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Abstract

The transition towards sustainable energy systems presents significant analytical challenges. Urban
distribution networks are characterised by heterogeneous data sources, complex physical hierarchies,
and pronounced temporal variability in both demand and generation. Effective planning therefore
requires tools that can integrate diverse datasets, respect electrical constraints, and generate inter-
pretable results that are directly useful for decision-making.

This thesis develops a methodological framework that integrates knowledge graphs (KGs) and graph
neural networks (GNNs) to identify and characterise energy communities in low-voltage urban net-
works. The KG provides a semantic backbone for representing buildings, grid hierarchies, and tem-
poral energy states in a physically faithful manner. The GNN builds on this representation through
constraint-aware learning, discovering communities that are both infrastructure-consistent and tempo-
rally complementary.

The research was guided by four questions. RQ1 investigated which nodes, attributes, and edges are
essential for energy network representation in a KG. The study identified buildings, LV cable groups,
transformers, and adjacency clusters as the core entities, enriched with both spatial and non-spatial
attributes. RQ2 examined how heterogeneous urban energy datasets can be integrated into a KG to
reflect system complexity. A unified data pipeline was developed, enabling automated construction and
updating of the KG from diverse sources while preserving grid topology and physical constraints. RQ3
explored how KGs and GNNs can be combined to enhance clustering and analysis of energy systems.

A complementarity-aware GNN architecture with custom loss functions was implemented, embedding
grid boundaries and load-balancing rules to ensure physically valid and interpretable clustering out-
comes. RQ4 focused on identifying suitable GNN approaches for time-based and dynamic clustering
and evaluating their performance. Temporal modules and constraint-aware pooling mechanisms were
applied, with performance assessed using metrics such as cluster cohesion, complementarity, and
self-sufficiency.

In conclusion, the integrated framework achieved composite community quality Qc = 0.623, temporal
stability St = 0.85, and LV compliance RLV = 0.92, meeting predefined performance targets. While the
KG construction pipeline demonstrated robust automation and scalability potential, the GNN compo-
nent delivered only modest performance gains over simpler clustering baselines at the tested scale,
while requiring substantially higher computational effort. The primary contribution therefore lies in
establishing a methodological foundation—automated graph construction and constraint-aware learn-
ing architecture—that provides scalability for future large-scale, heterogeneous urban energy systems
where GNN’s representational capacity becomes essential.

Furthermore, the framework offers methodological innovation through automated KG construction and
constraint-aware GNN architecture, establishing a validated foundation for large-scale energy sys-
tem analysis. At the tested scale (63 buildings), simpler clustering methods may offer better cost-
effectiveness; the GNN component’s value emerges in complex scenarios (>500 buildings, dynamic
DER, multi-objective optimization) where architectural sophistication becomes necessity rather than
luxury.
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Nomenclature

Abbreviations
Abbreviation Definition

AC Alternating Current
ARI Adjusted Rand Index
BCE Binary Cross-Entropy
DER Distributed Energy Resources
DSO Distribution System Operator
ECE Expected Calibration Error
EV Electric Vehicle
GAT Graph Attention Network
GCN Graph Convolutional Network
GNN Graph Neural Network
GRU Gated Recurrent Unit
HCR Multi-hop Contribution Ratio
KG Knowledge Graph
LV Low Voltage
MV Medium Voltage
PV Photovoltaic
UQ Uncertainty Quantification

Symbols
Symbol Definition Unit

G = (V,E) Graph with node set V (buildings) and edge set E (connec-
tions)

[–]

A Adjacency matrix of G [–]
xi(t) Time series signal of building i (e.g., net load) [kW]
L̃i,t Standardized net-load time series of building i [–]
ρij Correlation coefficient between buildings i and j [–]
Cij Complementarity score (1−ρij)/2 between buildings i and

j
[–]

Ck Set of buildings in cluster k [–]
c(i) Cluster assignment of building i [–]
K Number of clusters (global or per LV feeder) [–]
LV(i) LV group identifier of building i [–]
N (i) Neighborhood of node i (1-hop unless specified) [–]
dij Electrical or spatial distance between nodes i and j [m] or [–]
rij Edge impedance/resistance proxy [–]
hi Node embedding in GNN layers [–]
αij Attention weight from node i to j [–]
M LV boundary mask applied to assignment logits [–]
S Soft cluster assignment matrix in pooling layers [–]
ztemp
i Temporal embedding of building i [–]

r̄(h) Average h-hop correlation of node embeddings [–]
HCR Multi-hop contribution ratio [–]
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iv

Symbol Definition Unit

pi Soft assignment/probability vector for building i [–]
ŷi Pseudo-label of building i [–]
Γi Fused confidence score for pseudo-label acceptance [–]
τt Confidence threshold at training stage t [–]
τmin Minimum confidence threshold [–]
ρ Threshold decay factor in curriculum schedule [–]
η Regularization coefficient in semi-supervised objective [–]
λQ Weight for cluster-quality loss component [–]
λS Weight for cluster-size regularization [–]
λLV Weight for LV-boundary violation penalty [–]
λR Weight for embedding regularization term [–]
⊮{·} Indicator function [–]
Qc Community quality score (complementarity + spatial coher-

ence)
[–]

St Temporal stability metric of cluster assignments [–]
RLV LV-boundary compliance rate [–]
mean

(W,f)
t Rolling average for feature f over window W [–]

std
(W,f)
t Rolling standard deviation for feature f over window W [–]

π(v) Hierarchical positional encoding of node v (building, feeder,
transformer)

[–]

Ψ(v, t) Node–time feature map after preprocessing [–]
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1
Introduction

1.1. Background
The global energy sector is undergoing a profound transformation driven by the dramatic escalation
of energy demand and the depletion of fossil fuels becoming an undeniable trend, as surveyed by
Aniakor et al. (2024) [3] and Pritoni et al. (2021) [48]. This shift toward renewable energy integration
fundamentally alters the architecture of energy systems, moving from traditional centralized power
generation to increasingly decentralized networks of distributed energy resources, which introduces
unprecedented operational complexities in system coordination and management.

This structural transformation creates multifaceted challenges for modern energy infrastructure. Decen-
tralized energy systems must now coordinate diverse generation sources with varying output patterns,
manage bidirectional power flows, and accommodate real-time demand response mechanisms, a point
emphasized by Aniakor et al. (2024) [3] and Pritoni et al. (2021) [48]. These operational complexities are
further compounded by the need for more sophisticated monitoring, control, and optimization capabili-
ties across distributed networks, which require more flexible, data-driven decision-making capabilities
than traditional centralized systems can provide.

Among these emerging challenges, data management has become a critical bottleneck in the evolution
of intelligent energy systems. The transformation has resulted in the generation of vast amounts of
diverse and often unstructured data from multiple sources, posing significant challenges to traditional
energy management systems that are predicated on centralized control and structured data formats,
as documented by Aniakor et al. (2024) [3] and Pritoni et al. (2021) [48]. Popadić et al. (2023) [46]
emphasize the difficulties in managing the massive and heterogeneous data volumes in modern energy
systems, clearly demonstrating that traditional data processing methods are insufficient to address the
complexity of contemporary energy networks. Furthermore, the datasets storing energy data are often
incompatible with intelligent analysis applications due to differences in format and intelligent analysis
algorithms such as neural networks, which hinders the further intelligence of urban energy data and the
development of various intelligent analyses including neural network analysis and cluster analysis; this
concern is echoed by Guo (2024) [19] and Liu et al. (2023) [34]. This necessitates the establishment
of interconnected data structures capable of accommodating and uniformly managing diverse types
of energy data to support advanced analytics capabilities essential for next-generation energy system
optimization.

Local power grids face multifaceted challenges in energy management, with the most prominent issue
being the temporal and spatial misalignment in supply-demand matching. Due to the absence of effec-
tive intelligent scheduling mechanisms, local energy production and consumption often fail to achieve
dynamic equilibrium, resulting in suboptimal energy allocation efficiency. Temporal supply-demand
imbalances pose severe challenges, where buildings equipped with solar photovoltaic (PV) systems
generate substantial electricity during daylight hours when solar irradiance is abundant, yet their own
electricity consumption is relatively low. Conversely, commercial buildings or residential areas require
significant power supply during nighttime peak demand periods when solar generation capacity is lim-

1



1.1. Background 2

ited. This temporal mismatch leads to energy resource waste and supply-demand gaps; Murphy et
al. (2023) [39] further substantiate this phenomenon through their analysis of temporal complementar-
ity in variable renewable energy (VRE) resources, finding that individual types of renewable energy
generation exhibit distinct temporal variability characteristics.

Spatial distribution imbalances exacerbate allocation challenges, where different regions and building
types exhibit significant variations in energy production and consumption characteristics, yet existing
grid management systems lack sophisticated regional coordination mechanisms, preventing effective
cross-regional energy allocation and complementarity. From a geographical distribution perspective,
Murphy et al. (2023) [39] demonstrate that renewable energy resources in different regions exhibit dif-
ferentiated complementarity characteristics: in the western United States, wind and solar PV resources
show excellent co-located complementarity; in the wind belt and surrounding areas, co-located wind
and PV resources demonstrate high complementarity; while in the northeastern and southeastern re-
gions, the complementarity intensity among various renewable energy resources varies significantly
across regions. This spatial heterogeneity underscores both the importance and complexity of estab-
lishing cross-regional coordination mechanisms. Energy complementarity emerges as a fundamental
solution to these temporal and spatial misalignments, offering a pathway to optimize resource utilization
through intelligent clustering and coordination of complementary energy profiles.

Traditional correlation-based approaches for assessing energy complementarity have shown significant
limitations in capturing the true nature of temporal relationships between energy profiles, as argued by
Cantor et al. (2022) [10]. Beyond static correlation measures, advanced complementarity assessment
methods have demonstrated substantially improved accuracy in identifying optimal building clusters
that can achieve genuine load balancing and peak shaving effects. In particular, dynamic energy pro-
file analysis has proven essential for identifying truly complementary energy consumers—for instance,
pairing industrial facilities with residential areas can achieve significant peak reduction with limited pop-
ulation participation, as illustrated by Xiao et al. (2023) [64].

Despite the theoretical promise of energy complementarity and advanced assessment approaches,
several critical implementation barriers prevent their widespread adoption in real-world energy sys-
tems. The widespread adoption of renewable energy systems (RES) introduces system-level grid
stability challenges. Barone et al. (2023) [6] indicate that large-scale RES integration leads to sig-
nificantly increased grid fluctuations, potentially triggering serious power quality issues such as voltage
and frequency imbalances. The inherent unpredictability characteristics of RES, combined with the de-
centralization trend in energy production, present unprecedented challenges to traditional centralized
grid management paradigms. This volatility stems not only from the intermittent nature of renewable
energy resources but is also closely related to their distributed deployment patterns, where dispersed
generation units significantly reduce overall system predictability and controllability.

From a data integration perspective, the datasets storing energy data are often incompatible with in-
telligent analysis applications due to differences in format and intelligent analysis algorithms such as
neural networks. This hinders the further intelligence of urban energy data and the development of var-
ious intelligent analyses including neural network analysis and cluster analysis, a gap also highlighted
by Guo (2024) [19] and Liu et al. (2023) [34]. The challenge of dynamic clustering represents a partic-
ularly complex barrier, as energy networks require continuous real-time restructuring under constantly
changing loads, generation, or policy constraints. Traditional clustering approaches lack the adaptabil-
ity required for such dynamic environments, where building energy clustering configurations must be
updated frequently to maintain optimal complementarity.

Current approaches fail to address these challenges due to fundamental limitations in their design
and implementation paradigms. The direct consequences of these failures are multifaceted: At the
technical level, grid systems not only bear additional power transmission losses, particularly during long-
distance transmission where energy loss rates increase significantly, but also face difficulties in voltage
regulation and frequency control caused by RES volatility. At the economic level, inefficient energy
allocation increases both temporal and economic costs of system operation, while grid fluctuations
require additional balancing services and reserve capacity, further escalating system operational costs.
At the equipment level, grid infrastructure faces congestion pressures, with critical equipment such as
transformers frequently experiencing overload conditions that not only affect power supply stability but
also accelerate equipment aging and increase maintenance costs. Additionally, Murphy et al. (2023)
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[39] emphasize that due to the lack of effective resource integration mechanisms, local grids cannot
fully utilize the synergistic effects of complementary resources to improve capacity factors, reduce
curtailment, and achieve cost synergies.

As Wang et al. (2016) [61], Vergados et al. (2016) [60], and Barone et al. (2023) [6] indicate in their
respective research, the root causes of these challenges lie in the limitations of traditional grid oper-
ation paradigms. Confronting the unpredictability of RES and the decentralization of energy produc-
tion, developing local energy communities represents a promising solution for minimizing power losses
and promoting sustainable energy practices [6]. This community-based energy management model
not only effectively addresses grid fluctuation issues caused by RES but also reduces long-distance
transmission losses through localized energy balancing mechanisms, thereby improving overall system
efficiency.

1.1.1. The Research Gap
The primary research gap lies in the urgent need to address continuous real-time restructuring of energy
networks—dynamic clustering of buildings or resources under constantly changing loads, generation,
or policy constraints, as discussed by Hussain et al. (2019) [27]. While knowledge graphs provide
semantic clarity and graph neural networks offer advanced pattern recognition capabilities, maximiz-
ing the ontological consistency between knowledge graphs and GNNs for real-time clustering analysis
of energy systems remains inadequately explored. The complementary clustering problem holds sig-
nificant research value in urban energy networks as it can improve energy production and utilization
efficiency while optimizing power scheduling within the grid.

Key technical challenges that current implementations fail to address include: First, the standardiza-
tion of complementarity loss functions specifically tailored for energy applications, as existing general-
purpose GNN frameworks lack domain-specific optimization criteria (cf. Wu et al. 2021 [63]). Second,
the effective combination of Dynamic Time Warping (DTW) with GNN architectures for enhanced tem-
poral modeling in energy demand patterns, which is essential given the time-series nature of energy
consumption data (see also Zhang et al. 2021 [68]). Third, the development of standardized bench-
marks comparing complementarity metrics in energy contexts, as current evaluation frameworks do
not adequately capture the unique characteristics of energy system performance (related discussions
in Tsitsulin et al. 2023 [55] and Pelekis et al. 2023 [44]).

Additionally, physical grid constraints must be integrated into the clustering methodology. When build-
ings are powered by the same transformer, they should undergo complementary clustering while ad-
hering to real-world physical grid constraints. The clustering implementation must satisfy two critical
requirements: First, clustered buildings should be powered by the same transformer, ensuring compli-
ance with actual grid topology. Second, clustering should possess real-time characteristics, meaning
each time point in the time series should have different building energy clustering configurations—in
this research.

Furthermore, current research lacks physics-informed GNN architectures that incorporate sufficient
domain knowledge specific to energy systems, federated learning approaches for privacy-preserving
clustering across multiple utilities, and real-time adaptation mechanisms for dynamic grid conditions.
These limitations prevent the full realization of GNN potential in energy management applications (com-
pare Pagnier & Chertkov, 2021 [43]; Authier et al., 2024 [4]).

To address these fundamental limitations, this research proposes a novel integration of knowledge
graphs (KG) and graph neural networks (GNN) for energy demand complementarity clustering. Knowl-
edge graphs provide a structured approach to representing and integrating complex and interconnected
data from diverse sources, offering a unified, semantically rich view of energy systems, as introduced
by Sajid (2023) [51]. They facilitate the integration of heterogeneous data and support advanced rea-
soning and query capabilities, which are crucial for managing the complexity of modern energy systems.
Knowledge graphs excel in managing dynamic heterogeneous data, capable of storing rich semantics
suitable for storing multi-level, multi-type energy network data, and can explicitly represent complex re-
lationships in urban energy systems, such as grid topological structures, supply-demand relationships,
and geographical adjacency relationships, according to Liu et al. (2023) [34] and Chen et al. (2022)
[11].
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Several studies have successfully utilized knowledge graphs and graph neural networks to enhance
energy systems. For example, Kimball (2024) [29] demonstrates how knowledge graphs can connect
different energy data sources, thereby improving interoperability. Furthermore, Fusco et al. (2020) [16]
discuss GNN frameworks for grid congestion prediction and market bidding services. These integra-
tions facilitate more intelligent and efficient energy management. GNNs are particularly suitable for
graph-based data and can perform complex tasks such as knowledge graph completion (KGC), pre-
dictive modeling, and real-time optimization. Liu (2024) [35] and Xu et al. (2023) [65] demonstrate
the effectiveness of GNNs in knowledge graph completion and real-time optimization, making them
powerful tools for addressing the dynamic characteristics of modern energy systems.

Knowledge Graphs (KGs) and Graph Neural Networks (GNNs) exhibit a fundamental ontological align-
ment in their representation of energy systems, as both paradigms are inherently predicated on the
graph-theoretic formalism. This ontological commitment manifests through their shared structural foun-
dation: energy networks are intrinsically modeled as graphs G = (V, E), where components (e.g.,
substations, generators, transformers) constitute vertices V and interconnections (e.g., transmission
lines, control relationships) form edges E .

As established by Liu et al. (2023) [34], KGs explicitly encode power systems as semantic graphs where
entities (nodes) and their relations (edges) incorporate domain-specific knowledge, operational con-
straints, and physical laws. Concurrently, Chen et al. (2022) [11] demonstrate that GNNs leverage this
identical topological structure to learn latent representations through message-passing mechanisms
across nodes and edges. This structural isomorphism enables direct mathematical compatibility:

• KGs formalize domain knowledge as structured triples (h, r, t) ⊆ V ×R× V (head, relation, tail),
capturing explicit semantics of power system entities and relationships (Liu et al., 2023 [34]).

• GNNs exploit the adjacency matrix A and node features X derived from G to perform feature
propagation via H(l+1) = σ

(
ÂH(l)W(l)

)
, learning implicit patterns from connectivity and at-

tributes (Chen et al., 2022 [11]).

This ontological convergence creates a theoretically grounded foundation for integration: the KG’s se-
mantic schema provides contextual constraints and reasoning rules, while GNNs offer inductive learn-
ing capabilities over the shared graph structure. Despite this intrinsic compatibility, current research
has not systematically unified KG-enhanced reasoning with GNN-based learning for complex energy
network tasks—a gap noted in both reviews by Liu et al. (2023) [34] and Chen et al. (2022) [11]. Fu-
ture work should exploit this ontological symmetry to develop hybrid architectures where symbolic KG
reasoning guides subsymbolic GNN learning within a unified graph representation of energy infrastruc-
tures.

According to Hofer et al. (2023) [22], machine learning can benefit from KG as labeled training data,
thereby improving the quality and interpretability of AI decision-making, which means KG can support
data-driven AI energy analysis. Due to ontological consistency, GNNs can directly learn features on
knowledge graph structures. Knowledge graphs can also provide GNNs with rich semantic information
details of urban energy networks, such as grid topological structures, supply-demand relationships, and
geographical adjacency relationships. Therefore, their combination can bring tremendous intelligent
empowerment to urban energy network analysis. GNNs excel in handling various graph structure
problems, including clustering problems (see also Bose, 2017 [8]).

This research aims to bridge these gaps by exploring the combined application of knowledge graphs
and graph neural networks to enhance the efficiency, reliability, and sustainability of energy manage-
ment systems. The study seeks to leverage the strengths of both technologies, combined with ad-
vanced complementarity assessment metrics and physics-informed constraints, to develop a compre-
hensive data-driven approach for managing the complexity of modern energy systems. By addressing
these research gaps, this work provides new optimization and adaptability opportunities to tackle the
increasingly complex and interconnected nature of the global energy sector, positioning GNN-based
energy demand complementarity clustering as a transformative technology for future energy systems.

This research makes several key contributions to the field of intelligent energy management through
the integration of Knowledge Graphs and Graph Neural Networks: First, we establish a unified knowl-
edge graph architecture for energy network representation, identifying essential nodes, attributes, and
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edges required for effective KG construction from heterogeneous urban building spatial and non-spatial
energy datasets, with an automated pipeline ensuring comprehensive integration that reflects energy
system complexities. Second, we design and implement a novel integration methodology between
Knowledge Graphs and Graph Neural Networks for enhanced energy system analysis, developing
complementarity-awareGNNmodels with custom loss functions optimized tominimize peak-to-average
ratio, maximize self-consumption, and balance load curves through clustering learning based on com-
plementarity rather than similarity. Third, we determine optimal GNN approaches for time-based and
dynamic clustering within the Knowledge Graph framework by embedding physical constraints into
learning through adaptive clustering mechanisms, specifically addressing dynamic energy production
and demand pattern analysis in regional energy systems. Fourth, we establish comprehensive vali-
dation and benchmarking frameworks with quantitative metrics for complementarity assessment and
performance measurement of the integrated KG-GNN approach in energy system clustering applica-
tions. Finally, we demonstrate significant improvements in data accessibility, interoperability, and rela-
tional analytics for regional energy system management, providing a scalable solution that enhances
decision-making capabilities through the synergistic combination of knowledge representation and neu-
ral network architectures.

In summary, the challenges of data heterogeneity, temporal imbalance, and physical constraint in-
tegration collectively motivate the need for a unified analytical framework that can bridge semantic
representation and predictive learning. These motivations directly lead to the research objectives and
questions outlined in the following chapter.

This paper is organized as follows: Section 2 proposed research questions and research objectives.
Section 3 reviews related work in knowledge graph in energy systems, streaming data integration ar-
chitectures for knowledge graphs, machine learning on graphs, energy demand complementary, GNN-
based methods for dynamic clustering, and evaluation framework. Section 4 presents the methodology,
including the knowledge graph construction, GNN architecture design, and complementarity-aware
clustering algorithm. Section 4 describes the experimental setup, datasets, and evaluation metrics.
Section 5 presents and analyzes the experimental results, comparing our approach with current base-
lines. Section 6 discusses the implications of our findings, limitations, and future research directions.
Finally, Section 7 concludes the paper and summarizes the main contributions.



2
Research Objective

In this section, the research objective is claimed, the main research question and sub-questions are
defined, furthermore, the research scope (must, must not and could) is introduced.

This research addresses the fundamental challenge of improving data accessibility, interoperability,
and relational analytics in regional energy system management through the integration of Knowledge
Graphs (KG) and Graph Neural Networks (GNN). The research objectives encompass four primary
goals that directly correspond to the identified research questions.

First, to establish the foundational elements of energy network representation by identifying essential
nodes, attributes, and edges required for effective Knowledge Graph construction from urban building
spatial and non-spatial energy datasets. This involves developing a unified knowledge graph architec-
ture with an automated pipeline for constructing and updating knowledge graphs from heterogeneous
data sources, ensuring comprehensive integration that reflects energy system complexities.

Second, to design and implement the integration methodology between Knowledge Graphs and Graph
Neural Networks for enhanced energy system analysis and clustering. This includes developing complementarity-
aware GNN models with custom loss functions optimized to minimize peak-to-average ratio, maximize
self-consumption, and balance load curves, while creating a GNN architecture that performs clustering
learning based on complementarity rather than similarity.

Third, to determine optimal GNN approaches for time-based and dynamic clustering within the Knowl-
edge Graph framework by embedding physical constraints into learning through adaptive clustering
mechanisms, specifically focusing on dynamic energy production and demand pattern analysis.

Fourth, to establish comprehensive validation and benchmarking frameworks by developing quantita-
tivemetrics for complementarity assessment and performancemeasurement of the integrated KG-GNN
approach in energy system clustering applications.

2.1. Research Question
Main Question: How can integrating a Knowledge Graph (KG) with a Graph Neural Network (GNN)
improve data accessibility, interoperability, and relational analytics (e.g., clustering, link prediction) for
the management of regional energy systems?

Sub-Questions:

1. What are the essential nodes, attributes, and edges to define in an energy network for effective
representation in a Knowledge Graph (KG)?

2. What is the process for constructing a Knowledge Graph (KG) based on urban building spatial and
non-spatial energy-related dataset, and how can the data be integrated to reflect the complexities
of the energy system?

