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Preface

This thesis marks the final step in completing my Master of Science in Building Technology at Delft
University of Technology. Over the past months, | have had the opportunity to dive deeply into the
intersection of heritage preservation and machine learning, a combination that reflects both my
passion for cultural architecture and my interest in digital innovation.

I would like to express my sincere gratitude to my mentors, Barbara Lubelli and Azarakhsh Rafiee, for
their continuous guidance, valuable feedback, and encouragement throughout the process. Their
expertise has played a pivotal role in shaping this research.

As part of this research, | visited several heritage buildings, including the Jesse Church in Delft. Seeing
efflorescence and other moisture-related damage up close helped me better understand the practical
challenges of masonry preservation. These site visits supported the development and relevance of the
method used in this thesis. I'd like to thank everyone who has supported me during these visits.

I also wish to thank my colleagues, friends, and family for their support, patience, and motivation,
especially during the more challenging phases of this work.

This thesis is the result of both academic inquiry and personal growth, and | hope it contributes
meaningfully to the evolving field of heritage conservation through digital tools.

Valentijn Camiel Cloo
Delft, October 2025
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Summary

This research explores how deep learning models can improve the detection of efflorescence in
masonry buildings in the Netherlands. Efflorescence, caused by moisture-driven salt transport, poses
detection challenges due to its variable appearance, similarity to other surface features, and co-
occurrence with other forms of masonry damage.

To address this, the study benchmarked two state-of-the-art object detection models: Mask R-CNN
and YOLOv8. On a single-class dataset, Mask R-CNN achieved a peak mAP@0.5 of 0.35,
outperforming YOLOvS8 (0.30—0.33) in segmentation quality and spatial precision. However, both
models suffered from false positives, often misclassifying encrustation, lichens, and graffiti as
efflorescence due to visual similarity.

To mitigate this, a multi-class training setup was introduced. Graffiti achieved the highest mAP (0.60)
and near-perfect precision due to strong visual contrast, while lichens were classified with high
stability. In contrast, efflorescence and encrustation remained difficult to separate, resulting in
unstable mAP and precision fluctuations over time. This confirmed that misclassification significantly
limits model accuracy when damage types share visual characteristics.

Model performance was further evaluated by incorporating thermal imaging (RGBT), combining
aligned RGB and infrared data to detect moisture-driven efflorescence. The RGBT model reduced
false positives (as few as 3 per evaluation set) and improved detection confidence, reaching a
precision of 0.94 and an average confidence score of 0.96, although it required more epochs to
converge and showed increased false negatives in ambiguous scenes. Still, RGBT improved the
confidence of the visual detection in real-world, poorly lit, or heritage conditions, where over-
segmentation is costly.

A spatial co-occurrence analysis of annotated masks indicated a statistically significant correlation
between efflorescence and adjacent damage, supporting the potential of dual-class detection

In conclusion, while deep learning models can support efflorescence detection, especially when
enhanced with thermal input and multi-class refinement, their performance depends heavily on
dataset quality, annotation strategy, and class separability. These findings offer a foundation for
scalable, automated inspection in conservation and diagnostics of masonry.
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Term Definition
Efflorescence Crystalline deposit of salts on masonry surfaces
Masonr Construction using individual units (like bricks or stones) bound together with
\

Deep Learning

Convolution

Kernel (or Filter)

Feature Map

Pooling

Backbone

Semantic
Segmentation

Instance
Segmentation

Bounding Box

Mask

Annotation

Dataset

Model Training

Inference

Thermal Imaging

mortar.

A subset of machine learning that uses multi-layered neural networks to
model complex patterns.

A mathematical operation used in CNNs to extract spatial features from an
image.

A small matrix used in convolutions to detect specific patterns (e.g., edges,
textures).

The result of applying a convolutional filter to an image, representing learned
features.

A downsampling operation that reduces the size of feature maps while
retaining key information.

The main CNN architecture (e.g., ResNet, VGG) used to extract features in an
object detection model.

Assigns a class label to every pixel in an image (e.g., all efflorescence pixels).

Differentiates between individual objects of the same class (e.g., two
efflorescence patches).

A rectangular outline around detected objects in object detection models.
A binary (or colored) overlay showing the shape and area of detected objects.

The process of labeling data (e.g., bounding boxes or masks) used to train and
validate models.

A structured collection of annotated images used for training, validating, and
testing models.

The process of teaching a model to recognize patterns by minimizing
prediction error over many iterations.

The use of a trained model to make predictions on new, unseen data.

Technique using infrared sensors to detect temperature differences, helpful in
moisture detection.
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1. Intfroduction

Masonry is one of the most commonly used materials in Dutch architecture, especially in older and
historic buildings. Its porous nature makes it particularly vulnerable to environmental influences such
as moisture ingress and salt crystallization. Efflorescence is one of the most prevalent and visible forms
of deterioration which alters visual appearance of facades, it often signals underlying moisture and salt
transport processes that can lead to long-term deterioration if not addressed. It occurs when soluble
salts migrate to the surface through capillary moisture movement and crystallize upon evaporation,
leading to aesthetic damage.

Masonry in the Netherlands is particularly susceptible to moisture-related damage due to its
geographic and climatic conditions. Large parts of the country lie below sea level, with high
groundwater tables and widespread salinization of water near coastal regions (Deltares & TNO, 2024).
These conditions increase the potential for salt intrusion into masonry structures. Additionally, the
Dutch climate is increasingly influenced by climate change, with the Royal Netherlands Meteorological
Institute (KNMI) projecting drier summers and wetter winters in the coming decades (KNMI, 2023). This
fluctuation in moisture levels intensifies the wet-dry cycles that promote salt crystallization and surface
decay in masonry (Lubelli et al., 2006; van Hees et al., 2004).

Changes in rainfall patterns, rising temperatures, and urban densification have further contributed to
increased instances of dampness and salt-related degradation in facades (Vandemeulebroucke et al.,
2023). Next to the effects of climate change, the Dutch construction and heritage sectors also face a
shortage of skilled labour. This shortage can lead to improper repairs, the use of incompatible
materials, or inadequate diagnosis of moisture problems, further increasing the risk of recurrent
damage and reducing the long-term resilience of heritage masonry (Pintossi et al., 2023; Harun, 2011).
These factors increase the risk of recurrent damage and reduce the long-term resilience of heritage
masonry.

Many buildings in the Netherlands, including churches, monasteries, canal houses, and farms, are
decades or even centuries old. These structures often face gradual degradation due to weathering and
moisture accumulation. Maintenance budgets are limited, and restoration work is frequently
performed reactively rather than preventively. According to a 2021 report by the Dutch Cultural
Heritage Agency, only 45.1% of listed buildings were classified as being in 'good' maintenance
condition, while 39.3% were rated as 'fair' and 12.1% as 'moderate’, underscoring the limited capacity
for consistent and optimal preservation efforts (Erfgoedmonitor, 2021).

These combined environmental, technical, and societal factors highlight the need for efficient, non-
invasive methods to detect and monitor damage, and in particular efflorescence in masonry.

In this chapter, the setup for the research context will be further elaborated. Subsequently, the research
objective, research questions, and theoretical framework will be discussed. At the end of this chapter, a
reading guide will outline the overall structure of the thesis.
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1.1. Research Context

The preservation of historic architectural structures is crucial for safeguarding cultural heritage,
Keshmiry & Hassani describe heritage as a vibrant memory of a country’s history and development
and should be considered to the maximal extent possible (Keshmiry et al., 2024).

Additionally, there have been multiple studies conducted that showcase the role of heritage
buildings and their economic value for tourism and local economies (Lazrak et al., 2014), (Koster &
Rouwendal, 2017).

A study on the economical value of heritage shows that the daily spending is 60% higher for
tourists that where dedicated for cultural heritage. It was also concluded that historic rehabilitation
creates 13% higher return on Investment then newly constructed architecture, it holds 16.5% more
jobs and produces in order of magnitude 1.2 times less waste (Nypan, 2006). Moreover, built
heritage creates positive spillover effects, enhancing the value of real estate in its surrounding areas
(Lazrak et al., 2014). It must be noted that the cultural built heritage is valued differently over time.
Nijkamp highlights that, following the Second World War, many buildings in the Netherlands were
demolished to make way for new developments. However, these historic structures are now highly
valued for their social significance (Lazrak et al., 2014).

CHALLENGES OF PRESERVING HERITAGE BUILDINGS

Preserving heritage buildings poses numerous challenges, including weathering due to
environmental influences, and the complexity of preservation guidelines. As nearly all conservation
projects encompass both repair and maintenance phases, it is crucial for all stakeholders to
thoroughly understand building defect diagnostics and apply material treatments with consistent
care (Harun, 2011). Additionally, the shortage of skilled workers and experts further complicates
preservation efforts, placing the responsibility on conservators to ensure that building practices and
materials align with the integrity of the heritage structure (Pintossi et al., 2023).

Over the last decade numerous studies have been conducted on the environmental factors
influencing the conservation potential of heritage structures (Hall et al., 2016; Sesana et al., 2018).
Sesana et al, conducted an extensive literature review on state of the art impacts of climate change
on the built heritage in a broader sense. It was concluded that water is one of the most important
decay factors. Rising precipitation levels associated with climate change could lead to soil saturation
and the overloading of drainage and runoff systems, thereby increasing the risk of damp infiltration
in historic materials, including masonry walls (Sabbioni et al., 2008). Water can also penetrate porous
materials through condensation and capillary action, particularly in buildings located in areas where
the groundwater level is high. While these processes are not caused by climate change directly, they
are exacerbated by it due to fluctuating groundwater levels and longer wet periods. This water
ingress accelerates material deterioration by promoting corrosion, biological growth, and salt
crystallization within the material (Sabbioni et al., 2007).

Additionally, the high cost and technical complexity of restoring heritage buildings often result in
challenges during execution. While preservation guidelines are in place to ensure compatibility and
integrity, difficulties arise when these are not properly understood or implemented. This can lead to
cost overruns, inappropriate restorations, and extended project timelines, as seen in various large-
scale heritage projects worldwide (Roy & Kalidindi, 2017). Davies et al. (2024) highlight the potential
of using sustainable natural materials to lower restoration costs and improve effectiveness. However,
if not carefully matched with existing materials, such solutions risk incompatibility, potentially
undermining long-term preservation goals
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MASONRY IN HERITAGE

As a cornerstone of traditional construction, masonry plays a crucial role in Dutch heritage buildings,
yet it remains particularly vulnerable to environmental and structural stresses (Cultural Heritage
Agency of the Netherlands, 2023). As a material deteriorates over time, its capacity to withstand
decreases. Progressive internal cracking and the buildup of damage are key contributors to failure in
materials. This behaviour is observed in masonry materials such as bricks, ceramics, concrete, mortar,
and stone (Keshmiry et al., 2024).

ADVANCED DIAGNOSTIC TECHNIQUES

Conventional diagnostic methods for heritage buildings, including visual inspection and manual
probing, provide only surface-level information and are often unable to detect early-stage or
subsurface damage, underscoring the need for advanced diagnostic technologies. In recent years,
significant progress has been achieved in analysis, inspection, testing, and monitoring methods for
diagnosing masonry heritage structures (Proietti et al., 2021). These advancements are primarily
driven by the need for accurate evaluations of structural conditions to ensure the preservation of
these structures. Nonetheless, the diagnosis of damage processes affecting heritage buildings
remains a complex task (Makoond & Pela, 2021). Besides the studies towards the diagnostics of the
current state of the structure there have also been studies that focus on future state of heritage
objects in the form of damage functions in relationship with weathering processes. Damage
functions are utilized in predictive degradation modelling, but their predictions involve uncertainty
because they rely on extrapolation (Strlic et al., 2013).

TECHNOLOGY IN PRESERVATION

Technological advancements have significantly improved the preservation of heritage buildings by
enabling non-invasive, accurate, and efficient data collection. Tools such as digital photogrammetry,
laser scanning, and drone-based imaging enable precise documentation of geometry, surface decay,
and deformation over time (Jung & Mazzetto, 2024). In parallel, the availability of high-resolution
cameras and mobile imaging devices has made data collection more accessible and scalable. As a
result, large image datasets are routinely generated across building projects. However, much of this
data remains underutilized (But, 2024).

Machine learning models, particularly object detection and segmentation algorithms, show strong
potential for automating the recognition of damage patterns within large image datasets, improving
efficiency and ensuring more consistent assessments across sites (Yu et al., 2025). Recent
developments in sensing and machine learning are occurring at a rapid pace, with significant
advancements made in just a few years. As a result, preservation technologies must continually adapt
to new capabilities. While these tools enhance the speed and efficiency of data processing,
challenges remain in maintaining accuracy across varying imaging conditions and damage types.
Balancing efficiency with reliability is therefore essential for practical implementation. The
developments enable a shift from reactive to preventive maintenance strategies (Mansuri & Patel,
2022). Instead of relying solely on periodic manual inspections, ongoing visual monitoring using
automated systems can flag early signs of deterioration, contributing to better-informed, data-driven
preservation efforts.

These technologies support preservation professionals in monitoring damage progression and in
mapping vulnerable areas, which in turn inform the diagnostic process. Despite this progress,
combining different sensing techniques with machine learning remains relatively underexplored in
the context of heritage damage assessment, particularly for forms of decay like salt crystallization.
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SUSTAINABLE HERITAGE

Preserving existing heritage buildings supports long-term sustainability goals by extending the
lifespan of structures, reducing the need for demolition, and minimizing the use of new construction
materials. Maintenance and adaptive reuse of heritage sites reduce resource consumption and
embodied carbon emissions compared to new construction (Labadi et al., 2021). Despite these
benefits, integrating sustainability into heritage management remains inconsistent. Many heritage
sites face conflicting regulations, unclear sustainability guidelines, or lack the technical and financial
capacity to implement energy-efficient upgrades (UNESCO, 2015). Heritage preservation was long
absent from global sustainability agendas, despite its relevance to environmental, social, and
economic goals. The 2030 Agenda marked a turning point by formally recognizing culture and
heritage as enablers of sustainable development.

RESEARCH GAP

This study addresses the gap between traditional preservation practices based on visual monitoring
and the potential of modern technologies to support more accurate and scalable diagnostic
processes. Despite growing interest in applying machine learning to heritage diagnostics, current
strategies largely rely on manual inspections that are time-consuming, subjective, and difficult to
scale.

Although object detection and segmentation models have shown potential in automating damage
recognition, their performance often declines under real-world conditions. Factors such as
inconsistent lighting, low-resolution images, and viewing angles compromise model reliability and
generalizability. These challenges become more critical when attempting to distinguish between
damage types with similar visual characteristics, which can lead to misclassification and reduce the
practical value of automated methods.

While sensing tools such as photogrammetry and thermal imaging are becoming more accessible,
they are rarely integrated into machine learning workflows. Research remains limited on how these
techniques can complement RGB-based analysis, especially when image quality is suboptimal. This is
particularly important for decay types like efflorescence, which may resemble other surface-level
discoloration.

In addition, the ability of machine learning to support spatial interpretation, such as detecting
patterns in the proximity or co-occurrence of efflorescence and damage, has received little attention.
Investigating these spatial relationships can provide deeper insight into deterioration processes, yet
remains an underexplored aspect of heritage diagnostics.

1.2. Problem Statement

Recent years have seen significant advancements in analysis, inspection, testing, and monitoring
techniques for diagnosing damage in masonry heritage structures. These developments are driven by
the need for accurate evaluation of the current condition to ensure the preservation of these
monuments. Despite these innovations, diagnosing damage in heritage buildings remains a
challenging task, particularly when dealing with unique and complex structures. The difficulties arise
from the interaction between different structural components (e.g., walls, foundations, and facades)
and the mechanical, physical, and chemical properties of the materials.
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Visual assessment plays a critical role in identifying damage in masonry. Among the various types of
damage, efflorescence, a visually detectable form of salt deposition, represents a significant challenge
for reliable diagnosis due to its impact on both appearance and material durability. Moisture-related
damage, including efflorescence and discoloration, compromises the durability of masonry materials.
Traditional methods for detecting damage rely on manual visual inspection, which is time-consuming,
labor-intensive, and prone to subjectivity.

Advancements in deep learning, particularly Convolutional Neural Networks (CNNs), have enabled
promising developments in image-based damage detection. Techniques such as semantic
segmentation and classification are commonly employed to identify specific damage patterns.
However, accurately detecting and quantifying visually evident damage like efflorescence using
automated methods remains a complex task due to variations in surface textures, lighting conditions,
and the subtle nature of the damage itself. This research seeks to evaluate the performance of a
known machine learning model in detecting efflorescence and explore enhancements to improve its
accuracy and reliability, contributing to more efficient and effective damage assessment methods.

1.3. Research Objective

This study aims to bridge the gap between traditional survey techniques and modern technology by
leveraging advanced machine learning methods for the accurate detection of efflorescence in
masonry heritage buildings Specifically, it seeks to evaluate the capabilities of a pre-existing deep
learning framework, based on Convolutional Neural Networks (CNNs), to detect efflorescence under
varying real-world conditions. While the focus is on efflorescence, other damage types such as
discoloration, encrustation, biological growth, and graffiti are considered insofar as they cause
misclassification risks or co-occur with efflorescence. Furthermore, the research aims to identify and
implement enhancements to improve the model's accuracy and reliability, addressing challenges
posed by variations in surface textures, lighting conditions, and the distinction from look-alike
damage types, such as encrustation, some forms of biological growth, and graffiti. A key objective is
to assess whether incorporating thermal imagery can improve detection accuracy under varying real-
world conditions. Through this approach, the study contributes to the development of efficient,
automated methods for visual damage assessment in heritage preservation.

1.4. Research Questions

To accomplish the intended goal, the following central research question was formulated:

How can deep learning models be applied to improve the detection of
efflorescence in masonry buildings in the Netherlands?

The following sub-questions are designed to support answering the main research question:

SQ1: What are the visual characteristics of efflorescence on masonry, and how do these factors
present challenges for detection?

SQ2:  Which deep learning models are most suitable for detecting and classifying efflorescence on
masonry, based on performance criteria?

SQ3: What is the effect of variables (such as image quality, lighting, and orientation) on the
performance of the model?
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SQ4: How can the performance be improved by addressing misclassification of similar damage
types and co-occurrence with efflorescence?

SQ5: How can the integration of thermal (IR) imagery improve the detection accuracy and
reliability of efflorescence in masonry?

SQ6: How well does the enhanced model perform when evaluated on unseen data and applied to
real-world case studies of efflorescence?

1.6. Research Design

This study is structured into four sequential phases, as depicted in: figure 1, (1) Literature Research,
(2) Experimental Design, (3) Validation & Application and (4) Reporting of the analysis.
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Figure 1 Research Design Overview

Literature Research

The Literature Research phase consists of two main topics that will be researched The first
component establishes a broad understanding of masonry materials and damage processes, damage
mechanisms related to efflorescence. The objective of literature research is to get a better
understanding of damage patterns and material types. This research forms a basis for developing the
general outline of the experiments and what metrics could be used to evaluate the models
performance. The characteristics and history of masonry will be discussed following the damage
processes and causes to the masonry structures. For the classification of the damage types,
references will be made to the MDDS! or MDCS? hosted by TNO, TU Delft and the Cultural Heritage
Agency of the Netherlands due to their significance in the field of heritage damage diagnostics.

The second component introduces the theoretical foundations of state-of-the-art computer vision
models and their application in the field of heritage based computer vision aided diagnostics. Existing
machine learning models are analysed and classified and their differences are discussed. Core

1 Masonry Damage Diagnostics System
2 Monument Diagnosis and Conservation System
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concepts such as convolutions, feature maps, and activation functions are explained at an accessible
level to clarify model behaviour without advanced mathematics. The required datasets and labels are
reviewed and the limitations of the models identified to point out knowledge gaps to be addressed in
the research.

Experimental Design

The experimental design builds on insights from literature research, expert consultation, and
preliminary model considerations. The first step will establish a performance benchmark by
evaluating two pre-selected models, YOLO and Mask R-CNN, on a representative dataset. This
benchmark is intended to identify baseline performance and potential limitations. The design of the
experiments is informed by both theoretical findings and practical constraints, ensuring that they are
feasible, relevant, and aligned with the available time and scope. The experiments are structured in
multiple steps, each targeting a specific research hypothesis and progressively building toward
improved model performance.

Several working hypotheses are formulated from literature and anticipated challenges: (1) the impact
of integrating thermal imaging on detection accuracy of efflorescence; (2) the influence of variable
image conditions (lighting, angle, scale) on robustness; (3) the extent of misclassification between
visually similar damage types, such as graffiti and biological growth; and (4) the spatial co-occurrence
of damage and efflorescence in masonry. Each hypothesis guides a dedicated set of experiments
designed to answer targeted sub-questions.

The first experimental phase will involve a benchmark evaluation of two pre-selected models: YOLO
and Mask R-CNN. These models are selected based on their tested repositories and relevance in
literature. Performance will be assessed using metrics such as accuracy, precision, recall, and F1-
score. Based on these results, the model that demonstrates higher spatial precision will be advanced
for further experimentation. This benchmark established the model’s initial capabilities and helped
identify areas for improvement.

Subsequent experiments will incorporate additional parameters to simulate real-world variability and
enhance robustness. These include image quality factors (e.g., resolution, contrast), environmental
conditions (e.g., oblique angles, uneven lighting), and the integration of thermal imagery to support
moisture detection. Unlike studies that rely on controlled datasets with orthogonal, fixed-distance
images, this research will employ a diverse dataset with high variation in capture conditions. Each
parameter will be tested individually and in combination. Based on outcomes, the model will be fine-
tuned through transfer learning, hyperparameter optimization, and data augmentation, with the aim
of increasing accuracy while limiting false positives.

Evaluation will include segmentation accuracy for detecting damage at the pixel level, classification
accuracy for distinguishing damage types (e.g., efflorescence vs. biological growth), processing time
for real-time feasibility, and robustness across varied datasets. Additional analysis will examine
misclassification among visually similar categories and assess the spatial relationship between
damaged and efflorescent bricks.

The dataset used in this study comprises heritage damage images with substantial variation in quality
and perspective. To ensure relevance, images were manually reviewed and labeled at the brick level
to improve semantic consistency, with annotations validated where necessary through consultation
with domain experts.
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The experimental phase follows an iterative approach, where interim results will guide refinements in
later experiments. For example, thermal imaging will be integrated if RGB-only detection proves
insufficient under field conditions, and hypotheses concerning spatial co-occurrence or
misclassification may be added as dataset challenges emerge. This flexible, adaptive structure
ensures continuous improvement throughout the study.

Validation & Application

The Validation and Application phase assesses the performance of the enhanced machine learning
model using a real-world case study. A representative masonry wall (approximately 15-20 meters in
length) with known instances of moisture-related damage was selected. This wall featured similar
materials and damage characteristics as those found in heritage structures. A point cloud scan and
high-resolution image dataset were captured for this wall, serving as the foundation for applying the
trained model. While thermal imagery was also collected at the site, technical limitations prevented
full alignment of thermal data across the entire wall surface. As such, thermal analysis was limited to
image-level inference rather than full-scene application. Validation was carried out using standard
unseen validation sets held out during training, ensuring a consistent and objective evaluation of
model performance.

The model was applied to this real-world dataset to reproduce findings from the experimental phase
and evaluate its robustness under practical conditions. Images captured from the selected wall were
analyzed using the trained model to detect and classify instances of efflorescence and related
damage. The outcomes were compared to manual visual observations made on-site to assess the
accuracy of the predictions. Although external expert validation was not conducted, internal model
validation was ensured through separate, held-out datasets during training, reflecting performance
on unseen data.

A representative masonry wall was selected from a heritage site located at the Vijzelgracht in
Amsterdam, part of a 19th-century cloister complex originally built as a women-only monastery. The
site features an inner courtyard with exposed brick facades that display visible moisture-related
damage such as efflorescence and discoloration. This location was chosen for its historical relevance,
material similarity to other heritage masonry structures, and accessibility for data collection.

Reporting & Analysis

The Reporting & Analysis phase serves as the finalization of the research, consolidating all findings,
insights, and evaluations from the previous phases into a complete document. This phase ensures
that the research outcomes are presented clearly and meaningfully, while also providing
recommendations for future research and practical applications.

1.6. Reading Guide

The structure of this thesis is as follows: Chapter 2 provides a literature review focused on the general
methodology for masonry damage diagnostics and the potential application of machine learning in
this field. Chapter 3 introduces the methodology for the experiments. Chapter 4 outlines the
hypotheses for each experiment and summarizes the results. Chapters 5 and 6 present the discussion
and conclusion, along with recommendations for further research. Finally, Chapter 7 reflects on the
overall research process, examining what could have been done differently and identifying the key
factors that contributed to or hindered the success of the thesis.
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2.Literature Research

The first step in this review involved a systematic literature search using Scopus according to the
PRISMA systematic review (Fino et al., 2023) and the outline is further described in figure 2 Literature
research process. The databases were queried using Boolean operators to combine groups of
keywords? related to:

1. Technique ("machine learning" OR "deep learning"),
2. Target ("heritage buildings" OR "historic buildings"), and
3. Purpose ( "damage detection" OR "diagnosis" OR "assessment").

LITERATURE RESEARCH

IDENTIFICATION OF KEYWORDS

RECORDS FOUND RECORDS FOUND
SELECTION OF DATABASE ¥ s

Scopus =81 - 34

DATABASE REFINEMENT

TITLE, ABSTRACT AND KEYWORD e

APPLICATION OF EXCLUSION

RECORDS FOUND

15

BIBLIOMETRIC ANALYSIS

RESEARCH CONTENT ANALYSIS

TEXT READING
REPORTING

RECORDS FOUND

&)

RESEARCH TOPIC CONTENTS DEVELOPMENT

MACHINE LEARNING FOR DAMAGE
MASONRY DAMAGE DIAGNOSTICS TN ‘, EXPERIMENTS / CASE STUDY
Mechodology

. State o the are models and
echniques

» Hypothesis

Figure 2 Literature research process adapted from (Fino et al., 2023).

This approach aimed to capture studies focusing on the use of advanced digital or computational
methods (technique) applied to historic or heritage structures (target) for the purpose of detecting,
diagnosing, or assessing deterioration (purpose). The search used a topic-dependent time window.
For machine-learning/object detection, results were limited to 2014—2024 to capture recent
developments. For efflorescence and masonry-diagnostics literature, no strict lower bound was
applied; seminal works prior to 2010 were explicitly included via targeted queries and backward
snowballing. The search was restricted to English and Dutch-language publications (research articles,
review papers, conference proceedings, and book chapters). After merging and de-duplicating results,
551 records remained for screening.

