04 10:17:13"

47

 }
]
}

This output confirms that both procedural lineage (i.e., which operation occurred) and semantic
lineage (i.e., what type of transformation was applied) are captured, supporting cross-platform
interoperability and governance validation.

4.1.1 Verversen Regio Indeling Groenbeheer (VRIG)

This FME workflow is used to renew the data for the green spaces which are governed by the
Dutch government. This case is selected because it plays a key role in the weekly operations
of the RVB as stakeholders use this data to establish policies surrounding these green spaces.

The extracted lineage was structured according to the framework, with the three core data
blocks:

• LE_Source: Captures the input dataset, with its CRS of Netherlands-RDNew-2008.
• LI_ProcessesSteps: Each transformer which has a correlating GeoSPARQL definition

was parsed, including the functions and the date time stamps.
• LI_Source: Represents the output dataset including where it is written to with its CRS

extent if applicable. For this case that is master data Regio Indeling Groenbeheer in the
Datawarehouse GIS.

The GeoSPARQL definition mapping was successful, and the following spatial operations
were detected and mapped.

Transformer GeoSPARQL definition Description
Aggregator Geof:aggCentroid Aggregates geometries
Geometry Extractor Geof:geoJSON Extracts geometries

The JSON was visualized according to the enriched ISO framework created introduced in
section 3.2. Figure 4.1 shows the FME workbench that will be parsed. Figure 4.2 Is the UML
diagram of the parsed lineage, showing how the LE_Source flows through the LI_processSteps
to the LI_Source. An example of the JSON output has been provided below; the full JSON
script can be found in the Appendix C. Figure 4.3 shows the Flask interface example of the
parsed JSON that users can view and click through.

48

{
 "Verversen_attributen_Regioindeling_Groenbeheer.FMW": {
 "LE_Source": [
 {
 "name": "Beheerregio",
 "sourceReferenceSystem": "Netherlands-RDNew-2008",
 "description": "FeatureReader",
 "sourceCitation": "$(DataDir)<solidus>*.mdb",
 "dateTime": "2025-05-28 15:04:13"
 }
],
 "LI_ProcessStep": [
 {
 "description": "Aggregates geometries.",
 "processor": "Aggregator_2",
 "dateTime": "2025-05-28 15:04:13",
 "LE_Algorithm": {
 "citation": "FME",
 "description": "Aggregates geometries.",
 "geo:hasGeom": "Yes",
 "geo:function": "geo:aggCentroid"
 },
 "LE_Processing": {
 "softwareReference": "FME(R) 2023.1.0.0 (20230825 - Build 23619 - WIN64)",
 "procedureDescription": "Processing step for geospatial data",
 "documentation": "Aggregates geometries.",
 "runtimeParameters": {
 "runtime": 0.0,
 "startTime": "2025-05-28 15:04:13",
 "endTime": "2025-05-28 15:04:13"
 }
 },

49

Figure 4.1 – Regio-indeling Groenbeheer FME workbench

50

Figure 4.2 – Regio Indeling Groenbeheer UML diagram of parsed lineage f

51

Figure 4.3 – Regio Indeling Groenbeheer Flask visualization

52

4.1.2 Capaciteitskaart Elekriciteitsnet (CE)

This workflow is one that is more complex than the Regio Indeling Groenbeheer which is the
reason it was chosen to serve as an example of the tool. It has multiple inputs and multiple
outputs and serves the RVB through providing information on areas of congestion in the
electricity lines the ingoing lines and the outgoing powerlines.

The extracted lineage was structured according to the framework, with the three core data
blocks:

• LE_Source: Captures the input dataset, with its CRS of Netherlands-RDNew-2008.
• LI_ProcessesSteps: Each transformer which has a correlating GeoSPARQL definition

was parsed, including the functions and the date time stamps.
• LI_Source: Represents the output dataset including where it is written to with its CRS

extent if applicable. For this case that is three separate outputs

The GeoSPARQL definition mapping was successful, and the following spatial operations
were detected and mapped.

Transformer GeoSPARQL definition Description
Aggregator geo:aggcentroid Aggregates geometries
Dissolver geo:union Dissolves (Unions) overlapping

geometries into one.

The FME workbench that was parsed can be seen in figure 4.4. This data was the visualized in
a UML diagram that visualizes the JSON structure according to the ISO framework. This can
be seen in figure 4.5. This figure was simplified for this report as the full figure is too large to
add, two of the six processing steps were chosen to visualize the overall processes. An example
of the JOSN output can be seen below and the full JSON can be found in appendix B. the Flask
interface for this parsed lineage can be seen in figure 4.6.

 "Capaciteitskaart_Elektriciteitsnet.FMW": {
 "LE_Source": [
 {
 "name": "CSV",
 "sourceReferenceSystem": "Netherlands-RDNew-2008",
 "description": "FeatureReader",
 "sourceCitation": "f:\\dataservices\\data\\BP23\\congestie_pc6.csv",
 "dateTime": "2025-06-02 13:20:47"
 },
],
 "LI_ProcessStep": [
 {
 "description": "Dissolves (unions) overlapping or contiguous geometries into
 "processor": "Dissolver_voedingsgebied",
 "dateTime": "2025-06-02 13:18:19",
 "LE_Algorithm": {
 "citation": "FME",
 "description": "Dissolves (unions) overlapping or contiguous geometries into
 "geo:hasGeom": "Yes",
 "geo:function": "geo:union"

53

54

Figure 4.4 - Capaciteitskaart Elektriciteitsnet FME workbench

55

Figure 4.5 – UML diagram of the parsed lineage of Capaciteitskaart Elektriciteitsnet

56

Figure 4.6 - Flask interface of the data lineage of Capaciteitskaart Elektriciteitsnet

57

4.1.3 Zon op Dak data naar PostGIS (ZoD)

This FME workflow is used to renew the data for the theoretical and space on the roofs of
Dutch houses for solar panels currently. This case is selected because it shows the variation in
the types of datasets that are used on a daily basis in the RVB.

The GeoSPARQL definition mapping was successful, and the following spatial operations
were detected and mapped.

Transformer GeoSPARQL definition Description
FeatureJoiner geof:join Joins datasets

The FME workbench that was parsed can be seen in figure 4.7. The JSON was visualized
according to the enriched ISO framework created introduced in section 3.2. An example can
be seen in figure 4.8. An example of the JSON output has been provided below; the full JSON
script can be found in the Appendix D. The Flask-based interface for this output was visualized
and can be seen in figure 4.9.

{
 "ZonOpDak_data_naar_PostGIS.FMW": {
 "LE_Source": [
 {
 "name": "CSV",
 "sourceReferenceSystem": "Netherlands-RDNew-2008",
 "description": "FeatureReader",
 "sourceCitation": "F:\\dataservices\\data\\BP07\\1.csv",
 "dateTime": "2025-08-05 12:19:13"
 },
 {
 "name": "CSV",
 "sourceReferenceSystem": "Netherlands-RDNew-2008",
 "description": "FeatureReader",
 "sourceCitation": "F:\\dataservices\\data\\BP07\\1.csv",
 "dateTime": "2025-08-05 12:19:13"
 },
 {
 "name": "stg_data.mv_bouwwerk",
 "sourceReferenceSystem": "Netherlands-RDNew-2008",
 "description": "FeatureReader",
 "sourceCitation": "F:\\dataservices\\data\\BP07\\2.csv",
 "dateTime": "2025-08-05 12:19:13"
 }

58

Figure 4.7 – Zon op Dak naar PostGIS FME workbench

59

Figure 4.8 – Zon op Dak naar PostGIS UML diagram of parsed lineage

60

Figure 4.9 – Zon op Dak visualized in the Flask application

61

4.2 Quantitative Evaluation

To assess the parser’s accuracy and compliance to the standards this section will apply the
evaluation criteria to the metrics established in section 2.5 to the use cases. This will allow
insights into how well the parser adheres to the structure and if it accurately parsers the required
data.

The evaluation criteria are centred around the six core quality measures adapted from the ISO
19157. These include completeness, logical consistency, positional accuracy, temporal
accuracy, temporal validity, thematic accuracy and quantitative attribute accuracy. For each of
the 3 use cases the outputs were evaluated and can be seen in the Tables 4.1-4.3 respectively.

62

4.2.1 Verversen Regio Indeling Groenbeheer

Code	 ISO data-qu
ality	
element	

Sub-element	 Tool-speci;ic	measure	 Tolerance / t
arget	

Results	 Comments	

A01	

Completene
ss	

Commission	 False-positive	rate	in	transformer	
mapping	(1 − P)	=	
Count FP transformers	÷	
total mapped	

≤ 5 %	
(P ≥ 95 %)	

P	=	
100%		

No	transformers	were	incorrectly	
mapped.		