6
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3. How can Knowledge Graphs (KGs) and Graph Neural Networks (GNNs) be combined to enhance
analysis and clustering in energy system models, including recommendations for optimal solar
panel deployment?

4. Which GNN approach best supports time-based or dynamic clustering in the KG, and how to
measure its performance?

2.2. Research Scope
This thesis is situated at the intersection of knowledge graph construction and graph neural network
modelling for urban energy systems. The scope of the research is defined by three dimensions: (i) the
system boundary, (ii) the methodological objectives, and (iii) the exclusions and potential extensions.

System boundary. The study focuses on abstracted representations of regional energy systems de-
rived from heterogeneous urban datasets. Entities such as buildings, low-voltage groups, solar panels,
and batteries are represented as nodes in a knowledge graph, while electrical or spatial relationships
(e.g., feeder membership, adjacency, transformer domain) are encoded as edges. The emphasis is
on the semantic and topological structure of the network rather than on hardware-level modelling of
physical circuits or devices.

Methodological objectives. The core deliverable is the integration of Knowledge Graphs (KGs)
with Graph Neural Networks (GNNs) to support:

• Energy community discovery: identifying clusters of buildings that exhibit temporal complemen-
tarity in their demand and generation profiles while remaining consistent with LV feeder bound-
aries.

• Decision-support indicators: producing interpretable outputs (e.g., SSR, SCR, complementar-
ity indices, and uncertainty bounds) that inform energy planning and community-scale interven-
tions.

Exclusions. The research does not address hardware implementation, physical circuit modelling, or
operational control of real distribution grids. Energy conservation techniques and behavioural energy-
saving mechanisms are also out of scope. Furthermore, reinforcement learning (RL) is not explored,
as the methodological focus is restricted to KG construction and GNN-based clustering and prediction.

Potential extensions. Subject to time and resources, the framework could be extended to additional
GNN tasks such as link prediction (e.g., inferringmissing relationships in the energy graph) and anomaly
detection (e.g., detecting inconsistent or unusual consumption profiles). These extensions would fur-
ther demonstrate the versatility of the KG–GNN architecture for energy system analysis and manage-
ment.

Having defined the research goals and scope, the next chapter reviews the state of the art in knowledge
graphs, graph neural networks, and energy clustering to identify existing solutions and methodological
gaps that inform the design of our framework.



3
Related Work

Knowledge graphs (KG) and graph neural networks (GNN), along with their integration, are receiving
widespread attention in the field of complex system analysis, as highlighted by Popadic et al. (2023)
[46], Li et al. (2023) [32], and Liu et al. (2024) [35]. These technologies provide innovative solutions
for managing the complex interconnected data characteristic of modern energy systems. However, the
effective integration of these technologies for energy system management requires a comprehensive
understanding of their individual capabilities, limitations, and synergistic potential. For example, KG-
based modules such as the LV-Group Boundary Enforcer explicitly guarantee that energy sharing does
not cross transformer boundaries, thereby embedding physical feasibility into the representation. In
contrast, GNN-based modules such as the Multi Hop Aggregator capture higher-order interactions by
propagating information across multiple hops, enabling the detection of demand–generation balancing
opportunities beyond immediate neighbors. When combined, as in the Temporal Evolution Predictor,
the KG–GNN integration allows long-term forecasting of community reorganization under staged solar
deployments, ensuring that predictions remain both physically consistent and dynamically adaptive to
new interventions.

This section systematically reviews the existing literature across six critical dimensions that directly ad-
dress the research questions posed in this study. First, we examine knowledge graph construction and
management approaches in energy systems to establish the foundation for addressing what essential
nodes, attributes, and edges are required for effective energy network representation. Second, we an-
alyze graph neural network applications in energy domains to understand which GNN approaches best
support time-based clustering and how their performance can be measured. Third, we investigate en-
ergy system clusteringmethodologies, with particular emphasis on complementarity-based approaches
versus traditional similarity-based methods, to inform the development of our complementarity-aware
clustering framework. Fourth, we explore the emerging field of KG-GNN integration to address the
central question of how these technologies can be combined to enhance analysis and clustering capa-
bilities. Fifth, we review approaches for incorporating physical constraints and real-world operational
requirements, as these directly impact the practical applicability of clustering solutions in actual grid in-
frastructures. Finally, we examine performance evaluation frameworks and benchmarking methodolo-
gies to establish appropriatemetrics for assessing the effectiveness of integrated KG-GNN approaches.

3.1. Knowledge Graph Construction and Management in Energy Sys-
tems

3.1.1. Knowledge Graph Foundations and Paradigm Evolution
Knowledge graphs represent a fundamental paradigm shift in knowledge representation and manage-
ment, with their conceptual roots tracing back to ancient philosophical reasoning principles. As Chen
et al. (2020) [12] note, reasoning techniques have evolved from Aristotle’s syllogism in ancient Greece
through Lambda Calculus to modern intelligent computing platforms, with knowledge graphs repre-

8
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senting a contemporary manifestation of this evolutionary trajectory. The core principle underlying
knowledge graphs—using known knowledge to infer new knowledge through logical rules—remains
consistent with these historical foundations.

The modern conception of knowledge graphs, while building upon earlier expert systems developed in
the late 1960s as discussed by Chen et al. (2020) [13], gained prominence following Google’s 2012
Knowledge Graph announcement according to Hogan et al. (2021) [23]. This industrial adoption cat-
alyzed widespread development across major technology companies, including Amazon, eBay, Face-
book, IBM, LinkedIn, Microsoft, and Uber, demonstrating the practical value of graph-based knowledge
representation in large-scale applications.

Definitionally, Sajid et al. (2023) [51] define knowledge graphs as intuitive representations of real-world
data in graph form, where nodes represent entities and edges represent relationships. This structure
extends the characterization by Hogan et al. (2021) [23], who describe knowledge graphs as intelligent
systems that integrate knowledge and data at scale, employing graph-based data models to capture
knowledge in scenarios involving the integration, management, and value extraction from diverse data
sources. This integration addresses the limitations of traditional expert system approaches, which re-
lied heavily on manually crafted rules and expert knowledge, as noted by Chen et al. (2020) [13]. The
transition from expert-driven to data-driven methodologies became necessary due to the explosive
growth of Internet data, making traditional manually constructed knowledge bases inadequate for big
data environments, as summarized by Chen et al. (2020) [12].

3.1.2. Advantages of Knowledge Graphs in Energy System Management
Knowledge graphs represent a paradigm shift in managing the complex, interconnected relationships
characteristic of modern energy systems. Their advantages over traditional data management ap-
proaches become particularly pronounced when addressing the challenges of decentralized energy
sources, heterogeneous data integration, and real-time operational requirements.

The fundamental distinction between knowledge graphs and relational databases lies in their approach
to schema management and data representation. While relational databases require rigid, predefined
schemas optimized for structured data, as discussed by Sajid et al. (2023) [51], knowledge graphs
provide dynamic schema evolution that accommodates the constantly changing relationships between
power generation, storage, and consumption components. This flexibility directly addresses the data
heterogeneity challenge inherent in regional energy system management, where diverse data sources
must be integrated without extensive preprocessing.

Compared to static modeling approaches such as UML class diagrams, knowledge graphs offer supe-
rior adaptability for dynamic operational environments. Huang et al. (2016) [25] demonstrate that while
UML focuses on predefined classes and relationships suitable for design-time modeling, knowledge
graphs support real-time relationship evolution and dynamic decision-making processes. This capa-
bility enables the integration of real-time sensor data with historical operational patterns, supporting
enhanced predictive modeling of energy flows and system behavior.

The relationship between knowledge graphs and graph databases merits particular attention, as graph
databases provide the foundational infrastructure while knowledge graphs add semantic layers, as
noted by Kiff et al. (2024) [28]. This combination enables efficient relationship traversal with seman-
tic reasoning capabilities, supporting complex analytical queries that span multiple relationship types
and temporal dimensions. The semantic enrichment distinguishes knowledge graphs from pure graph
databases by enabling ontological reasoning and inference capabilities essential for intelligent energy
system management, as emphasized by Hogan et al. (2021) [23].

The systematic comparison presented in Table 3.1 demonstrates the multidimensional advantages of
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Table 3.1: Comparison of Data Representations for Energy System Applications

Characteristics Knowledge Graphs Relational Databases Graph Databases
Schema Flexibility Dynamic, ontology-driven

schema evolution [23]
Rigid, predefined tables
and keys [51]

Flexible graph schema;
edges can be added with-
out redesign [28]

Relationship Represen-
tation

Semantic relations with
contextual meaning

Encoded via foreign keys
and joins

Explicit edges with proper-
ties, but limited semantics

Semantic Reasoning Ontology support, infer-
ence rules and reasoning
engines [51]

None Limited to graph traversal;
no higher-order inference

Heterogeneous Data In-
tegration

Native support for struc-
tured, semi-structured and
unstructured data fusion
[56]

Requires ETL processes
for schema alignment

Can ingest diverse data,
but lacks semantic harmo-
nization

Real-time Adaptability Incremental updates with
temporal annotations [11]

Schema evolution costly
and disruptive

Designed for real-time
graph updates and queries

Domain Knowledge Inte-
gration

Captures expert rules and
operational data jointly [19]

Data-centric only Relationship-centric, lacks
domain semantics

Query Style SPARQL, reasoning-
enabled path discovery

SQL with relational joins Cypher/Gremlin for effi-
cient path traversal

knowledge graphs across nine critical characteristics for energy system applications. The convergence
of these individual capabilities creates synergistic effects that extend beyond the sum of their parts, es-
tablishing knowledge graphs as the optimal foundation for intelligent energy management systems.

Three key factors distinguish knowledge graphs as particularly suited for energy system management.
First, the combination of schema flexibility with semantic reasoning enables adaptive modeling of evolv-
ing grid topologies while maintaining contextual understanding of component relationships. This dual
capability supports both immediate operational decisions and long-term strategic planning within unified
analytical frameworks. Second, the demonstrated performance advantages—including 16–17 times
faster aggregate query processing as reported by Liu et al. (2023) [34]—directly address themillisecond-
level response requirements of modern grid operations while supporting complex multi-criteria opti-
mization scenarios. Third, the native integration of expert domain knowledge with operational data, as
highlighted by Guo et al. (2024) [19], enables hybrid intelligence approaches that leverage both accu-
mulated electrical engineering expertise and real-time system insights.

These converging advantages position knowledge graphs as essential infrastructure for addressing
contemporary energy system challenges, particularly in scenarios requiring dynamic clustering analy-
sis under physical grid constraints. The ability to seamlessly integrate heterogeneous data sources, as
described by Van Otten et al. (2023) [56], with semantic understanding of domain relationships provides
the foundational capabilities necessary for developing sophisticated energy management solutions that
can adapt to the increasing complexity of modern power systems.

3.1.3. Knowledge Graphs in Energy System Applications
The increasing complexity of modern power systems, driven by rapid global economic development and
rising energy consumption, has created unprecedented challenges in system management and con-
trol. As Guo et al. (2024) [19] note, power systems encompass multiple interconnected components
including generation, transmission, distribution, and consumption, while simultaneously addressing
environmental protection, energy security, and economic efficiency requirements. This multifaceted
nature results in highly complex system characteristics that demand more sophisticated management
and control technologies.

The urgency for intelligent technologies in power systems has become particularly acute when ad-
dressing challenges such as demand fluctuations, equipment failures, and climate change impacts,
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as highlighted by Guo et al. (2024) [19]. Power systems encompass substantial prior knowledge and
generate extensive operational and maintenance data, yet historically, this knowledge and data have
been challenging to utilize effectively. A critical issue in advancing power system intelligence involves
leveraging prior knowledge to identify implicit operational patterns within data more efficiently, thereby
supporting reliable system operation.

Knowledge graphs have been widely recognized as a transformative tool for managing and analyzing
complex datasets in the energy sector. Kimball et al. (2024) [29] highlight their role in addressing the
data demands of the global energy transition, emphasizing their ability to provide semantic context and
link diverse datasets. By harmonizing structured and unstructured data into a unified framework, KGs
facilitate intelligent energy management, enabling more reliable, interoperable, and efficient systems.

The application potential of knowledge graphs in power systems addresses fundamental challenges
including information silos, data redundancy, and knowledge acquisition difficulties, as described by
Guo et al. (2024) [19]. Through comprehensive modeling of power system components, knowledge
graphs enable improved system visualization and understanding, providing more intuitive decision-
making foundations for operation and maintenance personnel. Furthermore, by constructing knowl-
edge graphs for equipment monitoring, fault diagnosis, and load forecasting scenarios, these systems
can enhance the accuracy of power system fault identification and accelerate emergency response
capabilities. The reasoning capabilities inherent in knowledge graphs also support intelligent trading in
power markets, enabling optimal resource allocation and improved economic efficiency.

Knowledge graphs excel in managing the interdependencies within energy networks. Energy systems
are inherently complex, involving many types of data that need to be linked, including energy demand,
supply, environmental factors, and grid performance. Van Otten et al. (2023) [56] point out that KGs
integrate structured and unstructured data through standardized schemas and ontologies, allowing for
better semantic clarity and eliminating inconsistencies between disparate data sources. This character-
istic addresses the critical challenge identified by Guo et al. (2024) [19] regarding the effective utilization
of heterogeneous data in power systems, where data often come from various formats and integration
without semantic understanding can lead to errors and inefficiencies. KGs help bridge this gap, making
the data more actionable for decision-making.

Popadic et al. (2023) [46] further demonstrate the usefulness of KGs in creating intelligent grids. En-
hanced versions of KGs incorporate metadata and relational schemas, transforming raw data into ac-
tionable insights. These advancements support autonomous decision-making and improve grid ef-
ficiency, leveraging accumulated knowledge in electrical science to address the complexities of dis-
tributed energy sources and smart devices. This aligns with the vision presented by Guo et al. (2024)
[19] for achieving more efficient, stable, and sustainable power system operation through intelligent
technologies.

The integration of knowledge graphs in power systems represents a paradigm shift from traditional data
management approaches. By providing comprehensive modeling capabilities that address the wealth
of prior knowledge and operational data generated in power systems, knowledge graphs enable the
identification of implicit operational patterns and support reliable system operation, as emphasized by
Guo et al. (2024) [19]. This capability is particularly crucial in the big data era, where the volume of
power system data is experiencing explosive growth.

The semantic enrichment capabilities of knowledge graphs, as demonstrated in the comparison frame-
work, provide high-level ontological support with inference and reasoning capabilities, distinguishing
them from traditional relational databases and property graphs that offer limited semantic enrichment,
as explained by Sajid et al. (2023) [51]. This semantic richness is particularly valuable for energy sys-
tem applications where understanding the contextual meaning of relationships between components
is crucial for effective system optimization and clustering analysis.
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The application of knowledge graphs in power system operations demonstrates significant engineer-
ing value through functions such as knowledge search, knowledge Q&A, intelligent recommendation,
and auxiliary decision-making, as summarized by Liu et al. (2023) [34]. These capabilities enable
substantial reductions in human and material costs while improving work efficiency across typical sce-
narios including power equipment operation and maintenance, customer service, and grid dispatch
fault management. The evolution toward more comprehensive power system applications aligns with
the research objective of developing integrated KG–GNN approaches for enhanced energy system
analysis and clustering, particularly in addressing the challenges of dynamic energy production and
demand pattern analysis.

3.1.4. Domain Knowledge Graph Construction in Power Systems
The transition from general knowledge graphs to domain-specific applications has particular signifi-
cance in the power sector. Liu et al. (2023) [34] distinguish between general knowledge graphs and
domain knowledge graphs (DKG), noting that power domain knowledge graphs undertake the critical
mission of shifting from “data-driven power automation” to a “knowledge-driven smart grid,” which holds
important theoretical value and engineering significance for the power industry.

The construction of power domain knowledge graphs follows a comprehensive three-phase process:
data collection, graph construction, and knowledge calculation, as summarized by Liu et al. (2023) [34].
This systematic approach addresses the unique characteristics of power systems, including strong pro-
fessionalism, complicated data structures, and high accuracy requirements.

Data Acquisition and Quality Management
As the foundational step in knowledge-graph construction, data collection directly determines the quality
of the resulting KG. Liu et al. (2023) [34] note that power-domain data originate from diverse sources and
types, including structured data from knowledge engineering and expert experience knowledge bases
that can directly participate in top-down ontology construction. However, the primary data sources con-
sist of massive operational data and expert experience characterized by high noise levels and sparse
data density. This necessitates comprehensive noise-filtering and data-sample expansion processes to
improve data quality before knowledge processing, transforming semi-structured or unstructured data
containing potential knowledge into structured knowledge information suitable for KG construction.

Hybrid Construction Methodology
Given the characteristics of strong professionalism, data complexity, and accuracy requirements in the
power field, graph construction typically adopts a combination of top-down and bottom-up construction
processes, as discussed by Liu et al. (2023) [34]. This hybrid approach first defines the ontology layer,
then extracts knowledge from the data layer to update the ontology layer, enabling dynamic character-
istics that support real-time updates essential for power-system operations.

The quality of extracted knowledge directly affects the final KG quality. Liu et al. (2023) [34] note that
joint models for entity extraction and relationship extraction in knowledge extraction provide more ac-
curate results compared with pipeline extraction methods, avoiding performance degradation due to
error accumulation and propagation. Furthermore, considering that extracted entities, concepts, rela-
tionships, and attributes originate from different grids and power devices, knowledge-fusion techniques
are employed to eliminate redundancy from different sources and achieve interoperability of individual
isolated power-system knowledge.

Knowledge Reasoning and Storage Optimization
Knowledge-reasoning capabilities enable the discovery of potential knowledge based on existing knowl-
edge sets, as highlighted by Liu et al. (2023) [34]. Applications include deductive reasoning methods for
rule-based scenarios such as grid-dispatching regulations and customer-service business processes,
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and inductive reasoning methods including case-based reasoning and representation-learning-based
reasoning for more complex operational scenarios. Recent developments incorporate neural-network
models that adopt “massive data + self-learning” approaches to cope with increasingly complex grid
structures and unpredictable customer-behavior patterns.

For storage optimization, Liu et al. (2023) [34] identify graph databases—particularly Neo4j—as pre-
ferred over traditional RDF-table formats for power-domain applications. Graph databases demonstrate
significant performance advantages, with queries two to three times faster than RDF formats and six-
teen to seventeen times faster for aggregate queries with multiple starter nodes, while providing better
support for complex power-system scenarios through built-in attribute-information storage.

Perccuku et al. (2017) [45] address the limitations of traditional relational databases in handling big-data
from power-transmission-grid substations, where data volumes, velocity, and variety exceed relational-
database performance thresholds. Their Neo4j implementation models electrical substations as nodes
with power transformers as connected entities, demonstrating that graph databases eliminate expen-
sive JOIN operations through native relationship traversal. The study validates Neo4j’s schema-less
architecture for rapid infrastructure evolution—adding new power transformers requires simple node
creation rather than complex schema modifications—maintaining constant query performance regard-
less of data-volume growth.

3.1.5. Advanced Framework for Power System Dispatching Operations
The maturation of artificial intelligence technologies in power systems has created opportunities for
more sophisticated knowledge-graph applications. Chen et al. (2022) [11] note that while AI technolo-
gies including convolutional neural networks, long short-term memory networks, and deep belief net-
works have achieved satisfactory results in load forecasting, fault diagnosis, and optimization control,
they have encountered bottlenecks in data processing and management. Knowledge graphs represent
the core of the new-generation data system, addressing these limitations through comprehensive inte-
gration of heterogeneous data sources.

Multi-Level Knowledge Graph Architecture
The framework for knowledge-graph applications in power-system dispatching operations encompasses
basic data, data processing, knowledge extraction, graph construction, and graph application compo-
nents, as described by Chen et al. (2022) [11]. This architecture requires specific technical character-
istics essential for large-scale power systems.

Spatiotemporal Dynamic Characteristics: Knowledge graphs must incorporate timestamp systems for
basic attributes such as entity identification and characteristic attributes including power and power
flow, accommodating the time-varying nature of power systems. Real-time dynamic information up-
dates ensure synchronous circulation between the knowledge graph and power-system operations,
directly supporting the research objective of dynamic clustering within temporal frameworks.

Multivariate Data Fusion: Power-system dispatching involves massive data volumes, diverse data
types, and high-speed data-processing requirements. The construction process integrates data from
multiple sources including image recognition, semantic analysis, and equipment monitoring, providing
rich foundations for potential relationship mining that supports the research goal of establishing com-
prehensive validation frameworks.

Themulti-level knowledge-graph architecture comprises three layers: a physical-layer knowledge graph
as the core that constructs power-system graphs according to real power-grid topology; a data layer cor-
responding to actual operating conditions that works with the physical layer to build real-time updated
dynamic power-dispatch knowledge graphs; and an advanced application layer providing external tech-
nical support including load forecasting and dispatching decisions, as outlined by Chen et al. (2022) [11].



3.2. Streaming Data Integration Architectures for Knowledge Graphs 14

3.1.6. Data Integration Challenges in Power System Knowledge Graphs
The sophisticated knowledge-graph architectures discussed above depend fundamentally on effective
data integration from heterogeneous sources. While Liu et al. (2023) [34] demonstrate Neo4j’s per-
formance advantages and validate schema-less evolution capabilities, these implementations assume
relatively static data-integration patterns. However, modern power systems generate massive streams
of real-time operational data that must be continuously integrated with existing knowledge structures.

The challenge extends beyond simple data ingestion. Chen et al. (2022) [11] note that power-system
dispatching requires spatiotemporal dynamic characteristics with real-time updates, while Guo et al.
(2024) [19] emphasize the need to leverage prior knowledge for identifying implicit operational patterns
in streaming data. This creates a fundamental tension between the relationship-rich modeling capabili-
ties of knowledge graphs and the high-velocity, high-volume characteristics of temporal power-system
data.

Traditional ETL (Extraction–Transformation–Loading) approaches, while constituting specialized soft-
ware systems for managing heterogeneous data sources, present significant limitations for knowledge-
graph construction. Vassiliadis et al. (2002) [58] note that ETL processes account for 55–80 % of total
data-warehouse development time and represent at least one-third of project budgets, primarily due
to the complexity of managing data heterogeneity and implementing comprehensive cleaning routines.
More critically, batch ETL processes introduce latency bottlenecks incompatible with the real-time re-
quirements of dynamic knowledge-graph updates.

The paradigm shift toward streaming architectures has been driven by the need for continuous data
processing and immediate insight generation. Meehan et al. (2017) [38] pioneered streaming ETL ar-
chitectures by integrating message-queuing systems (Apache Kafka), stream processors, and polyglot
database systems, addressing the fundamental limitation of overnight batch processing through stream-
ing dependency resolution. This architectural evolution demonstrates measurable improvements in
data freshness, reducing end-to-end latency from hours to minutes, which directly supports the real-
time update requirements identified by Chen et al. (2022) [11] for power-system knowledge graphs.

However, existing streaming ETL frameworks remain constrained by single-model storage assump-
tions, lacking the architectural flexibility to optimize for both relationship complexity and temporal ana-
lytics simultaneously. This limitation becomes particularly pronounced when considering the require-
ments for KG–GNN integration, where graph neural networks require efficient access to both topological
relationships and temporal feature vectors.

3.2. Streaming Data Integration Architectures for Knowledge Graphs
The scale and velocity constraints of modern power systems, where smart grid infrastructure requires
continuous monitoring of electrical parameters, create fundamental tensions between relationship mod-
eling and temporal analytics. Modern industrial applications, particularly in smart grid infrastructure,
generate massive volumes of high-frequency sensor data requiring sub-second processing capabili-
ties. Power grid infrastructure demands real-time monitoring of electrical parameters, as emphasized
by Meehan et al. (2017) [38].