3 The final search query defined as: TITLE-ABS-KEY ( ( "heritage building*" OR "historic building*" OR "listed

building*" OR monument* OR "cultural heritage" ) AND ( masonry OR "masonry wall*" OR "brick structure*" OR "stone structure*" ) AND
( "damage detection" OR "damage diagnosis" OR assessment OR degradation OR deterioration OR pathology ) AND ( "machine

learning" OR "deep learning" OR "artificial intelligence" OR "computer vision" OR "neural network*" ) )
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In the second phase, abstracts and author keywords were examined to verify that each document
met predefined inclusion criteria and could be accessed with the open access institution license, such
as: (1) A clear focus on masonry or heritage building materials (rather than general construction or
modern materials), (2) explicit discussion of damage, degradation, or assessment (not purely design
or architectural history), (3) use or proposal of a machine-learning or data-driven approach. Any study
not meeting these criteria, for instance, articles limited to new building designs or purely theoretical
machine learning models without any masonry application were excluded from further analysis. As a
result of this filtering, 185 articles remained.

To gain insights into the thematic structure and research trends, the selected references were
imported into VOSviewer for bibliometric and keyword co-occurrence analysis. VOSviewer facilitated
the visualization of clusters, indicating the key concepts as shown in figure 3: Co-occurance of
keywords < 5 of a maximum of 100 words.
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Figure 3 Co-occurrence of keywords < 5, a selection of max 100 words.

The keyword mapping helped further develop the literature research framework and the contents.
Regarding damage diagnostics and masonry, terms such as “efflorescence,” “moisture,” “cracks,” and
“brick facade” frequently clustered together, indicating the centrality of these issues in current
masonry research. Keywords like “deep learning,” “neural networks,” “semantic segmentation,” and
“image analysis” often formed a distinct group, showing an emerging focus on automated detection
methods.

” u

n u

Few studies explicitly tied advanced imaging (like thermal or NIR) to machine learning frameworks for
diagnosing moisture-induced damage in detail. This indicates an opportunity to combine different
methods. Although general “masonry damage” appeared often, certain niche issues, like micro-cracks
in mortar or salt crystallization at varying environmental conditions, showed fewer connections,
hinting at potential gaps worth exploring. Keyword clusters can inform which subtopics merit deeper
investigation. For example, a high co-occurrence of “deep learning” and “cracking” suggests that this
area is well-studied and might already have mature solutions. On the other hand, “mortar damage”
rarely appears alongside “machine learning,” it might indicate a gap for new research.
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2.1. Masonry Damage Diagnostics

The conservation of heritage buildings requires a comprehensive approach to damage diagnostics
and risk assessment. Several internationally recognized methodologies have been developed to
address this need. The Building Condition Audit, as outlined by the British Standards Institution (BS
7913: 2013), provides a systematic framework for evaluating the physical state of historic structures.
The Cultural Heritage Risk Assessment Model (CHARM), developed by ICCROM in collaboration with
the Canadian Conservation Institute, offers a holistic approach to identifying and mitigating risks to
cultural heritage (Michalski et al., 2016). UNESCO's guidelines on heritage conservation emphasize
the importance of regular monitoring and assessment to prevent deterioration (UNESCO, 2024).
Additionally, the Institute of Historic Building Conservation (IHBC) has provided guidance on
retrofitting historic buildings, balancing the need for modernization with the preservation of cultural
significance (IHBC, 2021). Within this broader context of heritage conservation methodologies, the
specific field of masonry damage diagnostics has emerged as a crucial area of study, given the
historical significance of masonry in architectural heritage

The field of masonry damage diagnostics has evolved significantly since the foundational work of (van
Hees et al, 1995) and (Van Balen, 1998)), who developed systematic approaches for evaluating
deterioration in historic brick structures based on decision tables. Van Hees et al. introduced the
Masonry Damage Diagnostic System (MDDS?) in a collaborative EU effort, an expert system for
assessing ancient masonry, while Van Balen contributed to the creation of a comprehensive damage
atlas. Building upon these early frameworks, recent research has focused on integrating advanced
technologies and methodologies. These developments include improved non-destructive testing
techniques, representing a significant leap forward in the field's capabilities for early detection and
prevention of damage. Figure 4 illustrates the basic concept of Masonry Damage diagnostics.
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Figure 4 Masonry Damage Diagnostics framework adapted from (R. van Hees et al., 2009; R. P. J. van Hees & Naldini, 2020)

This chapter provides an in-depth understanding of masonry, common damage types, and the existing
diagnostic systems used to assess them. It builds a foundation for exploring machine learning
applications in damage detection.

4 The MDCS developed during the COMPASS project is based on the original MDDS but since more materials
were added later on, it was renamed to Monument Damage Diagnostic System (R. van Hees et al., 2009)
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2.1.1. Characteristics of Masonry in the Netherlands

Brick masonry has long been central to Dutch construction, largely due to the abundance of clay in
river delta regions. Bricks were made from locally sourced clay, often mixed with sand or other
materials to improve shaping and performance. These materials, while effective, also resulted in
porous masonry that is sensitive to weathering and salt-related decay.

Brickmaking was introduced in the Netherlands during the 12th century by monastic communities
and became widespread due to material availability and ease of production. Techniques evolved over
time, from hand-formed kloostermoppen to standardized industrial bricks, shaping both rural and
urban buildings still present today.

Masonry styles varied regionally based on local resources and architectural trends. Northern
provinces favored large, robust bricks for religious structures, while river regions used smaller, fine-
textured bricks like lJsselsteentjes. In urban areas, decorative and machine-made bricks emerged
during industrialization. These differences illustrate the diverse heritage of Dutch masonry and the
range of materials involved in preservation today.

2.1.2. Damage Types and Processes

To assess the extent of damage, it is essential to first establish a clear definition. Damage can be
broadly understood as an alteration in condition, decrease in worth, or loss in functionality or
performance (SA Smith, 2011). The concept of damage relates to various aspects, including physical
deterioration, economic losses, and functional impairments (Korswagen et al., 2024). From a
technical perspective, damage might focus on structural or material changes.

To continue, (Lourenco et al., 2014) provides a comprehensive definition of degradation and damage
in the context of masonry structures: "The degradation processes (chemical, physical and mechanical)
exert stresses on the materials, which weaken the material until it fails and damage becomes visible.
Degradation can be defined as an increase in decay, which corresponds with a decreasing
performance of the material. Thus, damage can be defined as an unacceptable reduction of the
performance of the material, affecting its durability."

As previously mentioned in chapter 2.1 the study of masonry damage diagnostics has been
significantly advanced by the work of van Hees and van Balen, who developed foundational
systematic approaches for evaluating deterioration in historic brick structures (R. van Hees et al.,
2009; Van Balen, 1998).

Masonry structures are vulnerable to a wide spectrum of environmental influences and internal
deterioration processes. For clarity and consistency, this section distinguishes between environmental
factors (external agents), damage processes (decay mechanisms), and damage types (observable
manifestations or decay types). The focus of this thesis is on material deterioration driven by
environmental factors, particularly moisture-related phenomena. The classification below is based on
the work of Korswagen et al. (2024) and Lourenco et al. (2014), supplemented with diagnostic
insights from the MDCS framework.

e Environmental factors: These are external influences that trigger or accelerate decay
processes. Examples include rain, groundwater, air humidity, pollution (e.g. SO,), and
temperature fluctuations (including frost). The presence of moisture—through rising damp,
seepage, or condensation, often initiates or sustains damaging processes.

o Damage processes: These are the underlying decay mechanisms that reduce the
performance of masonry. Moisture-related processes are particularly impactful, and include:
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Salt crystallization, where soluble salts (e.g. chlorides, sulfates) crystallize near or
within pore walls, generating internal stress and leading to powdering, spalling, or
exfoliation.

Chemical conversion, such as the transformation of lime into gypsum or the
formation of swelling salts (ettringite, thaumasite), which may lead to blistering,
bulging, or bursting.

Frost damage, caused by the expansion of freezing water in saturated materials,
leading to delamination or cracking through ice-lens formation.

e Damage types: These are the physical symptoms resulting from decay processes. Common
types include:

o

o

o

Disintegration: Powdering, crumbling, scaling.
Layering and exfoliation: Especially in frost-damaged or salt-contaminated mortar.
Surface changes: Staining, efflorescence, crust formation, or graffiti.

Mechanical deformation: Bulging or displacement.

This refined classification not only aligns with the MDCS system but also helps distinguish damage-
processes from types, which is essential for diagnosis and model development.

The Monument Diagnosis and Conservation System (MDCS) provides a framework for classifying and
analyzing damage processes and types, particularly in heritage structures. Originally based on the
MDCS web application developed by TNO, TU Delft, and the Dutch Rijksdienst voor het Cultureel
Erfgoed the main masonry related damage types are summarised in Table 1:

Damage Type
Brick Surface Change
Chromatic Alteration

Sub-Type Sub-Sub type

Moist spots
Staining

Deposit
Soiling
Graffiti
Encrusation
Efflorescence

Transformation
Patina
Crust

Disintegration
Detachment
Loss of Adhesion
Blistering Paint
Peeling Paint

Loss of Cohesion
Powdering
Crumbling
Brick-blistering
Erosion
Cratering
Aweolization

Layering
Delamination
Exfoliation
Spalling
Scaling

Cracking
Crack
Haircrack
Crazing
Star Crack

Deformation
Bending
Bulging
D

Mechanical Damage
Scratch
Incision
Perforation
Splitting
Chipping

Biological Growth
higher Plants
Lichens
Liverworts
Algea
Mosses
Moulds

Missing Material

Table 1 Damage Atlas classification of Brick damages (retrieved from Bonduel, M. (2020))
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2.1.3. Damage Diagnostics

Visual inspection® is a fundamental method in diagnosing masonry damage, serving as an first step in
evaluating the condition of structures. This non-invasive approach involves the systematic
observation and documentation of visible defects on buildings. However, visual survey inspection
requires skilled personal and there is a possibility for misinterpretation of the results (Goncalves et
al., 2015). In practice, visual assessments are often supported by both destructive and non-
destructive investigation techniques to achieve a more complete understanding of masonry damage.
Non-destructive testing (NDT) methods, in particular, can complement visual observations by offering
insights that are not immediately visible. Techniques such as infrared thermography (IRT) and
photogrammetry, for example, can be integrated into photographic surveys to validate or challenge
initial hypotheses about the type or extent of damage. These methods are especially useful for
detecting issues like hidden moisture, material heterogeneities, or surface deformation patterns.
Infrared thermography IRT is effective for assessing grout placement and can identify areas of
moisture infiltration or thermal bridging (Alexakis, Delegou, Mavrepis, ..., et al., 2024).

Van Hees emphasizes the significance of long-term monitoring in the assessment of masonry
damage, particularly for moisture-related deterioration. His research underscores the value of
combining periodic visual inspections with environmental data, such as moisture content and salt
presence to support a more complete and reliable diagnosis of material degradation over time (R. P. J.
van Hees & Naldini, 2020). Within the scope of this thesis, such methods are relevant not only for
surveying the current condition of masonry, but also for tracking the progression of damage. When
paired with photographic and non-destructive techniques, they can help substantiate hypotheses
about the nature and causes of deterioration in heritage structures.(R. P. J. van Hees & Naldini, 2020).

2.1.4. Challenges of damage detection

Detecting damage in masonry structures involves several challenges::

e Complexity of heritage structures: Heritage masonry buildings often have complex
geometries, non-homogeneous materials, and different construction techniques, making
imaged based damage assessment difficult (Soleymani & Jahangir, 2023).

e Limited information: The absence of design and construction documentation, as well as lack
of data on materials used, complicates the assessment process .

o Non-destructive testing requirements: Due to the historical value of these structures,
destructive testing methods are often prohibited, limiting to non-destructive testing
(Soleymani & Jahangir, 2023).

e Need for high-precision monitoring: Detecting small changes in structures requires high-
detailed displacement sensors and advanced monitoring systems (Korswagen et al., 2024).

e Variability in damage: Certain types of damage, such as efflorescence, may only be visible
under specific conditions (e.g., dry periods), making consistent detection challenging
(Alexakis, Delegou, Mavrepis, Rifios, et al., 2024).

e Multifaceted nature of deterioration: masonry structures often suffer from multiple types of
damage simultaneously, requiring a combination of detection and monitoring techniques
(Gongalves et al., 2015).

5 Visual inspection in this context refers broadly to the observation of visible damage characteristics on surfaces,
whether through in-person site assessments or the analysis of imagery (e.g. photographs, scans) that capture
surface conditions
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2.1.5. Salt-Induced Deterioration: Goal and Scope Definition

This research focuses specifically on the assessment of efflorescence in masonry, a form of salt
crystallization damage that is frequently observed in historic buildings. Efflorescence is selected as a
target due to several key reasons:

e Itisarecurring and widespread form of salt-related damage in masonry.

e Itisvisually and photographically detectable, making it suitable for automated or semi-
automated assessment.

e Alarge archive of images documenting efflorescence is available, supporting data-driven
analysis and training of detection models.

Efflorescence is defined in the MDCS (Material Degradation Classification System) as:

“A visible deposit of white salts on the surface of porous building materials, resulting from the
migration of salt-laden moisture to the surface and subsequent evaporation.”

Salt-related deterioration in masonry originates from the movement and crystallization of soluble
salts within the pore network of materials. When water containing dissolved salts migrates through
porous media like brick or mortar, it eventually evaporates, leaving behind solid salt crystals. The
location of this crystallization plays a crucial role in determining whether the result is purely aesthetic
or damaging.

e If salts crystallize on the surface, they form efflorescence, which is generally not harmful to
the structural integrity of the material, though it can be visually disturbing.

e If salts crystallize within the pores of the material, they can exert significant pressure on the
pore walls, potentially exceeding the material's tensile strength. This crypto-efflorescence
often results in mechanical damage such as spalling, scaling, powdering, or loss of cohesion
(Lubelli et al., 2004; Lourenco et al., 2014).

Soluble salts dissociate into positive and negative ions in the presence of water. These ions migrate
with the moisture and can later recombine to form crystalline solids as water evaporates (Nijland et
al., 2018). All salts have the potential to crystallize either on the surface as efflorescence or within the
pores of the material, depending on factors such as moisture supply and drying rate. Some salts are
more prone to crystallize at the surface than others, while others more frequently precipitate
internally, where they can exert significant crystallization pressure. The specific solubility and
crystallization properties of each salt type largely determine whether the outcome is a visible deposit
or internal material damage. Nijland et al. (2018) highlight the distinction between salts that cause
visual deposits and those that actively damage materials.

The crystallization process is dynamic and influenced by environmental conditions such as humidity,
temperature, and the availability of water. Repeated wetting and drying cycles can lead to progressive
degradation, particularly in historical masonry, where traditional materials often have lower
resistance to crystallization pressure (Lopez-Arce et al., 2009).

In this context, the research aims to better understand and detect efflorescence as a proxy indicator
for underlying salt activity. While efflorescence itself is not damaging the material, its presence may
indicate salt movement within the wall system and help identify areas at risk of deeper deterioration.
Thus, it serves as an accessible marker for broader salt-induced decay processes in masonry.
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2151, Efflorescence in the Netherlands

Efflorescence is a common and recurring phenomenon in Dutch masonry, particularly in coastal,
urban areas and rural areas due to the use of fertilizer and excrements of animals can lead to the
presence of nitrates salts. It results from the crystallization of soluble salts on the surface of masonry,
often forming visible white deposits. This type of salt-induced decay is especially relevant in the
Netherlands due to a combination of construction practices and environmental exposure.

In coastal regions, salts were often introduced during construction, especially when locally sourced
dune sand (duinzand), naturally rich in chlorides, was used as an aggregate in mortar. This material
choice, combined with the maritime climate and its seasonally high humidity and salty air,
contributes to continued salt exposure through wind-driven deposition and moisture absorption.
Molenaar (2021) notes that chloride contamination can be found in masonry structures located up to
10 km inland from the coast.

In urban settings, additional chloride sources stem from winter road maintenance. De-icing salts such
as sodium chloride (NaCl) and calcium chloride (CaCl,) are commonly used to prevent ice formation
on streets and pavements. These salts are often redistributed onto adjacent masonry by traffic splash
or wind (Steiger et al., 2011). Over time, they penetrate brick and mortar and accumulate within the
porous structure of masonry walls. The repeated freeze-thaw cycles that occur in winter further
amplify the damage, as absorbed moisture expands upon freezing, creating internal stress (Charola &
Blauer, 2015a). Prolonged exposure to road salts can also accelerate the corrosion of embedded
metal elements such as anchors or cavity ties, leading to structural degradation (Molenaar, 2021).

The occurrence of efflorescence is of particular relevance to this study because it is easily detectable
through visual inspection and photographic surveys. This makes it a practical and consistent damage
type for automated detection using image-based techniques. As this research involves the
development of a custom dataset, understanding the locations and conditions under which
efflorescence commonly appears, such as near ground level, close to roads, or in coastal zones, helps
guide targeted data collection and annotation.

215.2. Detection of efflorescence

Efflorescence, most commonly recognized as a white deposit on a dry surface, can be detected with
the naked eye. However, assessing its severity and identifying the underlying causes remain
challenging. To gain insight into the methodologies used in practice for efflorescence detection and
analysis, | reached out to several fagade renovation companies in Delft and The Hague. Through these
discussions, it became evident that there is no standardized assessment approach incorporated in
their workflow. Instead, evaluation methods vary across companies. While some rely solely on visual
inspection, others incorporate basic moisture measurements. Similarly, treatment strategies are
highly case-dependent, influenced by factors such as the extent of the damage, masonry type, and
environmental conditions.

Distinguishing efflorescence from visually similar phenomena is another recurring challenge in
practice. Surface deposits such as graffiti, encrustations, and molds can resemble efflorescence in
color or distribution. Graffiti, while anthropogenic and unrelated to material decay, often appears as
light surface layers that confuse detection. Encrustations, typically composed of calcium carbonate or
other mineral deposits, share a similar white tone and texture. Molds, categorized under biological
growth in the MDCS, may also appear as whitish surface films, particularly in damp conditions. These
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look-alike phenomena as seen in figure 5, are not damage mechanisms in the structural sense, but
they increase the risk of misclassification during visual or image-based surveys.

Figure 5 Examples of surface phenomena visually similar to efflorescence on Dutch masonry: (left) biological growth
(lichens/mold) on a historic brick fagade, (middle) encrustation deposits on a quay wall in Amsterdam, and (right) graffiti on
a masonry wall in Delft

Nonetheless, a common trend emerged: when efflorescence persists despite cleaning or surface
treatments, contractors often resort to extensive masonry renovation. This typically involves
removing and replacing affected bricks and mortar joints, or in some cases, rebuilding entire facade
sections. Yet even such comprehensive interventions do not always prevent recurrence, particularly if
the underlying moisture and salt transport mechanisms are not adequately understood or resolved.

A widely used standard for assessing salt contamination in masonry is the Austrian ONORM B 3355-1
"Trockenlegung von feuchtem Mauerwerk — Bauwerksdiagnostik und Planungsgrundlagen”. This
standard is often used as a guideline in practice for diagnosing and remediating moisture-related
damage in buildings. The standard enjoys broad acceptance in practice, likely due to its stringent
assessment criteria, which ensure a thorough evaluation of salt-related damage (Snepvangers, 2005).
While it enjoys broad acceptance, the standard also has notable limitations. It provides general
threshold values for salt concentrations but does not account for the specific effects of different salt
compounds, which may vary considerably in their damaging impact. Furthermore, the methodology
does not explicitly address the role of sampling depth, even though salt accumulation is often
concentrated in the outer millimetres of masonry. These simplifications can influence the accuracy of
assessments and may lead to misinterpretation of the severity or risk of salt-induced damage.

To continue, The WTA-Merkblatt 4-5-99/D "Beurteilung von Mauerwerk" provides a structured
approach for assessing masonry, outlining six key steps: (1) Orientation, (2) Recording and classifying
damage, (3) Investigation planning, (4) On-site and laboratory investigations, (5) Evaluation of
investigation results, and (6) Restoration plan. This systematic methodology serves as a foundation for
diagnosing and addressing moisture related masonry damage. In practical applications, similar
assessment frameworks are often followed. One such approach is outlined in figure 6, which provides
detailed flowchart illustrating the sequential steps from building analysis to the implementation of
measures.

Moisture measurement in masonry is essential for assessing salt-induced damage, diagnosing the
root causes of deterioration, and determining appropriate remediation strategies. Various parameters
are used to evaluate moisture behavior in masonry, as described by Snepvangers (2005). These
include (1) moisture content, expressed in volume percentage, mass percentage, or using the carbide
method (CM-%), (2) degree of saturation, (3) maximum water absorption capacity, (4) critical
moisture content, (5) hygroscopic equilibrium moisture content, (6) water absorption coefficient, and
(7) water penetration coefficient. These parameters provide valuable insights into the moisture
dynamics of masonry and their role in efflorescence formation (Snepvangers, 2005).
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Figure 6 Building Analysis as the Basis for Drying Measures (translated from ONORM B 3355-1 )

The moisture measurements are influenced by various factors, including material properties, the type
and concentration of salts, fluctuations in drying conditions and seasonal variations, and ultimately,
environmental factors such as relative humidity (Snepvangers, 2005). Snepvangers continues that salt
concentration could varies significantly and the concentration can be high in areas where there is no
visible damage. When selecting sampling locations it should be considered that salt is not distributed
evenly throughout the masonry. Additionally there have been multiple advancements made in the
recent years on the study of conditions of crystallisation in relationship with relative humidity and
temperature (Charola & Blduer, 2015).

2156.3. Measurement Techniques

While a variety of laboratory methods exist to identify and quantify salt contamination in masonry—
such as electrical conductivity testing, ion chromatography, and photometry (Blauer et al., 2001;
Rijksdienst voor de Monumentenzorg, 2005)—these techniques fall outside the practical scope of this
research. Instead, this study focuses on the surface-level visual detection of salt damage, particularly
efflorescence.

Nonetheless, understanding the underlying salt behavior is important when interpreting visible
surface deposits. In situ techniques, such as selective strips that detect specific anions, provide insight
into salt composition without full laboratory analysis. However, the results of these methods are
highly dependent on the samples themselves, which can vary with seasonal conditions, spatial
location, and sampling depth. Salt concentrations may differ significantly by height or depth within
the wall, and they can also fluctuate over time (Charola & Blauer, 2015b). This variability highlights
the limitations of visual-only assessment and supports the need for caution when inferring the extent
of salt damage from surface efflorescence alone.

2154. Indicators of Efflorescence

The damage originated by soluble salts in porous building materials like masonry are based on
different behaviours. Blauer explains that each salt has a different solubility in water, in general there
are multiple types of salts present in porous materials where the development of crystallisation
pressure is the result of so called “non equilibrium conditions” i.e. explained as the normal conditions
found in real life situations (Charola & Blduer, 2015b).
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RISING DAMP : Salt damage in masonry is often linked to rising damp, where groundwater containing
dissolved salts is transported into walls due to capillary action as seen in figure 7 and 8. This typically
occurs in walls without horizontal barriers to block the moisture. As the water evaporates, the
concentration of salts increases, eventually leading to crystallization (Lopez-Arce et al., 2009). The
salts mainly found oscillate between 15 cm and up to 100 cm but dampness can still be found up to
300 cm though Even after the moisture source is removed, the residual salts left in the walls can
crystallize as the wall dries, causing further damage (Charola & Blauer, 2015b).

Figure 8 Rising Damp (Rafton, 2023) Figure 7 Rising damp schematic section of a masonry wall

|

Damage

Efflorescence

Moisture
Few

Salt migration and crystallization in masonry is influenced by the solubility of the salts. Less soluble
salts tend to crystallize in the lower, more moisture-rich zones of the wall, as they precipitate earlier
during the evaporation process. In contrast, highly soluble salts, such as alkali salts, can migrate
further upward within the masonry and crystallize at higher elevations. Some salts, like magnesium
sulphate, may form through secondary reactions as other salts evaporate. Additionally, salts that do
not share a common ion can influence each other’s solubility, leading to crystallization in areas that
would not be expected based on their individual behavior. De-icing salts, for example, often do not
crystallize readily but retain moisture, which sustains damp conditions and intensifies rising damp
over time (Charola & Blauer, 2015b).

LEAKAGE

Efflorescence can also be caused by other moisture sources such as leakage or rain. In the case a
leakage is present, efflorescence appears areas, where water infiltration occurs.

In cases where the leakage originates from the roof or gutters, the pattern of efflorescence may
follow the path of water run-off along the corners of the building. This creates streaks or patches of
efflorescence that appear irregularly along vertical or diagonal lines as seen in figure 9 and 10.

The efflorescence extends from the top of the pipe upwards, suggesting leakage from the drainage
system. The contrast between the affected and unaffected brick areas emphasizes the localized
nature of moisture-related damage.
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Figure 9 Early Onset of Efﬂbrescence ona
Newly Built Masonry Wall

ir 3 yé; |
Figure 10 Efflorescence and Biological Growth
Near a Drainpipe on a Masonry Wall

Damage Co-occurrence

Blauer reports that when the flow of water is slower than the evaporation rate of the water, the
evaporation front will move towards the inside of the material resulting in the crystallisation within
the material and creating damage. There are a number of related damage patterns that can be
recognised according to the MDCS and its related research as highlighted in table 1:

Powdering Spalling Crumbling Blistering
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2155, Conclusion & Challenges

Soluble salts leading to efflorescence originates from various sources. Not only by the type, location,
and amount of salts present in masonry are influenced by the porous structure of the material, but
also moisture amount, distribution and thermohygrometric conditions such as temperature and
relative humidity. The pressure exerted by crystalisation in the pores can lead to material
degradation. Crystallization of salts at the surface of a material leads to efflorescence, crystallization
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of salt in the pores of the material lead to pressures causing damage. As described in the MDCs, salt
damage manifests in various forms, such as detachment, loss of adhesion, layering(Vanhellemont,
2008). Rising damp and the hygroscopic properties of materials are key factors contributing to salt
accumulation and recrystallization.

Detecting efflorescence presents several challenges. Its appearance may vary depending on the time
of day/ year. Furthermore, distinguishing efflorescence from similar phenomena, such as biological
growth, or encrustation, i.e. deposit of calcium carbonate deposits can be challenging , based only on
images. High salt concentrations may also be present in locations where no immediate visual damage
is evident.

In conclusion, salt crystallization is a well-documented and significant factor in the deterioration of
historical masonry. Extensive research and observed damage patterns in heritage structures across
various geographical regions underscore its critical role in masonry decay.

For the purpose of the machine learning component of this study, a selection of damage types from
the Monument Damage Classification System (MDCS) will be incorporated, with the scope tailored to
the available dataset and the visual characteristics of the damage. The primary focus will be on
damage types categorized under disintegration, particularly loss of cohesion and layering. These
types were selected due to their relatively high frequency in the annotated dataset and their
relevance to salt-related deterioration processes, such as those triggered by crystallization pressures
beneath surface layers.

