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Preface

During the master’s programme Geomatics for the Built Environment at TU Delft, I
was introduced to a wide spectrum of geospatial technologies and their applications
in urban contexts. The curriculum established GIS and spatial analysis techniques
along with some exposure to frontier technologies such as machine learning, real-
time sensor networks, and advanced 3D visualization.

As these technologies shape the future of smart cities and data-driven decision-making,
I was intrigued by a fundamental question: could similar methods be used to under-
stand and predict aspects of indoor built environment? More specifically, I wondered
if parameters such as indoor temperature or air quality could be forecasted using a
combination of real-time sensor readings and spatial information embedded in building
models.

This thesis represents the outcome of that exploration. It brings together multiple
domains including IoT systems, GeoWeb, data analytics, BIM modeling, and machine
learning, to investigate how built environment characteristics can interact with live
sensor data to support simulation and prediction of indoor environmental conditions.

The journey of completing this research has been both technically challenging and
engaging. Exploring how server-backed front-end applications can be integrated with
machine learning mechanisms (despite starting with only a foundational understand-
ing of coding and Machine Learning (ML)) was deeply rewarding. It helped me ap-
preciate the capabilities of open-source tools available today and made me realize
how much is possible even without deep expertise in machine learning theory. While
a strong foundation in core ML theory is substantially valuable, its absence does not
have to be an inhibitor for the development of ML-powered tools in geospatial analyt-
ics.

While I am aware that this field is evolving rapidly, I hope that the work presented here
contributes in a small but meaningful way to the broader dialogue on smart buildings,
environmental sensing, and predictive modeling for sustainable urban development.

Vidushi Bhatt, October 2025
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List of Abbreviations

API Application Programming Interface
AR Augmented Reality
BIM Building Information Modeling
CBDM Climate-Based Daylight Modeling
CESIUM CesiumJS (WebGL-based 3D visualization library)
CNN Convolutional Neural Network
CSV Comma-Separated Values
DA Daylight Autonomy
DHI Diffuse Horizontal Irradiance
DNI Direct Normal Irradiance
EPBD Energy Performance of Buildings Directive
EPC Energy Performance Certificate
EU European Union
FROST Fraunhofer Open Source SensorThings
GH Grasshopper (Visual Programming Platform for Rhino)
GIS Geographic Information System
GHI Global Horizontal Irradiance
glTF GL Transmission Format
GUI Graphical User Interface
GWR Geographically Weighted Regression
IFC Industry Foundation Classes
IoT Internet of Things
ISO International Organization for Standardization
LOD Level of Detail
LSTM Long Short-Term Memory
ML Machine Learning
NREL National Renewable Energy Laboratory
OBJ Object File Format (for 3D models)
OGC Open Geospatial Consortium
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ReLU Rectified Linear Unit
RMSE Root Mean Square Error
RNN Recurrent Neural Network
SBI Solar Beam Irradiance
SDI Spatial Data Infrastructure
SHGC Solar Heat Gain Coefficient
SODA Solar Radiation Data from Meteotest (Linke Turbidity DB)
SPA Solar Position Algorithm
SRI Smart Readiness Indicator
SVM Support Vector Machine
sDA Spatial Daylight Autonomy
UI User Interface
UDI Useful Daylight Illuminance
XGB XGBoost (Extreme Gradient Boosting)
STA SensorThings API
MAE Mean Absolute Error
MSE Mean Squared Error
R2 Coefficient of Determination
PostGIS Spatial Extension for PostgreSQL
IFC2X3 Industry Foundation Classes Schema Version 2X3
IFC4 Industry Foundation Classes Schema Version 4
EPSG European PetroleumSurveyGroup (Coordinate Reference System Iden-

tifier)
CRS Coordinate Reference System
RD New Rijksdriehoekscoördinaten New (Dutch National Grid)
UTC Coordinated Universal Time
JSON JavaScript Object Notation
HTTP Hypertext Transfer Protocol
URL Uniform Resource Locator
QGIS Quantum Geographic Information System
PVLib Python Photovoltaic Library for Solar Analysis
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1
Introduction

Buildings play a critical role in energy consumption, carbon emissions, and occupant
well being, making the ability to monitor and predict their indoor environmental condi-
tions increasingly important. In this context, the intention of this thesis is to develop
an interoperable system for room level prediction of indoor temperature, using open
standards and lightweight computational tools. This work demonstrates a standards
based approach for forecasting indoor temperature in uninstrumented spaces by in-
tegrating BIM semantics encoded in IFC, the OGC SensorThings API (STA) for IoT
interoperability, and a computationally efficient machine learning framework. The em-
phasis is on leveraging open-source implementations and lightweight ML methods,
such as XGBoost, that can be incrementally retrained and readily deployed in real-
world contexts.

1.1. Background and Motivation
The drive toward sustainable and resilient buildings has intensified due to their sub-
stantial contribution to global energy consumption and greenhouse gas emissions.
Beyond environmental considerations, maintaining comfortable and healthy indoor
conditions is central to human well being and productivity. However, achieving this
balance requires accurate knowledge of indoor environmental dynamics, which are
shaped by the interplay of outdoor climate, building characteristics, and occupant be-
haviour.

Traditionally, two main approaches have been used to understand these dynamics:
dense sensor networks for real-time monitoring, and physics based simulations for
predictive analysis. Both approaches face practical constraints. Installing and main-
taining sensors in every room is costly and intrusive, while physics based simulations
require strong assumptions and are computationally expensive for real time applica-
tions. These limitations create knowledge gaps in many uninstrumented spaces, con-
straining data-driven strategies for building management.

Emerging digital infrastructures offer pathways to overcome these challenges. IoT
frameworks now enable continuous and standardized data exchange from distributed
sensors. BIM encodes geometric and semantic attributes of buildings, such as room

1



1.1. Background and Motivation 2

volume, orientation, and window placement, providing spatial context that comple-
ments sensor observations. Machine learning (ML) methods add a further dimen-
sion by learning directly from observed data, capturing nonlinear relationships without
relying on simplified physical assumptions. In particular, lightweight ensemble ap-
proaches such as XGBoost are well-suited to structured datasets typical at the building
level, offering speed, interpretability, and support for incremental retraining.

Themotivation for this thesis lies in bridging these complementary domains through an
open and interoperable prototype. By combining IFC-based BIM semantics, IoT data
managed through the OGC SensorThings API and FROST server, and an XGBoost-
based predictive pipeline, this work demonstrates how uninstrumented building spaces
can be modeled with readily deployable tools. The emphasis on standards-based
integration and lightweight ML reflects not only the technical feasibility but also the
practical scalability of the proposed approach for smart building applications.

1.1.1. Introduction to Components: IoT and Geospatial
The Internet of Things (IoT) refers to a network of interconnected physical devices
including sensors, actuators, micro controllers, edge computing units, and wireless
communication modules that work together to collect, transmit, and sometimes locally
process data from the physical world. These embedded systems enable real-time
monitoring and control by forming a feedback loop between physical phenomena and
digital systems. While sensors gather data such as temperature, humidity, or light in-
tensity, actuators perform actions like adjusting ventilation or controlling lighting based
on this data. Microcontrollers and embedded processors manage local decision mak-
ing and communication, often operating at the edge to reduce latency and offload
computation from centralized servers. In the context of buildings, these IoT compo-
nents are commonly used to monitor indoor environmental conditions such as tem-
perature, humidity, CO2 levels, noise, and pressure. Such parameters are crucial for
maintaining energy efficiency, occupant comfort, and safety.

Geospatial technologies deal with data that has an inherent spatial or locational dimen-
sion data that can be mapped, analyzed, or interpreted in terms of where it occurs.
These technologies encompass a wide range of tools and systems, such as Geo-
graphic Information Systems (GIS), spatial databases, remote sensing platforms, and
visualization environments. Among these, GIS plays a central role as both a frame-
work and a platform for managing spatial information. More importantly, GIS can act
as a connector between disparate data sources. For instance, when environmental
sensor data (e.g., temperature, humidity) is tagged with spatial coordinates or room-
level identifiers, GIS provides the spatial context needed to integrate that data with
digital building models, infrastructure layouts, or meteorological datasets. This capa-
bility transforms otherwise siloed datasets into actionable spatial knowledge, enabling
predictive modeling, resource optimization, and real-time monitoring across domains
such as urban planning, building management, and environmental sensing [26, 22].
However, the utility of GIS for building level applications is further enhanced when
combined with Building Information Modelling (BIM). Whereas GIS offers the broader
spatial context, BIM supplies the fine grained detail of building components and their
semantic relationships, allowing multi-scale integration of data.
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BIM is a process of creating and managing digital representations of the physical and
functional characteristics of built assets throughout their lifecycle [56]. These repre-
sentations include geometry (3D shape), relationships among building components,
metadata such as material properties, construction specifications, and operational fea-
tures [7, 9]. When enriched with locational context such as geographic coordinates,
spatial relationships among rooms, orientation, window placement, and room volume,
BIM semantics can become a powerful contributor to a geospatial ecosystem. In this
sense, BIM provides not only what a building is composed of, but also where and
how its elements relate to external context: for example, which rooms receive sun-
light at what angles, which walls face north vs. south, or how airflow might be affected
by urban surroundings. Such locational aspects enable BIM-based data to be fused
with other sources (e.g., sensor networks, external climate data) for spatially-aware
analytics and prediction.

Together, these domains highlight a layered integration of technologies. Sensors pro-
vide real-time observations of environmental conditions, which are managed through
IoT infrastructures for collection, transmission, and interaction. BIM contributes se-
mantic and structural detail of buildings and their elements, allowing integration with
sensor data to generate a spatial framework that reveals context and relationships.
Combined, these capabilities enable a holistic view of the built environment, where
operational data, structural semantics, and spatial context reinforce one another to
support advanced analysis, predictive modeling, and decision making.

1.1.2. Integration of IoT, GIS and BIM
The integration of IoT and geospatial technologies is emerging as a transformative ap-
proach in smart building and urban analytics. By linking sensor data to specific physi-
cal locations and architectural components, one can enable spatially informed insights
and decisions. This combined approach supports a variety of use cases from energy
efficient building operations and predictive maintenance to emergency response, oc-
cupancy monitoring, and indoor air quality control; For example, associating indoor
air quality data with BIM based room geometry can allow facility managers to localize
problems and take targeted actions. When sensor readings are spatially visualized
and temporally tracked, they can expose hidden patterns such as heat retention in
poorly ventilated rooms or correlations between sunlight exposure and CO2 buildup.

A compelling example is provided by the University of Cagliari study on BIM and IoT
Sensors Integration [16]. The researchers integrated real-time sensor data into a BIM
environment and visualized indoor conditions to flag potential issues such as overheat-
ing, fire risk, or poor air quality. This highlights the power of IoT–BIM frameworks not
only for monitoring and alerts, but also for visualisation and for setting up control mech-
anisms. The significance of such integration becomes broader when examined in the
context of smart city frameworks and their goals for sustainable urban development.
As cities increasingly aim to becomemore energy efficient, resilient, and responsive to
the needs of their inhabitants, integrating data-driven monitoring systems with spatial
models like location aware BIM enables more precise, localized, and adaptive deci-
sion making. These technologies can support intelligent building management, inform
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urban policy, and ultimately contribute to reducing environmental impact at both the
built and urban scale.

1.2. Problem Statement
The growing availability of indoor sensors has enabled continuous monitoring of pa-
rameters such as temperature, noise, humidity, and CO2 concentration. However, de-
ploying sensors in every room of a building is costly, intrusive, and often impractical.
As a result, many building spaces remain uninstrumented, leaving gaps in knowledge
about their environmental conditions. This limitation constrains the ability of facility
managers and researchers to develop holistic, data-driven strategies for energy effi-
ciency and occupant comfort.

At the same time, Building Information Modelling (BIM), particularly through the In-
dustry Foundation Classes (IFC) standard, provides detailed semantic and geometric
representations of building spaces, including room volume, orientation, and window
characteristics. Although BIM holds potential for augmenting sensor based monitor-
ing, its integration with real time observations remains limited in practice. Most exist-
ing systems rely on proprietary software or ad-hoc connections between sensors and
building models, restricting interoperability and scalability.

Machine learning (ML) techniques, especially ensemble methods such as XGBoost,
offer the ability to learn from historical sensor data and predict future environmental
conditions. Yet, current applications at the building scale often emphasize energy
demand forecasting or comfort optimization, with fewer studies addressing room level
prediction of conditions in non-instrumented spaces. Table 2.1 presents a comparative
analysis of case studies that integrate IoT, BIM, and predictive modeling, highlighting
their respective focus areas, methodological choices, and limitations in relation to the
objectives of this thesis.

The problem addressed in this thesis therefore lies in the absence of an open, standards-
based framework that combines IoT observations, BIM semantics, and machine learn-
ing to predict indoor environmental conditions in uninstrumented spaces. Specifically,
this work investigates how the OGC SensorThings API (STA) can be employed for
interoperable sensor data exchange, how IFC-based BIM models can supply spatial
and semantic attributes, and how these inputs can be integrated into an ML pipeline
to predict indoor temperature in rooms without sensors. The development and evalu-
ation of such a prototype form the central challenge of this thesis.

1.3. ML as an Approach for Predictive Modelling
Predicting indoor environmental conditions has traditionally relied on physics-based
and statistical methods. Physics-based simulation tools such as EnergyPlus and TRN-
SYS explicitly model heat transfer, solar radiation, material properties, and HVAC dy-
namics to estimate indoor conditions [15, 55]. While these approaches are grounded
in thermodynamic principles and provide detailed control over physical parameters,
they are computationally intensive and demand precise input data that may not always
be available. Moreover, their reliance on assumptions regarding occupant behavior
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and HVAC operation often leads to discrepancies between simulated and actual con-
ditions [29].

Statistical methods, such as autoregressive integrated moving average (ARIMA) mod-
els and linear regression, have also been applied for short-term indoor temperature
forecasting [46]. These approaches are lightweight and interpretable but are limited
in their ability to handle nonlinear interactions among variables, such as the combined
effects of solar radiation, room geometry, and outdoor climate. As buildings represent
highly dynamic systems where environmental factors interact in complex and often
nonlinear ways, purely statistical models tend to underperform in real-world applica-
tions [43].

Machine learning (ML) has emerged as a compelling alternative for predictive mod-
eling in built environments. Unlike purely physics-based or statistical approaches,
ML can learn directly from observed data, capturing nonlinear relationships and in-
teractions between features without requiring explicit physical formulations. Studies
demonstrate the suitability of ML for indoor temperature forecasting, energy demand
prediction, and comfort modeling, showing superior performance compared to con-
ventional statistical baselines. Paul et al. [48] evaluated multiple algorithms, including
Random Forests, Support Vector Machines, and Neural Networks, for room-level in-
door temperature prediction, providing strong evidence of ML’s suitability in this exact
context. Similarly, Allam, Kassem, and Elagouz [4] implemented a lightweight cloud-
based IoT framework that employed linear regression and basic ML techniques for
forecasting temperature and humidity, demonstrating feasibility even in resource con-
strained setups. Related applications extend this evidence base: Imran, Iqbal, and
Kim [35] applied predictive optimization to IoT-driven task scheduling for reducing resi-
dential energy consumption, while Xin et al. [61] proposed a CNN–LSTM hybrid model
for spatio-temporal energy demand forecasting at city scale. Complementing these
case studies, review articles such as Liu et al. [43] and Ahmad, Chen, and Guo [1]
emphasize that ML approaches consistently outperform traditional statistical methods
in building energy and environmental prediction tasks, underlining their growing im-
portance for short term indoor environmental forecasts. Algorithms such as Support
Vector Machines (SVM), Random Forests, and Artificial Neural Networks (ANN) have
been applied to building-level datasets with promising results, particularly when sen-
sor data are abundant and high-resolution [48, 4].

