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Abstract

Urban freight transport is a critical yet complex component of city logistics, shaped not
only by transport networks but also by the morphological structure of urban areas. Tradi-
tional forecasting models often neglect this spatial heterogeneity, relying primarily on traffic
counts or infrastructure topology. This thesis proposes and evaluates ST-SimNet, a Spatio-
Temporal Simulation Network designed to enhance freight flow prediction by integrating
static urban morphology descriptors with dynamic freight data in a graph neural network
framework. Focusing on the city of Amsterdam, the study explores the extent to which
detailed urban morphology, including building features, land use, and spatial layout, can
improve short-term freight flow forecasts at the road network level. Results demonstrate that
incorporating static features significantly reduces error variance, improves peak hour predic-
tion, and enhances node-level stability compared to dynamic-only baselines. Furthermore,
analysis reveals that nodes with richer morphology information benefit most, while areas
with sparse or noisy static features experience challenges that highlight opportunities for
future refinement. The findings offer practical insights for integrating machine learning into
digital twin platforms for urban mobility, providing a data-driven, spatially aware layer for
freight forecasting in operational city planning systems. Limitations and future directions,
including adaptive fusion mechanisms and cross-city generalisation, are discussed. Overall,
ST-SimNet advances the integration of urban morphology into spatio-temporal predictive
models and demonstrates its practical relevance for modern freight planning in complex
urban environments.
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1. Introduction

The Netherlands, with its dense urban centres and intricate logistical networks, presents
a compelling case study for examining the potential of advanced computational methods
in optimising freight transportation. Freight transport remains a vital enabler of economic
activity, with road freight continuing to dominate modal share despite broader shifts in the
logistics sector. According to the TNO report Decamod: Toolbox voor rekenen aan CO2-reductie
in transport en logistiek (2020) [TNO, 2020], road transport is projected to carry a slightly re-
duced share of total freight—from 75% in 2014 to 73% by 2030. Yet its environmental impact
remains disproportionately high: road freight is expected to account for approximately 81%
of CO2 emissions from freight transport by 2030, due to its lower energy efficiency com-
pared to rail and inland shipping and the dominance of short-haul, high-frequency trips
within urban areas.

To systematically model and interpret freight flows at the urban scale, this study leverages
the classification schema embedded within the Multi-Agent Simulation System for Goods
Transport (MASS-GT) simulation tool. These structured classifications form the operational
backbone of MASS-GT and are essential for defining vehicle characteristics, freight profiles,
logistic modalities, and flow structures. MASS-GT serves as the simulation engine generat-
ing the spatio-temporal freight flows that form the dynamic input to the ST-SimNet model.
These simulation outputs are aligned to the road network topology, with node-level freight
intensities. The following appendices provide more insight into the modal and structural
mechanisms of MASS-GT:

• Appendix C.1 describes the ten distinct vehicle categories used in the model, ranging
from small trucks and vans to articulated lorries and specialised freight carriers. This
classification is crucial for estimating load capacities, network compatibility, and spa-
tial reach, all of which influence routing logic, congestion dynamics, and accessibility
constraints.

• Appendix C.2 outlines the NSTR (NST 2007) goods taxonomy, distinguishing between
sectors such as agricultural products, machinery, building materials, and chemicals.
These commodity classes are key to modelling differentiated freight demand, with
each type exhibiting distinct temporal profiles, routing behaviours, and sensitivity to
urban form.

• Appendix C.3 further segments the logistics domain based on operational modality,
e.g. temperature-controlled logistics, facility services, construction flows, parcel deliv-
eries, and waste collection. These segments not only inform routing constraints and
delivery schedules but also correlate with distinct urban morphology features such as
zoning type, building density, and land-use intensity.

• Finally, Appendix C.4 details the transport flow typology used to define directional
relationships between producers, Distribution Centres (DCs), Transhipment Terminals
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(TTs), and end consumers. This classification separates internal urban flows from in-
terregional and external movements and provides essential structure for interpreting
freight assignment patterns and link-level flow directions.

By embedding these structured categories into both the simulation and prediction frame-
work, this study ensures consistency between the behavioural assumptions of MASS-GT and
the learning architecture of ST-SimNet. These definitions provide not only domain realism and
reproducibility but also serve as interpretable anchors for the integration of spatial features
such as building function, land use, and socio-demographic context. Together, they allow
the model to learn freight movement as a function of both infrastructure and morphology.

Given that 73% of road freight in the Netherlands is confined to domestic transport, where
modal shifts to rail or water are often infeasible, these structured segmentations provide the
granularity needed to model nuanced policy interventions. Even marginal improvements in
route efficiency or load balancing, when aggregated across segments and vehicle types, can
yield significant environmental and operational gains [TNO, 2020].

Many complex relationships can be effectively represented through knowledge graphs, which
serve as powerful structures for modifying, enhancing, and generating new graphs [Martin
and Reichmann, 2024]. Their versatility has been increasingly leveraged in solving real-
world problems, particularly within scientific and industrial domains. For instance, NVIDIA
has harnessed the potential of Graph Neural Network (GNN)s to optimise physical struc-
tures for additive manufacturing, leading to significant advancements in lattice structure
simulation and predictive modelling [Jain et al., 2024]. This approach has demonstrated
how graph-based models can streamline design processes, improve material efficiency, and
reduce computational costs in complex engineering tasks.

Similarly, researchers from institutions including Google DeepMind developed the Graph
Networks for Materials Exploration (GNoME) framework, which utilises GNN to evaluate
material stability based on structural and compositional properties. By scaling the training
of these networks, the GNoME framework has achieved remarkable generalisation capabil-
ities, enabling the discovery of over 2.2 million stable crystal structures and significantly
enhancing the efficiency of materials discovery [Merchant et al., 2023]. These examples un-
derscore the transformative potential of graph-based models in diverse applications, from
optimising manufacturing processes to accelerating scientific discoveries.

Although not directly connected to my graduation topic, those novelties present the poten-
tial of GNN. My graduation research explores the use GNN with an additional temporal
dimension, in combination with the TNO’s Digital Twin platform to visualise the results
and enhance our understanding of the relationship between city morphology and trans-
portation networks. This study aims to model the impact of certain elements of urban tissue
morphology on road freight transportation flow patterns.

This research is centred on the city of Amsterdam and investigates how static UMD can in-
form short-term freight flow prediction. The study focuses on understanding whether and
under what conditions, morphological features such as building dimensions, facade orienta-
tion, and land use categories improve model accuracy at the local scale. Rather than treating
static data as a default input, the work critically evaluates its contribution relative to dy-
namic time series alone, revealing when such features help, and when they introduce noise.
In doing so, this thesis offers insights into the role of urban form in shaping transport dy-
namics, with implications for more spatially aware prediction models and their integration
into operational digital twins.
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1.1. Aim of the Research

Within the context of the MSc Geomatics program at TU Delft, the study embraces skills in
spatial data analysis, geospatial datasets, and the application of machine learning techniques
in geographical contexts directly corresponds with several core courses in the program. No-
tably, the course Machine Learning for the Built Environment (GEO5017) explores the founda-
tions of machine learning methodologies, Python Programming for Geomatics (GEO1005) de-
velops proficiency in programming skills essential for geospatial data processing and anal-
ysis. Additionally, Sensing Technologies (GEO1001) provides foundational knowledge in data
acquisition methods, which is crucial for understanding and implementing various sensing
techniques in geospatial research. Geo Database Management Systems (GEO1006) provided
insights in data storing and handling, which will be crucial for managing big datasets for
this project.

These courses collectively equiped me with the skills necessary to manage, analyse, and
interpret complex spatial data, which are essential for the successful execution of this re-
search.

1.1. Aim of the Research

The aim of this research is to extend and evaluate an existing STGCN architecture developed
by Yu et al. [2018] for the task of short-term urban freight flow forecasting at high spatial
resolution. While the original STGCN effectively captures spatio-temporal patterns from
dynamic traffic data, it does not incorporate static urban morphology or contextual features.
This work introduces a novel fusion block into the architecture, enabling the integration
of static descriptors such as building function, land use, and socio-demographic indicators
directly into the node representation.

To this end, the study leverages dynamic freight data from TNO’s Digital Twin (DT) frame-
work, including outputs from MASS-GT and Verkeersmodel Amsterdam (VMA) simulations,
alongside static features provided by Amin Jalilzadeh and postcode-level statistics Centraal
Bureau voor de Statistiek (Statistics Netherlands) (CBS). These data are fused at the node
level within the newly designed ST-SimNet model, allowing the network to account for both
temporal variation and spatial heterogeneity in the built environment. The ambition is three-
fold: (i) to improve predictive accuracy by contextualising freight flow dynamics with urban
form, (ii) to enhance model interpretability and transferability across urban contexts, (iii)
to enable integration into digital twin frameworks by reducing computational overhead for
traffic predictions. The proposed fusion mechanism constitutes the core architectural con-
tribution of this thesis, demonstrating how spatial context can be systematically embedded
within Spatio-Temporal Graph Neural Network (ST-GNN)s for freight forecasting.

1.2. Hypothesis and Rationale

Freight transportation models predominantly rely on road network structures and traffic
data to predict flows. However, urban morphology and socio-demographic factors play a
fundamental role in shaping transportation patterns. This research hypothesises that inte-
grating building attributes and socio-demographic data into Graph Neural Network training
will enhance the predictive accuracy of freight transportation flow models. By capturing the
underlying urban and socio-demographic dynamics that influence freight movements, this
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approach has the potential to provide more comprehensive and adaptive predictions to sup-
port urban transportation planning and optimization efforts.

Rationale Buildings exert a significant influence on freight movement patterns through
their diverse functions, densities, and spatial distributions within the urban landscape. For
instance, commercial zones typically experience higher levels of freight activity compared
to predominantly residential areas, as commercial enterprises often generate specific freight
demands and logistical requirements [Cruz-Daraviña and Suescún, 2021]. Similarly, large
industrial facilities can be major hubs of freight generation, creating unique demand patterns
that shape the overall freight distribution within the city. These effects are important because
they are an indirect measure of the amount of freight a building receives or sends.

On the other hand, residential and low-density areas, which generally exhibit lower levels of
economic activity, are often less appealing for targeted road infrastructure planning and lo-
gistics optimisation efforts. As a result, these regions may experience reduced freight trans-
port intensity, leading to spatial disparities in freight accessibility and connectivity across
the urban fabric. By incorporating comprehensive data on building attributes, land use
patterns, and socio-demographic factors into the training of Graph Neural Networks, re-
searchers can uncover hidden relationships and patterns within the freight distribution sys-
tem, particularly in areas where infrastructure development and transport accessibility may
be constrained or uneven. This holistic approach can provide valuable insights to support
more informed and adaptive urban transportation planning and optimization strategies.

Traditional transportation forecasting models often struggle in data-scarce environments,
requiring extensive calibration and domain-specific knowledge. By incorporating addi-
tional urban features, this study aims to bridge these gaps and provide a more adapt-
able, data-driven approach. Graph-based models, particularly Temporal Graph Neural Net-
work (TGNN), are well-suited to capturing dynamic relationships between spatial entities,
making them a promising choice for this task.

1.3. Knowledge Gap

Despite significant advancements in urban freight transportation modelling, a critical gap
persists in the integration of urban morphology - specifically, the spatial configuration and
land use patterns of urban areas into these models. Traditional freight transport models
often emphasize sensor data, infrastructure capacity, and policy impacts, yet they frequently
overlook how the physical layout of a city influences freight movement and demand [Gonza-
lez and Smith, 2023]. This oversight is particularly pronounced in data-scarce environments,
where limited access to detailed transportation and logistics data hampers the development
of accurate and responsive models.

Urban morphology plays a pivotal role in shaping transportation dynamics. The arrange-
ment of roads, the distribution of commercial and residential zones, and the density of urban
development directly affect freight routes, delivery efficiency, and overall logistics planning.
For instance, the phenomenon of logistics sprawl, characterised by the relocation of logistics
facilities from inner urban areas to suburban zones, has been observed to increase truck
travel distances and associated emissions [Aljohani and Thompson, 2016]. Understanding
these spatial nuances is essential for creating models that accurately reflect real-world freight
movements.
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In parallel, the emergence of machine learning techniques, particularly ST-GNN, offers promis-
ing avenues for modelling complex spatiotemporal relationships in transportation systems.
ST-GNNs are adept at capturing both the spatial dependencies inherent in transportation
networks and the temporal dynamics of traffic flows [Jiang et al., 2023]. Their application
has shown potential in traffic prediction tasks, leveraging the topological structure of road
networks to forecast traffic conditions accurately.

Despite these technological advancements, there remains a paucity of research focused on
the application of ST-GNNs to model the influence of urban morphology on freight trans-
portation. The proposed research aims to bridge this gap by developing an ST-GNN-based
framework that incorporates urban form characteristics into freight transport models.

Addressing this knowledge gap is crucial for several reasons. Firstly, integrating urban mor-
phology into freight models can lead to more sustainable and efficient logistics operations
by aligning transportation planning with the physical realities of urban environments. Sec-
ondly, in data-scarce settings, leveraging the structural information of urban form can serve
as a proxy for missing data, thereby improving model robustness and applicability. Ulti-
mately, this research endeavours to contribute to the development of holistic urban freight
transport models that are both data-efficient and sensitive to the spatial intricacies of urban
landscapes.

1.4. Research Questions

While some recent models have begun to incorporate both road network structure and urban
morphology, many remain limited to either dynamic traffic data or static built-environment
features. This fragmentation highlights a persistent gap: infrastructure-based models may
effectively describe how freight moves across a city, yet often overlook the spatial drivers
- such as land use patterns or logistical demand generators, that underpin those flows.
Conversely, morphology-driven models account for land use but often neglect the struc-
tural constraints and affordances of the transport network. A prevalent strategy in urban
flow modelling involves discretising the city into uniform grid cells, each treated as a node
in a spatio-temporal graph [Wang et al., 2024]. While computationally convenient, such
grid-based representations often misalign with actual road geometries, junctions, or admin-
istrative zones, thereby masking spatial heterogeneity and connectivity nuances. In most
spatio-temporal graph neural networks, the graph structure is defined solely by adjacency
or distance, leaving out contextual heterogeneity between urban areas. Recent studies sug-
gest that embedding additional context - such as land use, built environment features, or
socio-economic indicators, can improve generalisability and predictive performance [Rah-
mani et al., 2023]. To bridge this methodological divide, this work introduces and evaluates
ST-SimNet: a spatio-temporal graph neural network architecture designed to fuse dynamic
freight data with static urban morphology data. By aligning graph-based temporal fore-
casting with morphological context, ST-SimNet aims to better capture the interplay between
urban structure and movement patterns in complex metropolitan environments.

In the ST-SimNet framework, the urban environment is modelled as a spatio-temporal graph,
where each node represents a fine-grained spatial unit in the city and is enriched with both
dynamic and static information. Nodes correspond to locations along the road network and
are associated with feature vectors that encode local urban morphology and demographic
context. These static features are derived from building-level and block-level datasets, such
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as those from the CBS, and aggregated to the PC6 postcode level. Each node’s feature vec-
tor may include attributes such as the number of dwellings, total residential population,
commercial floor area, or industrial building volume - proxies for freight generation and
attraction. In effect, the feature vector serves as a morphological fingerprint for each urban
area. The edges of the graph are defined by the underlying transportation infrastructure,
linking nodes that are physically connected through the road network. This spatial struc-
ture preserves actual routing pathways rather than relying on mere spatial proximity or
grid-based simplifications. Built on this graph, ST-SimNet incorporates temporal learning
modules to capture how freight activity evolves at each node and how changes propagate
through the network over time. This enables the model to learn both local temporal dynam-
ics and broader spatial interactions - such as peak-hour congestion, delivery clustering, or
spillover effects due to upstream bottlenecks.