3.2.1. Streaming Data Integration Method
The integration of message-queuing systems (Apache Kafka), stream processors (S-Store), and poly-
glot database systems addresses these challenges through streaming dependency resolution for refer-
ential integrity constraints, as demonstrated by Meehan et al. (2017) [38]. This approach enables incre-
mental data transformation with minute-level micro-batching instead of traditional daily cycles, directly
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supporting the spatiotemporal dynamic characteristics required for power-system knowledge graphs.

Hanžel et al. (2025) [21] highlight the economic impracticality of full-resolution household electricity
consumption storage, advocating for specialized time-series engines with built-in compression and ag-
gregation capabilities. Their findings emphasize the necessity of purpose-built temporal databases for
sustained high-throughput write operations, while simultaneously demonstrating the need for semantic
integration capabilities through RDF representations and SPARQL-based querying.

The semantic integration approach demonstrated by Hanžel et al. (2025) [21] through unified multi-
regional electricity consumption knowledge graphs links household characteristics, appliance types,
and carbon emission data with external ontology alignment (Wikidata, DBpedia). This validates the
capacity for cross-domain knowledge integration while highlighting the limitations of current single-
database solutions in managing both temporal and relationship complexity.

Current approaches demonstrate clear limitations in addressing these dual requirements. Graph databases
like Neo4j excel at relationship traversal and provide superior performance for deep relationship queries
compared tomulti-model alternatives, but lack optimized temporal analytics for time-windowed aggrega-
tions and trend analysis. Conversely, purpose-built temporal databases exemplify these performance
characteristics through architectures specifically designed for IoT applications and infrastructure moni-
toring.

InfluxDB represents a paradigmatic example of specialized temporal storage optimization. As an open-
source distributed time-series database created by InfluxData in 2013 and developed in the Go pro-
gramming language, InfluxDB addresses the fundamental challenge of high-velocity data ingestion
through its dependency on LevelDB for key–value storage operations, as described by Abu et al. (2019)
[1]. The database’s architecture demonstrates the necessity of purpose-built solutions through its four-
layer TICK stack: Telegraf for server-driven metric collection, InfluxDB as the core time-series engine
capable of handling heavy write and query loads, Chronograf for web-based infrastructure monitoring
and alert management, and Kapacitor for real-time data processing.

The primary architectural advantage of InfluxDB lies in its ability to perform on-the-fly aggregation of
values into time buckets without manual intervention, addressing the computational challenges identi-
fied in smart grid applications. This capability proves essential for IoT applications where continuous
sensor data requires real-time processing and storage optimization, as demonstrated by Abu et al.
(2019) [1]. The database’s data structure, comprising measurements, series, and points, enables effi-
cient organization where each point contains key–value field pairs with timestamps, supporting 64-bit
integers, 64-bit floating points, Booleans, and strings. Points are indexed by tagset and timestamp,
facilitating rapid temporal queries through HTTP API and client libraries that integrate seamlessly with
visualization tools like Grafana.

The streaming ETL architecture proposed byMeehan et al. (2017) [38] provides crucial insights into how
purpose-built temporal systems can be integrated with broader data-ingestion pipelines. Their findings
demonstrate that traditional ETL batch processing creates fundamental latency bottlenecks for time-
sensitive applications, particularly in IoT deployments where sensor data value decreases drastically
over time. The streaming approach enables real-time data transformation and loading, addressing the
core challenge of maintaining temporal data freshness while ensuring referential integrity constraints.
This is particularly relevant for power-grid applications where delayed processing of electrical parame-
ter data can compromise real-time decision-making capabilities.

The integration of Apache Kafka as a messaging infrastructure for data collection, combined with spe-
cialized time-series storage like InfluxDB, addresses the scalability requirements identified by Meehan
et al. (2017) [38] for handling thousands of simultaneous data sources. Their experimental results with
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TPC-DI demonstrate that frequent, small-batch migrations (1–5 second intervals) provide optimal per-
formance across data freshness, query runtime, and ingestion latency metrics. This finding directly
supports the architectural approach of combining high-throughput message queuing with purpose-built
temporal databases for smart-grid monitoring applications.

However, the specialized temporal focus of InfluxDB, while providing exceptional performance for
metric-based queries, cannot efficiently model the complex entity relationships required for contex-
tual understanding of electrical grid topology. The database’s SQL-like query interface operates on
time-oriented data structures optimized for aggregation and trend analysis but lacks the semantic mod-
eling capabilities necessary for representing the intricate interdependencies between grid components,
household characteristics, and energy consumption patterns that characterize modern smart-grid in-
frastructures. Furthermore, Meehan et al. (2017) [38] note that relational ETL systems prioritize ACID
transactions and update-in-place functionality, while time-series workloads are predominantly append-
heavy, suggesting that different architectural approaches are required for different data characteristics
within the same application domain.

This analysis reveals that neither Neo4j nor InfluxDB alone can adequately address the dual require-
ments of temporal knowledge-graph applications in power systems. The optimal solution necessitates
a hybrid architecture that leverages the complementary strengths of both systems: Neo4j’s superior re-
lationship modeling and traversal capabilities for representing grid topology and semantic connections,
combined with InfluxDB’s specialized temporal analytics for high-velocity sensor data processing and
time-windowed aggregations. The streaming ETL patterns demonstrated by Meehan et al. (2017) [38]
provide the architectural foundation for such integration, enabling real-time data transformation while
maintaining both temporal performance and semantic consistency. Such a hybrid approach would
enable contextual temporal queries that can traverse complex grid relationships while simultaneously
performing efficient temporal analytics on associated time-series data, thereby addressing the funda-
mental architectural limitations identified in current single-database solutions for smart-grid knowledge-
graph applications.

3.2.2. Integration Framework Requirements for KG-GNN Applications
The convergence of knowledge graphs with graph neural networks creates additional architectural re-
quirements that extend beyond traditional KG storage and query optimization. GNN processing re-
quires efficient access to both topological relationships for message-passing algorithms and temporal
feature vectors for time-series analysis, creating demands that neither pure graph databases nor time-
series databases can fully address independently.

No mature framework currently exists for deep coupling of graph models (relationships) with tempo-
ral storage (metrics), necessitating a unified query layer that enables cross-model analytical opera-
tions. This integration challenge becomes particularly acute when considering the requirements for
complementarity-based clustering, where GNN algorithms must process both spatial relationships be-
tween energy-system components and temporal patterns in consumption and production data.

The research gap in integrated approaches that leverage complementary strengths of different data
models directly impacts the feasibility of sophisticated KG–GNN applications. Graph-database limi-
tations in temporal analytics prevent efficient implementation of time-aware GNN architectures, while
time-series database constraints in relationship modeling limit the contextual understanding necessary
for energy-system topology analysis.
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3.3. From Knowledge Graph to ML-Ready Graphs
3.3.1. Complementary Integration of KGs and GNNs
The integration of Knowledge Graphs (KGs) and Graph Neural Networks (GNNs) represents a trans-
formative approach in energy-systems management, combining the semantic richness of KGs with the
predictive capabilities of GNNs. The combination of KGs and GNNs enables advanced management of
large-scale, dynamic energy datasets by uniting semantic data representation with capabilities like pre-
dictive modeling and real-time optimization, offering a robust framework for modern energy systems.
While KGs provide a rich semantic structure to represent relationships, they often lack the ability to
generalize across unseen data or adapt to changes in real-time. GNNs, with their capacity to learn low-
dimensional representations of entities and their relationships, address this gap by enabling adaptive
reasoning and predictive modeling. Liu et al. (2024) [35] explain that GNNs excel in capturing the rela-
tional and structural nuances of graph-structured data, making them particularly suited for tasks such
as knowledge-graph completion and semantic analysis. Their ability to distill meaningful features from
large-scale graphs allows for sophisticated reasoning across both static and dynamic datasets, which
is critical in energy systems characterized by fluctuating supply, demand, and operational constraints.

Recent work by Fusco et al. (2020) [16] demonstrates the practical benefits of such integration. IBM
Research’s hybrid framework successfully combines semantic knowledge from CIM ontologies with
real-time numerical data to support services like congestion prediction and market bidding. This fusion
results in over 80% parameter reduction compared to traditional multilayer perceptrons (MLPs) while
maintaining accuracy, showcasing the efficiency gains possible through KG–GNN synergy.

Moreover, dynamic integration approaches such as streaming GNNs enable real-time updates of KGs
as new sensor data arrive. For example, Yang et al. (2025) [66] proposed DEST-GNN, a spatio-
temporal GNN that integrates sparse attention and adaptive graph construction to achieve fast, ac-
curate multi-site photovoltaic power forecasting, with mean absolute errors (MAEs) between 0.42 and
0.49, and 4–80× faster inference speeds compared with conventional methods. These advances fur-
ther highlight how GNNs can enhance temporal responsiveness and computational efficiency in energy
forecasting tasks.

The integration of KGs and GNNs leverages the strengths of both technologies: the semantic richness
and contextual clarity of KGs, and the predictive and analytical capabilities of GNNs. KGs excel at
encoding domain-specific relationships and complex interdependencies between entities, while GNNs
provide robust methods for extracting and learning patterns from these interconnections. Together,
they enable advanced applications such as real-time optimization, intelligent grid management, and
knowledge-graph completion, driving significant advancements in energy management and paving the
way for the future of smart, resilient, and sustainable energy systems.

Dynamic Clustering and Real-time Applications
Among the advanced GNN applications in energy systems, dynamic clustering (or real-time grouping)
has emerged as a crucial technique. By continually updating node embeddings (e.g., building load
profiles, DER states) within a KG, GNN-based methods can discover temporary or evolving communi-
ties that share constraints or optimization goals. Here, distributed energy resources (DERs) refer to
decentralized, small-scale units of electricity generation or storage (such as rooftop solar panels, small
wind turbines, batteries, and controllable loads) that are connected to the distribution grid and can both
consume and produce electricity, as described by Hussain et al. (2019) [27]. This is particularly rele-
vant for microgrid formation, peak-load management, and local balancing, where clusters must adapt
swiftly to changes (e.g., shifts in solar generation or occupant behavior). The synergy between KGs
(for semantic structure) and GNNs (for on-the-fly embeddings) thus facilitates dynamic re-grouping of
nodes, enabling more intelligent resource allocation and operational decisions.

The complementary nature of KGs and GNNs thus addresses a critical need in modern energy sys-
tems: the ability to combine high-level semantic reasoning with robust, data-driven optimization. KGs
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encode semantic relationships between energy entities (buildings, DERs, lines), while GNNs exploit
these relationships for tasks like clustering, anomaly detection, or link prediction—enabling real-time
adaptation to changes in the KG, as noted by Liu et al. (2024) [35]. By bridging these two approaches,
researchers and practitioners can unlock new possibilities for intelligent energy-system management,
enabling adaptive, efficient, and sustainable operation of regional energy grids.

3.3.2. Regional Energy Grid Optimization Applications
Moreover, the integration of GNNs with KGs has profound implications for optimizing regional energy
grids. By leveraging GNNs’ capability to encode topological features and KGs’ semantic insights, the
combined framework can perform tasks such as real-time clustering and optimization of energy flow
within a grid. For instance, Liu et al. (2024) [35] highlight how GNNs, when applied to the topological
structures of KGs, can uncover latent relationships and dependencies within the energy grid, enabling
precise energy-flow analysis and predictive maintenance. This is particularly important for decentral-
ized energy systems, where real-time decision-making is crucial for balancing distributed generation,
storage, and consumption.

Similarly, Huo et al. (2024) [26] demonstrate the application of GNNs in microgrid energy-distribution
management, where they analyze power-distribution relationships and identify optimal operational
schemes. This capability ensures real-time optimization, reducing energy losses and improving compu-
tational efficiency. For regional energy grids, these techniques are invaluable in addressing challenges
such as clustering consumers based on energy-usage patterns, dynamically reconfiguring grids to ac-
commodate renewable-energy variability, and ensuring system stability in the face of demand surges
or failures.

3.3.3. Comparative Analysis of KGs and GNNs
Knowledge Graphs (KGs) and Graph Neural Networks (GNNs) are not competing but complementary
paradigms. KGs excel at providing semantic clarity, ontology-based reasoning, and explicit encoding
of infrastructure hierarchies, while GNNs contribute predictive power, temporal learning, and the ability
to uncover hidden patterns beyond rule-based analysis. In energy-network studies, this distinction is
critical: KGs ensure physical and regulatory consistency, whereas GNNs extend the framework toward
forecasting, optimization, and decision support.
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Aspect Knowledge Graphs (KGs) Graph Neural Networks (GNNs)
Core Functional-
ity

Represent domain-specific relation-
ships, semantic information, and
hierarchical structures in explicit graph
forms.

Learn patterns from graph data via em-
beddings and message passing, en-
abling prediction, optimization, and
adaptive analysis.

Strengths Provide semantic clarity, support
domain-specific reasoning, and en-
code physical/electrical boundaries.

Handle complex patterns, generalize
to unseen nodes, adapt to dynamic
datasets, and support spatio-temporal
prediction.

Limitations Struggle with dynamic or missing data;
reasoning can become computationally
expensive at scale.

Depend on labeled data for training;
risk losing semantic interpretability dur-
ing embedding.

What KGs Pro-
vide to GNNs

Semantic context, domain constraints,
and physical feasibility rules (e.g.,
transformer boundaries, regulatory
constraints).

–

What GNNs Add
to KGs

– Dynamic adaptability, prediction for un-
known buildings, network-effect model-
ing, and hidden pattern discovery.

Applications
in Energy Net-
works

Encode grid topology, infrastructure hi-
erarchy, and DER attributes; support
rule-based analysis of retrofit, solar po-
tential, and electrification feasibility.

Forecast demand, predict intervention
impacts, optimize battery siting, simu-
late dynamic energy sharing, and iden-
tify at-risk feeders.

Table 3.2: Complementary roles of KGs and GNNs in energy-network analysis (extended from Huo et al. (2024) [26], Liu et al.
(2024) [35], and Xu et al. (2023) [65]).

This comparison highlights that while the KG already provides static analyses such as retrofit candi-
date identification, solar siting, and electrification feasibility, GNNs extend the methodology by enabling
forecasting, optimization, and the discovery of emergent complementarity patterns across the grid, as
demonstrated by Liu et al. (2024) [35] and Xu et al. (2023) [65].

3.3.4. Technical Challenges and Research Directions
Despite the promising applications, Chen et al. (2022) [11] identify significant technical challenges that
align with current research objectives.

Knowledge Acquisition: The massive heterogeneous data in power systems, including empirical and
operational data, presents substantial challenges in data acquisition and processing that directly relate
to the research goal of automated pipeline construction from heterogeneous data sources.

Knowledge Representation: The extremely complex multi-layer, intersecting three-dimensional na-
ture of power systems requires sophisticated data-fusion approaches to appropriately integrate informa-
tion including source, network, load, and storage elements into unified knowledge graphs, supporting
the research objective of establishing foundational elements for energy-network representation.

Knowledge Application: Transforming data into actionable knowledge requires both accurate infor-
mation extraction from existing graphs and optimization space reduction for system-specific scenarios,
directly supporting the research goals of comprehensive validation frameworks and enhanced relational
analytics in energy-system management.

Contemporary knowledge-graph research encompasses three primary dimensions: knowledge repre-
sentation, knowledge-graph construction, and knowledge-graph applications, integrating technologies
from cognitive computing, knowledge representation and reasoning, information retrieval, natural lan-
guage processing, and data mining, as summarized by Chen et al. (2020) [13]. This multidisciplinary
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approach positions knowledge graphs as particularly suitable for managing the heterogeneous, inter-
connected data characteristic of modern energy systems, directly supporting the research objectives
of establishing unified knowledge-graph architectures and enabling enhanced relational analytics in
regional energy-system management.

This transformative potential underscores the importance of continued exploration and refinement of
KG and GNN integration in energy applications, enabling adaptive, efficient, and sustainable operation
of regional energy grids.

3.4. Energy Demand Complementarity: Concepts, Metrics, and Clus-
tering Objectives

The development of effective energy-system management strategies requires sophisticated under-
standing of demand-complementarity patterns and their quantitative assessment. This section reviews
key concepts, metrics, and clustering approaches that form the theoretical foundation for complementarity-
aware analysis in energy systems, integrating recent systematic insights from electrical load profiling
research presented by Kusuma et al. (2024) [31].

3.4.1. Complementarity Assessment Metrics
Recent advances in complementarity measurement address limitations of traditional correlation-based
approaches. The Total Variation Complementarity Index proposed by Cantor et al. (2022) [10] provides
a mathematically rigorous framework:

ϕ = 1− TV(f + g)

TV(f) + TV(g)
(3.1)

Simultaneously, the stability coefficient has emerged as a critical metric for temporal complementarity
assessment, quantifying the reduction in variability when combining resources. For hybrid renewable
systems, it measures the smoothing effect on combined output, as described by Murphy et al. (2023)
[39]:

Cstab = 1−
Cv,hybrid

Cv,baseline
(3.2)

where Cv denotes the coefficient of variation. This metric ranges from 0 (no complementarity) to 1
(perfect complementarity) and demonstrates superior performance in handling multi-resource systems,
as validated by Murphy et al. (2023) [39]. Empirical validation shows stability coefficients greater than
0.5 indicate significant complementarity, reducing variability by over 50% compared with standalone
resources [39].

Beyond static metrics, dynamic complementarity indicators must account for seasonal variations. Anal-
ysis reveals that complementarity strength fluctuates annually: wind–PV complementarity peaks in
winter months (stability coefficient 0.6–0.7) but diminishes during summer (0.3–0.5) due to reduced
wind capacity factors, as shown by Murphy et al. (2023) [39]. Hydro–PV complementarity exhibits
inverse seasonality, peaking during spring snowmelt and summer monsoons when hydropower gener-
ation best compensates for solar intermittency [39].

3.4.2. Load Profiling and Clustering Fundamentals
Load profiling, defined as the analysis of electricity consumption behaviors over specific periods, serves
as a cornerstone for understanding energy-utilization patterns and developing effective clustering strate-
gies. Systematic analysis of 52 major studies (2017–2023) reveals that 88% of clustering approaches
for Electrical Load Profiles (ELPs) utilize a predetermined number of clusters, with K-Means (38%) and
Fuzzy C-Means (FCM, 19%) being the most prevalent, as summarized by Kusuma et al. (2024) [31].
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The challenges in residential customer load profiling are particularly pronounced due to the high variety
and variability of consumption patterns. Unlike industrial or commercial customers whose load profiles
exhibit greater regularity, residential patterns require fine-grained temporal decomposition into dynam-
ically changing fragments. This necessitates exploration of dynamic characteristics including state
switching and maintenance probabilities in consumption behaviors, as noted by Wang et al. (2016)
[61], with Principal Component Analysis (PCA) emerging as the dominant feature extraction technique
(41%) for dimensionality reduction in ELP clustering [31].

The emergence of big-data challenges in smart-meter deployments, with datasets reachingmulti-petabyte
scales, requires advanced clustering techniques capable of handling high-frequency, high-dimensional
data efficiently. Traditional clustering methods including K-Means, Fuzzy K-Means, hierarchical clus-
tering, and self-organizing maps require adaptation for these data volumes, as demonstrated by Wang
et al. (2016) [61], particularly given that the Silhouette Index (29%) and Davies–Bouldin Index (19%)
remain the primary evaluation metrics for clustering quality, according to Kusuma et al. (2024) [31].

3.4.3. Prosumer-Based Energy Optimization and Complementarity
The evolution toward prosumer-centric energy systems has introduced new dimensions to complemen-
tarity assessment, where entities both consume and produce energy resources. Ur et al. (2023) [50]
demonstrate that smart community grids connecting multiple prosumers require sophisticated optimiza-
tion approaches to achieve complementary energy-sharing patterns while maintaining user preferences
and comfort levels.

The concept of prosumer complementarity extends beyond simple demand matching to encompass
generation–consumption synchronization. In prosumer communities, complementarity manifests through
temporal alignment where surplus generation from one prosumer complements demand deficits of
others. Ur et al. (2023) [50] show that genetic algorithm-based optimization can achieve significant
improvements in energy-utilization efficiency, with results indicating that optimized prosumer commu-
nities can reduce grid dependency while maintaining user satisfaction levels.

User preference modeling becomes critical in prosumer complementarity assessment, where prefer-
ences are calculated based on historical consumption patterns of devices across different time slots.
The preference weight for device d at time slot t in house h is defined as:

ωh
d,t =

λh
d,t

max[λh
d,1, λ

h
d,2, . . . , λ

h
d,T ]

(3.3)

where λh
d,t represents the consumption of device d at time slot t, and T is the total number of time

slots, as presented by Ur et al. (2023) [50]. This preference-based approach enables complementarity
assessment that accounts for user-behavior patterns and comfort requirements.

3.4.4. Dynamic Energy Sharing and Community-Based Complementarity
The implementation of community-based energy-sharing systems reveals complex complementarity
dynamics that extend beyond individual household patterns. Ur et al. (2023) [50] demonstrate that pro-
sumer communities can achieve substantial improvements in energy utilization through complementary
sharing mechanisms, with experimental results showing increased contribution toward the grid both in
terms of total power and number of time slots with positive contribution.

The fitness function for community-level complementarity optimization incorporates both user prefer-
ences and energy-balance constraints:



3.4. Energy Demand Complementarity: Concepts, Metrics, and Clustering Objectives 22

f(C) =


log
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t

−∞, otherwise

(3.4)

where chd represents the device activation state, Λh
d,t denotes demand, and Gh

t represents generation,
as formulated by Ur et al. (2023) [50].

This approach demonstrates that complementarity-aware optimization can simultaneously maximize
user comfort through preference satisfaction while minimizing dependence on external grid resources,
achieving the dual objectives of individual satisfaction and community-level energy efficiency.

3.4.5. Complementarity in Recommendation Systems
The theoretical understanding of complementarity extends beyond energy systems to recommendation
systems, where complementarity relationships are characterized by two core attributes: relevance and
dissimilarity, as described by Luo et al. (2024) [37]. This dual nature presents a fundamental trade-off
challenge — excessive emphasis on relevance leads to substitutable item recommendations, while
overemphasis on dissimilarity results in unrelated item suggestions.

Recent advances demonstrate that Graph Neural Networks can effectively capture both relevance and
dissimilarity from the spectral domain, providing promising directions for modeling complementary re-
lationships, as demonstrated by Luo et al. (2024) [37]. However, adaptation to energy system contexts
requires addressing the lack of deep understanding of complementary relationships from a spectral
perspective and developing methods to balance the relevance–dissimilarity trade-off.

3.4.6. Virtual Power Plant Optimization and Clustering
The Virtual Power Plant (VPP) concept represents a significant advancement in managing distributed
energy resources through aggregation and coordinated market participation. Nguyen et al. (2024) [41]
demonstrate how VPPs integrate dispersed small-scale renewable energy sources and consumers,
enabling participation in electricity markets while addressing geographical distribution challenges.

The optimal scheduling of VPPs requires sophisticated consideration of both day-ahead and balancing
markets, with Energy Storage Systems (ESS) playing crucial roles in providing upward and downward
reserves through multiple operational modes including charging power adjustment, discharging power
modification, and operational state switching, as discussed by Nguyen et al. (2024) [41]. This com-
plexity necessitates two-stage stochastic optimization approaches that account for renewable-energy
uncertainty and demand variability.

3.4.7. Bounded Rationality in Distributed Energy Systems
The aggregation of distributed energy resources within VPPs involves multiple stakeholders with di-
verse interests and objectives, leading to competitive dynamics that traditional optimization approaches
fail to capture adequately. Liu et al. (2024) [36] introduce the concept of bounded rationality in Dis-
tributed Energy Resource (DER) agent behavior, recognizing that decision-makers face limitations in
information availability, time constraints, and cognitive capacity.

This bounded-rationality framework provides a more realistic modeling of decision-making processes
compared to assumptions of perfect rationality. The incorporation of game-theoretic approaches, partic-
ularly Nash–Stackelberg models and non-cooperative games, enables better representation of strate-
gic interactions among DER agents while accounting for their inherent limitations, as outlined by Liu et
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al. (2024) [36].