A02	 Omission	 1 − P	=	(Actual Steps	−	
Captured Steps)	÷	Actual Steps	

≤ 5 %	
(P ≥ 95 %)	

P	=	
100%		

All	expected	transformers	were	
captured.		

A03	

Logical	
consistency	

Conceptual	
consistency	

Semantic	accuracy	of	GeoSPARQL	
class	assignment	P	=	TP / (TP + FP)	
on	class	labels	

≥ 95 %	 P	=	
100%	

All	mappings	are	valid	

A04	 Domain	
consistency	

Validity	of	CRS & ontology	URIs	AC	=	
Filled	valid-URI	\ields	÷	expected	

≥ 90 %	 AC	=	
99%	

One	mapping	was	None,	this	was	the	
extent,	which	this	dataset	did	not	
have		

A05	 Format	
consistency	

JSON-schema	validation	pass	rate	
(no	errors	in	JSON	output)	

100 %	 100%		 No	errors	were	found	in	the	output	
format		

A06	
Positional	
accuracy	

Absolute / exte
rnal	

Presence	of	sourceReferenceSystem	
attribute	(CRS	recorded)	AC	=	CRS	
\illed	in LI_Source	records	÷	
total LI_Source	records	

≥ 90 %	 AC	=	
100%	

Both	the	source	and	the	output	had	
the	correct	CRS		

A07	

Temporal	
accuracy	

Accuracy	of	
time	
measurement	

Millisecond	resolution	of	dateTime	
stamps	

All	
timestamps	
present,	± 1 s	

Passed	 All	of	the	time	stamps	were	accurate		

A08	 Temporal	
consistency	

Chronological	order	of	
LI_ProcessStep	records	

0	inversions	
allowed	

Passed	 	

63

A09	 Temporal	
validity	

Run	time	lies	within	declared	job	
window	(compare	dateTime	
against	job	start–end)	

Pass / Fail	 Passed	 It	was	run	in	under	2	seconds	

A10	

Thematic	
accuracy	

Classi\ication	
correctness	

Correct	GeoSPARQL	mapping	P	=	
TP / (TP + FP)	on	class	labels	

≥ 95 %	 P	=	
100%	

	

A11	 Non-quantitati
ve	attribute	
correctness	

Field	names & units	correctly	copied	
AC	=	Filled	non-numeric	\ields	÷	
expected	

≥ 90 %	 AC	=	
100%	

All	of	the	names	and	times	were	
correctly	parsed	

A12	 Quantitative	
attribute	
accuracy	

Feature-count	between	FME	log	and	
lineage	

Expect ± 0	
difference	

Passed		 The	log	and	the	parser	matched	up	
well	

This workflow hits most of the targets set in thematic accuracy as well as temporal accuracy. However, A04 there was one none extent mapped.
This was because the spatial extent of this dataset was not known.

64

4.2.2 Capaciteitskaart Elektriciteitsnet

Code	 ISO data-qual
ity	element	

Sub-element	 Tool-speci;ic	measure	 Tolerance / target	 Results	 Comments	

A01	

Completeness	

Commission	 False-positive	rate	in	
transformer	mapping	(1 − P)	=	
Count FP transformers	÷	
total mapped	

≤ 5 %	(P ≥ 95 %)	 P	=	
100%		

No	transformers	were	incorrectly	
mapped.		

A02	 Omission	 1 − P	=	(Actual Steps	−	
Captured Steps)	÷	Actual Steps	

≤ 5 %	(P ≥ 95 %)	 P	=	
100%		

All	expected	transformers	were	
captured.		

A03	

Logical	
consistency	

Conceptual	
consistency	

Semantic	accuracy	of	
GeoSPARQL	class	assignment	P	
=	TP / (TP + FP)	on	class	labels	

≥ 95 %	 P	=	
100%	

All	mappings	are	valid	

A04	 Domain	
consistency	

Validity	of	CRS & ontology	
URIs	AC	=	Filled	valid-URI	
\ields	÷	expected	

≥ 90 %	 AC	=	
90%	

2	mapping	types	were	none	–	the	
extent,	which	this	dataset	does	not	
have	as	well	as	the	date	time	stamp	
for	the		

A05	 Format	
consistency	

JSON-schema	validation	pass	
rate	(no	errors	in	JSON	output)	

100 %	 100%		 No	errors	were	found	in	the	output	
format		

A06	

Positional	
accuracy	

Absolute / ext
ernal	

Presence	of	
sourceReferenceSystem	
attribute	(CRS	recorded)	AC	=	
CRS	\illed	in LI_Source	records	
÷	total LI_Source	records	

≥ 90 %	 AC	=	
100%	

Both	the	source	and	the	output	had	
the	correct	CRS		

A07	

Temporal	
accuracy	

Accuracy	of	
time	
measurement	

Millisecond	resolution	of	
dateTime	stamps	

All	timestamps	
present,	± 1 s	

Failed	 Timestamp	was	missing	from	
LE_Processing_4	

A08	 Temporal	
consistency	

Chronological	order	of	
LI_ProcessStep	records	

0	inversions	allowed	 Passed	 	

65

A09	 Temporal	
validity	

Run	time	lies	within	declared	
job	window	(compare	
dateTime	against	job	start–
end)	

Pass / Fail	 Passed	 	

A10	

Thematic	
accuracy	

Classi\ication	
correctness	

Correct	GeoSPARQL	mapping	P	
=	TP / (TP + FP)	on	class	labels	

≥ 95 %	 P	=	
100%	

	

A11	 Non-quantitat
ive	attribute	
correctness	

Field	names & units	correctly	
copied	AC	=	Filled	
non-numeric	\ields	÷	expected	

≥ 90 %	 AC	=	
100%	

All	of	the	names	were	correctly	
parsed	

A12	 Quantitative	
attribute	
accuracy	

Feature-count	between	FME	
log	and	lineage	

Expect ± 0	difference	 Passed	 The	log	and	the	parser	matched	up	
well	

The workflow scored on target in most of the completeness and logistical accuracy however there were gaps in A07 on the timestamp presence.
As well as A04 as certain fields were missing. The GeoSPARQL ontology was correctly achieved, and the visual interoperability of the lineage
was confirmed through stakeholder analysis and review.

66

4.2.3 Zon op Dak

Code	 ISO data-qual
ity	element	

Sub-element	 Tool-speci;ic	measure	 Tolerance / ta
rget	

Results	 Comments	

A01	

Completeness	

Commission	 False-positive	rate	in	transformer	
mapping	(1 − P)	=	
Count FP transformers	÷	
total mapped	

≤ 5 %	
(P ≥ 95 %)	

P	=	
100%	

	

A02	 Omission	 1 − P	=	(Actual Steps	−	
Captured Steps)	÷	Actual Steps	

≤ 5 %	
(P ≥ 95 %)	

P	=	
100%	

	

A03	

Logical	
consistency	

Conceptual	
consistency	

Semantic	accuracy	of	GeoSPARQL	
class	assignment	P	=	TP / (TP + FP)	
on	class	labels	

≥ 95 %	 P	=	
100%	

	

A04	 Domain	
consistency	

Validity	of	CRS & ontology	URIs	AC	
=	Filled	valid-URI	\ields	÷	expected	

≥ 90 %	 AC	=	
90%	

Two	types	of	mappings	were	none	
the	spatial	extent,	which	is	not	
known	as	well	as	the	run	time	
parameters	for	the	processing.		