In addition to disintegration-related forms of damage, the research will consider visually similar
deposit-type phenomena. These include graffiti, encrustations, and lichens. While graffiti is an
anthropogenic surface deposit unrelated to material decay processes, it shares visual features with
other white surface deposits and is relevant from a classification perspective. Encrustations, defined
in the MDCS as surface accumulations typically resulting from environmental or chemical processes
(e.g. calcium carbonate), can resemble efflorescence in texture and tone. Molds, which fall under the
broader MDCS category of biological growth, are another form of surface deposit that can lead to
misclassification due to their light coloration and patchy distribution on masonry. While these
deposit types are not damage mechanisms in the structural sense, they pose a risk of false positives
during image-based classification and therefore warrant inclusion in the detection framework.

This focused selection allows the model to differentiate between genuinely salt-related damage
manifestations and visually similar but unrelated surface conditions, thereby improving classification
accuracy and interpretability within the context of efflorescence detection.
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2.2. Machine Learning For Domage Detection

This chapter bridges masonry assessment with Al-based solutions. This chapter contains an overview
of Machine Learning Models, their applications and architecture.

Structural Health Monitoring (SHM) has long been a critical component of building lifecycle
management, with extensive studies conducted on monitoring systems, material degradation, and
inspection techniques (Wang et al., 2019). However, over time, the methodologies and technologies
used have evolved significantly. In particular, the last decade has witnessed an acceleration in the
adoption of machine learning within SHM and damage detection workflows. What was once
considered “state-of-the-art” rapidly becomes outdated, as newer algorithms and computational
strategies are developed and deployed (Marin-Garcia et al., 2023).

This shift has transformed the fundamental questions guiding damage assessment. Historically, the
focus was primarily on classification, determining whether damage was present or not. Today, the
emphasis has shifted toward localization and quantification, identifying where damage exists and to
what extent, often through region-based segmentation. This transition from image-level classification
to pixel-wise instance segmentation has become the new standard of accuracy in the field (Marin-
Garcia et al., 2023).

As discussed in the previous chapter, visual inspection methods, especially those performed on-site—
often rely on professional judgment and specialized equipment. While these methods remain vital,
they are also time-consuming, subject to human error, and increasingly insufficient for large-scale or
hard-to-access sites (Hatir et al., 2020; Hatir et al., 2021). With the growing need for efficient,
reliable, and scalable assessments, especially in heritage structures with difficult access points or
large facades machine learning offers a promising alternative.

The supervised machine learning process for

damage detection typically follows a step-by-step
pipeline, as shown in Figure 11: General workflow
of a supervised machine learning method for
damage detection. It begins with data acquisition T "

and pre-processing, followed by feature extraction

to identify relevant patterns. These features are <mg
recognition atistical Modelling

used in statistical modelling and model training, ’

allowing the system to learn from labeled data.
Once trained, the model performs damage
recognition. If damage is detected, it proceeds to
localize and characterize it, ultimately leading to a Damage Detection
final damage detection output (Pan et al., 2018).

Damage Localization

. . . . Figure 11 General workflow of a supervised machine
Machine learning not only improves detection learning method for damage detection. Adapted from Pan

speed but also enhances consistency and etal. (2018),

objectivity. Particularly when combined with tools

like drone imaging or point cloud data, Machine learning can process large volumes of visual input
and extract meaningful patterns that support conservation, maintenance, and restoration efforts.

Efflorescence often appears with subtle, varied textures and irregular shapes. Its presence can be
widespread or localized, and its visibility is sensitive to lighting and surface colour. These
characteristics make it especially suitable for machine learning, particularly segmentation models like
CNNs that can detect and outline damage with high precision.
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2.2.1. Development of Object Detection

The success of machine learning in image classification makes it a promising approach for damage
detection. In the past years there have been multiple studies on the detection of damages by means
of a convolutional neural network.

Before delving into the application of deep learning in object detection, it is important to
acknowledge a persistent ambiguity in the literature regarding the terminology used in computer
vision. As noted by Andreopoulos and Tsotsos (2013), terms such as detection, localization,
recognition, classification, categorization, labeling, and understanding are often used interchangeably
or with varying definitions across studies. Figure 12 illustrates the different computer vision tasks
adapted from Lui et al (2020). Image classification assigns a single label to an entire image based on
its overall content. Object detection locates and classifies multiple objects within an image using
bounding boxes. Semantic segmentation assigns a class label to each pixel, grouping pixels that
belong to the same class into one region. Instance segmentation further refines semantic
segmentation by distinguishing between individual instances of the same class (e.g., multiple
windows are individually separated). These distinctions are essential when developing and evaluating
machine learning models for damage detection, as each task offers a different level of granularity and
interpretability.

Classification Object Detection
[ — “

Semantic Segmentation Instance Segmentation

Figure 12 Illustration of the primary computer vision tasks: (a) image-level classification, (b) bounding-box object detection,
(c) pixel-wise semantic segmentation, and (d) instance-level segmentation. Adapted and illustrated based on Liu et al.
(2020).

This lack of standardized vocabulary reflects the evolving and interdisciplinary nature of the field, but
it also introduces challenges in framing and comparing research efforts (Liu et al., 2020). To better
frame the practical and theoretical challenges involved in developing object detection algorithms, this
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study references the taxonomy proposed by Liu et al. (2020), which categorizes the performance
requirements and technical hurdles an ideal detector must overcome further described in Figure 13.

(" . Different instances in each class

(Color, Textures, Material and shape)

+ Object Instance Diversities
(Pose, nonrigid deformations, scale)

- Imaging conditions and unconstrained environments
(Illumination, viewpoint, clutter, occlusion, shading, low resolution, blur,
motion, weather conditions)

« Image noise
(Filter distortions, compression noise)

High Robustness to
intraclass variations <

~ High Accuracy
« Localization -
- Recognition

+ Interclass ambiguities
. . + Thousands of real-world object classes
High Distinctiveness « Unstructured vs structured

Ideal Detector <

« Great amount of real world Object categories
- Requiring localizing and recognizing objects

+ Large number of possible locations of objects
- Large-scale image/video data

High Efficiency
+ Time Efficiency
+ Memory Efficiency
~ . Storage Efficiency

Figure 13 Taxonomy of challenges in generic object detection, outlining the characteristics of an ideal detector in terms of
accuracy, efficiency, robustness, and distinctiveness. Adapted from Liu et al. (2020).

In this study, the focus lies specifically on object detection and instance segmentation, which are
clearly defined tasks involving the identification of object locations within an image and the
delineation of their spatial boundaries, respectively.

In the field of computer vision, particularly object detection, it is important to distinguish between
feature extraction backbones and detection frameworks. Backbones such as AlexNet, GoogleNet,
VGG, and ResNet are convolutional neural networks (CNNs) originally developed for image
classification tasks, primarily evaluated through the ImageNet Large Scale Visual Recognition
Challenge (ILSVRC). These networks are designed to learn hierarchical features from images,
progressing from low-level edge detectors to high-level semantic patterns.

In contrast, object detection frameworks such as R-CNN, Fast R-CNN, Faster R-CNN, Mask R-CNN, and
YOLO build upon these backbones by integrating additional components like region proposal
networks, bounding box regressors, and segmentation heads. The backbone is typically used as the
feature extractor, while the detection architecture handles localization, classification, and (in some
models) segmentation. The choice of backbone significantly impacts performance and speed, but it is
not the detection method itself.

The ImageNet Large Scale Visual Recognition Challenge (ILSVRC) was a benchmark competition that
significantly advanced computer vision research. Introduced in 2010, it focused primarily on image
classification, with later additions such as object localization and detection. The competition became
a proving ground for major CNN architectures, including AlexNet (2012), GoogleNet (2014), and
ResNet (2015). These models demonstrated unprecedented performance on large-scale image
classification tasks, marking the beginning of the deep learning era in vision. The development of
more powerful and deeper backbone networks has enabled models to learn increasingly abstract and
high-resolution feature representations. Table 2: Evolution of key CNN architectures commonly used
as backbone networks in object detection frameworks summarizes key milestones in CNN architecture
development.
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Table 2 Evolution of key CNN architectures commonly used as backbone networks in object detection frameworks.

Model Year Description

AlexNet 2012 Started the deep learning wave with massive improvement

ZFNet 2013 Improved filter visualization and performance

VGGNet 2014 Used very deep (16-19 layer) architecture

GoogleNet 2014 Introduced inception modules (wider networks)

ResNet 2015 Introduced skip connections for very deep models (up to 152 layers)

DenseNet 2016 Connected each layer to every other layer

By 2015-2017, state-of-the-art models were surpassing human-level performance on the
classification task. For example, ResNet (2015) achieved a top-5 error of 3.57%, better than the
estimated human error of 5.1%. As models began reaching saturation on classification, research focus
shifted toward more complex tasks such as segmentation, pose estimation, and scene understanding.
The ILSVRC was officially discontinued after 2017, influenced by a combination of technological
maturity, ethical considerations, and the natural progression of research frontiers.

The evolution of machine learning models has shown the growing complexity of damage detection
tasks as shown in Figure 14 Milestones in generic Object Detection. Convolutional Neural Networks
(CNNs) were the first breakthrough in image classification (LeCun et al., 1998), enabling systems to
detect damage categories like cracks or efflorescence in pre-processed photos (Wang et al., 2018).
Region-based Convolutional Neural Networks (R-CNN) expanded on this by introducing region
proposal mechanisms, allowing the model to not just classify an image but to localize areas of
interest within it (Girshick et al., 2016). Fast R-CNN improved efficiency by integrating region
proposals and classification into a single, faster network (Ren et al., 2015). Mask R-CNN, the current
standard for instance segmentation, introduced a mask branch that performs pixel-level
segmentation, allowing not just the detection of damage, but detailed mapping of its shape and
spread. Each of these advancements builds upon the limitations of the previous, resulting in higher
accuracy, faster processing times, and greater flexibility in dealing with complex geometries and
variable conditions.

GoogLeNet FASTER R-CNN MASK R-CNN
{Szegedy et al., 2014) (Ren et al., 2015) (He et al., 2017)
) N YOLO®9 .
D %5 (Redmon et al., 2016) ‘v’
R-CNN I FASTR-CNN ResNet - !
(Girshick et al, 2013) ! (Girshick etal, 2015),  (He et al., 2015) v '
':) ! O ! v ; I
T 1 1) : 1) : :
: 2013 2014 1' 2015 : 2016 2017 1' 2018
Al 1) ! %)
(] = 4 =
B SPPNet gt FPN
AlexNet (He et al., 2014) YOLO (Linetal., 2017)
(Krizhevsky et al., 2012) (Redmon et al., 2015)

Figure 14 Milestones in generic Object Detection (adapted from Liu et al, 2020)

As object detection models became more capable, research interest moved toward more fine-grained
tasks, such as instance segmentation and keypoint detection. In response, the Common Objects in
Context (COCO) Challenge was introduced in 2015. Unlike ILSVRC, COCO focuses not just on
classifying and localizing objects, but also on pixel-level segmentation, context-aware detection, and
multi-object scenes. The COCO dataset contains over 200,000 images with instance-level annotations
for more than 80 object categories. It introduced evaluation metrics such as Average Precision (AP)
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across different Intersection-over-Union (loU) thresholds, pushing models to be both precise and
robust.

Frameworks like Mask R-CNN were specifically designed with COCO in mind, achieving state-of-the-
art results in instance segmentation. COCO continues to be a leading benchmark for evaluating the
real-world applicability of object detection and segmentation models.

APPLICATION IN THE FIELD OF HERITAGE MASONRY

The first attempt of classifying and locating multiple types of damages for historic masonry structures
based on CNN technique was proposed in 2018 (Wang et al., 2018). Wang continued to achieve a
94.3% accuracy on the classification results for spalling, cracking, efflorescence and intact conditions
using the sliding window methodology using the AlexNet and GooglLeNet. Though it must be noted
that the dataset consisted of 5145 fixed orthogonal photos of single bricks of the forbidden wall of
China (Beijing China). In 2019 an effort was made on the detection of efflorescence and spalling on a
small dataset (500 images) consisting of orthogonal homogeneous photo’s using Faster R-CNN
achieving an mAP of 95% (Wang et al., 2019).

To continue using artificial neural networks an accuracy of 99.4% was obtained on a dataset
consisting of 8598 images of orthogonal photo’s on eight different classes consisting of fresh rock,
flaking, contour scaling, cracking, differential erosion, black crust, efflorescence, higher plants, and
graffiti (Hatir et al., 2020). It must be noted that in this case the research limited their scope to the
Konya (Turkey) historical site which mainly consisted of Sille stone material. Additionally a research
effort was made in Turkey in 2021 on a similar detection of multi class damages (cracks,
discontinuities, contour scaling, missing parts, biological colonization, presence of higher plants, de
posits, efflorescence, and loss of fresco) using MASK R-CNN. 1740 images were collected from the
Gumdisler archaeological site consisting of pyroclastic rocks were the model achieved a mAP of 98.1%
(Hatir et al., 2021). Another research effort was made on the detection of efflorescence in Spain by
(Marin-Garcia et al., 2023). In their research effort a Yolo v5 (large and small) model was used to train
on a dataset of approximately 392 orthogonal images with an mAP of 89.4%. A Multi class detection
was used for the bricks classes (1) repair and (2) clear.

In general, the development of datasets and annotation strategies receives limited attention in
current research. Mishra et al. (2021) conducted a broad and comprehensive literature review on the
application of machine learning in structural health monitoring. While their work provides valuable
insights into methodological advancements, it does not address the influence of different annotation
strategies on model accuracy. Similarly, the discussion around datasets remains brief, with little
consideration given to variations in stone types or material-specific characteristics.

The studies summarised in table 3 shows the key literature applying machine learning models
particularly CNN-based and region-based networks to the task of damage detection in masonry
heritage structures. The table highlights datasets, model types, performance metrics, and geographic
or material-specific considerations. collectively highlight the evolution of deep learning techniques
from basic classification to instance segmentation. As the focus in SHM shifts from detecting damage
to understanding it contextually including its extent, shape, and location, models like Mask R-CNN
provide the pixel-level granularity needed for high-precision conservation strategies.
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Table 3 Overview of State-of-the-Art Machine Learning Models for Damage Detection in Masonry Structures.

Year Authors Model Type Overall Architecture/Used Layers| Types of Damages Identified Relevance to Efflorescence
2025 Wang F.; Huang J; Fu Y. Convolutional Neural Two-branch CNN fusing visible, IRT, Improved accuracy in Moisture-related damage, including water ingress  Directly relevant; includes detection of salt crystallization caused by
Network (CNN) and data for moisture damage detection  and salt crystallization. moisture.
detection. through multimodal data
fusion.
2022 Zhou X.; Derome D.; Carmeliet J. Artificial Neural Network ANN with inputs based on Prediction accuracy closely ~ Moistt lated damages lik i Indirectly relevant; identifies moisture risks associated with
(ANN) hygrothermal parameters and matches simulation results. mold growth, and freeze-thaw effects. efflorescence formation.
outputs predicting moisture risk.
2021 HatA=rM.E.; A°nce A°.; KorkanA§ ~ Mask R-CNN Region-based convolutional Mean Average Precision Efflorescence, cracks, contourscaling, biological Directly relevant; efflorescence detection included as a primary
M. network with mask prediction (MAP): 98.2%, Precision:  colonization, missing parts, fresco loss, etc. damage type.
layers. 91.594€“100%
2019 WangN.; Zhao X.; Zhao P.; Zhang ~ Faster R-CNN with ResNet-  Region proposal network, feature ~ Mean AP: 0.950; Precision  Efflorescence and spalling. Directly relevant; includes efflorescence detection as a primary
Y.;ZouZ;0ul. 101 backbone extraction with ResNet-101, and forEfflorescence: 0.999. damage category.
bounding box regression layers.
2024 KarimiN.; Valibeig N.; Rabiee H.R.  Inception-ResNet-v2 Hybrid architecture combining Accuracy: 96.58%, Precision: Cracking, flaking, erosion, efflorescence, salt Directly relevant; efflorescence included as a defecttype.
Inception and ResNet forimproved 96.96%, Recall: 96.24% deposition, no defect.
feature extraction.
2018 WangN.; Zhao Q;LiS;Zhao X.;  SlidingWindow CNNwith  AlexNet (8 layers), GoogleNet (22 Achieved an accuracy of Efflorescence, spalling, cracking, and intact Directly relevant; includes efflorescence as a key damage type.
Zhao P. AlexNet and GoogleNet layers), employing a sliding window 94.3%. bricks.
for brick-by-brick analysis.
2021 Tijskens A.; Roels S.; Janssen H. Convolutional Neural Custom CNN model optimized for  Prediction accuracy: High Moisture damage risks (condensation, mold Indirectly relevant; identifies moisture risks linked to efflorescence
Network (CNN) i response agreementwith si growth, etc.) formation.
prediction. (qualitative assessment).
2024 Alexakis E.; Delegou E.T.; Mavrepis  PSPNet with ResNet-50 Encoder-decoder architecturewith  Accuracy: 93%, loU: 89%, F1- Risingdamp and non-damp areas. Indirectly relevant; rising damp is often a precursor to efflorescence.
P.; Rifios A.; Kyriazis D.; backbone pyramid pooling module for Score: 88%
Moropoulou A. segmentation tasks.
2020 Hatir M.E.; BarstuAYan M.; A°nce A°. Deep Learning and Artificial ~ Custom CNN architectureanda DL accuracy: 99.4%, ANN  Efflorescence, cracking, flaking, contourscaling, ~ Directly relevant; efflorescence is one of the weathering types
Neural Networks (ANNs) fully connected ANN. accuracy: 93.95%, Recall: and others. classified.
964€100% per class
2023 MarA-n-GarcA-aD.; Bienvenido-  YOLOVS. End-to-end CNN forbounding box mAP: 0.894 atepoch 100,  Efflorescence (simple cleaning vs. major repair  Directly relevant; focuses on efflorescence classification and repair
Huertas D.; Carretero-Ayuso M.J.; prediction and damage Precision: 89.4%, Recall: needed). needs.
TorreS.D. classification. 88.6%

Despite their success, current state-of-the-art models still face challenges in generalization across
different heritage sites, materials, and environmental conditions. This calls for careful model
selection, training strategies, and dataset diversity, which will be discussed in the following sections.

2.2.2. Model Architecture

In recent years, deep learning models have significantly advanced the accuracy and reliability of
image-based damage detection as described in the previous chapter. While all models rely on
convolutional layers as their foundation, their architecture, purpose, and output vary greatly
depending on their design objectives. This chapter compares several major architectures used in
visual damage detection workflows with emphasis on their strengths, limitations, and relevance to
this study.

It is important to distinguish between the development of application-specific methodologies for
object detection (e.g., object detection and segmentation models such as Faster R-CNN or Mask R-
CNN) and the evolution of backbone architectures (e.g., AlexNet, VGG, ResNet) on which these
methods rely. While methodologies define how an object is detected and represented, the backbone
largely determines the feature extraction quality and therefore has a direct impact on accuracy,
efficiency, and transferability. For this thesis, understanding both dimensions is essential, since the
chosen methodology is closely tied to the capabilities of its backbone..

CNN (CONVOLUTIONAL NEURAL NETWORK)

CNNs are used as an important technique in machine learning and deep learning, specializing in
processing grid-like data (images) used for recognition and classification. The CNN architecture as
seen in figure 15 by LeCun et al, (1998) consists of two main parts, (1) Feature extraction and
(2) classification. The CNN can be described as a filtering mechanism which goes through
different types of filters (layers) to extract features.
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Figure 15 General architecture of a Convolutional Neural Network (CNN), consisting of stacked convolutional, activation,
pooling, and fully connected layers (Adapted from LeCun et al., 1998).

The convolution layers detects specific patterns such as edges, corners or colour transitions
which results in a feature map that highlight the presence of learned features across an
image. It could be described as a sliding window that scans the image based on pixel sizes in
the form of matrix multiplication.

The pooling layer reduces the size of the feature maps to lower the computational load to
select the maximum (MaxPool) value for each region to preserve the most important
features while reducing resolution.

The Fully Connected Layer flattens the feature maps into a single vector which is passed
through one or more fully connected layers. Each neuron is connected to every neuron in the
previous layer such that a prediction can be produced in the form of class scores of the so
called SoftMax to output probabilities of each class.

R-CNN (REGION-BASED CONVOLUTIONAL NEURAL NETWORK)

The R-CNN architecture as seen in figure 16 developed by Girshick et al, (2014) consists of
three main parts, (1) Region Proposal (2) Feature extraction and (3) classification. R-CNN
used AlexNet as its backbone to extract features from proposed regions. At the time AlexNet
had already proven extremely powerful in extracting high level features from images and
winning ImageNet 2012 with a significant lead. R-CNN relied on transfer learning which uses
a pretrained model for finetuning object detection. Unlike traditional CNNs that process the
entire image uniformly, R-CNN first generates region proposals and processes each region
individually through a CNN for feature extraction and classification. The downside of R-CNN
is by generating +/- 2000 regions of interest (ROls) the model performs relatively slow.

Finetuning pre-trained model Output
(AlexNet)

Input Selective Warped Input Convolution Paoling More... Fully Support Vector Bounding Box
Search Region Connected Machine Regressor

L] ] | = e o e O
4 T O 0
3x227x227 96x55x55 96x27x27 Margin Score Box
\ I J
\ J
% Y VT
Region Proposal Feature Extraction Classification

Figure 16 R-CNN architecture: Region proposals are extracted using Selective Search and individually passed through a CNN,
followed by SVM classification and bounding box regression (Adapted from Girshick et al., 2014).
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The Activation Function by means of fully connected layers decides whether a neuron should
be activated or not such that in the Fully connected layer determines if it is important in the
process of the prediction. The backbone (ie. AlexNet) introduced working with a RelU
function to not activate all neurons at the same time in contrast to general sigmoid, Softmax
or tanH functions.

It can be questioned whether the success of R-CNN at the time was due more to the
underlying deep feature extraction from CNN backbone (AlexNet) and the availability of large
datasets like ImageNet, rather than just the novelty of the R-CNN region proposal
methodology itself.

FAST R-CNN (FAST REGION CONVOLUTIONAL NEURAL NETWORK)

The Fast R-CNN architecture as described in figure 17 developed by Girshick (2015) consists
of a similar structure as R-CNN with a different Feature extraction. The main difference is the
way the region processing through the CNN, namely instead of taking each of the Rol (+/-
2000) and parsing them through the CNN (which requires additional time and computational
power), the entire input image is passed through resulting in a shared feature map.

By the same selective search principle as R-CNN, the Rols are projected onto the shared
feature map and then passed through the Rol pooling layer resulting in a fixes size feature
map (e.g. 7x7) such that a uniform size is maintained. These feature maps are then parsed
through the Fully Connected layer where then the output is generated with two heads (1)
SoftMax classifier and (2) Bounding box regressor.

Feature Map Extraction
VGG16)

Input Convolution Pooling More... Pooling Mapping Rols Rol Pooling Fully Softmax Bounding Box
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Figure 17 Fast R-CNN architecture: A shared feature map is computed from the full image. Rols are pooled into fixed-size
features using Rol Pooling and processed through fully connected layers for classification and regression (Adapted from
Girshick, 2015).

Most interesting improvements are the avoidance of redundant computation through CNN
since of the approximately 2000 Rols only the most “promising” regions are selected at the
end. Additionally, the Rol pooling layer preserves the spatial alighment since the “warping”
of the image is not applied.

FASTER R-CNN (FASTER REGION CONVOLUTIONAL NEURAL NETWORK)

Similar to the FAST R CNN architecture, FASTER R CNN as described in figure 18 is also build
on it predecessor which additional changes in configuration on layer level and some
mathematical concepts. FASTER R-CNN introduced by Ren et al (2015) eliminates the
external region proposal algorithm (Selective Search) and introduced Region Proposal
Network (RPN).

42



MSc. Building Technology | Exploring the potential of deep learning-based image analysis for damage recognition in heritage buildings | V.C. Cloo

]
TUDelft

In contrast to FAST R-CNN, the RPN “slides” a small network (3x3) by means of a convolution
layer over the feature map. On the feature map, k-anchors are placed of different sizes per
pixel to predict two outputs, (1) the Objectness score (background or foreground) and (2)
bounding box coordinates.

The predicted bounding boxes have different confidence score and might overlap thus might
develop problematic predictions, and by means of a Non-Maximum Suppresion (NMS) only

the most confident boxes remain. Typically a Intersection over Union (loU) threshold of > 0.5
is maintained for this operation.

Feature Map Extraction
(VGG16, Resiel, elc.)

Feature Extraction Region Proposal Network Feature Extraction Classification

Figure 18 Faster R-CNN architecture: Builds on Fast R-CNN by introducing a Region Proposal Network (RPN) that shares the
convolutional backbone and generates region proposals (Adapted from Ren et al., 2015).

Similar to the FAST R-CNN the predicted bounding boxes from the RPN are mapped on the
feature maps from the backbone (VGG16, ResNet etc.). These are then parsed to develop

feature maps per region which are being handled by the fully connected layers to activate
required neurons and develop the classification output with the same heads.

MASK R-CNN (MASK REGION CONVOLUTIONAL NEURAL NETWORK)

MASK R-CNN as described in figure 19 is an extension of FASTER R-CNN that adds a third
branch for predicting the segmentation masks on each Rol in parallel with the existing
branches for classification and bounding box regression (wei et al., 2019). Similar to FASTER
R-CNN the backbone CNN (ResNet-50 or ResNet-101) extracts features in convolution layers
to develop different depths of feature maps.

The Feature Pyramid Network (FPN) is introduced by Lin et al (2017) and applied by He et al,
(2017) such that the output feature maps from the backbone CNN (Convolution layer 1,
Convolution layer 2, etc) are used to create multi-scale feature maps called P2, P3, P4 etc.
The P-levels represent the image feature maps on different scale where P2 is high resolution
and good for small objects and P5 is a low resolution good for large objects (Lin et al., 2017).

The integration of FPN Mask R-CNN by He et al, (2017) allows to operate effectively across
different object scales, making it a scalable enhancement particularly suited for complex
scenes with objects of varying sizes. Although not the central innovation, FPN has become a
standard component of Mask R-CNN implementations due to its consistent performance
gains.

Similar to FASTER R-CNN the feature maps from the FPN are used for the RPN and slides a
3x3 convolution layer across each P-Level. Again for each spatial condition in the feature map
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k-anchor boxes are created resulting in a classification and bounding box regression where
the top +/- 300 proposals are filtered by means of the NMS.

...................................................

Figure 19 Mask R-CNN architecture with an added mask branch for instance segmentation, Rol Align for pixel-level accuracy,
and a Feature Pyramid Network (FPN) for multi-scale feature extraction (Adapted from He et al., 2017).

Instead of Rol Pooling, Rol align is introduced which instead of using quantization or
rounding of regions bilinear interpolation is used which preserves Pixel-level precision (as
required for generating the masks) in the original image.

Finally for each Rol that is mapped on the feature maps from the backbone architecture is
parsed through the fully connected layers to develop the three output heads, (1) Classifier,
(2) Bounding Box Regressor, (3) Mask Prediction.