1.5. Main Research Question

The main question guiding this thesis is:

To what extent can insights into urban morphology, modeled with Spatio-Temporal Graph
Neural Networks, enhance the accuracy and adaptability of freight transportation predic-
tions in the Netherlands?

This question encapsulates the core aim of the research: to develop a forecasting approach
that bridges the gap between infrastructure-based modeling and the rich context of urban
form. It emphasizes the need to combine two types of data (network connectivity and
morphology) in a single predictive model and asks how this can be achieved through a
suitable deep learning architecture.

1.6. Research Sub-Questions

To address the main research question in a structured way, the following sub-questions are
formulated. Each sub-question corresponds to a specific aspect of the methodology and
is intended to guide the investigation into how to effectively build and use the ST-SimNet
model:

1. Architecture Suitability: What are the key components and mechanisms of the ST-SimNet
architecture required to capture both the spatial dependencies and temporal dynamics of urban
freight flows? This sub-question prompts an examination of the model design (e.g.
graph convolution layers, temporal sequence layers, etc.) and seeks to verify that the
chosen architecture (or any modifications thereof) is capable of learning the complex
patterns in the data. It also implies a comparison or baseline check to ensure that the
added complexity of a ST-GNN is justified by improved performance or insight, thus
testing the architecture’s merit against simpler alternatives.

2. Graph Structure Design: How should the graph representing the urban freight system be
constructed using the available data (road network and spatial units), and what is the impact of
different graph design choices on forecasting performance? Here I investigate how to define
the nodes and edges of the graph. For example, should each node correspond exactly
to each junction, a Six-digit Dutch postcode (postcode 6) (PC6) area, or are there reasons
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to cluster or subdivide areas? How are edges defined - only between adjacent areas
sharing a border, or between areas that are connected by a major road within a certain
distance threshold?

3. Feature Integration Strategies: What is the most effective way to integrate urban morpho-
logical features (e.g. building usage, density, and other CBS-derived statistics) into the ST-SimNet
model, and how do different feature aggregation or encoding techniques influence the accuracy
of freight flow forecasts? This question focuses on the input features assigned to nodes
(and potentially edges). I explore how building-level or zone-level data should be
processed and included in the model. The goal is to determine which features and
integration methods provide the most predictive power. This could involve experi-
ments where certain features are included or excluded, or different normalisation and
embedding techniques are applied, to see their effect on the model’s performance. By
answering this, it can be ensured that the rich urban morphology data is leveraged in
the best possible way within the GNNs framework.

These sub-questions together break down the overarching problem into manageable research
tasks: choosing/designing the model architecture, constructing the spatial graph, and incor-
porating features. Addressing them collectively answers the main research question, as each
is a crucial piece of the puzzle in building an effective ST-GNN for freight forecasting.

1.7. Relevance and Significance of the Research Questions

Formulating the research questions in the above manner underscores their relevance to both
academic literature and practical applications.

1.7.1. Academic Contribution

From an academic perspective, this research addresses a key limitation in current trans-
portation modelling literature. While spatio-temporal graph neural networks have become
powerful tools for mobility and traffic forecasting, they have largely relied on network topol-
ogy and historical flow data as inputs [Rahmani et al., 2023]. In doing so, they often neglect
the finer-grained aspects of urban morphology - such as land use patterns, the spatial dis-
tribution of economic activity, and built environment characteristics, which are known to
influence freight flows.

This thesis proposes a unified framework, ST-SimNet, that integrates road infrastructure with
detailed urban morphology descriptors by embedding static morphology features into the
graph’s node attributes. This enables the model to learn not only how freight flows prop-
agate through a road network, but also why certain areas generate or attract more freight
activity than others. Through empirical evaluation, it is shown that incorporating urban
morphology significantly improves predictive accuracy, particularly in spatially heteroge-
neous regions.

This work contributes to the theoretical understanding of how freight transportation inter-
acts with the built environment and demonstrates that integrating morphological data into
GNNs can yield more accurate and interpretable models than those based solely on infras-
tructure or time series data. Furthermore, by adapting ST-GNNs, previously applied mainly
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to passenger traffic or coarse mobility patterns to the freight domain, this research vali-
dates their applicability to sparser and more irregular datasets, extending the relevance of
deep learning in urban freight modelling. These findings have implications for both trans-
portation research and the machine learning community, offering a blueprint for future GNN
architectures that incorporate spatial context beyond topology.

1.7.2. Practical Relevance

From a practical standpoint, this research supports the development of more effective freight
planning strategies, particularly in data-rich environments like the Netherlands. Dutch cities
- dense, historic, and increasingly strained by e-commerce - present a complex logistics
challenge. At the same time, they offer fine-grained, openly available data (e.g. PC6-level
CBS statistics, building registries Basisregistratie Adressen en Gebouwen (BAG), and road
networks) that make them ideal testing grounds for data-driven mobility models.

By combining these datasets in ST-SimNet, this study demonstrates how freight flow forecast-
ing can move beyond purely network-based approaches. In particular, the results show that
static urban features can enhance predictive performance, especially in spatially heteroge-
neous areas. This has real-world implications: municipalities and logistics providers can
use such models to anticipate where delivery volumes may surge, where bottlenecks could
arise, and how zoning or infrastructure changes may impact urban freight dynamics. For
example, areas with high densities of retail or warehouse activity might require policy ad-
justments such as timed loading zones or local delivery restrictions. Conversely, areas with
weak or noisy predictions may benefit from targeted data collection or improved feature
attribution, as highlighted by this study’s analysis of error patterns linked to sparse or noisy
static inputs.

While the focus here is on the Netherlands, the approach is transferable. As more cities begin
to assemble comparable datasets, the lessons from ST-SimNet can help inform smarter freight
management globally. The model’s modular architecture and reliance on widely available
input types make it particularly suited for integration into real-time planning systems, such
as digital twins or urban logistics platforms. In summary, this work not only contributes to
academic modelling approaches but also offers actionable guidance for data-informed urban
freight management providing a bridge between machine learning techniques and practical
city logistics.
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2. Related work

2.1. Spatio-temporal GNNs for Traffic Prediction

Graph Neural Networks have emerged as powerful tools for modelling relational data in
diverse domains [Wu et al., 2021]. In transportation, spatio-temporal GNN models are used
to capture both the network structure of roads and temporal dynamics of traffic flows. Early
studies represented road networks on grid-like structures and applied Convolutional Neu-
ral Network (CNN)s, but this ignored irregular road topology (see Figure 2.1)[Xiong et al.,
2024].

Subsequent approaches leveraged graph representations built from road sensor networks,
using fixed sensor-defined adjacency matrices for graph convolution. However, fixed con-
nectivity fails to reflect changing traffic patterns over time [Xiong et al., 2024]. To ad-
dress this, Xiong et al. [2024] proposed the Gated Fusion Adaptive Graph Neural Net-
work (GFAGNN), which integrates adaptive graph convolutions and attention mechanisms
to capture dynamically changing spatial dependencies in traffic flow. GFAGNN fuses long-
term and short-term features via a gating module, yielding improved accuracy over static-
adjacency baselines. While effective on sensor data (e.g. traffic speed from loop detectors),
GFAGNN relies on sensor-defined graphs and does not incorporate information about the ur-
ban morphology or built environment surrounding those sensors. This limitation motivates
the inclusion of vector-formatted urban context in the predictive model.

Figure 2.1.: Spatial-temporal correlation is dominated by the road network structure. (a)
Traffic sensors distributed in the road network. (b) Dynamic spatial-temporal dependence
from time t− T to t + T′. Taken from Xiong et al. [2024].
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2.2. Graph Neural Networks for Road Networks

Beyond traffic time-series forecasting, recent work has focused on the unique characteristics
of road network graphs themselves. Standard GNN architectures often assume network ho-
mophily (neighbours share similar attributes), an assumption that is weak in road networks
which exhibit heterophilic patterns (e.g. a highway connected to local streets) [Jepsen et al.,
2019].

[Jepsen et al., 2019] introduced the RFN to tackle these challenges. RFN is an edge-centric GNN
that aggregates information from multiple sources: node attributes, edge (road segment) at-
tributes, and “between-edge” relations, to more robustly learn road network representations.
This relational approach makes RFN resilient to volatile homophily and sparse connectivity
in road graphs. An overview of the RFN architecture is shown in Figure 2.2. Empirically,
RFN significantly outperforms conventional Graph Convolutional Network (GCN)s on road-
specific tasks like speed limit classification by leveraging the graph’s structural features.

However, RFN is primarily a topological learning framework: it considers static graph prop-
erties and does not incorporate temporal dynamics (traffic variation over time). Moreover,
RFN’s use of road network attributes is largely internal to the network (e.g., connectivity and
road-specific features); it does not model external urban features such as land use, built-
form, or other morphological context of the road segments.

In contrast, the proposed ST-SimNet extends the relational learning concept by integrating ex-
ternal urban morphology data with spatio-temporal modelling, enabling the GNN to reason
about how the surrounding environment of roads influences freight traffic on them.

2.3. Urban Morphology in Graph-based Urban Analysis

The role of urban morphology and context in network modelling has been highlighted by
studies outside of pure traffic forecasting. Xue et al. [2021] developed a graph-based method
to quantify the spatial homogeneity of urban road networks. Their approach uses GNN
embeddings to measure how similar sub-graphs of a city’s road network are to each other,
finding that these homogeneity metrics correlate strongly with socioeconomic factors like
GDP and population growth. An overview of their concept is illustrated in Figure 2.3, where
the similarity between a subnetwork and the global network topology captures the spatial
coherence of urban structures. Notably, by transferring their model across 30 different cities,
Xue et al. [2021] revealed structural commonalities in road networks globally (e.g. inter-city
similarities between networks in Europe and the US).

This underscores the value of incorporating urban topology and external data (such as so-
cioeconomic or land-use indicators) into graph models for understanding cities. However,
the work of Xue et al. [2021] remains analytical rather than predictive - it mines structural
patterns but does not forecast traffic or freight flows. It also focuses on time-invariant prop-
erties (road layout, long-term indicators) and thus lacks a temporal component. In contrast,
ST-SimNet builds upon this idea of integrating urban context by not only embedding built en-
vironment features, but also modelling their temporal interactions through a spatio-temporal
GNN.
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Figure 2.2.: Architecture of the Relational Fusion Network (RFN). RFN fuses node-relational
and edge-relational features across multiple layers to improve learning on heterophilic
road networks. Taken from Jepsen et al. [2019].
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Figure 2.3.: Conceptual overview of spatial homogeneity in urban road networks. Homo-
geneity is defined as the similarity of link existence patterns between different parts of the
same city (intra-city) or across cities (inter-city). The metric, derived from GNN-based link
prediction, correlates with socioeconomic indicators such as GDP and population growth,
and reveals urban structural similarities transferable across cities. Taken from Xue et al.
[2021].

2.4. Relational Inductive Biases and Model Generalisability

Across these studies, a common theme is the importance of relational inductive bias —
designing models that respect the relational structure of data (roads, connections) to achieve
better generalisation [Battaglia et al., 2018]. Battaglia et al. [2018] argue that graph-based
architectures inherently encode such inductive biases, enabling combinatorial generalisation
in reasoning about entities and their relations. ST-SimNet is grounded in this principle: by
using the road network graph as the backbone, the model infuses domain knowledge of
connectivity and spatial layout. An advantage of GNNs with strong relational inductive bias
is their potential to transfer across contexts. Jepsen et al. observed that an RFN trained in
one region can be applied to another, thanks to its inductive nature, suggesting the ability to
learn traffic dynamics that generalise to unseen road networks [Jepsen et al., 2019]. Similarly,
Xue et al. [2021] demonstrated transferring a graph model across cities to compare structural
homogeneity.

ST-SimNet’s design was conducted with cross-city generalisability in mind. By incorporating
vectorized morphology data (which is often available universally, e.g. open street maps and
urban Geographic Information System (GIS) layers) along with traffic data, ST-SimNet can
learn patterns in a data-rich city and apply them to a data-sparse city. This is particularly
valuable for freight transportation, where detailed sensor data may be limited in smaller
cities. In summary, this approach relies on relational biases (through the graph network)
and shared urban features to ensure the model remains robust when deployed in different
cities or when only limited local training data are available. This addresses a key limitation
of prior spatio-temporal GNN models, which typically require extensive site-specific training
data and may not generalise well beyond the original city of training.

2.5. Integration with Digital Twin Frameworks

This work is aligned with the growing need for data-driven components in urban DT plat-
forms such as TNO’s Urban Strategy [TNO, 2023]. These systems simulate city dynamics
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to evaluate the impacts of policies and infrastructure changes. In current DT implementa-
tions, freight flow is often modelled using traditional techniques like the four-step travel
demand model, which rely on assumptions and calibrated parameters rather than learning
directly from historical data. ST-SimNet offers a complementary approach by serving as a
predictive module that learns directly from temporal freight patterns and static urban mor-
phology. Unlike conventional models, it provides fine-grained, node-level forecasts at high
temporal resolution, enabling dynamic simulation of freight movement based on observed
behaviours.

While this model is not yet integrated into TNO’s DT, it demonstrates the potential to en-
hance digital twins with short-term forecasting capabilities grounded in machine learning.
For instance, the model could be used to estimate how new zoning regulations or warehouse
developments affect freight volumes in specific urban areas. This would add a predictive
layer that updates continuously as new data becomes available, enabling scenario testing
with more realistic behavioural feedback. In this way, ST-SimNet bridges the gap between
rule-based simulation and adaptive, data-informed urban forecasting.

2.6. Baseline STGCN

STGCN is a deep learning model that integrates graph-based spatial learning with temporal
convolution for traffic forecasting [Yu et al., 2018]. The core architecture is composed of
stacked ST-ConvBlocks, followed by a fully connected output layer built with a Multi-Layer
Perceptron (MLP). In the original design, Yu et al. [2018] used two ST-ConvBlocks in sequence,
although more can be added for increased model capacity. Each ST-ConvBlock features a
”sandwich” structure: a GCN layer in the middle, flanked by input and output gated tempo-
ral convolutions. The ST-ConvBlock design further employs a bottleneck architecture reducing
the channel dimensionality prior to the GCN and restoring it afterward, thus decreasing the
number of trainable parameters while retaining representational power. Layer normalisation
is also applied within each block to enhance generalisation [Yu et al., 2018].

2.6.1. Training Pipeline and Datasets

Input-output formulation: STGCN is trained in a supervised sequence-to-sequence fashion
on graph-structured time series data. The input to the model is a sliding window of M past
time steps of traffic measurements (e.g. vehicle speeds) across all sensors in the network.
This input is represented as a tensor Vt−M+1:t ∈ RN×M, where N is the number of graph
nodes (i.e., traffic sensors) and M is the number of past time steps.

The model’s objective is to forecast the future values V̂t+1:t+H ∈ RN×H , representing the
traffic state over the next H time steps. While H = 1 is often used for single-step forecasting,
the model can be extended to multi-step prediction. In the original work by Yu et al. [2018],
the authors used M = 12 (representing one hour of history using 5-minute intervals) and
predicted up to H = 9 time steps (i.e., 45 minutes into the future), with evaluations reported
at 15, 30, and 45-minute horizons.