A05	 Format	
consistency	

JSON-schema	validation	pass	
rate	(no	errors	in	JSON	output)	

100 %	 100%		 No	errors	were	found	in	the	output	
format		

A06	

Positional	
accuracy	

Absolute / exte
rnal	

Presence	of	
sourceReferenceSystem	attribute	
(CRS	recorded)	AC	=	CRS	\illed	
in LI_Source	records	÷	
total LI_Source	records	

≥ 90 %	 AC	=	
100%	

Both	the	source	and	the	output	had	
the	correct	CRS		

A07	 Temporal	
accuracy	

Accuracy	of	
time	
measurement	

Millisecond	resolution	of	
dateTime	stamps	

All	timestamps	
present,	± 1 s	

Failed	 The	run	time	parameters	were	
missing	from	both	processing	steps		

67

A08	 Temporal	
consistency	

Chronological	order	of	
LI_ProcessStep	records	

0	inversions	
allowed	

Passed	 	

A09	 Temporal	
validity	

Run	time	lies	within	declared	job	
window	(compare	dateTime	
against	job	start–end)	

Pass / Fail	 Passed	 It	was	run	in	under	10	seconds	

A10	

Thematic	
accuracy	

Classi\ication	
correctness	

Correct	GeoSPARQL	mapping	P	=	
TP / (TP + FP)	on	class	labels	

≥ 95 %	 P	=	
100%	

	

A11	 Non-quantitati
ve	attribute	
correctness	

Field	names & units	correctly	
copied	AC	=	Filled	non-numeric	
\ields	÷	expected	

≥ 90 %	 AC	=	
100%	

All	of	the	names	and	times	were	
correctly	parsed	

A12	 Quantitative	
attribute	
accuracy	

Feature-count	between	FME	log	
and	lineage	

Expect ± 0	
difference	

0		 The	log	and	the	parser	matched	up		

The workflow scored well overall in Completeness, and thematic accuracy. However, scored lower on temporal accuracy and logical consistency.
This was as a result of the run time parameters missing from both process steps. This indicates that there is a parsing error in the model.

68

4.3 Qualitative Evaluation

In line with the ISO 19157 quality-assessment framework the evaluation is organized around
the 4 core dimensions, completeness, logical consistency, accuracy and usability. For each ISO
criteria, it was rated P (Pass) or F (Fail).

4.3.1 Completeness

The completeness of the data is the extent to which the information is accurately represented
in the model based on the available data.

Code Description VRIG CE ZoD
A01 Commission P P P
A02 Omission P P P

The model achieved a perfect 6/6 successful assessments demonstrating full completeness
across both test scenarios.

Manual cross checks against the ETL logs confirmed that every relevant process step, and in
and output sources were correctly parsed in the model. There were also no omissions in the
data, indicating that the data provenance is correctly preserved and analysts can use the lineage.

4.3.2 Consistency

Consistency assesses whether the information recorded in the lineage model obeys internal
rules, logical constraints and agreed coding conventions (ISO 19157 logical-consistency
subclass).
For this study we focused on three critical facets (A03–A05):

Code Description VRIG CE ZoD
A03 Conceptual consistency P P P
A04 Domain consistency P P P
A05 Format consistency P P P

Overall, the conceptual model upheld consistency in the parsing. There was a domain
discrepancy in the CE workflow as there were 2 mapping types that were none. This was the
extent, which is a result of this dataset not having an extent. However also the date and time
stamp were missing from some of the transformation steps.

4.3.3 Accuracy

This subsection evaluates the conceptual accuracy of the proposed lineage model. Conceptual
accuracy here is defined as the degree to which the model represents the semantics of spatial
operations, attribute transformations, metadata structures, and transformation sequences
observed in real-world Extract-Transform-Load (ETL) processes. The conceptual accuracy
was assessed according to the ISO 19157 data-quality elements A06-A12.

69

Code Description_ VRIG CE ZoD
A06 Logical / schematic consistency P P P
A07 Domain consistency P F F
A08 Format consistency P P P
A09 Topological consistency P P P
A10 Temporal consistency P P P
A11 Thematic consistency P P P
A12 Maintenance consistency P P P

The lineage model achieved 16 / 18 successful assessments (VRIG 7 / 7; CE 6 / 7; ZoD 6/7),
demonstrating conceptual accuracy across the tested ETL scenarios.

Tests A06 and A08 – A12 all passed, demonstrating that the framework reliably preserves
every key dimension: schema, encoding, topology, temporal lineage, and thematic labels.
Direct integration of GeoSPARQL functions—such as geo:union and geof:area—supports
fine-grained spatial queries, while the paired prov:startedAtTime and prov:endedAtTime
fields retain a precise record of execution order. Only test A07 failed in the CE workflow upon
manual review the issue was traced to a missing timestamp log on one transformer. While it
was only one it does demonstrate that the tool will need to be debugged before going into
production.

4.3.4 Usability

Usability (ISO 19157, A13) reflects the degree to which the lineage information is fit for its
intended purpose which is supporting governance staff, data engineers and analysts in day-to-
day tasks. An interview was conducted with an employee from the RVB who reviewed and
analysed the current model. This employee from the RVB then wrote the following review:

“The core of our architecture consists of FME scripts (and other ETL tooling), a PostgreSQL
database, a GeoServer, and a viewer. More than 500 map layers are managed and made
available to users through this architecture. Many layers in the viewer have different names in
GeoServer, combine data from multiple data sources within the database and originate from
different ETL tools such as FME. It often took a lot of time to manually track these data flows.

The data lineage tool has not only made it significantly easier to understand how data flows
operate but also serves as a communication tool during projects. Additionally, the tool can act
as input for other tooling, such as a cleaning tool for system maintenance. Thanks to the data
lineage tool, we already begun the cleanup process.

To fully benefit from these advantages, it is essential that the data model tool functions
properly. Currently, the tool works for our environment. However, due to changes in
architecture and design choices, a certain level of maintenance will be required. Currently, the
data model tool only supports the use of the FeatureWriter transformer to write data to our
database. Even though we currently always use a FeatureWriter, this could change in the future.
This may force us to decide whether to maintain the data lineage tool, limit its functionality or
temporarily hold on to certain parts of our architecture to ensure the data lineage tool remains
operational. Choosing the last option would limit our flexibility, but we gain insight, system
maintenance capabilities and a communication tool.” (Staring, 2025)

70

This indicates that the current version is usable and understandable by the current employee at
the RVB. However future changes to the infrastructure and or tooling could cause the data
lineage tool to have to be changed or adapted.

71

5 Discussion

The development and evaluation of the spatial data lineage model reveal several limitations
spanning technical, semantic, and practical dimensions. While the model successfully
demonstrated feasibility within the RVB use cases, these limitations highlight areas where the
approach falls short of a comprehensive, universal solution. This section discusses the key
technical constraints of the parser implementation, the semantic gaps, and practical challenges
related to generalizability and user adoption. Together, these insights lay the groundwork for
the implications and recommendations that follow.

5.1 Technical Limitations

The current static parser, which analyses the FMW files faced challenges in its parsing since
the files are non-standardized and inconsistent format. An FME document is not a
straightforward XML document, rather it is a text structure that contains XML-like content.
This means that the script cannot be parsed without preprocessing of the file, however
conventional XML parsers cannot be applied due to the slight variation from traditional XML.
Therefore, the specialized parser was created, however as it is specialized this makes it prone
to problems if FME changes its formatting. An example can be seen in recent version changes
of FME workspaces where a shift occurred from versions and users lost some of their created
transformers due to the change logging methods (Zornig, 2015). Highlighting how slight
changes in the logic can impact the structure of the FMW file, and hence the parser that was
created in this study.

The log parser that extracts the lineage from FME’s runtime logs has its own set of limitations.
One of the main issues stems from the reliance on log files being complete and available. This
means that if a translation job fails or is aborted, the log file may be incomplete, which can lead
to incomplete metadata extraction. In such cases, the parser might only capture the portion of
the workflow that executed before the failure, reducing lineage completeness for failed runs.
Another issue, similar to that of the FMW parser is that log files do not have a standardized
structure, instead they are free-form text with human readable messages. This is also stated by
FME on their website stating that not everything is shown in sequence and that there is no
standardized format for a log file (Safe Software, 2025). Therefore, this is also prone to shifts
between versions and updates on FME platform, which limits the parsers’ overall reliability.

5.2 Semantic Limitations

A central objective of this work was to enhance traditional lineage records by embedding
spatial semantics, achieved through a combined use of the ISO 19115 lineage model and the
GeoSPARQL ontology. This hybrid design delivers clear benefits, but it also exposes notable
semantic limitations and gaps.

The ISO 19115 standard provides robust structural lineage metadata, recording the occurrence
of process steps, the source datasets, parameters, and related information however did not
specify which type of geospatial operation occurred. This approach sought to address this
through mapping FME transformers to corresponding GeoSPARQL definitions where
possible. This aligns with current research highlighting GeoSPARQL as a key enabler for
interoperable provenance across GIS workflows (Ivanova et al., 2017; Battle et al., 2012).
However semantic coverage remains incomplete as GeoSPARQL was not designed as a

72

comprehensive taxonomy of geoprocessing operations. As a result, certain FME transformers
had no direct GeoSPARQL equivalent. Future work could investigate alternatives to
GeoSPARQL that can fully map all the transformations done in FME.