3.4.8. Integration with Knowledge Graph Frameworks
The integration of complementarity assessment with Knowledge Graph architectures requires consid-
eration of both static relationship modeling and dynamic temporal patterns. The reviewed literature
indicates that effective complementarity-aware clustering must address multiple temporal scales, from
fine-grained intraday patterns to seasonal variations, while maintaining computational efficiency for
large-scale implementations.

The development of GNN-based approaches for complementarity assessment within KG frameworks
must address the fundamental challenge of learning complementary rather than similar patterns. This
requires custom loss functions that optimize for peak-to-average ratio minimization, self-consumption
maximization, and load-curve balancing, as identified in the research objectives. The prosumer-based
optimization results from Ur et al. (2023) [50] provide empirical evidence that such complementarity-
aware approaches can achieve significant improvements in energy-system performance while main-
taining user satisfaction, supporting the viability of the proposed research direction.

3.4.9. Research Gaps in Complementarity Clustering
Despite advances in clustering techniques for energy load profiles, significant challenges remain in
complementarity-focused approaches. Kusuma et al. (2024) [31] identify several critical limitations that
continue to hinder the scalability and physical applicability of current methods:

• Dimensionality reduction: Current PCA-dominated methods (41% usage) struggle with tempo-
ral complementarity patterns, as noted by Kusuma et al. (2024) [31].

• Dynamic adaptation: Only 12% of methods support automatic cluster-number determination,
limiting real-time complementarity optimization, as emphasized by Kusuma et al. (2024) [31].

• Multi-scale integration: Hierarchical complementarity (building–transformer–substation) remains
underexplored despite its potential for grid optimization.

• Physical constraint integration: Transformer capacity limits and geographic constraints are
rarely incorporated into clustering objectives.

These gaps highlight the need for integrated KG–GNN frameworks that simultaneously address spatial,
temporal, and physical constraints while optimizing for complementarity rather than similarity.

3.5. GNN-Based Methods for Dynamic Clustering
3.5.1. Foundational GNN Architectures
The development of Graph Neural Networks (GNNs) represents a paradigmatic shift in handling graph-
structured data, directly addressing the fundamental challenge posed in the first research sub-question
regarding effective energy-network representation. GNNs are a class of artificial intelligence models
specifically designed to handle graph-structured data, providing the computational foundation neces-
sary for the Knowledge Graph–GNN integration proposed in this research. Their core innovation lies in
the message-passing mechanism, which enables node representation learning by aggregating informa-
tion from neighboring nodes—a capability essential for understanding the complex interdependencies
inherent in regional energy systems.

The theoretical foundations of GNNs were formally established by Scarselli et al. (2008) [52], who intro-
duced the use of recursive neural networks to propagate neighbor information. This early framework
laid the groundwork for subsequent developments that would prove crucial for energy-system analy-
sis. Building upon these foundations, Bruna et al. (2013) [9] proposed the first Graph Convolutional
Network (GCN) based on spectral graph theory, introducing the use of Fourier transforms into graph
convolution operations. However, the computational complexity of spectral methods necessitated fur-
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ther innovation.

The breakthrough that enabled practical deployment of GCNs in complex systems came through the
work of Kipf andWelling (2016) [30], who developed a simplified version of GCN by applying a first-order
approximation to achieve efficient spatial convolutions:

H = σ
(
D̃− 1

2 ÃD̃− 1
2XΘ

)
(3.5)

where Ã = A+ I is the adjacency matrix with added self-loops, D̃ is the corresponding degree matrix,
X denotes the node-feature matrix, and Θ represents the trainable weight matrix, as summarized by
Tam et al. (2024) [54].

This innovation significantly improved the computational efficiency of GNNs, facilitating their deploy-
ment in various industrial applications and establishing the technical foundation for addressing the
research objective of improving data accessibility and interoperability in energy systems.

3.5.2. GNN Applications in Energy System Analysis
The application of GNNs to energy systems directly addresses the integration challenges identified in
the third research sub-question, demonstrating how Knowledge Graphs and Graph Neural Networks
can be combined to enhance analysis and clustering in energy-system models. In energy systems,
GNNs have proven particularly valuable for addressing challenges in data integration, analysis, and
real-time optimization—capabilities that align precisely with this research’s objectives.

Fusco et al. (2020) [16] highlight the transformative role of GNN-based modeling frameworks in incor-
porating grid topology and physical constraints, enhancing modeling accuracy while reducing param-
eter complexity. These frameworks address the inefficiencies and lack of transparency in traditional
machine-learning methods, meeting the demands of complex, distributed energy systems that charac-
terize modern regional energy networks. This capability is particularly relevant to the goal of establish-
ing comprehensive validation and benchmarking frameworks for energy-system clustering applications.

The fundamental advantage of GNNs in energy-system contexts stems from their ability to handle non-
Euclidean spatial relationships. Traditional Euclidean spatial data processing methods (such as CNNs)
rely on regular structures of fixed dimensions (e.g., image grids), while the topological structure of en-
ergy networks (power grids, gas grids) changes dynamically and the node connections are irregular.
Liang et al. (2022) [33] explain that GNNs implement convolution operations in non-Euclidean space
through message-passing mechanisms, converting the physical connections of the power grid into ad-
jacency matrices and supporting dynamic topological modeling. This capability directly supports the
objective of developing a unified knowledge-graph architecture that can accommodate the heteroge-
neous nature of urban building spatial and non-spatial energy datasets.

In the context of this research framework, energy systems present natural graph structures where GNN
nodes can represent power generation/load equipment, buildings, and substations, while GNN edges
can represent electrical connections (lines, transformers) and geographical adjacencies. This natural
mapping between physical energy infrastructure and graph representations provides the foundation for
addressing the first research sub-question regarding essential nodes, attributes, and edges for effec-
tive Knowledge Graph construction.

3.5.3. GNN vs. Alternative Approaches
The comparative advantages of GNNs over alternative approaches provide crucial justification for
their selection in the integrated KG–GNN framework. In comparison to Convolutional Neural Net-
works (CNNs), which are designed for Euclidean data such as images, GNNs excel in handling graph-
structured data, where the connections between nodes are non-Euclidean, as discussed by Li et al.
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(2023) [32]. This distinction is fundamental to the research approach, as it directly addresses the chal-
lenge of representing complex energy-system relationships that cannot be adequately captured through
traditional grid-based neural architectures.

Li et al. (2023) [32] point out that CNNs fail to incorporate the underlying graph structure during compu-
tation, whereas GNNs naturally encode topological features through message passing between neigh-
boring nodes. This capability makes GNNs particularly powerful for tasks like anomaly detection, fault
detection, and dynamic optimization in energy grids, where the relationship between nodes is crucial—
applications that directly support the research objective of improving relational analytics for regional
energy-system management.

Themessage-passing process, illustrated in Figure 3.1, demonstrates how information propagates from
adjacent nodes to target nodes through aggregation functions such as MEAN, MAX, or SUM operations.
This mechanism enables GNNs to capture both local neighborhood effects and global network patterns,
providing the analytical depth necessary for complementarity-aware clustering, a core component of
this research methodology.

Figure 3.1: The visualization of message passing (information propagation) from adjacent nodes to the target node.
Neighborhood integration is typically realized via aggregation functions such as MEAN, MAX, or SUM (adapted from Li et al.

(2023) [32]).

GNNs’ invariance to permutations and their ability to model complex, non-linear relationships within
data provide a significant advantage in analyzing energy grids, where network structures and behav-
iors are dynamic and continuously evolving, as noted by Li et al. (2023) [32]. While many studies
emphasize forecasting or supply–demand balancing, this research focuses on leveraging the synergy
of KGs and GNNs for tasks like dynamic clustering, anomaly detection, and scenario embeddings—
applications that directly address the fourth research sub-question regarding optimal GNN approaches
for time-based and dynamic clustering.

These complementary approaches organize and analyze energy data, enabling insights into evolving
patterns and supporting advanced control strategies in future energy-management systems. The com-
parative analysis presented in Table 3.3 demonstrates the superior capabilities of GNNs across multiple
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dimensions relevant to the research objectives, including topology awareness, dynamic data adaptabil-
ity, and real-time decision-making capabilities.

Feature GNN (Graph Neural Network) CNN (Convolutional Neural
Network)

Data Structure Handles graph-structured data
(non-Euclidean), where nodes
and edges represent relation-
ships.

Designed for grid-structured (Eu-
clidean) data, such as images or
regular grids.

Topology Awareness Naturally encodes topological
features through message pass-
ing between nodes.

Does not explicitly account for
graph topology; assumes a fixed
grid structure.

Applications in Energy
Networks

Anomaly detection, fault detec-
tion, dynamic optimization, and
load prediction in power grids.

Limited to spatial pattern recog-
nition; less effective for intercon-
nected systems.

Dynamic Data Adapt-
ability

Can integrate temporal and
spatial dynamics (e.g., Spatio-
Temporal GNNs).

Requires additional architec-
tures (e.g., RNNs) to handle
temporal dynamics.

Edge Features Supports edge features explic-
itly, allowing modeling of rela-
tionships (e.g., power lines, dis-
tances).

Does not natively support edge
features.

Real-Time Decision-
Making

Well-suited for real-time
decision-making in intercon-
nected systems.

Limited adaptability for graph-
like real-time scenarios.

Table 3.3: Comparison of GNN and CNN for Energy-Network Analysis (adapted from Li et al. (2023) [32]).

3.5.4. Research Gap and Methodological Innovation
While knowledge-graph completion and real-time optimization have been extensively explored in com-
plex systems, the application of GNN-based dynamic clustering within KGs remains significantly underexplored—
a gap that this research specifically addresses. Dynamic clustering leverages GNN embeddings to
group nodes, such as buildings or resources, adaptively as their states or relationships evolve. This
capability is particularly valuable in distributed energy systems, where factors like changing occupant
behavior, the integration of new distributed energy resources (DERs), or shifts in policy necessitate
flexible and responsive system configurations.

Moreover, scenario-based embeddings allow for analyzing how updates to the KG—such as the addi-
tion of new DERs or occupant profiles—impact the overall network. By re-running GNN forward passes,
the system can identify shifts in clusters or link predictions, enabling a more nuanced understanding
of dynamic energy landscapes. This research focuses on developing methods that support such adap-
tive processes, laying the groundwork for smarter, context-aware resource allocation and operational
strategies that directly address the main research question.

3.5.5. Physics-Informed Constraint Embedding in GNN Architectures
The integration of physical constraints into Graph Neural Network architectures has emerged as a crit-
ical advancement for enabling practical deployment in real-world power-system applications, directly
supporting the research objective of embedding physical constraints into learning through adaptive clus-
tering mechanisms. This paradigm shift addresses the fundamental challenge of ensuring that learned
representations comply with underlying physical laws while maintaining computational efficiency—a
requirement essential for the practical implementation of the proposed KG–GNN framework.

Pagnier and Ingelrest (2021) [43] pioneered the direct embedding of effective power-flow models into
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neural architectures, enabling simultaneous reconstruction of physical parameters such as admittances
while learning implicit system elements. This physics-informed approach demonstrates superior per-
formance, achieving over 20% reduction in Mean Squared Error compared with conventional methods,
while guaranteeing physics compliance throughout the learning process. Such performance improve-
ments directly support the goal of establishing comprehensive validation and benchmarking frame-
works.

Building upon these foundations, Authier et al. (2024) [4] introduce a comprehensive physics-informed
architecture comprising four synergistic components that align with this researchmethodology: message-
passing mechanisms with switch gates that model discrete operational decisions as continuous val-
ues, scale-free local predictors that generalize effectively across diverse network topologies, physics-
informed rounding layers that embed operational constraints directly into the computational graph, and
end-to-end training protocols that incorporate Kirchhoff’s laws as fundamental architectural constraints.
This holistic approach ensures that physical principles are not merely post-processing corrections but
integral components of the learning dynamics.

The PINCO framework proposed by Varbella et al. (2024) [57] advances constraint handling through
sophisticated penalty methods combined with Augmented Lagrangian approaches, enabling the man-
agement of complex constraint sets inherent in power-system optimization. The framework formulates
the loss function as:

L = f(x) + λ
∑

hi(x) + µ
∑

max(0, gj(x))
2 (3.6)

where equality constraints hi(x) and inequality constraints gj(x) are seamlessly integrated with the
primary objective f(x). This formulation enables simultaneous handling of transformer-capacity lim-
its, transmission-line flow constraints, voltage magnitude bounds, and N–1 contingency requirements
within the GNN optimization process—capabilities that directly support the objective of developing
complementarity-aware GNN models with custom loss functions.

Recent developments in differentiable optimization layers leverage Karush–Kuhn–Tucker (KKT) con-
ditions and the implicit function theorem to enable backpropagation through hard constraints, effec-
tively treating constraint satisfaction as a differentiable operation, as explained by Gao et al. (2025)
[17]. These methodological advances have been validated across power-system networks ranging
from IEEE 14-bus test cases to large-scale 8500-bus systems, demonstrating computational speed im-
provements of up to 87× compared with conventional optimization methods while maintaining solution
quality and constraint compliance.

3.5.6. Specialized GNN Architectures for Complementarity Clustering
Recent advances in GNN architectures have enabled sophisticated clustering techniques specifically
designed for energy-complementarity analysis, directly addressing the research objective of creating
GNN architectures that perform clustering learning based on complementarity rather than similarity.
Unlike traditional homophily-based approaches, these specialized frameworks explicitly model het-
erophilic relationships where connected nodes exhibit complementary behaviors—critical for identify-
ing synergistic energy-consumption patterns between residential and industrial consumers, as demon-
strated by Rawal et al. (2024) [49].

Heterophily Modeling for Energy Complementarity: The RFA-GNN framework proposed by Wu et
al. (2023) [62] addresses both heterophily and heterogeneity through relation-based frequency adapta-
tion, dynamically adjusting aggregation weights based on node-pair relationships. This enables simul-
taneous modeling of complementary, correlative, and independent energy behaviors within a unified
architecture:
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where αr
ij denotes frequency-adaptive coefficients for relation type r. This approach achieves 12.7%

higher accuracy than homophily-based GNNs in energy-complementarity identification, as reported by
Rawal et al. (2024) [49], demonstrating the practical benefits of the proposed methodology. Negative
message-passing techniques further enhance this by explicitly encouraging dissimilar embeddings for
connected nodes with complementary consumption patterns, directly supporting the goal of maximizing
self-consumption and balancing load curves.

Spatio-Temporal Architectures for Dynamic EnergyNetworks: For dynamic energy networks, frame-
works likeMG-STGCN integratemulti-scale spatio-temporal dependencies through parallel graph-convolution
branches, addressing the fourth research sub-question regarding optimal GNN approaches for time-
based clustering. When applied to natural gas transmission systems, MG-STGCN achieves 18.3%
lower MAE than standard STGCN models by capturing both short-term fluctuations and seasonal pat-
terns, as demonstrated by Pelekis et al. (2023) [44].

Similarly, the DSTG (Dynamic Spatio-Temporal Graph) framework employs dual-scale temporal model-
ing with adaptive graph learning, achieving a 10.12% improvement in wind-power forecasting accuracy
through its hierarchical attention mechanism, as reported by Bekele et al. (2024) [7]:

Z = Softmax
(
QK⊤
√
dk

)
V (3.8)

where Q, K, and V denote query, key, and value matrices learned from multi-resolution time series.
This capability directly supports the objective of determining optimal GNN approaches for time-based
and dynamic clustering within the Knowledge Graph framework.

Differentiable Clustering for End-to-End Optimization: End-to-end cluster optimization is enabled
through differentiable modularity networks (DMoN) introduced by Tsitsulin et al. (2023) [55], providing
the technical foundation for adaptive clustering mechanisms. The DMoN loss function jointly optimizes
modularity and cluster dispersion:

LDMoN = − 1

2m
Tr(C⊤BC) +

√
k

n
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Ci

∣∣∣∣∣
F

− 1 (3.9)

whereC is the cluster assignment matrix andB the modularity matrix. Recent extensions (DMoN-DPR)
incorporate diversity-preserving regularization to maximize inter-cluster feature separation, critical for
identifying distinct complementarity groups. Open-source implementations achieve 40% higher NMI
than conventional pooling methods in energy-community detection, according to Tsitsulin et al. (2023)
[55], demonstrating the practical viability of the proposed approach.

Multi-Objective Optimization for Comprehensive Energy Management: Hybrid frameworks com-
bine GNN clustering with Pareto optimization to balance competing objectives that directly align with
the research goals:

• Complementarity: Maximizing off-peak consumption alignment.
• Proximity: Minimizing grid transmission losses.
• Economic Viability: Optimizing LCOE (Levelized Cost of Energy).
• Grid Constraints: Enforcing voltage and frequency stability.

By maintaining a Pareto front of non-dominated solutions, these frameworks enable operators to eval-
uate trade-offs without scalar aggregation bias, as shown by Bekele et al. (2024) [7]. When applied
to microgrid clusters, they reduce peak demand by 22.4% while maintaining grid stability margins, as
demonstrated by Pelekis et al. (2023) [44], confirming the practical benefits of the proposed methodol-
ogy.
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3.5.7. Synthesis and Research Positioning
These specialized architectures demonstrate significant advantages over conventional clustering meth-
ods in energy applications, particularly for dynamic communities where consumption patterns and grid
topologies co-evolve—scenarios that this research specifically targets. By integrating physics-aware
constraints with adaptive relationship modeling, they provide robust frameworks for real-time comple-
mentarity identification and energy-community optimization that directly address the main research
question.

The convergence of these technological advances creates an opportune moment for the comprehen-
sive KG–GNN integration proposed in this research. The demonstrated capabilities of physics-informed
GNNs, combined with specialized architectures for complementarity clustering, provide the technical
foundation necessary to address the fundamental challenge of improving data accessibility, interoper-
ability, and relational analytics in regional energy-system management.

This research builds upon these advances to develop a unified framework that addresses the identified
gaps in dynamic clustering within Knowledge Graph contexts, positioning this work at the forefront of
innovation in energy-system analytics.

3.6. Comprehensive Evaluation Frameworks and Real-World Vali-
dation

Building upon specialized GNN architectures, recent research has developed robust evaluation frame-
works that integrate physics-informed validation with real-world performance assessment. These frame-
works address critical deployment challenges by ensuring solution safety, cross-platform consistency,
and practical viability in diverse energy contexts.

The SafePowerGraph framework introduced by Ghamizi et al. (2024) [18] establishes standardized in-
terfaces with industry-standard simulators (MATPOWER, pandapower, PowerModels.jl), enabling rig-
orous physics-informed validation across multiple simulation environments. This integrated approach
incorporates three critical assessment dimensions:

1. Safety-critical scenario testing: Stress-testing solutions under extreme grid conditions (N-1 con-
tingencies, fault cascades).

2. Robustness assessment: Evaluating performance against adversarial attacks and input pertur-
bations.

3. Cross-platform validation: Ensuring solution consistency across different power-flow solvers.

By embedding these safety mechanisms directly into the evaluation pipeline, SafePowerGraph bridges
the gap between theoretical GNN performance and operational reliability in critical infrastructure.

Real-world implementations demonstrate significant practical impact across diverse energy contexts.
In Italian energy communities, Pelekis et al. (2023) [44] employed a hybrid approach combining K-
Means clustering with Dynamic Time Warping (DTW), achieving a Peak Performance Score (PPS) of
0.689 and effectively identifying flexibility clusters for targeted demand response. Complementarily,
optimal microgrid planning in Ethiopia by Bekele et al. (2024) [7] utilized income-based clustering to
reduce levelized costs by 23.82%, with accompanying technical benefits including:

• 32.44% reduction in PV capital expenditures,
• 73.4% decrease in excess-energy waste, and
• enhanced utilization of complementary generation–load patterns.

These case studies validate that clustering-driven energy-community design generates both economic
and technical value across developed and developing energy markets.
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Standardized benchmarking has advanced through thePowerGraph dataset, also proposed byGhamizi
et al. (2024) [18], providing the first comprehensive GNN benchmark for power systems. This resource
includes:

• node-level power-flow prediction tasks across IEEE standard systems (14-bus to 8500-bus);
• graph-level cascading-failure analysis with ground-truth explanations; and
• multi-fidelity datasets incorporating SCADAmeasurements, weather correlations, and equipment
specifications.

PowerGraph enables reproducible evaluation of GNN performance under controlled yet realistic condi-
tions, addressing previous limitations in cross-study comparability.

Advanced evaluation metrics now extend beyond conventional accuracy measurements to capture
domain-specific requirements:

• theWasserstein-distance-based randomness coefficient quantifies cluster stability under stochas-
tic variations, as introduced by Pelekis et al. (2023) [44];

• the entropy-based load-shape analysis measures alignment between consumption patterns and
demand-response program requirements, as shown by Bekele et al. (2024) [7]; and

• the physics-informed constraint-violation metric tracks violations of voltage limits, line capacities,
and stability margins, as applied by Ghamizi et al. (2024) [18].

These multidimensional assessment criteria ensure that solutions balance computational performance
with practical deployability, providing operators with comprehensive insights into real-world applicability.

Collectively, these advances establish rigorous evaluation paradigms that connect algorithmic innova-
tions with operational requirements. By validating performance through both simulated environments
and field implementations, contemporary frameworks ensure that GNN-based energy solutions transi-
tion effectively from research prototypes to grid-ready deployments.

In summary, the reviewed literature reveals both the technical feasibility and the methodological frag-
mentation of current approaches. These limitations motivate the integrated KG–GNN methodology
proposed in the next chapter, which directly addresses the gaps in data integration, physical consis-
tency, and dynamic clustering.



4
Methodology

Themethodological framework integrates knowledge graph (KG) ontologies with graph neural networks
(GNNs) to represent, store, and analyse urban energy networks. The KG encodes both static at-
tributes (e.g., energy ratings, locations, grid hierarchy) and dynamic attributes (e.g., hourly demand
and renewable generation). This unified representation allows the GNN to learn spatio-temporal com-
plementarities: for example, when buildings with surplus solar generation can supply others with high
demand. The framework ensures grid feasibility, captures demand–supply synergies, and outputs
planning indicators for retrofit and electrification.

Unlike traditional clustering and energy management methods, the KG–GNN integration offers three
roles in a single system:

1. Semantic backbone for integrating heterogeneous datasets.
2. Analytical substrate that supports GNN-based learning.
3. Dynamic repository that can be continuously updated with inference results.

By embedding both complementarity indices and infrastructure constraints into the graph schema, the
approach ensures that all downstream analyses remain physically valid and directly relevant for long-
term energy planning.

4.1. Motivation for KG--GNN integration
Urban energy networks are both structurally complex (multi-level hierarchies) and temporally vari-
able (demand and generation fluctuations). Classical clustering methods (e.g., k-means) cannot simul-
taneously respect infrastructure boundaries and capture complementarity. Future energy communities
therefore require:

• Semantic integration of diverse datasets (buildings, feeders, transformers, renewables).
• Spatio-temporal learning of demand–supply complementarities.

Knowledge graphs meet the first need by integrating diverse attributes (building descriptors, grid hi-
erarchies, energy indicators) and supporting rule-based reasoning (e.g., retrofit identification, solar
potential, feasible clusters). However, KGs are limited to static associations and cannot generalise to
unseen nodes, capture time dynamics, or optimise interventions.

Graph neural networks extend these capabilities by leveraging the KG’s graph structure. They allow:

1. Prediction under missing data (e.g., inferring retrofit priority for unlabeled buildings).
2. Temporal encoding of hourly demand profiles.
3. Optimisation under grid constraints (e.g., siting batteries to maximise complementarity).
4. Discovery of hidden patterns (e.g., links between multi-hop positions and demand variability).

31



4.1. Motivation for KG--GNN integration 32

Thus, the KG ensures semantic and physical validity, while the GNN provides dynamic and predic-
tive power. Together, they form a unified ontology-driven framework for grid-constrained yet flexible
community planning.

his chapter addresses the four research questions introduced in Chapter 2 through four interlinked
methodological phases. Phase 1 answers RQ1 by formalising the energy infrastructure ontology and
constructing the Knowledge Graph. Phase 2 operationalises RQ2, transforming heterogeneous at-
tributes into tensors for machine learning. Phase 3 responds to RQ3, engineering complementary
and hierarchical features constrained by LV topology. Phase 4 addresses RQ4, implementing the
infrastructure-constrained GNN for dynamic community formation and evaluation.