After passing through two stacked ST-ConvBlocks, the learned spatio-temporal features are
processed by an additional 1D temporal convolution layer (without gating) to align them
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Figure 2.4.: Detailed architecture of the Spatio-Temporal Convolutional Block (ST-ConvBlock)
in the original STGCN model [Yu et al., 2018]. The block uses a ”sandwich” design with two
1D gated temporal convolutions (GLU-based) on either side of a spatial graph convolution
layer. The first temporal convolution reduces feature dimensionality, acting as a bottleneck
to improve computational efficiency. The central graph convolution captures spatial de-
pendencies across the graph defined by the road network. The final temporal convolution
restores the dimensionality, enabling the model to reconstruct time-dependent patterns. A
residual connection links the block’s input to its final output to facilitate gradient flow and
model stability during training. This modular design allows the architecture to be stacked
in deeper networks, making it both scalable and interpretable for traffic prediction tasks.
Figure taken from Yu et al. [2018].
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with the desired forecasting horizon. Finally, a fully connected layer produces the output
traffic values for each node.

The entire model is trained end-to-end by minimising the L2 loss (Mean Squared Error)
between the predicted outputs and the ground truth values:

L =
1

NH

N

∑
i=1

H

∑
j=1

(
Vi,t+j − V̂i,t+j

)2

Optimisation is performed using stochastic gradient descent techniques, such as the Adam
optimiser. Due to its convolutional nature, STGCN avoids sequential computation and can be
parallelised across time steps, resulting in faster training compared to recurrent models.

Datasets (METR-LA and PEMS-BAY): The original STGCN paper evaluated model per-
formance on two real-world benchmark datasets: METR-LA and PEMS-BAY. These datasets
have since become standard references in traffic forecasting literature.

The METR-LA dataset comprises traffic speed readings collected from 207 loop detectors
installed on Los Angeles County freeways. The data spans approximately four months,
from March to June 2012, and is recorded at 5-minute intervals. The PEMS-BAY dataset
contains speed measurements from 325 sensors deployed across the San Francisco Bay Area,
covering a six-month period in 2017 (January to June), also with 5-minute resolution.

Each dataset is accompanied by a predefined sensor network graph. In this graph:

• Nodes represent traffic sensors.

• Edges encode spatial relationships based on road proximity. These are weighted using
a Gaussian kernel applied to pairwise distances between sensors, yielding an adjacency
matrix A ∈ RN×N where Aij reflects the strength of spatial interaction between sensor
i and j.

This adjacency matrix is central to the spatial modelling component of STGCN, guiding the
message-passing in graph convolution layers.

The model is trained to predict future traffic speeds at each node using sliding windows
of historical data. Evaluation is conducted across multiple forecasting horizons (e.g., 15,
30, and 60 minutes ahead), using common regression metrics: Mean Absolute Error (MAE),
Root Mean Squared Error (RMSE), and Weighted Mean Absolute Percentage Error (WMAPE).
These benchmarks demonstrate the ability of STGCN to model complex spatio-temporal de-
pendencies in urban road networks.

2.6.2. Performance and Contributions

Accuracy and Generalisation: STGCN demonstrated strong predictive accuracy and gener-
alisation across multiple traffic forecasting benchmarks, substantially outperforming tradi-
tional and deep learning baselines. On the widely used METR-LA and PEMS-BAY datasets,
STGCN achieved consistently lower prediction errors than classical statistical models such as
ARIMA and Support Vector Regression (SVR), as well as surpassing deep learning alterna-
tives like feedforward neural networks and LSTMs across several forecast horizons.
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In experiments on a Beijing traffic dataset and a subset of PEMS, Yu et al. [2018] reported that
STGCN reduced the 15-minute Mean Absolute Error (MAE) by approximately 10% compared
to a standard LSTM, and even outperformed the graph-enhanced GRU baseline (GCGRU)
for both short- and medium-term predictions. The performance gains were particularly
notable on larger, more topologically complex networks, such as California’s PeMS sensor
system, where the ability to model spatial dependencies via graph convolution enabled more
accurate learning of congestion propagation and traffic patterns.

Furthermore, STGCN showed enhanced capacity to capture sharp temporal dynamics, such
as the onset and dissipation of rush-hour congestion. The model was able to predict the tim-
ing of peak transitions more effectively than recurrent models, which often lagged due to
their sequential processing limitations. This behaviour underscores STGCN’s ability to gen-
eralise to dynamic urban conditions rather than overfitting to historical averages. By jointly
modelling spatial graph structures and temporal convolution, STGCN set a new benchmark
for spatio-temporal traffic prediction at the time of its introduction, demonstrating robust-
ness across cities, road network topologies, and temporal scenarios.

2.6.3. Relevance as a Baseline:

Since its introduction, the STGCN model by Yu et al. [2018] has become a widely accepted
baseline for spatio-temporal prediction tasks, particularly in traffic forecasting. Owing to its
strong performance, conceptual clarity, and computational efficiency, it is frequently used
as a benchmark against which newer methods are evaluated. The influence of STGCN has
extended beyond its original scope, helping to standardise datasets such as metr-la and
pems-bay as canonical testbeds within the community.

Numerous subsequent models have drawn architectural inspiration from STGCN, extending
it with mechanisms such as attention layers, dynamic graph construction, or residual learn-
ing schemes. Nevertheless, the original STGCN retains its value due to the balance it strikes
between predictive accuracy and architectural simplicity. Its modular spatio-temporal block
design and fully convolutional structure make it both interpretable and efficient, enabling
rapid experimentation and adaptation to new domains.

2.7. Summary of Contributions of ST-SimNet

ST-SimNet advances the field of spatio-temporal graph learning by proposing a novel ex-
tension to the established STGCN architecture, specifically tailored for freight forecasting
in morphologically complex urban environments. While STGCN demonstrated that gated
temporal convolutions combined with graph convolutions can effectively model traffic dy-
namics, it was limited to homogeneous, sensor-rich contexts and lacked integration of static
urban features.

This thesis introduces architectural innovations, contextual enhancements, and generalisabil-
ity improvements to address these limitations. The three key contributions are as follows:

1. Morphological Feature Fusion into STGCN: ST-SimNet systematically extends STGCN
by introducing a learnable fusion block that integrates static urban morphology de-
scriptors with dynamic freight data, adds droprate, weight decay, set of different op-
timisers (eg. adamw, nadamw, lion), and early stopping. Unlike prior GNN-based
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models (e.g., Diffusion Convolutional Recurrent Neural Network (DCRNN), GFAGNN)
that rely solely on time-series from traffic sensors, ST-SimNet incorporates node-level
features such as land use, building footprint, floor area ratio, and demographic statis-
tics. These features are embedded and fused via a gated mechanism during training,
enabling the model to assign dynamic importance to static inputs. This approach en-
ables interpretable, spatially-aware learning and moves beyond static concatenation or
early fusion methods.

2. Deepened Temporal Context with Configurable ST-Conv Blocks: SST-SimNet gener-
alises the sandwich architecture of STGCN by introducing a tunable number of stacked
ST-ConvBlocks and allowing for controlled temporal kernel sizes. This design enables the
model to capture longer-term dependencies across multiple peak periods while main-
taining the spatial topology of the road network. In contrast to recurrent or pooled
architectures, ST-SimNet leverages fully convolutional processing with gated activations
(e.g., GLU, GTU), enhancing scalability, parallelisation, and training stability. By ex-
plicitly controlling the compression depth via Ko, the model can dynamically adjust its
output mechanism to preserve or summarise temporal patterns as required.

3. Designed for Cross-City Generalisability and Digital Twin Readiness: A key archi-
tectural goal of ST-SimNet is to enable generalisation across cities with heterogeneous
spatial morphology and sparse training data. By incorporating relational inductive
bias and morphology-aware static features, the model is designed to adapt to new
geographies with minimal retraining. Although this thesis focuses on a single urban
context, the modular and lightweight architecture is suitable for real-time inference
and integration into digital twin frameworks such as TNO’s Digital Twin. This sets the
foundation for future applications in cross-regional freight forecasting where transfer-
ability is critical.

Together, these contributions address three persistent gaps in the literature: (i) the absence of
morphological and land-use context in adaptive traffic GNNs; (ii) the lack of structured tem-
poral depth in graph-based freight forecasting models; and (iii) the limited generalisation
capacity of sensor-dependent models trained on single-city datasets. ST-SimNet proposes a
modular, interpretable, and operationally deployable architecture that advances the predic-
tive modelling of urban freight systems and sets the stage for morphology-aware integration
in digital twin ecosystems.
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3.1. Notation and Glossary

For readers’ convenience, I attach additional glossary of symbols used in ST-SimNet (see Table
3.1).

Table 3.1.: Glossary of Symbols Used in ST-SimNet

Symbol Description

N Number of nodes (road junctions) in the graph
F Number of input features per node (dynamic)
Fs Number of static urban morphology features per node
T Total number of time steps in the dataset
L Length of input history window (e.g. 24 = 2 hours)
H Prediction horizon in time steps (e.g. 12 = 1 hour)
B Batch size (number of training samples per batch)
Kt Temporal convolution kernel size (in number of time steps)
Ks Spatial convolution kernel size (number of hops in GCN)
xt Dynamic freight flow vector at time t, ∈ RN

xi,t Freight flow at node i and time t
ŷi,t Predicted freight flow at node i and time t
si Static feature vector of node i, ∈ RFs

A Adjacency matrix representing road connectivity
Ã Graph Shift Operator (GSO), row-normalised
W Trainable weight matrix in graph convolution layers
hi Intermediate node feature matrix after ST-Conv operations
ŷ Model output vector with predicted flows
α Learnable parameter controlling fusion of static and dynamic features
z Latent feature representation after temporal aggregation
L Loss function (e.g. Mean Squared Error, MSE)
η Learning rate used for optimiser (e.g. AdamW)
p Dropout rate, regularisation strength
λ Weight decay coefficient (L2 regularisation)
γ Learning rate decay factor for scheduler
step size Epoch interval at which to apply learning rate decay
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3.2. Overview

The proposed methodology uses a STGCN approach to model urban freight traffic, leverag-
ing both spatial dependencies (road network structure) and temporal patterns (time-varying
flows). Traffic and freight flow data are highly nonlinear and complex, exhibiting strong cor-
relations across both time and space [Al Sahili and Awad, 2023]. Traditional time-series mod-
els or CNN/Recurrent Nueral Network (RNN)-based approaches struggle to capture these
interdependencies on non-Euclidean road networks [Yu et al., 2018]. I therefore formulate
the prediction problem on a graph representation of the city and employ an ST-GNN archi-
tecture to jointly learn spatial and temporal features. In particular, the model ST-SimNet is
inspired by the STGCN framework [Yu et al., 2018], with modifications to integrate static ur-
ban morphology data. By using ST-GNN, the model can encode how freight flows propagate
through the road network over time, and handle the complex, non-stationary dynamics of
urban freight transport [Al Sahili and Awad, 2023]. In summary, this methodology is chosen
to exploit the strengths of graph neural networks for learning patterns in network-structured
data and improve predictive performance for freight flows.

3.3. Input Data

This research employs three categories of data to achieve its forecasting objectives: (i) dy-
namic freight flow data derived from DT outputs of Nederlandse Organisatie voor Toegepast
Natuurwetenschappelijk Onderzoek (Dutch Organisation for Applied Scientific Research)
(TNO), based on simulations from MASS-GT and VMA, capturing temporal variation in freight
vehicle volumes at road network nodes; (ii) static UMDs, including building attributes and
PC6-level socio-demographic indicators from CBS, providing spatial context; and (iii) a di-
rected road network graph encoding the connectivity of the urban infrastructure. These
inputs are integrated within the ST-SimNet architecture, an extension of the STGCN, to fore-
cast short-term freight intensity at each node, one hour into the future, at 5-minute intervals.
The model aims to minimise predictive error by learning spatio-temporal dependencies in
freight flow, enriched by morphology-aware node representations derived from static con-
textual features.

3.3.1. Dynamic Freight Flow Data

The dynamic input data consist of time-series measurements of freight traffic intensity at
the road level, obtained from TNO’s Digital Twin simulations. In particular, I use out-
put from the Multi-Agent Simulation System for Goods Transport (MASS-GT) and the Ver-
keersmodel Amsterdam (VMA) model processed by TNO’s DT. MASS-GT is an agent-based
urban freight model that simulates logistic decisions and shipment movements in cities
[de Bok and Tavasszy, 2018], producing detailed truck delivery tours and schedules. VMA is
a small-scale traffic assignment model for the Amsterdam region, with thousands of zones
and road links, capable of routing vehicular trips through the road network [Spruijtenburg
et al., 2025]. Combined, these two models provide a realistic proxy for urban freight flows:
MASS-GT generates the freight trips (origins, destinations, timing, vehicle types), and TNO’s
DT assigns these trips to specific road paths, yielding traffic volumes on road segments over
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time. The result is a spatio-temporal dataset of freight vehicle counts on road network links
for each time interval.

For use in ST-SimNet, the model operates directly at the node level, with each node corre-
sponding to a specific point in the road network. The dynamic input xi,t for node i at time
t represents the local freight traffic intensity at that node - the number of freight vehicles
traversing or stopping near that location within a 5 minutes interval. These values are pre-
processed from simulated truck trips and structured as a time series per node with a time
resolution of 5 minutes. I denote by xt ∈ RN the vector of freight intensities across all N
nodes at time t. To stabilise training and handle the strong variability in flow magnitudes
(e.g. peak vs off-peak hours), the input series are transformed using a log(1 + x) trans-
formation followed by Min-Max normalisation to the [0, 1] range. The resulting temporal
resolution is fixed at ∆t = 5 mins, and the full sequence {xt}T

t=1 forms the dynamic input to
the model during training and evaluation.

The dataset covers two temporal configurations, both with a resolution of ∆t = 5 minutes.
The weekday-only scenario is based on one average working day, resulting in 289 time steps
per node (24 hours × 12 intervals/hour + 1 initial step). To create additional weekday data,
this single-day sequence was modulated using small perturbations to generate synthetic
but realistic temporal variability across five working days. The weekend dataset is entirely
synthetic, designed to reflect plausible low-activity patterns and behavioural shifts typical
of Saturday and Sunday logistics, followed by the inclusion of the first half of Monday to
capture ramp-up effects. This extended configuration totals 2,448 time steps per node.

For the full Amsterdam network of N = 10,691 nodes, this yields a dynamic input tensor of
shape [T, N] = [289, 10,691] for the weekday-only model, and [2,448, 10,691] for the mixed
scenario. Each time step records the estimated freight vehicle count at every node, derived
from the MASS-GT and VMA model outputs. This setup enables the evaluation of model
robustness under both consistent weekday conditions and more heterogeneous temporal
scenarios involving weekend variations.

3.3.2. Urban Morphology and Road Networks

This section describes the static urban morphology features and road network graph con-
struction.

The building dataset is characterized by a set of static attributes capturing the urban mor-
phology of each building in every PC6 area. These features are derived from building-level
data and include attributes such as the predominant land-use function, the total building
floor area (size), and occupancy indicators - precise features included are discussed in sec-
tion 3.3.3. The land-use function feature encodes the type of activities in the zone (for
example, residential, commercial, industrial, or mixed-use), which correlates with freight
demand generation (industrial or retail zones tend to send/receive more goods than purely
residential areas). The building size feature (e.g. total floor space or number of units) pro-
vides a measure of the capacity or scale of activity in the zone. Occupancy data (such as the
number of businesses or households, or occupancy rates) reflect the intensity of use of the
buildings. These building-level attributes are aggregated to nearest nodes by summing or
averaging across all buildings in the zone. The result is a feature vector si for each node i
representing the static built environment characteristics of that zone. These urban morphol-
ogy features serve as time-invariant inputs that can inform the model about each location’s
freight generation potential and usage context.
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In parallel, the city’s road network is used to define the graph structure connecting the
nodes. A directed graph is constructed G = (V, E) where each node vi ∈ V corresponds
to a road junction, and edges eij ∈ E are established between two nodes i and j if there is
a direct road connection between them. In practice, this means that if any road segment
in the underlying street network links node i to node j, then an edge is added (i, j) in the
graph. The adjacency relationships are determined using the spatial road network data.
This approach yields a graph that mirrors the actual connectivity of the city: nodes that are
adjacent or well-connected by roads become neighbors in the graph. Let A ∈ RN×N denote
the adjacency matrix of the graph (with Aij = 1 if nodes i and j are connected, otherwise 0).
The graph construction based on road network topology ensures that spatial information is
explicitly encoded for the GNN. In total, this study area graph consists of N nodes and a set
of edges reflecting the road network links between those zones. This static graph G is used
throughout training to perform graph convolutions over the freight flow data.