YOLO (YOU ONLY LOOK ONCE CONVOLUTIONAL NEURAL NETWORK)

While YOLOv12 by Ultralytics. (Tian. et al, 2025) represents the latest advancement in the YOLO series,
this study chose to focus on YOLOVS8 due to its broader documentation, extensive community support,
and proven performance across diverse benchmarks at the time of research. YOLOv8 has been widely
adopted in both academic studies and real-world applications, making it a more stable and
interpretable model for comparative analysis. Additionally, the lack of peer-reviewed publications and
implementation maturity for YOLOv12 at the time of writing made YOLOv8 a more practical and
academically justifiable choice for in-depth exploration and evaluation.

YOLOV8 builds upon the original YOLO architecture introduced by Redmon et al. (2016),
represents a one-stage object detection model designed for real-time performance
developed by Ultralytics (2023). Unlike two-stage models such as Mask R-CNN, which first
generate region proposals and then perform classification and segmentation, YOLOvS8
performs all predictions in a single forward pass of the network. The YOLOv8 model consists
of three main components, (1) Feature extraction also called the backbone, (2) Multi-scale
Feature Fusion (similar to a Feature Pyramid Network) also called the neck, and (3) the
decoupled Detection also called the Head which outputs the objectness score, bounding box
coordinates and class propabilities directly from the feature maps as shown in figure 20.

Feature extraction is similar to the backbone as seen in MASK R-CNN, the main difference is
developed in the Multi-scale Feature Fusion where the feature maps are developed on
multiple scales and processed through an up sampling and concatenation with lower level
feature maps where the C2f blocks develop compressed similar output channels (depth). This
multi-scale strategy improves accuracy, especially in complex scenes with both small and
large objects.
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Figure 20 The pipeline consists of feature extraction through a CNN backbone, multi-scale feature fusion via a neck (FPN-like
structure), and object prediction through decoupled detection heads. (Adapted from Ultralytics, 2023).

Each spatial location on the feature maps acts as a predictor, estimating whether it contains
the centre of an object. YOLOV8 uses a centre-based, anchor-free approach, avoiding the
computational cost and complexity of generating and evaluating thousands of region
proposals (Like R-CNN networks). Bounding boxes are predicted relative to each cell, and final
predictions are refined using non-maximum suppression (NMS).

YOLOv8 achieves its speed by being fully convolutional and end-to-end, removing the need
for region cropping, fully connected layers, or segmentation masks (unless explicitly added).
Predictions are made directly from the feature maps without intermediate region-level
refinement. As a result, YOLOvVS is significantly faster than Mask R-CNN and more suitable for
real-time applications, while Mask R-CNN provides more precise localization and segmentation
in tasks where pixel-level accuracy is essential.

YOLOVS is available in multiple model sizes—n (nano), s (small), m (medium), | (large), and x
(extra-large)—each designed to balance speed and accuracy for different hardware and
application requirements. These variants share the same underlying architecture but differ in
the number of layers and parameters.

2.2.3. Model selection rationale

While earlier object detection models such as R-CNN, Fast R-CNN, and Faster R-CNN laid the
foundation for accurate object localization, their two-stage pipelines and computational demands
have been progressively replaced by newer, more efficient architectures (Dupont, 2024). For this
reason, this study focuses on two state-of-the-art models that represent the current standard in
object detection and segmentation tasks: YOLOv8 and Mask R-CNN.

These models were selected due to their architectural maturity and continued relevance in both
research and real-world deployment. A direct comparison between these two models highlights the
ongoing trade-off between accuracy and speed, as well as between detection and segmentation
granularity.

The performance of both models was evaluated as seen in Table 4 using key metrics such as Average
Precision (AP) and inference speed, with results reported on the widely adopted COCO dataset.
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Table 4 Comparative performance between YOLOv8m-seg and Mask R-CNN on the COCO benchmark. While YOLOv8m-seg
achieves significantly faster inference (2—3 ms), its bounding box detection accuracy (APso = 49.9) is lower than that of Mask
R-CNN with a ResNeXt-101-FPN backbone (APsp = 62.3)

Model AP®E (COCO)s5, AP™X(cOCO) Segmentation Support  Architecture Type Inference Speed
Mask R-CNN 62.3 45.8 Yes (pixel-level) Two-stage ~100+ ms
YOLOv8m-seg 49.9 40.8 No (optional) One-stage ~2-3ms

While quantitative comparisons between YOLOv8 and Mask R-CNN provide useful insights, they must
be interpreted with caution. Both models are designed for different purposes: YOLOvS prioritizes real-
time object detection, whereas Mask R-CNN is optimized for pixel-level instance segmentation. The
AP®®5, (Average Precision for bounding boxes at 50% loU threshold) measures how well a model
predicts bounding box overlaps, while AP™* reflects segmentation accuracy at pixel level. Notably,
Mask R-CNN tends to excel in segmentation benchmarks due to its two-stage architecture, while
YOLOv8-seg integrates segmentation as an optional head in a one-stage framework.

Additionally, datasets like COCO span 80 object categories, making results highly dependent on task
design, evaluation settings, and model variants. This becomes visible by the comparison research on
tree detection of Sapkota (2023) where YOLOv8 had an mAPgs of 0.902 whereas MASK R CNN
performed 0.850 which is significantly less (Sapkota et al., 2023). Though it must be noted that the
dataset labellisation methodology seems questionable in this research.

While several models have been reviewed, Mask R-CNN was selected for the following tasks due to its
strong performance in instance segmentation and its suitability for detecting complex and fine-
grained damage patterns in masonry. However, to contextualize its performance and computational
cost, a comparative benchmark with YOLOv8 was conducted further described in chapter 3. This
provides a clearer understanding of the trade-offs between segmentation accuracy and inference
speed for damage detection applications.

2.3. Key Challenges Identified in the Literature

The literature reviewed in this study highlights the growing role of deep learning in the detection of
architectural damage, including efflorescence, across different heritage sites. However, while
promising results are presented in various stud ies (e.g., mAP > 0.85 in [Garcia et al., 2023]; precision
above 96% in [Kimini et al., 2024]), the reality of applying these models across diverse, real-world
environments is considerably more complex. Based on the reviewed work and testing, several critical
issues have surfaced that lay the groundwork for deeper investigation.

Misclassification Challenges in Efflorescence Detection

One of the primary difficulties encountered in the detection of efflorescence lies in its visual similarity
to other damage types. White deposits on masonry may result from efflorescence, but similar
appearances occur due to biological growth (e.g., lichens, algae), encrustations, and even surface
graffiti. Previous studies have also reported this limitation, with misclassifications emerging
particularly in areas where discoloration and crusted textures were ambiguous. This underscores the
need for multi-class damage modelling to distinguish efflorescence more effectively within its visual
context.

The Role of Moisture and Infrared Thermal Imaging

Efflorescence is related to moisture transport and evaporation processes. However, as observed in
several studies (e.g., Wang et al., 2025), detecting moisture phenomena such as rising damp remains
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difficult using only RGB imagery. Moreover, the appearance of efflorescence can fluctuate depending
on rainfall, humidity, or evaporation rates. Several studies highlight that thermal infrared (IR) imagery
offers strong potential for improving efflorescence detection by capturing moisture-related patterns
that RGB alone cannot provide. Wet zones, detected as colder by IR, can align with efflorescence and
damage distribution, helping in a more supported identification of efflorescence. Moreover, the
combination of efflorescence and moisture distribution could give indications about the most
probable moisture source (this last is not the scope of this thesis)

Dataset and Material Limitations

A recurring problem across literature and the dataset relates to variation in building materials and
condition. Efflorescence forms differently on bricks, eroded joints, lime mortar, or porous stone
surfaces. Papers such as Hatir et al. (2021) and Alexakis et al. (2022) point to the role of material
composition and surface degradation in moisture migration, which in turn shapes the development of
efflorescence. Yet these factors are often underrepresented in public datasets, leading to poor
generalization when models are tested across a range of heritage sites. This issue is compounded
when image resolution, angles, or lighting conditions vary, which can obscure subtle white staining or
result in loss of surface texture essential for correct classification.

Location, Orientation & Environmental Influence

Further complexities arise in the spatial and environmental context of efflorescence. Like other
damage types, also efflorescence is influenced by facade orientation, local weather exposure, and
proximity to moisture sources (e.g., sea spray, leaking gutters, or rising damp from ground contact).
Some studies highlight distinct efflorescence distributions like horizontal streaking from rising damp,
localized spotting from leaks, or even homogeneous salt accumulation internally. Unfortunately, such
context is often not modelled explicitly. Without spatial annotations or metadata, models struggle to
account for why efflorescence appears in certain areas and not others, thereby reducing prediction
reliability.

Need for Expanded and Multi-Layered Annotations

Finally, the literature results support the argument that efflorescence rarely occurs in isolation. In
many cases, efflorescence is accompanied by other decay types induced by salt crystallization within
the pores, such as loss of cohesion, most often in the form of powdering, scaling, and sometimes
spalling. Despite this, most current dataset uses single-label annotation, which cannot represent co-
occurring damages. This confirms the need for multi-label training datasets and hierarchical class
relationships that can better represent efflorescence and its relationship with other types of decay.
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Experimental Methodology

This chapter outlines the experimental framework developed to investigate how various contextual and
visual factors affect the performance of deep learning models in detecting efflorescence on masonry
surfaces. The process begins with the development of a baseline model, trained on a curated dataset
using two widely adopted object detection architectures: Mask R-CNN and YOLOvS8. This benchmark
provides a reference point for model performance under standard conditions and highlights initial
limitations and challenges in real-world detection scenarios. Additionally, after evaluation of these
models, a selection will be made for the model with the highest accuracy ton continue on the
hypothesis as stated below.

Building on the insights gained from this baseline, the study then systematically tests a set of targeted
hypotheses derived from both literature and practical experience during model development. These
hypotheses address factors believed to influence detection accuracy and reliability, including:

- H1: The combined distribution of moisture and efflorescence can improve the identification of
efflorescence compared to using visual appearance alone.

- H2: Efflorescence will be visually misclassified more frequently when other similar looking surface
changes (e.g., graffiti, lichens, encrustations) are present in the dataset.

- H3: The presence of contextual surface damage (e.g., powdering, scaling) increases the likelihood
of efflorescence co-occurring in the same area.

- Ha4: Variations in image quality, angle, and distance negatively affect model performance in
detecting efflorescence.

These hypotheses were selected to reflect real-world challenges observed during model testing, as well

as insights derived from the literature on material degradation and machine learning-based image

analysis. The objective is not only to validate or reject these hypotheses, but also to gain a deeper

understanding of the conditions under which detection models like Mask R-CNN and YOLOv8 perform

reliably or fail.

Each hypothesis is tested through focused experiments using relevant subsets of the dataset and,
where necessary, additional data modalities such as thermal imaging. While the benchmark results are
presented in the next chapter (4.1), this chapter explains the methodological choices that support both
the baseline and hypothesis-driven evaluations. These include the model training setup, annotation
strategies, metric definitions, and analysis procedures.

The goal is to understand not only how well each model performs, but under what circumstances their
predictions succeed or fail—an important step toward reliable damage detection in heritage
conservation. The following sections provide detailed descriptions of the research approach, data
preparation, and evaluation procedures used throughout this study.

The following sections explain the structure and reasoning behind these tests, starting with the design
of the overall research approach.
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3.1. Research Approach

This research adopts a comparative experimental methodology as described in figure 21 rooted in
machine learning validation. The core objective is to investigate whether specific contextual or visual
factors influence the performance of efflorescence detection using deep learning models. To achieve
this, a baseline Mask R-CNN model was trained on RGB imagery annotated for efflorescence, serving as
the benchmark model against which experimental variants are compared.

Hypothesis Formulation

Refine

l

significant
Difference

Conclusion

Figure 21 Iterative Experimental Workflow for Hypothesis Testing

Each hypothesis is explored through a controlled evaluation setup, where only one variable is altered at
a time (e.g., the addition of thermal imagery, reduced image quality, or presence of similar-looking
damages). This structure enables direct comparison of model outputs under different conditions,
isolating the influence of each factor.

The approach is both quantitative and qualitative. Metrics such as mAP, precision, and recall are used
to measure performance changes numerically, while visual inspection of segmentation and
classification outputs supports deeper interpretation. Special emphasis is placed on the multi-modal
nature of some experiments, such as the integration of infrared thermal data, to assess their added
value in efflorescence detection.

By employing this strategy, the study aims to build not only a performance profile of the baseline
model but also to validate or refute the relevance of each contextual hypothesis through measurable
and interpretable results.

The performance of deep learning models, particularly in tasks such as damage detection, is highly
dependent on the quality and structure of the dataset. Preparing a reliable dataset involves not only
collecting relevant images but also ensuring consistent annotations that reflect the specific task. In this
project, a custom dataset was developed with a focus on masonry degradation, particularly
efflorescence, using both manually annotated images and existing visual inspection data. Careful
attention was given to annotation granularity, class balancing, and image resolution, all of which
impact model training and generalization.

DATASET REQUIREMENTS
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Determining the appropriate dataset size for effective training of a deep learning model is highly
dependent on task complexity, class diversity, and model architecture. While there is no universally
agreed-upon number of images required for segmentation tasks, previous studies on efflorescence
detection provide a helpful benchmark.

For instance, Hatir et al. (2021) used 1,740 images from the Glimd{sler archaeological site to train a
Mask R-CNN for multi-class damage detection, including efflorescence, and achieved a mean Average
Precision (mAP) of 98.1%. In another study, Marin-Garcia et al. (2023) trained a YOLOv5 model on
approximately 392 orthogonal images with efflorescence and repair annotations, reporting an mAP of
89.4%. Wang et al. (2019) conducted Faster R-CNN training on a smaller dataset of 500 images, still
achieving promising results with a narrower class range.

These studies suggest that even relatively small datasets (ranging from several hundred to a few
thousand images) can yield competitive performance, provided the annotations are precise and the
data well-structured. Nonetheless, it must be noted that many of these datasets were either focused
on highly controlled photographic conditions (e.g., orthogonal images of individual bricks at a fixed
distance) or limited to specific material types and environmental contexts, which may affect
generalizability.

Despite the growing interest in automated damage detection, there is currently no consensus in the
literature regarding the minimum dataset size or required diversity in terms of image conditions (e.g.,
angle, lighting, and distance). This remains an underexplored yet critical factor in the development of
robust, general-purpose detection models.

DATASET DIVERSITY

The dataset developed initially for this research purpose contains a total of 211 verified images with a
wide range of resolutions. Image dimensions vary significantly as shown in Figure 22 Distribution of
image resolutions in the efflorescence dataset, from small scales such as 232x300 pixels to high-
resolution captures up to 5858x3911 pixels. Common dimensions include 1536x2048 pixels (50
images), 4000x3000 pixels (17 images), and 945x709 pixels (20 images), indicating a mix of
smartphone and professional camera sources. This diversity in image scale presents both an
opportunity and a challenge, requiring resizing or augmentation strategies during preprocessing to
ensure consistent model input and effective training.

Image Resolution Distribution (Top 30)

Image Resolution (width x h

Figure 22 Distribution of image resolutions used in the efflorescence dataset. The graph presents the 30 most frequent image
dimensions (in pixels), showing a large variation in resolution across samples.

To enhance the robustness and generalizability of the model, the dataset incorporates a broad range
of visual diversity. As shown in Figure 21, this includes differences in framing (close-ups versus
facade-wide views), surface textures, lighting conditions (natural daylight, low-light environments),
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and occlusion from surrounding elements such as vegetation or infrastructure. Additionally, the
dataset varies in image quality—ranging from sharp, high-resolution captures to pixelated or motion-
blurred images—along with efflorescence intensity, which spans from subtle staining to dense crusts
as seen in figure 23. Perspective differences caused by camera angles and the decision to annotate
efflorescence on joints or full bricks also contribute to learning complexity. Accounting for these
factors is critical, as noted by Liu et al. (2020), who emphasized the role of intraclass variability and
environmental conditions in object detection challenges.

Framing Surface Texture

Figure 23 Visual examples of dataset diversity in efflorescence images. Variations in framing, surface texture, lighting,
occlusion, image quality, intensity, camera angle, and efflorescence location

To improve the model’s ability to generalize and reduce overfitting, data augmentation was applied
during the training process. Data augmentation artificially increases dataset diversity by introducing
variations in the training images, simulating real-world conditions that may not be fully represented
in the original dataset. This is particularly important for damage detection tasks, where factors such
as lighting, texture, and scale can vary significantly in practice.

In this study, common augmentations included horizontal and vertical flipping, random rotation,
brightness and contrast adjustments, and zooming. These methods help the model remain robust
when encountering different viewpoints, camera angles, and environmental conditions.

Such strategies are widely recognized in existing research. For example, Bansal et al. (2022) applied
brightness, scaling, and rotation to improve efflorescence classification on masonry surfaces, while
Saleh et al. (2021) demonstrated the benefits of flipping and cropping in improving model
performance on salt crystallization datasets. Similarly, Zhou et al. (2020) highlighted how image
distortion and contrast variation improved deep learning models in wall defect detection tasks.
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A recurring challenge in constructing a high-quality dataset for heritage-related damage detection lies
in the accessibility and ownership of expert-labeled data. Despite concerted efforts to expand the
dataset through external resources, limitations in data sharing posed significant barriers. Platforms
such as the Masonry Damage Diagnostics initiative, which host valuable annotated images of
masonry pathologies, were not accessible due to licensing restrictions and institutional data
governance policies.

Moreover, attempts to obtain data through direct contact with multiple research groups and
institutions yielded limited results. In most cases, responses were either not received or explicitly
stated that data could not be shared due to confidentiality agreements or lack of a clear data-sharing
framework. These limitations are particularly pronounced in heritage contexts, where image data is
often collected under strict project agreements or governmental oversight, making redistribution
complex. To account for these limitations field research was required and the general methodology in
this research is revised.

The lack of openly accessible, high-quality annotated datasets in this domain remains a bottleneck for
developing and benchmarking machine learning models. It underscores the need for more
collaborative and standardized data-sharing efforts within the architectural conservation and heritage
science communities.

ANNOTATION STRATEGY

To ensure consistency, accuracy, and compatibility with modern deep learning frameworks, the
annotation process in this study was conducted using Roboflow, a browser-based tool widely adopted
for its intuitive interface and versatile export functionalities. Roboflow supports polygon-based
annotations and enables direct export to popular formats such as COCO and YOLO, making it
particularly suitable for tasks requiring both instance segmentation and object detection.

Another benefit of using Roboflow was its built-in capability to train models directly within the
platform. This eliminated the need for additional coding overhead and enabled a comparative
benchmark between Mask R-CNN and YOLO-based architectures using the same annotated dataset.

For this project, annotations were exported in the COCO format, which is required for training Mask
R-CNN models. The COCO (Common Objects in Context) format structures image annotations in JSON
files that include segmentation polygons, bounding boxes, class IDs, and image metadata. This
structure supports both object detection and instance segmentation tasks, making it an ideal choice
for evaluating different model architectures.

Initially, the annotation strategy focused on directly labeling only the efflorescence deposits using
class-agnostic, pixel-wise polygon masks. This approach aimed to train the model to identify the
presence of efflorescence without distinguishing where it occurred on the masonry surface (e.g.,
brick face or mortar joint).

However, this approach yielded limited results in early experiments. The subtle visual patterns of
efflorescence, especially when it appeared in low contrast or small patches, proved difficult for the
model to learn robustly. Moreover, focusing solely on efflorescence without contextualizing its
location on individual bricks made it challenging to draw meaningful conclusions about its spatial
distribution or potential causes.

As a result, the annotation strategy was revised to a brick-level annotation approach. Instead of
labeling just the efflorescence, bricks affected by efflorescence were annotated as entire objects. This
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shift aligned better with the overall research scope, which focuses on recognizing and analyzing
efflorescence patterns at the building element level, rather than detecting isolated deposits.

An additional attempt was made to implement a multi-class annotation strategy, distinguishing
between efflorescence on brick and efflorescence on mortar joints. This distinction aimed to support
more nuanced analyses, such as identifying material-based susceptibility or the influence of joint
permeability. However, this approach quickly revealed a significant class imbalance: the majority of
images featured efflorescence primarily on bricks, while examples of efflorescence localized on joints
were relatively scarce. The resulting data sparsity in the 'joint' class negatively impacted model
training and led to unstable performance across categories. Due to this imbalance and the limited
benefit for the core research objective, the multi-class approach was abandoned in favor of a single-
class annotation focused on bricks affected by efflorescence.

3.2. Experimental Design

This section outlines how each hypothesis was translated into a structured and testable experimental
setup. The overall design follows a modular approach, where each hypothesis is examined by
introducing a single, controlled modification to the baseline model.

To ensure reliability and isolate effects, all other model parameters, training settings, and evaluation
procedures are held constant. Performance is assessed using the same test set and evaluation metrics
across experiments, including mAP@0.5, precision, and recall. By maintaining consistency in
evaluation, performance differences can be attributed to the specific condition under investigation.

Controllable
factors
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Input——> Model inference — Output

- Dasa samaling
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Figure 24 Factors Affecting Deep Learning Model Inference adapted from Kogan (2016)

Maintaining this structure is essential when working with machine learning models, where minor
changes in configuration or data can have significant effects on performance. To address this,
controllable factors as described in Figure 24: Factors Affecting Deep Learning Model Inference such
as input modality, dataset composition, model configuration, and preprocessing steps are explicitly
managed across experiments. In contrast, uncontrollable factors including randomness in training
initialization, image sampling variability, or noise in measurements are accounted for by repeated
runs, fixed seeds, and consistent evaluation. Each hypothesis in this study translates into a specific
experimental condition, outlined below.

53



MSc. Building Technology | Exploring the potential of deep learning-based image analysis for damage recognition in heritage buildings | V.C. Cloo

]
TUDelft

H1 Thermal Imaging and Moisture Detection

This hypothesis introduces a fourth input channel derived from infrared thermal images, which are
aligned pixel-wise with their RGB counterparts. The thermal signal represents surface temperature
variations, with a specific focus on detecting colder areas indicative of moisture presence. This
experiment includes 200 annotated image pairs (RGB + thermal) with Efflorescence and Damage
regions labelled identically in both modalities by introducing Thermal in grayscale as the 4" input
channel. These images cover varied environmental contexts, with an average temperature range of 6—
25°C and visible thermal gradients of at least 3°C between dry and moist regions. By integrating the
thermal channel during both training and inference, the model’s sensitivity to moisture-associated
damage patterns is evaluated.

In order to enhance the detection accuracy of efflorescence, thermal imaging data was incorporated
as an additional input channel to the model. This required a significant adaptation to the model
architecture since the original convolutional layers were designed for three-channel (RGB) input. The
first convolutional layer in the Mask R-CNN model is inherently designed for three-channel (RGB)
input. To accommodate the four-channel (RGB + Thermal) data, the Conv1 layer was excluded during
weight loading, allowing it to be randomly initialized to match the new input shape. The model
expects a mean pixel value for each input channel. Since the thermal data is added as a fourth
channel, the mean pixel value for this channel was set to 0.0 as a placeholder. This ensured
consistency in input preprocessing without distorting the existing model architecture. The thermal
images were loaded as grayscale and resized to match the dimensions of the corresponding RGB
images as described in the MASK-RCNN repo.

H2 Misclassification Risk Due to Visual Similarity

To examine the risk of misclassification (H2), the experiment evaluates how well the baseline model
(trained only to detect efflorescence) performs when presented with images of visually similar but
fundamentally different conditions. These include graffiti, encrustation, biological growth (e.g.,
lichens, algae). The initial phase tests the baseline model on a curated set of approximately 150
images representing each of these conditions. These images might not contain efflorescence, and any
detections are treated as false positives, quantifying the model’s confusion under real-world visual
ambiguity.

Following this baseline assessment, a retraining phase is introduced to reduce misclassification. The
model is extended to a multi-class setup. Two training strategies are proposed:

Per-Class Retraining: The model is retrained separately for each potential source of confusion. For
example, in one experiment, only graffiti and efflorescence are used. This isolates how well the
model distinguishes between specific pairs of similar-looking classes.

Combined Multi-Class Training: All new classes are introduced in a single extended training run,
creating a comprehensive five-class model. This reflects real-world deployment but increases the
complexity of class separation, which may impact performance due to overlapping visual features.

The same evaluation protocol is used across both strategies, comparing metrics such as per-class
precision, recall, and confusion matrix-derived false positives. This setup aims to determine whether
fine-tuning on more diverse classes helps the model learn subtle visual differences or whether added
class complexity degrades overall precision.

H3 Damage Co-Occurrence

H3 focuses on the spatial relationship between efflorescence and adjacent forms of surface loss of
cohesion, including powdering, scaling, and spalling. A total of 120 images containing efflorescence
co-located with one or more of these damage types are annotated with bounding boxes for both
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efflorescence and the secondary damage. The new class [Damage] including scaling, powdering, and
spalling are included in both training and testing. The experiment tests whether the model's accuracy
in detecting efflorescence improves when it learns from contextual features associated with moisture
migration and salt accumulation pathways.

STATISTICAL RELATIONSHIP

To statistically evaluate the spatial relationship between efflorescence and other forms of masonry
damage, there are multiple options.

The first option is Conditional Random Field, which is limited to a dual class set up, by which the
positives spatial test anchored to efflorescence compares distance distribution. A permutation
procedure (10,000 label shuffles) generated the null distribution of mean nearest-neighbour distance;
the empirical p-value quantified whether damage occurs closer to efflorescence than expected under
independence. Limitations of this methodology are the inhomogeneous spatial structure due to
objects, edge effects or truncated neighbourhoods from boundaries, pooling of points per image can
ignore within image correlation which results in optimistic p-values, double counting due to double
classes being detected might cause distance = 0 which can interfere with the neighbourhood
signalling. Additionally the damage processes might be directional like rising damp or leakage, this
might cause limitations to not use isotropic Euclidean distances.

The second methodology relies on contingency tables and chi-square testing to evaluate whether
efflorescence and damage co-occur more frequently than expected under independence. In this
approach, the analysis is anchored to efflorescence annotations, and the surrounding area is divided
into concentric neighbourhood zones (e.g., within one brick’s distance, within two bricks, etc.). For
each zone, counts of bricks with and without damage are tabulated, forming an observed
contingency table. The chi-square statistic is then used to compare these observed frequencies
against the expected frequencies under the null hypothesis that damage occurrence is independent
of proximity to efflorescence. An empirical p-value indicates whether damage is disproportionately
clustered near efflorescence compared to farther away.

This method is straightforward to implement and directly interpretable, as it quantifies how the
probability of damage changes with distance from efflorescence. Moreover, the contingency table
framework allows stratification by zone, enabling comparisons of “near,” “intermediate,” and “far”
relationships. However, several limitations apply. First, the results depend heavily on how zones are
defined (e.g., brick size, average bounding box width), which introduces subjectivity. Second,
imbalance in the number of annotated bricks per image may bias the results, particularly if some
images contain many annotations while others contain very few. Third, the chi-square test assumes
independence of observations, yet bricks within the same wall segment may not be independent due
to shared exposure or construction context. Despite these limitations, this approach provides a
statistically grounded way to quantify neighbourhood co-occurrence, and its results can be used to
inform confidence calibration of model predictions, either via fixed rule-based adjustments per zone
or through regression-based probability recalibration.