Comparative perspective: Relational databases vs. Knowledge Graphs
The raw datasets in this study are initially stored in relational form (PostgreSQL/PostGIS) and accessed
via SQL queries for spatial and temporal processing (see Table 4.1). While relational databases provide
structured storage and efficient tabular queries, they face well-documented limitations when applied to
energy networks. Relational databases use rigid schemas, making it hard to integrate diverse data.
Multi-hop queries (e.g., building → feeder → transformer) need costly joins, and physical rules or se-
mantic reasoning cannot be expressed.

If analysis were confined to a traditional DBMS with spatial extensions, building attributes and feeder
geometries could indeed be queried and visualised (e.g., in QGIS), but the system would remain lim-
ited to static lookups and aggregated statistics. It would not support inference (e.g., retrofit priority
estimation), inductive generalisation to unseen nodes, or dynamic restructuring of communities un-
der evolving demand profiles. In other words, a relational-only approach would reproduce existing
database management practices but could not deliver predictive, ontology-driven insights required for
energy transition planning.

By contrast, knowledge graphs offer dynamic schema evolution, native multi-source integration, and
semantic reasoning capabilities. They can encode physical constraints such as LV feeder boundaries di-
rectly in the ontology and enable efficient graph traversal for hierarchical queries. As shown in the com-
parative analysis of data structures (Table 3.1), KGs outperform relational databases across schema
flexibility, heterogeneous integration, semantic reasoning, and dynamic updates, as demonstrated by
Liu et al. (2023) [34] and Chen et al. (2020) [12]. This makes them particularly suited for applications
that require both semantic validity and predictive learning.

Consequently, the relational sources in PostgreSQL/PostGIS (Table 4.1) serve as input backends, while
the KG materialises these entities in Neo4j. This relational-to-KG transformation, described by Hogan
et al. (2021) [23], provides the necessary semantic substrate for GNN-based analysis, ensuring that
the predictive layers inherit both the data integrity of SQL processing and the ontological richness of
the KG representation.

Design assumptions and scope limitations
• Analysis is strictly confined to the low-voltage (LV) level. Communities are only formed among
buildings connected to the same feeder or cable group.

• Cross-transformer or higher-voltage interactions are excluded; MV and HV entities are re-
tained only for consistency checks.

• Hourly demand/generation time series are treated as representative profiles. Geodesic distance
and feeder continuity are used as proxies for impedance.

• Long-gap forecasting and imputation are not considered.
• Constraints are enforced as hard masks during preprocessing and soft penalties during GNN
training, always within LV boundaries.

Linking research questions to methodological phases This chapter operationalises the four re-
search questions stated in Chapter 2 through four interlinked phases. Phase 1 answers RQ1 by
formalising the energy-infrastructure ontology and constructing the Knowledge Graph (KG). Phase 2
addresses RQ2 by transforming heterogeneous, infrastructure-indexed attributes into leakage-safe,
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model-ready tensors. Phase 3 responds to RQ3 by engineering complementary and hierarchical de-
scriptors under LV/transformer constraints. Phase 4 addressesRQ4 by implementing the infrastructure-
constrained GNN for dynamic community formation and evaluation, whosemetrics are later instantiated
in Chapters 5–6.

4.2. Data description
The knowledge graph (KG) materialises a two-layer electrical hierarchy with node types Building and
CableGroup (electrically continuous LV feeders). For modelling purposes, only these two levels partic-
ipate in message passing and clustering. Upstream entities (transformers, substations) are preserved
in the relational backend to validate that each building has exactly one LV ancestor but are excluded
from learning.

This study employs a multi-source relational dataset stored in PostgreSQL/PostGIS. All entities and
relationships are extracted by SQL-based geospatial processing and written directly into the knowledge
graph (KG) without an intermediate spreadsheet workflow.

The relational sources integrate building-level attributes, low-voltage (LV) feeder topology for Ams-
terdam (63 buildings). These sources are harmonised into a KG backbone whose node types are
Building, CableGroup (electrically continuous LV groups), Transformer (MV/LV stations), and Substation;
edges follow the physical hierarchy Building→CableGroup→Transformer→Substation. An addi-
tional AdjacencyCluster entity denotes spatially cohesive building groups with local sharing potential.

The building attributes database for energy demand simulations in the Netherlands combines datasets
from Amin Jalilzadeh1 and open sources Geodan. This database includes about ten million buildings,
with both geometric (e.g., roof type, height) and non-geometric data (e.g., energy labels, building type).
Grid topology data are sourced from open data portals, providing geospatial datasets including elec-
tricity grid location data (e.g., cable and transformer positional data). These datasets form the basis for
reconstructing the hierarchical relationship (HV–Substation–MV–Transformer–LV–Building) described
later.

The hierarchical structure of the Dutch distribution grid — comprising buildings, low-voltage feeders,
medium-voltage transformers, and substations — is reconstructed directly from relational datasets
stored in PostgreSQL/PostGIS. Structured SQL queries are used to integrate these layers into a coher-
ent topology, ensuring that the resulting knowledge graph adheres to physical grid constraints rather
than relying on synthetic assumptions. This process explicitly defines the parent–child relationships
across voltage levels: buildings are linked to their serving LV feeder, feeders are assigned to MV/LV
transformers, and transformers are grouped under substations. Diagnostic checks identify connection
quality (e.g., distance between buildings and cables, presence of excessive connection lengths) and
maintain electrical continuity through feeder segmentation. As a result, energy sharing is constrained
to buildings connected to the same feeder and transformer, preventing unrealistic cross-boundary clus-
tering. Embedding these hierarchical relations in the knowledge graph guarantees that all downstream
analyses respect the technical realities of grid operation.

Building energy demand is generated using an Urban Building Energy Modelling (UBEM) service built
on the EnergyPlus simulation engine. The workflow is API-driven: identifiers of the selected buildings
(e.g., BAG IDs or internal OGC FIDs) are transmitted to the UBEM service, which returns time-resolved
end-use demands keyed to the same identifiers. For each building, the UBEM assigns an archetype
from a national context library parameterised by function (residential vs. non-residential categories),
type (e.g., detached, terraced, apartment, office, retail), and age band (pre/post regulation periods).
Archetypes specify envelope transmittances, thermal mass, glazing ratios, infiltration, internal gains
and schedules, as well as HVAC system types and efficiencies. Geometric inputs (footprint, height, roof
and façade areas) and locational attributes are derived from cadastral and three-dimensional building
datasets, ensuring consistency between urban morphology and thermal/energy parameters.

The UBEM executes EnergyPlus simulations with hourly (or finer) resolution using weather files rep-
resentative of Amsterdam (typical meteorological year or reanalysis-based profiles). Outputs include
disaggregated end-uses — space heating, space cooling, appliances and lighting electricity — and,

1PhD candidate in TU Delft, second supervisor of this thesis
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where relevant, domestic hot water and ventilation. Resulting electricity and thermal demands are re-
turned per building and per timestamp; scenario toggles allow generation of both “current stock” (as-is
systems) and “electrified” counterfactuals (e.g., heat pump replacement with assumed seasonal COP),
enabling the derivation of net electric load under different technology pathways. When limited empiri-
cal benchmarks are available (e.g., annual meter aggregates at feeder level), mild scaling factors are
applied to match totals while preserving temporal shapes, thus maintaining physical plausibility without
overfitting. Range checks on end uses, detection of outliers and short-window interpolation of isolated
missing intervals are envisaged in the data pipeline but are not fully implemented in the current code.

The API responses are written into the relational time-series schema (timeslot index and per-building
energy states) and subsequently materialised in the knowledge graph as EnergyState nodes linked to
TimeSlot and Building. Standard quality controls are to be enforced prior to KG integration: range
checks on end-uses, detection of outliers and flatlines, and imputation of isolated missing intervals by
short-window interpolation with conservation of daily totals. These procedures are defined conceptually
here but remain to be fully realised in the implementation. The intended outcome is spatio-temporally
consistent demand series that are aligned with the infrastructure hierarchy and suitable for downstream
complementarity analysis.

An automated process converts these data into a knowledge graph, which is stored in a graph database
(Neo4j) for efficient analysis.

Building-level attributes Each building record is joined from relational tables or views generated by
the SQL pipeline. Attributes include geometric and physical descriptors (floor area, height, suitable roof
area, shared walls, coordinates), categorical properties (energy label A–G, solar potential class, elec-
trification feasibility), binary DER flags (photovoltaics, battery, heat pump), and demand summaries
(average/peak electricity, heating demand, energy-intensity kWh/m2). These variables support down-
stream tasks such as retrofit targeting, solar siting, and electrification readiness assessment.

Electrical network attributes LV feeders are reconstructed by continuity segmentation in SQL/Post-
GIS; each building is assigned a unique CableGroup. Relationship CONNECTED_TO(Building→ CableGroup)
is the sole electrical edge consumed by theGNN, together with symmetric spatial adjacency ADJACENT_TO
restricted to within-LV neighbours. No edges cross LV boundaries.

Temporal energy states Hourly series (electricity demand, PV generation, net load) are attached to
Building nodes and aligned by a common horizon. Temporal masksMv,t capture missingness without
forward filling. All temporal descriptors and rolling statistics are computed per building and are later
aggregated within the corresponding LV group when needed for diagnostics.

Temporal data application in energy community formation The hourly time series data serves
multiple analytical purposes in the KG–GNN framework:

• Complementarity identification: Buildings with offsetting peak hours (e.g., residential evening
peaks vs. commercial daytime peaks) are identified through temporal correlation analysis. This
enables the formation of communities where energy surplus from one building can offset deficits
in another.

• Self-sufficiency assessment: Local generation capacity is evaluated against temporal demand
patterns to determine community energy independence potential. The temporal dimension re-
veals when local solar generation aligns with or offsets local consumption.

• Peak reduction quantification: Temporal smoothing effects of energy sharing are measured
by comparing individual vs. aggregated demand profiles. This shows how community formation
reduces peak loads on transformers and feeders.

• Dynamic pattern recognition: The model learns to distinguish between different consumption
patterns (flat profiles, single peaks, bimodal patterns) and identifies buildings that complement
each other temporally rather than just spatially.

This temporal analysis ensures that energy communities are formed based on genuine synergies in
consumption and production rhythms, rather than static building characteristics alone. The integration
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of temporal data with spatial constraints (LV feeder boundaries) creates a comprehensive framework
for realistic energy community planning.

Leakage safeguards Train/validation/test splits are stratified by LV group such that no building from
the same LV appears in different folds. All scalers are fitted on the training split and reused unchanged
for validation and test.

Normalization and harmonisation Continuous geometric attributes are standardised; energy-magnitude
channels are rescaled on a bounded range; ordinal scores (energy/solar/electrification) are retained in
their native domains with validity checks. Temporal channels are normalised per feature across nodes
and time, ensuring comparability across heterogeneous data sources.

Data quality control and leakage safeguards
Quality control includes range checks on end-uses, flatline detection, and outlier winsorisation by node
family. Temporal gaps remain masked and are never forward-filled into training signals. All scalers and
encoders are fitted on the training split only and reused unchanged at validation/test time. To prevent
topological leakage, transformer-stratified splits keep all buildings under the same transformer within a
single fold whenever evaluating discovery under boundary constraints.

Table 4.1: Dataset summary: SQL sources (views/tables), representative fields, and modelling roles. Spreadsheet/CSV
mirrors replicate these SQL exports for inspection only.

Entity (SQL source) Representative fields (units/examples) Modelling role
Building Area (m2), Height (m), Suitable roof (m2),

Shared walls, Coordinates (x, y); En-
ergy label A–G; Solar potential {none,
low, medium, high}; Electrification feasibil-
ity; DER flags (PV/battery/HP); Avg/peak
electricity (kW), Avg heating (kW), Energy
intensity (kWh/m2)

Node features for retrofit, solar
siting, and electrification readi-
ness.

CableGroup / LV
feeder

Group id; Total length (m); Segment
count; Connected buildings; Aggregated
demand proxies; Diversity factor

Intermediate infrastructure node;
induces Building→CableGroup
edges; feeder-level
diversity/self-sufficiency fea-
tures.

Transformer (MV/LV) Transformer id; Coordinates; Upstream/-
downstream linkage; Capacity (kVA, if
available)

Upstream infrastruc-
ture node; induces
CableGroup→Transformer
edges; aggregation boundary.

Substation Station id; Topological linkage to trans-
formers

Grid root for MV aggregation;
Transformer→Substation
edges.

AdjacencyCluster
(derived/KG; SQL
neighbourhood views
as seeds)

Cluster id; Member count; DER pen-
etration ratios (PV/HP/battery); Self-
sufficiency indicators

Spatially cohesive
sharing candidate;
Building→AdjacencyCluster
relation.

Temporal states Hourly: hour/24, day of week, weekend
flag; electricity, heating, solar, net de-
mand, export potential (kW)

Time-resolved inputs for spatio-
temporal modelling.
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4.3. Study area selection

Figure 4.1: 63 Buildings and LV cable groups in selected area.

The study area comprises 63 buildings in Amsterdam, the Netherlands, embedded in a hierarchical
urban microgrid consistent with the Dutch distribution system. Figure 4.1 shows the study area on an
OpenStreetMap base map. The sample is not arbitrarily chosen. Instead, a transparent, code-aligned
evaluation and selection protocol is applied to low-voltage (LV) groups, and buildings are drawn from the
top-ranked groups until the aggregate size falls within the target range (50–200). This protocol ensures
that the selected sample maximises complementarity opportunities, intervention leverage, and grid-
relevant insight under real infrastructure constraints. The following section introduces these evaluation
methods in detail:

Evaluation constructs and scoring Each LV group is scored along four constructs operationalised
in the implementation: diversity, intervention priority, grid optimisation potential, and complementar-
ity suitability. The underlying metrics are computed from building-level attributes (type mix, roof and
DER flags, energy labels), temporal descriptors (peak-hour dispersion), and simple network surrogates
(distance to transformer, transformer utilisation). Formulas below reproduce the scoring logic:

(a) Overall Diversity Index (0–10) For building-type, temporal, generation, size, label, and occupancy
diversity, denote the normalised sub-scores by Dtype, Dtemp, Dgen, Dsize, Dlabel, Docc ∈ [0, 1]. The
composite index is

DI = 10
(
0.25Dtype + 0.20Dtemp + 0.20Dgen + 0.10Dsize + 0.15Dlabel + 0.10Docc

)
.

Here Dtype and Dlabel are normalised entropies; Dtemp derives from peak-hour dispersion; Dgen re-
flects prosumer share (maximal near 50%); Dsize and Docc utilise coefficients of variation.

(b) Intervention priority (0–10) LetR be retrofit potential (poor labels share), S solar potential (available
roof share),H heat-pump suitability (share of A–C labels without heat pumps), B battery opportunity
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(share of solar without battery), U the count of E/F/G buildings (capped via an urgency factor), and
Eeco an economic viability factor. The score is

IP = 10Eeco

(
0.30R+ 0.25S + 0.20H + 0.15B + 0.10 min(U/10, 1)

)
.

(c) Grid optimisation potential (0–10) With peak coincidence C (share of buildings peaking at the
modal hour), transformer loading L (normalised to capacity), estimated line losses Lℓ (distance
surrogate), and voltage stability V (normalised),

GOP = 10
(
0.40C + 0.20 (1− |0.7− L|) + 0.20 min(Lℓ/0.1, 1) + 0.20 (1− V )

)
.

Higher C and Lℓ imply larger improvement headroom; moderate L is preferred; poor V indicates
stabilisation potential.

(d) Complementarity suitability (0–10) Using DI (rescaled to [0, 1]), peak coincidence C, a loading
factor fL = min(L/0.3, 1), and a proximity factor fP = 1−min(Lℓ/0.1, 1),

CS = 10
(
0.40 DI

10 + 0.30C + 0.20 fL + 0.10 fP

)
,

capturing that diverse, sufficiently loaded, and spatially compact groups are better candidates for
complementarity-driven clustering.

Three selection criteria An LV group qualifies for the candidate set if it satisfies the following require-
ments; thresholds replicate the default configuration used in the implementation.

i. Diversity and complementarity viability: DI ≥ 5.0 and CS ≥ 6.0 (0–10 scales), ensuring hetero-
geneous demand profiles and viable temporal offsets within transformer boundaries.

ii. Intervention leverage or urgency: IP ≥ 6.0 or U > 5, prioritising groups where coordinated
retrofits, solar/battery deployment, or heat-pump rollout produce system-level benefits and address
compliance risk.

iii. Grid optimisation leverage and feasibility: GOP ≥ 5.0, with transformer loading in a practical
window 0.3 ≤ L ≤ 0.85 and line-loss surrogate Lℓ ≤ 0.10, so that demand shaping, storage, or PV
siting are both needed and feasible without unrealistic reinforcement assumptions.

Portfolio ranking and sample assembly All LV groups within the geographic scope are evaluated
and ranked by a composite score

Overall = 0.30DI + 0.30 IP + 0.20GOP + 0.20CS,

then filtered by the above criteria. The final research sample is the union of buildings from the top-
ranked LV groups until the cumulative count reaches 50–200. This yields a tractable sample that (i)
reflects realistic infrastructure boundaries, (ii) retains load/generation heterogeneity for complementar-
ity analysis, and (iii) concentrates policy-relevant interventions. Ties are resolved in favour of groups
with higher temporal diversity and larger proportions of candidate prosumers, to maximise the identifi-
ability of complementarity effects.

Operational constraints Two safeguards are enforced: (1) a transformer-boundary constraint —
only buildings served by the same MV/LV transformer are grouped for complementarity analysis; (2)
a scale constraint — extremely small LV groups are excluded (default minimum three buildings per
group), while excessively large conglomerations indicating data aggregation anomalies are flagged
and not considered until boundary inconsistencies are resolved. These constraints ensure that cluster
formation, evaluation, and subsequent modelling remain physically interpretable and directly actionable
within distribution-grid practice.
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4.3.1. Electrical infrastructure hierarchy
Recent studies provide quantitative benchmarks for typical LV network sizes in Europe and the Nether-
lands. Empirical evidence shows that LV feeders generally serve between 30 and 150 customers
depending on urban density; Dutch LV networks often supply 100–200 households in urban settings;
and common MV/LV transformer capacities range from 250 to 630 kVA, with an average connection ca-
pacity of 5–8 kVA per household. In Amsterdam and other Dutch urban areas, empirical values range
between 50 and 200 buildings per transformer.

The network adheres to the actual Dutch grid structure, where energy communities are bounded by
shared infrastructure layers, as shown in Figure 4.2 by a UML diagram:

• HV (high voltage) network: Transmission-level backbone.
• Substations: Interfaces connecting HV to MV.
• MV (medium voltage) network: Regional distribution through cable groups.
• Transformers (MV/LV stations): Critical transformation points enabling energy sharing.
• LV (low voltage) network: Final distribution to end users.
• Buildings: End consumers connected to LV feeders.
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Figure 4.2: UML overview of dataset entities and relationships used for graph assembly (buildings, LV cable groups, MV
transformers, substations, and adjacency clusters).



4.3. Study area selection 40

The operational domain of this study is the LV network. Communities are feasible only among build-
ings that share the same LV feeder (cable group). Consequently, the graph used for learning comprises
two active layers: Building nodes and their parent CableGroup. Upstream components (transformers,
substations) are excluded from the computational graph and appear only as integrity constraints in pre-
processing (e.g., uniqueness checks). Accordingly, the geospatial data processing in QGIS is restricted
to buildings, LV stations, and LV cables, while higher-level MV and HV structures are not considered
in the network assembly or clustering validation.

Furthermore, Figures 4.3 and 4.4 show example attribute tables fromQGIS for (i) a non-residential build-
ing and (ii) an LV group station, respectively. These tables demonstrate the available metadata used
in network assembly and validation. The building records contain geometric, functional, connectivity-
related fields (e.g., connection_type), while the LV group station records include voltage level, station
type, connection type, calculated proximity metrics, and so on. Together, these attribute tables underpin
the structured integration of entities into the LV network graph.

Figure 4.3: Example QGIS attribute table for a building entity (non-residential, showing connectivity parameters).
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Figure 4.4: Example QGIS attribute table for an LV group station entity (showing voltage level, station type, and connection
details).

4.3.2. Energy complementarity in distribution networks
A central concept is energy complementarity, defined as the temporal offset between generation-rich
and demand-heavy nodes. Complementarity manifests when load peaks of one building coincide with
production surpluses of another, thereby reducing aggregate peaks at the transformer level. Formally,
complementarity can be quantified as the negative correlation of net load profiles:

Cij = − corr
(
Li(t), Lj(t)

)
.

The transformer boundary constitutes the primary domain for complementarity analysis: energy shar-
ing is only feasible within buildings connected to the same LV transformer. The study is constrained
to operational clusters defined by transformer-based LV feeders. Prior research by Holweger et al.
(2023) [24] indicates that energy sharing within transformer domains is feasible in the low-voltage grid
context, whereas cross-transformer sharing would entail significant reinforcement costs and infrastruc-
ture upgrades, rendering it generally impractical under current distribution grid configurations. Con-
sequently, the methodological framework strictly enforces intra-transformer clustering and excludes
cross-transformer grouping from network design and training.

In the implemented GNN, complementarity is learned using multi-head attention that reweights mes-
sage passing based on temporal alignment and spatial proximity. This allows the model to capture
dynamic spatio-temporal dependencies beyond simple pairwise correlations, a mechanism inspired by
attention-based graph learning approaches proposed by Veličković et al. (2018) [59], Wu et al. (2020)
[63], and Zhang et al. (2021) [68].

4.3.3. Energy community formation constraints
Beyond the operational transformer-boundary safeguard described earlier, two additional methodolog-
ical constraints govern the feasible formation of energy communities. These constraints move beyond
purely operational rules and capture the systemic principles that ensure both electrical consistency and
planning relevance.

Infrastructure utilisation Distribution transformers act as the natural aggregation points of demand
and supply. Load-balancing benefits emerge most effectively at these nodes, where the com-
bined profiles of connected feeders can be coordinated. This constraint ensures that energy
communities are not abstract clusters of buildings, but physically meaningful entities whose be-
haviour aligns with distribution-grid practice. By restricting clustering to the transformer level, the
framework guarantees that community signals remain actionable within existing infrastructure
boundaries and do not rely on hypothetical reinforcements.
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Complementarity A community yields tangible benefits only if it combines heterogeneous consump-
tion and generation patterns whose temporal offsets reduce net load variability. Such comple-
mentarity typically arises when distinct functional profiles interact, for example:

• Office vs. residential: day-time office loads complement evening household peaks.
• Retail vs. residential: weekday commercial activity contrasts with weekend household de-
mand.

• School vs. residential: classroom hours are offset against evening residential consumption.
• Industrial vs. other: continuous base-loads provide a stabilising counterweight.

The methodological framework incorporates this principle by prioritising communities in which
temporal diversity is sufficiently high to yield systemic peak reduction. Rather than relying solely
on static indicators, complementarity is evaluated as a dynamic property of demand and gener-
ation time series, ensuring that community formation reflects genuine synergies in consumption
and production rhythms.

Anti-collapse regularisation and community balance
To prevent degenerate partitions, the training objective incorporates soft regularisers on cluster size
and dominance. Let C denote the set of discovered communities. A size-window regulariser keeps
cluster cardinalities within a planning range [Kmin,Kmax]:

Ωsize =
1

|C|
∑
C∈C

(
max{0, Kmin − |C|}+max{0, |C| −Kmax}

)
.

A dominance penalty discourages concentration in a single group:

Ωdom = max
{
0,

maxC∈C |C|∑
C∈C |C|

− τ
}
, τ ∈ (0, 1).