5.3 Practical and Evaluative Limitations

The prototype lineage model was developed and evaluated in the context of the RVB’s internal
FME workflows, which limits the diversity of the scenarios tested. Although it was successful
for the scenarios of the RVB, which encompass large and complex workflows on a national
scale. It does bring into question the generalizability of the model in a different setting. The
model’s overall design does offer flexibility and is standards based therefore it suggests that it
can be adapted to organizations that are using FME. However, this was not tested in this study
therefore the approaches robustness and efficiency in a broader context remains to be tested.

The evaluation of the model was done through using the ISO 19157 derived criteria and
feedback from employees from the RVB. This confirmed the technical correctness and that it
helped to improve the transparency of the data lineage, however it does mean that the scope is
limited to the finite set of workflows from the RVB. A full usability assessment would have
been beneficial where efficiency was monitored and measured within the RVB to establish the
overall benefits.

73

6 Conclusion

This study set out to close a clear provenance gap in the RVB spatial-data workflows. A
standards-aligned lineage model has been designed, implemented, and validated for FME-
based Extract–Transform–Load (ETL) processes. Below, each original goal and research
question is revisited in turn, followed by an overall synthesis, the main limitations, and
recommendations for future work.

6.1 Answers to Research Questions
6.1.1 What are the technical and organisational requirements and priorities for

geospatial data lineage?

The technical requirements can be grouped into three main components: the compliance with
standards, the automation of the lineage extraction and the performance of the tool. As
established in chapter two the lineage should be formatted according to international standards
of the ISO to adhere to governance policies (Closa et al., 2017). As adhering to these standards
ensures long-term interoperability. Further it was found in chapter two that it is critical to
automate the data lineage tracking process as it increases the efficiency and reliability of data
lineage tools (Closa et al., 2019). The last technical requirement that was identified was the
need for quality testing criteria, these were identified through the ISO 19157 that defines a set
of quality measure for evaluating geospatial data (Urena-Camara et al., 2019).

The organisational requirements can be grouped into two main areas: governance alignment
and that it works with the current systems. First, as mentioned previously the lineage needs to
be formatted according to the ISO 19115. Second, the lineage solution must work with RVB’s
existing lineage data tracker for their data warehouse so that provenance information becomes
a routine decision-support asset rather than a stand-alone model (see Chapter 2, section 2.3).

6.1.2 What data lineage models currently exist for tracking lineage in both
spatial and non-spatial contexts, and what are their strengths and
weaknesses in supporting spatial use cases?

A literature review done in chapter 2 revealed that within the current systems there are two
keyways to document data lineage the ISO 19115 and the PROV. Some research even suggests
merging the two to increase the breadth and depth of the data lineage recorded (Jiang et al.,
2018). The strength in this is that both the agents, temporal validity, and the overall lineage is
correctly recorded. However, a weakness identified was that there is no direct ontology for
geospatial transformations that can work with these.

When researching varying models currently in production one can see an emerging trend, that
they are all automated and visually represent the lineage for the user. Good examples that were
discussed were AWS and the provenance metadata model focusing on raster data (Closa et al.,
2019). However, both types have gaps in their ability to provide a full geospatial provenance
description and state that future models should look at exploiting other types of catalogues and
ontologies to accurately represent the who, what, where, when and how of data lineage (Closa
et al., 2019). Therefore, this paper suggests using GeoSPARQL as an ontology for defining
the relevant spatial operations in combination with ISO 19115 standards.

74

6.1.3 What are the existing challenges and limitations in tracking data lineage
within geospatial ETL tools, specifically when using tools such as FME?

In chapter two, two main points were established which are existing challenges in tracking data
lineage, specifically in FME, mainly the lack of a built-in lineage export and establishing
granularity vs overview. FME logs every reader, writer and transformer at run-time, yet it offers
no built-in mechanism to export this information in a standards-compliant form (e.g., ISO
19115). Users on the Safe Software community forum note that there is currently no easy way
to obtain the data lineage and export it to another platform. Further, general-purpose data-
lineage literature highlights the “granularity issue,” namely the difficulty of choosing between
coarse, dataset-level snapshots and fine, feature- or attribute-level histories. FME compounds
the problem because a single workspace can execute hundreds of transformers in one
translation thread. Capturing every intermediate geometry yields graphs so dense that they
become unwieldy for analysts. Striking the right balance therefore remains an open design
question. Therefore, a model was created that automatically parses the data lineage and only
extracts lineage from transformers whose definition is defined in the GeoSPARQL ontology.

6.1.4 How can a geospatial data lineage model be designed and implemented in
FME to enable end-to-end traceability of spatial transformations?

Chapter 3 sets out a three-layer architecture that delivers end-to-end traceability for FME-based
ETL processes while meeting the technical and organisational requirements identified earlier.
Section 3.2 goes into more detail on how the model fuses together the ISO 19115 and the
GeoSPARQL for its geospatial definitions. Through this the model is now able to record when
changes occurred, which datasets were involved, how the data was transformed, and in which
layer it was done. Section 3.3 details a Python service that is triggered automatically when
FME Server completes a workspace. The parser reads the static FMW file, and its run-time log
maps every reader, writer and transformer to its GeoSPARQL definition counterpart. The
lineage extracted is then all placed into a JSON file. This JSON is then used as the basis for
visualization and integration into a searchable system which analysts can use.

Overall, through the combination of log files and FMW files into a python parser FME data
lineage can now be structured in a transparent, standard compliant way, for analytic use within
the RVB.

6.1.5 How can the proposed model be tested to ensure that it meets the identified
requirements for geospatial data lineage, and what methods or metrics can
be used to evaluate its effectiveness in real-world scenarios?

The ISO 19157 standards were identified in section 2.5 as the requirements for spatial datasets.
This method of evaluation was then used to evaluate the model on four main aspects.
Completeness, consistency, accuracy and usability. The paragraphs below summarise how
each criterion was operationalized, applied and reviewed in chapters 4 and 5.

The completeness was assessed through comparing the parsed lineage to the original files. This
was done through checking for false positives or omissions neither of which were found in the
examples. The consistency was checked by comparing the original code to the GeoSPARQL
mappings to check if the mappings were done correctly. It was found that all the GeoSPARQL
mappings were correct, however one CRS mapping failed. The accuracy tests focused on

75

whether the lineage captured accurately represents the FME data. The execution timestamps
that were extracted from the log file were compared to the parsed values. No anomalies were
found; it was representative of the live runs done.

Lastly usability was evaluated through a review conducted by the RVB employee. Here the
outcome presented that currently the model works well for their workflows and that it meets
their current needs but future expansions or changes to their workflows could mean the model
needs to be adapted. Taken together the results show that the model is currently complete,
structurally sound, easy to use and accurate.

6.2 Recommendation for Future Work

The current implementation provides a standards-aligned foundation for capturing spatial data
lineage within FME workflows, but several areas for future enhancement have been identified:

Versioned Lineage Storage

While the current model captures lineage for each run of an FME workflow, it does not retain
historical versions of workflows or their outputs. Introducing a versioning mechanism—such
as git-style lineage snapshots or delta logging—would enable users to track changes over time,
compare workflow revisions, and reconstruct past data states. This is particularly relevant in
governance contexts where audit trails or rollback capabilities are essential.

Extended GeoSPARQL Mappings and Ontological Coverage

The current GeoSPARQL mapping covers 17 unique FME transformers, but several high-value
spatial operations remain unmapped due to lack of equivalent functions in the standard. A
future extension could involve:

● Defining custom ontology terms for FME-specific logic.
● Proposing enhancements to GeoSPARQL to incorporate commonly used spatial ETL

operations (e.g., spatial predicates within compound filters).
● A different ontology that better matches the FME transformers.

This would improve semantic completeness and enhance the accuracy of provenance graphs.

Support for Complex Workflows and Enhanced UI

Support for multi-input/multi-output workflows can be improved by implementing relationship
mapping between individual datasets and their downstream outputs. This could be achieved by
tagging inputs/outputs with unique identifiers and visualizing their flow paths. Furthermore,
the user interface could be expanded with features such as filter-by-geometry-type, operation
search, and comparative lineage views across versions.

These future extensions will enhance the model’s completeness, usability, and interoperability,
positioning it as a core enabler of traceable, standards-based spatial data governance.

76

77

References

Abhayaratna, Joseph & Brink, Linda & Car, Nicholas & Atkinson, Rob & Homburg, Timo &
Knibbe, Frans & Wagner, Anna & Bonduel, Mathias & Rasmussen, Mads & Thiery,
Florian. (2020). OGC Benefits of Representing Spatial Data Using Semantic and Graph
Technologies.