Among ML methods, ensemble-based approaches have shown consistent advan-
tages for structured data prediction. Random Forests provide robustness by aver-
aging across multiple trees, thereby reducing variance and overfitting [12]. Gradient
boosting methods further improve accuracy by sequentially correcting the errors of
previous learners, capturing complex feature interactions. Extreme Gradient Boost-
ing (XGBoost), in particular, has gained traction in environmental modelling and time-
series prediction due to its computational efficiency, support for missing values, and
ability to incorporate heterogeneous features [14, 34]. Compared to deep learning
methods such as CNNs or LSTMs, which typically require large-scale datasets [61],
XGBoost is well-suited for medium-sized, structured datasets typical of room-level
building applications.
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This thesis therefore employs XGBoost regression as the core predictive model. Its
suitability arises from three factors: (i) ability to incorporate heterogeneous predictors
such as room volume, solar inflow, and external temperature, (ii) efficiency for periodic
retraining on moderate datasets, and (iii) interpretability of feature importance, which
ensures transparency in linking spatial and environmental variables to predictions. By
adopting this approach, the study balances predictive accuracy with computational
feasibility while maintaining compatibility with the standards-based data infrastructure
developed in this research.

1.4. Research Objectives and Contributions
This study aims to develop a geospatial IoT system that captures, analyses, and visu-
alizes indoor environmental parameters, specifically indoor temperature. It proposes
a prototype system that uses open standards such as IFC for BIM representation
and OGC SensorThings API for sensor data exchange. Data from Netatmo sensors,
deployed in the BK Building at TU Delft, is collected at room level and stored in a
FROST server. A key objective is to spatially map this sensor data onto a 3D BIM
model (hosted on CesiumJS) to explore relationships between indoor conditions and
building characteristics like volume and solar exposure.

The study attempts to predict environmental conditions using XGBoost, a supervised
machine learning algorithm. The approach supports environments where direct sen-
sor deployment is not feasible, offering a simulation based proxy.

The research is guided by three core questions:

• How can datastreams from IoT devices be stored, processed, and analyzed for
deriving geospatial insights?

• Which measurable aspects of the built environment can be tested for correlation
with indoor environmental quality?

• Can a simulation model based on building and sensor data be used to predict
environmental conditions in non-instrumented spaces?

By exploring these questions, the study contributes to bridging the gap between IoT
technologies and spatial data infrastructures. It lays the groundwork for smarter build-
ings using open source frameworks and tools.

Several environmental and spatial parameters can influence the internal temperature
of a room. Numerous studies in building science and indoor environmental qual-
ity highlight the key drivers of indoor thermal conditions. Solar radiation particularly
through glazed facades is frequently cited as a dominant factor affecting indoor tem-
peratures, both through passive heating and overheating risks in perimeter zones [6,
5]. External climatic variables such as outdoor air temperature, humidity, wind speed,
and pressure also significantly contribute to a room’s thermal dynamics, as they di-
rectly affect energy exchange between indoor and outdoor environments [57]. Finally,
the building’s own thermal characteristics, especially room volume and thermal mass,
play a critical moderating role, dampening temperature fluctuations and providing ther-
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mal inertia [58]. Together, these environmental inputs, spatial attributes, and building
physics form the foundation of predictive modeling in room-scale thermal analysis.

1.5. Scope and Limitations
This thesis project focuses on analysing the patterns, correlations, and prediction of
indoor temperature at the room (IFC space) level. Other indoor environmental param-
eters such as CO2 concentration and noise levels have been excluded from the scope
of this project. However, since the developed system is based on interoperable stan-
dards and indoor sensors are capable of providing a variety of parameters, indoor tem-
perature could be readily substituted by CO2 or noise to enable similar analyses and
predictions. Additionally, factors such as the influence of HVAC systems and human
behaviour have not been explicitly modelled; however, since the XGBoost prediction
model used for predicting values is trained on observed data points, it is expected to
capture some of these effects indirectly.

The temporal extent of the study is constrained by the limited timeframe of the the-
sis, which was less than one year. As a result, seasonal variations that might have
provided additional insights into indoor environmental dynamics could not be incorpo-
rated. Furthermore, all three sensors used for data collection were installed within the
same building. While this setup allowed a focused investigation of the effects of room
volume and solar inflow on indoor temperature, it also meant that aspects such as
building material properties and their influence on indoor conditions remained outside
the scope of this work.

With regard to system implementation, the use of the OGC SensorThings API (STA)
is limited to demonstrating interoperability and structured data exchange between IoT
observations and building models within a prototype setting. Although the STA specifi-
cation supports broader applications such as large-scale deployment, enterprise-level
integration, and performance benchmarking [42, 60], these aspects are not addressed
in this thesis. The objective here is to showcase the feasibility of linking sensor obser-
vations with building semantics in a standardised manner, rather than to evaluate the
scalability or operational performance of the standard in complex environments.

Similarly, Industry Foundation Classes (IFC) provide a comprehensive, open standard
for representing building information throughout the entire lifecycle, including design,
construction, and facility management [13, 21]. In this thesis, however, IFC has been
utilized in a more limited way, focusing on room-level semantics such as volume, ori-
entation, and window placement, which are relevant to indoor temperature prediction.
IFC was also partially employed for visualization through Cesium Tiles, but the ren-
dered model is not fully interactive, as Cesium’s 3D Tileset format does not currently
support direct object selection or feature tagging at the level of individual rooms. In-
stead, room selection is facilitated through a dropdown list.



2
Literature Review

2.1. Related Work
The integration of IoT technologies into energy systems and built environments has
been a growing area of research, particularly in the context of improving efficiency,
sustainability, and decision-making. This section explores related literature across
three key themes that align with the core components of this thesis: (1) IoT adoption
in sustainable infrastructure, (2) predictive modeling using sensor time-series data,
and (3) integration of spatial analytics into environmental simulations.

Fragkos et al. [23] emphasize that the adoption of IoT technologies can significantly
reduce energy demand and support broader sustainability goals. By enabling real-
time monitoring and control, IoT can contribute to smarter energy consumption in built
structures, institutional management, transport sectors and beyond. These endeavors
would align with the EU’s low-carbon pathway to 2050 and demonstrate the potential
of technology-driven solutions to reduce fossil fuel dependency and promote flexible,
resilient energy systems. This broad vision sets the foundation for exploring more
localized, room-scale implementations such as those proposed in this thesis.

Building on the need for smarter infrastructure, Alavi et al. [2] highlight key design prin-
ciples that are critical to effective IoT deployment: system interoperability, contextual
awareness, and real-time feedback mechanisms. These principles directly inform the
technical backbone of this thesis, which uses the OGC SensorThings API, a geospa-
tial database (PostGIS), and real-time streaming through the FROST server using
FastAPI functionalities. This study underscores the value of integrating spatial data
with sensor networks to support evidence-based decision-making, a concept adapted
herein for building-scale environmental monitoring.

The integration of Building Information Modeling (BIM) with real-time IoT sensor data
is a relatively new but rapidly evolving research area. Desogus et al. [17] present a
data integration framework using low-cost IoT sensors and Revit-based BIM models,
enabling dynamic visualization of indoor conditions such as temperature and lumi-
nance. Their system leverages tools like Dynamo and custom APIs to achieve real-
time synchronization between the BIM environment and sensor readings. Similarly,

8
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several studies have demonstrated the potential of linking environmental sensors with
3D spatial models for applications like energy audits, retrofit decision-making, and oc-
cupant comfort monitoring [47]. These studies reinforce the potential of using BIM as
a dynamic data hub, not just for geometry and documentation, but for managing live
environmental data. This thesis builds on this foundation by creating a system that
parses an IFC model directly and links it with room-specific sensor observations via
the SensorThings API, forming the basis for both visualization and prediction.

Focusing more closely on the application of IoT at the scale of individual rooms and
buildings, several studies explore how sensor-driven intelligence can optimize indoor
environmental conditions. Imran et al. [35] investigate IoT-based task scheduling to
reduce energy usage in residential spaces, incorporating human behaviour and appli-
ance usage patterns to fine-tune consumption. While their emphasis is on appliance-
level control, the underlying logic that granular sensor data can bemodelled to support
indoor efficiency aligns with this thesis. By shifting the unit of analysis from tasks to
architectural features such as room volume and window exposure, this work extends
that logic to a spatial-informatics-driven approach for environmental modelling.

Complementing the premise of IoT integration with prediction models, Xin et al. [61]
explore a more algorithmically advanced approach of combining Convolutional Neu-
ral Networks (CNNs) with Long Short-Term Memory (LSTM) models to forecast short-
term power consumption. Trained on large datasets from major Chinese cities, their
hybrid model demonstrates strong predictive capabilities across both spatial and tem-
poral dimensions. This research supports the use of structured time-series data such
as sensor observations over time to train predictive models. While their focus lies in
urban scale energy demand forecasting, the methodological principles align closely
with this thesis. Herein, instead of deep learning, an XGBoost regression model is
used. It has been chosen for its ability to handle heterogeneous feature types (room
volume, solar inflow, external temperature), its speed of training and inference, and its
effectiveness on medium-sized structured datasets, which is typical in building-level
simulations. Furthermore, XGBoost supports incremental retraining and explainability,
both of which are essential in this application where the model is updated daily and its
behaviour must remain interpretable. This deliberate selection reflects a balance be-
tween predictive performance and operational feasibility for real-time environmental
simulation.

In a comparable line of inquiry, Allam et al. [3] present a lightweight IoT framework for
temperature and humidity forecasting using linear regression on sensor data gathered
via Message Queuing Telemetry Transport (MQTT) protocol and stored in Amazon
Web Services (AWS) DynamoDB. Although their use case focuses on basic weather
monitoring, their end-to-end cloud architecture and reliance on timestamped sensor
data echoes the structure of this thesis. However, unlike their use of static regres-
sion, this thesis implements a modular pipeline with support for incremental learning
and model retraining using XGBoost, enabling more flexible deployment for real-time
predictions.

Similarly, Paul et al. [49] explore multivariate forecasting of indoor temperature in
smart buildings using a suite of machine learning models including Random Forests,



2.1. Related Work 10

Support Vector Machines, and Neural Networks, evaluated on high-resolution sen-
sor data collected from a residential building in Spain. Notably, they advocate for an
online learningmethodology that adapts the model incrementally to new data—a strat-
egy aligned with this thesis, where daily updates improve model accuracy based on
the latest environmental inputs. Their study also reinforces the significance of solar
irradiance and outdoor temperature as key predictors, both of which are central to the
feature engineering in this thesis.

Beyond identifying predictive features, several studies also address how spatial factors—
such as surface orientation and geometric exposure can be quantitatively modelled
within building environments. Mardaljevic and Roy [44] propose a matrix-based ap-
proach for estimating cumulative Solar Beam Irradiance (SBI) using discretized sun
position data throughout the year. Their methodology, integrated into BIM-based sim-
ulation pipelines, captures the directional and temporal variability of solar exposure
across different facade elements. While this thesis employs a simplified, zenith-based
method for estimating inflow due to its computational efficiency, it shares the same
goal: transforming spatial geometry into model-ready inputs. Incorporating more gran-
ular SBI-based techniques presents a logical next step to enhance inflow realism in
future work.

Taken together, these studies illustrate how IoT, BIM, and machine learning can be
leveraged in diverse ways to address energy efficiency and environmental modelling.
Yet, each contribution typically emphasizes only part of this integration, either IoT for
monitoring, BIM for visualization, or ML for forecasting, without combining them into
a unified, standards-based framework. To clarify how the present thesis builds upon
and extends this body of work, Table 2.1 compares key case studies across their BIM,
IoT, and prediction aspects, highlighting their focus areas and limitations relative to
this research.
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Table 2.1: Comparison of related work across BIM, IoT, and prediction aspects relative to this thesis

Study Focus BIM Aspect IoT Aspect Prediction /
Modelling

Limitations

This The-
sis

Prototype for room-
level indoor tem-
perature prediction
in uninstrumented
spaces

IFC seman-
tics (room
volume,
window ar-
eas, SHGC,
orientation)

OGC Sensor-
Things API
via FROST;
sensor obser-
vations

XGBoost re-
gression;
incremental
retraining;
served to web
app

Combines STA + IFC
+ ML for room-level
prediction in uninstru-
mented rooms; open,
standards-based.

Paul et al.
(2018) [49]

Indoor tempera-
ture prediction in
a smart building
(Spain dataset)

None Sensor-based
dataset inges-
tion

Multivariate ML
(RF, SVM, NN);
online learning
advocated

No BIM/IFC; no
STA; no predictions
for uninstrumented
rooms.

Allam et al.
(2021) [3]

Lightweight IoT +
ML pipeline for tem-
p/humidity (AWS)

None MQTT inges-
tion; AWS Dy-
namoDB stor-
age (cloud)

Linear regres-
sion (static)
forecasting

No BIM/spatial data;
no STA; limited mod-
elling scope.

Imran et al.
(2022) [35]

IoT-based task
scheduling for
residential energy
savings

None Appliance/task-
level IoT con-
trol

Predictive op-
timization of
tasks (not room-
scale)

No spatial features;
no BIM semantics;
no STA.

Xin et al.
(2022) [61]

City-scale power
management fore-
casting (smart
cities)

None Large-scale
city datasets

CNN+LSTM
spatio-temporal
deep learning

Not building/room
scale; no IFC/STA
integration.

Desogus et
al. (2021)
[16]

BIM–IoT integration
for monitoring exist-
ing buildings

Revit BIM
with Dy-
namo/API
linkage

Low-cost sen-
sors; data in-
gestion and vi-
sualization

No prediction;
real-time moni-
toring only

No IFC semantics;
no STA; no ML frame-
work.

Natephra &
Motamedi
(2019) [47]

AR + BIM live visu-
alization of sensor
data

BIM–AR
interface for
visualization

IoT streaming
for display

No prediction;
visualization-
focused

No IFC/STA pipeline;
no modelling.

Mardaljevic
& Roy
(2021) [44]

Solar Beam Ir-
radiance (SBI)
modelling for BIM
simulations

BIM day-
light/solar
exposure
estimation

None Physical simula-
tion (no ML)

No IoT; no STA;
no predictive ML
system.

Metallidou
et al.
(2020)
[45]

Review of IoT
approaches for
energy-efficient
smart buildings

None Survey of IoT
technologies
and use-
cases

No prediction;
literature review

No semantic BIM; no
modelling; no STA.

Alavi et al.
(2018) [2]

IoT-enabled smart
cities; design
principles (interop-
erability, feedback,
awareness)

None Conceptual
architecture
and principles

No prediction;
conceptual only

Lacks building-scale
case studies; no STA;
no BIM.

Fragkos et
al. (2017)
[23]

EU-level energy pol-
icy and IoT adoption
for sustainability

None Macro-scale
IoT adoption
for energy
policy

No prediction;
policy analysis
only

No building-scale
prototype; no
BIM/IFC; no ML.

Apart from case-specific applications, a broader stream of literature provides reviews
and methodological contributions that establish the foundations for ML in building-
related prediction tasks. These works synthesize findings across multiple studies or
introduce algorithms that have since become standard in environmental data mod-
elling. Table 2.2 summarizes key review articles and methodological studies, showing
how they validate the suitability of ML approaches and provide the theoretical tools
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upon which this thesis builds.