Both terms act as soft preferences rather than hard constraints, maintaining interpretability without
over-constraining discovery.
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4.4. Method overview

Figure 4.5: Methodological pipeline for the KG–GNN energy community framework.
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The methodology develops an intelligent system that transforms raw geographical and energy data
into optimized energy communities with strategic solar deployment plans. The process begins with
comprehensive data collection from multiple sources to assemble a complete representation of the
urban energy landscape. Grid topology data are extracted from PostGIS databases that capture the hi-
erarchical structure of electrical distribution networks, spanning from high-voltage substations through
medium-voltage transformers down to low-voltage cable groups connecting individual buildings. This
spatial database enables precise querying of network relationships and identification of buildings that
share electrical infrastructure, thereby forming the foundation for physically feasible energy communi-
ties.

Once a target area such as LV_GROUP_0318 is selected, building identifiers are transmitted to the
Urban Building Energy Model (UBEM) through an API interface. The UBEM simulation produces de-
tailed energy demand profiles that incorporate ideal load air systems for electricity, heating, and cooling
requirements, with consumption patterns differentiated by energy labels. Buildings with lower energy
ratings typically exhibit higher reliance on gas-based heating. The simulations generate 192 temporal
data points that capture the full spectrum of consumption patterns across four seasons, distinguishing
between weekday and weekend behaviors at hourly resolution throughout each 24-hour period. In par-
allel, synthetic solar generation profiles are derived from roof area, orientation, and shading factors to
establish baseline renewable energy potential.

This multi-source data is processed through an automated pipeline that constructs a Neo4j knowledge
graph, in which nodes represent buildings, transformers, and grid components, while edges encode
physical connections and energy relationships. The knowledge graph functions both as a structured
repository and as an active analytical component that can be queried and updated throughout the
analysis. Following data preparation and feature engineering that capture temporal complementarity
and network characteristics, a Graph Neural Network (GNN) architecture is initialized to identify critical
relationships between spatial and temporal features.

The training process unfolds in three strategic phases. PhaseOne concentrates on discovery clustering,
where the GNN partitions buildings into dynamic sub-clusters that respect both electrical constraints
and energy optimization objectives. The model determines the optimal number of clusters, typically
converging on groups of five to fifteen buildings, while maximizing self-sufficiency and complementar-
ity among cluster members. A semi-supervised evaluation mechanism continuously assesses cluster
quality, assigning performance labels ranging from excellent for highly self-sufficient and complemen-
tary groups to poor for clusters exhibiting significant imbalances or low renewable potential. These
quality assessments feed back into the training process, directing the model toward improved cluster-
ing solutions.

Phase Two implements iterative solar deployment, in which the trained model enters a strategic loop
of solar panel installations and parameter refinement. Across ten iterations, five buildings are selected
in each round based on multiple criteria including poor energy labels (indicating high improvement
potential), network centrality (maximizing cascade effects), and cluster balance considerations. A cas-
cade trackingmechanism analyzes how each solar installation propagates benefits through the network,
quantifying impact decay across three network hops to evaluate neighborhood-level effects. After each
deployment round, the model incorporates updated generation data to refine parameters, allowing clus-
ters to dynamically reorganize as the energy landscape evolves.

Phase Three synthesizes the learned patterns into a comprehensive multi-year roadmap that delivers
actionable deployment strategies. The roadmap generator creates a five-year plan that sequences
solar installations to maximize cumulative benefits while adhering to annual budget constraints of one
hundred thousand euros and technical limits on installation capacity. The planning algorithm prioritizes
high-impact buildings in the early years to establish energy generation hubs, emphasizes cluster bal-
ancing in intermediate years, and extends coverage in later years to achieve target penetration levels.

Throughout execution, the system tracks detailed metrics including hourly inter-building energy flows,
cluster evolution dynamics, improvements in self-sufficiency, and reductions in peak demand. The
knowledge graph is continuously updated with new installations and measured impacts, enabling both
real-time predictions via the GNN model and retrospective analysis through graph queries. The final
outputs include dynamic cluster assignments with quality labels, prioritized solar installation schedules
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optimized for cascade effects, peer-to-peer energy sharing matrices, strategic deployment roadmaps,
and a suite of visualizations such as Sankey diagrams for energy flows, heatmaps for temporal demand
patterns, and interactive dashboards for stakeholder engagement. This integrated approach demon-
strates how graph-based deep learning can orchestrate the transformation of passive building groups
into adaptive, self-organizing energy communities that balance individual building needs with collective
grid benefits.

4.5. Phase 1: Knowledge graph construction
Rationale and structure. This section first details the end-to-end transformation from relational geospa-
tial data (PostgreSQL/PostGIS) into a Neo4j knowledge graph (KG), including topology reconstruction,
hierarchy assignment, and quality assurance. The subsequent subsection formalises the resulting on-
tology and schema, reporting node/edge types, semantics, and constraints. This order foregrounds
provenance and physical grounding before presenting the final schema.

It is important to emphasise that the electrical topology of the distribution network is explicitly encoded
in the KG itself, not learned implicitly by the GNN. Nodes represent buildings, cable groups, and trans-
formers, while edges capture hierarchical and adjacency relations (e.g. building–feeder membership,
feeder–transformer connections). Each edge further carries physical attributes such as distance, in-
dicative capacity, and impedance. The GNN therefore operates on this fixed topology: it learns how to
propagate and weight information along the given KG structure through message passing and atten-
tion, but it does not infer or reconstruct the network topology on its own. This clear division ensures
that the KG provides the structural backbone, while the GNN focuses on learning operationally relevant
patterns within that structure.

4.5.1. Relational-to-KG Transformation: From SQL/PostGIS to Neo4j
The methodological pipeline converts relational geospatial data from PostgreSQL/PostGIS into a Neo4j
KG, aligning tabular infrastructure datasets with graph-based learning while preserving operational hi-
erarchy. Electrical continuity is reconstructed by segmenting raw LV/MV/HV cables into topologically
consistent polylines and aggregating them into electrically continuous CableGroups, thereby removing
artefacts caused by digitisation gaps. Each group is linked to its serving LV cabinets, MV/LV transform-
ers, and HV substations via proximity and topology rules augmented with graded confidence metrics.

Buildings are then associated with a unique LV group. Connection types are classified (terminated, en-
tered, crossed, proximity-based); distances and diagnostics are recorded as properties. Flags identify
MV-capable non-residential buildings and overly long connections, providing early reinforcement indi-
cators. By establishing a single LV-group and transformer ancestry per building, transformer-bounded
feasibility for energy sharing is enforced.

Once relationships are established, hierarchical summaries are generated along Building → Cable-
Group → Transformer → Substation. These roll-ups capture structural indicators (counts, connection
quality, distance statistics) and functional heterogeneity (building functions, energy labels, temporal
diversity). The Neo4j materialisation stage creates nodes and typed relationships encoding electrical
connectivity, spatial adjacency, and temporal membership; properties integrate geometry, physics, and
energy descriptors, while relationships carry connection semantics and diagnostic scores. Quality as-
surance verifies invariants such as “every building connects to exactly one LV group” and “no LV group
lacks transformer ancestry.”

The outcome is a KG that faithfully reproduces the physical distribution hierarchy, preserves quality-
controlled mappings between buildings and grid components, and enriches entities with engineered
features relevant to downstream spatiotemporal GNN tasks. Figure 4.6 synthesises the resulting
schema and clarifies how the pipeline’s outputs are instantiated in Neo4j: (i) a Building-centred core
with identifiers, siting and connection attributes; (ii) an asset layer where HAS_INSTALLED relate build-
ings to SolarSystem nodes (storing capacities, efficiencies, and retrofit priorities); (iii) a temporal layer
linking EnergyState to TimeSlot via DURING, capturing demand, generation, net position, and battery
state-of-charge; (iv) a spatial layer combining pairwise ADJACENT_TO relations (annotated with shared-
length and complementarity) with IN_ADJACENCY_CLUSTER membership; and (v) an electrical-continuity
layer in which HAS_CONNECTION_POINT and ON_SEGMENT anchor service drops to CableSegments that
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are PART_OF a CableGroup, while CONNECTED_TO maps each building to its LV feeder and upstream
edges CONNECTS_TO/FEEDS_FROM bind feeders to transformers and substations. This integrated struc-
ture makes explicit the feasible domains for energy exchange and provides physically grounded inputs
for subsequent learning.

Figure 4.6: Instantiated UML-style view of the KG schema highlighting asset, temporal, spatial, and electrical-continuity layers
around a building-centred core.

4.5.2. Knowledge graph ontology framework
This subsection formalises the ontology materialised by the preceding pipeline. The specification cov-
ers (i) entity classes, (ii) relation families with explicit direction and cardinality, (iii) the attachment of
attributes to the physical loci that generate or consume them, and (iv) governance rules that guarantee
electrical feasibility and analytical consistency. The layered schema in Figure 4.6 provides the concep-
tual backdrop; Tables 4.2–4.3 enumerate the concrete labels and relationships realised in Neo4j, and
Figure 4.7 confirms their instantiation in the database.

The design objective of ontology is building-centred yet infrastructure-aware. It represents: (a) physical
infrastructure to preserve the distribution hierarchy; (b) spatial structure to delimit plausible sharing
neighbourhoods; (c) temporal states for demand–generation dynamics; and (d) asset attachments for
retrofit and flexibility analyses. Attributes are anchored at their natural entities (e.g., load time series at
buildings, loading limits at transformers) so that subsequent learning remains constrained by physics
and operations.

Core entity classes comprise Building, CableGroup, Transformer, and Substation; these sustain the
electrical hierarchy listed in Table 4.3. Building-level attributes used for downstream learning are illus-
trated in Figure 4.11. Feeder-level continuity and geometric metrics are attached to CableGroup nodes



4.5. Phase 1: Knowledge graph construction 47

(Figure 4.12); DER assets (SolarSystem, BatterySystem, HeatPumpSystem) appear as separate nodes
with technology-specific descriptors (Figure 4.13). Auxiliary operational entities such as LV Cabinet
(Figure 4.14) support continuity reconstruction and validation. Relative property lists for all classes are
provided in appendixA.

Four relation families structure the KG (Table 4.3): (i) electrical connectivity binds buildings to feeders
and feeders to upstream equipment. The CONNECTED_TO edges enforce a unique LV group per build-
ing (Figure 4.9), while CONNECTS_TO and FEEDS_FROM maintain the upstream path to transformer and
substation; (ii) spatial cohesion encodes neighbourhood constraints through symmetric ADJACENT_TO
links (Figure 4.8) and IN_ADJACENCY_CLUSTERmembership; (iii) temporal alignment maps EnergyState
to TimeSlot via DURING; (iv) asset management associates buildings with installed equipment via
HAS_INSTALLED (Figure 4.10) and supports advisory relations (details in appendix A).

Schema-level constraints require: one and only one CONNECTED_TO per building; a transformer ancestor
for every LV group; symmetry of ADJACENT_TO; and a single DURING target per EnergyState. Indices
on primary identifiers and foreign-key properties (e.g., group_id, transformer_id) ensure deterministic
joins and efficient traversal.

Table 4.2: Current Schema Overview — Node types in the Neo4j KG. The list reports semantics and indicative key properties
(non-exhaustive).

Node Semantics and modelling role Key properties (examples)
Building Core prosumer entity and centre of analysis; host

of static/dynamic energy attributes and DER attach-
ments.

id, area, building_function,
age_range, en-
ergy_label, solar_potential,
net_load_ts_ref

CableGroup Electrically continuous low-voltage cable groups (re-
placement of legacy lv_group); represent feeder-
level connectivity.

group_id, segment_count,
total_length_m, bbox_wkt

Transformer MV/LV transformers; aggregation and constraint lo-
cus for loading.

transformer_id,
rated_power_kVA,
geom_wkt

Substation HV substation feeding upstream of transformers; de-
fines higher-level supply territories.

substation_id, geom_wkt

AdjacencyCluster Spatial cluster of buildings (e.g., contiguous blocks)
indicating local sharing/replaceability potential.

cluster_id, size, diameter_m

EnergyState Time-resolved net consumption/generation state of
an entity; basis for temporal learning and alignment.

node_id_ref, p_net_kW,
q_net_kvar

TimeSlot Time dimension node; regularises the temporal axis
and supports roll-ups.

slot_id, timestamp, season,
hour_of_day

SolarSystem PV system attached to a building; supports degrada-
tion and orientation effects.

system_id, in-
stalled_capacity_kWp,
orientation_efficiency,
degradation_factor, in-
stallation_year
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Table 4.3: Current Schema Overview — Edge types in the Neo4j KG, with direction, semantics, and indicative cardinalities.

Edge Domain Range Semantics Cardinality
(typ.)

CONNECTED_TO Building CableGroup Electrical service connection
from a building to its LV group.

1:1 per
building

CONNECTS_TO CableGroup Transformer Upstream connectivity from an
LV group to its supplying trans-
former.

N :1

FEEDS_FROM Transformer Substation Upstream supply relation from
transformer to substation.

N :1

IN_ADJACENCY_CLUSTER Building AdjacencyClusterSpatial membership used for
local sharing constraints.

N :1

ADJACENT_TO Building Building Symmetric spatial adjacency
between buildings.

many-to-
many

HAS_INSTALLED Building SolarSystem Association to installed DER
assets.

0..N

DURING EnergyState TimeSlot Temporal alignment of a state
with a discrete time slot.

exactly
1:1

Figure 4.7: Database sidebar confirming the instantiated labels and relationship types.
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Figure 4.8: ADJACENT_TO edges (spatial neighbourhood).

Figure 4.9: CONNECTED_TO edges (building → LV cable group).

Figure 4.10: HAS_INSTALLED edges (building → DER assets).
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Figure 4.11: Building node properties used by downstream models.

Figure 4.12: CableGroup node properties (continuity and lengths).

Figure 4.13: SolarSystem node properties (capacity, orientation, degradation).
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Figure 4.14: LV Cabinet example supporting continuity reconstruction.

4.6. Phase 2: Infrastructure-aware preprocessing

Figure 4.15: Phase 2 pipeline. The KG-derived attributes are normalised family-wise and temporally masked; rolling statistics
and calendar encodings are added; edge and hierarchy features are constructed; leakage control ensures no topological

violation. Outputs are node-time maps Ψ(v, t) and edge attributes eij , ready for the model stack.

This phase bridges the KG from Phase 1 with the learning modules. Its purpose is to transform het-
erogeneous, infrastructure-indexed attributes into model-ready tensors while preserving the physical
topology and governance rules. Three design requirements are followed: (i) harmonisation across
node families and time, (ii) explicit treatment of temporal structure and missingness, and (iii) preserva-
tion of electrical invariants such as identical LV feeder boundaries— a condition also emphasised as
critical for distribution-grid operation by Prettico et al. (2019) [47], Netbeheer Nederland (2021) [40],
and ACM (2016) [2].

Beyond these technical requirements, the adaptivity of the knowledge graph also plays an essential
role. Unlike relational databases that require rigid table structures, the KG allows new attributes or
entities (e.g., additional building descriptors or renewable devices) to be added without redesigning the
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entire schema. This flexibility ensures two advantages: first, the system can be continuously updated
as new buildings, technologies, or regulatory data are introduced; second, the embedded electrical
rules (such as the requirement that buildings must remain within the same LV feeder) are preserved
even under dynamic updates. In this way, the tensorisation process remains stable and reliable as the
energy system evolves, rather than being limited to a static dataset, as discussed by Liu et al. (2023)
[34] and Hogan et al. (2021) [23].

Phase 1 outputs a KG where buildings are linked to same LV feeders. Phase 2 consumes this graph
and prepares tensors for:

• hierarchical message passing, as in Ying et al. (2018) who showed how structural hierarchy
improves pooling [67],

• constrained pooling that respects LV/transformer boundaries following power system practices
(Prettico et al, 2019) [47], and

• temporal encoding overmasked sequenceswith calendar features, consistent with spatio-temporal
GNN practice (Wu et al., (2020) [63].

4.6.1. Notation and objectives
Let V denote the complete set of nodes, divided into families {V(b),V(g),V(t), . . .} (buildings, cable
groups, transformers, etc.). For each node v ∈ V , static attributes are represented as xv ∈ RFs , while
temporal attributes are given as sequences Xv = {xv,t ∈ RFd}t∈T over a horizon T = {t0 − H +
1, . . . , t0}.

The preprocessing pipeline follows standard data engineering principles discussed by Vassiliadis et al.
(2002) [58]. Its main goals are: 1. to normalise features separately for each node family, 2. to align
time series across nodes and handle missing data explicitly, 3. to construct edge and positional features
needed for spatial and temporal encoding, and 4. to avoid information leakage across time or topology.

Family-wise scaling and categorical handling Wu et al. (2020) [63] showed that z-score normali-
sation is the standard choice for continuous features in graph learning. Accordingly, static continuous
variables are standardised per family:

x̃(j)
v =

x
(j)
v − µ

(c)
j

σ
(c)
j + ε

, v ∈ V(c), j ∈ Icont. (4.1)

Here, (µ(c)
j , σ

(c)
j ) are computed exclusively from the training data of family c to prevent data leakage,

as recommended by Vassiliadis et al. (2002) [58].

Variables representing magnitudes (e.g., peak loads) are normalised to the [0, 1] range using clipped
min–max scaling, following the procedure ofWu et al. (2020) [63]. Ordinal variables (e.g., energy labels)
are encoded as integers to preserve their inherent ranking, as suggested by Aniakor et al. (2024) [3],
whereas binary indicators (e.g., the presence of distributed energy resources) are retained as Boolean
{0, 1} values.

Temporal alignment, masking, and stabilisation Nijhuis et al. (2017) [42] stressed that realistic
residential load models must deal explicitly with irregular samples and missing entries. Following this
idea, all nodes are aligned to a common time horizon ending at t0, and missing data are marked with
a binary mask Mv,t ∈ {0, 1}.

To stabilise optimisation, rolling averages and standard deviations are computed only over observed
samples:

mean
(W,f)
t =

∑W−1
h=0 Mv,t−h x

(f)
v,t−h∑W−1

h=0 Mv,t−h

, (4.2)

std
(W,f)
t =

(∑W−1
h=0 Mv,t−h

(
x
(f)
v,t−h −mean

(W,f)
t

)2∑W−1
h=0 Mv,t−h

)1/2

. (4.3)
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Calendar time is encoded with sinusoidal functions to reflect daily and weekly periodicity smoothly. This
avoids boundary artefacts: when time is treated as discrete integers, transitions such as 23:00 to 00:00
or Sunday to Monday appear as large jumps even though they are adjacent in reality. By mapping time
onto a circle with sine and cosine functions, periodic continuity is preserved. This technique was first
used in the transformer model and is now common in spatio-temporal GNNs for energy forecasting.

Temporal data integration and application The temporal dimension is crucial for capturing energy
complementarity patterns. Each building’s hourly net-load profile Li,t (optionally accompanied by on-
site generation signals) is processed through a multi-stage pipeline that transforms raw time series into
actionable inputs for community formation:

1. Pattern extraction: Raw consumption data are compressed into representative low-dimensional
pattern features using rolling statistics and calendar encodings, reducing the hourly profile to com-
pact descriptors that capture essential behaviours.

2. Temporal masking: Missing data points are explicitly masked rather than interpolated to pre-
serve data integrity.

3. Complementarity computation: Pairwise temporal correlations ρij are computed to identify
buildings with offsetting demand patterns.

4. Peak-hour profiling: Peak-time tendencies are profiled to favour communities with distributed
rather than coincident peaks.

Edge attributes for graph propagation Following standard distribution-network practices proposed
by Baran and Wu (1989) [5], each edge eij is annotated with electrical distance, impedance, and
capacity, scaled using Equation (4.1). These attributes are provided to the model as auxiliary features
for message passing and neighbourhood weighting in later phases.

Hierarchical positional encodings Learning hierarchical structure is a well-established concept.
Ying et al. (2018) [67] introduced hierarchical pooling to make latent graph structure explicit. In the
present study, each node is assigned a level embedding π(v) ∈ {building, cable_group, transformer},
which is projected into the hidden space and added to its features. Here, building and cable_group
nodes participate in message passing and clustering, while transformer nodes act as upstream an-
chors preserving the feeder–transformer hierarchy.

Missing values and outliers Schwefel et al. (2018) [53] observed that inadequate handling of miss-
ing values can distort uncertainty estimates in distribution grids. Accordingly, static missing values
are filled with family-specific medians and flagged with binary indicators, while temporal gaps remain
masked. Outliers are winsorised within each family before scaling, following load-modelling practices
outlined by Nijhuis et al. (2017) [42].

Leakage control To prevent either temporal or topological leakage, scaling parameters {(µ, σ), (a, b)}
are always fitted only on the training split. Splits are made along transformer boundaries so that no
building from the same LV feeder appears in different folds, as recommended in grid-aware validation
studies.

Final featuremap and invariants The resulting node–time featuremap concatenates static attributes,
dynamic series, and calendar encodings (as defined above). Edge attributes eij are stored alongside
adjacency, and grid invariants (such as LV group membership and transformer ancestry) are preserved.
This aligns with invariants in CIRED’s active distribution planning report (2014) [15], ensuring that down-
stream GNN training remains physically valid.

4.6.2. Motivation and continuity
Phase 1 ensured that electrical and spatial constraints are explicitly represented in the KG. Phase 2
then converts these semantics into model-ready tensors:

• time-aware encoders require masked and position-augmented sequences,
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• spatial encoders require calibrated edge attributes,
• hierarchical pooling must respect LV/transformer boundaries.

This design guarantees that later phases operate on features that are consistent with both ontology
and grid operations, echoing the emphasis on semantic consistency and interoperability by Hogan et
al. (2021) [23] and Pritoni et al. (2021) [48].

It is important to stress that such alignment would be difficult to achieve within a conventional relational
database (DBMS). While SQL/PostGIS can store the raw attributes, relational tables lack the semantic
layer needed for reasoning across heterogeneous entities and evolving hierarchies. Every cross-level
query in a DBMS requires costly joins and rigid schema definitions, making it impractical to enforce
dynamic constraints such as “all buildings remain within the same LV feeder” or to propagate temporal
patterns into clustering tasks. By contrast, knowledge graphs offer schema flexibility, semantic reason-
ing, and direct relationship traversal. This ability to unify heterogeneous relational exports (buildings,
feeders, transformers, time-series states) into a semantically coherent graph structure explains why
the KG is not merely a storage alternative, but an essential foundation for the GNN integration in later
phases.

4.7. Phase 3: Infrastructure-constrained feature engineering

Figure 4.16: Phase 3 pipeline. Inputs from Phase 2 (node–time map Ψ, masks Mv,t, edge attributes eij , hierarchy code π(v))
and Phase 1 (transformer/LV boundaries) are aggregated into multi-level descriptors. Temporal embeddings and pairwise

complementarity features highlight sharing opportunities, while LV boundaries remain enforced.

Phase 3 constructs higher-level descriptors that remain constrained by the grid. The aim is to expose
interactions—such as temporal diversity and demand–generation complementarity— that raw attributes
alone cannot reveal. All aggregations respect LV boundaries to preserve physical feasibility (Prettico
et al., 2019 [47]; Netbeheer Nederland, 2021 [40]; ACM, 2016 [2]).

From Phase 1, the ontology buildings → cable groups → transformers ensures feeder ancestry and
transformer domains. From Phase 2, leakage-safe, normalised features are inherited. Phase 3 then
builds descriptors at three levels: the building level, the feeder (cable group) level, and an emergent
community level. The community level is not predefined in the grid; it emerges via LV-constrained
pooling that groups buildings within the same feeder according to temporal complementarity.

4.7.1. Notation and intuitive explanation
The system is modelled as a graph with two node types: buildings V(b) and LV feeders V(g). Each
building i ∈ V(b) has an hourly net-load series Li,t (positive when net-importing after PV), aligned and
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masked as in Phase 2. For a feeder f ∈ V(g), Gf denotes the set of connected buildings.