Amazon Web Services. (2024, March 18). Introducing end-to-end data lineage (preview)
visualization in Amazon DataZone. AWS News Blog.
https://aws.amazon.com/blogs/big-data/introducing-end-to-end-data-lineage-preview-
visualization-in-amazon-datazone

Apache NiFi Documentation. (2023). Overview of Apache NiFi – provenance features.
https://nifi.apache.org/docs/nifi-docs/html/nifi-user-guide.html#provenance

AWS Big Data Blog (Nguyen, K., et al.). (2022). Build data lineage for data lakes using
AWS Glue, Amazon Neptune, and Spline. https://aws.amazon.com/blogs/big-
data/build-data-lineage-for-data-lakes-using-aws-glue-amazon-neptune-and-spline

Battle, R., & Kolas, D. (2012). Enabling the geospatial semantic web with parliament and
geosparql. Semantic Web, 3(4), 355-370.

Belhajjame, K., Cheney, J., Corsar, D., Garijo, D., Soiland-Reyes, S., Zednik, S. & Zhao, J.
(2012). PROV-O: The PROV Ontology .

Breunig, M., Bradley, P. E., Jahn, M., Kuper, P., Mazroob, N., Rösch, N., ... & Jadidi, M.
(2020). Geospatial data management research: Progress and future directions. ISPRS
International Journal of Geo-Information, 9(2), 95.

Closa, G., Masó, J., Julià, N., & Pons, X. (2021). Geospatial queries on data collection using
a common provenance model. ISPRS International Journal of Geo-Information, 10(3),
139.

Closa, G., Masó, J., Pross, B., & Pons, X. (2017). W3C PROV to describe provenance at the
dataset, feature, and attribute levels in a distributed environment. Computers,
Environment and Urban Systems, 64, 103–117.
https://doi.org/10.1016/j.compenvurbsys.2017.03.001

Closa, G., Masó, J., Zabala, A., Pesquer, L., & Pons, X. (2019). A provenance metadata
model integrating ISO geospatial lineage and the OGC WPS: Conceptual model and
implementation. Transactions in GIS, 23(6), 1241–1269.
https://doi.org/10.1111/tgis.12555

Closa, J., Masó, J., & Pons, X. (2017). Describing geospatial provenance using ISO and W3C
standards. International Journal of Digital Earth, 10(12), 1212–1227.
https://doi.org/10.1080/17538947.2016.1239773

Closa, J., Masó, J., & Pons, X. (2019). Automated lineage capture in geospatial processes
using WPS and ISO standards. In Proceedings of the 2019 AGILE Conference on
Geographic Information Science. https://doi.org/10.1007/978-3-030-14745-7_22

Dai, C. F., Zhang, R., Li, P., Wang, W. Q., Cao, Z. W., & Acm. (2017, Dec 20-22). A
Minimal Attribute Set-oriented Data Provenance Method. [International conference on
big data and internet of things (bdiot 2017)]. International Conference on Big Data and
Internet of Things (BDIOT), London, ENGLAND.

Di, L., Shao, Y., & Kang, L. (2013). Implementation of geospatial data provenance in a web
service workflow environment with ISO 19115 and ISO 19115-2 lineage model. IEEE
transactions on geoscience and remote sensing, 51(11), 5082-5089.

Drobnjak, S., Sekulović, D., Amović, M., Gigović, L., & Regodić, M. (2016). Central
geospatial database analysis of the quality of road infrastructure data. Geodetski
vestnik, 60(2), 270-284.

78

ESRI. (n.d.). Geoprocessing history—ArcGIS Pro | Documentation. Retrieved from
https://pro.arcgis.com/en/pro-
app/latest/help/analysis/geoprocessing/basics/geoprocessing-history.html

Fallahi, Gholam Reza, et al. "An ontological structure for semantic interoperability of GIS
and environmental modeling." International Journal of Applied Earth Observation and
Geoinformation 10.3 (2008): 342-357.

Gottenbos, P (2025). Internship report. Data Lineage in the Rijksvastgoed Bedrijfs DWH
Joos, G. (2006). Data quality standards. In XXIII FIG Congress (pp. 1-10).
Open Geospatial Consortium [OGC]. (2024). OGC GeoSPARQL – A Geographic Query

Language for RDF Data (OGC Standard No. 22-047, Version 1.1). Wayland, MA:
OGC. Retrieved July 3, 2025, from https://www.ogc.org/standards/geosparql/

He, L., Yue, P., Di, L., Zhang, M., & Hu, L. (2014). Adding geospatial data provenance
into SDI—a service-oriented approach. IEEE Journal of Selected Topics in Applied
Earth Observations and Remote Sensing, 8(2), 926
936.https://doi.org/10.1109/JSTARS.2015.2400414

Henzen, C., Mäs, S., & Bernard, L. (2013). Provenance information in geodata
infrastructures: Metadata visualization with MetaViz. In Provenance and Annotation
of Data and Processes, Lecture Notes in Computer Science (Vol. 7902) (pp. 87–99).
Springer. https://doi.org/10.1007/978-3-642-38729-0_9

International Organization for Standardization. (2013). ISO 19157:2013 Geographic
information -- Data quality.

International Organization for Standardization. (2014). ISO 19115-1: Geographic information
— Metadata — Part 1: Fundamentals (Technical Report ISO 19115-1:2014).

International Organization for Standardization. (2019). Geographic information - Metadata –
Part 2: Extensions for acquisition and processing (ISO 19115-2:2019).

IGN France International. (2014, June 1). Survey quality control – Implementation of ISO
19157:2013: Development of Abu Dhabi Land Survey Act (Version 1.03, Draft).
Department of Municipal Affairs, Emirate of Abu Dhabi.

Interlandi, M., Ekmekji, A., Shah, K., Gulzar, M. A., Tetali, S. D., Kim, M., Millstein, T., &
Condie, T. (2018). Adding data provenance support to Apache Spark. Vldb Journal,
27(5), 595-615. https://doi.org/10.1007/s00778-017-0474-5

International Organization for Standardization. (2016). Geographic information — Metadata
— Part 3: XML schema implementation for fundamental concepts (ISO/TS 19115-
3:2016). https://www.iso.org/standard/32579.html

Ivánová, I., Armstrong, K., & McMeekin, D. (2017, December). Provenance in the next-
generation spatial knowledge infrastructure. In Proceedings of the 22nd International
Congress on Modelling and simulation (MODSIM 2017), Hobart, Tasmania,
Australia (pp. 3-8).

Jamedzija, M., & Duric, Z. (2021). Moonlight: A Push-based API for Tracking Data Lineage
in Modern ETL processes. 2021 20th International Symposium INFOTEH-
JAHORINA, INFOTEH 2021 – Proceedings.

Jiang, L., Yue, P., Kuhn, W., Zhang, C., & Guo, X. (2018). Advancing interoperability of
geospatial data provenance on the web: Gap analysis and strategies. Computers &
Geosciences, 117, 21–31. https://doi.org/10.1016/j.cageo.2018.04.003

Staring, K. (2025). Employee Review of the Data lineage Tool.
Kimball, R., & Ross, M. (2013). The data warehouse toolkit (3rd ed.). Wiley.
Kumaran, R. (2021). ETL Techniques for Structured and Unstructured Data. International

Research Journal of Engineering and Technology (IRJET), 8, 1727-1735.
Lemmens, R., Wytzisk, A., de By, R., Granell, C., Gould, M., & Van Oosterom, P. (2006).

79

Integrating semantic and syntactic descriptions to chain geographic services. IEEE
Internet Computing, 10(5), 42-52.

Malaverri, J., Medeiros, C. B., & Lamparelli, R. A. C. (2012). A provenance approach to
assess the quality of geospatial data. In Proceedings of the 3rd ACM SIGSPATIAL
International Workshop on GeoStreaming (IWGS '12) (pp. 53–56).
https://doi.org/10.1145/2245276.2232116

Masó, J., & Closa, J. (2021). Geospatial queries on data collection using a common
provenance model. In Proceedings of the 2021 AGILE Conference on Geographic
Information Science. https://agile-
online.org/index.php/conference/proceedings/proceedings-2021

Safe Software. (2025, March 8). Make FME data lineage information discoverable by other
data catalog systems [Idea post]. Safe Software Community.
https://community.safe.com/ideas/make-fme-data-lineage-information-discoverable-
by-other-data-catalog-systems-37486

Safe Software. (n.d.). Interpreting the log. In FME Form Documentation (2025.1).
https://docs.safe.com/fme/html/FME-Form-Documentation/FME-

 Form/Workbench/Interpreting_the_Log.htm#:~:text=Sequence
Safe Software Community. (2022). Forum thread: Populating a data lineage system with

information from FME workspaces. Safe Software Community.
https://community.safe.com/s/question/0D5S000002M7U6OSAV

Schoenenwald, A., Kern, S., Viehhauser, J., & Schildgen, J. (2021). Collecting and
visualizing data lineage of Spark jobs. Datenbank-Spektrum, 21(3), 179-189.
https://doi.org/10.1007/s13222-021-00387-7

Tang, M., Shao, S., Yang, W., Liang, Y., Yu, Y., Saha, B., & Hyun, D. (2019). SAC: A
system for big data lineage tracking. Proceedings - International Conference on Data
Engineering.