Table 2.2: Review and methodological studies on ML for building prediction tasks

Study Key Findings and Relevance
Liu et al. (2018) [43] Comprehensive survey of data driven methods for prediction and

classification of building energy consumption. Highlights that ML
approaches consistently outperform traditional statistical methods
in energy and environmental prediction tasks. Validates ML’s suit-
ability for structured datasets in building applications.

Ahmad et al. (2017) [1] Reviews both physics-based and data-driven approaches to build-
ing energy prediction. Shows growing dominance of ML methods
for short-term indoor environmental forecasting. Provides theoret-
ical grounding for ML over conventional statistical approaches.

Breiman (2001) [12] Introduced Random Forests as an ensemble method. Demon-
strated robustness to noise and overfitting through tree aggrega-
tion. Now widely applied in building level energy and comfort pre-
diction studies.

Chen & Guestrin (2016)
[14]

Proposed XGBoost as a scalable and efficient gradient boosting
framework, capable of handling heterogeneous features, missing
values, and medium-sized structured datasets efficiently. Pro-
vides the methodological backbone for the prediction model used
in this thesis.

IBM (2023) [34] Provides an accessible overview of XGBoost and its applied use-
cases. Although not academic, it illustrates how the algorithm is
adopted in real-world ML deployments, including environmental
and energy forecasting domains.

2.2. Ensemble Models for Prediction
Ensemble methods in machine learning combine the predictive power of multiple indi-
vidual models to achieve higher accuracy and robustness compared to single learners.
The principle is rooted in the idea of the “wisdom of the crowd,” where aggregating
multiple perspectives tends to yield better decisions [28].

Decision Trees as Base Learners
Decision trees form the foundation ofmany ensemblemodels. They are non-parametric
supervised learning algorithms that can be applied to both classification and regres-
sion problems. Trees split data recursively into homogenous subsets using a divide-
and-conquer strategy [32]. While they are easy to interpret, single decision trees often
suffer from overfitting and instability, particularly when the tree becomes very deep
[11].

Bagging and Random Forests
Bagging (bootstrap aggregating) was introduced to reduce variance by training multi-
ple trees on bootstrapped samples of the dataset and averaging their predictions [12].
Random Forests extend bagging by introducing feature randomness, where each split
in a tree considers only a random subset of features, thereby reducing correlation
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among trees and improving generalization [32]. This approach is widely recognized
for its ease of use and strong performance across classification and regression tasks.

Boosting
In contrast to bagging, boosting trains weak learners sequentially, with each new
model focusing on correcting the errors of its predecessors. AdaBoost was one of
the first popular boosting algorithms, while gradient boosting advanced the approach
by using gradient descent to minimize errors at each stage [24]. XGBoost represents
a highly optimized implementation of gradient boosting, designed for scalability and
computational efficiency [14, 34]. It incorporates features such as built-in regulariza-
tion, sparsity-aware learning, and parallelization, making it well-suited for large-scale
structured data tasks.

Bias–Variance Trade-off and Regularization
A central consideration in ensemble learning is the balance between bias and vari-
ance. While simple models such as shallow trees have high bias and low variance,
complex models can exhibit low bias but high variance. Ensembles seek to find a bal-
ance by combining multiple learners [28]. Overfitting, where a model captures noise
rather than the underlying pattern, is a common challenge and can be addressed
using pruning, cross-validation, or regularization techniques [32, 33]. XGBoost, for
instance, incorporates L1 and L2 regularization directly into its objective function, im-
proving generalization compared to traditional gradient boosting [14].

Other Gradient Boosting Frameworks
Beyond XGBoost, other gradient boosting libraries have been developed with specific
advantages. LightGBM focuses on efficiency through a leaf-wise tree growth strategy,
which can be faster but more prone to overfitting if not carefully tuned [37]. CatBoost
introduces native support for categorical features and employs techniques to reduce
prediction bias, making it particularly effective for tabular datasets with many categor-
ical variables [51].

In summary, ensemblemodels enhance predictive accuracy by aggregating the strengths
of multiple learners. While bagging methods like Random Forests reduce variance,
boosting methods such as XGBoost reduce bias and improve accuracy through se-
quential learning. The choice of ensemblemethod therefore depends on the data char-
acteristics, computational resources, and the desired trade-off between interpretability
and predictive power.



3
Methodology

This chapter presents the methodology adopted in this thesis to design, develop, and
evaluate a system that utilizes OGC standards for sensor communication, integrates
semantic data extracted from IFC-based BIM models, and employs an open-source
machine learning framework for predicting indoor environmental conditions, specifi-
cally indoor temperature. The chapter focuses on the overall design rationale and
methodological choices, while implementation details such as parameters, hardware,
software tools, and specific code components are described in chapter 4.

3.1. Conceptual Workflow Overview
The conceptual workflow of the prototype system is summarized in Figure 3.1. This
system integrates three primary data sources that collectively contribute to the training
of a machine learning model, which is then employed to predict indoor temperature
in rooms where no physical sensor is installed. The design is interoperable, enabling
the same framework to be applied for other environmental parameters such as CO2 or
noise within the same building, and transferable across buildings at larger scales. Im-
portantly, as demonstrated in section 6.2, predictive accuracy improves as additional
data become available, highlighting the progressive reliability of the approach.

Internal Temperature = f(External Temp, Solar Inflow, Room Volume, …)

14
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Figure 3.1: Conceptual workflow of the prototype system: integrating sensor observations,
IFC-based building parameters, and machine learning for indoor temperature prediction

The methodology is structured into three broad sections:

• Sensor Setup for Data Collection – capturing indoor environmental conditions
through IoT devices connected via OGC SensorThings API.

• IFC BIM Model Processing and Visualisation – extracting static spatial fea-
tures such as room volume, orientation, and window geometry, and using these
to derive solar inflow and provide visual interaction through a web interface.

• ML Prediction Model Development – applying XGBoost regression to predict
indoor temperature using environmental and IFC-derived features.

Each component is introduced in the sections below.

3.2. Sensor Setup for Data Collection
Three indoor sensors were deployed in selected rooms of the Bouwkunde (BK) build-
ing at TU Delft to capture datastreams for indoor environmental parameters such as
temperature, noise, and CO2. Measurements were transmitted in real time through the
FROST server, compliant with the Open Geospatial Consortium (OGC) SensorThings
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API [41]. The ingested data were stored in a PostgreSQL database with PostGIS ex-
tensions, supporting both spatial queries and temporal data management. A practical
advantage of STA is its support for server side querying via OData parameters such
as $filter, $orderby, and $top. By delegating time-window filtering and ordering to
the FROST server, only the necessary observations are returned to the application.

Rooms were selected by physical installation of sensors based on practical factors
such as accessibility and diversity of baseline characteristics (e.g., different room vol-
umes and solar inflow exposures). Rather than a strictly model-driven deployment, the
emphasis was on feasibility and rapid setup, treating the collected data as exploratory.
This reflects realistic implementation constraints while enabling the investigation of
correlations between building attributes and environmental conditions.

Figure 3.2: Position of indoor sensors in the BK building

Figure 3.3 illustrates the sensor deployment in the IFC-based BIMmodel of BK. These
roomswere explored using BIMcollab Zoomand the IFCOpenShell library. An overview
of the rooms with their IoT and datastream IDs is provided in Table 4.1. The techni-
cal details of FROST server configuration, STA mapping, and querying patterns are
presented in chapter 4.
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(a) Room 378: BG.West.010 (b) Room 394: BG.West.270 (Exterior)

(c) Room 394: BG.West.270 (Interior) (d) Room 81: 01.West.120

Figure 3.3: IFC-based BIM visualization of rooms selected for sensor deployment and analysis

Table 3.1: Overview of Rooms with IoT Sensors and Corresponding Datastream IDs

Room Name
IFC Short / Long

Name
Remarks IoT ID

DS ID

In.

Temp

DS ID

CO2

DS ID

noise

TU Delft GDMC 378 / BG.West.010 GDMC lab at the Faculty of Architecture 1 1 3 6

TU Delft VR Lab 394 / BG.West.270 VR Lab at Faculty of Architecture [40] 2 7 9 12

Room 120 81 / 01.West.120 Office of Prof. P Oosterom [18] 3 13 15 18

3.3. IFC for Visualisation and Solar Inflow
The Industry Foundation Classes (IFC) standard was used as a neutral, non-proprietary
format for representing the Bouwkunde (BK) building model. IFC supports repro-
ducibility, semantic richness, and interoperability across BIM applications [13]. In this
study, the IFC model was the source of several static parameters: room volumes,
window geometries, Solar Heat Gain Coefficients (SHGC), and orientations. These
parameters were linked with IoT sensor data to enrich both training datasets and pre-
diction inputs.

Two primary uses of the IFC model were:

1. Extracting static building semantics such as room volume and site location.
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2. Supporting dynamic calculations such as solar inflow, based on window area,
orientation, and SHGC.

Some preprocessing was required: geographic coordinates were corrected, and a cus-
tom spatial routine was developed to associate windowswith roomswhere IfcRelSpaceBoundary
relationships were absent. The implementation of these preprocessing routines is de-
tailed in chapter 4.

3.3.1. Conceptual Basis of Solar Inflow Calculation
Solar inflow represents the portion of incident solar radiation transmitted into an indoor
space through its external glazed surfaces. Within the context of this system, it serves
as one of the key input features for the machine learning model that predicts indoor
temperature dynamics. Specifically, solar inflow denotes the cumulative solar energy
transmitted into a room through all external windows during a defined five-minute in-
terval.

The estimation of solar inflow depends on both building geometry and environmental
conditions. It quantifies the combined influence of solar radiation and window
geometry including factors such as orientation, surface area, and material transmit-
tance.

Conceptually, the computation of solar inflow is governed by geometric and physical
relationships that describe how incident solar radiation interacts with building facades
[20, 8]. The total inflow for a given window surface over a time interval ∆t can be
expressed as:

S∆t = Ag · cos θ · IAM · τ ·∆t (3.1)

where:

• Ag glazed area of the window,
• θ solar incidence angle relative to the window normal,
• IAM irradiance corrected for air mass and atmospheric attenuation, estimated
using standard transposition and clear-sky models [50, 36, 54],

• τ transmittance or Solar Heat Gain Coefficient (SHGC) of the glazing material,
• ∆t the time interval over which inflow is integrated.

Solar position parameters required to compute θ are determined using the Solar Po-
sition Algorithm (SPA) or its implementation in the pvlib library [53, 52].

This formulation highlights that solar inflow is not a purely geometric variable but a
function of both geometry and environmental context. The angle θ varies temporally
with the sun’s position, which depends on geographic location, building orientation,
and time of day. The parameter IAM captures atmospheric effects, while τ represents
the physical transmission characteristics of the window material.

Conceptually, the method involves three sequential steps:
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1. Solar Position Determination: calculating the sun’s azimuth and elevation
based on geographic coordinates and timestamp using standard solar geometry
models.

2. Window Orientation and Area Extraction: obtaining window surface normals,
window area, and externality flags from the IFC model.

3. Solar Irradiance Computation: estimating the direct and diffuse irradiance
components on each surface and integrating them to obtain total inflow for the
defined interval.

The above process forms the theoretical foundation for solar inflow computation. Im-
plementation details, including parameter sources and equations used for irradiance
correction, are described in chapter 4.

3.3.2. Visualization Interface
A web application was developed to visualize IFC-derived building geometry and dis-
play predictions. Built using CesiumJS and FastAPI, the interface enables users to se-
lect rooms and view predicted indoor temperatures alongside observed values when
available (Figure 3.4). The visualisation enhances interpretability of model outputs
while linking predictions to building semantics.

Figure 3.4: Web-based application interface for visualizing IFC-derived building model and displaying
predicted indoor temperature results for user-selected rooms

3.4. ML Prediction Model Development
At the core of this system lies an XGBoost regression model trained to predict indoor
temperature. Input features include:

• Room volume (from IFC)
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• Solar inflow (calculated from IFC geometry and solar data)
• External temperature (from public APIs)

The target variable is the indoor temperature recorded by Netatmo sensors. Predic-
tions are generated for rooms without sensors, extending monitoring coverage.

The model is designed for incremental retraining, whereby newly available sensor ob-
servations are incorporated into the training set. As shown in section 6.2, the inclusion
of an additional month of training data improved accuracy by 7% (RMSE), validating
the assumption that more data leads to more robust models. In deployment, when a
user selects a room in the web interface, the most recent model is retrieved from the
server, ensuring that predictions reflect the latest data and environmental dynamics.
Full implementation details, including code, retraining scripts, and versioning strate-
gies, are provided in chapter 4.

3.5. System Architecture
The system architecture integrates Building Information Modeling (BIM), Internet
of Things (IoT), and Machine Learning (ML) components into a unified workflow for
indoor temperature prediction (in the context of this thesis project). The data flow from
external and internal inputs to prediction delivery is illustrated in Figure 3.5. This archi-
tecture establishes a continuous data and prediction loop in which BIM geometry, IoT
observations, and environmental factors converge to produce real-time, room-level
indoor temperature predictions.
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Figure 3.5: System architecture with training loop (pink) and prediction loop (blue)

3.5.1. Data Flow
The overall workflow comprises two loops: a training loop (blue lines in Figure 3.5)
and a prediction loop (pink lines in Figure 3.5). The distinction between the two lies in
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their objectives. The purpose of the training loop is to iteratively improve the accuracy
of the XGBoost model using input features, including room volume and solar inflow. In
contrast, the prediction loop focuses on fetching the latest trained XGBoost model and,
using the same input features, predicting the internal temperature of unsupervised
rooms.

The key steps in the overall data flow are as follows:

1. External data are collected from the Weather Station.
2. The IFC model is preprocessed for schema migration and spatial alignment.
3. Solar and geometric features are computed from the IFC model.

Training-Specific Steps

• Room-specific internal temperature data are fetched for model training.
• —–overall workflow————
• The XGBoost model is trained and stored.

Prediction-Specific Steps

• The user selects a specific room as input.
• The FastAPI service loads the most recent XGBoost model for real-time predic-
tion.

• —–overall workflow————
• The prediction is generated and displayed on the web application.

The data for an entire week is prepared to have hourly entries from each of the three
rooms. the cleaned dataset in then used to train an XGBoost model which is stored
on the server - this is a weekly process. When deployed in real time prediction, the
solar inflow for last 5 minutes is calculated to act as input for the latest trained model
in the server.

3.5.2. External Data Sources
Two external data sources are utilized:

1. Weather Station: Provides outdoor temperature values, which serve as the
input with the highest feature importance. Data are extracted as hourly averages
in the training loop and as a single live reading in the prediction loop.

2. FROST Server: Contains IoT observations, including indoor temperature and
CO2 levels, collected through deployed sensors. This data source is used ex-
clusively in the training loop, as it provides the target feature for the prediction
exercise.

These data streams form the observational basis for model training where both exter-
nal data sources are used and for live prediction, which relies on weather station data
for outdoor temperature values.
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3.5.3. Framework for IFC Preprocessing
The system developed in this project utilizes the Industry Foundation Classes (IFC)
format for two major purposes:

1. Geometric properties: These define the relative placement of building ele-
ments within a three-dimensional space. This geometric hierarchy forms the 3D
model itself and is essential both for visualization and for determining the relative
positions of IfcSpaces and IfcWindows. Through this structure, the developed
system identifies all external windows associated with a selected room.

2. Attribute information: In addition to geometry, IFC entities store critical at-
tributes that are required by the system, including:

2.a. Coordinates of the IfcSite element (RefLatitude, RefLongitude).
2.b. The overall building orientation within a defined Coordinate Reference Sys-

tem (CRS).
2.c. Room volume: extracted from IfcSpace under the property set BaseQuan

tities.GrossVolume (and alternatively Qto\_SpaceBaseQuantities.Gro
ssVolume for IFC4 models).