3.3.3. Data Preprocessing

Data Cropping To reduce processing overhead and limit the analysis to the metropolitan
area of Amsterdam, a bounding box is first applied to crop the network. The resulting subset
includes only those nodes and edges that fall within this spatial boundary. For efficient stor-
age and integration with GIS tools, the cropped network was saved as GeoPackage (.gpkg)
format.

This spatially filtered network forms the foundation for all subsequent operations. Figure 3.1
illustrates the result of this cropping step, showing the road network constrained to the
relevant spatial extent (big simulation scenario).

Algorithm 3.1: Crop a road network to a bounding box and save as .gpkg
Input: Road network dataset with spatial coordinates; bounding box coordinates

file (CSV)
Output: Cropped road network saved as GeoPackage (.gpkg)

1 Load the bounding box coordinates from CSV file;
2 Extract columns representing X and Y coordinates;
3 Create a polygon from the coordinate pairs to define the bounding box;

4 Convert the polygon into a GeoDataFrame with the appropriate CRS (e.g.
EPSG:28992);

5 Load the original road network as a GeoDataFrame;
6 Perform spatial intersection between the road network and the bounding box

polygon;
7 Store only features within the bounding box;

8 Save the cropped network to disk using the GeoPackage format;

Generation of Adjacency Matrix Following the spatial cropping of the road network, a
directed graph structure was instantiated using the networkx.DiGraph class (see Figure 3.2.
Nodes and edges, as derived from the GeoPackage files - cropped data, were added to this
graph to reflect the true topological structure of the urban road network. The directed nature
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of the graph allows the model to account for one-way streets and directional traffic flows,
which are common in urban settings.

From the constructed directed graph, a sparse adjacency matrix was generated to encode
node-to-node connectivity. The use of a sparse matrix format is particularly advantageous
in this context due to the inherent sparsity of urban road networks - most nodes are con-
nected to only a limited subset of others, reflecting the physical layout of streets and inter-
sections. Representing this structure in a dense format would result in substantial memory
inefficiencies, as the majority of matrix entries would be zero, and would incur unnecessary
computational overhead during graph operations.

Algorithm 3.2: Build a directed graph and generate its sparse adjacency matrix
Input: Cropped node and edge shapefiles
Output: Sparse adjacency matrix representing the directed road network

1 Load node shapefile into a GeoDataFrame;
2 Load edge shapefile into a GeoDataFrame;

3 Create an empty directed graph G using networkx.DiGraph();
4 Extract a set of valid node IDs from the node data;

5 foreach edge (a, b) in edge data do
6 if a and b are both in the set of valid node IDs then
7 Add a directed edge from a to b in G;

8 Convert the directed graph G into a sparse adjacency matrix using scipy.sparse;
9 Save the sparse matrix to disk in compressed .npz format;

A sparse representation, by contrast, stores only the non-zero elements, enabling more effi-
cient storage and significantly faster linear algebra computations during both model train-
ing and inference. This efficiency becomes critical as the network scales to hundreds or
thousands of nodes. The sparsity structure of the adjacency matrix is visually illustrated
in Figure 3.3, where white space denotes the absence of a direct connection between node
pairs. The strong scattered clusters reflect both local connectivity and the modular structure
of the urban network.
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Figure 3.1.: Cropped road network showing nodes and edges within the Amsterdam study
area EPSG:28992.
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Figure 3.2.: Graph structure of the road network built from spatial data using
networkx.DiGraph EPSG:28992.
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Figure 3.3.: Sparsity pattern of the adjacency matrix. White space indicates absence of direct
connection between node pairs.
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Buildings Dataset To incorporate fine-grained urban morphological context into each node,
the building dataset is used as a source of high-resolution descriptors. Each building
point includes attributes such as construction year, function, volume, and facade orienta-
tion. These attributes are spatially joined to graph nodes using a nearest-neighbour ap-
proach: each building is assigned to its closest graph node based on Euclidean distance in
EPSG:28992 coordinate space. For each node, a group-wise aggregation is performed on the
set of buildings assigned to it. Aggregation strategies include median for numerical tempo-
ral attributes (e.g. construction year), sum for quantities (e.g. building volume, number of
dwelling units), and mode for categorical features (e.g. building function or energy label).

The result is a node-level morphological profile, effectively transforming building-level micro-
data into structured urban descriptors attached to the graph. This transformation is visu-
alised in Figure 3.4, where nodes are colour-coded by the number of buildings they inherit,
indicating the spatial variability of morphological coverage across the network. Nodes with-
out any nearby buildings receive a zero vector in this version of ST-SimNet and rely solely on
dynamic data and static data inherited from PC6 data.

Algorithm 3.3: Assign building data to nearest graph nodes and compute aggre-
gated morphological descriptors

Input: Graph nodes (GeoDataFrame), buildings dataset with morphological
attributes (CSV)

Output: Node-level urban morphology profiles

1 Load the building data and convert it into a GeoDataFrame with CRS EPSG:28992;
2 Load the graph node data from shapefile with the same CRS;

3 For each building, find the nearest graph node using spatial join;
4 Assign the building and its attributes to that node;

5 Group buildings by their assigned node;
6 foreach node do
7 Aggregate building attributes:

• Use median for temporal features (e.g. construction year)

• Use sum for quantities (e.g. volume, units)

• Use mode for categorical fields (e.g. function type)

8 Attach the aggregated attributes to the corresponding nodes in the graph;
9 foreach node without buildings do

10 Assign a zero vector as morphological input;

PC6 Dataset In addition to fine-grained building-level features, broader contextual indi-
cators are incorporated from the six-digit postcode (PC6) dataset provided by CBS. This
dataset includes aggregated socio-demographic attributes such as total population, number
of dwellings, proportion of owner-occupied housing, and household composition.

To spatially constrain the dataset to the study area, the national PC6 polygons are first
cropped to a predefined bounding box, as shown in Algorithm 3.4. Then, each node in
the road network is spatially assigned to a PC6 area using a point-in-polygon operation
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Figure 3.4.: Node-level distribution of inherited buildings, EPSG:4326.

(Algorithm 3.5). If a node falls within a PC6 boundary, it inherits the corresponding demo-
graphic attributes. These features are appended directly to the node’s attribute vector and
are treated in the same way as building-derived features in the model. While building-level
data informs the immediate built environment, the PC6 attributes provide higher-level de-
mographic context, offering an additional layer of abstraction over local freight generation
potential.

Algorithm 3.4: Crop the national PC6 polygon dataset to the study area using a
bounding box

Input: Full PC6 polygon dataset, bounding box geometry (GeoPackage)
Output: Subset of PC6 polygons cropped to area of interest

1 Load the bounding box as a GeoDataFrame;
2 Retrieve spatial bounds: [xmin, ymin, xmax, ymax];
3 Load the full PC6 dataset using the bounding box as a spatial filter;

4 Optionally save the cropped PC6 polygons to disk as a new GeoPackage;

Choice of Features While a wide array of features was available from both the building-
level and PC6-level datasets, a subset was selected to ensure relevance, interpretability, and
consistency across nodes.

From the building dataset, features were aggregated per node using spatial proximity (near-
est neighbour) and summarised via meaningful statistics. The selected features can be found
in Table 3.2
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Algorithm 3.5: Assign socio-demographic attributes from PC6 areas to graph
nodes using point-in-polygon join

Input: Graph nodes (GeoDataFrame), cropped PC6 polygons with demographic
attributes

Output: Node-level demographic profiles from PC6 zones

1 Ensure both PC6 polygons and node dataset are in EPSG:28992;
2 Perform point-in-polygon spatial join to assign each node to a PC6 zone;
3 if node lies within a PC6 polygon then
4 Copy the socio-demographic attributes from PC6 to the node;

5 Append PC6 attributes to the node’s feature vector;
6 foreach node outside any PC6 zone do
7 Assign default or missing values;

Table 3.2.: Selected Features for ST-SimNet Node Enrichment

Feature Source Selected Features and Description

Building-Level

bouwjaar (median): Median construction year; reflects
building age near each node.
verblijfsobjecten, oppervlakteverblijfsobjecten,
volume (sum): Indicate built intensity.
gem hoogte, gem bouwlagen (mean): Capture vertical struc-
ture.
north shared length, north facade length (sum): Esti-
mate facade exposure.
distance (mean): Mean distance from node to nearby
buildings.
ndvi mean 100m, ntl mean 500m, and their std. dev. (mean):
Indicate environmental context.
meestvoorkomendelabel, function, building function,
residential type, non residential type (mode): Capture
dominant usage types.
building count: Number of buildings near node; proxy for
density.

PC6-Level

aantal inwoners, aantal woningen: Population and hous-
ing counts.
percentage koopwoningen: Home ownership indicator.
aantal part huishoudens: Private household count.

Note: Selected variables reflect structural, functional, and contextual diversity across urban space.
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The selection aimed to balance structural descriptors (e.g. volume, facade length), functional
indicators (e.g. building use types), and environmental or socio-demographic variables (e.g.
NDVI, NTL, population). Features with excessive missing values, high redundancy, or lim-
ited variation across the study area were excluded - often the case with PC6 data.

3.4. ST-SimNet Architecture

The architecture of ST-SimNet is based on the original STGCN model proposed by Yu et al. [Yu
et al., 2018]. While the foundational structure of spatio-temporal graph convolutional blocks
is preserved, the implementation has been substantially reworked and extended to suit the
specific needs of freight flow forecasting.

The initial codebase was adapted from an open-source PyTorch implementation by hazdzz1,
which itself was a reimplementation of the original TensorFlow version. This PyTorch foun-
dation enabled greater modularity and experimentation. On top of that base, I further
developed and adapted the architecture in several key ways:

• Rewritten the data pipeline and training logic for traffic flow prediction (in terms of
freight volume) rather than velocity estimation.

• Modified the loss functions and model output structure to align with node-level freight
intensity as the prediction target.

• Replaced original activation functions in forward pass of graph convolution with soft-
max.

• Introduced a dedicated Fusion Block to integrate static urban morphology descriptors
(UMDs) via convex combination.

• Implemented flexible graph construction using directed Graph Shift Operators (GSOs),
with support for random-walk normalisation and asymmetric edge weights.

The resulting architecture consists of two stacked ST-ConvBlocks, each combining temporal
convolution layers, graph convolution layers, and dropout for regularisation. After dynamic
processing, the temporally aggregated node embeddings are combined with projected static
features in a learnable fusion layer. A final MLP maps the fused representation to predicted
node-level freight flow at a fixed time horizon. The model is trained end-to-end using
gradient descent, minimising either MAE or Mean Squared Error (MSE) loss depending on
evaluation goals.

This extended ST-SimNet framework enables fine-grained and spatially aware short-term
freight prediction and supports integration with additional static or contextual data modal-
ities in future iterations.

Each ST-ConvBlock performs a sequence of operations that jointly model temporal dynamics
and spatial dependencies. As shown in the centre of Figure 3.5, each block begins with
a temporal convolution layer along the input sequence, followed by a graph convolution
over the spatial structure of the network using a directed GSO, and concludes with a second
temporal convolution. The temporal convolutions are implemented as 1D convolutions with
GLUs, which introduce a learnable gating mechanism to filter relevant temporal signals while
suppressing noise. Each GLU splits the feature map into candidate and gate components,

1https://github.com/hazdzz/stgcn
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Figure 3.5.: Overview of the ST-SimNet architecture. Each coloured region highlights a core
module: the blue components represent the two stacked ST-ConvBlocks; the purple section
denotes the Fusion Block where static UMDs are integrated; and the orange module at the
end represents the Gated Temporal Convolution layer used in each ST-Conv Block.

applying a sigmoid activation to the gate and computing an element-wise product. This
mechanism is particularly effective in isolating meaningful local patterns such as delivery
peaks or troughs [Dauphin et al., 2017].

Spatial dependencies are captured using a GCN defined over the road network topology. The
adjacency matrix is directional and normalised using a random-walk scheme to preserve the
flow semantics of urban freight. No self-loops are added, and asymmetry is maintained
to respect the directionality of road connectivity. These two ST-ConvBlocks form the core
of the dynamic processing pipeline and are visualised in the blue and purple regions of
Figure 3.5.

Following the dynamic encoding, the architecture performs a temporal aggregation step,
averaging feature maps across the time dimension. This results in a single latent vector
per node that summarises recent freight flow dynamics. At this stage, static information is
introduced through a Fusion Block, illustrated in purple in Figure 3.5. Here, static UMDs
are projected into the latent space via a dedicated two-layer MLP. The projected static vec-
tor is then combined with the dynamic vector using a convex combination controlled by a
learnable scalar fusion coefficient α ∈ [0, 1]. This operation produces a unified node repre-
sentation that encodes both temporal patterns and morphology-aware spatial context.

Following the fusion of dynamic and static representations, the final output layer consists
of a fully-connected MLP that maps each fused node embedding to a scalar prediction. The
result is a vector of length N, where each value represents the forecasted freight flow at a
node in the road network. In this configuration, the model predicts the freight intensity
one hour into the future (i.e., 12 time steps ahead at a 5-minute resolution), using the fused
spatio-temporal representation as input.

ST-SimNet is designed to generalise across heterogeneous spatial contexts, leveraging both
temporal dynamics and static urban form. Its modular structure enables transparent inte-
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gration of additional data streams, and the fusion mechanism allows for adaptive weighting
of static versus dynamic information per node. The architecture is trained using MAE loss,
with regularisation applied via dropout and weight decay. All components are optimised
jointly using backpropagation.

3.4.1. Data Preparation and Loading

The ST-SimNet model relies on prepared spatial-temporal input data and a graph structure
reflecting the connectivity of road infrastructure. This section outlines the core preprocessing
steps, particularly the loading of dynamic freight flow data and the construction of the
Graph Shift Operator (GSO) from a directed road network.

Adjacency Matrix Loading The road connectivity is stored in a compressed sparse ad-
jacency matrix adj.npz. This matrix is loaded in CSC format to enable efficient matrix
operations during training. For freight modeling, the adjacency matrix is directed, meaning
entries Aij = 1 imply a one-way connection from node i to node j. For the Amsterdam case,
the number of nodes is N = 817—for small simulation, and N = 10691.

Graph Shift Operator (GSO) Unlike typical GNN setups that symmetrise the adjacency
matrix or inject self-loops, ST-SimNet computes a GSO that preserves directionality and avoids
self-connections, as described earlier.

The GSO is derived using random walk normalization based on out-degree, ensuring the matrix
rows sum to one and preserving the interpretation of flow leaving each location. Formally,
the selected GSO Ã is computed as:

Ã = D−1
outA,

where Dout is the diagonal matrix of out-degrees.