Compared to more complex randomization approaches, the chi-square method has fewer limitations.
It avoids issues such as edge effects, truncated neighbourhoods, and artificial dependence introduced
by pooling across images. Because the chi-square test works directly with observed and expected
counts, it is less sensitive to geometric assumptions (e.g., distance distributions) and more
transparent to interpret. While it still depends on zone definitions and assumes independence
between observations, these constraints are more manageable and easier to justify within the scope
of masonry wall analysis.
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CHI-SQUARE TEST

A chi-square test of independence (x?) was applied. This test assesses whether two categorical
variables are independent, or whether there is a significant association between them. In this study,
the two variables were: (1) Presence of efflorescence (per zone), (2) Presence of damage (present vs.
absent)

A contingency table was constructed by counting how often damaged bricks occurred in predefined
distance zones relative to efflorescence (see Section 4.2.3). The expected frequencies were calculated
under the null hypothesis that efflorescence and damage occur independently of each other.

The test statistic is defined as:

v = Z (0ij — Egj)?
0 Eij

Oij = observed frequency in cell i,j

Where the observed frequency is defined through the contingency table where the amount of
damaged vs undamaged bricks are counted:

ZONE DAMAGED UNDAMAGED TOTAL R;
Zonel 011 012 Ry
Zone 2 031 0,5 R,
Zone 3 034 03, R3
COLUMN TOTALS (; Cy C, N

Eij = expected frequency in cell i,j

Cj = Column Totals: total bricks in category j across all zones.

Ri = Row Totals: total bricks in zone i

N= Grand Total

Then similar to the contingency table, the expected value [E;;] table can be constructed. All
contribution can be summarised with respect to y2

The degrees of freedom can be calculated by:
df =(r—-1(c—-1)
T = Number of zones

C = Number of categories

Since the chi-square distribution with df = 2 has a probability density function such that:
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f(x;2) = %e‘x/z,x >0
Where
p=P(x2= x |df =2)
Where the cumulative distribution function where df = 2 for y2 is:
F(x;2)=1—e7*/?
And to finalize the p-value
p=F(2;2)=1—e*/?
Additionally the effect size by (Cramér’s V) can be calculated:
_xz
Nx((k—-1)
k - min(corr
Where Interpretation (Cohen’s rule of thumb for 2 categories):
e 0.1=small
e 0.3 =medium
e 0.5=large
At last the descriptive percentages of damaged vs undamaged bricks per zone are reported.
CONFIDENCE ADJUSTMENT

With the end goal in mind, the results of this test can support confidence adjustment in detection
models, either through a fixed rule-based system that modifies prediction scores per zone, or a
calibrated approach based on a logit transformation. In the latter case, the chi-square-derived
relationships between efflorescence and nearby damage can be incorporated into a logistic
regression model, with coefficients converted back into adjusted probabilities. This allows the raw
model outputs to be re-weighted in line with empirical evidence of spatial co-occurrence, thereby
improving the interpretability and reliability of automated efflorescence detection.

To refine the confidence of efflorescence detections based on the presence of nearby damage, a
logistic calibration model was applied. Logistic regression is a probabilistic model that estimates the
likelihood of a binary outcome (here: efflorescence detection being correct) as a function of one or
more predictor variables. In this study, the predictors are:

1. Baseline model confidence for efflorescence (p, as predicted by Mask R-CNN).

2. Proximity zone of damage relative to the efflorescence detection (Zone 1 = within 1 brick
width, Zone 2 = within 2 brick widths, etc.).
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1 p1 Z; Vi
2 D2 Z; Vi
Etc. 144 VA i Vi

Di =The probability per damage prediction
Zi =The specified zone (1,2 etc) set predicition is classified
Yi =The label [0,1] (damage or not)

After the zone predictions are tabulated the base logit from the model’s probability can be calculated.

~

P
1-p

?; = log

The end goal is to create the Design Matrix X with ¢, z1, z2 with target vector y. Where
z1,= 1(Z = 1) are the intercept.

i BASE LOGIT ¢, ZONE z1 ZONE z2 LABEL y;
1 2, [0.1] [0.1] [0.1]
2 2, [0.1] [0.1] [0.1]
Etc. ?; [0.1] [0.1] [0.1]

Afterwards the logistic regression model can be developed. In reference to the intercept, slope and
zone adjustments.

pi=0M), M =PBo+Pili +vizii +Vazy

Bo =Intercept
B1 = slope for base
Y1, Y2,=Zone adjustments
Then the Newton-Raphson algorithm can be initialized by:

8(® = (0,0,0,0)7
Such that

n©@ =x8©@ =
And the general updated formula:

9+ = (XTWX)"IXTWz
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If no damage is detected in an image at inference: assign Z = 3 (no boost).
If damage predictions are noisy, make the proximity feature robust:
e Use only damage detections with cT] =T
e Cap the maximum boost so a single damage doesn’t over-inflate confidence p’ < P ax

Keep the zone definitions identical to those used in the chi-square analysis (same normalization,
same thresholds).

H4 Influence of Image Acquisition Conditions
H4 evaluates the influence of image acquisition conditions. A set of 180 test images is used, captured
under systematically varied resolution, angle, and lighting.

Camera angle is emulated through rotation augmentations applied in steps of 15°, covering a range
from -30° to +30°, resulting in seven distinct orientations per image. Camera distance is simulated via
scaling transformations, applied in five steps with zoom factors of 0.8x, 0.9x, 1.0x (original), 1.2x, and
1.5x, mimicking variations in image proximity to the surface. Lighting conditions are approximated
using photometric distortions, where brightness and contrast are adjusted in increments of 10%
across five levels: -20%, -10%, 0%, +10%, and +20%. This results in a systematically augmented
dataset where the influence of each variable can be isolated and assessed.

These conditions are kept consistent across scenes by augmenting images at fixed intensity intervals.
The model is retrained using these augmented images and compared against the baseline to assess
whether robustness to these conditions can be improved. Evaluation is performed on a held-out
augmented test set, and detection performance is reported per augmentation type to identify which
conditions most affect model reliability.

3.3. Data Collection

Each hypothesis in this study required a specific dataset, either created through fieldwork or curated
from external sources. This section outlines where and how these datasets were collected or
constructed.

H1: Thermal Imaging and Moisture Detection

Thermal and RGB images were collected at sites with known moisture-related efflorescence. The goal
was to align thermal (infrared) data with visible surface damage. Sites included as seen in figure 25.
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Figure 25 Data collection map

At each location, thermal and RGB images were captured under similar framing to allow for manual
alignment and annotation. The final dataset aims to include at least 200 aligned RGB and thermal
image pairs with annotated efflorescence regions based on the RGB input.

Data was collected using a FLIR T4xx series thermal imaging camera, which captures both infrared
and RGB images. The thermal images have a resolution of 320 x 240 pixels, while RGB photos were
captured at 1280 x 960 or higher, using a standard DSLR for colour.

Quality control was applied to exclude poorly aligned or noisy thermal captures. Images were
removed from the dataset if they showed:

Saturation artifacts in the thermal channel (e.g., overexposed reflections)
Alignment errors exceeding 15 pixels across key structural features
Lighting inconsistencies in RGB captures that compromised annotation accuracy

The final dataset consists of approximately 200 image pairs, each with pixel-level annotations derived
from the visible RGB image, applied to the aligned thermal-RGB composite for model training and
validation.

H2: Misclassification Risk Due to Visual Similarity

Data sources included a combination of public datasets and original field photography. Public images
were screened for resolution, relevance, and visual clarity. Custom images were collected at the
following locations, targeting masonry surfaces affected by these misleading conditions.

All images were captured using the same camera setup as the benchmark model (1280x960 resolution
RGB). Each damage type was annotated as a separate class using polygon-based masks.

Images with multiple types of damage were included when appropriate, but care was taken to
maintain visual distinction between the categories. Images were filtered to remove poorly lit, blurry, or
ambiguous samples. Final dataset size:
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- Graffiti: 350 images
- Encrustation: 280 images
- Biological growth: 120 images

Due to the limited availability of graffiti and lichen images specifically on masonry surfaces, additional
data augmentation was necessary. Graffiti and lichen images were sourced from publicly available
instance-segmented datasets. The lichen dataset was obtained from Rojas (2019), while the masonry
backgrounds were derived from a large public dataset of 15,000 images (public dataset, 2024). To
enhance the model's ability to generalize to masonry contexts, the graffiti and lichen images were
composited onto the masonry backgrounds using techniques such as Gaussian blur and edge
feathering to maintain visual consistency. This approach ensured the creation of a targeted training set
that better represents graffiti and lichens on brick or stone surfaces.

H3: Damage Co-Occurrence

The dataset used for this hypothesis was primarily sourced from annotated damage imagery provided
by one of the supervisors of this research work, Barbara Lubelli, and supplemented with additional
images collected in the field. All relevant damage types were merged under a single class label,
damage, to simplify the training process due to dataset size constraints. Sources and Locations:

Supervisor dataset: High-resolution annotated masonry damage dataset, manually verified and
segmented, containing 180 relevant images with combined efflorescence and disintegration.

Field-collected imagery:

All images were captured using the standard RGB camera at 1280x960 resolution. A set of 100
additional field images were added to the dataset, and annotations were manually drawn using
polygon masks to mark visible disintegration. Images were included if both efflorescence and surface
disintegration occurred within the same image frame, even if they affected separate bricks. This
approach supports the co-occurrence analysis by allowing the model to learn contextual visual cues
that may indicate efflorescence likelihood indirectly.

H4: Influence of Image Acquisition Conditions

To ensure consistent and reproducible testing across the same benchmark test set, augmentations
were applied using the Python-based libraries Aloumentations and OpenCV. These libraries were
selected for their flexibility, reproducibility, and their ability to apply compound geometric and
photometric transformations while preserving annotation alignment.

Camera Angle Variation

Rotational transformations were used to simulate changes in camera angle. Each image was rotated
around its center at 5°, 10° and 15° (both clockwise and counterclockwise), resulting in 8 rotated
variants per image as shown in figure 26.

Figure 26 Camera Angle (Rotation). Left to right: images rotated in steps of 5°, 10°, and 15° relative to the
original orientation.
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Camera Distance (Scale)

Simulated using zoom in/out scaling as shown in figure 27. Images were resized with zoom factors of
0.5x,0.0.75%, 1.0%, 1.25x, and 1.5%, creating 5 scale variants per image. Resized images were cropped
or padded to maintain consistent input size.

Figure 27 Camera Distance (Scale). Left to right: scaled to 0.5x, 0.75x, 1.25x, and 1.5x, with padding to retain
640x640 resolution

Image Resolution

Downsampling was performed to simulate lower-resolution imagery as shown in figure 28 and re-
upscaled to original input dimensions (640x640). Steps included reductions to 480x480, 320x320, and
160x160 followed by bicubic interpolation back to full size.

Figure 28 Image Resolution. Left to right: downsampled to 480x480, 320x320, and 160x160, then upscaled back to 640x640.

Lighting and Exposure
Photometric distortion was applied through controlled contrast and brightness shifts as shown in figure
29. Brightness was adjusted in steps of £10%, +20%, and £30%, and contrast in £10%, £20% and £30%,
resulting in 7 lighting variants per image. These changes reflect typical environmental variability (e.g.,

overcast vs. direct sun).

. ;ﬂm;;;" Tonis ﬁ u e iié’:
Figure 29 Lighting / Exposure. Left to right: brightness and contrast adjusted in steps of +10%, +20%, and +30%.
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All augmentations were applied to the validation subset of the benchmark RGB dataset. Ground truth
masks were transformed alongside the images to ensure perfect alignment. The total number of
augmented variants per original image ranged from 7 to 15, depending on augmentation combinations.

3.4. Model evaluation

The model performance is evaluated using both quantitative metrics and qualitative image inspection,
aligned with the requirements of multi-class semantic segmentation. For quantitative analysis, three
primary metrics are used consistently across all experiments .

The evaluation of the trained Mask R-CNN model is necessary for understanding its effectiveness in
detecting efflorescence in masonry surfaces. To objectively assess the model’s performance, a
combination of standard evaluation metrics, validation loss tracking, and visual inspection of
predictions was used. Additionally, evaluation metrics included Precision, Recall, Intersection over
Union (loU), mean Average Precision at loU 0.5 (mAP@0.5). The mathematical formulations for these
metrics, as applied in recent comparative studies such as the work by (Sapkota et al., 2024).

Precision measures the proportion of correctly predicted positive instances out of all predicted positive
instances:

TP

Precision = m

Recall quantifies how many actual positives were correctly identified:

TP

Recall = ———
ecall = Zop

loU (Intersection over Union) compares predicted and ground truth masks or boxes by the overlap area
divided by the union area:

Area of Overla
IoU = ! P

Area of Union

MAP@0.5 (mean Average Precision at 0.5 loU threshold) averages the AP across classes using a
threshold of 50% overlap between predicted and ground truth masks:

K

1
mMAP @05 = EE AP;

i=1
Moreover, these evaluation metrics are not only widely adopted in general object detection tasks but
have also been consistently applied across recent research on moisture-induced and salt-related
deterioration in heritage buildings. For example, in studies listed in the comparative summary table

(e.g., Hatir et al., 2021; Kim et al., 2023; Nan et al., 2023), metrics like mAP, precision, and recall were
used to assess model performance in detecting damages.

In addition to these standard metrics, confusion matrices are introduced as a new analytical tool in
this chapter. While Chapter 2.2.6 focused on binary classification, the shift to multi-class testing (e.g.,
distinguishing efflorescence from encrustation, graffiti, or biological growth) necessitates deeper
insight into inter-class confusion.
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Table 5 Confusion matrix for multi-class classification performance (Adapted from Cowan, 2024)

Actual Class

Positive (P) Negative (N)
Positive (P True Positive (TP False Positive (FP
Predicted e (P) ve (TP) ve (FP)
Class i . .
MNegative (N) False Negative (FN) True Negative (TN)

The confusion matrix as shown in table 7 quantifies how often one class is mistaken for another,
making it particularly useful in experiments designed to reduce misclassification.

3.5. Model configuration and Data pipeline

H1 THERMAL | MODEL A RGBT vs Model B RGB

This section outlines the data processing and model configuration strategies used across all
hypotheses. The process, from filtering to evaluation, is illustrated in the workflow diagrams (The
Figure below for thermal hypothesis,).

THERMAL HYPOTHESIS DATA FLOW

FILTERING | ‘ PREPROCESSING ‘ LABELING TRAINING VALIDATION ‘ ‘ VISUALISATION

DATA FILTERING AND PREPROCESSING

All datasets were initially filtered based on quality criteria to ensure consistency and reduce noise.
Problematic samples were removed if they showed: Poor thermal contrast, Lens shading artifacts,
Low RGB image quality, Inconsistent lighting (e.g., strong glare or shadows).

]
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The remaining image pairs were then passed through an alignment and cropping pipeline. RGB and
thermal (IR) images were aligned using one of two methods:

e Manual batch alignment using a fixed transformation with calibrated values (ScaleX = 0.880,
ScaleY = 0.880, ShiftX = 93, ShiftY = 47, Rotation = -0.40°) for the T4xx series.

FLIR Thermal Studio export with fixed thermal min-max settings for the T96xx series. Following
alignment, both channels were batch-cropped to remove edge padding. This preprocessing step
ensured consistent geometry and scale for model training.

THERMAL PROCESSING AND FUSION INPUT

Thermal images were converted to grayscale and normalized using fixed pixel intensity bounds set in

FLIR Thermal Studio. These normalized IR frames were then stacked as a fourth input channel for the
RGBT model. The channel-wise MEAN_PIXEL values were calculated empirically and defined explicitly
in the model configuration:

MEAN_PIXEL = np.array([123.7, 116.8, 103.9, 109.0])

This ensured that the thermal data was on the same scale as RGB input. This normalization was
essential due to the limited range and resolution of thermal images.

1e6 Thermal Pixel Value Distribution

] 50 100 150 200 250
Pixel Intensity

LABELING AND DATASET STRUCTURE

Labeling was conducted using RGB images in COCO format. Each annotated image had a
corresponding thermal file, linked by filename. Labels were manually drawn using polygon masks,
and datasets were split into training, validation, and test sets. The same annotation file was used for
both RGB and RGBT training by switching dataset loaders.

The dataset was labeled using the COCO (Common Objects in Context) JSON format, which supports
polygon masks and multi-class annotations. This format enabled compatibility with the Mask R-CNN
architecture and made it possible to run consistent training sessions across single-class (efflorescence
only), multi-class (efflorescence + damage), and thermal fusion models. The same annotation file was
reused for both RGB and RGBT pipelines, ensuring a 1:1 mapping of masks across modalities. Tools
such as Roboflow were used to create and export the annotations.

MODEL ARCHITECTURE AND TRAINING STRATEGY

All experiments used a Mask R-CNN architecture with a ResNet-50 backbone. All models were
initialized with COCO-pretrained weights using a transfer learning strategy. For RGB models, these
weights were fully compatible. The training logic varied across models depending on the hypothesis:
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Single-Class Models (Model A, B, C, H, J, K, L):
Trained to detect only efflorescence using either RGB or RGBT inputs.
Example:

NUM_CLASSES =1 + 1 # background + efflorescence

Multi-Class Models (Model D, E, F):
Trained with two classes (efflorescence + damage type such as graffiti or lichens).
These models were critical to study misclassification risks and overlapping boundaries.

NUM_CLASSES =1 + 2 # background + efflorescence + second class

Damage Co-Occurrence Models (Model H, I):
Explored spatial relationships between efflorescence and damaged bricks. The dataset was labeled
with both damage and efflorescence masks and exported as a two-class setup.

Augmentation-Based Experiments (Model J, K, L):
Focused on robustness under varying lighting, rotation, and scale using the efflorescence-only
dataset.

RGB-THERMAL (RGBT) MODEL CONFIGURATION

For the RGBT model (Model A), the input was extended to 4 channels. Since ResNet-50 does not
natively accept a 4-channel input, the first convolutional layer (convl) was skipped during training.
This allowed the model to initialize thermal filters from scratch while reusing pre-trained weights for
RGB features. During inference, this workaround was not needed as the full 4-channel tensor was
accepted normally.

IMAGE_CHANNEL_COUNT =4
BACKBONE = "resnet50"
IMAGE_MIN_DIM =448
IMAGE_MAX_DIM = 448
USE_MINI_MASK = False

Weights were trained using callbacks with checkpointing. The training strategy included early
stopping based on validation loss, and all losses (mask, class, and bbox) were logged per epoch.

POST-PROCESSING: DAMAGE CO-OCCURRENCE ANALYSIS
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DAMAGE CO-OCCURANCE HYPOTHESIS DATA FLOW

' LABELING ‘ TRAINING VALIDATION VISUALISATION | ’ POST-PROCESSING

Save_Weights ’ Model.detect )—b
v

Evaluate_model

Predicti

In the co-occurrence hypothesis (H3), model predictions were exported as predictions.json files in
COCO format. These were analyzed using a custom post-processing pipeline. The core goal was to
detect spatial relationships, i.e., whether damage occurred on the same or neighboring bricks as
efflorescence. A bounding-box-based approach was used, where detections were grouped into bricks,
and neighbor relationships were computed using bounding box proximity and area overlap and
eventually bounding box centroids.

For consistency in statistical testing, ground truth masks were used instead of predictions in the final
analysis due to model instability in handling overlapping masks or multiple class assignments per
brick. This provided a clearer basis to validate hypotheses about spatial co-occurrence patterns
between damage and moisture-related efflorescence.
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4. Experimental Results

This chapter presents the results of the model evaluations and hypothesis-driven experiments
designed to assess efflorescence detection performance on masonry surfaces.

The analysis begins with a benchmark of two deep learning models (Mask R-CNN and YOLOvS8) to
establish a performance baseline. These models are trained on the same annotated dataset and
compared using core training metrics such as bounding box loss and classification loss. Their
performance is then evaluated using standard detection metrics: mean Average Precision
(mAP@0.5), precision, recall, inference speed. Visual examples accompany the metric analysis to
interpret qualitative differences in model behaviour.

Following this benchmark, one model is selected based on both quantitative performance and
gualitative consistency. This model is then used throughout the remainder of this chapter to
investigate four targeted hypotheses derived from literature and initial testing:

- H1: Incorporating thermal data as a fourth input channel improves the detection precision and
segmentation accuracy of efflorescence, in moisture-related contexts, compared to RGB-only input.

- H2: Efflorescence will be visually misclassified more frequently when other similar looking surface
changes (e.g., graffiti, lichens, encrustations) are present in the dataset.

- H3: The presence of contextual surface damage (e.g., powdering, scaling) increases the likelihood
of efflorescence co-occurring in the same area.

- H4: Variations in image quality, angle, and distance negatively affect model performance in
detecting efflorescence.

Each hypothesis is evaluated in a dedicated subsection using a combination of:
e per-class detection metrics (e.g., mAP per damage type),
e confusion analysis (to reveal misclassifications),
e and visual inspection of representative results.

This chapter thus aims to provide both a comprehensive comparison of candidate models and an in-
depth understanding of the conditions under which efflorescence is reliably detected—or
misinterpreted—by the selected model.
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41. Global Performance Overview

This section presents the benchmark performance of two selected models (Mask R-CNN and YOLOv8)
trained to detect efflorescence on masonry surfaces. These models were chosen based on findings
from the literature and offer contrasting approaches: Mask R-CNN specializes in instance
segmentation, while YOLOVS is optimized for fast bounding box detection. The benchmark serves to
determine which model is more suitable for further hypothesis-driven experimentation.

In supervised object detection and instance segmentation tasks, models are trained to minimize a set
of loss functions that guide how accurately they localize, classify, and segment objects in an image.
The two most relevant loss types are analyzed, Bounding Box Loss measures how accurately the
model predicts the location of objects. It compares the predicted bounding boxes with the ground
truth using metrics like L1 loss or smooth L1 loss. A lower bounding box loss indicates better spatial
localization of objects. Classification Loss evaluates how well the model classifies the detected objects
into the correct categories. It is typically computed using categorical cross-entropy. Lower
classification loss means the model is assigning more correct labels to the detected objects.

In Mask R-CNN, these losses are computed separately for each region proposal and aggregated across
the mini-batch. For YOLOVS, which uses a unified architecture, these components are part of an end-
to-end optimization process that simultaneously considers box coordinates, class predictions, and
objectness scores. Although mask loss is an important component of the Mask R-CNN architecture it
is not included in this comparison. YOLOv8 does not perform instance segmentation in this study
setup and only produces bounding boxes and class labels.

Bounding Box Loss Comparison
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Figure 30 Bounding box regression loss for YOLOvS8 (box_loss) and Mask R-CNN (val_mrcnn_bbox_loss). Lower values
indicate more accurate localization of objects.

Across training epochs, Mask R-CNN consistently demonstrated significantly lower bounding box and
classification losses compared to YOLOv8 as shown in figure 30 and 31. This indicates that its region
proposal and classification heads are more stable and effective during learning. YOLOvS8's losses,
particularly in early epochs, are much higher but show a downward trend, suggesting it requires more
time to stabilize. Nevertheless, even at later epochs, YOLOvS fails to reach the low loss values
exhibited by Mask R-CNN, which could be attributed to its anchor-free design and single-shot
detection approach that emphasizes speed over precision.
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Figure 31 Classification loss over training epochs for both models. YOLOv8’s class_loss is compared against Mask R-CNN’s
val_mrcnn_class_loss, showing how well each model learns to distinguish between classes.

Despite the lower losses of Mask R-CNN, the mAP@0.5 scores between the two models converge
over time, with Mask R-CNN showing a slightly higher peak. Interestingly, YOLOv8 maintains
consistently higher recall and slightly better precision, implying a stronger ability to detect more true
positives overall while keeping false positives relatively low. This supports the idea that YOLOvS is
more aggressive in detection, while Mask R-CNN is more conservative and precise per instance.

mAP Comparison
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Figure 32 Comparison of mean Average Precision over 60 training epochs for YOLOv8 and Mask R-CNN. The graph
illustrates the evolution of detection accuracy across training iterations.

Despite being trained for 60 epochs, both Mask R-CNN and YOLOv8 models demonstrate a relatively
modest mAP score of 0.35, which is not considered optimal for high-confidence detection tasks.
Interestingly, the similarity in performance between the two fundamentally different architectures
suggests that the limitation may not lie in the model design, but rather in the dataset quality or
structure itself. This reinforces the need to critically review and enhance the dataset by improving
annotation consistency, increasing sample diversity, or balancing the class distribution, to enable the
models to learn more effectively and achieve higher detection accuracy.
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Precision Comparison
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Figure 33 Precision values plotted over 60 epochs for both YOLOv8 and Mask R-CNN. Precision reflects the proportion of
correct positive detections among all detections.

In addition to mAP, precision was evaluated as a complementary metric to capture how reliably the
models distinguish true efflorescence from false positives. The precision score of around 0.60
suggests that the models are indeed on the right track, likely due to the detailed annotations,
especially the marking of individual bricks exhibiting efflorescence. However, when comparing this
performance to other studies, it becomes clear that there is room to enhance the model’s output. For
example, Haixf et al. (2021) achieved an mAP of 82.1% and a precision of 91.2% using Mask R-CNN on
a more controlled dataset focused on efflorescence and related damage types. Similarly, Kim et al.
(2023) reported an mAP of 0.884 and precision of 89.4% using YOLOV5, emphasizing damage
classification including efflorescence.

These significantly higher performance metrics suggest that datasets with lower variability or
domain-specific constraints tend to yield better outcomes. Therefore, the lower mAP in our study is
not necessarily a failure of the architecture itself, but rather a reflection of the dataset's broad
variability, environmental complexity, and possibly annotation inconsistencies. Future work may
benefit from refining the dataset, either by increasing its size and consistency or by focusing on more
homogeneous subsets of damage types to achieve performance gains comparable to prior research.
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Figure 34 Recall performance comparison over training epochs. Recall indicates how well each model detects actual
instances of the target class. Higher recall means fewer missed detections.

The sample image reveals an important limitation in the current detection process for example, some
bricks with a whitish hue but no actual efflorescence are either falsely classified efflorescence,
depending on the model. These visual ambiguities introduce a risk of misclassification, particularly for
models like Mask R-CNN, which tend to be more liberal in generating segmented masks. This
behaviour leads to the inclusion of visually similar bricks, even when they do not contain
efflorescence. In contrast, YOLOv8 appears more conservative in its predictions, focusing on clearer,
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more isolated efflorescence patches. This modesty in prediction likely results in greater precision, as
observed in the metric comparison, albeit sometimes at the cost of missing finer instances.