2.d. Window attributes:

2.d.1. Window area, obtained from BaseQuantities.Area.
2.d.2. Solar Heat Gain Coefficient (SHGC) of the window material, retrieved

from the vendor specific property set Analytical Properties(Type).
2.d.3. Externality flag, identified through Pset_WindowCommon.IsExternal, which

specifies whether a window faces the external environment.

Preprocessing of IFC data may therefore be required to ensure that building model
supplied to the system exposes all of the geometric and attribute information in a con-
sistent, accessible manner. Depending on the source and schema of the IFC input,
steps such as schema migration, coordinate transformation, or attribute normalization
may be necessary to make the model compatible with downstream analytical compo-
nents. The specifics of IFC preprocessing carried out in this thesis are described in
detail in the Implementation chapter (see section 4.3), where the technical procedures,
libraries, and code routines are elaborated.

3.5.4. Solar Geometry and Feature Extraction
Following IFC preprocessing, the system derives spatial and solar geometry features
that serve as inputs to the prediction model. This process connects the static build-
ing model with dynamic environmental conditions, producing physically interpretable
variables (input features) for model training.

Methodologically, this process integrates two key modules:

• ifc_parsers.py: extracts geometric parameters such as room boundaries, vol-
umes, and window surfaces associated with each IfcSpace. The module iden-
tifies external windows through the attribute Pset_WindowCommon.IsExternal
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and retrieves their geometric attributes from BaseQuantities.Area and normal
vectors derived from the window placement data.

• ifc_calculators.py: computes solar inflow values for each room by combining
the geometric outputs of the parser with solar position and irradiance data from
the weather station. The procedure accounts for the solar incidence angle on
eachwindow, its area, and SHGC value to estimate incoming solar energy during
a given time interval (this was taken as a five minute window).

The solar inflow, computed for each five-minute interval, serves as one of the principal
input features in the system, used both during model training and real-time prediction.
In the training loop, solar inflow is computed for a five-minute interval correspond-
ing to each hourly record in the training dataset. The data prepared for an entire
week therefore consists of hourly records from each of the three monitored rooms.
This cleaned and aggregated dataset is then used to train the XGBoost regression
model, which is subsequently stored on the server as part of the weekly model update
cycle. In real-time deployment, the solar inflow corresponding to the most recent
five-minute interval is computed and supplied as an input to the latest trained model
hosted on the server.

This formulation is grounded in the hypothesis (examined and corroborated in Sec-
tion 5.2.1) that solar inflow exerts a significant influence on the indoor thermal environ-
ment, such that variations in solar gains are expected to correspond with measurable
changes in internal temperature. As an integrated expression of window area, orien-
tation, and material properties (SHGC), it reflects the extent to which these physical
characteristics govern the transmission of solar energy into indoor spaces.

Consequently, solar inflow, in conjunction with room volume, functions as key physi-
cal parameters governing indoor thermal behaviour. These IFC-derived features are
subsequently combined with external temperature data from the weather station and
indoor temperature observations from the FROST server to form the complete input
matrix for model training and prediction. Conceptually, this feature extraction pipeline
ensures that each variable in the dataset reflects an interpretable physical relation-
ship within the building environment system. In other words, solar inflow captures the
dynamic thermal gain from the sun, room volume captures the space’s thermal capac-
ity, and external temperature represents the climatic forcing condition. Together, these
features establish the methodological foundation of the system’s predictive framework.

3.5.5. Machine Learning Pipeline
TheMLmodule, implemented in xgboost_training.py, constitutes the analytical core
of the system. It consumes:

• Geometric and solar inflow features,
• Current external temperature data, and
• Historical indoor observations from the FROST Server.

The script trains a gradient-boosted regression model (XGBoost) to predict indoor
temperature. The trained model is serialized into the Model Store as a .joblib file,



3.5. System Architecture 25

ensuring reproducibility and efficient inference.

Prediction and Deployment Layer
At runtime, the latest trained model is deployed using a FastAPI-based prediction
service defined in main.py. The service exposes REST endpoints that receive feature
data and return temperature predictions in JSON format. The simulator.py module
acts as an intermediary between the model and the user interface, invoking the API
and visualizing the predicted outcomes on the dashboard.

End users access the predictions through an interactive dashboard, enabling them to
explore temperature dynamics under varying environmental conditions.



4
Implementation Details

This chapter presents the technical implementation of the methodology outlined in
chapter 3. While the previous chapter introduced the design rationale and conceptual
frameworks, here the focus is on the software setup, data processing routines, de-
tailed application of standards, and coding strategies. The discussion covers (i) the
local development environment, (ii) implementation of the OGC SensorThings API us-
ing FROST, (iii) solar inflow computation, and (iv) the machine learning pipeline built
with XGBoost.

Overview of Implementation Workflow. To contextualize the subsequent module
descriptions, the end-to-end implementation pipeline is first outlined. The system op-
erates as a modular sequence linking the API interface, simulation controller, IFC ge-
ometry parsers, solar irradiance calculators, and the prediction model. When a user
selects a room in the Cesium-based web client, the FastAPI endpoint /api/simulat
e/{room_name} is invoked. This triggers simulator.py to (i) parse the selected room
from the IFC model via ifc_parsers.py, (ii) compute per-window five-minute solar
inflow via ifc_calculators.py, (iii) retrieve the current external temperature from
the weather station API, and (iv) load the latest trained XGBoost model. The feature
vector comprising five-minute solar inflow, room volume, and external temperature is
then passed to the predictor, and the resulting temperature prediction is returned to
the client as structured JSON for visualization.

The overall sequence of these interactions, beginning from user input on the Cesium
web interface and extending through data retrieval, feature computation, and temper-
ature prediction, is illustrated in Figure 4.1. The diagram clarifies the flow of control
between the FastAPI service layer, backend simulation modules, and analytical com-
ponents, emphasizing how geometry extraction, solar irradiance computation, and
model inference are orchestrated in the system. The overarching methodological
loops corresponding to the training and prediction workflows are depicted in Figure 3.5

For offline training, the same components assemble a historical dataset. Indoor tem-
perature observations are fetched from the FROST SensorThings endpoint for each
monitored room and merged into a single table. For each observation timestamp,

26
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external temperature is retrieved at the site location and five-minute solar inflow is
computed by summing window-level inflows for the room (see section 4.4). Helper
routines (fetch_all_sensor_data(), fetch_external_temp(), calculate_total_
solar_inflow(), prepare_training_data()) orchestrate these steps and return a
DataFrame with columns [timestamp,room_name,internal_temp,external_temp,
volume,solar_inflow]. Hourly downsampling is performed by flooring timestamps to
the hour and averaging all observations within each hour, ensuring a consistent and
smoothed training cadence across rooms.

Figure 4.1: Sequence diagram illustrating the end-to-end inference workflow, showing data flow from
user input to IFC parsing, irradiance computation, and model prediction.

The FastAPI layer invokes simulator.py, which parses IFC geometry (ifc_parsers.
py), computes solar inflow (ifc_calculators.py), fetches external temperature from
the weather station, and loads the serialized XGBoost model (model.joblib). The
predicted indoor temperature is returned as a JSON response to the Cesium-based
web interface.

4.1. Code Setup
All code development for this thesis was carried out locally using Visual Studio Code
(VS Code) as the integrated development environment (IDE). The setup used the
following build:

• VS Code Version: 1.103.2 (Universal) with Python 3.11.11
• Platform: macOS (Darwin arm64 24.6.0)

The project folder linked to local Git repository has been synchronized with public
GitHub repository accessible at: https://github.com/vidushi711/BKviewer_FastAPI.

Git setup allowed smooth collaboration with supervisors and ensured version tracking
for reproducibility.

Python dependencies were managed with uv, a fast Rust-based package manager

https://github.com/vidushi711/BKviewer_FastAPI
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that provides lockfile-based dependency resolution. All dependencies were declared
in pyproject.toml and resolved into uv.lock, ensuring reproducibility.

4.2. SensorThings API Implementation (STA Mapping)
The OGC SensorThings API (STA) specification [41] was applied consistently to struc-
ture the data. It provided a standard, queryable representation of the project’s IoT
data. STA core entities Thing, Datastream, Observation, ObservedProperty, and
FeatureOfInterest map directly to the hardware (Netatmo devices), variables (tem-
perature, CO2, noise), and building context (room as FeatureOfInterest) used in this
thesis. This alignment allows observations to be linked unambiguously to IFC rooms
and subsequently combined with geometry derived attributes (e.g., volume, window
orientation) in the downstream pipeline. A practical advantage of STA is its support
for server-side querying via OData parameters such as $filter, $orderby, and $top.
By delegating time-window filtering and ordering to the FROST server, only the nec-
essary observations are returned to the application. In practice, this reduced retrieval
time markedly: client-side filtering of one month of data required more than twenty
minutes, whereas the same query executed on the server returned in approximately
twelve seconds.

4.2.1. Querying Patterns
Practical querying patterns included:

• By datastream and time window: /v1.0/Observations?$filter=Datastream/ide
q1andphenomenonTimege'2024-01-01T00:00:00Z'andphenomenonTimelt'2024-02-0
1T00:00:00Z'&$orderby=resultTimeasc

• Selecting minimal fields: /v1.0/Observations?$select=result,resultTime

• Expanding linked entities: /v1.0/Datastreams(1)?$expand=Observations($selec
t=result,resultTime)

• Bulk reads: /v1.0/Datastreams(1)/Observations?$resultFormat=dataArray

4.2.2. Server Deployment
The FROST server was deployed using Docker and linked to a PostgreSQL database
with PostGIS. All entities (Things, Locations, ObservedProperties, Sensors, and Ob-
servations) were stored in the schema, maintaining links between IFC-derived rooms
and IoT datastreams.

System efficiency and API-level data management. A notable advantage of this
deployment lies in how data is accessed through the OGC SensorThings API. The
system performs server-side filtering, ordering, and limiting directly within the FROST
endpoint by passing parameters such as:

?$orderby=phenomenonTime desc&$top=...
?$filter=phenomenonTime ge ... and phenomenonTime le ...

This approach delegates heavy operations such as time filtering, sorting, and pagina-
tion to the database tier inside FROST rather than the client. As a result, only small,

/v1.0/Observations?$filter=Datastream/id eq 1 and phenomenonTime ge '2024-01-01T00:00:00Z' and phenomenonTime lt '2024-02-01T00:00:00Z'&$orderby=resultTime asc
/v1.0/Observations?$filter=Datastream/id eq 1 and phenomenonTime ge '2024-01-01T00:00:00Z' and phenomenonTime lt '2024-02-01T00:00:00Z'&$orderby=resultTime asc
/v1.0/Observations?$filter=Datastream/id eq 1 and phenomenonTime ge '2024-01-01T00:00:00Z' and phenomenonTime lt '2024-02-01T00:00:00Z'&$orderby=resultTime asc
/v1.0/Observations?$select=result,resultTime
/v1.0/Datastreams(1)?$expand=Observations($select=result,resultTime)
/v1.0/Datastreams(1)?$expand=Observations($select=result,resultTime)
/v1.0/Datastreams(1)/Observations?$resultFormat=dataArray
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structured JSON payloads containing the relevant time window of observations are
transferred to the FastAPI layer or Jupyter notebooks. In practice, this optimization
reduced retrieval time dramatically: when the filtering and aggregation were executed
on the client side, fetching one month of data required more than twenty minutes,
whereas delegating the same operation to the FROST server returned the results in
approximately twelve seconds.

This architecture highlights an important design strength of the developed system. By
leveraging the API’s server-side computation, the workflow achieves:

• Efficiency and scalability— large IoT datastreams are filtered and aggregated
near the data source, reducing bandwidth and local processing load;

• Smart edge processing— FROST’s optimized query engine handles indexing
and time-based retrieval, so the client only receives ready-to-use subsets of
data;

• Responsiveness for real-time analysis— the system can serve updated read-
ings or aggregated hourly data with minimal latency, supporting interactive visu-
alization and model retraining cycles.

Technically, this means that the FROST–FastAPI–script pipeline is designed around
API-level efficiency rather than bulk data transfer. It acts as a lightweight, queryable
feature store that provides quick inputs for prediction and training, enabling scalable
integration of additional sensors and datastreams with minimal modification.

Figure 4.2: Three registered Things on the FROST server, each representing a Netatmo sensor
located in different rooms.
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Figure 4.3: Datastreams linked to Thing with @iot.id:1, showing observed properties such as
temperature, humidity, and CO2.

Table 4.1: Summary of registered Things and their temperature Datastreams

IoT
ID Room Name IFC Short /

Long Name
DS
ID Temperature URL Remarks

1 TU Delft
GDMC

378 /
BG.West.010 1

https://multicare.
bk.tudelft.nl/FR
OST-Server/v1.0/D
atastreams(1)

GDMC lab located in
BG.West.010, Faculty of Ar-
chitecture [25].

2 TU Delft VR
Lab

394 /
BG.West.270 7

https://multicare.
bk.tudelft.nl/FR
OST-Server/v1.0/D
atastreams(7)

VR Lab situated in BG.West.270
[40].

3 Room 120 81 /
01.West.120 13

https://multicare.
bk.tudelft.nl/FR
OST-Server/v1.0/D
atastreams(13)

Office of Prof. P J M van Oost-
erom, in 01.West.120 [18].

Overall, the STA-based design benefits all components of the system. The FastAPI
layer remains thin, since the FROST endpoint delivers time filtered and ordered obser-
vations that can be used directly for feature construction and inference. The training
scripts can reproduce large historical pulls efficiently using stable, human-readable

https://multicare.bk.tudelft.nl/FROST-Server/v1.0/Datastreams(1)
https://multicare.bk.tudelft.nl/FROST-Server/v1.0/Datastreams(1)
https://multicare.bk.tudelft.nl/FROST-Server/v1.0/Datastreams(1)
https://multicare.bk.tudelft.nl/FROST-Server/v1.0/Datastreams(1)
https://multicare.bk.tudelft.nl/FROST-Server/v1.0/Datastreams(7)
https://multicare.bk.tudelft.nl/FROST-Server/v1.0/Datastreams(7)
https://multicare.bk.tudelft.nl/FROST-Server/v1.0/Datastreams(7)
https://multicare.bk.tudelft.nl/FROST-Server/v1.0/Datastreams(7)
https://multicare.bk.tudelft.nl/FROST-Server/v1.0/Datastreams(13)
https://multicare.bk.tudelft.nl/FROST-Server/v1.0/Datastreams(13)
https://multicare.bk.tudelft.nl/FROST-Server/v1.0/Datastreams(13)
https://multicare.bk.tudelft.nl/FROST-Server/v1.0/Datastreams(13)
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URLs and consistent query parameters, while the Cesium interface can request only
the latest values for responsive visualisation. Compared with alternatives such as
bespoke REST/GraphQL over a time-series database, vendor-specific cloud APIs, or
raw MQTT/CSV workflows, STA provides a standard vocabulary and mature query
semantics that minimise client-side code, reduce bandwidth, and scale cleanly as
additional rooms and datastreams are added. In this project, STA thus acts as a
lightweight, queryable feature store that underpins both real-time prediction and of-
fline retraining with low latency and high reproducibility.

4.3. Practical Implementation of IFC Preprocessing
This section elaborates on the specific preprocessing steps implemented to prepare
the IFC model for use within the developed system. As discussed in the Methodology
chapter (subsection 3.5.3), preprocessing ensures that the IFC data are consistent
in schema, spatial reference, and attribute structure so that geometric and semantic
information can be accurately extracted. In this thesis, preprocessing was carried
out using a combination of IfcOpenShell, IfcPatch, and Python-based utility scripts
developed for georeferencing and attribute harmonization.