Figure 4.17: Hierarchy of the proposed pipeline: buildings aggregate into feeders, and LV-constrained pooling yields emergent
communities. Descriptors are computed at building, feeder, and community levels and used by message passing, attention,

and clustering in Phase 4.

Building-level features For clustering, building nodes include static descriptors (e.g., floor area, func-
tion/type, energy-intensity proxies) and dynamic descriptors derived from hourly net-load. Let

EIRi =
Ēi,elec

Ai
,

denote an electric energy-intensity proxy (per unit area). These features are normalised and used as
inputs to temporal projection (Eq. (4.6)) and attention in Phase 4.

Feeder-level features Feeders aggregate building attributes within the same LV domain. Examples
include entropy-based diversity of demand and aggregate net-load statistics. These capture variability
and balance at feeder scale and are used to condition pooling and attention under LV masks.

Compactness measure for maps In addition to Compct(C), the map caption reports the normalised
mean pairwise distance d(C) = 2

|C|(|C|−1)

∑
i<j∈C

d(i,j)
Dmax

, to corroborate visual coherence numerically.

Community-level descriptors During LV-constrained pooling, communities C emerge as groups of
buildings within the same feeder exhibiting high pairwise complementarity. For buildings i and j with
standardised net-load series L̃i,t and L̃j,t,

ρij =

∑
t L̃i,t L̃j,t√∑

t L̃
2
i,t

√∑
t L̃

2
j,t

, Cij =
1− ρij

2
∈ [0, 1].

Community-level complementarity statistics are computed by aggregating {Cij} over i, j ∈ C (within-
feeder only). These aggregated statistics are used internally by the clustering objective (see Phase 4)
rather than reported as standalone evaluation indices.

Intra-cluster diversity Diversity reflects heterogeneity of temporal patterns inside a cluster. Let
htemp
i ∈ Rd be the temporal embedding of building i (Section 4.8.3). For cluster C, define the nor-
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malised dispersion

Div(C) = 1− 1

|C| rd

∑
i∈C

∥∥htemp
i − h̄temp

C

∥∥
2
, h̄temp

C =
1

|C|
∑
i∈C

htemp
i ,

where rd is the d-dimensional radius (95th percentile of within-feeder distances) for normalisation to
[0, 1].

4.7.2. Temporal embeddings and complementarity
Dynamic behaviour is encoded using temporal sequences that capture hourly and seasonal patterns.
The temporal processing transforms raw hourly data into compact embeddings that guide community
formation:

ztemp
i =

1

T

T∑
t=1

fθ(Li,t, calendart), (4.4)

where fθ(·) is a learnable transformation of hourly net-load and calendar features. A gated recurrent
unit (GRU; Cho et al., 2014 [14]) produces fixed-length embeddings capturing diurnal and seasonal
dynamics. Temporal complementarity between buildings is then quantified via correlation of ztemp

i and
ztemp
j , mapped to Ctemp

ij = (1− ρtemp
ij )/2, and combined with spatial proximity to guide LV-constrained

pooling and attention.

4.7.3. Integration and safeguards
All statistics and aggregations are computed strictly within LV/transformer boundaries, and leakage-
control procedures from Phase 2 are retained (Prettico et al., 2019 [47]; Netbeheer Nederland, 2021
[40]; ACM, 2016 [2]). The engineered features serve as inputs to Phase 4 for message passing,
complementarity-aware attention, and LV-aware pooling under fixed cluster count with size constraints.

4.8. Phase 4: Infrastructure-constrained Graph Neural Network
Phase 4 constitutes the computational core of the proposed framework. It operationalises the knowl-
edge graph (KG) constructed in Phases 1–3 into a predictive and physically constrained learning archi-
tecture for discovering energy communities. The design objective is threefold: (i) communities must
remain confined within the same low-voltage (LV) feeder; (ii) buildings grouped together must exhibit
complementary demand–supply behaviour; and (iii) the resulting configurations must respect grid con-
straints and remain interpretable from an operational perspective (Prettico et al., 2019 [47]; Netbeheer
Nederland, 2021 [40]; CIRED WG, 2014 [15]).

The infrastructure-constrained GNN transforms the static KG into a learnable graph G = (V, E), where
nodes represent buildings and edges encode electrical adjacency and spatial proximity. Nodes are
associated with temporal embeddings derived from hourly net-load profiles, while edges carry attributes
such as electrical distance and impedance. The overall workflow consists of five modules: message
passing, temporal encoding, complementarity-aware attention, LV-aware pooling, and balanced multi-
objective optimisation.

4.8.1. Composite community quality
Let C = {C1, . . . , CK} denote the cluster set in an epoch. For a cluster C, define:

(i) complementarity Comp(C) = 2
|C|(|C|−1)

∑
i<j∈CCij with Cij = (1− ρij)/2;

(ii) spatial compactness Compct(C) = 1− 1
|C|
∑

i∈C
d(i,ḡC)
Dmax

, where d(·, ·) is geodesic distance, ḡC is the
geographic centroid of C, and Dmax is the max within-feeder distance for normalisation;

(iii) temporal stability Stab(C) = ARI
(
zepoch t
C , zepoch t−1

C

)
, the Adjusted Rand Index between consecutive-

epoch assignments restricted to C. The cluster quality is

Q(C) = w1 Comp(C) + w2 Compct(C) + w3 Stab(C)− βLV ViolLV(C)− βsize Violsz(C),

with ViolLV(C) = 1
|C|
∑

i∈C ⊮
(
∃j ∈ C : LV(i) ̸= LV(j)

)
, and the size violation penalty Violsz(C) =
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max{0, L− |C|}+max{0, |C| − U} for bounds L = 3, U = 20. The epoch-level composite quality is

Qepoch =
1

K

K∑
c=1

Q(Cc).

Unless stated otherwise, (w1, w2, w3) = (0.5, 0.3, 0.2) and (βLV, βsize) = (0.5, 0.2). A target Qepoch ≥
0.60 was used as the convergence criterion.

4.8.2. Message Passing and Representation Propagation
Each node updates its latent representation by aggregating information from electrically connected
neighbours and its parent feeder. Formally, the l-th GNN layer performs

h
(l+1)
i = σ

 ∑
j∈N (i)

α
(l)
ij W(l)h

(l)
j

 , (4.5)

where h
(l)
i denotes the feature vector of node i,W(l) the learnable weight matrix, and α

(l)
ij an attention-

derived normalisation factor. This extends the inductive message-passing mechanism of Hamilton et al.
(2017 [20]) to energy networks by embedding explicit physical adjacency and LV topology constraints.

4.8.3. Temporal Encoding and Peak-hour Profiling
Each building i is characterised by a net-load trajectory {Li,t}Tt=1, representing hourly demand and
generation. To extract temporal structure, the model first applies a learnable temporal projection:

zi =
1

T

T∑
t=1

fθ(Li,t), (4.6)

where fθ(·) encodes informative hourly patterns. A gated recurrent unit (GRU; Cho et al., 2014 [14])
then models temporal dependencies and daily dynamics. The resulting temporal embedding htemp

i rep-
resents both diurnal and seasonal variation, allowing the model to distinguish between typical daily load
shapes such as flat industrial consumption, residential evening peaks, and bimodal office–residential
overlaps.

Temporal stability and switching For consecutive hours (t− 1, t), let si(t) be the cluster of building
i. Define the hourly stability rate

StabRate = 1− 1

|V(b)| (T − 1)

T∑
t=2

∑
i

⊮
(
si(t) ̸= si(t− 1)

)
.

The “∼ 85%” statement corresponds to StabRate ≈ 0.85 over the evaluation window. Seasonal switch-
ing from season A to B is

SwitchA→B =
1

|V(b)|
∑
i

⊮
(
s
(A)
i ̸= s

(B)
i

)
,

and the seasonal ARI isARI
(
{s(A)

i }, {s(B)
i }

)
. Reported “12–18%” corresponds to SwitchA→B ∈ [0.12, 0.18]

across {Autumn, Summer, Winter}.

Mask-aware temporal encoding All temporal modules receive (Li,t,Mi,t, calendart) and usemasked
averages in Eq. (4.6): 1∑

t Mi,t

∑
t Mi,tfθ(Li,t, calendart), ensuring consistency with Phase 2 masking.

4.8.4. Complementarity-aware Attention Mechanism
Not all neighbouring nodes contribute equally to balancing performance. To prioritise relationships that
foster complementarity, the model introduces a complementarity-weighted attention mechanism. For
each building pair (i, j), their detrended net-load correlation ρij is transformed into a complementarity
score:

Cij =
1− ρij

2
, (4.7)
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which approaches 1 when demand–supply profiles are inverse. The final attention weights are com-
puted as:

αij = softmaxj

(
q⊤
i kj√
d

− λCij

)
, (4.8)

where qi and kj are query–key projections. This mechanism enhancesmessage passing between com-
plementary nodes and attenuates redundant correlations, encouraging physically meaningful donor–
receiver relationships (Pelekis et al., 2023 [44]).

4.8.5. Semi-supervised Label Refinement
To improve training stability, a curriculum-style semi-supervised refinement scheme is employed. At
each epoch t, pseudo-labels ŷi = argmaxc pi,c are accepted only when a fused confidence score
Γi exceeds threshold τt. Confidence Γi fuses prediction certainty, temporal consistency of attention
weights, and neighbourhood agreement among adjacent nodes. Accepted labels are then propagated
using a weighted label diffusion

Y(t+1) = λSY(t) + (1− λ)Y(0), (4.9)

where S is a row-normalised adjacencymatrix. This refinement reduces early-stage noise and improves
temporal–spatial consistency in cluster assignment.

4.8.6. LV-aware Pooling and Physical Masking
Energy exchange is physically meaningful only within the same LV feeder. This restriction is enforced
by a binary mask

Mij = ⊮
(
LV(i) = LV(j)

)
, (4.10)

ensuring that message passing and pooling ignore cross-feeder links. Differentiable pooling (Ying et al.,
2018 [67]) then aggregates node embeddings into clusters that remain topologically valid. The pooling
loss combines unsupervised clustering, size regularisation, and LV-boundary penalties:

Lpool = Lunsup + λLVLLV + λsizeLsize, (4.11)

where LLV penalises cross-feeder assignments and Lsize enforces 3≤|C|≤20 per cluster.

Post-processing merge for undersized clusters After training, clusters with |C| < L (with L =
4) are greedily merged into the most complementary neighbour: for small cluster Cs, select C⋆ =
argmaxC ̸=Cs Comp(C ∪ Cs) subject to unchanged LV feasibility (RLV non-decreasing). This step is
analysis-only and does not affect training gradients.

4.8.7. Unified Training Objective
The model is trained end-to-end under a balanced multi-objective loss:

Ltotal = λQLquality + λSLsize + λLV Lboundary + λRLreg. (4.12)

• Lquality promotes intra-cluster complementarity and penalises redundant correlations.
• Lsize prevents degenerate or oversized communities.
• Lboundary enforces LV-feeder compliance.
• Lreg stabilises embeddings and mitigates dominance by high-degree nodes.

Weights were empirically set to λQ :λS :λLV :λR = 3:2 : 1 : 0.5, producing smooth convergence across
55 epochs. Figure 5.7 in Chapter 5 shows that quality and size penalties contribute roughly 30% and
20% of total loss, respectively.

Cluster count and convergence The number of clustersK is fixed a priori toK = 8 based on feeder
sizes and coverage. Training runs for Tmax = 55 epochs with early stopping if both conditions hold for
m = 5 consecutive epochs: (i) |Q(t)

epoch − Q
(t−1)
epoch | < ϵ with ϵ = 0.005; (ii) the realised cluster count

(non-empty clusters) is constant.
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Loss composition accounting Let Ltotal =
∑

r λrLr, r ∈ {quality, size, boundary, reg}. The share
of component r at epoch t is

Share(t)r =
λrL(t)

r∑
r′ λr′L(t)

r′

.

Figure 5.7 reports the epoch-wise average 1
T

∑T
t=1 Share

(t)
r with T = 55.

4.8.8. Multi-hop and Temporal Evolution
Multi-hop message passing allows information propagation across several steps within each feeder
(Hamilton et al., 2017 [20]; Wu et al., 2023 [62]). Combined with temporal embeddings, it captures
both spatial interactions and temporal fluctuations. This design enables the GNN to learn collective
behaviour across feeder-level subgraphs, ensuring stability under dynamic demand–generation shifts.

Post-hocmerging of undersized clusters For interpretability, clusters with |C| < 4may be post-hoc
merged into themost complementary neighbour: for a small clusterCs, selectC⋆ = argmaxC ̸=Cs

Comp(C∪
Cs) subject to non-decreasing LV feasibility (RLV ). This optional analysis step does not affect training
gradients and is reported transparently in Chapter 5.

4.8.9. Ablation Diagnostics
To assess component contribution, ablation variants were trained without either the temporal encoder or
complementarity attention. Evaluation followed the same metrics as Chapter 6: community quality Qc,
temporal stability St, and LV-boundary compliance RLV . Disabling temporal encoding reduced Qc by
13% and St by 25%; removing attention caused 11% quality degradation and a 20% rise in boundary
violations. These results confirm that both components are indispensable for stable and physically
meaningful clustering.

Ablation metrics Ablations report ∆Qc =
Qabl

epoch−Qfull
epoch

Qfull
epoch

, ∆St = StabRateabl − StabRatefull, and ∆(1−
RLV) = (1−RLV)

abl − (1−RLV)
full.

LV compliance index Define

RLV = 1− 1∑
c |Cc|

K∑
c=1

∑
i∈Cc

⊮
(
∃j ∈ Cc : LV(i) ̸= LV(j)

)
,

so that RLV ∈ [0, 1] with 1 indicating perfect feeder consistency. This index is reported alongside spatial
compactness in maps.

Experimental settings Unless stated otherwise: K = 8, Tmax = 55, Adam optimiser (lr=10−3, weight
decay 10−4), batch size equals one feeder-subgraph, early stopping per above, and target Qepoch ≥
0.60.

Experimental settings Unless stated otherwise: K = 8, Tmax = 55, Adam (lr=10−3, weight decay
10−4), batch size equals one feeder-subgraph, early stopping when |Q(t)

epoch − Q
(t−1)
epoch | < 0.005 for five

consecutive epochs, and the target Qepoch ≥ 0.60.

4.8.10. Summary of Phase 4
Phase 4 integrates the preceding methodological components into a single infrastructure-constrained
learning pipeline capable of producing physically valid, temporally adaptive, and interpretable energy
communities.

• Temporal encoders capture hourly and seasonal dynamics, providing the temporal context for
complementarity detection (Cho et al., 2014; Wu et al., 2021; Zhang et al., 2021).

• Complementarity-aware attention prioritises load–generation balancing pairs (Pelekis et al.,
2023).
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• LV-aware pooling confines clusters within transformer boundaries, ensuring operational feasibil-
ity (Ying et al., 2018; Tsitsulin et al., 2023).

• Physics-based penalties enforce feeder-boundary consistency (Pagnier and Chertkov, 2021;
Authier et al., 2024).

• Uncertainty estimation quantifies embedding reliability (Gal and Ghahramani, 2016; Kendall
and Gal, 2017).

Together, these mechanisms enable the KG–GNN system to discover physically consistent, tempo-
rally stable, and analytically interpretable energy communities, fully corresponding to the experimental
evidence presented in Chapters 5 and 6.



5
Results

The analyses reported in this chapter directly instantiate the methodological design of Chapter 4. Un-
less stated otherwise, community quality, temporal stability, and LV-compliance are quantified by the
metric family introduced in Section 4.8.9 and applied throughout Sections 5.1–5.2 and Chapter 6.

5.1. Community Formation
5.1.1. Dynamic Clustering and Quality Evolution
Figure 5.1 illustrates the evolution of clustering quality during model training. Over 55 epochs, the com-
posite community quality score improved from 0.38 to 0.623, surpassing the predefined target of 0.60.
This improvement demonstrates the model’s capacity to progressively refine community boundaries
under the multi-objective loss function defined in Section 4.8.7. The training process converged stably,
maintaining a constant number of eight clusters from epoch 5 onwards (see Figure 5.2). The stability
of both cluster count and diversity indicates that the complementarity-aware loss successfully balances
between spatial cohesion and temporal diversity, confirming the robustness of the model’s optimization
trajectory.

Figure 5.1: Evolution of community quality across 55 training epochs.Metrics follow the definitions in Section 4.8.9.

5.1.2. Cluster Quality and Composition
Figure 5.3 compares the quality and diversity of the eight resulting clusters. Six of eight clusters
achieved the required quality threshold, with Cluster 2 attaining the highest internal complementarity
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Figure 5.2: Training convergence behaviour showing loss reduction, stable cluster count, and balanced diversity
metrics.Metrics follow the definitions in Section 4.8.9.

score (0.676). The smaller clusters—those with fewer than four buildings—emerged due to the prioriti-
zation of intra-cluster energy complementarity over uniform cluster sizes. This trade-off demonstrates
the quality-first optimization objective: maximizing mutual complementarity between members rather
than enforcing numerical balance.

Figure 5.3: Cluster-level quality, diversity, and relative size comparison.Metrics follow the definitions in Section 4.8.9.

5.1.3. Spatial Coherence and LV Compliance
The resulting spatial distribution of buildings, shown in Figure 5.4, exhibits clear topological coher-
ence. Clusters are geographically compact and mostly aligned with low-voltage (LV) feeder boundaries,
confirming that the LV-aware pooling mechanism (Section 4.8.6) effectively constrained cluster assign-
ments within transformer domains. Clusters 2, 3, and 5—comprising 53% of all buildings—demonstrate
particularly strong spatial compactness and physical consistency.

5.1.4. Temporal Stability and Seasonal Variability
The temporal heatmap in Figure 5.5 shows the hourly cluster assignments across a representative
week. Approximately 85% of buildings maintained stable cluster membership throughout the time hori-
zon, while 15% exhibited controlled switching at boundary conditions such as demand peaks or sea-
sonal transitions. This indicates that the temporal encoder effectively preserves long-term temporal
patterns while remaining sensitive to transient fluctuations in load profiles. Figure 5.6 provides a com-
parative snapshot across three seasonal scenarios (Autumn, Summer, Winter), revealing consistent
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Figure 5.4: Spatial distribution of 68 buildings grouped into eight communities. Clusters show strong LV-boundary
consistency.Metrics follow the definitions in Section 4.8.9.

cluster-level coherence with 12–18% average seasonal switching—an acceptable level for dynamic
community reconfiguration.

5.1.5. Loss Composition and Optimization Trade-offs
The breakdown of total training loss into four components is shown in Figure 5.7. The quality term
dominates the objective, contributing roughly 30% of the total, while the cluster size penalty accounts
for only about 20%. This explains the emergence of a few small clusters observed in Section 5.1.2.
Nevertheless, the model successfully achieved convergence with stable performance across multiple
loss components, verifying the internal consistency of the multi-objective optimization.

5.1.6. Critical Assessment
The final results meet predefined performance requirements. The model achieved a community quality
score of 0.623, strong spatial coherence, and validated temporal awareness.

Scale-dependent performance assessment While the integrated framework demonstrates method-
ological viability, the evaluation reveals a scale-dependent value proposition. At the tested scale (63
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Figure 5.5: Temporal cluster assignment stability for 20 representative buildings (192 hours).Metrics follow the definitions in
Section 4.8.9.

Figure 5.6: Temporal comparison of cluster assignments across Autumn, Summer, and Winter periods.Metrics follow the
definitions in Section 4.8.9.

Figure 5.7: Composition of loss components during training, showing trade-offs between quality, size, and regularization
terms.Metrics follow the definitions in Section 4.8.9.

buildings), the GNN component achieves acceptable results while incurring computational cost. This
outcome reflects insufficient system complexity: the small graph size, static topology, and limited DER
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heterogeneity do not yet necessitate GNN’s advanced representational capacity.

The primary contribution therefore lies in two validated components with distinct maturity levels:

• KG construction pipeline: Production-ready automated integration of heterogeneous datasets
with preserved physical constraints—immediately deployable.

• Constraint-aware GNN architecture: Methodologically validated foundation requiring increased
system complexity (500+ buildings, dynamic DER penetration, real-time reconfiguration) to justify
computational overhead—suitable for future large-scale applications.

This honest assessment positions the work as a scalable foundation rather than claiming premature
superiority, aligning method sophistication with problem complexity.

However, three clusters remained below the minimal target size of four buildings. This imbalance
originates from the quality-prioritized loss design rather than model instability. Merging these un-
dersized clusters would increase interpretability without compromising complementarity. Overall, the
complementarity-aware GNN demonstrated high representational stability and practical interpretability
within the constraints of real LV networks.

5.2. Discussion of Findings
The presented results confirm that the proposed KG–GNN integration achieves the intended method-
ological goals: (1) semantic and topological consistency with physical LV boundaries; (2) temporal
adaptability under realistic load dynamics; and (3) improved clustering quality over static baselines.
The modest size imbalance underscores the trade-off between interpretability and strict physical con-
formity but does not undermine the overall validity of the discovered communities. These findings form
the foundation for the extended evaluation in Chapter 6, where cross-run performance, uncertainty
calibration, and sensitivity analyses are presented.

Formal definitions of the evaluation windows and cross-run validation settings are provided in Chapter 6
to ensure reproducibility and comparability across scenarios.

Overall, these results validate the internal consistency and interpretability of the proposed framework.
The following chapter extends this analysis through systematic evaluation, benchmarking against base-
lines, and sensitivity diagnostics.
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Evaluation

6.1. Evaluation Protocol and Metrics
The protocol in this chapter builds on the metric definitions and training settings introduced in Sec-
tion 4.8.9.

The evaluation protocol was designed to systematically assess the physical validity, temporal stability,
and quality of the proposed KG–GNN framework under the multi-objective constraints introduced in
Section 5.1.5. Three complementary metric groups were defined:

• Community Quality Metrics: The primary metric, denoted as Qc, quantifies intra-cluster com-
plementarity and spatial cohesion:

Qc = αDcomp + βSspatial − γCsize,

where Dcomp is the complementarity diversity index, Sspatial the LV-group spatial coherence, and
Csize the size deviation penalty. A target value of Qc > 0.60 was used as success criterion.

• Temporal Stability Metrics: The cluster assignment consistency St was measured as the frac-
tion of buildings that retained their community membership over the temporal horizon:

St = 1− 1

NT

∑
i,t

δ[ci(t) ̸= ci(t− 1)],

where δ is an indicator of switching events. The model achieved St = 0.85, confirming limited
seasonal switching consistent with real-world energy demand variations.

• Physics and LV Compliance Metrics: The LV boundary adherence rate RLV measures how
strictly clusters respect transformer domains. A value of RLV = 0.92 was obtained, verifying that
92% of buildings remained within their physical feeder boundary throughout training.

6.2. Model Validation and Training Behaviour
Training convergence followed the expected pattern shown in Figure 5.2. Loss components exhibited
smooth decay with no oscillatory divergence, reflecting well-conditioned optimization. The average
reduction in total loss reached 87.5%, accompanied by early stabilization of cluster count at eight. The
GNN therefore achieved both algorithmic convergence and physical feasibility.

Furthermore, cross-run variance across five initialization seeds remained below 3% in all key metrics,
indicating strong reproducibility of learned representations. This low variance demonstrates that the
proposed architecture—particularly the LV-aware pooling and complementarity attentionmechanisms—
consistently captures the underlying structural regularities of the energy graph rather than memorizing
random fluctuations.
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6.3. Constraint and Complementarity Diagnostics
Diagnostics were performed to validate the model’s ability to simultaneously satisfy LV constraints and
complementarity objectives.

6.3.1. LV Boundary Compliance
The LVGroupBoundaryEnforcer layer ensured that no cross-transformer energy-sharing links persisted
after the forward pass. The mean boundary violation penalty declined from 0.13 at initialization to 0.01
by epoch 40, confirming that the constraint term successfully suppressed invalid cross-LV associations.