Despite these nuances, both models demonstrate a broadly consistent pattern of detection,
indicating that they share a general understanding of the damage signature. Nevertheless, the sample
also underscores the need for continued refinement of both the dataset and model calibration,
particularly in distinguishing efflorescence from benign discoloration or surface irregularities. Future
enhancements should consider incorporating additional modalities or contextual cues to mitigate
these classification challenges.

Original Image MASK R_CNN YOLOv8

Figure 35 Side-by-side visual comparison of detection results on a test image. The left image shows the original input, the
center shows Mask R-CNN results with instance masks, bounding boxes, class labels, and confidence scores, and the right
image presents YOLO

The visual analysis reinforces the numeric trends. Mask R-CNN produces detailed segmentation
masks with fine boundary alignment and higher confidence scores per instance. However, it often
merges overlapping objects. YOLOv8, while lacking segmentation masks, delivers dense bounding
boxes that more completely cover efflorescence areas, indicating better coverage but at the cost of
precision and potential redundancy. YOLOv8's predictions are also stylistically more uniform, but less
rich in spatial detail.

Table 6 Quantitative comparison between YOLOv8 and Mask R-CNN models. The metrics include precision, recall, mAP@0.5,
average inference time per image (in milliseconds), and estimated frames per second (FPS). While YOLOvS8 achieves slightly
higher precision and

Model Precision Recall mAP@0.5 Inference Time (ms) Frames Per Second (FPS)
YOLOv8 0.60588 0.54806 0.35477 1565.93 0.64
Mask R-CNN 0.589112 0.46837 0.35652 1046.87 0.96

In terms of inference time, Mask R-CNN outperforms YOLOVS, achieving nearly 1 FPS versus YOLOvS8's
0.64 FPS. Although both are not yet real-time, the faster execution of Mask R-CNN is notable given its
instance segmentation capabilities. YOLOv8's higher latency is likely due to APl overhead during
remote inference, whereas Mask R-CNN runs fully locally.

4.11. Challenges and Limitations

During the benchmark phase, several technical, dataset-related, and model-specific challenges were
encountered. Rather than being treated as general limitations of the entire study, these challenges
provided critical insights that directly shaped the hypotheses tested in the following experiments.

A key constraint was the limited computational capacity available for training. The Mask R-CNN
model, in particular, is memory-intensive and required substantial GPU resources. Due to restricted
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VRAM on consumer-grade hardware, the batch size had to be reduced to 1, which significantly
increased training time. Larger batch sizes caused memory overflows, particularly during high-
resolution instance segmentation. To reduce risks of data loss, model weights were saved after each
epoch. These constraints mainly affected the speed of experimentation rather than accuracy but
highlight the practical barriers of applying advanced segmentation models outside high-performance
environments.

The dataset also introduced several challenges that reduced generalization capacity. Small dataset
size increased overfitting risks, while uncontrolled lighting conditions and shadows lowered
prediction stability. Scale inconsistencies between annotated bricks and their real-world dimensions
affected the model’s perception of object proportions. Furthermore, partial or faint efflorescence
annotations complicated ground truth definition and introduced label noise. These observations
motivated Hypothesis 4, which tests how variations in image quality, angle, and distance affect model
performance.

Original Image MASK R_CNN YOLOv8

Graffiti
L

Encrustation
- -

Loss of adhesion

Encrustation

Figure 36 Comparison of detection results of non-efflorescence damages.
the original images (left column), Mask R-CNN predictions (middle), and YOLOvS predictions (right) for five different classes:

graffiti, lichens growth, encrustation, exfoliation, and a second encrustation sample..

Another recurring difficulty was visual misclassification. Both Mask R-CNN and YOLOvS8 struggled to
distinguish efflorescence from visually similar phenomena such as graffiti, lichens, and encrustations
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(Figure 36). Mask R-CNN produced dense over-segmentations, often including benign discolorations,
while YOLOv8 was more conservative but still generated false positives. These issues motivated
Hypothesis 2, which explicitly investigates the risk of misclassifying visually similar damage types.

In addition, efflorescence often appeared alongside other damage processes, such as powdering and
scaling, complicating annotation consistency. This observation laid the groundwork for Hypothesis 3,
which examines whether contextual surface damage influences the detection of efflorescence.

In summary, the benchmarking process revealed not only technical and dataset-related obstacles but
also conceptual challenges in reliably distinguishing efflorescence. Rather than being treated solely as
limitations, these observations directly informed the hypotheses that structure the subsequent
experimental work.

Based on the benchmark evaluation, Mask R-CNN was selected as the primary model for the
subsequent experimental phases. Although YOLOv8 demonstrated slightly higher recall and precision
in some cases, Mask R-CNN’s instance segmentation capability, its more stable loss convergence, and
its suitability for pixel-level analysis made it the preferred choice for testing the hypotheses in the
following chapters.
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4.2. Hypothesis Evaluation

This chapter presents the experimental evaluation of the proposed hypotheses aimed at improving
the detection of efflorescence in masonry surfaces using deep learning models. The primary goal is to
assess how specific contextual and visual factors influence the model’s performance. By
systematically introducing variations in input conditions or dataset configurations, each hypothesis is
examined independently while maintaining consistency in model architecture, evaluation metrics,
and testing procedures. To ensure clarity and reproducibility, each hypothesis is presented in a
consistent format, including an introduction, quantitative and qualitative results, and a brief
discussion of findings.

This chapter aims to offer a comprehensive understanding of how each factor impacts efflorescence
detection, guiding further improvements in the model and its practical applications.

4.2.1. Hl:Infrared Thermal Imaging and Efflorescence Detection

This subsection addresses Hypothesis 1 (H1): Incorporating thermal data as a fourth input channel
improves the detection precision and segmentation accuracy of efflorescence, in moisture-related
contexts, compared to RGB-only input.

Efflorescence often appears in conjunction with moisture issues and manifests as white crystalline
deposits on masonry surfaces. Moisture problems may originate from various sources, including
rising damp, rain penetration, condensation, or leaks. Among these, two cases are especially relevant
for this study because they produce clear and distinguishable patterns in both visual and thermal
domains. Rising damp, caused by groundwater seeping upward through capillary action, often creates
a colder region below the efflorescence due to evaporative cooling and persistent ground moisture.
Leakage from above, for example through damaged gutters or roofing, typically results in colder
zones above the efflorescence, reflecting recent water ingress from external sources.

These scenarios illustrate how thermal characteristics can diverge even when the visible patterns in
RGB images appear similar. While both rising damp and leakage can lead to efflorescence, their
distinct thermal signatures present an opportunity for models to interpret not only the visible
appearance of damage but also its moisture-related thermal context.

To explore this, the model was trained on a set of approximately 150 RGBT images, each combining
RGB channels with a thermal fourth channel. The goal was to assess whether this additional modality
could help the model detect efflorescence more accurately, particularly in scenes where moisture-
related thermal cues might reveal hidden or ambiguous damage patterns.

Unlike typical multi-class classification, the model was trained to identify efflorescence as a single
class, leaving the thermal patterns for post-inference interpretation. The expectation was that the
model would learn to associate efflorescence with its thermal environment, improving performance
in cases where RGB-only models might struggle due to low contrast, surface discoloration, or subtle
patterns.

The results below evaluate this hypothesis by presenting both quantitative metrics (loss functions,
precision, recall, and mAP@0.5) and qualitative examples that compare RGB-only and RGBT
predictions. These findings help determine whether thermal imaging meaningfully contributes to the
detection and segmentation of moisture-driven efflorescence.
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QUANTATIVE RESULTS

The loss curves from figure 37 show that the RGB model consistently achieves lower losses than the
RGBT model across all components: total loss, bounding box loss, class loss, and mask loss.
Particularly in the early epochs, the RGB model demonstrates a faster reduction in loss, suggesting a
more efficient learning process. By epoch 60, both models converge, but the RGB model maintains a
slight advantage in stability and final loss values.
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Figure 37 Loss functions per epoch over 60 training epochs comparing RGB-only (blue) and RGBT (red), (1) total loss, (2) box
loss, (3) class loss, (4) mask loss.

The precision and recall plots illustrate distinct performance dynamics between the RGB and RGBT
models. The RGB model shows consistently higher recall throughout training, indicating better
detection coverage of true efflorescence instances. In contrast, the RGBT model demonstrates
significantly higher precision, especially after epoch 10, suggesting it is more conservative but makes
fewer false positive predictions. This trade-off between higher recall (RGB) and higher precision
(RGBT) highlights their differing decision behaviours.
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Figure 38 detection coverage comparison over 60 epochs for RGB-only (blue) and RGBT (red), (1) Recall, (2) Precision.

The mAP@0.5 plot demonstrates that the RGB model achieves faster and more stable convergence
compared to the RGBT model. While RGBT gradually improves its performance over time, its
trajectory is notably more erratic and less consistent, indicating instability during training. This
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suggests that the fusion of thermal information introduces additional complexity, causing the RGBT
model to struggle with convergence despite reaching competitive mAP levels in later epochs.
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Figure 39 mAP@0.5 performance across 60 epochs for RGB-only (blue) and RGBT (red) models.

QUALITATIVE RESULTS

Model performance was evaluated by comparing RGB and RGBT predictions on 28 validation images,
using metrics such as precision, recall, F1-score, mean average precision (mMAP@0.5), and confidence.
The RGBT model consistently achieved higher precision scores, particularly on complex images with
high ground truth counts such as image 0328, where the RGB model achieved an F1 of 0.83 while
RGBT improved this to 0.88.

Notably, RGBT predictions also maintained higher average confidence across the dataset (mean =
0.96), suggesting greater certainty in predictions. In several cases, the RGB model suffered from
elevated false negatives, indicating missed detections that RGBT was able to capture due to the
added thermal information. This is evident in image 0065, where RGBT achieved a recall of 0.72
compared to RGB's 0.64. Overall, the addition of thermal data significantly reduced both under- and
over-prediction errors, confirming its added value for robust efflorescence detection.
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Figure 40: Efflorescence prediction results with confidence scores for Image 0328 (Epoch 60) (1) RGB Prediction. (2) Thermal
Image. (3) Original Image: (4) RGBT Prediction

A comparative table 7 shows the evaluation scores on figure 40 with image 328. In contrast, the RGBT
model exhibited significantly fewer false positives (4), leading to a much higher precision (0.90).
However, it missed more ground truth instances (11 false negatives), reflected in a lower recall of
0.78. Despite these differences, both models reached a similar F1-score (0.83 for RGB, 0.84 for RGBT),
suggesting a trade-off between detection completeness and certainty.

Interestingly, the average prediction confidence is nearly identical (0.95 vs. 0.96), showing that both
models are equally confident in their predictions. The results suggest that while the RGB model
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captures more instances, the RGBT model is more conservative but precise — a potentially valuable
trait in applications where false positives are more detrimental than occasional misses.
Table 7: Quantitative comparison of prediction performance for image 0328 (Epoch 60) between the RGB-only and RGBT

models. Metrics include true positives (TP), false positives (FP), false negatives (FN), precision, recall, F1-score, mean average
precision (MAP@0.5), and average prediction confidence.

Model | TP FP FN Precision  Recall F1 mAP  AvgConfidence
RGB 47 17 2 0.73 0.96 0.83 0.84 0.95
RGBT 38 4 1 0.9 0.78 0.84 0.76 0.96

Additionally for the 60" epoch the validation set is also analysed on the same metrics as can be seen
in table 8. The RGB model exhibits a more balanced performance overall, with a recall of 0.86 and an
F1-score of 0.77, compared to the RGBT model's recall of 0.65 and F1-score of 0.76. This suggests that
RGB is more effective at capturing the majority of ground truth instances, despite a higher false
positive rate (18 vs. 3).

On the other hand, the RGBT model shows a significantly higher precision of 0.94, indicating that its
predictions are much more accurate when it does detect something — but at the cost of missing
many true instances (22 FN vs. 11 FN). This leads to a lower mAP of 0.62 for RGBT, compared to 0.75
for RGB.

Interestingly, both models maintain high average confidence scores (0.97 for RGB, 0.94 for RGBT),
meaning that each model is confident in its predictions regardless of its underlying tendency (recall-
heavy for RGB, precision-heavy for RGBT).

Table 8 Quantitative average over the validation dataset comparison of prediction performance for (Epoch 60) between the

RGB-only and RGBT models. Metrics include true positives (TP), false positives (FP), false negatives (FN), precision, recall, F1-
score, mean average precision (mAP@0.5), and average prediction confidence.

Model | TP FP FN Precision Recall F1 mAP AvgConf
RGB 42 18 1 0.72 0.86 0.77 0.75 0.97
RGBT 31 3 22 0.94 0.65 0.76 0.62 0.94
DISCUSSION

The experimental results demonstrate that integrating thermal imagery as a fourth channel offers
measurable advantages in the detection of efflorescence, particularly in terms of precision and
confidence. The RGBT model consistently produced fewer false positives and maintained higher
average confidence scores across both individual images and the full validation set. This confirms that
thermal cues help the model make more certain and selective predictions, especially in complex or
ambiguous scenes where RGB contrast alone may be insufficient.

However, the benefits of thermal data come at a cost. The RGBT model struggled with convergence,
as indicated by more volatile loss and mAP curves. The added modality introduces complexity that
challenges the training process, leading to inconsistent learning, especially in early epochs.
Furthermore, the RGBT model exhibited a higher false negative rate, often missing subtle or faint
efflorescence patterns that the RGB model was still able to capture. This indicates that while RGBT is
more cautious, it may also overlook certain valid detections due to its conservatism.

From a performance trade-off perspective, the RGB model excels in recall and overall coverage,
making it more suitable in contexts where missing any efflorescence is unacceptable — for instance,
in preventive maintenance or early-stage diagnosis. In contrast, the RGBT model is more precise and
confident, making it ideal in scenarios where false alarms carry greater operational costs, such as
automated inspection systems or decision-support tools for restoration planning.
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Lastly, the consistent performance across 60 epochs and the clear behavioral divergence between the
models reinforce the importance of modality-aware model selection. The fusion of thermal and visual
information holds promise, but its success depends on use-case priorities (e.g. recall vs. precision),
model complexity, and data quality. Future work could explore hybrid strategies, for instance, using
RGBT for initial detection and RGB for refinement, or vice versa.

Moreover, the observed instability and slower convergence of the RGBT model suggest that it
may benefit substantially from extended training periods and larger datasets. The additional
complexity introduced by the thermal modality likely requires more training iterations to reach full
performance potential. It is expected that increasing the training duration to 110-150 epochs,
combined with a broader and more diverse dataset, could improve convergence behavior and enable
the RGBT model to better leverage thermal cues. Additional validation results supporting this are
provided in Appendix |, under Model A (RGBT) and Model B (RGB).

4.2 2. H2: Misclassification Due to Similar Surface Features

The hypothesis examined in this section is that visually similar surface features, such as graffiti,
lichens, and encrustation can lead to the misclassification of efflorescence. These features often share
similar visual characteristics, such as white or light-colored patches, irregular textures, and surface
deposits, which can confuse machine learning models. The goal of this experiment is to evaluate the
model's ability to correctly distinguish efflorescence from these other surface features and to analyze
the factors that contribute to false positives.

QUANTATIVE RESULTS

The training progress of the Mask R-CNN models for each damage class (Efflorescence, Graffiti,
Lichens, Encrustation) is evaluated using four main loss components: total loss, bounding box loss,
classification loss, and mask loss. Each of these contributes uniquely to the overall model
performance and convergence behavior.

The total loss as described in figure 41 shows a clear downward trend across all classes over 60
epochs, indicating consistent learning. Efflorescence demonstrates the most stable and lowest total
loss towards the end, suggesting more reliable convergence compared to the other classes. Lichens
and Encrustation show more fluctuation, which may reflect the higher complexity or variability in
their visual appearance and segmentation.

Classification loss follows a generally declining pattern for all models. Model regarding Graffiti and
Encrustation maintain the lowest class loss after epoch 20, suggesting that these models are
confident in distinguishing their respective class from the background or other classes. The
Efflorescence and Lichen models have slightly higher classification loss, likely due to visual overlap
with other damages or subtle appearance. The mask loss, crucial for instance segmentation,
decreases across all models. The Efflorescence model consistently performs best, with the lowest
mask loss values. Lichen and Encrustation models exhibit more variability, again likely influenced by
the fragmented and irregular mask structures typical of these damage types.
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Figure 41 Loss functions per epoch over 60 training epochs comparing class specific Efflorescence (blue), Graffiti (red),
Lichens (green) and Encrustation (orange), (1) total loss, (2) box loss, (3) class loss, (4) mask loss.

To evaluate the model’s ability to differentiate between efflorescence and similar surface features,
performance metrics were calculated, including mean Average Precision (mAP), precision, recall, and
F1-score. In addition, a confusion matrix was generated to visualize prediction accuracy and error
rates across different classes.

In reference to figure 42, Graffiti detection model consistently reached high precision and recall early
in training, reflecting ease of detection due to distinctive visual features. Encrustation detection
model improved over time and maintained reliable detection performance, though occasional drops
in precision highlight some false positive fluctuations. Lichens detection model demonstrated high
precision but somewhat lower and unstable recall. This suggests that when lichens were detected,
predictions were often correct, but the model missed several actual instances (false negatives).
Efflorescence detection model had the lowest and most fluctuating precision and recall. This is likely
due to its variable appearance and overlap with other damage types, making it harder to detect
consistently.
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Figure 42 Precision and Recall5 performance across 60 epochs for Efflorescence (blue), Graffiti (red), Lichens (green) and
Encrustation (orange)
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The mean Average Precision at loU threshold 0.5 (MAP@0.5) provides a robust measure of both
classification and localization accuracy. As shown in Figure 43, detection quality increased for all
damage types over training: Graffiti detection model achieved the highest and most stable mAP
values, converging around 0.6, indicating consistent detections. Lichens and encrustation detection
models showed gradual improvement, stabilizing between 0.45 and 0.5, though the fluctuations
suggest some sensitivity to image variability or overlapping textures. Efflorescence detection model
improved more slowly and plateaued below 0.45, reinforcing earlier findings that its diffuse and
inconsistent appearance makes accurate detection more challenging.

Class-Specific mAP@0.5 over Epochs

Epoch

Figure 43 mAP@0.5 performance across 60 epochs for Efflorescence (blue), Graffiti (red), Lichens (green) and Encrustation
(orange)

Overall, mMAP@0.5 highlights how well each model balances precision and recall with spatial accuracy.
While graffiti was detected most reliably, efflorescence remains the most difficult class due to
ambiguous features and class confusion with other types of surface deterioration.

QUALITATIVE RESULTS

To evaluate the performance of models in distinguishing between visually similar damage classes
such as efflorescence, graffiti, lichens, and encrustation, a simplified per-class, per-image confusion
analysis was applied. Rather than relying on instance-level loU-based matching, which is commonly
used in object detection tasks, this approach counts true positives (TP), false positives (FP), and false
negatives (FN) based on the presence or absence of predicted class labels in an image. This method
was chosen due to several limitations associated with loU matching in this specific context.

Damage classes like graffiti and lichens often appear with vague or irregular boundaries, leading to
situations where one ground truth instance is predicted as multiple smaller segments, or a single
large predicted mask spans several smaller ground truth regions. These discrepancies cause instance-
level loU values to fall below typical matching thresholds, even when the prediction is visually
accurate. This results in valid detections being classified as false negatives. Conversely, if multiple
predictions are matched to one ground truth object, the total number of true positives becomes
inflated, distorting the results.

The simplified class-level method avoids these pitfalls by determining whether the correct class was
detected in an image, regardless of the number or size of predicted masks. It provides a clearer
representation of whether the model recognized the correct type of damage, which is essential when
comparing performance across models trained to differentiate between similar-looking classes.

True negatives (TN) were intentionally excluded from the evaluation. Since each image contains only
one damage class by design, counting TNs, such as not detecting graffiti in an image labeled as
efflorescence, would introduce a large number of trivial "correct" non-detections. Including these
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would skew the analysis and diminish the relevance of the actual classification performance between
closely related classes.

GRAFFITI

The graffiti prediction demonstrates an oversegmentation behavior: the model generates multiple
smaller masks within the same graffiti instance. Although visually correct—since they cover valid
parts of the graffiti—these detections may not sufficiently overlap with the ground truth mask to
surpass the loU threshold (typically 0.5). As a result, they are counted as false positives rather than
true positives, even when semantically accurate. This phenomenon aligns with observations in the
precision-recall graphs, where graffiti showed high precision and recall, but occasional overcounting
may inflate the FP count. Additionally, it relates to the Mask Loss plot, where graffiti maintains
relatively low loss but still fluctuates, potentially due to these fragmented predictions.

In contrast, the efflorescence example shows large, confident masks with good coverage. The
predictions are more consistent in shape and scale, corresponding to relatively stable and improving
performance across all loss metrics. However, as seen in class-specific precision and recall plots,
efflorescence maintains a modest precision and recall throughout training

DC (RGB) Image
| P

Figure 44 Efflorescence and Graffiti predictions results with confidence scores (Epoch 60) (1) Original graffiti image. (2)
Graffiti prediction. (3) Original Image: (4) Efflorescence prediction.

For the class Efflorescence, the confusion table 9 shows a relatively balanced outcome with 31 true
positives, 2 false positives, and 1 false negative. This suggests that the model has learned to detect
efflorescence with reasonable accuracy. However, when comparing this to the loss curves, one aspect
that stands out is the class loss, which remains higher for efflorescence throughout training compared
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to other classes. This indicates that although the model can detect and localize efflorescence, it has
difficulty assigning high confidence to its classification.

Table 9 Confusion matrix Efflorescence vs Graffiti

Class TP FP FN
Efflorescence 31 2 1
Graffiti 67 1 2

ENCRUSTATION

The encrustation mask appears in figure 45 to underfit the actual damaged areas,while encrustation
is broadly covered as a single continuous region it seems that the model generalizes to coarsely since
the mask does not align with the damage type.
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Figure 45 Efflorescence and encrustation predictions results with confidence scores (Epoch 60) (1) Original Encrustation
image. (2) Encrustation prediction. (3) Original Image: (4) Efflorescence prediction.

Additionally, figure 45 reveals a false positive where the model mistakenly identifies a efflorescence
area of the wall as encrustation. The consistency and repetition of such false positives point to either
bias in the training data or limitations in the class-specific features learned. In cases like the image
seen in figure 46, false positives frequently occur for encrustation. These are often triggered by
surface textures, residual mortar, or lighting artifacts that visually resemble the rough surface
patterns typical of encrustation but do not actually represent damage. This misclassification may be
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amplified by the lower confidence thresholds used, as many false positives hover near the 0.5-0.6
score range. The model appears sensitive to textural patterns but fails to correctly distinguish them
from true encrustation when context or edge definition is weak.

DC (RGB) Image ~ Trvsvmmwmwmweomememeomeess "Pfedictions

Figure 46 Efflorescence and encrustation predictions results with confidence scores (Epoch 60) (1) Original efflorescence
image. (2) Efflorescence and (falsely) Encrustation prediction.

The confusion matrix presented in Table 10 indicates notable limitations in both precision and recall
for the Encrustation class, consistent with the issues highlighted in the earlier visual analysis. While
the model correctly identifies 36 true positives, it also produces 5 false positives and 4 false
negatives. This pattern confirms that the encrustation class is currently over-predicting, it detects
regions as encrustation that are not annotated as such, while also missing some genuine instances.

Table 10 Confusion matrix Efflorescence vs Encrustation at the 60th epoch

Class TP FP FN
Efflorescence 33 1 0
Encrustation 36 5 4

LICHENS

Based on the results from the latest evaluation involving lichens and efflorescence, several
observations can be made regarding model behavior and the influence of different loss components.

DCiAGB)image . Svemememcssuens 'wPredictiolns

Figure 47 Efflorescence and Lichens predictions results with confidence scores (Epoch 60) (1) Original Lichens image. (2)
Lichens prediction
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From the confusion matrix in table 11, both efflorescence and lichens detection models demonstrate
increased performance. The efflorescence detection model yields 33 true positives, 1 false positive,
and 0 false negatives. The lichens detection model achieve a perfect score, 29 true positives, with
zero false positives or negatives. This near-perfect result for both classes suggests effective
localization, classification, and mask segmentation across both categories, but particularly for lichens.

When linking this outcome to loss functions, the results imply that both classification and bounding
box regression losses were successfully minimized for the lichen class. This is supported by the dense
and accurate bounding box predictions in the image of figure 47, each with high confidence scores
and precise alighment with visible lichen patches. Moreover, the absence of false positives indicates
that the model has learned good class separation in feature space, which reflects a well-optimized
classification loss.

Table 11 Confusion matrix Efflorescence vs Lichens at the 60th epoch

Class | 1P FP N |
Efflorescence 33 1 0
Lichen 29 0 0

DISCUSSION

The evaluation of the four classes, efflorescence, encrustation, graffiti, and lichens, reveals clear
differences in performance, both in the visual predictions and in the training progression metrics.
These differences reflect how effectively the model was able to learn and generalize the visual
characteristics of each damage type.

The efflorescence detection model consistently shows strong performance. The model detects with
high confidence, producing accurate masks that closely follow the extent of the damage. The results
show minimal false positives and no false negatives in most cases, indicating that the class is visually
distinct and well represented in the training set. During training, efflorescence steadily reaches stable
loss and precision values, suggesting reliable learning and convergence.

The encrustation detection model, on the other hand, proves to be more challenging. Although the
number of true positives is acceptable, the class exhibits significantly more false positives and false
negatives. Visually, this is seen in underfitting masks that miss parts of the encrustation or simplify
the structure too much. These issues suggest that the class is either visually inconsistent, shares
features with other classes, or has weaker annotation clarity. A key limitation is that the distinction
between encrustation and efflorescence often depends on fine-grained surface detail, which is difficult
to capture at lower image resolutions. More detailed, higher-resolution imagery would likely improve
the model’s ability to separate these visually similar classes. In training, this challenge is reflected in
fluctuating validation metrics and slower convergence.

The graffiti detection model performs relatively well and shows slightly better confidence scores
compared to efflorescence in some cases. This may be due to the stronger color contrast graffiti
typically has against masonry surfaces, making it easier for the model to distinguish. However, while
graffiti benefits from these color differences, efflorescence remains limited in being falsely detected
as graffiti. In most of the validation cases, efflorescence is either correctly classified or ignored
entirely, rather than being misclassified, which confirms that the model maintains a strong internal
representation of the class boundaries.

The lichens detection model emerge as the best-performing new class. The model detects them with
high accuracy and confidence, without any false positives or false negatives. The predictions align
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well with the actual growth patterns on the wall surfaces, and the segmentation masks are spatially
accurate. This strong outcome is mirrored in training, where the lichen class reaches high
performance quickly and maintains it across epochs. The visual distinctiveness of (yellow & white)
lichens, especially their color (yellow) and texture, likely contributes to this performance.