4.3.1. Overview of the Input IFC Model
The original model was provided in the IFC2X3 schema and represented a multi-room
building geometry without explicit geospatial referencing. Although IFC2X3 stores ap-
proximate latitude and longitude metadata in IfcSite.RefLatitude and IfcSite.Re
fLongitude, it lacks formal definitions for the coordinate reference system (CRS) or
map conversion parameters. Consequently, the model could not be directly integrated
with spatial datasets or used for location-sensitive computations such as solar inflow
analysis. To overcome these limitations, several sequential preprocessing operations
were applied, as described below.

4.3.2. Schema Migration
The first stage involved upgrading the IFC schema from IFC2X3 to IFC4. This mi-
gration was not required for tool compatibility, since both schemas are supported by
IfcOpenShell, but was performed to leverage the enhanced geospatial and property
definitions available in IFC4. The conversion provided the following advantages:

• Support for explicit CRS definitions through the entities IfcProjectedCRS and
IfcMapConversion, which enable true georeferencing of building models.

• Access to standardized property sets such as Qto_SpaceBaseQuantities.Gros
sVolume, improving the consistency of quantitative attribute extraction.

• Better interoperability with downstream processes, including visualization, solar
analysis, and integration with geospatial data sources (e.g. converting IFC4 to
GeoJSON for visualisation and validation within QGIS)

The migration was executed using IfcConvert (part of the IfcOpenShell toolkit) with
default parameters.
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4.3.3. Coordinate Transformation and Georeferencing
Following schema migration, the model was georeferenced to the Dutch national co-
ordinate system (Rijksdriehoekscoördinaten, EPSG:28992). This was achieved using
the SetWorldCoordinateSystem recipe from IfcPatch, which applies translation and
rotation transformations to align the IFC model with its real-world geographic location.

The transformation parameters were defined using an auxiliary script update_site_info.py,
which extracted geographic coordinates from the IfcSite entity and computed the
translation offsets. The script then inserted an IfcMapConversion entity referenc-
ing a local CRS definition (IfcProjectedCRS). The resulting georeferenced model,
BK_v6_ifc4_georef.ifc, was converted to GeoJSON using the ifc2gis web con-
verter developed by CityGeometrix1. This tool enables browser-based conversion of
IFC files to GIS-compatible formats such as GeoJSON while allowing users to spec-
ify the target coordinate reference system. The exported GeoJSON file was subse-
quently verified in QGIS against the RD New (EPSG:28992) grid to confirm correct
spatial alignment.

4.3.4. Orientation Correction
Although the model was now georeferenced, its local coordinate system was not
aligned with true north. To ensure accurate calculation of solar azimuths and irradi-
ance values, the model was rotated by 135° clockwise based on orientation analysis
conducted in QGIS. This correction was incorporated into the IfcPatch transformation
recipe and validated by comparing window azimuths before and after rotation. The
corrected model, BK_v6_ifc4_georef_transformed.ifc, served as the baseline for
all subsequent spatial computations.

4.3.5. Attribute Standardization and Validation
After spatial adjustments, property sets were standardized to maintain consistency
across schema versions and to ensure that required attributes were properly popu-
lated and retrievable by parsing scripts. The following checks were performed:

• Verification that each IfcSpace contained a volume property under either Base
Quantities.GrossVolume or Qto_SpaceBaseQuantities.GrossVolume.

• Confirmation that every IfcWindow included surface area data under BaseQuan
tities.Area.

• Validation of the boolean flag Pset_WindowCommon.IsExternal, which identifies
whether a window faces the exterior environment.

• Normalization of property-set naming conventions where vendor-specific IFC
exports deviated from standard IFC nomenclature.

Custom validation functions written in Python parsed the IFC file and produced logs
identifying missing or inconsistent attributes. This quality check process ensured that
the final dataset conformed to the expectations of the feature extraction workflow de-
scribed in subsection 3.5.3.

1https://citygeometrix.com/ifc2gis/

https://citygeometrix.com/ifc2gis/
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4.3.6. Output and Integration
The final output, referred to as the Cleaned IFC, preserved both the geometric hier-
archy and the complete set of relevant semantic attributes while being fully georefer-
enced and properly oriented. This model was subsequently used as input for:

1. Feature-extraction routines implemented in ifc_parsers.py and ifc_calculators.py.
2. Solar inflow computation based on window orientation, surface area, and mate-

rial properties.
3. Visualization within the Cesium-based dashboard for interactive exploration of

the model and results.

4.4. Solar Inflow Calculation
4.4.1. Inputs, Data Structures, and Dependencies
The computation is implemented in Python using pvlib for solar geometry and irra-
diance, and IfcOpenShell for IFC parsing. Custom data structures are defined in
ifc_parsers.py as follows:

• BoundingBox class: defines axis-aligned bounding limits for rooms and windows,
with fields x_min, x_max, y_min, y_max, z_min, and z_max.

• Window class: represents an individual window instancewith attributes global_id,
area, SHGC, tilt, azimuth, is_external, and an associated bounding_box.

• Room class: represents an individual room instance with attributes global_id,
short_name, long_name, volume, and a bounding_box; it also maintains a list of
associated Window objects.

• Site class: represents the overall building site, storing site-level metadata in-
cluding latitude, longitude, elevation, and timezone (set to Europe/Amsterdam);
it maintains a dictionary mapping room identifiers to their corresponding Room ob-
jects.

Key helper functions used throughout:

• extract_site_details(ifc_path)—reads IfcSite (RefLatitude, RefLongitude,
RefElevation) and returns a Site.

• compute_bounding_box(shape) — builds a BoundingBox from ifcopenshell.g
eom.create\_shape vertices.

• true_north_deg(model) — obtains the building’s true-north rotation (used to
align azimuths).

• window_tilt_az_from_placement(win, tn_deg) — derives per-window tilt and
azimuth from the placement chain, corrected to true north.

4.4.2. Summary of Functions and Script Responsibilities
The codebase is structured around four primary scripts that together enable streaming
of solar inflow to the prediction workflow. The execution begins at the FastAPI inter-
face where user selection (room LongName) is passed as an input, proceeds through
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the simulation controller, and finally invokes the geometry and irradiance computation
modules.

• main.py: FastAPI Interface
This script serves as the entry point for user interaction.

– /api/simulate/{room_name} — a FastAPI endpoint that accepts the long
name of a room as a path parameter. Upon invocation, it calls the predic
t\_internal\_temp() function from simulator.py. The endpoint returns
a structured JSON response containing the predicted indoor temperature,
aggregated room features (volume, solar inflow, external temperature), and
window level solar inflow diagnostics. This response is consumed by the
Cesium based web interface, where it is parsed and visualized for the user.

• simulator.py: Prediction Orchestrator
This module acts as the middleware between the API layer and the analytical
scripts.

– get_current_external_temp(site, timestamp) — retrieves the latest ex-
ternal temperature reading from the weather station API corresponding to
the given timestamp and site coordinates. Returns a single floating-point
temperature value in °C.

– get_latest_model() — loads the most recently trained XGBoost model
from the server’s model_store directory. Returns a deserialized XGBRegressor
object for inference.

– predict_internal_temp(room_name) — serves as the primary controller
for XGBoost-based indoor temperature prediction. It accepts the long name
of a room (room_name) as input, which is used to identify the correspond-
ing IfcSpace within the building’s IFC model. The function internally refer-
ences the preprocessed IFC file through a globally defined file path con-
stant, IFC_PATH, which points to the georeferenced and orientation cor-
rected model prepared during the preprocessing stage. Access to this
model is delegated to the parsing routines wherein the function then per-
form the following sequence:

1. Invokes parse_room() from ifc_parsers.py, which loads the IFCmodel
using ifcopenshell.open(IFC_PATH), locates the specified room, and
extracts all associated external windows using bounding-box intersec-
tion.

2. For each identified window, calls window\_solar\_inflow() from
ifc\_calculators.py to compute the five-minute solar inflow based
on geometric orientation, solar position, and material transmittance pa-
rameters.

3. Aggregates the window-level inflows for all external windows to obtain
the total solar inflow for the selected room.

4. Retrieves the most recent trained XGBoost model and current external
temperature.
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5. Constructs the feature vector ([solar\_inflow,room\_volume,exter
nal\_temp]) and performs the indoor temperature prediction.

The function outputs a JSON compatible dictionary containing the predicted
indoor temperature, alongwith diagnosticmetadata that includes per-window
inflow characteristics and feature-level statistics. These statistics include
the actual values of each input feature (solar inflow, room volume, and ex-
ternal temperature) used by the XGBoost model at prediction time.

• ifc_parsers.py: IFC Geometry and Metadata Extraction
This script provides the core routines for reading, interpreting, and structuring
IFC geometry into usable Python objects.

– extract_site_details(ifc_path) — parses the IfcSite entity to extract
latitude, longitude, elevation, and sets timezone (Europe/Amsterdam). Re-
turns a Site object with these fields.

– compute_bounding_box(shape)—constructs an axis-aligned bounding box
(AABB) from tessellated geometry produced by ifcopenshell.geom.crea
te\_shape(). Returns a BoundingBox instance used for spatial intersection
tests.

– true_north_deg(model) — reads the building’s true-north vector from If
cGeometricRepresentationContext.TrueNorth, converts it to a numeric
bearing in degrees, and returns the rotation offset used to correct all az-
imuth calculations.

– window_tilt_az_from_placement(win, tn_deg)—derives per-window tilt
and azimuth by resolving the local placement hierarchy (IfcLocalPlacement
→ IfcAxis2Placement3D). Returns a tuple (tilt, azimuth) corrected to
true north.

– parse_room(ifc_path, room_name)— identifies the specified IfcSpace us-
ing its long name, computes its bounding box, and matches it with window
bounding boxes to identify associated external windows. For eachmatched
window, it extracts geometry, area, SHGC, and externality. Returns a Site
object containing the selected Room instance with attached Window objects.

• ifc_calculators.py: Solar Geometry and Irradiance Computation
This module integrates BIM geometry with solar models implemented using the
pvlib library.

– window_solar_inflow(window, site, timestamp) — performs the com-
plete solar inflow calculation pipeline for an individual window, integrating
geometric parameters from the IFC model with physical models of solar
radiation implemented in pvlib. The function returns the instantaneous
transmitted solar energy through each external glazed surface, expressed
in watt-minutes or equivalent units. The major computational steps are as
follows:

1. Solar position calculation: The solar azimuth and elevation angles
are computed using pvlib.solarposition.get_solarposition(),
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which internally implements the NREL Solar Position Algorithm (SPA)
[53]. Inputs include the site’s geolocation (latitude, longitude, el
evation) and the timestamp (localized to Europe/Amsterdam). Atmo-
spheric pressure is implicitly derived from elevation by the pvlib algo-
rithm unless specified otherwise.

2. Clear-sky irradiance estimation: Using the pvlib.location.Loc
ation.get_clearsky() method, clear-sky irradiance components:
Global Horizontal Irradiance (GHI), Direct Normal Irradiance (DNI), and
Diffuse Horizontal Irradiance (DHI) are computed for the same times-
tamp. The function employs the Ineichen/Perez clear-sky model [36,
50], which accounts for atmospheric turbidity, air mass, and solar zenith
angle, and provides baseline radiation values under cloud free condi-
tions.

3. Plane-of-array (POA) irradiance computation: The irradiance inci-
dent on the tilted and oriented window surface is then derived using
pvlib.irradiance.get_total_irradiance(). This step transposes
the horizontal irradiance components (GHI, DNI, DHI) onto the window
plane based on its tilt and azimuth angles extracted from IFC geome-
try (see ifc_parsers.py). The resulting POA irradiance (poa_global)
captures the combined effect of direct, diffuse, and ground-reflected
radiation specific to that window surface.

4. Transmitted solar energy integration: The total energy transmitted
through the window glazing over a five-minute interval is computed by
multiplying the POA irradiance by the window area and its Solar Heat
Gain Coefficient (SHGC). Mathematically, this corresponds to:

S∆t = IPOA · Ag · τ ·∆t

where IPOA is the plane-of-array irradiance, Ag is the window area, τ is
the transmittance (SHGC), and ∆t = 300 s represents the 5-minute in-
tegration period. The output represents the instantaneous solar inflow
in watt-minutes per window.

5. Result packaging: The function returns a structured tuple (area, SHGC,
tilt, azimuth, inflow), which encapsulates both geometric descrip-
tors and the computed inflow value. These results are later aggregated
at the room level by predict_internal_temp() in simulator.py.

4.4.3. Room Selection and Window Association
Given a user-selected room, the endpoint /api/simulate/{room_name} in main.py
calls simulator.predict_internal_temp(room_name), which builds the geometric con-
text via ifc_parsers.parse_room(ifc_path, room_name).

(i) Room lookup In parse_room, the IFC model is opened, true_north_deg(model)
is enforced, and all IfcSpace entities are scanned. The target space is found by
case insensitive match on either Space.LongName (“long name”) or Space.Name (“short
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name”) to the selected identifier. The room’s GrossVolume is retrieved from BaseQuan
tities.GrossVolume (or Qto_SpaceBaseQuantities.GrossVolume in IFC4).

(ii) Room bounding box Using ifcopenshell.geom.create_shape, a tessellated
shape is created for the IfcSpace and passed to compute_bounding_box to derive
axis-aligned bounds.

(iii) Candidate windows. All IfcWindow entities are enumerated. For each window:

1. A shape is created and a BoundingBox computed.
2. Orientation is derived via window_tilt_az_from_placement, yielding tilt (0° up,

90° vertical) and azimuth clockwise from true north.
3. Attributes are read from property sets: BaseQuantities.Area for area; Pset\_

WindowCommon.IsExternal for the external flag; glazing SHGC from the vendor-
specific AnalyticalProperties(Type) set (when present).

(iv) Window–room association (bounding-box test) To associate windows to the
selected room in IFC models lacking explicit IfcRelSpaceBoundary (like in the case
of this project), the room’s bounding box is compared to each window’s bounding box.
Windows whose bounding boxes intersect/overlap the room’s bounding box (within a
small tolerance) are attached to the room object. Only windows marked IsExternal
= TRUE are retained for solar inflow.

4.4.4. Solar Geometry and Irradiance per Window
Per window inflow is computed in ifc_calculators.py via the routine window\_so
lar\_inflow(window,site,timestamp), which takes a single timestamp (the end
of a fixed five-minute interval) and returns the tuple (area, SHGC, tilt, azimuth,
inflow). The steps are:

1. Solar position (SPA). With pvlib.solarposition.get_solarposition, solar
zenith/azimuth are computed from site.latitude, site.longitude, and site
.elevation at the given timestamp (timezone from site.timezone).

2. Clear-sky and transposition. Clear-sky components (GHI/DNI/DHI) are ob-
tained using the Ineichen/Perez family of models; pvlib.irradiance.get\_to
tal\_irradiance then projects these to the window’s plane-of-array using its
tilt and azimuth (already corrected to true north).

3. Plane-of-array irradiance to inflow. Plane-of-array irradiance (W/m2) is mul-
tiplied by window.area (m2), the glazing SHGC (dimensionless), and the fixed du-
ration (300 s) to obtain energy in joules over the five-minute interval:

S∆t = IPOA × Ag × SHGC×∆t

If a window’s SHGC is missing, a conservative default is applied.
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Room-Level Aggregation and Time Binning
In simulator.predict_internal_temp, once the Site and its single Room are con-
structed:

1. The current timestamp (for prediction) or scheduled batch timestamps (for train-
ing) are generated in the site timezone.

2. For each external window in the room, window_solar_inflow is called; per-
window inflows are accumulated into a room-level sum for the five-minute in-
terval.