Ureña-Cámara, M. A., Nogueras-Iso, J., Lacasta, J., & Ariza-López, F. J. (2019). A method
for checking the quality of geographic metadata based on ISO 19157. International
Journal of Geographical Information Science, 33(1), 1-27.

Zhang, L., Jing, N., Zhao, J., Zhang, M., & Yang, B. (2020). A provenance model for spatial
data processing based on W3C PROV and FME. ISPRS International Journal of Geo-
Information, 9(6), 372. https://doi.org/10.3390/ijgi9060372

Zhang, M., Jing, Z., Yue, P., Zhao, X., & Zhang, T. (2020). Coupling OGC WPS and W3C
PROV for provenance-aware geoprocessing workflows. Computers & Geosciences,
138, 104419. https://doi.org/10.1016/j.cageo.2020.104419

Zornig, J. (2015, January 18). FME Desktop saves Transformers uncommented in Workspace
File. Geographic Information Systems Stack Exchange.
https://gis.stackexchange.com/questions/130689/fme-desktop-saves-transformers-
uncommented-in-workspace-file

80

Appendix A: GeoSPARQL mapping functions list

FME Transformer GeoSPARQL Function
AreaCalculator geof:area
BoundsExtractor geof:envelope
BoundingBoxReplacer geof:envelope
Bufferer geof:buffer
Clipper geof:difference
Intersector geof:intersection
Dissolver geof:union
Unioner geof:union
LengthCalculator geof:length
SpatialFilter geo:sfContains
GeometryPartExtractor geof:geometryN
GeometryPropertyExtractor geof:geometryType
Affiner geof:transform
CoordinateSystemExtractor geof:getSRID
CentroidReplacer geof:centroid
ConvexHullReplacer geof:convexHull
DistanceCalculator geof:distance

81

Appendix B: Example of JSON for Capaciteitskaart Elektriciteitsnet

{
 "Capaciteitskaart_Elektriciteitsnet.FMW": {
 "LE_Source": [
 {
 "name": "CSV",
 "sourceReferenceSystem": "Netherlands-RDNew-2008",
 "description": "FeatureReader",
 "sourceCitation": "f:\\dataservices\\data\\BP23\\congestie_pc6.csv",
 "dateTime": "2025-06-02 13:20:47"
 },
 {
 "name": "CSV",
 "sourceReferenceSystem": "Netherlands-RDNew-2008",
 "description": "FeatureReader",
 "sourceCitation": "f:\\dataservices\\data\\BP23\\voedingsgebieden.csv",
 "dateTime": "2025-06-02 13:20:47"
 }
],
 "LI_ProcessStep": [
 {
 "description": "Dissolves (unions) overlapping or contiguous geometries into
one.",
 "processor": "Dissolver_voedingsgebied",
 "dateTime": "2025-06-02 13:18:19",
 "LE_Algorithm": {
 "citation": "FME",
 "description": "Dissolves (unions) overlapping or contiguous geometries into
one.",
 "geo:hasGeom": "Yes",
 "geo:function": "geo:union"
 },
 "LE_Processing": {
 "softwareReference": "FME(R) 2023.1.0.0 (20230825 - Build 23619 - WIN64)",
 "procedureDescription": "Processing step for geospatial data",
 "documentation": "Dissolves (unions) overlapping or contiguous geometries into
one.",
 "runtimeParameters": {
 "runtime": 52.0,
 "startTime": "2025-06-02 13:18:19",
 "endTime": "2025-06-02 13:19:11"
 }
 },
 "runtime": 52.0
 },
 {
 "description": "Dissolves (unions) overlapping or contiguous geometries into
one.",
 "processor": "Dissolver_invoeding",
 "dateTime": "2025-06-02 13:18:19",
 "LE_Algorithm": {
 "citation": "FME",
 "description": "Dissolves (unions) overlapping or contiguous geometries into
one.",
 "geo:hasGeom": "Yes",
 "geo:function": "geo:union"
 },
 "LE_Processing": {
 "softwareReference": "FME(R) 2023.1.0.0 (20230825 - Build 23619 - WIN64)",
 "procedureDescription": "Processing step for geospatial data",
 "documentation": "Dissolves (unions) overlapping or contiguous geometries into
one.",
 "runtimeParameters": {
 "runtime": 147.0,
 "startTime": "2025-06-02 13:18:19",
 "endTime": "2025-06-02 13:20:46"

82

 }
 },
 "runtime": 147.0
 },
 {
 "description": "Dissolves (unions) overlapping or contiguous geometries into
one.",
 "processor": "Dissolver_afname",
 "dateTime": "2025-06-02 13:18:19",
 "LE_Algorithm": {
 "citation": "FME",
 "description": "Dissolves (unions) overlapping or contiguous geometries into
one.",
 "geo:hasGeom": "Yes",
 "geo:function": "geo:union"
 },
 "LE_Processing": {
 "softwareReference": "FME(R) 2023.1.0.0 (20230825 - Build 23619 - WIN64)",
 "procedureDescription": "Processing step for geospatial data",
 "documentation": "Dissolves (unions) overlapping or contiguous geometries into
one.",
 "runtimeParameters": {
 "runtime": 101.0,
 "startTime": "2025-06-02 13:18:19",
 "endTime": "2025-06-02 13:20:00"
 }
 },
 "runtime": 101.0
 },
 {
 "description": "Aggregates geometries.",
 "processor": "Aggregator_afname",
 "dateTime": "2025-06-02 13:20:01",
 "LE_Algorithm": {
 "citation": "FME",
 "description": "Aggregates geometries.",
 "geo:hasGeom": "Yes",
 "geo:function": "geo:aggCentroid"
 },
 "LE_Processing": {
 "softwareReference": "FME(R) 2023.1.0.0 (20230825 - Build 23619 - WIN64)",
 "procedureDescription": "Processing step for geospatial data",
 "documentation": "Aggregates geometries.",
 "runtimeParameters": {
 "runtime": 0.0,
 "startTime": "2025-06-02 13:20:01",
 "endTime": "2025-06-02 13:20:01"
 }
 },
 "runtime": 0.0
 },
 {
 "description": "Aggregates geometries.",
 "processor": "Aggregator_invoeding",
 "dateTime": "2025-06-02 13:20:47",
 "LE_Algorithm": {
 "citation": "FME",
 "description": "Aggregates geometries.",
 "geo:hasGeom": "Yes",
 "geo:function": "geo:aggCentroid"
 },
 "LE_Processing": {
 "softwareReference": "FME(R) 2023.1.0.0 (20230825 - Build 23619 - WIN64)",
 "procedureDescription": "Processing step for geospatial data",
 "documentation": "Aggregates geometries.",
 "runtimeParameters": {
 "runtime": 0.0,
 "startTime": "2025-06-02 13:20:47",

83

 "endTime": "2025-06-02 13:20:47"
 }
 },
 "runtime": 0.0
 },
 {
 "description": "Aggregates geometries.",
 "processor": "Aggregator_2",
 "dateTime": "2025-06-02 13:19:12",
 "LE_Algorithm": {
 "citation": "FME",
 "description": "Aggregates geometries.",
 "geo:hasGeom": "Yes",
 "geo:function": "geo:aggCentroid"
 },
 "LE_Processing": {
 "softwareReference": "FME(R) 2023.1.0.0 (20230825 - Build 23619 - WIN64)",
 "procedureDescription": "Processing step for geospatial data",
 "documentation": "Aggregates geometries.",
 "runtimeParameters": {
 "runtime": 0.0,
 "startTime": "2025-06-02 13:19:12",
 "endTime": "2025-06-02 13:19:12"
 }
 },
 "runtime": 0.0
 }
],
 "LI_Source": [
 {
 "name": "capaciteitskaart_elektriciteitsnet_voedingsgebied",
 "description": "Writer_capaciteitskaart_elektriciteitsnet_voedingsgebied_2",
 "sourceReferenceSystem": "Netherlands-RDNew-2008",
 "sourceCitation": "dwh_stabiel",
 "sourceExtent": null
 },
 {
 "name": "capaciteitskaart_elektriciteitsnet_afname",
 "description": "Writer_capaciteitskaart_elektriciteitsnet_afname",
 "sourceReferenceSystem": "Netherlands-RDNew-2008",
 "sourceCitation": "dwh_stabiel",
 "sourceExtent": null
 },
 {
 "name": "capaciteitskaart_elektriciteitsnet_invoeding",
 "description": "Writer_capaciteitskaart_elektriciteitsnet_invoeding",
 "sourceReferenceSystem": "Netherlands-RDNew-2008",
 "sourceCitation": "dwh_stabiel",
 "sourceExtent": null
 }
]
 }
}