In summary, while all classes are detected to some extent, efflorescence and lichens stand out as the
most consistently learn ed. The graffiti detection model benefits from color-based distinction but still
varies in mask quality, and encrustation requires more refinement due to visual ambiguity and
segmentation challenges. These differences reinforce the importance of both annotation quality and
visual distinctiveness in training effective damage detection models.

4.2.3. H3: Co-Occurrence of Damage Types

The third hypothesis investigates whether the presence of other types of surface damage can
influence the model’s ability to detect efflorescence. Efflorescence, as previously described, refers to
white salt deposits appearing on masonry surfaces, often signaling moisture-related degradation. In
contrast, damage in this study refers to various physical manifestations such as disintegration, loss of
cohesion, layering, and other masonry deterioration types, as categorized in the MDCS and discussed
comprehensively in Section 2.3.

To investigate potential relationships between efflorescence and nearby damage, a Mask R-CNN
model was trained to detect both classes, efflorescence and damage, on annotated masonry imagery.
This enables an automated analysis of spatial proximity and potential co-occurrence patterns across a
diverse set of conditions.

To test whether there is a relationship between the presence of efflorescence and surrounding
damage, the following hypotheses were formulated:

Ho (Null Hypothesis):

The presence of efflorescence in a brick is independent of damage in its neighbouring bricks.

H, (Alternative Hypothesis):

Bricks near efflorescence are more likely to show signs of damage than bricks located further away.

While model predictions provide a useful estimation of damage and efflorescence presence, they
may be affected by class imbalances, limited data, and segmentation uncertainty. To strengthen the
reliability of this statistical relationship, the co-occurrence analysis is therefore based on the ground
truth annotations rather than on predicted masks.

Each annotation (bounding box) is analyzed based on its centroid position, and co-occurrence is
evaluated by checking whether a mask of one class overlaps with the centroid of another. This
approach allows flexibility across varying image scales and avoids hardcoded pixel thresholds, which
might fail in zoomed or low-resolution cases.

To account for varying spatial relationships, distances between centroids are normalized using the
average annotation width per image. Based on this, several distance zones are defined:

e Zone 1: within 2x average width (same or neighboring brick)
e Zone 2: within 3x average width

e Zone 3: further than 4x average width
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Figure 48 lllustration of the centroid—overlap method used to analyze spatial co-occurrence between efflorescence and
damage annotations. Blue represents efflorescence and red represents damage. Distances between centroids are normalized
by the average brick width, defining three zones: Co-occurrence is recorded when a damage centroid falls within the defined
zones around efflorescence.

This stratified distance framework as shown in figure 48 allows us to investigate whether the
probability of damage decreases as distance from efflorescence increases, thus supporting or
rejecting the alternative hypothesis.

The analysis will involve the following: Constructing a contingency table of damage occurrences at
various distances from efflorescence, Performing a Chi-Square test for independence to assess
whether proximity to efflorescence is associated with a higher likelihood of damage, Optionally,
visualizing damage probability as a function of distance to identify trends.

This approach aims to go beyond visual inspection, providing a statistically grounded insight into the
co-location of salt-induced damage phenomena in masonry structures.

QUANTATIVE RESULTS

The Mask R-CNN model was trained for 60 epochs using the annotated dataset containing instances
of efflorescence and damage. The training progress was monitored using standard loss functions:
total loss, bounding box (BBox) loss, classification loss, and mask loss.

As shown in the training logs in figure 49, the total loss decreases steadily during the first 20-30
epochs, indicating that the model is learning meaningful patterns. After that point, the loss plateaus
around a value slightly above 1.0, suggesting limited further improvement. The bounding box loss
converges rapidly to below 0.1, indicating that the model can localize objects with reasonable
accuracy. However, the classification loss stabilizes at a relatively high value (0.5), pointing to
challenges in distinguishing between efflorescence and damage. This may stem from visual overlap,
limited training examples, or imbalances in class frequency. The mask loss also shows initial
improvement but converges around 0.15-0.2, which suggests that segmentation quality is moderate
but could be improved with more data or refined annotations.
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In summary, while the model is able to learn spatial and visual cues for detection, particularly for
efflorescence, the performance on damage classes remains suboptimal. This justifies the decision to
base the statistical co-occurrence analysis on the ground truth annotations rather than relying solely
on model predictions.
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Figure 49 Loss functions per epoch over 60 training epochs for Efflorescence and damage class training), (1) total loss, (2)
box loss, (3) class loss, (4) mask loss.

The evaluation results for the combined class of Efflorescence & Damage are shown in figure 50.
While recall shows a generally increasing trend throughout the training process, reaching values
around 0.40, it remains relatively low, suggesting that the model struggles to detect all true instances
of this class. The fluctuation indicates instability in learning, likely due to class imbalance or the
complexity of accurately detecting co-occurrence cases.

In contrast, precision initially starts high (above 0.7) but gradually declines and stabilizes between 0.5
and 0.6. This indicates that although many predictions are correct, the model becomes less selective
over time, possibly generating more false positives as training continues. This inverse relationship
between precision and recall is common in underrepresented or noisy classes.

These results emphasize the challenge of detecting both damage and efflorescence in the same
instance, especially when the two classes overlap visually or contextually. The unstable pattern
suggests that further dataset refinement or class balancing may be necessary to improve consistent
detection performance.
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Figure 50 detection coverage over 60 epochs for Damage & efflorescence detection (1) Recall, (2) Precision.

Figure 51 presents the mean Average Precision (mMAP@0.5) across training epochs for the classes
Efflorescence and Damage. The damage class consistently outperforms the efflorescence class,
reaching peak mAP values of around 0.45, while efflorescence stabilizes closer to 0.30-0.35. This
performance gap suggests that the model is more confident and accurate in localizing and classifying
damage compared to efflorescence.

Both classes show fluctuating performance across epochs, which is indicative of training instability —
likely due to the relatively small dataset size, annotation density (some images have hundreds of
annotations), and potential class imbalance. Notably, efflorescence shows a dip around epoch 25,
after which it recovers but does not exceed its earlier peaks.

Overall, while damage detection appears more robust, efflorescence detection remains more
challenging. This discrepancy justifies further post-processing and co-occurrence analysis using
ground truth annotations rather than relying solely on predictions.

Class-Specific mAP@0.5 over Epachs

El
Epacn

Figure 51 mAP@0.5 performance across 60 epochs for Efflorescence and Damage detection models
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Figure 52 Radius determination in relationship with efflorescence (blue), Damage (red) and daamge & efflorescence in the
same brick (purple) with radius

QUALITATIVE RESULTS

The comparison between the model's predictions (right) and the original RGB image (left) in figure 52
and 47 highlights key challenges in the detection of overlapping efflorescence and damage. While the
model is capable of identifying individual regions with either efflorescence or damage (as indicated
by blue and red bounding boxes), it appears to struggle with correctly classifying bricks that exhibit
both phenomena simultaneously. This may reflect the complexity of visual overlap and the model’s
sensitivity to subtle patterns. Nevertheless, the overall shape and placement of predicted masks and
bounding boxes remain consistent with visual observations and annotations, indicating a solid spatial
understanding of both damage and efflorescence separately.
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Figure 53 Efflorescence and damage predictions results with confidence scores (Epoch 60) (1) Origina image.
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This study explored the spatial relationship between efflorescence and masonry damage (including

disintegration, loss of cohesion, layering, etc., as introduced in Chapter 2.3 and described in the

MDCs). The goal was to explore whether such co-occurrence analysis (using ground truth + statistical

testing) can increase confidence and precision in detection frameworks. To investigate this, a chi-

square test of independence was performed across varying spatial neighbourhood distances, using
ground truth annotations instead of model predictions due to limitations in the detection

performance.

Statistical Findings on Spatial Co-occurrence

The results from the chi-square test for different radius factors are summarized in table 12:
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Table 12 Results of chi-square test on Efflorescence near damaged bricks and their relationship

Radius Factor Radius (px) Chi-square p-value

1 114 47.13 <0.00001

15 171 47.13 <0.00001

2 228 47.13 <0.00001
5 570 6.77 0.00927

These results show a statistically significant association between damage and the nearby presence of
efflorescence for radius factors between 1.0 and 2.0. Even at a radius factor of 5.0, the relationship
remains statistically significant, although the p-value increases substantially. This suggests that
damage tends to co-occur with efflorescence within a localized spatial range. This supports the
hypothesis (H1) that bricks near efflorescence are more likely to show damage for this specific case.
Additional data such as the contingency tables, Chi square per cut-off are added in APPENDIX |

While the Mask R-CNN model was trained to detect both efflorescence and damage, visual inspection
of prediction results showed a key limitation: efflorescence was frequently not detected in bricks
already marked as damaged, despite being visible in the ground truth annotations. The masks and
bounding boxes for both classes were generally accurate when they occurred separately, but co-
located cases (efflorescence overlapping with damage) were often missed.

This shortcoming motivated the use of manual (or Ground Truth) annotations instead of model
predictions in the statistical analysis. The prediction results would have introduced significant bias,
underrepresenting the true co-occurrence frequency and weakening the statistical results. This
emphasizes the importance of high-quality annotation and dataset balance in training, especially
when modeling overlapping or visually damage phenomena.

The findings confirm a significant spatial correlation between efflorescence and damage, especially in
closer proximity. The limitations in detection performance further highlight the challenge of learning
co-occurring features in deterioration patterns and suggest the need for better multi-label
segmentation approaches or dataset augmentation strategies.

4.2.4. H4: Image Quality, Camera Angle, and Scale

The fourth hypothesis explores how variations in image quality, camera angle, scale, and lighting
conditions affect the accuracy of efflorescence detection. Capturing high-quality images under
consistent conditions is often challenging in field applications, leading to variations that can degrade
model performance. In particular, low resolution, steep viewing angles, differing scales, and poor
lighting can obscure key features necessary for accurate detection. The following hypothesis was
formulated H4: Variations in image quality, angle, scale and distance negatively affect model
performance in detecting efflorescence. This hypothesis aims to determine whether augmenting the
training dataset to simulate these variations can improve the model’s robustness and generalization

To test this hypothesis, datasets were systematically augmented to simulate different acquisition
conditions. Each augmentation type was applied to the validation subset, while ground truth masks
were transformed alongside the images to ensure perfect alignment. The augmentation types
included:

e Camera angle variation (£5°, £10°, +15°).

e Scale variation (0.5%, 0.75x, 1.25x%, 1.5x).

e Resolution variation (480px, 320px, 160px, rescaled to 640px).
e Lighting variation (£10%, £20% in brightness and contrast).
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The model was evaluated on each augmented dataset over 60 epochs, and results were compared
against the baseline dataset.

QUANTATIVE RESULTS

Figure 55 shows the model’s performance across simulated angular deviations. Mild angle changes
(£5°) produce minimal performance drops compared to baseline. However, as angular deviation
increases (+¥10°, +15°), especially in the +15° condition, mAP drops significantly and training becomes
less accurate. Dashed lines (positive angle deviations) and solid lines (negative) show similar trends,
suggesting angle direction has little effect. These results imply that the model is moderately robust to
small viewpoint shifts but becomes less reliable under stronger tilt conditions above 15 degrees.
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Figure 55: mAP@0.5 per epoch for varied camera angles (+5°, #10°, #15°) compared to the baseline.

Figure 56 compares detection performance across rescaled inputs. Downscaling (0.5x and 0.75x)
leads to sharp declines in mAP, indicating that reduced image detail hampers model learning.
Upscaling (1.25x%, 1.5x) shows mixed results, 1.25x approaches baseline performance, but 0.5x
becomes unstable, likely due to scaling artifacts and small mask predictions. These results confirm
that extreme resizing can degrade model performance, either by blurring detail or introducing
distortions.
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Figure 56 mAP@0.5 per epoch for images rescaled by 0.5x, 0.75x, 1.25x, and 1.5x, relative to baseline resolution

In Figure 57, 3 out of 4 lighting-altered variants show increased detection performance compared to
the baseline. Especially in the extreme cases (-20%), the model fails to achieve stable learning, with
mAP values remaining consistently low. Less intense lighting changes (-10%) perform slightly better
but still underperform compared to baseline. Most interesting is the (+10%) lighting shift where is
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significantly improved detection performance. These findings indicate that the model is sensitive to
exposure changes and may benefit from more robust color normalization or lighting-invariant feature
learning.
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Figure 57 mAP®@0.5 per epoch for images with simulated brightness/contrast shifts (+10%, +20%), compared to baseline.

Figure 58 presents the mAP@0.5 across epochs for different input resolutions. The baseline model
shows similar result as the 160 resolution-modified variant, especially during end and mid-training.
The 480 and 320 resolution settings achieve relatively close performance, and both plateau
approximately 20% above the baseline’s peak. The lowest resolution (160) shows significantly
reduced performance at the beginning, with unstable training and lower mAP. This suggests that
resolution degradation particularly affects the model’s ability to localize fine-grained efflorescence
features.
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Figure 58 Mean Average Precision (mAP@0.5) per epoch across different image resolutions (160, 320, 480), compared to the
baseline model.

QUALITATIVE RESULTS

In addition to quantitative evaluation, a qualitative assessment was conducted to examine how
various augmentation parameters affect the model’s detection behavior on a consistent visual input.
A single validation image was selected as a baseline, and this image was then augmented using each
of the different conditions tested during training: viewpoint (angle) shifts, scale variations, lighting
changes, and resolution reductions. For each variant, predictions were generated using the model
checkpoint from epoch 60, enabling a direct visual comparison of segmentation outputs across
conditions.
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This setup allows for side-by-side inspection of how prediction masks shift, degrade, or improve
under each transformation, providing valuable insight into the spatial reliability and visual coherence
of the model’s segmentation capabilities.

. Figure 59 base line image 650x640 px

ROTATION

As shown in Figure 60, the model demonstrates moderate robustness to changes in camera tilt. In the
15° and £10° rotation cases, most efflorescence bricks are still detected, and mask coverage remains
consistent, although confidence scores start to drop slightly. However, at £15°, several key issues
emerge:

e Some detections shift slightly from their correct positions, especially near the image edges.
o Afew smaller bricks are missed altogether.
e Confidence values drop below 0.80 in multiple areas, signaling increased uncertainty.

Despite these issues, the model does not show major asymmetry between counterclockwise tilts
rotational direction seems to have negligible effect, which aligns with the symmetrical performance
trends seen in the mAP curves. This suggests that moderate angular shifts are tolerable, but stronger
tilt begins to interfere with spatial consistency and mask placement.

Figure 60 Predicted masks under input rotation (5°, 10°, 15°) compared to the baseline.

SCALING
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Downscaling the input (0.75x, 0.5x) leads to clear losses in mask resolution. Efflorescence is under-
segmented, and minor patches disappear entirely. Upscaling (1.25x, 1.5x) slightly enhances boundary
detail but also introduces noise around edges, particularly at 1.25x. The base image 1.5x variant yield
the most visually coherent results, highlighting a trade-off between scale enlargement and noise
amplification.
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Figure 61 Predicted masks under input scaling (0.5x, 0.75x, 1.25x, 1.5x) compared to the baseline.

RESOLUTION

Reducing image resolution to 320 and 160 pixels substantially degrades visual performance. At 160px,
predictions are patchy, misaligned, or completely missing, with efflorescence often undetected. The
480px variant performs comparably to the original high-resolution image, producing reasonably clean
contours. This confirms that fine-grained detail is critical for accurate mask generation, especially for
subtle or edge-bound efflorescence patterns
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Figure 62 prediction masks at different input resolutions (480px, 320px, 160px) alongside the baseline.

LIGHTING

Predictions on images with moderate brightness increases (+10%) show noticeably improved mask
confidence and completeness, with efflorescence outlines clearly defined. In contrast, darker variants
(-10%, -20%) suppress mask visibility and produce fragmented or overly conservative detections. The
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+20% variant exaggerates boundaries slightly but retains coherent coverage, suggesting the model is
more robust to overexposure than underexposure.
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Figure 63Prediction comparisons for brightness/contrast augmentation (+10%, +20%) versus the baseline

DISCUSSION

By visualizing predicted instance masks across various augmentation scenarios, it becomes clear how
specific input affect the model’s ability to detect and localize efflorescence on masonry surfaces.

Angular deviations, particularly beyond £10°, visibly disrupt mask alignment and reduce detection
certainty. While the model remains functional under mild rotations, steeper tilts introduce
perspective distortion and partial occlusions that impair learning. This suggests that the model lacks
sufficient rotational invariance, and that further rotation-aware augmentation strategies or rotation-
equivariant architectures could improve robustness under tilted viewpoints.

In terms of scale variation, upscaling (1.25x and 1.5x%) leads to denser and more confident
predictions, whereas downscaling (especially to 0.5x) degrades both confidence and segmentation
accuracy. This is consistent with the understanding that high-resolution inputs retain more texture
and edge information, which is essential for precise boundary segmentation. It also highlights a
potential challenge for deployment on low-resource devices, where resizing for performance may
compromise model accuracy.

Resolution degradation exhibits similar effects: the 160x160 images yield sparse, fragmented
predictions with clear losses in detection reliability. Even though training with lower-resolution
images is computationally attractive, these findings underscore that efflorescence detection—often
characterized by subtle and diffuse patterns—relies heavily on fine visual detail. Therefore, image
fidelity remains a critical factor in ensuring robust detection outcomes.

Perhaps the most striking observations arise in the lighting augmentation set. While darker inputs (-
20%) lead to visible performance collapse, modest brightness increases (+10%) actually enhance
detection. This suggests that the model is sensitive to illumination but has not developed true lighting
invariance. Instead, its performance appears tightly coupled to the average luminance and contrast
distributions of the training set. These findings imply that future work should prioritize exposure-
normalization techniques or training on broader lighting conditions to build a more generalizable
model.

Overall, the qualitative evaluation confirms that the model is most vulnerable to extreme cases of
downscaling, resolution loss, and lighting degradation. In contrast, it demonstrates moderate
tolerance to angular shifts and even benefits from slight exposure enhancements. Together, these
results highlight the importance of carefully curating training data to include sufficient variability in
scale, lighting, and viewpoint to ensure stable performance in real-world applications.
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4.3. Case Study: Real-World Validation

To complement the controlled evaluation of the trained models, a real-world case study was
conducted to assess the practical applicability and robustness of the enhanced detection framework.
Although the dataset used throughout this research consists entirely of real masonry surfaces
photographed under authentic environmental conditions, its images were still limited to predefined
experimental setups and annotated samples. The case study therefore extends the validation process
by testing the model on an unseen physical site, introducing uncontrolled variables such as lighting,
surface irregularities, material heterogeneity, and environmental exposure.

4.3.1. Case Study Context

The selected case study is located at Hodshon-Dedelhof, situated along the Eerste
Weteringdwarsstraat near the Vijzelgracht in Amsterdam. The Hodshon-Dedelhof was established in
1842 by Isaac Hodshon (1772—-1855) and Isabella Dedel (1778—-1865) as a hofje (almshouse) intended
to provide accommodation for women, particularly those who had served in domestic employment.
The courtyard complex remains inhabited exclusively by women and retains much of its original
architectural character despite several renovation phases.

Figure 64 Location of the Hodshon-Dedelhof in Amsterdam, The Netherlands

The masonry section selected for this study is a penant (structural pier) forming part of the fagade
along the Weteringdwarsstraat. The wall measures approximately 28.15 m in length and 2.60 m in
height, serving as a characteristic vertical element that separates facade openings and supports the
overall fagade composition. The wall was renovated approximately five years ago, during which the
masonry joints were refilled using a convex pointing profile (bolle voeg) to improve moisture
resistance and visual uniformity.

Figure 65 Aerial view of the Hodshon-Dedelhof courtyard complex.
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The facade is constructed from red hand-formed clay bricks typical of mid-19th-century Amsterdam
architecture, generally measuring around 210 x 100 x 70 mm, laid in a stretcher bond with lime-
cement mortar. The renewed joint finish contrasts slightly with the original lime pointing but was
applied to maintain consistency across the restored elevation.

A distinctive feature of the penant is the visible salt-related surface deterioration. The wall exhibits
efflorescence and sub-florescence patterns distributed in undulating vertical bands, particularly
concentrated near the lower sections. These patterns suggest rising damp and leakage phenomena,
likely caused by capillary water transport and insufficient drainage at the wall base. The combination
of moisture ingress, trapped salts, and a dense repointing layer provides an ideal real-world test case
for evaluating the model’s ability to detect efflorescence under complex environmental and material
conditions.

28.15m

Figure 66 Orthographic elevation of the selected fagade section (penant) along the Eerste Weteringdwarsstraat.

4.3.2. Methodology and Model Setup

The case study was designed to validate the enhanced deep learning models on a real-world masonry
surface by integrating 3D reconstruction, localized image extraction, and segmentation-based
detection. The workflow mirrors the experimental setup described in Chapter 3 but applies it to an in-
situ wall of the Hodshon-Dedelhof.

The wall was recorded using an iPhone equipped with the Polycam LiDAR application, which enabled
the generation of a dense 3D mesh and corresponding point cloud with photogrammetric color
information. The complete fagade section was captured in two separate scans, each consisting of
approximately 230 frames and 10 million points. The scans were aligned using Iterative Closest Point
(ICP) registration, achieving a final alignment accuracy of RMSE = 0.035 m with a total model extent
of =30.24 m.

Figure 67 Visualization shows the two scans blue (left) and orange (right) Registered point cloud after ICP with uniform grid
acros wall surface (0.75 x 0.75m)

Following alignment, the combined wall contained approximately 21.6 million points. A uniform grid
was projected across the registered point cloud to facilitate localized analysis. Based on the findings
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of Hypothesis 4, the optimal spatial resolution was set to 640 x 640 pixels, corresponding to an on-
site coverage of approximately 0.75 x 0.75 m per tile. This subdivision resulted in 36 images per
section (108 in total), from which non-masonry areas such as doors, vegetation, or reflections were
excluded.

For model inference, two previously trained detection models were applied:

e the Efflorescence + Damage model, optimized to differentiate between salt crystallization and
individual damaged masonry bricks

o the Graffiti + Efflorescence model, used to evaluate robustness against misclassification
caused by visually similar surface features.

Each selected tile was processed individually, and the resulting COCO-formatted prediction masks
were linked back to their corresponding spatial coordinates through pixel-based mapping. The
inference results were then re-projected and overlaid onto the original 3D PLY wall model, preserving
their spatial accuracy. In the visualization, blue denotes efflorescence detection, whereas red
indicates detected surface damage.

4.3.3. Results and Observations

The comparative visualizations across the three grid configurations illustrate the sensitivity of
detection performance to spatial resolution and image scale.

TRIPLE GRID

In the triple-grid configuration (V1), the segmentation produces detailed coverage but with generally
low confidence levels for efflorescence detection in both models. While efflorescence regions are still
recognized, the predictions appear fragmented and uncertain. Graffiti, on the other hand, is largely
undetected, likely due to the smaller image scale per grid cell and the reduced image quality. The
model’s ability to capture large visual patterns, such as letters or continuous surface discolorations,
appears constrained at this resolution.

i

Figure 68 Wall segmentation and detection results Normal (top), Efflorescence and Graffiti (middle), Damage and
Efflorescence (bottom) using the base grid (0.75 m x 0.75 m per cell) total of 111 images.

DOUBLE GRID

The double-grid configuration (V2) shows a modest improvement in graffiti recognition, with several
graffiti patches successfully detected. However, this setup also introduces false positives, particularly
on non-masonry elements such as utility boxes and house numbers, where textural contrasts
resemble graffiti. Efflorescence detection confidence slightly decreases at this scale, while damage
detection improves significantly, capturing a broader set of local surface irregularities that were
previously overlooked in the finer grid.
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Figure 69 Wall segmentation and detection results Normal (top), Efflorescence and Graffiti (middle), Damage and
Efflorescence (bottom) using the base grid (1.125 m x 1.125 m per cell) total of 50 images.

SINGLE GRID

The single-grid configuration delivers the highest overall confidence for efflorescence detection, with
large contiguous areas of salt deposition correctly segmented. Graffiti is more consistently detected
with higher confidence scores, though false positives remain in regions of poor image quality or
uneven lighting. Notably, some bright graffiti marks are misclassified as efflorescence, suggesting that
the model remains sensitive to high reflectance or white pigment tones. This scale provides the most
stable inference behavior across models but still highlights the limitations introduced by varying
surface conditions and capture quality

Figure 70 Wall segmentation and detection results Normal (top), Efflorescence and Graffiti (middle), Damage and
Efflorescence (bottom) using the base grid (2.5 m x 2.5 m per cell) total of 12 images.

A notable limitation of this case study lies in the relatively low visual quality of the generated image
tiles. The reconstruction process constrains mesh resolution, file size, and point density, which in turn
reduces the sharpness and fidelity of the extracted textures. Consequently, fine-grained surface
features such as micro-cracking or subtle efflorescence boundaries may not be accurately detected by
the models, potentially limiting segmentation precision and classification reliability.

5. Discussion

This research has demonstrated the potential of deep learning-based instance segmentation
methods, particularly Mask R-CNN and YOLOVS, for detecting masonry damage and efflorescence in
heritage and modern buildings. While the results are promising, several technical, methodological,
and practical challenges were encountered that impact both model performance and the scalability
of this approach.
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5.1. Technical Limitations and Model Performance

All models were trained using a ResNet-50 backbone due to frequent out-of-memory (OOM) issues.
More powerful hardware could enable the use of deeper backbones (e.g., ResNet-101) or larger
batch sizes, potentially improving both convergence and accuracy. Furthermore, training was limited
in epochs due to computational constraints, which may have affected final performance.

Transfer learning proved to be a useful strategy. For example, the thermal (RGB-T) model benefited
from pre-training on an RGB-only benchmark model for efflorescence detection. This slight
performance increase indicates that future work should explore more extensive transfer learning
setups, especially when dealing with limited thermal datasets.

The comparison between Mask R-CNN and YOLOvS8 highlights the trade-off between accuracy and
inference speed. While YOLOvVS is faster, Mask R-CNN offers finer segmentation capabilities. Future
research could extend this comparison to newer YOLO models or hybrid architectures.

5.2. Dataset Challenges and Annotation

A major limitation in this study was the diversity and imbalance of the dataset. Unlike prior research
that used data from sites with uniform brick types and consistent construction materials, the dataset
in this study contains a wide variety of brick textures, colors, and joint styles, especially reflective of
modern Dutch buildings. This variability makes detection more difficult. A potential solution is to first
classify the type of brick or construction material, allowing for model fine-tuning per subgroup. For
instance, the development of efflorescence can vary across materials and textures, as their porosity
and composition affect how salts migrate and crystallize..

High-quality annotation was one of the most time-consuming aspects of the research. Brick-by-brick
mask annotations are particularly labor-intensive, but essential for accurate detection. While
necessary for this study, such annotation processes are difficult to scale. Future work may explore
outsourcing or semi-automated annotation pipelines, particularly if larger datasets are to be
developed. It should also be noted that mask-based labeling requires significantly more time than
bounding box annotation.

Additionally, the model could be extended with a separate class for efflorescence in joints, as this was
commonly observed but not explicitly labeled in the current dataset.