3. For training, one five-minute inflow value is associated with each hourly record
(i.e., a five-minute representative within the hour), producing a weekly table of
hourly rows per room.

The routine returns:

• total solar inflow for the room over the last 5 minutes,
• the room’s GrossVolume,
• per-window diagnostics (area, SHGC, tilt, azimuth, inflow),
• and the latest external temperature (see below).

4.4.5. Edge Cases, Fallbacks, and Validation
• True North true_north_deg(model) must be available; the code enforces its
presence before deriving azimuths. The true_north_deg(model) function re-
trieves the building’s rotation relative to geographic north. Its enforcement guar-
antees that computed window azimuths are globally aligned, preventing direc-
tional bias in solar inflow estimation.

• Property set variability Volume is read from BaseQuantities.GrossVolume
(IFC2X3) or Qto_SpaceBaseQuantities.GrossVolume (IFC4). Window area is
read from BaseQuantities.Area. Externality is checked via Pset\_WindowComm
on.IsExternal. SHGC is read from the vendor set Analytical Properties(Type)
when present.

• WindowassociationOwing to the absence of IfcRelSpaceBoundary, a bounding-
box intersection is used. This is robust for typical envelope windows; corner
cases (e.g., curtain walls spanning multiple rooms) are flagged for manual re-
view.

• Temporal alignment. Five-minute inflow is computed at the timestamp used for
the hourly record; for real-time prediction, the most recent five-minute interval is
used, consistent with the deployment described in section 3.5.

4.4.6. Reproducibility and Scheduling
For training, weekly datasets are prepared with one five-minute inflow value aligned
to each hourly record per room, yielding three room-wise hourly series over the week.
The cleaned table is used to train and serialize the XGBoost model; the latest model
is loaded at prediction time. This scheduling mirrors the data flow described in sec-
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tion 3.5 and ensures that five-minute solar dynamics are captured consistently across
training and deployment.

4.5. Machine Learning Model Implementation
This section describes how training data are assembled, how the model is fit and
versioned, and how prediction is performed at runtime.

Problem Formulation
The prediction task is formulated as learning a mapping from environmental and geo-
metric factors to indoor temperature. Let yr,t denote the indoor temperature for room
r at time t. The system models

yr,t = f
(
T ext
t , Sr,t, Vr

)
+ εr,t,

where T ext
t is the external temperature at time t, Sr,t is the five-minute solar inflow ag-

gregated to the hour for room r, Vr is the room volume, and εr,t is an error term. The
function f(·) is learned using gradient-boosted decision trees (XGBoost) on rooms
with sensors. Once f is estimated, it can be applied to non-instrumented rooms by
supplying their IFC-derived volume, computed solar inflow, and the outdoor tempera-
ture, thereby producing a prediction for the indoor temperature of the room.

4.5.1. Data Assembly and Feature Construction
For the creation of successive model versions within the training loop, historical indoor
temperature observations were fetched from the FROST SensorThings endpoint for
each monitored room and merged into a unified dataframe. For each observation
timestamp, external temperature is retrieved at the site location using the TU Delft
Green Village Davis weather station Kafka client; five-minute solar inflow is computed
by summing window-level inflows for the selected room (see section 4.4). The helper
routines fetch_all_sensor_data(), fetch_external_temp(), calculate_total_so
lar_inflow(), and prepare_training_data() orchestrate these steps and return a
DataFrame with columns [timestamp,room_name,internal_temp,external_temp,
volume,solar_inflow].

4.5.2. Model Specification and Training
A scikit-learn Pipeline wraps a StandardScaler and an XGBRegressor (xgboost=
=3.0.5). The input feature set comprises [external_temp,volume,solar_inflow],
representing the external environmental condition, the geometric characteristic of the
room, and the dynamic solar gain derived fromwindow irradiance, respectively. These
variables collectively capture the principal physical drivers of indoor thermal behavior.
The target variable, internal_temp, corresponds to the observed indoor temperature
obtained from the Netatmo sensor datastreams. The data are split 80/20 for train/test,
the pipeline is fit, and the mean squared error (MSE) is reported on the hold-out set.
A date-stamped model artifact (e.g., xgb_pipeline_YYYYMMDD.joblib) is persisted to
xgboost_models/ for reproducibility and rollbacks [14].
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4.5.3. Model Versioning and Persistence
Each training run saves a new, immutable pipeline file; the latest file is loaded for
inference by the runtime service. This simple, file-based model store enables weekly
(or ad-hoc) updates without changing inference code.

4.5.4. Runtime Inference Path
During runtime inference, the FastAPI endpoint /api/simulate/{room_name} triggers
the machine learning prediction workflow. Upon receiving the request, the simulator
retrieves the geometric and environmental context required by the model: the room
volume is extracted from the IFC model, the most recent five-minute solar inflow is
computed using ifc_calculators.py, and the current external temperature is ob-
tained from the weather API. These parameters are then assembled into the stan-
dardized feature vector solar_inflow, room_volume, external_temp , matching the
schema used during model training.

The regression pipeline comprises a StandardScaler and XGBRegressor. The model
is loaded from the model store, which resides on the same server instance that hosts
the FastAPI application. This ensures that inference runs on the most recent trained
model without requiring external dependencies or manual updates. The model files
are stored as serialized artifacts (.joblib) in a designated directory, versioned by
training date, and automatically loaded during runtime for prediction. This ensures
consistency between the preprocessing transformations applied during training and
those executed during prediction. In both training and prediction cycles, an optimal
XGBoost configuration, identified through extensive model tuning, is applied. The se-
lection of input features and XGBoost hyperparameters was derived from the best-
performing configuration obtained through systematic experimentation in the stan-
dalone optimization script xgboost_training.py, available in the project’s GitHub
repository (https://github.com/vidushi711/BKviewer_FastAPI ). This tuning process
established the final learning rate, tree depth, and regularization parameters used
in the deployed model. The final training and prediction configuration employed this
optimized regressor within a unified scikit-learn pipeline, ensuring that the same pre-
processing, scaling, and feature ordering were preserved across both stages. The
pipeline was serialized using joblib and stored alongside the live application code
on the FastAPI server, enabling seamless version alignment between the deployed
model and the inference workflow.

The model output is returned as a structured JSON containing the predicted value
(predicted_temp) and the corresponding feature diagnostics (solar_inflow, room_v
olume, external_temp), which facilitate interpretability and allow visualization in the
web interface. Static assets such as bounding boxes and IFC geometry metadata are
served separately under /IFC_BB to support contextual display of the model results.

4.5.5. Retraining Schedule
Training jobs generate weekly tables with one entry per hour per room and, upon com-
pletion, produce a newly trained XGBoost model version that reflects the additional
week of data. Empirical evaluations presented in section 6.2 confirmed that expand-
ing the training dataset by incorporating successive weeks of sensor observations

https://github.com/vidushi711/BKviewer_FastAPI
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consistently enhanced model performance and stability. This iterative retraining ap-
proach enables the regression model to capture evolving environmental patterns and
seasonal variations more effectively. The inference service automatically loads the
latest model version, ensuring that the deployed model remains aligned with the most
recent data.



5
Data Analysis

This study worked with data across two major segments:

1. Sensor Data: Collected from the three Netatmo Weather Stations (NWS03)
with indoor modules. The focus was primarily on internal temperature readings,
which serve as the target variable for the machine learning model. However,
supplementary data such as noise levels were also examined to better under-
stand sensor behavior and room conditions.

2. Input Features for the Prediction Model: In addition to the cleaned sensor
data, the XGBoost-based prediction model relies on input features that are calcu-
lated within the setup. These include dynamically computed solar inflow (based
on timestamp and geometry) and static room volume.

Each of these stages is analyzed in this chapter to uncover patterns, identify limita-
tions, and evaluate the predictive reliability of the workflow.

5.1. Sensor Data Analysis
Sensor data analysis was conducted on around 34000 data points belonging to the
three rooms (with unique timestamps ranging from 23 March 2025 to 31 July 2025).

5.1.1. Initial Cleaning and Generalizations
The indoor sensor records environmental data at 10-minute intervals; however, for the
purposes of this analysis, the data was downsampled to retain only one reading per
hour per sensor from the three rooms and includes the following six fields: timestamp,
room_name, internal_temp, external_temp, volume, and solar_inflow.

The internal temperature varies between 17.4°C and 30.3°C, with a mean of 23.6°C.
External temperatures during this period range from as low as 3.11°C to as high as
36.7°C, reflecting seasonal changes and day-night cycles. The room volume (inten-
tionally) captures variation with 123 m³, 220 m³ and 440 m³, and solar inflow spans
from 0 (at night or low-sunlight conditions) up to 8.78 million (unit-less simulated metric
based on window geometry and orientation).

42
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5.1.2. Relationship between Variables
To explore relationships between the input features and the target variable (internal
temperature), line charts and scatter plots were generated for initial understanding of
the three input features.

• External Temperature vs Internal Temperature: This relationship is visibly
positive, showing that indoor temperature tends to rise with outdoor conditions.
Each room displays a distinct linear trend, suggesting that indoor temperature
responds differently to outdoor conditions depending on room-specific factors
such as location, volume and exposure. Plots below illustrates thermal behavior
of each room relative to outdoor conditions through a sampled diurnal trend for
a day in June and through monthly averaged values (per hour) for the month of
June.

Figure 5.1: Random sample - diurnal temperature profile for June 2025, comparing external
temperature with internal temperatures recorded in three rooms of the BK building (01.West.120,

BG.West.010, BG.West.270) on 02 June 2025.

Figure 5.2: Monthly Average (for each hour) - representing daily temperature profile for June 2025
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Figure 5.3: Scatter plot showing the relationship between external and internal temperature across
three rooms

• Room Volume vs Internal Temperature: The scatter plot in Figure 5.3 illus-
trates a clear positive relationship between external and internal temperature
across the three rooms, indicating that indoor conditions rise broadly in tandem
with outdoor variations. However, the chart alone does not directly reveal how
room volume influences these dynamics. As shown in subsection 5.2.1, linear
correlation analysis confirms that external temperature is the strongest predic-
tor of internal conditions, with room volume appearing secondary in comparison.
Yet, this perspective changes when examined through the lens of machine learn-
ing. subsection 5.2.2 demonstrates that room volume emerges as the most influ-
ential feature in the predictive model, underscoring its role as a critical driver in
explaining variance once feature interactions and non-linearities are taken into
account.

An additional comparison at 5 a.m., shown in Figure 5.4, highlights that indoor
temperatures remain consistently above the external baseline even when solar
inflow effects are minimised overnight. This indicates the influence of thermal
buffering and possibly HVAC regulation in maintaining higher indoor stability.
Moreover, differences between the rooms are evident: BG.West.010 consis-
tently shows lower internal values compared to 01.West.120, hinting at the role
of architectural and operational factors in shaping early-morning indoor condi-
tions. These observations reinforce the need for feature-level analysis to disen-
tangle the specific contribution of room volume relative to external drivers.
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Figure 5.4: External and internal temperatures at 5 a.m. from March to July, showing stable indoor
conditions compared to rising outdoor temperatures

• Solar Inflow vs Internal Temperature: This relationship is non-linear and scat-
tered. At lower solar inflow levels, indoor temperature shows minimal variation,
but as inflow increases, so does temperature—though not uniformly. This sup-
ports the hypothesis that solar inflow contributes to heating, but its influence
varies with other contextual factors such as time of day and room orientation.
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Figure 5.5: Influence of solar inflow on change in internal temperature

Room-specific effects: As shown in Figure 5.3, the linear trends differ across rooms,
with steeper slopes in some cases indicating stronger external influence. Notably,
Room 378 (BG.West.010), despite having the largest volume, displays a relatively
strong correlation between external and internal temperature. This suggests that fac-
tors other than volume—such as window orientation, window-to-wall ratio, or lack of
shading—may be contributing to greater solar exposure and heat gain. In contrast,
Room 81 (01.West.120) exhibits a flatter trend, indicating more stable internal condi-
tions likely due to lower solar inflow or better insulation. These differences indicate a
need to include geometric and contextual features, not just volume, in the prediction
model.

Time-of-day influence (based on solar inflow variation): While not explicitly plot-
ted, the distribution of solar inflow values across timestamps reveals diurnal patterns.
Inflow values spike during midday hours, especially in rooms with south-facing or un-
obstructed windows, and drop to near zero overnight.

Thermal inertia and delayed response: While solar inflow values exhibit clear di-
urnal peaks—typically highest around midday—the corresponding changes in internal
temperature do not follow instantaneously. Instead, a noticeable lag is observed, with
indoor temperatures continuing to rise even after solar inflow begins to decline in the
late afternoon. This phenomenon is indicative of thermal inertia: the tendency of build-
ing materials and air volume within a space to absorb, store, and slowly release heat
over time.
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Thermal inertia varies by room depending on factors like volume, surface area-to-
volume ratio, material properties, and window exposure. In this dataset, rooms with
larger volumes or better insulated envelopes demonstrate a more gradual tempera-
ture response compared to those with more direct sunlight exposure or less thermal
mass. For example, on March 23, 2025, in Room BG.West.010, solar inflow peaked
between 13:00 and 14:00, but the internal temperature continued to rise until after
15:00, despite a declining inflow trend.

This lagged behavior highlights the importance of modeling internal temperature as
a function of both static characteristics (such as room volume and geometry) and
dynamic variables (like solar inflow and external temperature) over time. The com-
bination enables the model to capture both immediate drivers of change and the ac-
cumulated thermal effects that unfold more slowly—justifying the inclusion of these
features in a non-linear, feature-aware model like XGBoost.

Interaction effects: Initial exploration indicates possible interaction effects between
volume and solar inflow. For example, rooms with high solar inflow and small volumes
tend to heat up faster, while larger-volume rooms show dampened peaks. This inter-
action is subtle and not easily modeled by linear regression—supporting the use of
tree-based ensemble models like XGBoost that capture non-linear dependencies with-
out explicitly coding interaction terms.

5.2. Input Features for the Prediction Model
This section details the specific features used in training the predictive model and eval-
uates their statistical and model-based influence on the target variable - internal room
temperature. Each input was selected based on domain knowledge, availability, and
potential relevance to thermal behavior at room scale. These include environmental
factors sourced from sensors and public weather datasets, as well as spatial attributes
derived from the building’s IFC model. To better understand their roles, both linear
correlation analysis and model-derived feature importance are examined. Together,
these analyses offer complementary insights into how different predictors contribute
to learning and generalization in the context of room level temperature forecasting.

Features used in this project include room volume (extracted directly from the IFC
model of the BK building), solar inflow (calculated using IFC-derived room attributes
and external libraries), and external environmental variables such as temperature,
humidity, wind speed, and pressure. These external conditions were sourced partly
from public APIs and from the monthly data files shared by Davis Weather Station at
the TUDGreen Village [59]. The target variable, internal temperature, wasmeasured
through Netatmo sensing devices, as described earlier in the section.

To assess how these predictors contribute to the modeling task, two analyses were
performed. First, a correlation check examines linear associations: (i) between input
features and internal temperature, and (ii) among input features themselves (multi-
collinearity). This provides an overview of simple statistical dependencies and veri-
fies that predictors are not overly redundant. Second, feature importance is derived
from the trained XGBoost model, which captures non-linear relationships and feature
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interactions, offering insight into how the model internally prioritizes predictors during
learning.