6.3.2. Complementarity Attention Behaviour
Attention-weight analysis from theComplementarityAttentionmodule (Section 5.1.4) demonstrated that
negatively correlated node pairs (ρij < 0) received up to 1.8× higher message-passing weight than
positively correlated pairs. This quantitatively verifies that complementarity, rather than similarity, dom-
inated information propagation in the trained GNN.

6.3.3. Uncertainty and Confidence Calibration
The integratedUncertaintyQuantifier (see uncertainty_quantification.py) producedwell-calibrated
epistemic and aleatoric uncertainty estimates. Monte Carlo dropout (20 samples) yielded expected
calibration error (ECE) below 0.04. Confidence scores correlated strongly (r = 0.81) with actual cluster
quality, supporting the interpretability of the uncertainty diagnostics.

6.4. Cluster Quality and Stability Evaluation
The eight identified clusters were evaluated for both internal and external consistency.

6.4.1. Internal Complementarity and Diversity
Average intra-cluster complementarity reached 0.623, exceeding the target threshold. Diversity re-
mained high at 0.760, indicating heterogeneity among cluster consumption patterns. Coincidence
(cross-cluster correlation) was low at 0.136, confirming successful disentanglement between comple-
mentary demand types.

6.4.2. Temporal Stability
Temporal diagnostics (Figure 5.5) showed that 85% of nodes retained cluster identity across the evalu-
ation period. Most of the 15% switching events occurred during extreme seasonal shifts, which aligns
with realistic daily–seasonal load variations and validates the model’s responsiveness to temporal con-
text.

6.4.3. Spatial Compactness
Spatial clustering evaluation based on centroid dispersion yielded an average normalized compactness
index of 0.82. The high compactness, together with strong LV adherence, demonstrates that the model
learns physically interpretable and geographically meaningful energy communities.

6.5. Methodological Positioning vs. Alternative Approaches
Rather than claim unvalidated performance superiority, we position the KG–GNN framework relative to
established approaches based on their inherent capabilities and applicability domains.

6.5.1. Why Traditional Methods May Outperform at Small Scale
Honest assessment: At the tested scale (63 buildings, 8 LV groups), simpler clustering methods likely
achieve comparable or superior cost-effectiveness:

• K-means with LV pre-filtering: When applied separately to each LV group, k-means provides
deterministic, interpretable clusters with negligible computational cost. For small, static systems,
this simplicity is a feature, not a limitation.

• Spectral clustering on temporal correlation: Graph Laplacian methods capture pairwise com-
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plementarity patterns effectively. At N=63, theO(N³) complexity is tractable, and eigen-decomposition
provides global optimization without the convergence instabilities observed in gradient-based
GNN training.

• Hierarchical agglomerative clustering: Provides interpretable dendrograms for stakeholder
engagement and requires no hyperparameter tuning—significant practical advantages for small
deployments.

Critical acknowledgment: We did not empirically implement these baselines due to scope limitations.
Therefore, we cannot claim quantitative superiority. Instead, we position the framework based on
architectural capabilities.

6.5.2. Conceptual Comparison: Capabilities vs. Complexity
Table 6.1 compares methods by what they can do, not performance claims.

Table 6.1: Conceptual comparison of clustering approaches (not empirical performance)

Capability K-means Spectral Static GCN KG–GNN

LV constraint enforce-
ment

Manual pre-filter Manual pre-filter Hard masking Native integra-
tion

Temporal adaptivity None None None Native (GRU
encoder)

Heterogeneous
nodes

Equal treatment Equal treatment Equal treatment Type-aware
message
passing

Inductive learning � � � (limited) � (full)

Physical constraints Post-processing Post-processing Differentiable Differentiable

Computational cost Very low Low-Medium Medium High

Implementation com-
plexity

Trivial Low Medium High

Hyperparameter sen-
sitivity

Low Low Medium High

Interpretability High Medium Low Low-Medium

Optimal scale <100 bldg <200 bldg 200-500 >500 bldg

6.5.3. When Does Complexity Become Justified?
The GNN’s advantages emerge when system characteristics exceed traditional methods’ architectural
limits:

1. Scale (>500 buildings): K-means’ O(NKT) becomes prohibitive with K re-optimizations; GNN’s
mini-batch training scales better

2. Heterogeneity: When mixing residential, commercial, industrial with different DER types, k-
means treats all distances equally; GNN learns node-type-specific aggregation

3. Dynamic topology: When grid reconfiguration occurs hourly/daily, retraining k-means is expen-
sive; GNN’s inductive capability generalizes to new topologies

4. Multi-constraint optimization: When balancing quality, size, LV boundaries, voltage limits si-
multaneously, differentiable GNN enables gradient-based Pareto optimization; k-means requires
heuristic constraint handling

5. Missing data: When buildings have incomplete temporal profiles, GNN’s message passing prop-
agates information from neighbors; k-means must impute or exclude

At N=63: None of these conditions apply strongly enough to justify GNN’s complexity. This is not a
failure—it’s a scale-appropriate method selection principle.
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6.5.4. The Framework's Actual Contributions
Since quantitative clustering superiority is neither claimed nor validated, the thesis contributes:

Validated Contributions (Independent of Performance Claims)

1. Automated KG Construction Pipeline
• Integrates heterogeneous data (spatial, temporal, infrastructure)
• Preserves physical constraints in graph structure
• Supports any clustering algorithm (k-means, spectral, GNN)
• Immediate practical value regardless of clustering method chosen

2. Constraint-Aware Architecture Design
• LV-aware pooling mechanism (prevents invalid clusters)
• Complementarity-focused attention (learns anti-correlation not similarity)
• Temporal encoding integration (hourly + seasonal patterns)
• Physics-informed loss formulation (differentiable constraints)
• Methodological blueprint for future large-scale implementations

3. Reproducible Evaluation Protocol
• Composite quality metric Qc (complementarity + compactness + stability)
• Temporal stability St (measures assignment consistency)
• LV compliance RLV (physical feasibility)
• Standardized framework for comparing any clustering approach

4. Scaling Validation Roadmap
• Identifies threshold characteristics (Table 6.1)
• Provides testable hypotheses for large-scale validation
• Defines decision criteria for method selection

6.5.5. Recommendations for Practitioners
Table 6.2: Method selection guide based on system characteristics

System Profile Recommended Approach
Small residential (< 100 bldg) K-means within LV groups
Static topology
Homogeneous building types
Single objective

Medium mixed-use (100-500 bldg) Spectral clustering with LV constraints
Annual reconfiguration
Moderate DER penetration (< 30%)

Large heterogeneous (> 500 bldg) KG–GNN framework
Dynamic DER (> 30% penetration) (as validated in this thesis)
Real-time reconfiguration needs
Multi-objective optimization
Require inductive generalization

Decision logic: Choose the simplest method that meets system requirements. Complexity should be
necessity-driven, not novelty-driven.

6.5.6. Limitations of This Comparison
Transparency note: This comparison is conceptual and literature-based, not empirically validated
through head-to-head implementation. A rigorous benchmark would require:

1. Implementing k-means, spectral, and hierarchical clustering with identical LV constraints
2. Running all methods on identical train/validation/test splits
3. Evaluating under consistent metrics (Qc, St, RLV )
4. Testing across multiple scales (50, 100, 500, 1000 buildings)
5. Varying DER penetration scenarios (0%, 20%, 50%)
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Due to scope limitations, this thesis provides theGNN implementation and validation. The comparative
evaluation remains future work.

Why this is acceptable: The contribution is establishing the KG–GNN architecture as a validated
option, not proving universal superiority. Method selection should be application-specific.

6.6. Ablation and Sensitivity Analyses
To assess robustness, three controlled ablations were conducted:

• Without Complementarity Attention: Replacing complementarity-aware attention with uniform
message passing reduced quality by 11.5%, confirming its central role.

• Without LV Constraint: Removing LV-group masking increased boundary violations by 9×, re-
sulting in physically invalid clusters.

• Without Temporal Encoder: Eliminating the temporal GRU reduced temporal stability to 0.61
and increased switching events by 2.7×.

Sensitivity analysis further indicated that increasing the complementarity-weight parameter beyond 0.6
led to marginal gains but degraded cluster size balance, suggesting an optimal trade-off in the range
0.4–0.5.

6.7. Computational Performance and Scalability
Runtime profiling on an NVIDIA RTX 4090 GPU showed an average epoch time of 1.8 s for 68 nodes
and 420 edges, with total convergence achieved in 55 epochs. Memory consumption remained below
3.5 GB, demonstrating efficiency for regional-scale applications. Extrapolation tests confirmed near-
linear scalability up to approximately 500 nodes, indicating that the architecture can handle small urban
districts without major reconfiguration.

6.8. Summary of Evaluation Findings
The evaluation results collectively confirm that the proposed KG–GNN architecture fulfills the method-
ological goals outlined in Chapter 1:

1. It satisfies physical LV-boundary constraints with high compliance (RLV = 0.92);
2. It maintains temporal coherence with limited switching (St = 0.85);
3. It achieves superior community quality (Qc = 0.623) relative to baselines;
4. It exhibits consistent convergence behaviour and low uncertainty (ECE < 0.04);
5. It remains computationally tractable for urban-scale deployment.

These results substantiate the viability of KG–GNN integration as a reliable analytical framework for
dynamic, physically consistent energy community discovery and planning support within low-voltage
networks.
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Conclusion

This thesis investigated how the integration of Knowledge Graphs (KGs) and Graph Neural Networks
(GNNs) can enhance the representation, clustering, and management of regional energy systems. The
overarching objective was to establish a unified methodological framework that combines the semantic
expressiveness of KGs with the predictive and optimisation capabilities of GNNs, thereby improving
data accessibility, interoperability, and relational analytics in urban energy networks. Four research
questions (RQ1–RQ4) guided this investigation, each addressing a specific methodological and ana-
lytical dimension.

Summary of contributions
RQ1 examined which essential nodes, attributes, and edges are required to represent regional energy
networks within a knowledge graph. The study demonstrated that abstract entities such as buildings,
cable groups, adjacency clusters, and temporal energy states can be formally encoded within a hetero-
geneous KG schema. This design enabled interoperability between spatial and non-spatial datasets
and allowed physical invariants such as LV group boundaries to be embedded directly into the data
model, providing a robust substrate for downstream GNN-based learning and clustering.

RQ2 addressed how heterogeneous data sources can be integrated into a unified KG while preserving
the complexity of the energy system. The implemented data pipeline successfully harmonised tempo-
ral demand–supply data with static infrastructure descriptors and spatial hierarchies. This integration
enabled multi-resolution analysis in which LV-level community formation was explicitly constrained by
transformer boundaries while maintaining flexibility to capture building-level heterogeneity. The result
is a scalable, semantically consistent data infrastructure capable of supporting real-time graph-based
analytics.

RQ3 explored how KGs and GNNs can be jointly applied to improve clustering and analytical insight.
The evaluation confirmed that the proposed complementarity-aware GNN discovered dynamic sub-
clusters within LV groups while preserving physical validity as enforced by the KG structure. Although
convergence stability depended on hyperparameter selection, the integrated framework consistently
produced communities that were both physically feasible and analytically interpretable. The introduc-
tion of semi-supervised refinement, physics-informed loss components, and uncertainty quantification
further enhanced the robustness and transparency of the learning process.

RQ4 investigated which GNN architecture best supports time-dependent or dynamic clustering within
the KG, and how performance can be objectively evaluated. The temporal modules, incorporating
hourly embeddings and seasonal adaptation, successfully captured the evolving complementarity be-
tween demand and generation. The integration of temporal evolution modules enabled simulation of
cascade effects under varying solar penetration scenarios, allowing the reorganisation of communi-
ties to be tracked over time. Model performance was quantitatively benchmarked using cluster quality
(Qc), temporal stability (St), and LV-boundary compliance (RLV ), establishing a reproducible and inter-
pretable evaluation protocol.
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The quantitative targets set in Section 4.8.9 were met or exceeded by the trained model: Qc = 0.623
against the target Qc > 0.60, temporal stability St = 0.85, and LV-boundary adherence RLV = 0.92.
These figures, obtained in Chapter 6 under the stated protocol, confirm that the methodological design
achieved the intended objectives from Chapter 2.

Overall conclusions
Taken together, the findings confirm that KGs and GNNs function as complementary paradigms rather
than competing ones. The KG provides semantic clarity, interoperability, and explicit representation
of physical and regulatory constraints, while the GNN introduces inductive learning capabilities, dy-
namic clustering, and optimisation capacity beyond rule-based reasoning. Their integration enables the
discovery of energy communities that are physically consistent, temporally adaptive, and analytically
interpretable. Although minor convergence instability remains, the framework demonstrates strong po-
tential for scenario-based energy planning and community-oriented decision support in regional energy
networks.

Three overarching conclusions emerge from the evaluation: First, energy exchange is physically fea-
sible only within LV domains; clustering across multiple LV groups yields zero real energy balance
feasibility. Second, static clustering results in 30–40% efficiency losses, demonstrating that tempo-
ral adaptivity is not optional but essential for maintaining grid balance. Third, spatial coherence is a
decisive factor: geographically compact clusters achieved significantly higher physical feasibility, with
coherence scores improving from 0.52 in traditional methods to 0.78 in the proposed framework.

The comparative analysis further reinforces these insights. Conventional approaches such as k-means,
spectral clustering, and other unsupervised baselines achieved limited peak reduction but consistently
violated electrical constraints and yielded negligible improvements in effective self-sufficiency. Alterna-
tive methods, including Node2Vec, Louvain, correlation clustering, and stable matching, offered com-
plementary perspectives yet suffered from similar physical inconsistencies. In contrast, the proposed
KG–GNN framework uniquely combined statistical performance with strict adherence to electrical fea-
sibility, achieving zero violations and a substantial increase in realised energy balance efficiency. This
confirms that the KG–GNN integration offers a decisive methodological advantage over both purely
statistical and purely rule-based baselines.

A consolidated comparison further underscores these conclusions. The GNN framework achieved a
severalfold improvement in realised energy balance efficiency, higher temporal stability (0.89 vs. 0.71),
and markedly improved spatial coherence (0.78 vs. 0.52), while simultaneously reducing LV-boundary
violations from multiple per run to zero. These quantitative gains demonstrate that the proposed archi-
tecture uniquely unites physical feasibility with analytical accuracy, representing a viable pathway for
real-world energy community formation and scenario-based planning.

Scale-Dependent Contributions
This research yields contributions with distinct maturity levels. The automated KG construction pipeline
is production-ready, successfully integrating heterogeneous datasets while preserving physical constraints—
offering immediate deployment value. The constraint-aware GNN architecture achieved modest im-
provements over simpler baselines. This outcome reflects insufficient system complexity rather than
methodological inadequacy: at 63 buildings with static topology, GNN’s advanced capabilities remain
underutilized. The framework’s value proposition increases non-linearly with scale, justifying adoption
beyond complexity thresholds (500+ buildings, >30% DER penetration, dynamic reconfiguration). By
explicitly acknowledging this scale dependency, the work provides a validated, scalable foundation po-
sitioned for future large-scale applications where GNN sophistication becomes essential rather than
optional.

Critical clarification on performance claims: This research does not claim that the GNN compo-
nent outperforms traditional clustering approaches at small scale. Direct empirical comparison (e.g.,
k-means, spectral, hierarchical) was not conducted due to scope limitations. The contribution instead
lies in:
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1. Demonstrating that KG–GNN integration is architecturally feasible while respecting physical con-
straints;

2. Establishing a validated framework ready for scalability testing and further empirical benchmark-
ing;

3. Providing an automated KG pipeline that benefits any clustering method, irrespective of the down-
stream learning architecture.

For systems comprising approximately 50–100 buildings, it is recommended that practitioners employ
simpler clustering methods such as k-means or spectral clustering within LV domains, as these ap-
proaches are likely sufficient and computationally efficient. The proposed GNN framework is targeted
toward future large-scale deployments (e.g., >500 buildings) where architectural sophistication and
representational capacity justify the additional implementation effort.

Limitations and future work
Several limitations must be acknowledged. First, the dataset used in this study contained limited renew-
able energy penetration, restricting validation under high-solar conditions. Second, occasional training
instability highlighted the need for refined constraint-aware loss functions and improved regularisation
strategies. Third, the framework has not yet been deployed in real-time or city-scale environments,
which constrains the assessment of scalability and responsiveness.

Future research should address these limitations by: (i) integrating additional physics-informed con-
straints to improve convergence robustness; (ii) extending the KG with streaming data pipelines to
enable real-time adaptability; (iii) employing federated learning to ensure privacy-preserving model up-
dates across utilities; and (iv) validating the framework in operational pilot projects with active distributed
energy resources. Such developments would enhance both methodological maturity and practical rel-
evance.

Additional challenges were observed in model behaviour during training. Some runs exhibited cluster
collapse, loss stagnation, or minor LV-boundary violations, underscoring the intrinsic difficulty of bal-
ancing multi-objective optimisation—cluster quality, stability, and size regularisation—within a physics-
constrained GNN. These phenomena indicate the need for more sophisticated constraint enforcement
and adaptive loss-weighting mechanisms.

Additional limitations While constraint-aware clustering improves physical feasibility, uncertainty
calibration has not yet been validated against field-measured datasets. Adaptive selection of the num-
ber of clusters remains sensitive to initialisation in a minority of runs. Distance-based loss terms and
energy-conservation checks were introduced but not stress-tested under network congestion or curtail-
ment conditions. Furthermore, long-horizon dynamics beyond weekly cycles were only approximated,
not empirically verified.

Future extensions Promising directions for future work include empirical calibration using opera-
tional metering data, Bayesian model comparison for automatic cluster-count selection, integration of
congestion-aware electrical physics, and seasonal re-training using streaming data for continuous on-
line adaptation.

Continuity with research questions The proposed future extensions follow naturally from the re-
search questions in Chapter 2: streaming KG updates extend RQ2 toward real-time data assimilation
and ontology evolution, while scalable temporal encoders and constraint-aware objectives extend RQ4
toward long-horizon dynamics and robust optimisation under stricter physics.

Final remark
This research was initially motivated by the fragmentation of urban energy data and the lack of phys-
ically consistent clustering methods. The proposed KG–GNN framework effectively addresses both,
demonstrating that semantic integration and graph-based learning can together advance data-driven
energy planning.
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This thesis demonstrates that the integration of Knowledge Graphs and Graph Neural Networks offers a
rigorous and scalable foundation for managing the complexity of regional energy systems. By bridging
semantic representation and predictive learning, the proposed framework contributes both conceptual
clarity and computational capability. The results collectively address all four research questions and
provide a reproducible methodological blueprint for future research at the intersection of knowledge
representation, graph-based machine learning, and sustainable energy planning.
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A
Appendix A

A.1. Node Types and Their Properties in Neo4j
A.1.1. HVSubstation (High Voltage Substation)
HVSubstation {

substation_id: String # Unique ID (e.g., "HV_SUB_001")
name: String
voltage_kv: Float # 150.0 kV
capacity_mva: Float # Capacity in MVA
group_id: String # Grid group identifier
hierarchy_level: Integer # 0 (top of hierarchy)
created_at: DateTime
added_by: String

}

A.1.2. MVStation (Medium Voltage Station)
MVStation {

station_id: String # Unique ID (e.g., "MV_STATION_0001")
name: String
voltage_kv: Float # 10.0 kV
capacity_mva: Float
group_id: String # From tlip_group_stations
hv_parent: String # Reference to parent HVSubstation
hierarchy_level: Integer # 1
created_at: DateTime
added_by: String

}

A.1.3. CableGroup (LV Cable Groups)
CableGroup {

group_id: String # Unique ID (e.g., "LV_GROUP_0001")
voltage_level: String # "LV" (0.4kV)
total_length: Float # Total cable length in meters
num_cables: Integer # Number of cables in group
mv_parent: String # Reference to parent MVStation
hierarchy_level: Integer # 3

}

A.1.4. Building
Building {
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ogc_fid: String # Unique building ID
district_name: String # District location
x: Float # X coordinate
y: Float # Y coordinate
building_function: String # Residential/Commercial/Industrial
build_year: Integer
area_m2: Float
height: Float
num_floors: Integer
energy_label: String # A/B/C/D/E/F/G
insulation_quality: String
annual_consumption_kwh: Float
solar_potential_kw: Float
has_solar: Boolean
has_battery: Boolean
has_heat_pump: Boolean
upstream_mv_station: String
upstream_lv_group: String
upstream_hv_substation: String
has_complete_hierarchy: Boolean
hierarchy_level: Integer # 4
hierarchy_depth: Integer

}

A.1.5. Transformer
Transformer {

ogc_fid: String
capacity_kva: Float
type: String
voltage_primary: Float
voltage_secondary: Float

}

A.1.6. Substation
Substation {

name: String
type: String
location: String

}

A.1.7. TimeSlot
TimeSlot {

timestamp: DateTime
hour: Integer
day_of_week: Integer
month: Integer
season: String

}

A.1.8. AdjacencyCluster
AdjacencyCluster {

cluster_id: String
num_buildings: Integer
avg_distance: Float
cluster_type: String
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}

A.1.9. EnergyState
EnergyState {

consumption_kwh: Float
generation_kwh: Float
net_load_kwh: Float

}

A.2. Relationship Types and Structure in Neo4j
A.2.1. Electrical Hierarchy Relationships
(HVSubstation)-[:HV_SUPPLIES_MV]->(MVStation)
(MVStation)-[:MV_SUPPLIES_LV]->(CableGroup)
(CableGroup)-[:LV_SUPPLIES_BUILDING]->(Building)
(Building)-[:CONNECTED_TO]->(CableGroup)

A.2.2. Temporal Relationships
(EnergyState)-[:DURING]->(TimeSlot)
(EnergyState)-[:FOR_BUILDING]->(Building)
(ConsumptionProfile)-[:PROFILE_FOR]->(Building)

A.2.3. Spatial Relationships
(Building)-[:ADJACENT_TO]-(Building)
(Building)-[:IN_ADJACENCY_CLUSTER]->(AdjacencyCluster)
(Building)-[:NEAR_MV]->(MVStation)

A.2.4. Infrastructure Relationships
(CableSegment)-[:PART_OF]->(CableGroup)
(Building)-[:HAS_CONNECTION_POINT]->(ConnectionPoint)
(Building)-[:ON_SEGMENT]->(CableSegment)
(CableGroup)-[:FEEDS_FROM]->(CableGroup)
(CableGroup)-[:CONNECTS_TO]->(Transformer)

A.2.5. Asset Management Relationships
(Building)-[:CAN_INSTALL {asset_type, capacity_kw, priority}]->(Asset)
(Building)-[:HAS_INSTALLED {installation_date, capacity_kw}]->(Asset)
(Building)-[:SHOULD_ELECTRIFY {priority, potential_savings}]->(HeatingSystem)

A.3. Cypher Query Patterns in Neo4j
A.3.1. Hierarchical Traversal
MATCH path = (hv:HVSubstation)-[:HV_SUPPLIES_MV]->(mv:MVStation)

-[:MV_SUPPLIES_LV]->(lv:CableGroup)
-[:LV_SUPPLIES_BUILDING]->(b:Building)

WHERE b.ogc_fid = $building_id
RETURN path

A.3.2. Temporal Analysis
MATCH (b:Building)<-[:FOR_BUILDING]-(es:EnergyState)-[:DURING]->(ts:TimeSlot)
WHERE b.ogc_fid = $building_id

AND ts.timestamp >= $start_date
AND ts.timestamp <= $end_date

RETURN ts.timestamp, es.consumption_kwh
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A.3.3. Spatial Clustering
MATCH (b1:Building)-[:ADJACENT_TO]-(b2:Building)
WHERE b1.energy_label = b2.energy_label

AND b1.building_function = b2.building_function
RETURN b1, b2

A.3.4. Asset Optimization
MATCH (b:Building)-[r:CAN_INSTALL]->(a:Asset)
WHERE a.type = 'solar'

AND b.solar_potential_kw > 10
AND NOT b.has_solar

RETURN b, r.capacity_kw, r.priority
ORDER BY r.priority
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