Algorithm 3.6: Compute random walk normalised adjacency matrix using out-
degree

Input: Directed adjacency matrix A ∈ RN×N

Output: Random-walk normalised adjacency matrix Ã (out-degree based)

1 if A is not sparse then
2 Convert A to a sparse CSC matrix;

3 if A format is not CSC then
4 Convert A to CSC format;

5 Compute out-degree vector: dout ← ∑j Aij for each node i;
6 Replace zero entries in dout with 1 to avoid division by zero;
7 Compute inverse degrees: d−1 ← np.power(dout,−1);
8 Form diagonal matrix D−1

out from d−1;

9 Compute GSO: Ã← D−1
out · A;

32



3.4. ST-SimNet Architecture

Figure 3.6.: Graph-structured traffic data. Each vt indicates a frame of current traffic status
at time step t, which is recorded in a graph-structured data matrix. Adapted from [Yu
et al., 2018].

Time Series Normalisation and Transformation Dynamic freight flow input is represented
as a time series xt ∈ RN , where xi,t is the freight intensity at node i at time t. To reduce the
impact of large magnitude differences between peak and off-peak hours, each value is first
log-transformed using log(1 + x). This transformation compresses large values and helps
stabilise the learning process.

Subsequently, the transformed values are scaled to the [0, 1] range using Min-Max normali-
sation, but crucially, the scaling parameters (minimum and maximum) are computed using
the training set only. This avoids data leakage and ensures that the model does not have ac-
cess to future information during training. The same scaling is then applied to the validation
and test data using these fixed training-derived parameters.

Each training sample is constructed as a pair consisting of a sequence of L historical time
steps (e.g. 2 hours of 5-minute intervals, L = 24) and a prediction target H steps ahead
(e.g. 1 hour later, H = 12). These input-output pairs are extracted using a sliding window
across the time series (illustrated in Figure 3.6). After prediction, the inverse transformations
(Min-Max inverse and then exp(x)− 1) are applied to the model outputs to recover freight
volumes in the original scale.

Urban Morphology Features (Static) In addition to temporal freight signals, each node is
assigned a static feature vector si drawn from the Urban Morphology Dataset. These vectors
encode local building characteristics. The UMD matrix is loaded from a CSV file, sorted by
node ID, and preprocessed to remove missing values. It is stored as a tensor of shape [N, Fs],
where Fs is the number of static features.
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Output After preprocessing, the pipeline outputs:

• xtrain, xval, xtest:
tensors of shape [num samples, 1, L, N]

• ytrain, yval, ytest: target flows of shape [num samples, N]

• umd tensor: static urban morphology matrix of shape [N, Fs]

• gso: precomputed graph shift operator Ã ∈ RN×N

3.4.2. ST-Conv blocks

Conceptually, an ST-Conv block is structured as a “sandwich” of two temporal convolution
layers around a spatial graph convolution layer [Yu et al., 2018]. Each component is described
in detail below:

Temporal Convolution with GLU gating: The block begins with a 1D convolution along the
temporal dimension for each node’s time series. This temporal convolution uses a kernel of
length Kt (e.g. Kt = 3 time steps) and multiple filters to capture recent temporal trends in
freight flow. To introduce non-linearity and a gating mechanism, Gated Linear Units (GLUs)
is adopted for the temporal convolution layers [Yu et al., 2018] [Huang et al., 2020]. In a
GLU layer, the convolution output is split into two halves: P and Q. P represents candidate
features and Q serves as a gate. A sigmoid activation σ(·) is applied to Q to obtain gating
values between 0 and 1, and then an element-wise product is taken: Htemp = P;⊙; σ(Q).
In essence, the GLU allows the network to selectively filter the temporal features, letting
important patterns pass through while suppressing less relevant signals [Huang et al., 2020].
This gated temporal convolution thus produces a set of new feature maps for each node,
encoding short-term freight flow dynamics (e.g. capturing peaks or drops in the recent
hours) modulated by the gating mechanism. A residual connection is also used which adds
the input (after appropriate dimension match) to the GLU output, ensuring that the original
time series information is retained and improving gradient flow [Huang et al., 2020].

Algorithm 3.7: Temporal convolution with Gated Linear Units (GLU) for learning
short-term dynamics

Input: Input tensor X ∈ RB×Cin×T×N ; kernel size Kt; activation function (GLU or
GTU)

Output: Temporal features Htemp ∈ RB×Cout×T′×N

1 Align dimensions for residual connection:;
2 Xresid ← Align(X)[:, :, Kt−1 :, :];

3 Apply causal temporal convolution:;
4 Z← CausalConv2d(X, kernel = (Kt, 1), out channels = 2Cout);

5 Split convolution output:;
6 P← Z[:, : Cout, :, :];
7 Q← Z[:, Cout :, :, :];

8 Apply gated linear unit:;
9 Htemp ← (P + Xresid)⊙ σ(Q);
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Graph Convolution (Spatial): The second component in the ST-Conv block is a spatial
graph convolution that propagates information across the nodes of the road network graph
G = (V, E). This operation enables the model to learn spatial dependencies between con-
nected locations, which is essential for capturing the spread of freight activity through the
transport network. Unlike classical GCNs that assume undirected graphs and symmetric
normalisation (with added self-loops), ST-SimNet uses a random-walk normalised adjacency ma-
trix Ã constructed from a directed graph, without added self-loops. This design choice is
motivated by the inherent directionality of real-world freight movement, where outgoing
and incoming connections have distinct implications.

Formally, if Hin ∈ RN×F is the matrix of node features output by the previous temporal
layer, the graph convolution computes:

Hspatial = Ã Hin W,

where Ã = D−1A is the row-normalised adjacency matrix (with D the out-degree matrix),
and W ∈ RF×F′ is a learnable weight matrix. No activation function is applied within the
graph convolution layer itself; instead, a non-linearity (ReLU) is applied immediately after,
as part of the ST-Conv block.

This operation performs a directional aggregation: each node integrates weighted feature
information from its immediate in-neighbours, modulated by the transition probabilities
encoded in Ã. This enables the model to capture freight flow phenomena such as congestion
build-up and upstream-downstream dependencies. The use of a row-normalised GSO helps
preserve the scale of incoming signals and supports stable training, while remaining well-
suited to directed, non-symmetric transport networks.

To improve computational efficiency and control model complexity, bottleneck strategy is
applied to the architecture in this layer: the output feature dimension F′ is set smaller than
the input F, which acts as an implicit regulariser and is consistent with prior spatio-temporal
GNN design principles [Yu et al., 2018].

Second Temporal Convolution: The spatially convolved features Hspatial are then passed
through a second temporal convolution layer, again implemented as a Gated Linear Unit
(GLU). This layer uses a 1D convolution along the temporal dimension of Hspatial, followed
by a gating mechanism. It refines temporal trends in the spatially-informed features, pro-
ducing an output tensor Htemp2 = P′ ⊙ σ(Q′), where P′ and Q′ are the two halves of the
convolution output. As in the first temporal layer, the convolution has kernel size Kt and
no padding, reducing the temporal dimension by Kt − 1. Over two such layers in each ST-
Conv block, the effective temporal reduction becomes 2(Kt − 1). This design choice aligns
with causal learning principles: it ensures that predictions at any timestep depend only on
preceding inputs, avoiding leakage of future information. Additionally, the lack of padding
induces a temporal compression effect, forcing the model to extract and summarise relevant
temporal patterns over progressively shorter windows [Yu et al., 2018]. This second con-
volution finalises the “temporal–spatial–temporal” structure of the block and prepares the
feature maps for the next stage. Notably, the output channel dimension is restored to the
original width (e.g. 64) after being bottlenecked in the spatial layer, following the symmetric
bottleneck architecture of STGCN [Yu et al., 2018].

Normalization and Dropout: To stabilise training and improve generalisation, each ST-Conv
block concludes with a layer normalisation and dropout step. Specifically, the output of the
second temporal convolution is first transposed and passed through a LayerNorm operation,
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Algorithm 3.8: Spatial graph convolution using Ã, with support for Chebyshev
polynomial filtering or standard first-order GCN

Input: Feature tensor X ∈ RB×C×T×N ; graph shift operator Ã ∈ RN×N ; spatial
kernel size Ks; convolution type (cheb graph conv or graph conv)

Output: Spatially filtered features Hout ∈ RB×C′×T×N

1 Permute input dimensions: X← permute(X, (0, 2, 3, 1));

2 if convolution type is cheb graph conv then
3 Initialise: X0 ← X;
4 Compute first order: X1 ← Ã · X0;
5 for k← 2 to Ks − 1 do
6 Xk ← 2 · Ã · Xk−1 − Xk−2;

7 Stack X0, . . . , XKs−1 and apply weights: Hspatial ← ∑Ks−1
k=0 Xk ·Wk;

8 else if convolution type is graph conv then
9 Apply GSO: H1 ← Ã · X;

10 Multiply with weight matrix: Hspatial ← H1 ·W;

11 Permute back and apply residual connection:;
12 Hout ← Align(X) + permute(Hspatial, (0, 3, 1, 2));

which standardises the activations across feature dimensions for each individual data point
(rather than across a batch). This helps mitigate covariate shift, accelerate convergence,
and maintain stable gradients, especially in models where the batch size is small [Ioffe and
Szegedy, 2015]. Following normalisation, a dropout layer with rate p = 0.2 is applied,
randomly setting a fraction of the features to zero during training. This prevents over-fitting
by discouraging the model from relying too heavily on specific feature pathways.

ST-SimNet model stacks two such ST-Conv blocks in series. The output of the first block feeds
into the second block (which has the same internal structure of:
TempConv→GraphConv→TempConv, plus normalisation and dropout)
By stacking two blocks, the model can capture longer-range dependencies (both in time and
space) than a single block alone. The first block learns low-level temporal patterns and local
spatial interactions; the second block can build on those to model more complex patterns (for
example, combining information from two-hop neighbors in the graph, or capturing effects
with a slightly longer temporal range due to the sequential convolution). After the two
ST-Conv blocks, we obtain a final tensor of node features that encapsulates recent temporal
information and spatial neighbor influences for each node.

3.4.3. UMD Fusion

Static Feature Integration and Output Layer: In ST-SimNet, static urban morphology data
is integrated at the final prediction stage. This was a practical design choice made for
implementation feasibility, rather than a result of comparative evaluation with earlier fusion
strategies.

Let hi ∈ RF denote the dynamic embedding of node i after the last ST-Conv block and
temporal pooling, and let si ∈ RS represent the static urban morphology vector (see Sec-
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tion 3.3.2). These static features are passed through a separate two-layer Multi-Layer Per-
ceptron (MLP) to obtain a projected vector in the same latent space as hi. The model then
computes a learnable fusion:

zi = (1− σ(α)) · hi + σ(α) ·MLPumd(si),

where α is a trainable scalar parameter and σ(·) is the sigmoid function. This fusion allows
the model to balance the contribution of static and dynamic signals during prediction.

The resulting vector zi is then passed through a two-layer output MLP with ReLU activa-
tion and dropout. This final layer maps each node’s fused representation to the forecasted
freight flow. In the current configuration, the model performs H = 12 step-ahead prediction,
outputting a single scalar per node after temporal compression.

This late-stage integration allows the dynamic processing layers to focus exclusively on
learning temporal and spatial freight dynamics, while static features provide contextual in-
formation for correcting and calibrating the final output. Built environment characteristics,
such as industrial density or land use, can thus adjust the baseline prediction for each node,
similar to fixed effects or covariates in classical time-series models. This fusion mechanism
enables the model to remain interpretable while capturing spatial heterogeneity in freight
activity.

Algorithm 3.9: Final-stage fusion of static morphology and dynamic node features
using a learnable scalar gate and output MLP

Input: Dynamic node embeddings H ∈ RB×F×N ; static morphology features
S ∈ RN×S

Output: Predicted node-level freight flows Ŷ ∈ RB×N

1 Project static features to latent space using MLP: U← MLPumd(S)⊤;
2 Expand U to match batch size: Ubatch ← U.unsqueeze(0);
3 Compute temporal average of ST-Conv output: Hpooled ← mean(H, dim = 2);

4 Compute fusion weight: σα ← σ(α);
5 Fuse static and dynamic features: Z← (1− σα) ·Hpooled + σα ·Ubatch;

6 Transpose for MLP input: Zperm ← permute(Z, (0, 2, 1));
7 Pass through output MLP: Z1 ← ReLU(Dropout(Linear1(Zperm)));
8 Compute final prediction: Ŷ← Softplus(Linear2(Z1));
9 Remove singleton channel: Ŷ← Ŷ.squeeze(−1);

3.4.4. Output Block

The final output layer of ST-SimNet is responsible for mapping the fused node representa-
tions combining both spatio-temporal and static urban morphology features into forecasted
freight flow values. Depending on the temporal compression depth (determined by the
number of ST-Conv blocks and convolutional kernel sizes), the model dynamically selects
one of two configurations for the output block.

If the compressed temporal length Ko is greater than one, a dedicated OutputBlock module
is applied. This block is structured as a fully-connected feed-forward network operating on
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the temporal output of the last ST-Conv block. It includes linear transformations, non-linear
activations, and dropout, and is designed to consolidate temporal summaries into a single
forecasted scalar per node.

When Ko = 0 (i.e. maximum temporal compression has occurred), the output block is
bypassed. Instead, a two-layer Multi-Layer Perceptron (MLP) is directly applied to the tem-
porally aggregated and UMD-fused node representations. This MLP comprises a linear
transformation (W1), followed by a ReLU activation, dropout, and a final linear projection
(W2) to obtain a scalar output.

In both configurations, a final softplus activation ensures non-negativity of the predicted
flow values:

ŷi = softplus(zi + b),

where b is a learnable bias term. This design ensures both smooth output gradients during
training and realistic positive flow predictions.

Algorithm 3.10: Apply output block if Ko > 1, else use direct MLP; both end with
softplus to ensure non-negative forecasts

Input: Fused representation Z ∈ RB×N×F; compression length Ko
Output: Predicted flows Ŷ ∈ RB×N

1 if Ko > 1 then
2 Apply output block:;
3 Z1 ← ReLU(Dropout(Linear1(Z)));
4 Ŷ← Softplus(Linear2(Z1) + b)
5 else
6 Bypass output block and apply 2-layer MLP:;
7 Z1 ← ReLU(Dropout(Linear1(Z)));
8 Ŷ← Softplus(Linear2(Z1) + b)

3.5. Model Training Setup

ST-SimNet is trained to predict short-term freight flow dynamics from historical sequences of
traffic data. Each training sample consists of a pair (Xhist, Ytarget), where

Xhist = {xt−L+1, xt−L+2, . . . , xt},

Ytarget = xt+1.

Here, Xhist ∈ RL×N is a sequence of past flow values for all N nodes over a history window
of length L = 24 (covering 2 hours at 5-minute intervals), and Ytarget ∈ RN is the node-level
flow at the next time step. Training pairs are created via a sliding window over the time
series.

The model processes mini-batches of such samples and generates predictions ŷt+1 ∈ RN ,
which are compared against the ground-truth xt+1. The loss function used is Mean Squared
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Error (MSE), defined as:

L =
1
N

N

∑
i=1

(ŷi,t+1 − xi,t+1)
2 .

This loss is suitable for continuous traffic count regression and penalises larger errors more
strongly. MSE was preferred for training due to its smooth gradient properties and emphasis
on outliers.

Training uses the AdamW optimiser, which combines adaptive gradient descent with decou-
pled weight decay. The learning rate is initially set to η = 0.0005, and the Adam parameters
are kept at their defaults (β1 = 0.9, β2 = 0.999). To guard against overfitting, a weight decay
(L2 penalty) of 0.02 is applied to all learnable parameters.

A step-wise learning rate scheduler reduces η by a factor of 0.9 every 5 epochs (adjustable). If
the validation loss does not improve for 10 consecutive epochs, early stopping is triggered.
This training setup balances stability and convergence speed, and was found to produce
robust results across several configurations.