84

Appendix C: Example of JSON for Groenbeheer

{
 "Verversen_attributen_Regioindeling_Groenbeheer.FMW": {
 "LE_Source": [
 {
 "name": "Beheerregio",
 "sourceReferenceSystem": "Netherlands-RDNew-2008",
 "description": "FeatureReader",
 "sourceCitation": "$(DataDir)<solidus>*.mdb",
 "dateTime": "2025-05-28 15:04:13"
 }
],
 "LI_ProcessStep": [
 {
 "description": "Aggregates geometries.",
 "processor": "Aggregator_2",
 "dateTime": "2025-05-28 15:04:13",
 "LE_Algorithm": {
 "citation": "FME",
 "description": "Aggregates geometries.",
 "geo:hasGeom": "Yes",
 "geo:function": "geo:aggCentroid"
 },
 "LE_Processing": {
 "softwareReference": "FME(R) 2023.1.0.0 (20230825 - Build 23619 - WIN64)",
 "procedureDescription": "Processing step for geospatial data",
 "documentation": "Aggregates geometries.",
 "runtimeParameters": {
 "runtime": 0.0,
 "startTime": "2025-05-28 15:04:13",
 "endTime": "2025-05-28 15:04:13"
 }
 },
 },
 {
 "description": "Extracts the geometry from a file.",
 "processor": "GeometryExtractor",
 "dateTime": "2025-05-28 15:04:13",
 "LE_Algorithm": {
 "citation": "FME",
 "description": "Extracts the geometry from a file.",
 "geo:hasGeom": "Yes",
 "geo:function": "geo:asGeoJSON"
 },
 "LE_Processing": {
 "softwareReference": "FME(R) 2023.1.0.0 (20230825 - Build 23619 - WIN64)",
 "procedureDescription": "Processing step for geospatial data",
 "documentation": "Extracts the geometry from a file.",
 "runtimeParameters": {
 "runtime": 0.0,
 "startTime": "2025-05-28 15:04:13",
 "endTime": "2025-05-28 15:04:13"
 }
 },
 "runtime": 0.0
 },
 {
 "description": "Extracts the geometry from a file.",
 "processor": "GeometryExtractor_2",
 "dateTime": "2025-05-28 15:04:13",
 "LE_Algorithm": {
 "citation": "FME",
 "description": "Extracts the geometry from a file.",
 "geo:hasGeom": "Yes",
 "geo:function": "geo:asGeoJSON"
 },

85

 "LE_Processing": {
 "softwareReference": "FME(R) 2023.1.0.0 (20230825 - Build 23619 - WIN64)",
 "procedureDescription": "Processing step for geospatial data",
 "documentation": "Extracts the geometry from a file.",
 "runtimeParameters": {
 "runtime": 0.0,
 "startTime": "2025-05-28 15:04:13",
 "endTime": "2025-05-28 15:04:13"
 }
 },
 "runtime": 0.0
 }
],
 "LI_Source": [
 {
 "name": "masterdata.regioindeling_groenbeheer",
 "description": "Write_Beheerregios_groenbeheer_to_dwh_gis",
 "sourceReferenceSystem": "Netherlands-RDNew-2008",
 "sourceCitation": "gis",
 "sourceExtent": null
 }
]
 }

}

86

Appendix D: Example of JSON for Zon op Dak

{
 "ZonOpDak_data_naar_PostGIS.FMW": {
 "LE_Source": [
 {
 "name": "CSV",
 "sourceReferenceSystem": "Netherlands-RDNew-2008",
 "description": "FeatureReader",
 "sourceCitation": "F:\\dataservices\\data\\BP07\\1.csv",
 "dateTime": "2025-08-05 12:19:13"
 },
 {
 "name": "CSV",
 "sourceReferenceSystem": "Netherlands-RDNew-2008",
 "description": "FeatureReader",
 "sourceCitation": "F:\\dataservices\\data\\BP07\\1.csv",
 "dateTime": "2025-08-05 12:19:13"
 },
 {
 "name": "stg_data.mv_bouwwerk",
 "sourceReferenceSystem": "Netherlands-RDNew-2008",
 "description": "FeatureReader",
 "sourceCitation": "F:\\dataservices\\data\\BP07\\2.csv",
 "dateTime": "2025-08-05 12:19:13"
 }
],
 "LI_ProcessStep": [
 {
 "description": "Joins two feature streams by matching attribute keys (non-spatial
join). In SPARQL this is handled by the standard join of triple patterns on shared variables.",
 "processor": "Join_op_Uvid",
 "dateTime": null,
 "LE_Algorithm": {
 "citation": "FME",
 "description": "Joins two feature streams by matching attribute keys (non-
spatial join). In SPARQL this is handled by the standard join of triple patterns on shared
variables.",
 "geo:hasGeom": "Yes",
 "geo:function": "sp:join"
 },
 "LE_Processing": {
 "softwareReference": "FME(R) 2023.1.0.0 (20230825 - Build 23619 - WIN64)",
 "procedureDescription": "Processing step for geospatial data",
 "documentation": "Joins two feature streams by matching attribute keys (non-
spatial join). In SPARQL this is handled by the standard join of triple patterns on shared
variables.",
 "runtimeParameters": null
 }
 },
 {
 "description": "Joins two feature streams by matching attribute keys (non-spatial
join). In SPARQL this is handled by the standard join of triple patterns on shared variables.",
 "processor": "Join_op_Uvid_2",
 "dateTime": null,
 "LE_Algorithm": {
 "citation": "FME",
 "description": "Joins two feature streams by matching attribute keys (non-
spatial join). In SPARQL this is handled by the standard join of triple patterns on shared
variables.",
 "geo:hasGeom": "Yes",
 "geo:function": "sp:join"
 },
 "LE_Processing": {
 "softwareReference": "FME(R) 2023.1.0.0 (20230825 - Build 23619 - WIN64)",
 "procedureDescription": "Processing step for geospatial data",

87

 "documentation": "Joins two feature streams by matching attribute keys (non-
spatial join). In SPARQL this is handled by the standard join of triple patterns on shared
variables.",
 "runtimeParameters": null
 }
 }
],
 "LI_Source": [
 {
 "name": "zonopdak_ruimtelijk",
 "description": "ZonOpDak_Ruimtelijk",
 "sourceReferenceSystem": "Netherlands-RDNew-2008",
 "sourceCitation": "dwh_stabiel",
 "sourceExtent": null
 },
 {
 "name": "zonopdak_theoretisch",
 "description": "ZonOpDak_Theoretisch",
 "sourceReferenceSystem": "Netherlands-RDNew-2008",
 "sourceCitation": "dwh_stabiel",
 "sourceExtent": null
 }
]
 }
}

88

Appendix E: Code

import os
import xml.etree.ElementTree as ET
import json
from io import StringIO
import re

1. Geospatial-relation mapping
GEO_REL_MAP = {
 "AreaCalculator": {
 "geoRelation": "geof:area",
 "description": "Computes the area of polygonal geometries (units follow CRS)."
 },
 "BoundsExtractor": {
 "geoRelation": "geof:envelope",
 "description": "Returns the axis-aligned minimum bounding rectangle."
 },
 "BoundingBoxReplacer": {
 "geoRelation": "geof:envelope",
 "description": "Replaces the geometry with its envelope."
 },
 "Bufferer": {
 "geoRelation": "geof:buffer",
 "description": "Buffers geometry by a distance expressed in CRS units."
 },
 "Clipper": {
 "geoRelation": "geof:difference",
 "description": "Subtracts the clipping geometry from the source geometry."
 },
 "Intersector": {
 "geoRelation": "geof:intersection",
 "description": "Computes the geometric intersection of inputs."
 },
 "Dissolver": {
 "geoRelation": "geof:union",
 "description": "Unions overlapping or contiguous geometries into one."
 },
 "Unioner": {
 "geoRelation": "geof:union",
 "description": "Combines multiple geometries into their geometric union."
 },
 "LengthCalculator": {
 "geoRelation": "geof:length",
 "description": "Computes length of linear geometries (CRS units)."
 },
 "SpatialFilter": {
 "geoRelation": "geo:sfContains",
 "description": "Topological predicate: geometry A contains geometry B."
 },
 "GeometryPartExtractor": {
 "geoRelation": "geof:geometryN",
 "description": "Returns the N-th component geometry from a collection."
 },
 "GeometryPropertyExtractor": {
 "geoRelation": "geof:geometryType",
 "description": "Returns the geometry’s type (e.g., Point, Polygon)."
 },
 "Affiner": {
 "geoRelation": "geof:transform",
 "description": "Transforms geometry coordinates using an affine transform."
 },
 "CoordinateSystemExtractor": {
 "geoRelation": "geof:getSRID",
 "description": "Retrieves the Spatial Reference ID of the geometry."
 },
 "CentroidReplacer": {