5.3. Enhancing Spatial and Contextual Understanding

Spatial context plays a important role in damage detection. As shown in the co-occurrence analysis,
damage and efflorescence are more likely to occur in spatial proximity. Including spatial features, such
as building location (e.g., coastal proximity, groundwater levels, or orientation) may provide valuable
context for improving model performance. Although salts can originate from various sources,
integrating environmental data such as mapped groundwater levels could enhance the interpretation
of efflorescence occurrence.

Surveyors and practitioners could also contribute to better dataset consistency by following fixed
imaging protocols, such as capturing images from standardized distances and angles. This would
enhance data usability and reduce noise caused by inconsistent capture practices.

Moreover, incorporating a fifth dimension, such as depth from point clouds or dense imaging layers,
could improve the detection of material damage. Damage like disintegration, detachment, or layering
is often accompanied by surface depth variation, which RGB imagery alone may fail to capture.
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5.4. Future Directions and Recommendations

e Differentiate between damage classes: Current models treat all forms of damage (e.g.,
scaling, disintegration, blistering) as a single class. Future models should be trained with
subclass labels aligned with the MDCS to better capture the nuance of different decay
patterns.

e Handle visually similar damage types: Efflorescence often visually resembles lichens, salt
crusts, or surface disintegration. Enlarging the dataset and including such confounding
examples can improve model robustness and reduce misclassifications.

e Extend to point cloud processing: The ability to process and analyze 3D data (e.g., LiDAR or
photogrammetric point clouds) would significantly improve the applicability of this research
to heritage conservation and BIM-integrated workflows.

e Expand model selection: Time constraints limited the current model choices to those
supported by available research and prior experience. Future work should experiment with
transformer-based models, diffusion models, or graph neural networks designed for spatial
structures.

e Thermal image enhancement: Additional research is encouraged into thermal differentiation
between rising damp and leakage, which may exhibit distinct thermal patterns. Multi-modal
fusion techniques could further improve detection accuracy.

e Promote data sharing: A key limitation in the field remains the lack of open annotated
datasets. This research addresses that by sharing all data and code openly, encouraging
reproducibility and further collaboration.

e While the chi-square analysis of spatial co-occurrence between efflorescence and damage is
included in this research, confidence calibration of the model outputs was considered but
falls outside the present scope. Future work could explore probability calibration methods,
such as logistic regression or post-processing adjustments, to integrate contextual
information (e.g., nearby damage) into efflorescence confidence scores.

5.5. Broader Impact

In addition to the scientific contributions, this research responds to real-world challenges in
construction monitoring and heritage conservation. The lack of skilled workers, combined with
growing maintenance needs, emphasizes the urgency for automated inspection tools. By identifying
both visible surface degradation and underlying efflorescence early, such systems can support
preventive maintenance strategies, reducing long-term restoration costs.
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6.Conclusion

This research explored how deep learning models can be applied to improve the detection of

efflorescence in masonry buildings in the Netherlands, with a focus on real-world variability in
materials, environmental exposure, and damage appearance. This thesis explored the central

research question:

“How can deep learning models be applied to improve the detection of efflorescence in masonry
buildings in the Netherlands?”

The study integrated dataset development, model training, hypothesis testing, and spatial analysis to
assess the potential and challenges of this approach.

This study demonstrates that deep learning models, particularly instance segmentation frameworks
like Mask R-CNN, can be effectively trained to detect efflorescence on masonry surfaces, provided
that sufficient data diversity, annotation quality, and spatial understanding are present. Efflorescence
is a complex phenomenon, affected by material properties, environmental exposure, and moisture
dynamics. Its appearance varies in texture, location (brick face vs. mortar joint), and intensity, which
challenges traditional computer vision methods. Deep learning, especially models capable of pixel-
wise segmentation, offers the ability to learn subtle visual cues and adapt to varying contexts.

In practice, the application of these models requires several key components. First, the dataset must
include a broad range of annotations, surfaces, and damage types to account for the material
diversity in Dutch masonry, particularly in urban and historic settings. This research showed that
pretraining on generic datasets and transfer learning can be leveraged to overcome initial data
scarcity, but model performance improves significantly with tailored, high-quality annotations,
especially when bricks are labeled individually with clear damage type definitions and limited
diversity in the dataset.

Despite these challenges, the study concludes that deep learning models are a valuable tool for
automating efflorescence detection. When combined with carefully designed experiments, consistent
annotation standards, and statistical validation, they can support more reliable and scalable masonry
inspection workflows. The insights gained here could contribute to preventive maintenance, heritage
conservation, and broader efforts to digitize building diagnostics in the Netherlands and beyond.

6.1. Summary of Findings Per Sub-Question

SQ1: What are the visual characteristics of efflorescence on masonry, and how do these factors
present challenges for detection?

Efflorescence presents distinct visual characteristics that make it both a valuable indicator of
underlying salt-related damage and a difficult target for automated detection. It typically appears as a
white crystalline deposit on the surface of brick or mortar, caused by the evaporation of salt related
moisture. However, its detectability is highly variable. When masonry is wet, efflorescence may
dissolve, temporarily disappearing from view. This solubility makes its appearance intermittent and
dependent on environmental conditions such as recent rainfall, humidity, and temperature. As a
result, any detection system relying on visual inputs, especially those trained on still images, must
contend with the instability of the target damage.

In the context of Dutch masonry, the diversity in brick types and surface textures further complicates
visual assessment. Moreover, rising damp and leakage can introduce salts in different ways, leading to
highly localized and non-uniform occurrences. Efflorescence often appears near gutters, at the base
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of walls, or in corners where moisture movement is pronounced, making it harder to capture with
generic imaging approaches.

Another key challenge stems from the misclassification of visually similar phenomena. Surface
features such as calcium-based encrustations, biological growth (e.g., lichens, molds), and even
graffiti can share textural and tonal similarities with efflorescence, particularly in low-light or
overexposed images. These overlapping visual features contribute to false positives in image-based
models. Additionally, efflorescence may coexist with other forms of salt-related damage, including
alveolization, erosion, delamination, exfoliation, powdering, spalling, crumbling, and blistering, each
varying in severity across individual bricks or wall sections. In many heritage buildings, especially
those lacking horizontal moisture barriers, salts migrate over time and precipitate at different heights
depending on their solubility, complicating consistent annotation and predictions. Such variability
reduces annotation consistency and introduces additional noise in the training data, both of which
lower detection accuracy.

From a diagnostics perspective, the MDCS framework and earlier foundational work by van Hees and
van Balen emphasize that efflorescence is both a symptom of salt and moisture transport processes
and an indicator of underlying deterioration mechanisms. While it does not always indicate material
damage, it does signal active salt transport within the wall, which can eventually lead to deeper
deterioration. Efflorescence can occur either on the surface of the masonry, where it is visible and
often considered cosmetic, or within the pores of the brick. Internal crystallization, also known as
crypto-efflorescence, exerts pressure on the material from within, potentially leading to mechanical
damage such as scaling, spalling, or disintegration. This dual manifestation complicates visual
interpretation, as surface efflorescence may appear mild while masking more severe internal
deterioration. Consequently, it becomes difficult to determine the exact location and severity of salt-
related damage based on surface appearance alone. Heritage experts often rely on contextual
information, such as moisture sources, salt types, and environmental data, combined with visual
inspection to make informed diagnoses. These nuanced assessments present a challenge for image-
based machine learning models, which lack access to subsurface indicators and can only infer damage
severity from surface-level features.

These findings underscore that detecting efflorescence is not merely a matter of classification
accuracy. It involves coping with material heterogeneity, variable visibility, and context-dependent
interpretation. Therefore, machine learning models developed in this study needed to be carefully
trained with annotated datasets that account for these complexities—highlighting the importance of
domain-specific knowledge in designing both the annotation schema and the detection approach.

SQ2: Which deep learning models are most suitable for detecting and classifying efflorescence on
masonry, based on performance criteria?

This study benchmarked two widely adopted deep learning models — Mask R-CNN and YOLOv8 — to
evaluate their suitability for detecting efflorescence in heritage masonry. These models represent two
fundamentally different object detection paradigms: a two-stage, segmentation-oriented framework
(Mask R-CNN) and a one-stage, real-time detection model (YOLOv8). The evaluation was grounded in
both theoretical architecture (as detailed in Chapter 2.2) and experimental results across multiple
training setups.

Mask R-CNN builds on the Faster R-CNN pipeline, adding a segmentation branch and using a Feature
Pyramid Network (FPN) to effectively detect objects across multiple scales. The inclusion of Rol Align
preserves pixel-level precision, a critical factor for identifying irregular, diffuse damage patterns such
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as efflorescence. Despite higher computational requirements, this architecture supports detailed
instance segmentation, making it well-suited for fine-grained masonry analysis.

In contrast, YOLOvVS is designed for speed. As a one-stage, anchor-free detector, it performs
classification and localization in a single forward pass. YOLOv8 uses C2f blocks and a multi-scale
feature fusion "neck" (similar to FPN) for efficient feature propagation, and outputs predictions
directly from its detection head. While this makes YOLOvS fast and lightweight, it does so at the cost
of segmentation quality and spatial granularity.

The models were evaluated using common performance metrics:

e Mean Average Precision (MAP@0.5): Both models reached a modest score of ~0.35, which
suggests dataset limitations (small size, inconsistent annotations, varying lighting) rather than
model underperformance. However, Mask R-CNN consistently outperformed YOLOvS8 in mAP
during early and peak epochs.

e Precision: YOLOv8 demonstrated slightly higher precision (0.60) across epochs, indicating a
lower false positive rate. This suggests that YOLOv8 is more selective in assigning detections,
which aligns with its bounding-box-first design.

e Recall: YOLOVS also achieved higher recall, meaning it was better at detecting all instances of
efflorescence, albeit sometimes at the cost of overgeneralization or false positives.

e Loss Trends: Mask R-CNN exhibited lower and more stable classification and bounding box
regression loss, indicating stronger learning stability and more precise region proposals.

e Inference Speed: YOLOV8's anchor-free design and single-pass architecture resulted in higher
theoretical throughput, though in this setup.

Qualitative visualizations revealed clear behavioral differences. Mask R-CNN produced detailed masks
with tight boundary alignment, making it ideal for pixel-level mapping. However, it sometimes over-
segmented or misclassified faint discolorations. YOLOv8, while unable to provide masks, offered
broader coverage with dense bounding boxes, which occasionally resulted in less spatial precision.

Misclassification between efflorescence and visually similar damages (e.g., encrustation, lichens,
graffiti) occurred in both models, though Mask R-CNN appeared more prone to false positives, while
YOLOv8 missed finer detections. These results underscore the challenge of visually ambiguous
features and the importance of dataset refinement.

Despite the advantages of YOLOvS8 in speed and recall, the spatial precision, segmentation quality,
and stability of Mask R-CNN make it more suitable for the fine-grained detection tasks required in
heritage masonry studies. Especially when understanding the extent, shape, and overlap of damage is
important, such as differentiating efflorescence from adjacent surface deterioration, Mask R-CNN
offers superior utility.

However, both models are affected by the underlying dataset variability, not just architecture. Low
mAP and limited generalization highlight the need for future improvements in data annotation
consistency, lighting normalization, and scale standardization, all of which would enhance learning
and prediction stability.

SQ3: What is the effect of variables (such as image quality, lighting, and orientation) on the
performance of the model?
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The third sub-question addresses one of the most critical practical challenges in deploying deep
learning for efflorescence detection: how environmental and visual acquisition factors affect model
accuracy. Field testing and dataset inspection revealed that real-world variation in image quality,
lighting, scale, and angle introduces significant performance degradation, particularly in cases where
efflorescence appears faint, fragmented, or unevenly illuminated. These inconsistencies often result
in segmentation artifacts or missed detections, especially on reflective, dark, or shaded surfaces.

To address these challenges, this study explored both annotation strategy and augmentation design.
A pivotal decision was the transition from class-agnostic efflorescence masks to brick-level
annotations. This revised strategy helped the model contextualize damage in relation to the masonry
unit, thereby improving spatial relevance and interpretability, especially when assessing location-
based causes like rising damp or material degradation. Previous attempts at multi-class annotations
(e.g., distinguishing between efflorescence on mortar joints versus bricks) were abandoned due to
class imbalance and limited training benefit.

In parallel, augmentation pipelines were developed using OpenCV and Albumentations to simulate
real-world variability. Transformations included controlled adjustments in brightness, contrast,
resolution, angle, and scale. These augmentations were essential for testing Hypothesis 4, which
posits that increasing dataset diversity improves model robustness under non-ideal conditions.

Literature highlights the importance of such augmentation: studies that achieve high precision often
use controlled orthogonal datasets, whereas field-acquired datasets like in this study, with varying
exposure, framing, and resolution, present greater learning complexity. This variation was evident in
image resolution (from 232x300 to 5858x3911 px) and acquisition devices (smartphones vs. DSLR),
which complicates feature consistency and affects generalization.

The results of the augmentation experiments confirm that model performance is indeed sensitive to
changes in image quality, viewpoint, and lighting. Quantitative analyses showed that mild
perturbations, such as +5° rotations or modest scale increase, had limited effect on performance.
However, more extreme transformations, particularly image downscaling (0.5%), severe brightness
reductions (-20%), and low resolution inputs (160x160), resulted in substantial drops in detection
accuracy and unstable training behavior.

Qualitative results reinforced these observations: under low-light conditions or reduced image
resolution, the model frequently failed to detect efflorescence or produced fragmented masks with
low confidence. In contrast, certain augmentations, like slight overexposure (+10% brightness), even
improved detection performance, suggesting the model benefits from well-lit, high-contrast inputs.
Angular deviations beyond +10° and strong resolution loss were particularly detrimental, leading to
distorted perspective and blurred texture detail that interfered with spatial recognition.

These findings support the hypothesis that strategic augmentation can help mitigate sensitivity to
acquisition variability. However, they also underscore the limitations of current architectures when
faced with domain shift. The study shows that while augmentations improve general robustness, they
do not fully compensate for the underlying dependence on visual clarity and consistent framing,
especially for detecting subtle, diffuse damage patterns like efflorescence.

SQ4: How can the model performance be improved by addressing misclassification of similar
damage types and co-occurrence with efflorescence?
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This sub-question aimed to tackle two persistent challenges in efflorescence detection: (1)
misclassification with visually similar surface features such as encrustation, lichens, and graffiti, and
(2) the difficulty in detecting co-occurring damage types within the same or neighbouring masonry
units.

Initial evaluations of Mask R-CNN and YOLOv8 models revealed a clear issue: misclassification of
efflorescence, especially when confused with similar-looking damage types like encrustation, graffiti,
and biological growths. These errors arose from overlapping visual cues, such as white surface
patches, irregular textures, or environmental staining, which challenged not only the model but also
human observers.

To mitigate this, the models were retrained using a multi-class strategy, assigning separate categories
to efflorescence, encrustation, lichens, and graffiti. The following patterns emerged:

e Graffiti reached the highest mAP (0.6) and precision near 1.0, attributed to its strong color
contrast with masonry. As seen in the confusion matrix, it had 67 true positives, only 1 false
positive, and 2 false negatives, reflecting stable detection with minimal confusion.

e Lichens emerged as the most robust new class, showing perfect classification by epoch 60: 29
true positives, no false positives or false negatives. This was supported by mAP curves and
high precision/recall, indicating the model learned to distinguish lichens based on their
unique texture and color.

e Encrustation, however, exhibited higher segmentation uncertainty: while true positives were
comparable (36), it also produced 5 false positives and 4 false negatives, indicating that the
model often over-segmented or falsely triggered on rough surfaces. mAP fluctuated between
0.35 and 0.5 across epochs, and its recall and precision lagged behind other classes.

e Efflorescence, while achieving consistent mask shapes and relatively high recall (0.75-0.8 in
some epochs), showed the most instability in precision and mAP. For example, in one test
case, it achieved 33 true positives, but still had 1-2 false positives depending on the pairwise
test. This instability is further confirmed by the fluctuating mAP and recall curves over time.

These results, illustrated clearly in your evaluation plots and confusion matrices, underscore the
importance of visual distinctiveness and annotation clarity. Where graffiti and lichens are distinct in
texture or hue, efflorescence's diffuse appearance and overlap with damage artifacts like
encrustation lead to confusion. Nonetheless, the multi-class setup did help compartmentalize class-
specific features, improving detection consistency compared to the original single-class model.

The final improvement was evaluated through a co-occurrence hypothesis, assessing whether
damage frequently occurs near efflorescence. A Chi-square test based on centroid analysis of ground
truth annotations confirmed a statistically significant correlation (p < 0.00001) between efflorescence
and adjacent damage, especially within 1-2x brick-width range. However, the model itself often failed
to detect both classes on the same brick, motivating the use of annotations over predictions for co-
occurrence testing. This highlights an architectural limitation in the model’s ability to recognize
overlapping or co-existing damage features.

To explore whether damage frequently occurs near efflorescence, a Mask R-CNN model was trained
to detect both classes on annotated masonry images. The model was trained for 60 epochs using a
dataset annotated for both efflorescence and physical damage (e.g., disintegration, loss of cohesion,
layering). Training progress was monitored via total loss, classification loss, bounding box loss, and
mask loss. As seen in the logs, total loss dropped sharply in the early epochs and plateaued around
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1.0 after epoch 30, indicating basic convergence. The bounding box loss converged rapidly (<0.1),
suggesting reasonable spatial localization. However, classification loss remained relatively high (0.5),
indicating difficulty in distinguishing between damage and efflorescence, especially when both
appear in the same region. Mask loss stabilized around 0.15-0.2, reflecting moderate segmentation
performance but leaving room for improvement.

Evaluation results highlighted further limitations. Class-specific recall for the combined detection of
efflorescence and damage increased slowly, reaching only 0.40 by epoch 60, with significant
fluctuations. Precision started high (0.75) but declined steadily, stabilizing around 0.55-0.60,
reflecting a growing rate of false positives during training. Meanwhile, mMAP@0.5 performance was
stronger for damage (0.45) than efflorescence (0.30-0.35), likely due to efflorescence’s more diffuse
and ambiguous appearance. Notably, both metrics showed instability across epochs, with sharp
spikes and drops, which undermines model reliability. These fluctuations are likely due to dataset
imbalances, noisy or overlapping annotations, and the challenge of detecting co-located phenomena.

Crucially, qualitative inspection revealed that the model frequently failed to detect both classes
within the same brick, even when the annotations clearly indicated overlapping efflorescence and
damage. Instead, the model tended to isolate only one class, missing dual-presence cases entirely.
This architectural limitation in instance-based segmentation, combined with training instability, led to
the decision to base the spatial co-occurrence analysis on ground truth annotations rather than
model predictions.

For the statistical evaluation, a Chi-square test of independence was performed on centroid-based
ground truth annotations to test the hypothesis:

e Ho (Null Hypothesis): The presence of damage in a brick is independent of efflorescence in its
neighboring bricks.

e H, (Alternative Hypothesis): Bricks near efflorescence are more likely to exhibit damage.

Annotations were analyzed using their centroid positions, with proximity zones defined relative to
average brick width (e.g., within 1x, 2x, and 5x distances). The results confirmed a significant spatial
association between efflorescence and nearby damage (p < 0.00001 for 1-2x width zones), strongly
supporting Hy. Although the model could not reliably capture dual-label instances, the annotated data
clearly showed that these forms of degradation tend to co-occur, especially within close spatial
proximity. Incorporating additional data, and running interference by different single class models
could increase the detection accuracy by dual-label instances overlapping as a post processing step.

SQ5: How can the integration of thermal (IR) imagery improve the detection accuracy and reliability
of efflorescence in masonry?

To evaluate Hypothesis 1, whether thermal imaging improves efflorescence detection in moisture-
related masonry, an RGB-Thermal (RGBT) model was developed and compared to a baseline RGB-only
setup. By incorporating thermal data as a fourth channel, the model aimed to capture moisture
gradients not always visible in RGB images, particularly in cases involving rising damp, leakage, or salt
accumulation. The RGBT model was trained on 150 spatially aligned RGB and thermal image pairs,
with the goal of increasing detection reliability under ambiguous conditions.

Quantitative results confirmed the benefits of thermal fusion in reducing false positives and boosting
model confidence. The RGBT model consistently achieved higher precision (up to 0.94) and lower
false positive counts (as low as 3 per evaluation set), reflecting more selective and reliable
segmentation. It also maintained a high average confidence (0.96), suggesting that the predictions it
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made were typically well-founded. In contrast, the RGB-only model leaned toward high recall (up to
0.96) and mAP (up to 0.84), but suffered from a greater number of false positives (up to 18),
especially in scenes with texture-heavy or light-stained surfaces. Both models ultimately reached
comparable F1-scores (0.76—0.84), though through different strategies: RGB favored exhaustive
coverage, while RGBT prioritized high-certainty detections.

However, the RGBT model introduced new challenges during training. Its loss and mAP curves were
more erratic, particularly in early epochs, indicating sensitivity to the added modality and a higher
risk of underfitting or over-regularization. The RGB model, in contrast, showed smoother convergence
and lower total loss across class, mask, and box components. Additionally, the RGBT model tended to
miss valid instances, sometimes yielding over 20 false negatives, suggesting it was more conservative
when thermal data did not strongly indicate moisture presence. These issues point to the need for
longer training cycles and more diverse input to stabilize the benefits of thermal fusion.

Despite these trade-offs, the RGBT model proved more reliable in field-like conditions where false
positives are harder to filter manually, such as historic fagcades or poorly lit interiors. Its ability to
avoid spurious detections makes it particularly suited for applications where over-segmentation is
costly, including automated damage mapping or restoration prioritization. Overall, the hypothesis is
supported: thermal imaging improves detection reliability in moisture-related cases, but also requires
careful training and use-case-specific balancing between recall and certainty.

SQ6: How well does the enhanced model perform when evaluated on unseen data and applied to
real-world case studies of efflorescence?

When applied to the real-world case study, the enhanced model demonstrated a consistent ability to
identify efflorescence across varying grid configurations, though overall performance was influenced
by spatial scale, image quality, and surface complexity. The triple-grid configuration (V1) produced
detailed but fragmented segmentation, characterized by low confidence scores for efflorescence and
limited graffiti recognition. The double-grid configuration (V2) improved graffiti detection and local
surface response but introduced false positives on non-masonry features. The single-grid
configuration yielded the most stable results, with high efflorescence confidence and improved
damage consistency, though bright graffiti regions were occasionally misclassified as efflorescence.

Despite these outcomes, several practical limitations remain when applying the models to real-world
environments. The dataset and field-acquired imagery contain substantial variation in resolution,
scale, and lighting, leading to inconsistent feature representation between samples. This diversity
mirrors real-world heterogeneity but complicates precise segmentation under uncontrolled capture
conditions. Differences in camera type, framing distance, and occlusion (e.g., vegetation, surface
reflections, or construction elements) further challenge the model’s robustness and generalization
ability. Moreover, the image reconstruction process used for case study visualization constrains mesh
resolution, file size, and point density, reducing texture sharpness and limiting the model’s ability to
identify fine-grained surface details such as micro-cracks or subtle efflorescence boundaries. These
limitations illustrate the broader challenges of scaling deep learning models from controlled training
datasets to in-situ heritage environments, where variations in geometry, lighting, and material
weathering are unavoidable.

Nevertheless, the model’s capacity to reliably detect efflorescence under diverse, unseen conditions
demonstrates potential for practical diagnostic use. Future improvements in dataset quality, camera
calibration, and high-resolution reconstruction workflows could further enhance segmentation
precision and make such models more deployable for large-scale, on-site heritage monitoring.
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Appendix | — Additional results
MODEL A - RGBT vs MODEL B — RGB

Upon request the entire thermal imagery dataset can be accessed
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MODEL D - GRAFFITI vs MODEL E — LICHENS vs MODEL F — ENCRUSTATION

RPN Class Loss Over Epachs
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MODEL | - DAMAGE & EFFLORESCENCE

RPN BBox Loss Over Epechs

RPN Class Loss Over Epachs
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Chi-square per cumulative cutoff

Cutoff In~Dam In~Und Out~Dam Out~Und Chi2 p-value Sig<0.05
1.0 449 74 11748 4301 41.065  1.47E-10 YES
<15 1239 297 10958 4078 43.0768 5.26E-11 YES
2.0 2061 553 10136 3822 43.6147 4.00E-11 YES
<25 3513 1029 8684 3346 44.8911 2.08E-11 YES
<3.0 4581 1448 7616 2927 27.497  1.57E-07 YES
<3.5 6532 2151 5665 2224 24.6863 6.75E-07 YES
<4.0 8002 2705 4195 1670 19.9321 8.02E-06 YES
4.5 10288 3642 1909 733 2.841 9.19E-02 no
Cummilatitve contingency table

Cutoff(sx) Eff~Damage Eff~Undamaged Clean~Damage Clean~Undamaged Row Total
£1.0x 449 74 11748 4301 16572
<1.5x 1239 297 10958 4078 16572
£2.0x 2061 553 10136 3822 16572
£2.5% 3513 1029 8684 3346 16572
<3.0x 4581 1448 7616 2927 16572
<3.5x 6532 2151 5665 2224 16572
<4.0x 8002 2705 4195 1670 16572
£4.5x 10288 3642 1909 733 16572
Contingency table

Zone Damaged Undamaged Row Total (Ri)

Zone 1(<1.0%) 449 74 523

Zone 2 (1.0x-1.5x] 790 223 1013

Zone 3(1.5%-2.0x] 822 256 1078

Zone 4 (2.0x-2.5x] 1452 476 1928

Zone 5 (2.5x-3.0%] 1068 419 1487

Zone 6 (3.0x-3.5x] 1951 703 2654

Zone 7 (3.5%-4.0x] 1470 554 2024

Zone 8 (4.0x-4.5x] 2286 937 3223

Zone 9 (4.5%-5.0%] 1909 733 2642

COLUMN TOTALS 12197 4375 16572
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All code is publicly available on GITHUB:

https://github.com/ValentijnCamielCloo/VCLOO Master Thesis
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Appendix Il — Dataset

Instance Segmentation

@ Damage 2.0
Edited 20 hours ago
Public « 56 Images « 1 Models

Instance Segmentation

® thermal 2

Edited a month ago

Public « 115 Images « 1 Models

Instance Segmentation

@ Damage

Edited 2 months ago

Public « 769 Images « 1 Models

All datasets are publicly available at

https://app.roboflow.com/valentijn/

Instance Segmentation

@ thermal 2.0

Edited 8 days ago

Public « 149 Images « 0 Models

Instance Segmentation

@ encrustation

Edited 2 months ago

Public « 916 Images « 1 Models

Instance Segmentation

@ lichens

Edited 2 months ago

Public « 724 Images « 1Models

sl

Instance Segmentation

@ Thermal

Edited a month ago

Public « 198 Images « 1 Models

Instance Segmentation

@ graffiti

Edited 2 months ago

Public « 1221 Images « 1 Models
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