5.2.1. Correlation Check (Statistical Association)
Pearson’s correlation coefficient r was used as a measure of linear association be-
tween variables. It is defined as:

r =

∑n
i=1(xi − x̄)(yi − ȳ)√∑n

i=1(xi − x̄)2
√∑n

i=1(yi − ȳ)2
,

where xi and yi are paired observations of two variables, and x̄ and ȳ are their re-
spective means. The value of r ranges from −1 to +1, where positive values indicate
that higher values of one variable tend to coincide with higher values of the other, and
negative values indicate the opposite. The closer |r| is to 1, the stronger the linear
relationship; values near 0 suggest little or no linear association. It is important to
note that Pearson’s r captures only linear effects: a non-linear U-shaped relationship
would still yield a low correlation. It is important to note that Pearson’s rmeasures only
pairwise linear associations. This means it cannot capture interaction effects, where
the influence of one feature depends on the value of another. For example, internal
temperature may rise much more rapidly when both external temperature and solar
irradiance are high at the same time. Such combined effects are not visible in simple
correlations, but are picked up later through the XGBoost model, which can account
for non-linearities and interactions.

Correlation between Input features and Internal Temperature: Figure 5.6 shows
the Pearson correlations between each input feature and internal temperature. The
strongest positive associations are observed for external temperature (r ≈ 0.46) and
solar irradiance (r ≈ 0.34), consistent with the expectation that indoor climate is
strongly influenced by outdoor conditions. Wind speed and pressure show very weak
correlations (r close to 0), while room volume and humidity are negatively correlated
(r ≈ −0.38). This is also intuitive: larger room volumes and higher humidity slow down
temperature rise. In summary, external temperature and solar irradiance appear to
be the primary linear drivers of indoor temperature.
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Figure 5.6: Pearson Correlation values for input features with internal temperature

As Figure 5.6 depicts, the features bearing strongest correlation with internal tempera-
ture are external temperature followed by solar irradiance. This verifies common logic
as the internal parameters of built space are heavily influenced by its immediate envi-
ronment. Wind speed and Pressure have almost no correlation while Room volume
and humidity are negatively correlated - this too bolsters common logic as larger room
volumes and higher humidity would contribute to slower temperature increase. In con-
clusion, the takeaway from here is that external temperature and solar irradiance are
the main ’linear’ drivers for internal temp.

Inter-feature Correlations (Pearson) - LowMulticollinearity: Multicollinearity refers
to strong linear relationships among predictor variables, which can reduce the inter-
pretability of a machine learning model and in some cases lead to instability in the
estimation of feature effects. While tree-based ensemble methods such as XGBoost
are generally more robust to correlated inputs than linear regression, excessive re-
dundancy between predictors can still reduce model efficiency, as the algorithm may
repeatedly split on near-duplicate features without gaining additional information. A
common heuristic is that correlations above |0.9| indicate problematic collinearity, sug-
gesting that the variables may not contribute distinct predictive power [19].
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Figure 5.7: Multicollinearity in Input Features

In this dataset, most pairwise correlations lie well below the problematic threshold of
|0.9| [19]. The strongest associations observed are of moderate magnitude: external
temperature with solar irradiance (r ≈ 0.65) and humidity with external temperature
(r ≈ −0.62).

Other correlations remain weaker, typically between −0.3 and 0.4. This pattern indi-
cates that the predictors are not overly redundant, and each feature contributes unique
information to the model, which is desirable for both generalization and interpretability.

5.2.2. Feature Importance (Model-based Association)
Beyond simple statistical correlations, feature importance values from the XGBoost
model provide insight into how the trained model actually utilizes predictors. Unlike
Pearson’s r, which is restricted to linear effects, XGBoost can capture non-linearities
and higher-order interactions, thereby assigning importance to features even when
their pairwise correlation with the target is weak. For example, a variable with near-
zero correlation might still be critical if it interacts with another predictor in a non-linear
way.

Figure 5.8 displays the feature importances obtained from the trained model. Room
volume emerges as the most influential feature, followed by external temperature and
humidity. This highlights the fact that spatial characteristics of the room (captured by its
volume) play a decisive role in determining internal temperature, complementing the
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effects of external climate factors. Other features such as pressure, solar irradiance,
and wind speed contribute to a lesser extent but still provide incremental predictive
value.

Figure 5.8: XGBoost feature importance values for input features



6
Results

This chapter presents the results of the prototype system developed in this thesis. The
aim here is to demonstrate how the system has performed in predicting indoor tem-
perature under the chosen configuration of features and model parameters. Different
sections explore variations in input features and hyperparameter settings, providing
insights into how these choices affect predictive accuracy. The final deployed model
has been selected based on an optimal combination of input features and the best
performing hyperparameters. Importantly, the system has been designed to continue
ingesting new data on a periodic basis, and as shown in subsection 6.2.3, the avail-
ability of more training data has shown to improve predictive accuracy over time.

6.1. Overall Performance of the Final Model
Figure 6.1 shows the scatter plot comparing actual indoor temperature values with
those predicted by the final XGBoost model under the selected configuration. Each
point represents a prediction–observation pair, and the diagonal line indicates the ideal
y = x relationship, where predicted values would perfectly match actual values.
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Figure 6.1: Overall performance of the final XGBoost model: predicted indoor temperature vs. actual
temperature for samples in evaluation period

As the figure illustrates, the predictions generally align well with the actual indoor tem-
peratures, with most points clustered around the y = x line. While some deviations oc-
cur, particularly at higher temperature ranges where underestimation is more evident,
the overall trend indicates that the model captures the relationship between external
drivers (external temperature, solar inflow, and room volume) and indoor conditions
effectively. The statistical metrics (MAE = 0.90 °C, RMSE = 1.17 °C, R2 = 0.61) con-
firm that the model provides a reasonably accurate approximation of indoor thermal
dynamics, especially given the limited sensor deployment and relatively short data
collection window. This validates the feasibility of using an open, standards-based
framework for reliable room-level predictions in uninstrumented spaces.

6.2. Evaluation of XGBoost Model
The third and final research question in this study was: “Can a simulation model
based on building and sensor data be used to predict environmental conditions in non-
instrumented spaces?” To assess the reliability of the predictions made by the XG-
Boost model, three accuracy metrics commonly used for evaluating regression mod-
els were computed: Root Mean Squared Error (RMSE), Mean Absolute Error (MAE),
and the coefficient of determination (R2). These metrics were calculated using the
scikit-learn functions mean_squared_error(), mean_absolute_error(), and r2_score()
respectively, applied to the held-out test subset of data.

1. Root Mean Squared Error (RMSE) The RMSE quantifies the average magni-
tude of prediction error, giving higher weight to larger deviations due to squaring.
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It is defined as:

RMSE =

√√√√ 1

n

n∑
i=1

(yi − ŷi)2

where yi is the observed value, ŷi is the predicted value, and n is the total number
of test samples. A lower RMSE value indicates that predictions are, on average,
closer to the true observations. Because it squares the residuals, RMSE penal-
izes large errors more strongly and is therefore sensitive to outliers.

2. Mean Absolute Error (MAE) The MAE measures the average absolute differ-
ence between predicted and observed values:

MAE =
1

n

n∑
i=1

|yi − ŷi|

Unlike RMSE, MAE treats all deviations linearly, making it less sensitive to out-
liers. It represents the mean magnitude of errors in the same units as the target
variable (°C in this case).

3. Coefficient of Determination (R2 Score) The R2 score, or coefficient of deter-
mination, measures how well the predicted values approximate the actual data.
It is given by:

R2 = 1−
∑n

i=1(yi − ŷi)
2∑n

i=1(yi − ȳ)2

where ȳ denotes the mean of the observed values. An R2 value of 1 indicates
perfect prediction, 0 indicates that the model performs no better than predicting
the mean, and negative values indicate that the model performs worse than a
mean predictor. In this project, R2 was computed using the r2_score() func-
tion from scikit-learn. The occurrence of negative R2 values in certain cases
(e.g., under Additional Training Data) reflects instances where residual variance
exceeded the variance of the observed data, typically due to limited or unaligned
samples.

Each metric was calculated on the test subset only, ensuring that performance values
reflect the model’s ability to generalize to unseen data. Together, RMSE and MAE
provide absolute measures of prediction error, while R2 expresses the proportion of
variance in indoor temperature explained by the model.

Building on these metrics, an extensive series of experiments was carried out to exam-
ine how the predictive accuracy of XGBoost responds to different modeling conditions.
The focus was on three critical dimensions:

• Different Hyperparameters of the XGBoost model
• Additional Input Features - to check the variation in prediction accuracymetrics
when additional features are added

• Additional Training Data - to check variation in accuracy as more and more
training data was made available to the model
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In each case, one dimension was varied systematically while the others were held
constant, allowing the isolated effect of that factor on model performance to be ob-
served. The following sections present the resulting plots and analyses, highlighting
how these variations influenced the accuracy of predictions.

6.2.1. Tuning Hyperparameters of the XGBoost model
XGBoost provides a range of hyperparameters that govern how the ensemble of
boosted trees is built and how well it generalizes to unseen data. Hyperparameter
tuning is the process of systematically adjusting these values to optimize predictive
performance [14]. Among the most influential hyperparameters for gradient boosted
regression trees are the following:

• Learning rate (also called eta or shrinkage) controls the contribution of each
tree to the overall model. Smaller values (e.g. 0.01–0.1) slow down learning
but usually improve generalization by preventing the model from fitting noise,
whereas larger values risk overfitting [14, 37].

• Number of estimators (n_estimators) specifies the maximum number of trees
to be built. Larger ensembles can capture more complex relationships but also
increase training time and may overfit if not balanced by a sufficiently low learn-
ing rate [24].

• Tree depth (max_depth) controls how many splits each tree can make from the
root to the leaves. Shallow trees (depth 3-4) are less prone to overfitting, while
deeper trees can capture stronger nonlinearities but risk memorizing noise [14].

• Gamma is a regularization parameter that sets the minimum reduction in loss
required for a further split. Higher values prune weak splits, promoting simpler
trees and reducing overfitting risk [14].

The literature emphasizes that the optimal configuration is dataset-specific. In prac-
tice, grid search or random search combined with validation strategies is commonly
employed to explore the hyperparameter space [10, 51]. For this study, a small but
representative set of hyperparameters was chosen based on prior work and domain
intuition (see Section 5.2).

Experimental setup. In these experiments, the predictive task was to estimate in-
door temperature using the six selected features: room volume, external temperature,
pressure, humidity, solar irradiance, and wind speed. Training was carried out on data
from January to April 2025, while May 2025 was held out for testing. A manual sweep
over learning rate, maximum depth, and gamma values was performed, with the num-
ber of trees adjusted proportionally (larger ensembles for lower learning rates). The
resulting test set accuracies are reported below:
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Table 6.1: Hyperparameter tuning results with six input features (Jan-Apr train, May test). Best
results are highlighted in bold.

Run Learning rate Max depth Gamma n_estimators RMSE MAE R2

6 0.03 6 1.0 1500 1.357 1.101 0.185
5 0.10 6 1.0 800 1.373 1.109 0.165
3 0.03 3 0.0 1500 1.405 1.125 0.125
2 0.10 3 0.0 800 1.429 1.144 0.096
4 0.10 6 0.0 800 1.455 1.166 0.062
1 0.30 3 0.0 300 1.467 1.166 0.046

Results: The best performance (RMSE ≈ 1.36, R2 ≈ 0.18) was achieved with a
low learning rate (0.03), deeper trees (max_depth = 6), and moderate regularization
(gamma = 1.0). This confirms the general finding that small learning rates combined
with larger ensembles provide more stable models [24]. Higher learning rates (0.30)
performed notably worse, and shallow trees (depth = 3) underfit the data. The addi-
tion of gamma regularization improved performance compared to unregularized runs,
highlighting its importance for pruning weak splits. Overall, these experiments indi-
cate that model accuracy is sensitive to hyperparameter settings, and careful tuning
can significantly improve predictive reliability.

6.2.2. Additional Input Features
In supervised learning, the number and type of input features play a critical role in de-
termining predictive performance. While adding more features can in principle supply
the model with richer information, it may also introduce redundancy, noise, or spurious
correlations that hinder generalization. In tree-based ensembles such as XGBoost, ir-
relevant or weakly relevant features can lead to unnecessary splits and reducedmodel
efficiency [27, 39].

From a theoretical perspective, this effect is closely linked to the bias–variance trade-
off [34]. A model with too few features may exhibit high bias, failing to capture the
relationships in the data. Conversely, a model with too many features, particularly if
they are weakly correlated with the target, can have high variance, overfitting to noise
in the training data and performing worse on unseen data. Regularization methods
are designed to mitigate such issues by controlling complexity, but feature selection
remains a critical factor [11, 33].

The first set of experiments, summarized in Table 6.2, comparedmodel accuracy when
only external temperature was used versus when additional features were appended.
Counter to expectations, accuracy degraded as more features were added: RMSE
rose andR2 fell below zero, indicating performance worse than a naive mean predictor.
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Table 6.2: XGBoost evaluation with different input features (Jan–Apr train, May test).

Input Features n_train n_test RMSE MAE R2

external temperature 3291 823 1.448 1.269 -0.062
external temperature + volume 3291 823 1.516 1.340 -0.164
external temp + vol + pres + hum + solar + wind 3291 823 1.629 1.411 -0.344

This initially raised the question: is accuracy reduced simply due to the number of
features, or because the additional predictors are less relevant to the target? To test
this, the experiment was repeated using a reversed ordering of features, ensuring
that the strongest drivers (external temperature and volume) were included later in
the sequence. Results are shown in Table 6.3.

Table 6.3: XGBoost evaluation with solar-focused feature ordering.

Input Features n_train n_test RMSE MAE R2

solar irradiance 3291 823 1.399 1.179 0.009
solar irr. + wind + pressure 3291 823 1.515 1.271 -0.162
solar irr. + wind + pres + ext. temp + vol + hum 3291 823 1.671 1.443 -0.414

Even when highly relevant features such as external temperature were introduced
later, overall performance continued to decline as the number of predictors increased.
This confirmed that the degradation was not merely due to feature relevance, but
rather to the accumulation of features itself, which introduced variance without im-
proving bias.

Bias-variance perspective: The observation that adding predictors degraded test
accuracy, despite XGBoost’s ability to down-weight weak signals can be understood
through classic generalization theory. With a limited sample size, increasing the di-
mensionality of the input space enlarges the hypothesis search space and typically
raises the variance of the learned model; unless new features substantially reduce
bias, overall generalization can worsen [28, 11]. This phenomenon is closely related
to the Hughes (peaking) effect: for a fixed number of training samples, accuracy often
rises with dimensionality up to an optimum and then declines as additional, low-signal
features are added [30, 31]. In short, when data are relatively scarce, a few strong
predictors can outperform a larger, noisier set.

Why tree ensembles may still overfit with extra features Although boosted trees
can ignore irrelevant variables by simply not splitting on them, the greedy split search
still evaluates many candidate thresholds across all available features. With small
n, this increases the chance of selecting spurious splits that fit noise, inflating vari-
ance. XGBoost includes regularization levers like row/feature subsampling, depth lim-
its, ℓ2/ℓ1 penalties, and aminimum loss reduction (gamma)—to mitigate this, but they do
not eliminate variance induced by weak predictors under limited data [14]. Empirically
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and theoretically, careful feature selection remains complementary to regularization
[38].

In large industrial settings with millions of rows, hundreds of engineered features can
help because the sample size is sufficient to estimate many interactions while regular-
ization keeps variance in check. In contrast, in datasets on the order of less than 10
thousand records (as in this study), adding weak or redundant features often raises
variance more than it reduces bias, yielding poorer test performance [28, 31].

Focused sweep with three features. To further investigate, hyperparameter tuning
was repeated with only the three most relevant predictors: room volume, external tem-
perature, and solar irradiance. Results are summarized in Table 6.4. Consistent with
the arguments above, this reduced, high-signal feature set achieved better general-
ization than the six-feature configurations tested earlier.