The model is trained for a fixed number of epochs (50—small simulations, 100—big sim-
ulation) or until convergence. An epoch is defined as one full pass through all training
samples (using a batch size of 12 windows). To prevent over-fitting, early stopping is ap-
plied: training is halted if the validation loss does not improve for 10 consecutive epochs.
During training, the dropout (Section 3.4) is active (with p = 0.3) to randomize the network
and improve generalisation; at inference time, dropout is turned off. Training samples are
drawn sequentially from the dataset without shuffling, to preserve reproducibility and sta-
bility. Each sample already consists of a temporally ordered window of fixed length, so the
model learns from coherent temporal contexts.

All model development was implemented in Python using PyTorch Geometric. Training
was performed on an MacBook Pro M1 for the smaller area - Amsterdam West, and on a
Windows PC with RTX 4090 for the big application. Training stability was observed to be
good: the gated convolutions and residual connections contributed to stable gradients and
convergence. I did not observe any exploding or vanishing gradient issues, and the training
loss consistently decreased to a low level. Batch normalisation further helped in stabilising
training by normalising input distributions to each layer. By the end of training, the model
typically achieves a small gap between training and validation error, indicating a good fit
without severe over-fitting.

3.6. Validation and Evaluation

I evaluate the trained ST-SimNet on held-out test data to assess its predictive performance. The
time series data is split into training, validation, and testing periods. I use a chronological
split: e.g. the first 70% of the timeline for training, the next 15% for validation (model
tuning), and the final 15% for testing. This ensures that the model is always predicting
future data from past data and mimics a real forecasting scenario. The test set consists of
sequences xt− L + 1, . . . , xt that the model has never seen, and it generates forecasts x̂t + 1
which I compare against the true xt + 1. No overlapping windows between training and test
are used (to avoid information leakage).
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Evaluation Metrics: To quantify model performance, I report three standard regression
metrics: Mean Absolute Error (MAE), Root Mean Squared Error (RMSE), and Weighted
Mean Absolute Percentage Error (WMAPE). These are defined as:

MAE =
1

Ntest
∑

(i,t)∈test
|ŷi,t − xi,t|,

RMSE =

√√√√ 1
Ntest

∑
(i,t)∈test

(ŷi,t − xi,t)2,

WMAPE =
∑(i,t)∈test |ŷi,t − xi,t|

∑(i,t)∈test xi,t
.

MAE gives a direct interpretation in vehicle count units, while RMSE emphasises large
deviations due to squaring the errors. WMAPE provides a normalised measure of error,
expressing the total absolute error as a fraction of the total actual volume, making it partic-
ularly useful when comparing flows across zones of different magnitudes. All metrics are
computed across the entire test set.

After training, the epoch with the lowest validation loss is saved as the final model. This
model is then used on the test set to produce the metrics above. The training and validation
loss curves were analysed to ensure the model did not begin to overfit (divergence between
training and validation loss). During experiments, the use of early stopping and regulari-
sation (dropout, weight decay) maintained stability – validation loss typically plateaued or
slightly increased after a certain point, at which it stopped training. This indicates the model
parameters at the chosen checkpoint are near-optimal for generalisation.
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4.1. Experiment Design

This section presents the experimental findings from applying both the baseline STGCN and
the proposed ST-SimNet model. Results are reported across several evaluation scenarios, in-
cluding different data subsets and spatial extents. In each case, the models were trained for
50 epochs—and 100 in case of 4.5— where I quantified model accuracy and explored spa-
tial and temporal patterns of prediction errors using regression metrics and visualisations.
Sections 4.3, 4.4 were trained and validated on a subset data, whereas 4.5 was trained on
a larger dataset encompassing the centre of Amsterdam with its peripherals. Both Area of
Interest (AOI)s, can be found in appendix B

4.2. Model Introduction

The baseline model used in this study is the Spatio-Temporal Graph Convolutional Net-
work (STGCN) architecture originally introduced by Yu et al. [2018] and described in detail in
Section 2.6. This model combines gated temporal convolutions with spectral graph convolu-
tions using Chebyshev polynomials to learn spatio-temporal dependencies in traffic data. In
its standard configuration, STGCN was designed to forecast traffic velocity from sensor data
on a fixed urban network.

In contrast, the proposed ST-SimNet extends the original STGCN in multiple directions, both
architecturally and in terms of input representation. First, the model is adapted to pre-
dict freight flow intensity rather than velocity, requiring changes to the loss formulation,
data pipeline, and output layers. Second, ST-SimNet introduces a dedicated Fusion Block for
incorporating static urban context in the form of Urban Morphology Descriptors (UMDs),
including building usage, façade orientation, population statistics, and land use indicators.
These static features are projected into the latent space via a separate MLP and blended with
dynamic node embeddings using a learnable convex combination.

Structurally, both models consist of two stacked ST-ConvBlocks, with temporal convolutions
implemented via GLUs, followed by graph convolutions over a directed GSO. However, only
ST-SimNet integrates a fusion mechanism for contextual data. As a result, it is capable of
learning not just how freight flows evolve over time, but also how they are shaped by the
static configuration of the urban environment.

In the following sections, both models are evaluated on identical datasets and tasks to assess
the performance gains resulting from the integration of static spatial context. The experi-
ments cover two spatial extents: a focused subset of the city and a larger area encompassing
central Amsterdam and its periphery (see Appendix B). Evaluation metrics include MAE,
RMSE, and WMAPE, as well as spatial error distribution analysis.
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Figure 4.1.: Training and Validation Loss over Epochs (STGCN)

4.3. Baseline: STGCN with Dynamic Input Only

4.3.1. Model Configuration

The baseline experiment evaluates the original STGCN on a freight flow forecasting task
across N spatial zones in the study area. The model is trained exclusively on dynamic input
data {xt}T

t=1, where xt ∈ RN represents freight intensity per node at time t, sampled at
5-minute intervals.

The model is trained with a temporal window of L = 96 (past 8 hours) and a prediction
horizon of H = 6 (next 0.5 hour). It includes two ST-ConvBlock with a temporal kernel size
Kt = 3 and spatial kernel order Ks = 3, using GLU (Gated Linear Unit) activations. Dropout
is set to 0.5. Optimisation is performed using AdamW with a learning rate η = 0.0007,
decaying by γ = 0.8 every 5 epochs, L2 weight decay of 10−3, and a batch size of 10.

4.3.2. Training Performance

Training was conducted for up to 50 epochs with early stopping based on validation loss.
Figure 4.1 shows the training and validation loss trajectories. The training loss decreases
consistently, while the validation loss stabilises early and begins to rise slightly after epoch
30, suggesting mild overfitting.

Figure 4.2 illustrates the learning rate decay. The learning rate is halved every 5 epochs until
reaching a final value of approximately 0.00028, allowing for gradual refinement of model
weights in later training stages.
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Figure 4.2.: Learning Rate Schedule during Training (STGCN)

4.3.3. Prediction Accuracy

Model performance on the test set was evaluated using Mean Absolute Error (MAE), Root
Mean Squared Error (RMSE), and Weighted Mean Absolute Percentage Error (WMAPE).
The scatter plot in Figure 4.3 compares predicted and true flows across all nodes and time
steps. Predictions generally follow the ideal line, though variance increases with magnitude
- particularly under-predicting at high-flow values.

Figure 4.4 provides the distribution of prediction errors. Most errors are centred around zero
within the range of [−200, 200], but there are significant long tails on both sides, indicating
rare large under- and over-predictions.

4.3.4. Spatial Heterogeneity of Performance

The model’s behaviour varies substantially across nodes. Figure 4.5 shows the per-node pre-
diction statistics: predicted mean, maximum, and standard deviation of the flows compared
to the true mean. While the model captures patterns for low-volume nodes, high-flow nodes
exhibit substantial deviation, especially in maximum values, underscoring the challenge of
modelling peak freight volumes.

4.3.5. Conclusions

The STGCN model provides a solid baseline for short-term freight flow prediction. Training
is stable, and the loss curves confirm good convergence. However, the validation perfor-
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Figure 4.3.: Scatter Plot: True vs Predicted Flow (STGCN)

Figure 4.4.: Histogram of Prediction Errors (STGCN)
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Figure 4.5.: Per-node Flow Statistics: Predicted vs True (STGCN)

mance suggests limited generalisability, with signs of overfitting after around 30 epochs.

A key limitation lies in the model’s inability to predict high-volume nodes accurately. This
is likely due to its lack of awareness of static context - such as zoning, land use, or road
capacity, which heavily influences freight movement. The original STGCN was developed
for predicting traffic speed on highway networks, where value magnitudes are lower and
more stable. Applying it to count-based freight flow tasks exposes its difficulty in handling
heterogeneous distributions.

Additionally, training remains computationally expensive given the model’s complexity and
low batch size. While tuning parameters like Kt, Ks, or adopting alternative graph convo-
lutions may help, these findings point to a deeper need: embedding richer context, such as
static features, into the architecture - an idea that motivates the ST-SimNet model.

4.4. ST-SimNet: Dynamic + Static Input

To address the limitations observed in STGCN, particularly its inability to account for hetero-
geneous node-level characteristics, the proposed ST-SimNet model incorporates static features
describing the built environment and demographic characteristics of each node. This section
presents the configuration and results of ST-SimNet, highlighting how static context enriches
predictive performance.

4.4.1. Model Configuration

The model is trained using a temporal window of L = 96 (past 8 hours) to predict H = 6
steps ahead (next 0.5 hour). It employs two ST-ConvBlock with a temporal convolution kernel
size Kt = 3 and spatial kernel order Ks = 3, using the Gated Linear Unit (GLU) as activation.
A dropout rate of 0.2 is applied. The model is optimised with AdamW, using a learning rate
η = 0.001 decaying by γ = 0.8 every 3 epochs, L2 weight regularisation of 0.001, and a batch
size of 10.
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4.4.2. Urban Morphology Data (UMD) Features

ST-SimNet integrates static features derived from two spatial layers: building-level aggregates
and PC6-level demographic information.

Building-Based Features The building-level features were aggregated per node (NODENR) by
computing statistical summaries from all buildings spatially associated with a given node.
The following features were included:

• Construction characteristics:
bouwjaar (median), volume, verblijfsobjecten, oppervlakteverblijfsobjecten

• Physical form:
gem hoogte, gem bouwlagen

• Facade orientation:
shared and total facade lengths per cardinal direction
(e.g.north shared length, north facade length, etc.)

• Vegetation and illumination:
Normalised Difference Vegetation Index (NDVI) mean 100m, NDVI stddev 100m,
Night-Time Lights (NTL) mean 500m, NTL stddev 500m

• Functional classification:
meestvoorkomendelabel, function, building function, residential type,
non residential type

• Other:
distance (to nearest node), building count

PC6-Based Features Additionally, spatial joins were performed with the PC6 layer to in-
clude coarse-grained context:

• postcode6,
aantal inwoners, aantal woningen, percentage koopwoningen,
aantal part huishoudens

Together, these features form the static vector si ∈ RFs for each node i, concatenated with
the learned dynamic embedding prior to the MLP output layer.

The selected features capture a broad spectrum of urban morphological characteristics rel-
evant to freight activity. However, not all features contribute equally. Some categorical
variables may introduce noise, especially in zones with highly mixed land use. These in-
clude label-dominant columns like function, building function, and
non residential type, which were encoded using simple mode selection per node and
one-hot encoding (see Table 4.1).
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Table 4.1.: Encoded Values for Categorical UMD Features

Feature Encoded Values

meestvoorkomendelabel (Energy label) 0: A, 1: A+, 2: A++, 3: A+++, 4: A++++, 5: B,
6: C, 7: D, 8: E, 9: F, 10: G, 11: None

function 0: Commercial, 1: Industrial, 2: Residential
building function 0: non residential, 1: residential
residential type 0: Apartment, 1: Corner House, 2: Detached

House, 3: None, 4: Terrace or Semi-detached
House, 5: Two-and-a-half-story House

non residential type 0: Accommodation Function, 1: Education
Function, 2: Healthcare Function, 3: Industrial
Function, 4: Meeting Function, 5: None, 6: Of-
fice Function, 7: Other Use Function, 8: Retail
Function, 9: Sport Function

Feature Importance and Saliency Analysis

To evaluate the contribution of static Urban Morphology Descriptors (UMDs) to the model’s
predictions, I computed gradient-based saliency scores after training. These scores reflect the
absolute gradient of the output with respect to each input feature, averaged over all nodes
and time steps within the selected AOI. This allows us to estimate which static features the
model relied on most when generating its forecasts.

The saliency analysis was performed separately for two distinct AOIs in the Amsterdam
region. Each AOI represented a unique urban context, including variation in density, land
use, and freight dynamics. As a result, the feature importance rankings differed across areas
reflecting the fact that ST-SimNet adaptively learns which morphological signals matter most
in each spatial context. This spatial specificity confirms that the model does not rely on
global heuristics but instead exploits locally relevant urban form cues.

For this scenario, the most salient features included:

• non residential type,

• south shared length,

• meestvoorkomendelabel,

• bouwjaar,

• aantal inwoners,

• NTL mean 500m, building count, and east shared length.

These features predominantly relate to built form intensity, façade orientation, and land
use mix, all of which are known to influence last-mile delivery demand and network acces-
sibility. By contrast, features such as NDVI mean 100m, distance, and south facade length

showed consistently lower saliency, suggesting limited predictive value in this particular
case.
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Figure 4.6.: Gradient-based saliency scores for static urban morphology features in one rep-
resentative Area of Interest. Highlighted features contribute most strongly to the model’s
node-level predictions.

Figure 4.6 features chosen from buildings and PC6 datasets. While specific values vary across
other AOIs, similar patterns emerge: the model places greater emphasis on features that cap-
ture spatial complexity and freight-generating activities. This adaptive saliency behaviour
underlines the model’s flexibility and context-awareness, confirming the architectural choice
to fuse static descriptors in a spatially meaningful way.

Weighting Static Information To control the contribution of static features in the final
predictions, the model introduces a learnable scalar parameter α ∈ R, whose value is con-
strained to the interval [0, 1] via a sigmoid transformation. The dynamic node embedding hi
(obtained from the spatio-temporal blocks) is combined with the transformed static features
si using the following convex fusion:

zi = (1− σ(α)) · hi + σ(α) ·MLPumd(si)

where σ(·) denotes the sigmoid function and MLPumd projects static features into the same
latent space as hi. This formulation allows the network to learn a smooth and bounded
blending between dynamic and static signals. The initial value of α is set to 0.3, allowing
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Figure 4.7.: Training and Validation Loss over Epochs (ST-SimNet, Weekdays)

the model to place greater initial weight on dynamic features while retaining flexibility to
adjust this balance during training.

4.4.3. Scenario 1: Weekdays Only - Amsterdam West

In this scenario, ST-SimNet is trained and tested on weekday data only (the same as STGCN in
the previous experiment). This enables evaluation under more regular and periodic freight
flow patterns. The model’s ability to leverage static urban features is assessed through per-
node and aggregate performance metrics.

Training Performance Figure 4.7 shows the training and validation loss curves over 45
epochs (shorter training, due to early stopping). The validation loss decreases steadily and
remains consistently below the training loss, which is slightly inflated due to regularisa-
tion effects (e.g. weight decay, dropout rate). This gap is expected and indicates that the
model generalises well without over-fitting. The learning rate schedule in Figure 4.8 shows
a smooth exponential decay, supporting stable convergence.

Prediction Accuracy The scatter plot in Figure 4.9 compares predicted and true freight
flows across all nodes and timesteps. Each dot represents a prediction for a single node
in a single prediction window, where a window consists of 96 historical time steps used to
predict the next 6 steps (i.e., a 30-minute horizon). With 288 time steps per node, this results
in 187 such prediction windows per node. Most points fall near the ideal line, indicating
strong predictive accuracy. Unlike STGCN, ST-SimNet better captures high-flow magnitudes
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Figure 4.8.: Learning Rate Schedule during Training (ST-SimNet, Weekdays)

and shows reduced dispersion for extreme values. Nodes experiencing significant overes-
timations have been identified as those lacking any UM features from buildings, which is
reflected in Figure 4.12.