89

 "geoRelation": "geof:centroid",
 "description": "Replaces geometry with its centroid."
 },
 "ConvexHullReplacer": {
 "geoRelation": "geof:convexHull",
 "description": "Replaces geometry with its convex hull."
 },
 "DistanceCalculator": {
 "geoRelation": "geof:distance",
 "description": "Returns distance between geometries (CRS units)."
 }
}

Function to parse log files
def parse_log_file(log_file_path):
 log_data = {
 "dateTime": None,
 "sourceReferenceSystem": None,
 "sourceCitation": []
 }
 with open(log_file_path, "r", encoding="utf-8") as f:
 lines = f.readlines()
 for line in lines:
 # Extract dateTime
 if re.match(r"^\d{4}-\d{2}-\d{2} \d{2}:\d{2}:\d{2}", line):
 log_data["dateTime"] = line.split("|")[0].strip()

 # Extract sourceReferenceSystem
 if "|INFORM|" in line and "Coordinate System" in line:
 match = re.search(r"\|INFORM\|Coordinate System `([^`]+)'", line)
 if match:
 log_data["sourceReferenceSystem"] = match.group(1)

 # Extract sourceCitation (dataset paths)
 if "Opening dataset" in line:
 match = re.search(r"Opening dataset '([^']+)'", line)
 if match:
 log_data["sourceCitation"].append(match.group(1))

 return log_data

def parse_FMW_xml(path):
 # STEP A: Read & strip the FME "#!" comment prefixes
 with open(path, 'r', encoding='utf-8') as f:
 raw = f.readlines()
 cleaned = []
 for line in raw:
 # Remove "#!" prefixes and any lines starting with "#"
 if line.startswith('#! '):
 cleaned.append(line[3:])
 elif line.startswith('#!'):
 cleaned.append(line[2:])
 elif line.startswith('#'):
 continue # Skip lines starting with "#"
 else:
 cleaned.append(line)

 # STEP B: Truncate after the closing </WORKSPACE>
 last_ws = max((i for i, l in enumerate(cleaned) if l.strip().startswith('</WORKSPACE>')),
default=None)
 if last_ws is None:
 raise ValueError("Closing </WORKSPACE> tag not found in the XML file.")
 xml_content = ''.join(cleaned[: last_ws + 1])

 # STEP C: Validate and clean XML content
 # Ensure the XML starts with a valid declaration
 if not xml_content.strip().startswith('<?xml'):

90

 xml_content = '<?xml version="1.0" encoding="UTF-8"?>\n' + xml_content

 # STEP D: Parse XML
 try:
 root = ET.fromstring(xml_content)
 except ET.ParseError as e:
 raise ValueError(f"Failed to parse XML: {e}")

 workspace_name = os.path.basename(path).replace('.xml', '.FMW')
 result = {workspace_name: {}}

 # Extract LAST_SAVE_BUILD parameter for softwareReference
 software_reference = None
 for line in cleaned:
 if "LAST_SAVE_BUILD" in line:
 software_reference = line.split('=')[1].strip().strip('"')
 break

 # LE_Source: Extract input sources from <TRANSFORMER> sections
 readers = []
 transformers = root.find('TRANSFORMERS')
 if transformers is not None:
 for transformer in transformers.findall('TRANSFORMER'):
 if transformer.get('TYPE') == 'FeatureReader':
 for output_feat in transformer.findall('OUTPUT_FEAT'):
 name = output_feat.get('NAME', '')
 # Filter out irrelevant terms
 if name and name not in ['<SCHEMA>', '<OTHER>', 'INITIATOR', '<REJECTED>']:
 readers.append({
 "name": name,
 "sourceReferenceSystem": None,
 "description": transformer.get('TYPE', ''),
 "sourceCitation":
transformer.find('./XFORM_PARM[@PARM_NAME="DATASET"]').get('PARM_VALUE', ''),
 })
 result[workspace_name]["LE_Source"] = readers

 # LI_ProcessStep: Add LE_Processing as a nested heading
 lineage = []
 if transformers is not None:
 for t in transformers.findall('TRANSFORMER'):
 ttype = t.get('TYPE', '')
 parms = {xp.get('PARM_NAME', ''): xp.get('PARM_VALUE', '') for xp in
t.findall('XFORM_PARM')}
 geo_relation_data = GEO_REL_MAP.get(ttype, {})
 geo_relation = geo_relation_data.get("geoRelation")
 description = geo_relation_data.get("description", "No description available.")
 if geo_relation: # Only include transformers with a geoRelation
 lineage.append({
 "description": description,
 "processor": parms.get('XFORMER_NAME', ''),
 "dateTime": None,
 "LE_Algorithm": {
 "citation": None,
 "description": None,
 "geo:hasGeom": "Yes",
 "geo:function": geo_relation,
 },
 "LE_Processing": {
 "identifier": t.get('ID', ''),
 "softwareReference": software_reference,
 "procedureDescription": "Processing step for geospatial data",
 "documentation": description,
 "runtimeParameters": None
 }
 })
 result[workspace_name]["LI_ProcessStep"] = lineage

91

 # LI_Source: FeatureWriter transformers as sources
 sources = []
 if transformers is not None:
 for t in transformers.findall('TRANSFORMER'):
 if t.get('TYPE') == 'FeatureWriter':
 parms = {xp.get('PARM_NAME', ''): xp.get('PARM_VALUE', '') for xp in
t.findall('XFORM_PARM')}
 dataset_param = t.find('./XFORM_PARM[@PARM_NAME="WRITER_FEATURE_TYPE_PARAMS"]')
 name = dataset_param.get('PARM_VALUE', '') if dataset_param is not None else None
 # Truncate the name to only include the portion before the first colon
 if name and ':' in name:
 name = name.split(':')[0]
 sources.append({
 "name": name,
 "description": parms.get('XFORMER_NAME', ''),
 "sourceReferenceSystem": None,
 "sourceCitation": parms.get('DATASET', ''),
 "sourceExtent": None,
 })
 result[workspace_name]["LI_Source"] = sources

 return result
Combine log data with parsed XML data
def combine_data(xml_data, log_data):
 for workspace, details in xml_data.items():
 # Add dateTime and sourceReferenceSystem to LE_Source
 for i, source in enumerate(details.get("LE_Source", [])):
 source["dateTime"] = log_data.get("dateTime")
 source["sourceReferenceSystem"] = log_data.get("sourceReferenceSystem")
 # Assign sourceCitation from log_data if available
 if i < len(log_data.get("sourceCitation", [])):
 source["sourceCitation"] = log_data["sourceCitation"][i]

 return xml_data
def main():
 # Hard-coded path to your XML workspace
 workspace_xml = r"H:\Mijn
documenten\Repo\postgresql\geostep_scripts\Capaciteitskaart_Elektriciteitsnet\Capaciteitskaart_E
lektriciteitsnet.FMW"
 log_file_path = r"H:\Mijn documenten\Repo\postgresql\datamodel_scripts\Data_model_tool\log
files\Capaciteitskaart_Elektriciteitsnet.log"
 output_file = r"H:\Mijn
documenten\Repo\postgresql\datamodel_scripts\Data_model_tool\FMW_parser\FMW_output.json"

 # Parse XML and log file
 parsed = parse_FMW_xml(workspace_xml)
 log_data = parse_log_file(log_file_path)

 # Combine data
 combined_data = combine_data(parsed, log_data)

 # Save to JSON file
 with open(output_file, 'w', encoding='utf-8') as fout:
 json.dump(combined_data, fout, indent=4, ensure_ascii=False)

 print(f"Output saved to {output_file}")

if __name__ == "__main__":
 main()