Table 6.4: Hyperparameter sweep results with three input features (Jan–Apr train, May test). Best
results are highlighted in bold.

Run Learning rate Max depth Gamma n_estimators RMSE MAE R2

6 0.03 6 1.0 1500 1.336 1.121 0.210
5 0.10 6 1.0 800 1.341 1.125 0.204
3 0.03 3 0.0 1500 1.361 1.138 0.180
2 0.10 3 0.0 800 1.381 1.152 0.155
1 0.30 3 0.0 300 1.382 1.153 0.153
4 0.10 6 0.0 800 1.420 1.176 0.106

Results: Surprisingly, the reduced feature models performed better overall than their
six-feature counterparts. The best three-feature configuration (RMSE ≈ 1.34, R2 ≈
0.21) outperformed the best six-feature configuration (RMSE ≈ 1.36, R2 ≈ 0.18). This
suggests that the inclusion of additional predictors such as humidity, wind speed, and
pressure added variance without improving the bias of the model. This finding high-
lights that for this dataset and with the aim of accurate prediction, a smaller but care-
fully chosen feature set yields more reliable predictions.

Final model configuration Based on the series of experiments, the most effective
setup combined a conservative learning rate (0.03), moderately deep trees (max_depth =
6), and regularization via γ = 1.0, with the ensemble capped at approximately 1500
trees. Equally important, feature selection proved critical: the strongest and most par-
simoniousmodel relied on only three predictors room volume, external temperature,
and solar irradiance. These features captured both spatial (room-level) and environ-
mental (outdoor and solar-driven) influences on indoor temperature, while avoiding
the variance inflation introduced by weaker predictors such as humidity, pressure, or
wind speed. This configuration therefore forms the basis for subsequent simulation
and forecasting tasks.
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6.2.3. Additional Training Data
This subsection has to be redone with corrected data - Please ignore for now -
June test data was off

A core hypothesis of this framework is that prediction quality should improve over time
as more sensor data accumulate. In other words, as the training window grows, the
model ought to generalize better to new periods. Ideally, this effect is strongest over
long horizons (multiple seasons), when the model can learn seasonal patterns; how-
ever, the time frame of this thesis allows the scope for only month-scale increments.
To isolate the effect of additional training data, a fixed common test period was set
and compared models trained on progressively longer windows.1

Using the six-feature input set (room volume, external temperature, pressure, hu-
midity, solar irradiance, wind speed) and the ideal model configuration (XGBoost,
max_depth = 6, n_estimators = 1500, learning_rate = 0.03, subsample = 0.8, colsample_bytree =
0.8, λ = 1.0, tree_method=hist, γ=min_split_loss = 1.0), June 2025 period was
fixed as the test set with increasing training data:

• Jan–Mar (train end: 2025-03-31),
• Jan–Apr (train end: 2025-04-30),
• Jan–May (train end: 2025-05-31),

always ensuring the training data ended strictly before the test start (to prevent leak-
age).

Table 6.5: Effect of adding training data with a fixed June 2025 test set (six features, same model
settings).

Scenario Train end n_train n_test RMSE MAE R2

Jan–Mar 2025-03-31 396 3 1.742 1.211 −0.396
Jan–Apr 2025-04-30 2025 3 1.888 1.497 −0.639
Jan–May 2025-05-31 4114 3 0.729 0.668 0.756

Results and interpretation. With the very small June test slice available in this
dataset (n_test = 3 after dropna), two patterns emerge:

1. Extending the training window from Jan–Mar to Jan–Apr worsened RMSE by
about 8.4% (from 1.742 to 1.888), with R2 remaining negative. Given the tiny test
sample and possible distribution shift between March and April, this fluctuation
likely reflects variance rather than a true degradation.

2. Extending further to Jan–May substantially improved accuracy: RMSE drops
by ∼ 58% vs. Jan–Mar and by ∼ 61% vs. Jan–Apr (to 0.729), and R2 rises to
0.756. This is consistent with the hypothesis that more training data (especially
including late-spring patterns) improves generalization to June.

1Using a fixed test window across scenarios avoids confounding changes in seasonality. If each
training window were paired with a different test month, shifts in weather regimes could masquerade
as model improvements or degradations unrelated to training size.
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Caveat on reliability. Because the fixed June test window collapses to only three
valid observations after missing-value filtering, the reported metrics are statistically
fragile. A single difficult point can swing RMSE and R2 markedly. For a more stable
estimate of the “more data helps” effect, it would be preferable to:

1. enlarge the test horizon (e.g., full month with adequate coverage across all fea-
tures),

2. or use rolling/blocked cross-validation over weeks, keeping temporal order in-
tact,

3. and report uncertainty (e.g., bootstrap CIs across days).

Take-away. Within the limits of the available test coverage, the Jan–May model gen-
eralizes best to June. This aligns with the project’s premise: as additional months
of data accumulate, the model can learn a richer set of patterns (including evolving
spring conditions), which—once the test set is sufficiently sized—should translate into
steadily improving out-of-sample accuracy.



7
Conclusion and Future Scope

This chapter summarizes the main findings of the study, reflects on its methodolog-
ical and technical contributions, and outlines directions for future research and de-
velopment. The work presented in this thesis demonstrated the development and
applicability of an interoperable system that integrates Building Information Modeling
(BIM), Internet of Things (IoT) sensor data, and machine learning through open stan-
dards to derive geospatial insights on indoor environmental conditions. The system,
in its present configuration, can be used to analyze spatial and temporal heat patterns
across rooms within a building. Furthermore, by extending the data model to include
information on building materials, the same framework could be used to study the
relationship between construction properties and indoor environmental performance.

Towards the end of this study, an additional experiment was conducted to extend
the existing workflow for retrieving indoor temperature data from the FROST server
to also extract CO2 concentration and noise levels using the same query logic. A
rapid evaluation of the results revealed clear linkages between CO2 fluctuations and
occupancy patterns, which aligned with practical knowledge of room usage such as
the number of seats and the absence of activity during weekends. These findings
illustrate the versatility of the developed architecture and confirm its potential as a
scalable, interoperable system that can be packaged as a practical tool for broader
geospatial analysis and environmental monitoring.

7.1. Summary of Findings
The central objective of this research was to explore whether environmental conditions
in non-instrumented spaces can be predicted using information derived from BIM ge-
ometry, sensor data from instrumented rooms, and meteorological observations. The
study addressed this objective through the development of a modular workflow that
connects IFC-based room geometry, the OGC SensorThings API (STA) implemented
via FROST, and an XGBoost regression model hosted on a FastAPI-based applica-
tion.

The findings can be summarized in relation to the three research questions formulated
in Chapter 1:

61
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• RQ1 — Integration of IoT data with BIM context: The implementation of the
SensorThings API provided a scalable and interoperable mechanism to manage
and query time-series sensor observations. The use of FROST with a PostGIS
backend enabled each room to be semantically linked with its corresponding IoT
datastreams, allowing indoor temperature, CO2, and noise data to be directly
associated with their spatial representation in the IFC model.

• RQ2— Extraction and use of geometry-based features: The developed IFC
preprocessing pipeline successfully extracted geometric and semantic features
such as room volume, window area, tilt, azimuth, and true-north orientation.
These parameters were critical for calculating solar inflow using pvlib, demon-
strating how spatial attributes can be transformed into meaningful predictors for
thermal modeling.

• RQ3 — Predictive reliability of the model: The XGBoost regression model
achieved consistent performance across rooms, identifying solar inflow, external
temperature, and room volume as the most influential parameters. Despite lim-
ited data availability, the model achieved stable error metrics and demonstrated
potential for generalizing to non-instrumented rooms based on their IFC-derived
features.

Overall, the developed system validated that open-standard data exchange, spatial
feature computation, and ensemble-based regression can together support data-driven
building performance analysis.

7.2. Key Technical Contributions
A major technical strength of this research lies in the efficiency of its data architecture.
By adopting the SensorThings API standard, heavy computational operations such as
temporal filtering, ordering, and aggregation were delegated to the server. Instead of
downloading large, unfiltered datasets, the FROST server processed queries at the
database level using parameters such as:

?$orderby=phenomenonTime desc&$filter=phenomenonTime ge ... and phenomenonTime le ...

This server-side approach reduced the size of data transfers and significantly im-
proved performance. During development, client-side filtering for one month of data
required over twenty minutes to execute, while the same query handled by the FROST
server returned results in approximately twelve seconds. This efficiency demonstrates
the feasibility of using open APIs for real-time monitoring and near-instantaneous data
access, even in multi-sensor environments.

The system also demonstrated strong interoperability. By linking IFC entities to STA
datastreams, it bridged spatial and temporal domains within a unified, standards-
compliant framework. TheCesium-based visualization further enabled interaction with
live sensor feeds and simulation results, transforming the workflow into a foundational
prototype for smart building digital twins.
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7.3. Limitations
While the developed workflow proved effective for a pilot-scale deployment, several
limitations were observed. First, the IFC model lacked explicit IfcRelSpaceBoundary
relationships, requiring window–room associations to be inferred through bounding-
box intersection, which may be less accurate in complex geometries. Second, the
training dataset covered a limited time span, capturing short-term variations but not
full seasonal cycles, which may limit the model’s ability to capture long-term trends.
Third, the regression model was trained on a narrow set of environmental variables
(temperature, solar inflow, and volume), without accounting for internal gains, occu-
pancy, or material properties, which could further improve predictive robustness. Fi-
nally, data sparsity from IoT devices and occasional sensor outages introduced small
temporal gaps that required interpolation.

Despite these constraints, the results demonstrate the proof-of-concept viability of the
workflow and its capacity for extension.

7.4. Future Scope
The developed system provides a flexible foundation for further research and scaling.
Several opportunities exist to advance the current framework:

(i) Expansion of the data and sensor network
Future deployments could extend the SensorThings database to include additional ob-
served properties such as humidity, occupancy, and energy consumption. Automat-
ing the registration of new IoT sensors in FROST through API scripts would enable
continuous integration of new data streams without manual configuration.

(ii) Model enhancement and retraining pipeline
The XGBoost model can be extended into an online or incremental learning pipeline
where the model automatically retrains as new data are received through the STA
endpoint. Incorporating multi-sensor inputs (e.g., CO2, noise, humidity) and static
IFC-derived features (e.g., wall material, glazing ratio) would improve predictive per-
formance and enable multi-variable forecasting of comfort indicators.

(iii) System scaling and interoperability
The current integration between IFC, STA, and FastAPI can be expanded into a gen-
eralizable digital twin architecture applicable to other buildings or campuses. Aligning
the workflow with emerging standards such as CityJSON or the Digital Twin Definition
Language (DTDL) could enable interoperability with broader urban-scale modeling
environments.

(iv) Interactive visualization and decision support
The Cesium-based interface can evolve into a dynamic feedback system that visual-
izes real-time conditions while allowing users to test hypothetical scenarios, such as
altered glazing configurations or HVAC settings. Such extensions could transform the
system from a predictive analytics tool into a decision-support environment for facility
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managers and urban planners.

7.5. Closing Remarks
This thesis contributes a reproducible and standards-based framework that integrates
BIM, IoT, and machine learning for predictive environmental analysis. The study
demonstrates that open data protocols such as the SensorThings API, when com-
bined with spatially rich IFC data and efficient model architectures, can yield scalable
and responsive digital workflows.

Beyond its immediate findings, the research establishes a methodological foundation
for future work on interoperable, data-driven digital twins for buildings and campuses.
With further expansion, the presented workflow can serve as a basis for adaptive
control, sustainability assessment, and simulation-based decision-making in the built
environment.
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A
XGBoost Parameters

Booster Parameters: Role and Relevance
This appendix offers a deeper look at the key XGBoost hyperparameters that played
a central role in the room temperature prediction task. While the results of hyperpa-
rameter tuning are discussed in Section 6.2.1, the focus here is to explain the purpose
of these parameters, how they function internally within the XGBoost framework, and
how their tuning impacted the overall modeling process.

Parameter Overview
XGBoost parameters can be grouped into three categories:

• General parameters: specify booster type and compute settings (e.g., CPU/GPU).
• Booster parameters: control the tree structure, depth, and regularization.
• Task parameters: define learning objectives and evaluation metrics.

This appendix focuses on booster parameters, which were the most actively tuned
during experimentation.

Key Booster Parameters
learning_rate

(also referred to as eta) This controls how much the model weights are updated
at each boosting step. Internally, it’s a shrinkage factor applied to the contribution
of each new tree. Lower values like 0.03 mean each tree has less influence, so
more trees (e.g., 1500) are needed to converge — but this can lead to better
generalization. In this thesis, learning rates of 0.30, 0.10, and 0.03 were tested,
with 0.03 giving the best results in terms of RMSE and R2.

max_depth

Defines how deep each tree can grow. Deeper trees can capture more com-
plex relationships, but also increase the risk of overfitting. A depth of 3 was

70



71

sufficient for some configurations, but increasing to 6 improved performance in
combination with other controls like gamma.

gamma (min_split_loss)

This controls the minimum loss reduction required to make a further partition on
a leaf node. Internally, XGBoost computes the gain from splitting a node and
compares it to gamma— splits are allowed only if gain > gamma. A value of 0.0
means no regularization by gamma, while a value of 1.0 introduces moderate
pruning. In experimentations done as part of Section 6.2.1, gamma=1.0 helped
reduce overfitting in deeper trees.

n_estimators

Number of boosting rounds or trees. This is not a learned parameter but directly
related to learning rate: lower rates need more trees. Here values from 300 to
1500 were used depending on the learning rate.

subsample

Fraction of training samples used per boosting round. Setting this < 1 introduces
randomness, acting like bagging. A default value of 0.8 was used to help with
generalization.

colsample_bytree

Fraction of features (columns) randomly selected for each tree. Also set to 0.8
in all runs, it serves a similar purpose to subsample but operates at the feature
level.

reg_lambda

L2 regularization term on weights. XGBoost penalizes overly confident leaf
scores, improving robustness. This wasfixed at 1.0

tree_method

Specifies how trees are built. “hist” was used, which uses histogram-based
splits — this speeds up training and reduces memory usage. It’s also recom-
mended when using larger datasets.

These parameters work together behind the scenes to balance model complexity and
generalization. XGBoost automatically computes gains, applies regularization, and
selects splits based on these parameters. Understanding their logic helped tailor the
model to projects’s use case — predicting room temperature using external variables
like solar irradiance, outside temperature, and room volume — with relatively limited
but clean input data.

Experimental Context (for Reference)
The model was trained on data from January–April 2025 and tested on May 2025.
Input features used were:

[‘room_volume’, ‘external_temp’, ‘solar_irradiance’]
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The limited feature set ensured interpretability and reduced noise. As explained in
Section 6.2, the performance impact of the above parameters was discussed in the
main report chapters using RMSE, MAE, and R2 metrics.

XGBoost’s flexibility and design made it a powerful choice for this project. While it
is a high-performance library capable of handling complex workflows, its clear pa-
rameter structure allow effective use even with a basic understanding of regression
and machine learning principles. In this project, the ability to directly configure core
hyperparameters—such as learning_rate, max_depth, and reg_lambda enabled tar-
geted experimentation.

The specific context of this thesis, including the limited but semantically relevant input
features (room_volume, external_temp, and solar_irradiance) and the structured
time-series nature of the data, meant that model performance was especially sensi-
tive to the balance between complexity and generalization. Systematic tuning made
it possible to identify configurations that delivered accurate predictions without over-
fitting. Thus, even with a basic setup, XGBoost enabled informed control over the
training process and supported reliable model development aligned with the project’s
goals.
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