The histogram in Figure 4.10 further confirms this: the majority of prediction errors are close
to zero, with a narrower spread than STGCN, suggesting improved robustness.

Spatial Heterogeneity of Performance To examine spatial variability, Figure 4.11 presents
per-node flow statistics. ST-SimNet captures average flows (dashed black) more accurately
across both low and high-traffic nodes, and reduces the peak overestimations seen with
STGCN. This improvement stems from incorporating static morphology features, which
offer context on building function, type, and spatial configuration.

Feature Contribution Analysis Figure 4.12 illustrates how prediction error correlates with
the richness of urban morphology data (UMD feature norms). Nodes with richer static
feature descriptions exhibit lower average error, confirming that these features aid learning
- particularly in more complex or active zones.

Visual Inspection of Results in QGIS To qualitatively assess prediction accuracy and spa-
tial model behaviour, several key locations were examined in QGIS. The first striking ob-
servation is that nodes without any urban morphology descriptors from nearby buildings
tend to suffer from significant overestimation (Figure 4.13). This confirms the importance
of context information in guiding the model’s understanding of freight activity potential.
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Figure 4.9.: Scatter Plot: True vs Predicted Flow (ST-SimNet, Weekdays)
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Figure 4.10.: Histogram of Prediction Errors (ST-SimNet, Weekdays)

Figure 4.11.: Per-node Flow Statistics: Predicted vs True (ST-SimNet, Weekdays)
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Figure 4.12.: Relationship between Static Feature Richness and MAE (ST-SimNet, Weekdays)

Figure 4.13.: Over-estimated node lacking building-derived UMD features.
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Figure 4.14.: Nodes with high flows and under-estimated values

Figure 4.15.: Node with a single building-derived UMD source shows near-ideal prediction.

Conversely, nodes that inherit static features from even a single nearby building show re-
markably improved accuracy (Figure 4.15), generally resulting in slightly under-predicted
flows but very close to the true values. A number of highway nodes also experience slight
but consistent under-prediction, despite inheriting several building features (Figure 4.14).
This can likely be attributed to the mismatch between the node’s functional context and its
static features—many such nodes, while located on freight-relevant highway segments, in-
herit morphological descriptors from nearby residential zones. This misalignment may lead
the model to underestimate the true freight activity, as it associates the node with lower-flow
land use patterns.

In summary, even minimal morphological input from buildings helps the model calibrate
better to local conditions. Such visual diagnostics confirm the findings shown earlier in the
scatter plots and node-level statistics, and they reinforce the critical role that static data play
in enhancing interpretability and robustness of predictions, particularly in morphologically
heterogeneous environments.

Conclusion By integrating static features, ST-SimNet builds a richer understanding of the
urban context that shapes freight activity. This is reflected in the overall performance met-
rics and visualisations. The error histogram (Figure 4.10) shows a sharper peak around zero
compared to STGCN, indicating fewer extreme prediction errors. Similarly, the scatter plot
(Figure 4.9) reveals that predicted values align more closely with the ideal line, especially
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for medium-traffic nodes. Nodes with more detailed urban morphology descriptors bene-
fited the most, as further supported by Figure 4.12.However, spatial inspection using QGIS
revealed that the model’s performance is highly sensitive to the richness and structure of the
static input. When no building-level features were available, predictions were consistently
overestimated (see Figure 4.13). Interestingly, even a single associated building provided
enough contextual signal to drastically improve performance, often bringing the predicted
flow close to the true value. In contrast, nodes inheriting features from a very large number
of buildings exhibited a tendency toward underestimation, likely due to noisy or diluted
feature aggregation (see Figure 4.14).

A major bottleneck stems from the use of a single, global weighting parameter α for com-
bining static and dynamic signals. While this design is computationally efficient and works
well in the majority of cases, it limits the model’s adaptability. Nodes with sparse static con-
text cannot rely more heavily on dynamic signals even when needed, and those with dense
static features cannot attenuate potential noise. Future versions of ST-SimNet could benefit
from a node-specific or even feature-specific fusion mechanism to modulate this blend more
effectively. Despite these limitations, ST-SimNet remains a fast and scalable model with strong
generalisation across spatially heterogeneous networks. Its ability to leverage even limited
morphological context for meaningful performance gains underlines its potential in urban
analytics applications.
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Figure 4.16.: Training and Validation Loss - ST-SimNet with Weekend Data

4.4.4. Scenario 2: Weekdays + Weekends - Amsterdam West

This setup introduces higher temporal variability by including weekend data. The goal is to
assess the robustness of ST-SimNet under noisier and less periodic conditions, and to examine
whether static feature integration helps mitigate generalisation challenges posed by irregular
patterns.

Model Configuration The model is configured with the following hyperparameters:

• Temporal window L = 96 (past 8 hours),

• Prediction horizon H = 6 (next 0.5 hour),

• Temporal convolution kernel size Kt = 3,

• Spatial kernel order Ks = 3,

• Two ST-ConvBlock,

• Activation function: GLU (Gated Linear Unit),

• Dropout rate: 0.3,

• Learning rate η = 0.0005, with decay γ = 0.8 every 5 epochs,

• Weight decay (L2 regularisation): 0, 001,

• Batch size: 10,

• Optimiser: AdamW.
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Figure 4.17.: Learning Rate Schedule - ST-SimNet with Weekend Data

The inclusion of weekends in the training data introduces disruptions in otherwise pre-
dictable weekday traffic flows. These irregularities appear to negatively affect Monday
predictions in particular, as the network tries to infer weekday flow patterns using input
sequences from the weekend, which are structurally and behaviourally distinct.

Figure 4.16 shows the learning dynamics. While the training loss drops steadily, the valida-
tion loss, although jittery, remains relatively flat, indicating early over-fitting and reduced
generalisation. The learning rate schedule (Figure 4.17) is followed as intended but does not
alleviate the generalisation issue.

Spatial and Temporal Evaluation Despite the higher noise, ST-SimNet maintains a strong
alignment of predicted values with the true values in aggregate terms, as shown in the
scatter plot (Figure 4.18) and the error histogram (Figure 4.19). However, both figures reveal
higher variance in predictions and more outliers than in the weekday-only scenario. The
node-level performance plot (Figure 4.21) indicates that nodes with sparse or noisy UMD
vectors suffer more compared to the weekday-only setup.

Conclusions The integration of weekend data introduces greater uncertainty, primarily due
to the mismatch between training and prediction contexts. When predicting Monday morn-
ing flows, the network often draws on input windows dominated by weekend behaviour,
reducing predictive accuracy. The histogram (Figure 4.19) shows broader error dispersion,
and the scatter plot (Figure 4.18) reveals several high-volume over and underpredictions. The
per-node analysis (Figure 4.21) and UMD saliency (Figure 4.20) confirm that some nodes,
especially those with either very sparse or very dense UMD descriptors, still benefit from
static features.
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Figure 4.18.: Scatter Plot: True vs Predicted Flow (ST-SimNet, Weekdays + Weekends)
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Figure 4.19.: Histogram of Prediction Errors (ST-SimNet, Weekdays + Weekends)

Figure 4.20.: UMD Feature Richness vs Prediction Error (ST-SimNet, Weekends Included)
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Figure 4.21.: Per-node Flow Statistics: Predicted vs True (ST-SimNet, Weekdays + Weekends)

In summary, mixing weekday and weekend data under a fixed input structure diminishes
the model’s ability to generalise. A cleaner strategy would be to treat weekdays and week-
ends as distinct prediction domains, each with a tailored input length and possibly separate
training sessions.

4.5. Application of ST-SimNet to a Larger Area

In this experiment, ST-SimNet was applied to a larger geographical area using the same UMD
features as in the earlier scenario. The graph was regenerated based on the new nodes input
with a corresponding adjacency matrix covering the center and peripheries (see Appendix
B.1).

Model Configuration The model was trained with the following parameters: historical in-
put window nhis = 24, prediction horizon npred = 6, time interval of 5 minutes, and two
spatio-temporal convolutional blocks each with Kt = 3 temporal filters. The spatial convo-
lution employed Chebyshev graph convolution with a support size of Ks = 3, and random-
walk normalised adjacency as the graph shift operator. Training utilised the AdamW opti-
miser with learning rate 0.002, weight decay 0.001, batch size 10, and dropout rate 0.1. A
learning rate decay was applied every 10 epochs (γ = 0.6), with early stopping patience of
10 epochs.

4.5.1. Training Performance

The learning rate schedule (Figure 4.22) shows a clear decay trend, facilitating stabilised
training over the 100 epochs. Correspondingly, the training and validation loss curves (Fig-
ure 4.23) exhibit convergence with only minor fluctuations in the later stages. Both training
and validation loss continued to decrease throughout the entire training. Notably, early
stopping was not triggered, indicating that the model maintained generalisation throughout
training.
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Figure 4.22.: Learning rate schedule during training for the full-area model.

Figure 4.23.: Training and validation loss (MAE) over 100 epochs.
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Figure 4.24.: Histogram of prediction errors. Most predictions are close to the ground truth.

4.5.2. Prediction Accuracy

The prediction histogram (Figure 4.24) shows a distribution tightly centred around zero,
suggesting a low prediction bias. Most errors fall within a narrow range, with very few
extreme deviations. The scatter plot of predicted vs. true values (Figure 4.25) illustrates
strong alignment along the ideal diagonal, confirming high prediction fidelity.

4.5.3. Spatial Heterogeneity of Performance

Per-node statistics (Figure 4.27) reveal that the model accurately captures both peak and low-
activity nodes, with predicted means, maxima, and standard deviations closely tracking the
ground truth. A minority of nodes still display small variance under- or over-predictions,
which may stem from feature sparsity, local anomalies in the freight signal or noise.

4.5.4. Feature Contribution Analysis

The contribution of urban morphological richness was further assessed by relating predic-
tion errors to the norm of UMD feature vectors per node. As shown in Figure 4.26, nodes
across all levels of morphological richness achieved remarkably low errors—typically below
an MAE of 10. This marks a substantial improvement over earlier simulations, where nodes
lacking UMD features often exceeded 800 in mean squared error. The observed stability
confirms that even minimal morphological context helps anchor the predictions, and that
ST-SimNet has generalised well to diverse spatial conditions. Elevated errors were observed
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Figure 4.25.: Predicted vs. true flow values for all nodes and all time steps.
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Figure 4.26.: Mean absolute error binned by UMD feature norm. Moderate feature richness
leads to best performance.

Figure 4.27.: Per-node prediction statistics. Predicted and true values exhibit strong corre-
spondence.

64



4.5. Application of ST-SimNet to a Larger Area

Figure 4.28.: Spatial distribution of over-predicted nodes, shown in red. Most are located
along major highway infrastructure (A10)

only for a small subset of isolated nodes, supporting the previous hypothesis that spatial
remoteness and UMD sparsity lead to most prediction failures.

4.5.5. Visual Inspection of Results in QGIS

To complement the quantitative model evaluation, a visual inspection was conducted in
QGIS to spatially assess nodes with significant prediction errors. Figure 4.28 highlights
the locations of nodes that were markedly over-predicted by the model. These nodes are
predominantly situated along high-capacity highway segments, such as the A10 ring road
surrounding Amsterdam. Despite their seemingly strategic location within the network,
they lack sufficient urban morphology features - most of them inherit no building-based
descriptors and have many missing PC6-level attributes (Figure 4.29), limiting the contextual
information available to the model. The consistent over-prediction observed at these nodes,
ranging from 129% to 142% of the true flow, can be primarily attributed to their peripheral
location and minimal morphological anchoring.

Due to the absence of both building-level and postcode-level data, the over-predicted nodes
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Figure 4.29.: Summary of over-predicted nodes and corresponding features.

lacked any meaningful static input. All affected nodes had zero associated buildings, and
most, if not all, of their PC6-level features were null. Consequently, the model was deprived
of morphological context and relied exclusively on dynamic signals to generate predictions.
While the dynamic component effectively captures temporal patterns, it does not provide
sufficient spatial differentiation to account for local variations in freight activity, particu-
larly in transitional zones such as highway ramps or peripheral ring roads. Furthermore,
these nodes were spatially distant from others, limiting the ability of neighbourhood ag-
gregation (via graph convolutions) to supplement missing context with information from
better-informed neighbours.

4.5.6. Conclusion

The application of ST-SimNet to a significantly larger urban area demonstrates its scalability
and robustness in generalising spatio-temporal freight flow predictions beyond the initial
experimental scope. The model architecture featuring dual ST-ConvBlock, gated temporal
convolutions, and a fusion mechanism for integrating static urban morphology descriptors
exhibited stable convergence throughout training, as indicated by the smooth learning rate
decay and alignment of training and validation loss curves (Figures 4.22, 4.23). Prediction
accuracy remained high, with the majority of predicted values closely tracking the true flow
values (Figure 4.25), and per-node flow statistics showed strong correspondence in mean
and variance across the network (Figure 4.27).

Spatial inspection of the results uncovered key patterns in model behaviour. Nodes with
richer morphological descriptors continued to benefit from increased contextual awareness,
confirming earlier findings from the smaller-scale setting. Conversely, nodes located along
peripheral motorways and industrial corridors with limited urban morphology features
tended to be over-predicted (Figure 4.28). This behaviour is not indicative of model over-
fitting, but rather highlights the challenges of learning freight flow patterns in structurally
homogeneous yet functionally complex regions. These areas lack sufficient feature richness
to fully inform the model, which in turn defaults to stronger reliance on dynamic input
signals.

Interestingly, results from the extended simulation reveal a mitigating effect of graph con-
volutional stacking. Nodes located in dense urban centres, such as Amsterdam’s inner
districts, often benefit from neighbourhood aggregation, even when their own static features
are sparse. Here, surrounding nodes rich in urban morphology descriptors contribute indi-
rectly, enhancing the model’s understanding through multi-hop propagation. This effect is
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particularly visible in the centre, where the interconnectedness of the road network and ur-
ban fabric allows nodes to inherit contextual awareness from their neighbours. Conversely,
isolated motorway nodes on the periphery - lacking both direct and neighbouring static
features, remain prone to overestimation. These findings emphasise that spatial embedding
within the built environment, not just individual feature richness, plays a crucial role in
freight flow prediction.

67





5. Conclusions and Future Work

5.1. Discussion

This thesis introduced ST-SimNet, a Spatio-Temporal Graph Neural Network architecture
designed to integrate urban morphology with temporal freight data for short-term predic-
tion of freight flows. The work sought to challenge conventional assumptions that freight
forecasting must rely solely on dynamic data such as vehicle counts or precomputed flows.
By encoding rich, static morphological descriptors derived from building characteristics and
PC6-level demographic indicators into the GNN framework, ST-SimNet demonstrates the
value of contextual urban features in guiding predictive freight analytics.

The experimental findings indicate several important insights. First, the inclusion of Ur-
ban Morphology Data significantly reduced prediction error, particularly in nodes that were
structurally well-informed by surrounding morphology. Nodes with richer building-derived
features, such as commercial zones or dense residential areas, exhibited improved forecast
stability and alignment with ground-truth flows. These results support the hypothesis that
the spatial context embedded in urban form plays a non-trivial role in shaping freight dy-
namics.

Second, the model showed strong scalability. When applied to a significantly larger area en-
compassing broader sections of Amsterdam, ST-SimNet maintained stable convergence and
generalisation. Loss curves and prediction statistics affirmed the robustness of the archi-
tecture under more complex spatial variability. Notably, even in under-informed or periph-
eral nodes (e.g. those along highways), the model produced interpretable over-prediction
patterns highlighting the need for additional context layers (e.g. road type, logistic hub
proximity) rather than structural flaws in the model itself.

Third, the fusion strategy, governed by a global α parameter, proved broadly effective in
blending dynamic and static inputs. However, in spatially sparse regions - particularly
highway, adjacent nodes with zero inherited building features and missing PC6 descriptors
- the static component offers limited contextual value. In such cases, the model’s reliance
on static inputs may distort predictions. These findings do not undermine the utility of
static fusion but rather highlight the potential for local adaptivity. Node-specific attention
weighting, gating mechanisms, or residual modulation based on feature richness could help
the model selectively downweight uninformative morphology signals, thereby improving
robustness across heterogeneous urban contexts.

Interestingly, even in areas with sparse or missing UMD features, the spatial message pass-
ing inherent to GNNs appeared to partially compensate for static data sparsity. In dense
urban regions such as central Amsterdam, neighbouring nodes often possessed rich mor-
phological descriptors, allowing their information to propagate and inform nearby under-
defined nodes through the stacked ST-Conv blocks. This emergent behaviour suggests that
GNNs are not only sensitive to node-level input, but also capable of leveraging local urban
structure to distribute contextual information spatially. Such interactions suggest that the
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chosen fusion design may be effective in certain urban contexts, but alternative integration
strategies, such as injecting static features earlier in the architecture, remain to be explored.

The methodological contributions extend beyond implementation. This thesis illustrates that
GNNs can be grounded in urban theory, capturing not only network connectivity but also
spatial heterogeneity in freight demand. The results argue for a more integrated approach
to digital twin development - one that bridges behavioural simulation and learning from
spatial form. From a systems perspective, ST-SimNet represents a hybrid modelling ap-
proach that combines the rule-based precision of simulation models (e.g. MASS-GT) with
the generalisation power of data-driven learning.

Lastly, the work underscores the interpretability potential of GNN-based systems. By cor-
relating prediction accuracy with urban morphology richness and visually inspecting mis-
predicted nodes, ST-SimNet enables both predictive analytics and spatial diagnosis. This
duality makes the model not only a forecasting engine but also a diagnostic tool for under-
standing urban freight distribution logic.

5.2. Limitations

While the proposed framework demonstrated strong performance and flexibility, several
limitations should be acknowledged to guide future improvements.

First, the aggregation of building-level features to nodes was based on simple spatial assign-
ment, without enforcing a maximum distance threshold or applying distance-based weight-
ing. As a result, buildings located far from a node may introduce noise into its static feature
vector. Incorporating an inverse-distance weighting or setting a maximal aggregation radius
could mitigate this issue and preserve local relevance.

Second, some nodes had no associated building-level features and relied solely on coarse
PC6-level statistics. Rather than leaving these nodes sparsely populated, a more refined
strategy could be employed: for example, interpolating missing static attributes from neigh-
bouring nodes or constructing synthetic features based on nearby urban morphology pat-
terns.

Third, the road network itself was treated as a homogeneous graph, without distinguish-
ing between different road types (e.g. highways, arterial roads, local streets). Introducing
categorical edge features or even continuous attributes (such as number of lanes, speed lim-
its, or typical traffic volumes) could further enhance the model’s understanding of traffic
dynamics.

Moreover, the model does not currently differentiate between weekday and weekend traf-
fic patterns during training. Introducing an additional ”day type” indicator, potentially
controlled by a hyperparameter, could allow ST-SimNet to adjust its temporal predictions
according to the day’s expected variability.

Another important limitation concerns the fusion of static and dynamic information. The
current implementation employs a single global α parameter to balance dynamic embed-
dings with static urban features uniformly across all nodes. While this approach per-
forms robustly in most areas, it lacks flexibility in sparse or semantically misaligned re-
gions. Nodes without inherited building features or with missing PC6 data cannot con-
tribute meaningful static context, yet still receive a fixed static weighting. This mismatch
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can lead to systematic overestimation. Introducing a locally adaptive mechanism, such as a
node-specific αi or a learnable gating function, could dynamically adjust the contribution of
static information based on local feature richness, improving model generalisability across
heterogeneous urban forms.

Finally, missing or incomplete static data were handled using naive imputation strategies
(e.g. filling NaNs with zeros). For some features, such as building year of construction, this
can introduce unrealistic values. A more nuanced imputation approach could be explored,
such as estimating missing erection years from energy labels, architectural characteristics, or
nearest-neighbour interpolation based on similar buildings.

ST-SimNet effectively demonstrates the benefits of integrating static urban morphology with
dynamic traffic data, addressing these limitations would further strengthen its accuracy,
generalisation, and applicability across diverse urban contexts.

5.3. Conclusions

This thesis introduced ST-SimNet, a spatio-temporal GNN architecture tailored for urban
freight flow prediction, and demonstrated its effectiveness in combining dynamic time-
series data with static urban morphology descriptors. The model’s design—incorporating
gated temporal convolutions, Chebyshev-based spatial GSOs, and a controlled fusion mecha-
nism—proved capable of capturing complex, non-linear freight dynamics across both space
and time in real urban settings.

Systematic experiments showed that integrating built environment features significantly en-
hances predictive performance, especially in spatially heterogeneous urban areas where pure
time-series models struggle to generalise. Even minimal morphological context, such as as-
sociation with a single building, was shown to meaningfully improve node-level predictions.
At the same time, the architecture remained computationally efficient and robust, generalis-
ing well to larger city regions without modifications.

Beyond empirical results, this work fills a critical niche at the intersection of urban freight
modelling, spatio-temporal deep learning, and urban morphology. It consolidates frag-
mented strands of the literature—ranging from grid-based forecasting, topological GNNs,
and urban form analysis—into a unified framework. By embedding morphological context
into predictive models, ST-SimNet advances the research frontier from abstract graph repre-
sentations toward semantically enriched, context-aware forecasting tools.

Importantly, the approach aligns with the broader aims of digital twin initiatives by provid-
ing a scalable, data-driven engine for simulating and forecasting freight flows under realistic
urban constraints. By surfacing both the opportunities and limitations of integrating static
and dynamic data sources, this work lays the groundwork for future research and opera-
tional applications in urban logistics, planning, and policy.

Answers to the Research Questions

Main Research Question:
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To what extent can insights into urban morphology, modeled with Spatio-Temporal Graph Neural
Networks, enhance the accuracy and adaptability of freight transportation predictions in the Nether-
lands?

This research demonstrates that incorporating static UMDs based forecasting framework sig-
nificantly enhances model performance in both accuracy and spatial generalisability. In
spatially complex urban areas, such as Amsterdam, ST-SimNet consistently outperformed
its dynamic-only counterparts, showing reduced MAE and more stable prediction curves.
These improvements are especially pronounced at nodes with rich morphological context
(e.g. commercial districts or mixed-use zones) where static features provide strong signals
about freight generation and attraction.

The adaptability of ST-SimNet is evidenced by its ability to generalise across varying urban
typologies. Despite the model being trained on flow data derived from a single day, it re-
tained predictive consistency across multiple temporal configurations and spatial extents,
including peripheries with lower data richness. Even in regions with sparse or incomplete
UMD coverage, the model leveraged spatial message passing through the graph structure
to interpolate context from well-instrumented neighbours. This emergent property under-
lines the benefit of embedding morphology into a graph-based architecture, where spatial
dependencies can be propagated structurally rather than merely statistically.

Beyond accuracy, morphology-enhanced ST-GNNs also contribute to model interpretability.
Visual inspection of residuals and correlation with feature richness revealed meaningful pat-
terns: nodes with systematic over-predictions often coincided with poorly covered morphol-
ogy data. These insights allow planners to not only trust the predictions but also diagnose
areas where additional data or structural improvements are needed.

Architecture Suitability:

What are the key components and mechanisms of the ST-SimNet architecture required to capture both
the spatial dependencies and temporal dynamics of urban freight flows?

ST-SimNet is structured around two stacked ST-ConvBlocks, each of which sequentially applies
a Gated Temporal Convolution, a GCN using a directional GSO, and a second temporal con-
volution with a GLU-based filter. This structure enables the model to learn both fine-grained
short-term temporal patterns and spatial correlations informed by the urban road network.
The use of GLUs allows for non-linear temporal filtering, dynamically modulating the flow
of information across time steps to prioritise relevant input sequences such as freight peaks
and off-peak lows.

A key innovation lies in the subsequent fusion block, where static UMDs are projected via an
MLP into the same latent space as dynamic features and combined through a learnable fusion
coefficient α. This design allows the model to encode not only when and where freight is
moving, but also why certain areas may act as attractors or generators of freight volume.

Graph Structure Design:

How should the graph representing the urban freight system be constructed using the available data
(road network and spatial units), and what is the impact of different graph design choices on forecast-
ing performance?

The graph in ST-SimNet is constructed from the DT road network, with each node correspond-
ing to a road junction and directed edges representing real-world traffic flows. This design
preserves both directionality and topological fidelity, allowing freight movement dynamics
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to be encoded through true infrastructural connectivity rather than artificial spatial grids.
The adjacency matrix is normalised using a random-walk scheme, which retains flow asym-
metry and supports realistic propagation of traffic signals through the network.

Empirical results show that this infrastructure-aligned graph significantly outperforms sim-
plified proximity-based or uniform-grid approaches. Grid-based discretisation, while com-
putationally convenient, often misrepresents local accessibility patterns and dilutes mor-
phological context. In contrast, the road-network graph enables message passing to oper-
ate along actual freight pathways, improving both predictive sharpness and spatial consis-
tency—particularly in areas where morphology or flow data are sparse.

Moreover, by leveraging a fine-grained node resolution (N = 10,691) and directional edge
encoding, the model is able to distinguish between inbound and outbound freight move-
ments, a key requirement for realistically modelling urban logistics.

Feature Integration Strategies:

What is the most effective way to integrate urban morphological features (e.g. building usage, density,
and other CBS-derived statistics) into the ST-SimNet model, and how do different feature aggregation
or encoding techniques influence the accuracy of freight flow forecasts?

Urban Morphology Descriptors (UMDs) were aggregated at the node level using spatial joins
between road junction buffers and PC6-level data. Features included both building-level
attributes and population-level indicators. These were standardised and projected via a
dedicated two-layer MLP, then combined with dynamic node embeddings using a convex
fusion strategy governed by a learnable scalar α ∈ [0, 1].

This integration method proved effective in morphologically dense urban contexts, where
even simple descriptors provided meaningful priors for freight generation and attraction.
In sparse regions—especially near highways or mono-functional zones—the static features
were often insufficient or uninformative, which in turn diluted model confidence and accu-
racy. Nonetheless, due to the graph’s spatial connectivity, contextual information could still
propagate from adjacent nodes with richer morphological signatures.

5.4. Future Work

There are several promising directions for extending this work, both in terms of improving
the model and broadening its applications:

• Application-specific integration: Beyond freight forecasting, this model architecture
could be adapted to various domains where spatio-temporal dynamics are shaped by
urban context. Examples include:

– Energy demand prediction and grid optimisation, where energy demand is influ-
enced by land use and building functions;

– Military and emergency logistics, where robust predictions of movement in urban
terrain are critical;

– Delivery optimisation for e-commerce in areas with mixed urban typologies.
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• Topographic augmentation: A natural next step is to incorporate topography - eleva-
tion, slope, and accessibility, since freight patterns are often constrained by physical
terrain. Integrating a digital elevation model (DEM) could help explain movement
bottlenecks or preferred paths in hilly or coastal areas.

• Improved fusion mechanisms: While a global weighting parameter α was used to
balance static and dynamic features, this approach lacks flexibility for nodes with very
sparse or very rich feature sets. Future work could explore attention-based fusion,
node-specific gates, or temporal modulation layers that dynamically adjust how static
context is used.

• Generalisation and transfer learning: Applying the model across multiple cities or
temporal spans would help assess its generalisability. Domain adaptation techniques
could enable pretraining on one region and fine-tuning on another, improving practical
deployment in settings with limited data.

• Probabilistic and multi-modal forecasting: Finally, expanding the model to produce
probabilistic predictions or jointly forecast related variables (e.g. speed, occupancy)
would align it more closely with digital twin applications in logistics, mobility, and
infrastructure planning.
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A. Reproducibility self-assessment

A.1. Marks for each of the criteria

Figure A.1.: Reproducibility criteria to be assessed.

Grade/evaluate yourself for the 5 criteria (giving 0/1/2/3 for each):

1. input data: 0

2. preprocessing: 0

3. methods: 0

4. computational environment: 1

5. results: 1

A.2. Personal Reflection

Working on this thesis has been one of the most enriching technical and conceptual experi-
ences in my academic journey. What began as a modelling exercise quickly evolved into a
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deeper exploration of how cities operate, how data reflects (and sometimes distorts) reality,
and how much contextual nuance is needed to make robust predictions. Integrating static
urban morphology made me realise that even sophisticated models like STGCN are often
blind to the very spatial heterogeneity that defines urban systems. Throughout this project, I
also became more aware of the tension between engineering simplicity and real-world com-
plexity. I was initially optimistic that simply adding static data would improve everything,
but the experiments revealed that this process requires nuance. Some nodes benefited im-
mensely, while others suffered due to noisy or sparse inputs. These moments, when the
model over-predicted certain flows or failed to generalise were frustrating, but also where I
learned the most.

Finally, I found joy in building something that didn’t just “run,” but produced insights. Vi-
sualising errors spatially, tweaking hyper-parameters, and interpreting model failures gave
me confidence not only in my technical skills but also in my ability to think critically and
iterate.
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B. Areas of Interest

Figure B.1.: AOIs for trainings, Amsterdam, EPSG:28992. Amsterdam West (orange) with
817 nodes; Centre of Amsterdam (red) with 10691 nodes.
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C. MASS-GT parameters

C.1. Vehicle Types

ID Is Freight Type Available in Parcel Module Description
0 1 0 Truck (small)
1 1 0 Truck (medium)
2 1 0 Truck (large)
3 1 0 Truck+trailer (small)
4 1 0 Truck+trailer (large)
5 1 0 Tractor+trailer
6 1 0 Special vehicle
7 0 1 Van
8 0 1 LEVV
9 0 0 Moped

Table C.1.: Vehicle Type Classification

C.2. NSTR Goods Classification

ID Description
0 Agricultural products and live animals
1 Foodstuffs and animal fodder
2 Solid mineral fuels
3 Petroleum products
4 Ores and metal waste
5 Metal products
6 Crude and manufactured minerals, building materials
7 Fertilizers
8 Chemicals
9 Machinery, transport equipment, manufactured articles and miscellaneous articles
-1 Empty

Table C.2.: NSTR Goods Classification
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C. MASS-GT parameters

C.3. Logistic Segment Classification

ID Description
0 Food (general cargo)
1 Miscellaneous (general cargo)
2 Temperature controlled
3 Facility logistics
4 Construction logistics
5 Waste
6 Parcel (consolidated flows)
7 Dangerous
8 Parcel (deliveries)

Table C.3.: Logistic Segment Classification

C.4. Transport Flow Classification

ID Is External Description
1 0 Producer to Consumer
2 0 Producer to DC
3 0 DC to Consumer
4 0 Producer to TT
5 0 DC to DC
6 0 TT to Consumer
7 0 DC to TT
8 0 TT to DC
9 0 TT to TT

10 1 External Producer/Consumer to/from Producer/Consumer
11 1 External Producer/Consumer to/from DC
12 1 External Producer/Consumer to/from TT

Table C.4.: Transport Flow Classification
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